WO2018217044A1 - Electrochemical device comprising carbon quantum dot ionic compound electrolyte - Google Patents

Electrochemical device comprising carbon quantum dot ionic compound electrolyte Download PDF

Info

Publication number
WO2018217044A1
WO2018217044A1 PCT/KR2018/005923 KR2018005923W WO2018217044A1 WO 2018217044 A1 WO2018217044 A1 WO 2018217044A1 KR 2018005923 W KR2018005923 W KR 2018005923W WO 2018217044 A1 WO2018217044 A1 WO 2018217044A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolyte
carbon quantum
electrochemical device
quantum dot
Prior art date
Application number
PCT/KR2018/005923
Other languages
French (fr)
Korean (ko)
Inventor
신익수
Original Assignee
신익수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180058236A external-priority patent/KR102034205B1/en
Application filed by 신익수 filed Critical 신익수
Priority to JP2020516361A priority Critical patent/JP6964768B2/en
Priority to US16/616,304 priority patent/US11996521B2/en
Priority to CN201880034527.2A priority patent/CN110662997B/en
Priority to EP18806882.9A priority patent/EP3633445A4/en
Publication of WO2018217044A1 publication Critical patent/WO2018217044A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to an electrochemical device including a carbon quantum dot ion compound electrolyte, and more particularly, a first electrode; A second electrode spaced apart from the first electrode;
  • the electrolyte has a graphene quantum dot anion and a metal having an average diameter of 2 to 12 nanometers (nm) and a surface charge of -20 or less
  • An electrochemical device comprising a carbon quantum dot ionic compound in the form of a salt of a cation.
  • Electrolytes form an ohmic contact between the electrode and the solution through the flow and exchange of ions in the solution, which is an essential component for the operation of the electrochemical device.
  • the electrolyte does not directly participate in the oxidation / reduction reaction but supports the electrochemical reaction.
  • Electrolytes may be classified into liquid electrolytes, ceramic electrolytes, inorganic solid electrolytes, and polymer electrolytes. Recently, there is a great interest in polymer electrolytes having processability, mechanical strength, and operating temperature suitable for electrochromic devices.
  • the conventional electrochromic device has a problem in terms of stability because the counter electrode layer and the electrochromic layer are in contact with the electrolyte and thus the reversibility of insertion and desorption of ions (H + , Li +, etc.) is broken.
  • liquid electrolytes have stability problems such as ignition, evaporation and leakage.
  • solid electrolytes are still more stable than liquid electrolytes, but exhibit low ionic conductivity and have problems such as increased interfacial contact resistance and deterioration of devices.
  • LiPF 6 is mainly applied to lithium ion batteries that are currently used commercially, because LiPF 6 has excellent overall physical properties such as ion mobility, ion pair dissociation, solubility, and SEI formation.
  • LiPF6 has a problem of poor thermal stability and side reactions even in a small amount of water.In particular, when the temperature rises, the following side reactions accelerate the continuous decomposition of the electrolyte and induce the gas to inflate the battery and lead to explosion. There are side effects.
  • electrochromic device refers to a device for changing the light transmission characteristics by changing the color of the electrochromic material by the electro-redox reaction in response to the application of an electric field, using the electrochromic device
  • the most successful applications include a rearview mirror for cars that automatically adjusts the glare of the light at the rear at night, and a smart window, a window that can be automatically adjusted according to the light intensity.
  • the smart window is changed to a darker color tone to reduce the amount of light when there is a large amount of insolation, and the energy saving efficiency is excellent by changing to a lighter color tone on a cloudy day.
  • the development to be applied to the display such as an electronic board (e-book), etc. is continuously made.
  • An electrochromic device is similar to a battery component, and refers to a device in which an electrochromic layer (anode) / electrolyte (Li +, H +) / relative electrode layer (cathode) is thinned.
  • an electrochromic layer anode
  • electrolyte Li +, H +
  • cathode relative electrode layer
  • it is colored when the cation and electrons such as Li + or H + are injected into the electrochromic layer (WxOy, MoxOy, etc.) as a reducing coloring material, and becomes transparent when released.
  • the positive electrode layer VxOy, NixOy, etc.
  • the positive electrode layer which is an oxide coloring material, is colored when the cations and electrons such as Li + and H + are released, and becomes transparent when injected.
  • the electrochromic layer constituting the electrochromic device is divided into a reducing coloring material and an oxidizing coloring material.
  • the reducing coloring material is a material that is colored when obtaining electrons.
  • the oxidative coloring material is a material that is colored when the electrons are lost, and examples thereof include nickel oxide and cobalt oxide.
  • representative electrochromic materials include inorganic metal oxides such as V2O5, Ir (OH) x, NiOxHy, TiO2, and MoO3, PEDOT (poly-3,4-ethylenedioxythiophene), polypyrrole, polyaniline, polyazulene, polythiophene, poly There are conductive polymers such as pyridine, polyindole, polycarbazole, polyazine and polyquinone, and organic discoloring materials such as viologen, anthraquinone and phenocyazine.
  • a method of directly attaching a color change material to a first electrode has been developed.
  • an ion storage medium must be formed on the counter electrode and an electrolyte must be included between the two electrodes to complete the electric circuit of the electrochromic device. Therefore, in order to realize a high efficiency, high stability electrochromic device, it is necessary to improve the electrochemical properties of the electrolyte, the color change material, and the ion storage medium, and to improve the structure of the color change device.
  • Tungsten oxide which has been studied extensively as an electrochromic material, causes irreversible chemical reaction with lithium ions embedded in an electrochromic device, and lithium ions are trapped in each layer of the electrochromic device, thereby decomposing each layer of the electrochromic device.
  • the characteristics of the electrochromic device are degraded due to the thin flake layer, and it is deformed into a material which can no longer be electrochromic or can cause the device to leak electrolyzed in a short time.
  • This electrolyte is self-suspended to provide a homogeneous fluid, wherein the PEG oligomers simultaneously act as a suspension medium for the nanoparticle core and as an ion-conducting network for lithium ion transport.
  • WO2010 / 083041 also discloses a NOHM based hybrid electrolyte comprising a polymer corona doped with a lithium salt, a polymer corona attached to an inorganic nanoparticle core.
  • chaefer, J.L. et al. J. Mater. Chem., 2011, 21, 10094
  • the disclosed Si02 nanoparticle hybrid electrolyte is disclosed.
  • This electrolyte is made from polyethylene glycol dimethyl ether (PEGDME) and provides good ion conductivity.
  • PEGDME polyethylene glycol dimethyl ether
  • the negative ions of lithium salts move freely through the electrolyte, and two-thirds of the current is carried by the negative ions, resulting in high concentrations of polarization, thus causing internal resistance and voltage losses.
  • Korean Patent Publication No. 10-2015-0004124 discloses a nanoparticulate organic hybrid material comprising inorganic nanoparticles covalently grafted with one or more anions of an organic sodium salt or an organic lithium salt through a linker group, Particulate hybrid materials are formula (I)
  • Nanoparticulate organic hybrid materials which are characterized by having: Wherein Np represents an inorganic nanoparticle; L is a linker group selected from a C1-C6 alkylene group and a phenyl-C1-C4-alkylene group;
  • Korean Patent Publication No. 10-2011-0003505 includes a material having an amide group, and a solvent having the following structure:
  • X is an aryl group optionally having a substituent on a carbon atom, a nitrogen atom, an oxygen atom or an aryl ring, provided that R2 does not exist when X is a nitrogen atom and R1 and R2 when X is an oxygen atom
  • None is present, and when X is an aryl group, none of R1, R2 and R5 are present, R1 is a hydrogen atom or a carbon-based group, R2 is a hydrogen atom or a carbon-based group, R3 is a hydrogen atom or a carbon-based group; R4 and R5 are individually selected from hydrogen atoms or carbon-based groups, or R4 and R5 together form a carbon-based group to give a ring structure to the solvent; And a mixture of ionizable materials forming a solution with the solvent, an electrolyte characterized by solvating a polymer in the mixture.
  • the electrolyte for the conventional electrochromic device including the above-mentioned document has a problem that the discoloration material, the electrolyte, and the electrode are highly likely to deform if the voltage is increased to improve the transport rate as well as the transport rate is low because the amount of charge is not large. In some cases, solvent evaporation and solvent decomposition may occur. In addition, there is a problem that the organic-based electrolyte is weak durability.
  • the commercialized lithium ion battery is difficult to be used as a large-scale power storage device due to the scarcity of lithium resources and the resulting cost increase.
  • dendrites formation of lithium metal in batteries has a problem of stability causing internal overheating and combustion.
  • metal cations such as sodium (Na + ), potassium (K + ), and magnesium (Mg 2 + ).
  • metal cations such as sodium (Na + ), potassium (K + ), and magnesium (Mg 2 + ).
  • metal cations such as sodium (Na + ), potassium (K + ), and magnesium (Mg 2 + ).
  • the physical properties required for the electrolyte is required to be flame retardant, nonvolatile, non-toxic, etc. for safety during use and after disposal.
  • electrolytes For these materials, several classes of electrolytes have been studied as replacements for conventional liquid electrolytes with inorganic or organic properties.
  • Typical materials used in the manufacture of polymers, polymer composites, hybrids, gels, ionic liquids, ceramics or solid electrolytes are derived from inorganic matrices such as ⁇ -alumina and nanoparticle oxides such as Nasicon and silicon dioxide. It may be a simple lithium halide with improved grain boundaries defects or sulfide glass in a SiS 2 + Li 2 S + Lil system.
  • an organic polymer mattress In order to obtain an electrolyte that is compliant with the change in volume, it is preferable to use an organic polymer mattress.
  • Typical examples include polyethylene oxide, polypropylene oxide or polyethyleneimine and copolymers thereof. These materials are used in combination with suitable lithium salts such as lithium bis (trifluoromethane sulfonyl imide [Li (CF3S02) 2N] and lithium tetrafluoroborate (LiBF4), referred to below as LiTFSI.
  • LiTFSI lithium bis (trifluoromethane sulfonyl imide
  • LiBF4 lithium tetrafluoroborate
  • the main disadvantage of the electrolyte is its ambipolar conductivity: When current is applied, both the anion and the cation are mobile such that about one third of the current through the electrolyte is carried by the cation and two thirds by the anion.
  • ⁇ and D are the transport number t +, where conductivity and diffusion of each charge species is
  • US 5,569,560 discloses the use of an anionic complexing agent comprising a polyamine with a strong electron-removing unit CF3S02 attached to slow the anion, whereby lithium cations are used on a larger scale in electrochemical cells.
  • CF3S02 nanoscale organic / silica hybrid materials
  • This electrolyte is self-suspended to provide a homogeneous fluid, wherein the PEG oligomers simultaneously act as a suspension medium for the nanoparticle core and as an ion-conducting network for lithium ion transport.
  • WO2010 / 083041 also discloses a NOHM based hybrid electrolyte comprising a polymer corona doped with a lithium salt, a polymer corona attached to an inorganic nanoparticle core. Chaefer, J. L. et al. (J. Mater. Chem., 2011, 21, 10094) also covalently binds to dense brushes of oligo-PEG chains doped with lithium salts, in particular lithium bis (trifluoromethanesulfonimide).
  • the disclosed Si02 nanoparticle hybrid electrolyte is disclosed.
  • This electrolyte is made from polyethylene glycol dimethyl ether (PEGDME) and provides good ion conductivity.
  • PEGDME polyethylene glycol dimethyl ether
  • the negative ions of lithium salts move freely through the electrolyte, and two-thirds of the current is carried by the negative ions, resulting in high concentrations of polarization, thus causing internal resistance and voltage losses.
  • the technical problem to be achieved by the present invention is to form an electrochemical device and to cause side reactions with the electrode material constituting the electrode in which the reversible electrochemical redox reaction occurs, thereby causing decomposition of the material or deformation of the ionic salt.
  • the present invention and the first electrode; A second electrode spaced apart from the first electrode;
  • the electrolyte has an average diameter of 2
  • the present invention provides an electrochemical device comprising a carbon quantum dot ionic compound in the form of a salt of a carbon quantum dot anion and a metal cation having a surface potential of -20 mV or less in a range of 12 nanometers (nm).
  • the present invention is an electrochemical device, characterized in that the metal is at least one selected from the group consisting of Li, Na, K, Mg and Zn.
  • the present invention provides an electrochemical device, characterized in that the electrochemical device is one selected from the group consisting of a secondary battery, a solar cell, an electrochromic device and an electroluminescent device.
  • the present invention provides an electrochemical device, characterized in that the secondary battery is a lithium ion battery or a lithium polymer battery.
  • the dissociation energy of the anion and the cation is very small, and thus the ion conductivity is improved, and the movement speed of the anion is relatively slow compared to the metal cation. Since the polarization is large and the anion's thermochemical / electrochemical stability is high, no side reactions occur during device driving, thereby improving selective ion conductivity with specific cations and suppressing side reactions by electrolytes in the device, thereby improving reliability and performance of the device. In addition to the liquid, gel, and solid phase, it is applicable to all of the liquid phase, it is possible to provide an electrochemical device that can significantly increase the reliability, efficiency and durability of the device by applying a carbon quantum dot ionic compound having high application as an electrolyte.
  • FIG. 1 is a schematic diagram of an electrochromic device as an example of an electrochemical device according to the present invention
  • Figure 2 (a) is a schematic diagram for understanding the electron micrograph and structure of the carbon quantum dot ionic compound applied to the electrochemical device of the present invention, (b) is a graph showing the absorption and emission region of the carbon quantum dot ionic compound
  • FIG. 3 shows various ferricyanide concentrations under a three-electrode system consisting of a working electrode, a platinum (Pt) counter electrode, and a reference electrode (Ag / AgCl) including a discoloring material in an aqueous solution containing a carbon quantum dot ionic compound according to one embodiment of the present invention.
  • FIG. 5 is an electrochemical impedance spectroscopy of the electrochemical devices of Example 1 and Comparative Example 1 measured by changing metal cations in carbon quantum dot ionic compounds under three-electrode system conditions.
  • Figure 7 (a) is the result of testing the durability of each electrolyte in the electrochromic device as an example of the electrochemical device prepared in Examples and Comparative Examples according to the present invention and (b) is the durability of the carbon quantum anion-potassium cation electrolyte Test result
  • the insertion degree is a color / color photo according to the electrochromic device transmittance
  • Figure 11 (a) to (c) is the concentration of the carbon quantum anion-lithium cation ion compound electrolyte prepared according to the present invention (0.125, 0.25, 0.5 and 0.5M, respectively) and (d) is 1.1M LiPF6 for contrast Cyclic voltammetry measurement results using electrolyte
  • FIG. 13 (a) is a voltage-capacitance measurement result measured at an electrode of a lithium ion battery to which a carbon quantum dot ion compound electrolyte and a LiPF6 electrolyte of the present invention are applied in Example 5 of the present invention, and (b) is a voltage Differential results
  • the term 'electrochemical device' refers to a first electrode, a second electrode spaced apart from the first electrode, and to form an electrically opposite electrode, and an electrolyte is filled between the first electrode and the second electrode.
  • the device refers to a device in which reversible electrochemical redox reaction occurs in at least one of the first electrode and the second electrode, and the term 'carbon quantum point' has an average diameter in the range of 2 to 12 nm and anion on the surface and / or the edge.
  • Electrochemical device of the present invention the first electrode; A second electrode spaced apart from the first electrode to form an electrically opposite electrode; An electrolyte filled between the first electrode and the second electrode, wherein the reversible electrochemical redox reaction occurs at at least one of the first electrode and the second electrode, the electrolyte has an average diameter of 0.1 And a carbon quantum dot ionic compound in the form of a salt of a carbon quantum dot anion and a metal cation having a range of from 8 nanometers (nm) and a surface charge of-(minus) of 20 mV or less.
  • the electrochemical device of the present invention includes a first electrode and a second electrode spaced apart from the first electrode to form an electrically opposite electrode.
  • the first electrode may be a working electorde or an anode
  • the second electrode forming an electrically opposite electrode may be a counter electorde or a cathode.
  • At least one electrode of the first electrode or the second electrode is accompanied by a reversible electrochemical redox reaction.
  • Carbon quantum anion in the present invention has a polyanionic (A n- ) form, the inside is an aromatic structure, and has oxygen functional groups on the surface and edge.
  • the carbon quantum dot anion is combined with a metal cation to produce a salt type ionic compound.
  • Figure 2 (a) is a schematic diagram for understanding the electron micrograph and structure of the carbon quantum dot ionic compound applied to the electrochemical device of the present invention, (b) is a graph of the absorption and emission region of the carbon quantum dot ionic compound. Carbon quantum dot ionic compounds as shown in Figure 2 can be expected the following characteristics.
  • the carbon quantum dot ionic compound of the present invention is not only easy to disperse in aqueous solutions and non-aqueous solvents, but also relatively free of mixing with organic solvents having low viscosity, low volatility, and high permittivity. This enables the implementation of a liquid electrolyte with high ionic conductivity.
  • the metal cation in the carbon quantum dot ionic compound may be an alkali metal, an alkaline earth metal or a transition metal, for example, Li, Na, K, Mg or Zn.
  • the carbon quantum dot ionic compound can be used in liquid, gel, solid form, it is possible to adjust the appropriate content according to the form.
  • the carbon quantum dot ion compound electrolyte applied to the electrochemical device of the present invention has at least one oxygen functional group having an average diameter in the range of 2 to 12 nm, more preferably in the range of 5 to 8 nm, and which may be an anion on the surface and / or the edge. It is preferable that it is an ionic compound of a carbon quantum point anion and a metal cation having a surface potential of -20 mV or less. If the average diameter of the carbon quantum point is less than 2nm, the carbon quantum point anion is moved to the anode by the potential formed on the electrode of the electrochemical device.
  • the carbon quantum dot ionic compound electrolyte applied to the electrochemical device of the present invention may be dissolved in an aqueous solvent (methanol, ethanol), a non-aqueous solvent (acetonitrile, dimethyl carbonate, ethylene carbonate), and an aqueous solution, and used in a liquid phase. It can be used in the form of a gel by dispersing in an appropriate dispersion medium / matrix according to.
  • an aqueous solvent methanol, ethanol
  • a non-aqueous solvent acetonitrile, dimethyl carbonate, ethylene carbonate
  • the electrochemical device of the present invention comprises a first electrode (working electrode); A second electrode (relative electrode) spaced apart from the first electrode; It includes an electrolyte filled between the first electrode and the second electrode, and further includes a reference electrode due to the characteristics of the device.
  • an electrochromic device is used as an example of an electrochemical device, but the electrochemical device of the present invention is not limited to an electrochromic device, and is a work electrode such as an electrochemical light emitting device, a secondary battery, or a solar cell. This applies to all electrochemical devices with reversible electrochemical redox reactions at the (material) or anode (cathode).
  • the reliability and performance of the electrochemical device is degraded.
  • the diffusion coefficient of the metal cation in the electrochromic device or the like is lower than that of the cation constituting the ionic liquid, the cation cannot be inserted into the color change material. Therefore, the color change material is difficult to maintain an electrically neutral state, the color change efficiency is degraded or the decomposition of the material occurs, the electrochromic device reliability and performance is reduced.
  • the electric field is formed by the voltage applied in the electrochromic device, which causes the electrolyte anions to move along the direction of the electric field.
  • the negative ions cause chemical reactions with the discoloring material and the electrode, thereby reducing the reliability and performance of the electrochromic device.
  • a material capable of performing an oxidation / reduction reaction should be included. Otherwise, charge imbalance occurs on both electrode interfaces, thereby degrading the reliability and performance of the electrochromic device.
  • the electrochemical device according to the present invention by applying a carbon quantum dot ion compound as an electrolyte, the above-described side reactions can be suppressed to increase the reliability and durability of the electrochemical device, as well as the electrode and electrolyte (quality). By controlling the inter-charge imbalance, the efficiency of the electrochromic device can be improved by increasing the conversion efficiency between electric energy and chemical energy.
  • Example 1 Manufacture of an electrochromic device including a carbon quantum dot electrolyte
  • a color change material is formed by using a conductive transparent substrate in an aqueous solution containing 0.05 M HCl, 0.05 MK 3 Fe (CN) 6 , and 0.05 M FeCl 3 6H 2 O.
  • the thickness of the discolored material is controlled by controlling the current and time by using a time-potential potentiation method (chronopotentiometry).
  • a color change material was formed on the working electrode for 40 uA and 140 s.
  • the conductive transparent substrate was immersed in 5 mM ZnCl 2 , 0.1 M KCl, and oxygen-saturated aqueous solution, and then ZnO buffer layer was formed for 1000 s while applying ⁇ 1 V at room temperature.
  • the transparent electrode in which the ZnO buffer layer was continuously formed was immersed in 0.5 mM ZnCl 2 , 0.1 M KCl, and saturated oxygen solution, and then ZnO NWs layer (nanowire layer) was applied at 80 ° C. and 1000 s while applying -1 V. Formed. This was used as a counter electrode.
  • the working electrode and the counter electrode were attached in the form of a sandwich using a thermal tape. At this time, the distance between the two electrodes is 60um.
  • a carbon quantum dot ionic compound having a concentration of 0.5 M was charged with Li, Na and K, respectively, through the fine pores formed in the counter electrode. At this time, the pH of the aqueous electrolyte solution was adjusted to 4.
  • An electrochromic device was manufactured in the same manner as in Example 1, except that 0.5 M potassium chloride (KCl) was used as the electrolyte.
  • KCl potassium chloride
  • FIG. 3 (a) shows a first electrode (working electrode), a platinum (Pt) second electrode (relative electrode) and a reference electrode containing a color change material in an aqueous solution containing a carbon quantum dot ionic compound in Example 1 of the present invention.
  • the structure of the three-electrode electrochemical cell composed of Ag / AgCl) and 3 (b) are the results of cyclic voltammetry measurements according to the concentration of Ferricyanide.
  • the electrochemical device of the present invention can be seen that the oxidation / reduction current value of the color change material corresponding thereto even if the scan speed is increased (oxidation current is a color reaction (color reaction, PB) and the reduction current shows a colorless reaction (PW).
  • oxidation current is a color reaction (color reaction, PB)
  • reduction current shows a colorless reaction (PW).
  • Table 1 below shows the diffusion rate value according to the metal cation of the carbon quantum dot ionic compound under the three-electrode system conditions.
  • Figure 5 is an electrochemical impedance spectroscopy graph measured in the three-electrode system
  • Table 2 summarizes the measured impedance measurement by the color reaction and color reaction using the cyclic current voltage method in the three-electrode system .
  • Figure 7 (a) is the result of testing the durability of each electrolyte of the electrochromic device as an example of the electrochemical device prepared in Examples and Comparative Examples according to the present invention and (b) is a durability test of carbon quantum anion-potassium cation electrolyte The result is.
  • sandwich type electrochromic device characteristics were evaluated.
  • the change in device transmittance at 700 nm was monitored according to the applied voltage change.
  • the device generates a discoloration reaction by applying a pulse voltage of 1.2 V (colored state) to -2.2 V (colored state) with a pulse width of 10 seconds, and it can be observed that the repetitive and reversible changes (FIG. 6).
  • the sandwich type electrochromic device has a relatively high voltage charge injection due to the voltage drop phenomenon compared to the electrochromic device of the three-electrode system.
  • Figure 8 is a result of measuring the change in transmittance according to the voltage switching of the electrochromic device in Example 1 and Comparative Example 1 according to the present invention, the insertion degree is a color / color photo according to the electrochromic device transmittance.
  • the electrochromic device according to the present invention is significantly superior to the case of using a conventional electrolyte in the color and bleaching reaction rate and efficiency.
  • a thin film of TiO 2 particles is formed on the surface of the cathode.
  • the negative electrode and the positive electrode are attached using a thermal tape.
  • FIG. 9 is a light emission intensity measurement result according to the carbon quantum dot ion compound concentration under the two-electrode system conditions for the electroluminescent device in one embodiment according to the present invention.
  • the carbon quantum point anion-metal cation ion compound concentration increases, the ionic conductivity is improved to reduce the resistance in the device and eventually increase the luminescence intensity.
  • FIG. 10 shows the results of measuring the specific capacitance measured after charging and discharging the carbon quantum anion-lithium metal cation ion compound electrolyte of the present invention instead of the LiPF 6 electrolyte of the conventional secondary battery in a lithium secondary battery.
  • the negative electrode of the battery was constructed using Li 4 Ti 5 O 12 (active material), 10 wt% PVDF (binder), NMP (Solvent), and the positive electrode was graphite.
  • the concentration of the carbon quantum point anion-lithium metal cation ion compound electrolyte was 0.5M. As can be seen in Figure 10, it was found that a stable charge / discharge cycle is observed in the secondary battery as an example of the electrochemical device of the present invention.
  • FIG. 12 (a) is the result of the 0.5M concentration electrolyte
  • (b) is the result of measuring the cycle for each concentration.
  • the rate characteristic of the relatively high concentration of 0.5M sample is the best, and when the average capacity for each current density is calculated, the capacity of 0.5 sample is the best at all current density Showed capacity.
  • Table 5 summarizes the results.
  • FIG. 13 (a) is a voltage-capacitance measurement result measured at an electrode of a lithium ion battery to which a carbon quantum dot ionic compound electrolyte and a LiPF6 electrolyte of the present invention are applied, and (b) is a result of differentiating voltage. As shown in FIG.
  • Formula 1 is a formula for obtaining the ion mobility index of the cation.
  • the formula has a number from 0 to 1, and the closer to 1, the higher the contribution of charge transfer by cation.
  • Equation 1 can be expressed as shown in Equation 2 below to measure the ion mobility index of Li ions.
  • t Li Lithium transference number
  • V Applied potential
  • R O Initial resistance of the passivation layer
  • R SS Resistance of the passivation layer
  • I O Initial current
  • I SS Steady state current.
  • the carbon quantum point anion-lithium cation ion compound electrolyte of the present invention was found to be 1.5 to 2 times higher charge transfer index by the cation than LiPF6.
  • t Li when t Li is small, the overall resistance of the cell due to concentration polarization of anions in the electrolyte is increased.
  • the cation yield is influenced by the temperature, the concentration of salt in the electrolyte and the radius of the ions, and the high t Li seen in the electrolyte of the present invention in the above experiments is due to the large anion radius of the carbon dot.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

The present invention relates to an electrochemical device comprising a carbon quantum dot ionic compound electrolyte and, more specifically, to an electrochemical device comprising a first electrode, a second electrode spaced from the first electrode, and an electrolyte filled between the first electrode and the second electrode, wherein the electrolyte comprises a carbon quantum dot ionic compound in the form of salts of metal cations and anions of graphene quantum dots having an average diameter within the range of 0.1-8 nanometers (nm) and having a surface charge of at most -20. The present invention provides an electrochemical device which not only allows an improvement in the reliability and performance of the device by improving selective ionic conduction with particular cations and inhibiting a side reaction caused by an electrolyte in the device, but also has drastically increased reliability, efficiency, and durability by applying, as the electrolyte, a carbon quantum dot ionic compound which can be applied as any of a liquid phase, a gel, and a solid phase and thus has high applicability.

Description

탄소양자점 이온화합물 전해질을 포함한 전기화학소자Electrochemical device containing carbon quantum dot ionic compound electrolyte
본 발명은 탄소양자점 이온화합물 전해질을 포함한 전기화학소자에 관한 것으로, 보다 상세하게는 제1전극과,; 상기 제1전극과 이격된 제2전극 및; 상기 제1전극과 제2전극 사이에 충진되는 전해질을 포함한 전기화학소자에 있어서, 상기 전해질은 평균직경이 2 내지 12 나노미터(nm) 범위이고 그 표면전하가 -20 이하인 그래핀 양자점 음이온과 금속 양이온의 염 형태인 탄소양자점 이온화합물을 포함한 것을 특징으로 한 전기화학소자에 관한 것이다.The present invention relates to an electrochemical device including a carbon quantum dot ion compound electrolyte, and more particularly, a first electrode; A second electrode spaced apart from the first electrode; In an electrochemical device including an electrolyte filled between the first electrode and the second electrode, the electrolyte has a graphene quantum dot anion and a metal having an average diameter of 2 to 12 nanometers (nm) and a surface charge of -20 or less An electrochemical device comprising a carbon quantum dot ionic compound in the form of a salt of a cation.
신재생에너지 이용이 급증되면서, 이차전지, 전기변색장치 그리고 염료감응태양전지와 같은 전기화학소자의 효율 및 신뢰성 향상 필요성이 높아지고 있다. As the use of renewable energy increases rapidly, the necessity of improving the efficiency and reliability of electrochemical devices such as secondary batteries, electrochromic devices and dye-sensitized solar cells is increasing.
한편, 전해질은 용액 내의 이온의 흐름 및 교환을 통해 전극과 용액 간의 저항접촉을 형성하게 하고, 이로서 전기화학소자의 작동에 필수적인 구성요소이다. 전해질은 산화/환원 반응에 직접 참여하지는 않지만 전기화학반응을 지원한다. 전해질은 액체 전해질, 세라믹 전해질, 무기 고체 전해질 및 고분자 전해질 등으로 분류할 수 있으며, 최근 전기변색소자에 적합한 가공성과 기계적 강도 및 작동 온도 등을 가지는 고분자 전해질에 대한 관심이 높다. 그러나 종래 전기변색 소자는 상대전극층과 전기변색층이 전해질과의 접촉으로 인해 이온 (H+, Li+ 등등)의 삽입 및 탈착의 가역성이 무너져 안정성 측면에서 문제가 있다. 현재 주로 사용되는 액체 전해질의 경우 발화, 증발, 누수와 같은 안정성 문제가 있다. 반면 고체 전해질은 아직까지 액체 전해질에 비해 안정성은 우수하나 낮은 이온전도도를 보이며 계면 접촉 저항 증가와 이에 따른 소자의 열화 현상발생 등과 같은 문제점이 있다. Electrolytes, on the other hand, form an ohmic contact between the electrode and the solution through the flow and exchange of ions in the solution, which is an essential component for the operation of the electrochemical device. The electrolyte does not directly participate in the oxidation / reduction reaction but supports the electrochemical reaction. Electrolytes may be classified into liquid electrolytes, ceramic electrolytes, inorganic solid electrolytes, and polymer electrolytes. Recently, there is a great interest in polymer electrolytes having processability, mechanical strength, and operating temperature suitable for electrochromic devices. However, the conventional electrochromic device has a problem in terms of stability because the counter electrode layer and the electrochromic layer are in contact with the electrolyte and thus the reversibility of insertion and desorption of ions (H + , Li +, etc.) is broken. Currently used liquid electrolytes have stability problems such as ignition, evaporation and leakage. On the other hand, solid electrolytes are still more stable than liquid electrolytes, but exhibit low ionic conductivity and have problems such as increased interfacial contact resistance and deterioration of devices.
전도성 염을 포함하는 전해질 내에는 복잡한 현상이 일어난다. 그 예로 염의 농도가 증가할 때, 점도 증가로 인해 이온의 확산 계수가 감소하면서 이온 전도도가 낮아지게 된다. 또한 전극 혹은 다른 물질과의 부반응으로 인해 소자의 안정성 확보에 어려움이 발생한다. 특히, 금속 양이온의 낮은 확산계수 및 운반율로 인한 전기화학소자 신뢰성 저하가 문제되는데, 예를 들어, 리튬 이차 전지의 경우 리튬 이온과 이온성 액체간의 경쟁이 존재한다. 리튬 이온의 확산계수가 이온성 액체를 구성하는 양이온에 비해 낮을 경우, 리튬 이온이 전극 표면에 접근하는 것이 어려워져 전극 내부로 리튬 이온이 삽입될 수 없다. 따라서 전기화학 반응이 일어나지 않게 된다. 또한, 현재 상업적으로 사용되는 리튬이온전지에는 전해질로 LiPF6가 주로 적용되는데, LiPF6가 이온 모빌리티, 이온 페어 해리도, 용해도, SEI 형성 등의 물성이 전반적으로 우수하기 때문이다. 그러나, LiPF6는 열적 안정성이 열악하고 미량의 수분에도 부반응이 발생하는 등의 문제가 있으며, 특히 온도 상승시 아래와 같은 부반응으로 인해 전해질의 지속적 분해를 가속화하고 가스의 발생으로 배터리를 부풀게 만들고 폭발에까지 이르게 하는 부작용이 있다.Complex phenomena occur in electrolytes containing conductive salts. For example, when the concentration of salt increases, the conductivity increases, resulting in a decrease in the diffusion coefficient of the ions, resulting in lower ionic conductivity. In addition, it is difficult to secure the stability of the device due to side reactions with the electrode or other materials. In particular, the deterioration of electrochemical device reliability due to the low diffusion coefficient and transport rate of the metal cation is a problem, for example, in the case of lithium secondary batteries, there is a competition between lithium ions and ionic liquids. When the diffusion coefficient of lithium ions is lower than that of the cation constituting the ionic liquid, it is difficult for lithium ions to approach the surface of the electrode and lithium ions cannot be inserted into the electrode. Therefore, the electrochemical reaction does not occur. In addition, LiPF 6 is mainly applied to lithium ion batteries that are currently used commercially, because LiPF 6 has excellent overall physical properties such as ion mobility, ion pair dissociation, solubility, and SEI formation. However, LiPF6 has a problem of poor thermal stability and side reactions even in a small amount of water.In particular, when the temperature rises, the following side reactions accelerate the continuous decomposition of the electrolyte and induce the gas to inflate the battery and lead to explosion. There are side effects.
Figure PCTKR2018005923-appb-I000001
Figure PCTKR2018005923-appb-I000001
한편, 전기변색소자(electrochromic device: ECD)는 전기장의 인가에 따라 전기적인 산화 환원 반응에 의해 전기 변색 물질의 색상이 변화되어 광투과 특성을 변경하는 소자를 지칭하는데, 상기 전기 변색 소자를 활용한 응용 제품 중 가장 성공적인 제품으로는 야간에 후면에서의 빛의 눈부심을 자동으로 조절해 주는 자동차용 후사경, 빛의 강도에 따라 자동적으로 조절될 수 있는 창문인 스마트 윈도우(smart window)가 있다. 스마트 윈도우는 일사량이 많을 경우 빛의 양을 줄이기 위해서 더 어두운 색조로 변하게 되며, 흐린 날에는 밝은 색조로 변화함으로써 에너지 절약 효율이 뛰어난 특성이 있다. 또한 전광판이나 전자북(e-book) 등의 디스플레이 등에 응용하고자 하는 개발이 지속적으로 이루어지고 있다. 전기변색 소자는 전지의 구성요소와 비슷한데, 전기변색층 (양극)/전해질(Li+, H+)/상대전극층(음극)이 박막화된 소자를 일컫는 것이다. 전기변색의 원리를 간략하게 설명하면, 환원착색 물질인 전기변색층(WxOy, MoxOy 등)으로 Li+이나 H+와 같은 양이온과 전자가 주입되면 착색되고, 방출되면 투명하게 된다. 반대로 산화착색물질인 상대전극층(VxOy, NixOy 등)으로 Li+이나 H+와 같은 양이온과 전자가 방출되면 착색되고, 주입되면 투명하게 되는 것이다.On the other hand, electrochromic device (ECD) refers to a device for changing the light transmission characteristics by changing the color of the electrochromic material by the electro-redox reaction in response to the application of an electric field, using the electrochromic device The most successful applications include a rearview mirror for cars that automatically adjusts the glare of the light at the rear at night, and a smart window, a window that can be automatically adjusted according to the light intensity. The smart window is changed to a darker color tone to reduce the amount of light when there is a large amount of insolation, and the energy saving efficiency is excellent by changing to a lighter color tone on a cloudy day. In addition, the development to be applied to the display, such as an electronic board (e-book), etc. is continuously made. An electrochromic device is similar to a battery component, and refers to a device in which an electrochromic layer (anode) / electrolyte (Li +, H +) / relative electrode layer (cathode) is thinned. Briefly explaining the principle of the electrochromic, it is colored when the cation and electrons such as Li + or H + are injected into the electrochromic layer (WxOy, MoxOy, etc.) as a reducing coloring material, and becomes transparent when released. On the contrary, the positive electrode layer (VxOy, NixOy, etc.), which is an oxide coloring material, is colored when the cations and electrons such as Li + and H + are released, and becomes transparent when injected.
전기 변색 소자를 이루는 전기 변색층은 환원 착색 물질과 산화 착색 물질로 나뉘어지는데, 환원 착색 물질은 전자를 얻을 때 착색이 되는 물질로서 대표적으로 텅스텐 산화물이 많이 연구되고 있다. 반대로 산화 착색 물질은 전자를 잃을 때 착색이 되는 물질로서, 대표적인 예로는 니켈 산화물이나 코발트 산화물 등이 있다. 그 외에도 대표적인 전기 변색 물질로는 V2O5, Ir(OH)x, NiOxHy, TiO2, MoO3등의 무기 금속 산화물과 PEDOT(poly-3,4-ethylenedioxythiophene), 폴리피롤, 폴리아닐린, 폴리아줄렌, 폴리티오펜, 폴리피리딘, 폴리인돌, 폴리카바졸, 폴리아진, 폴리퀴논 등의 전도성 고분자가 있으며, 비올로겐, 안트라퀴논, 페노사이아진 등의 유기 변색 물질이 있다. 전기변색소자의 안전성과 변색 효율을 향상시키기 위해 변색물질을 제1전극(working electrode)에 직접적으로 부착시키는 방법이 개발되었다. 이러한 경우 반드시 상대전극에 이온저장매체를 형성시키고 두 전극사이에 전해질을 포함해야 전기변색소자의 전기회로가 완성된다. 따라서 고효율, 고안정성 전기변색소자를 구현하기 위해서는 전해질, 변색물질 그리고 이온저장매체 물질의 전기화학적적 특성 향상과 더불어, 전기변색소자내 구조를 개선시킬 필요가 있다. 전기변색 물질로 폭 넓게 연구되어져 온 텅스텐 산화물은 전기변색 소자 내에서 삽입된 리튬이온과 비가역 화학반응을 일으켜, 리튬이온이 전기변색소자의 각층에서 트랩되고, 이로 인해 전기변색 소자의 각층이 분해되고, 얇은 조각 층으로 갈라져 전기변색 소자의 특성이 저하되고, 빠른 시간내에 더 이상 전기변색을 할 수 없거나 소자의 전기 누수를 일으킬 수 있는 물질로 변형이 되어 전기변색 소자로써의 기능을 상실하게 된다(N.J. Dudney, J. Power Sources, 89 (2000) 17; G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, Solar Energy Materials and Solar Cells, 83 (2004) 115). The electrochromic layer constituting the electrochromic device is divided into a reducing coloring material and an oxidizing coloring material. The reducing coloring material is a material that is colored when obtaining electrons. On the contrary, the oxidative coloring material is a material that is colored when the electrons are lost, and examples thereof include nickel oxide and cobalt oxide. In addition, representative electrochromic materials include inorganic metal oxides such as V2O5, Ir (OH) x, NiOxHy, TiO2, and MoO3, PEDOT (poly-3,4-ethylenedioxythiophene), polypyrrole, polyaniline, polyazulene, polythiophene, poly There are conductive polymers such as pyridine, polyindole, polycarbazole, polyazine and polyquinone, and organic discoloring materials such as viologen, anthraquinone and phenocyazine. In order to improve the safety and color change efficiency of the electrochromic device, a method of directly attaching a color change material to a first electrode has been developed. In this case, an ion storage medium must be formed on the counter electrode and an electrolyte must be included between the two electrodes to complete the electric circuit of the electrochromic device. Therefore, in order to realize a high efficiency, high stability electrochromic device, it is necessary to improve the electrochemical properties of the electrolyte, the color change material, and the ion storage medium, and to improve the structure of the color change device. Tungsten oxide, which has been studied extensively as an electrochromic material, causes irreversible chemical reaction with lithium ions embedded in an electrochromic device, and lithium ions are trapped in each layer of the electrochromic device, thereby decomposing each layer of the electrochromic device. In addition, the characteristics of the electrochromic device are degraded due to the thin flake layer, and it is deformed into a material which can no longer be electrochromic or can cause the device to leak electrolyzed in a short time. NJ Dudney, J. Power Sources, 89 (2000) 17; G. Leftheriotis, S. Papaefthimiou, P. Yianoulis, Solar Energy Materials and Solar Cells, 83 (2004) 115).
이들 문제점을 해결하기 위해 몇몇 시도들이 제안되고 있다. 근래에, 나노스케일의 유기/실리카 하이브리드 물질 (NOHM)을 기재로 하는 무-용매성(solvent-free) 하이브리드 전해질이 리튬 염과 함께 구성되었다 [Nugent, J.L. et al, Adv. Mater., 2010, 22, 3677; Lu, Y. et al, J.Mater. Chem., 2012, 22, 4066]. 이 전해질은 일정하게 분산된 나노입자 코어를 가지며, 이 입자에 폴리에틸렌글리콜 (PEG) 사슬이 공유 결합된다. 이 전해질은 자가-현탁되어, 균질한 유체를 제공하는데, 여기서, PEG 올리고머는 동시에, 나노입자 코어에 대한 현탁 매질로서, 그리고 리튬 이온 수송을 위한 이온-전도성 네트워크로서 작용한다. WO2010/083041은 또한, 리튬 염으로 도핑된 폴리머 코로나인, 무기 나노입자 코어에 부착된 폴리머 코로나를 포함하는 NOHM계 하이브리드 전해질을 개시하고 있다. chaefer, J.L. et al. (J. Mater. Chem., 2011, 21, 10094)은 또한, 리튬 염, 특히 리튬 비스(트리플루오로메탄설폰 이미드)으로 도핑된 올리고-PEG 사슬의 조밀한 브러시(dense brush)에 공유 결합된 Si02 나노입자계 하이브리드 전해질을 개시하고 있다. 이 전해질은 폴리에틸렌 글리콜 다이메틸 에테르 (PEGDME)에서 제조되며, 우수한 이온 전도성을 제공한다. 그러나, 리튬 염의 음이온은 전해질을 통해 자유롭게 이동하며, 전류의 2/3는 음이온에 의해 운반되어, 고농도의 분극 현상을 발생시키며, 따라서 내부 저항 및 전압 손실을 발생시킨다. 또한, 대한민국 공개특허공보 제10-2015-0004124호에는 링커기를 통해 유기 나트륨 염 또는 유기 리튬 염의 하나 이상의 음이온과 공유 그래프트된(covalently grafted) 무기 나노입자를 포함하는 나노미립자 유기 하이브리드 물질로서, 상기 나노미립자 하이브리드 물질은 화학식 (I)Several attempts have been proposed to solve these problems. Recently, solvent-free hybrid electrolytes based on nanoscale organic / silica hybrid materials (NOHM) have been constructed with lithium salts [Nugent, J.L. et al, Adv. Mater., 2010, 22, 3677; Lu, Y. et al, J. Mater. Chem., 2012, 22, 4066]. The electrolyte has a uniformly dispersed nanoparticle core, to which the polyethylene glycol (PEG) chain is covalently bonded. This electrolyte is self-suspended to provide a homogeneous fluid, wherein the PEG oligomers simultaneously act as a suspension medium for the nanoparticle core and as an ion-conducting network for lithium ion transport. WO2010 / 083041 also discloses a NOHM based hybrid electrolyte comprising a polymer corona doped with a lithium salt, a polymer corona attached to an inorganic nanoparticle core. chaefer, J.L. et al. (J. Mater. Chem., 2011, 21, 10094) also covalently binds to dense brushes of oligo-PEG chains doped with lithium salts, in particular lithium bis (trifluoromethanesulfonimide). The disclosed Si02 nanoparticle hybrid electrolyte is disclosed. This electrolyte is made from polyethylene glycol dimethyl ether (PEGDME) and provides good ion conductivity. However, the negative ions of lithium salts move freely through the electrolyte, and two-thirds of the current is carried by the negative ions, resulting in high concentrations of polarization, thus causing internal resistance and voltage losses. In addition, Korean Patent Publication No. 10-2015-0004124 discloses a nanoparticulate organic hybrid material comprising inorganic nanoparticles covalently grafted with one or more anions of an organic sodium salt or an organic lithium salt through a linker group, Particulate hybrid materials are formula (I)
Figure PCTKR2018005923-appb-I000002
Figure PCTKR2018005923-appb-I000002
을 가지는 것을 특징으로 하는, 나노미립자 유기 하이브리드 물질이 개시되어 있다. 상기 식에서, Np는 무기 나노입자를 나타내며; L은 C1-C6 알킬렌기 및 페닐-C1-C4-알킬렌기로부터 선택되는 링커기이며; Nanoparticulate organic hybrid materials, which are characterized by having: Wherein Np represents an inorganic nanoparticle; L is a linker group selected from a C1-C6 alkylene group and a phenyl-C1-C4-alkylene group;
Figure PCTKR2018005923-appb-I000003
Figure PCTKR2018005923-appb-I000003
은 유기 나트륨 염 또는 유기 리튬 염의 음이온이고; X+는 나트륨 또는 리튬 양이온임. 또한, 대한민국 공개특허공보 제10-2011-0003505호에는 아미드기를 갖는 물질을 포함하며, 하기 구조를 갖는 용매: Is an anion of an organic sodium salt or an organic lithium salt; X + is sodium or lithium cation. In addition, Korean Patent Publication No. 10-2011-0003505 includes a material having an amide group, and a solvent having the following structure:
Figure PCTKR2018005923-appb-I000004
Figure PCTKR2018005923-appb-I000004
(상기 식에서, X는 탄소 원자, 질소 원자, 산소 원자 또는 아릴 고리 상에 임의로 치환기를 갖는 아릴기이며, 단, X가 질소 원자일 때 R2는 존재하지 않고, X가 산소 원자일 때 R1 및 R2 모두 존재하지 않고, X가 아릴기일 때 R1, R2 및 R5 모두 존재하지 않고; R1은 수소 원자 또는 탄소계 기이고; R2는 수소 원자 또는 탄소계 기이고; R3는 수소 원자 또는 탄소계 기이고; R4 및 R5는 개별적으로 수소 원자 또는 탄소계 기로부터 선택되거나, R4 및 R5는 함께 탄소계 기를 형성하여 상기 용매에 고리 구조를 제공함); 및 상기 용매와 함께 용액을 형성하는 이온화가능한 물질의 혼합물을 포함하는 전기변색 소자용 전해질로서, 상기 혼합물 내에 폴리머가 용매화되는 것을 특징으로 하는 전해질이 개시되어 있다.(Wherein X is an aryl group optionally having a substituent on a carbon atom, a nitrogen atom, an oxygen atom or an aryl ring, provided that R2 does not exist when X is a nitrogen atom and R1 and R2 when X is an oxygen atom) None is present, and when X is an aryl group, none of R1, R2 and R5 are present, R1 is a hydrogen atom or a carbon-based group, R2 is a hydrogen atom or a carbon-based group, R3 is a hydrogen atom or a carbon-based group; R4 and R5 are individually selected from hydrogen atoms or carbon-based groups, or R4 and R5 together form a carbon-based group to give a ring structure to the solvent; And a mixture of ionizable materials forming a solution with the solvent, an electrolyte characterized by solvating a polymer in the mixture.
그러나, 전술한 문헌을 포함한 종래 전기변색소자용 전해질은 전하량이 크지 않아 운반율이 낮을 뿐 아니라 이를 개선하기 위하여 전압을 증가시킬 경우 변색 물질, 전해질 그리고 전극이 변형이 발생 할 가능성이 높은 문제가 있고, 경우에 따라 용매의 증발과 용매 분해 현상이 발생할 우려가 있다. 또한, 유기물 기반 전해질이이서 내구성이 약한 문제가 있다.However, the electrolyte for the conventional electrochromic device including the above-mentioned document has a problem that the discoloration material, the electrolyte, and the electrode are highly likely to deform if the voltage is increased to improve the transport rate as well as the transport rate is low because the amount of charge is not large. In some cases, solvent evaporation and solvent decomposition may occur. In addition, there is a problem that the organic-based electrolyte is weak durability.
또한, 상업화된 리튬 이온 전지의 경우 리튬 자원의 희소성과 이에 따른 비용상승으로 인해 대규모 전력저장장치로 사용되기 어렵다. 또한 전지내 리튬 금속의 수지상(dendrites) 형성은 내부과열 및 연소를 발생시키는 안정상의 문제점을 가지고 있다. 이러한 문제점을 해결하고자 소듐(Na+), 칼륨(K+), 마그네슘(Mg2 +)과 같은 금속 양이온을 이용하고자 하는 연구가 진행되고 있다. 하지만 이러한 금속 양이온에 적합한 전극물질의 어려움, 낮은 이온전도도 그리고 낮은 에너지 밀도 등으로 인해 아직까지 상용화되지 못하고 있다. 따라서 폭발 및 발화위험이 없을뿐더러 고성능 전기화학소자를 위한 새로운 형태의 전해질 개발이 요구되고 있다. 또한, 전해질에 대하여 요구되는 물성은 사용 시 및 폐기 후 안전을 위하여 난연성, 비휘발성, 무독성 등이 요구된다. 이러한 물질을 위해, 몇몇 부류의 전해질들이 무기 특성 또는 유기 특성을 가진 통상적인 액체 전해질의 대체물로서 연구되어 왔다. 폴리머, 폴리머 합성물, 하이브리드, 젤, 이온성 액체, 세라믹 또는 고형 전해질의 제조에 사용되는 전형적인 물질은 무기 매트릭스, 예컨대 β-알루미나 및 나시콘(Nasicon), 규소다이옥사이드와 같은 나노입자 옥사이드에 의해 유도되는 결정 입계 결함(grain boundaries defect)이 개선된 단순 리튬 할라이드 또는 SiS2 + Li2S + Lil 시스템에서의 설파이드 유리일 수 있다. 그러나, 겔, 고체 전해질의 낮은 이온 전도도(10-4 S/cm)와 낮은 에너지 밀도로 인해 상용화는 되고 있지 않은 형편이다. 예를 들어, 마그네슘(Mg) 이차 전지의 경우 충/방전 과정 중에 전극표면에 수지상 성장물이 형성되지 않아 고 에너지 밀도 및 고 출력 차세대 이온전지로 각광받고 있으나, 종래의 무기질 이온성 염들은 Mg 양극과 호환불가능하다. 또한, 이들 모두 취성 물질이어서, 작동 시 불가피한 부피 변화로 인해 전해질에서 응력과 가능한 경우에는 갈라짐(crack)을 유발한다. In addition, the commercialized lithium ion battery is difficult to be used as a large-scale power storage device due to the scarcity of lithium resources and the resulting cost increase. In addition, dendrites formation of lithium metal in batteries has a problem of stability causing internal overheating and combustion. In order to solve this problem, studies are being conducted to use metal cations such as sodium (Na + ), potassium (K + ), and magnesium (Mg 2 + ). However, due to the difficulty of electrode materials suitable for such metal cations, low ion conductivity and low energy density, it has not been commercialized yet. Therefore, there is no risk of explosion and ignition, and a new type of electrolyte for high performance electrochemical devices is required. In addition, the physical properties required for the electrolyte is required to be flame retardant, nonvolatile, non-toxic, etc. for safety during use and after disposal. For these materials, several classes of electrolytes have been studied as replacements for conventional liquid electrolytes with inorganic or organic properties. Typical materials used in the manufacture of polymers, polymer composites, hybrids, gels, ionic liquids, ceramics or solid electrolytes are derived from inorganic matrices such as β-alumina and nanoparticle oxides such as Nasicon and silicon dioxide. It may be a simple lithium halide with improved grain boundaries defects or sulfide glass in a SiS 2 + Li 2 S + Lil system. However, due to the low ion conductivity (10 −4 S / cm) and low energy density of gels and solid electrolytes, they are not commercially available. For example, in the case of magnesium (Mg) secondary batteries, dendritic growths are not formed on the electrode surface during the charging / discharging process, and thus they are spotlighted as high energy density and high output next generation ion batteries. Incompatible with In addition, they are all brittle materials, causing stresses and possibly cracking in the electrolyte due to unavoidable volume changes in operation.
부피변화에 순응하는 전해질을 수득하기 위해, 유기 폴리머 매트리스를 사용하는 것이 바람직하다. 전형적인 예로는, 폴리에틸렌 옥사이드, 폴리프로필렌 옥사이드 또는 폴리에틸렌이민 및 이들의 코폴리머를 포함한다. 이들 물질은 하기에서 LiTFSI로서 지칭되는 리튬 비스(트리플루오로메탄 설포닐 이미드 [Li(CF3S02)2N] 및 리튬 테트라플루오로보레이트 (LiBF4)와 같은 적절한 리튬 염과 조합해서 사용된다. 이들 모든 폴리머 전해질의 주요 단점은 쌍극성(ambipolar) 전도성이다. 전류가 적용되면, 음이온과 양이온 모두 이동성이어서, 전해질을 통한 전류 중 약 1/3은 양이온에 의해 전달되며 2/3는 음이온에 의해 전달된다. 이러한 측면은 t+ = σ양이온/σ양이온 + σ음이온 = D양이온/D양이온 + D음이온으로 정의되며, σ 및 D가 각각의 전하 화학종의 전도성 및 확산률인, 운반율(transport number) t+에 의해 정량화된다. 대부분의 배터리 전극 시스템에서, 양이온만이 전극에서 반응하므로, 결국 전기적 중성(electroneutrality)은 애노드 주변에서 염을 축적시키게 되고, 캐소드 근처에서는 염이 고갈되게 된다. 과농축된 전해질과 고갈된 전해질은 둘 다 매우 낮은 전도성을 가지므로, 전지의 분극 현상(polarization)은 전력 용량의 감소와 더불어 크게 증가한다. 이들 문제점을 해결하기 위해 몇몇 시도들이 제안되고 있다. 예를 들어, US 5,569,560은 음이온을 서행시키기 위해 강력한 전자-제거 단위 CF3S02가 부착된 폴리아민을 포함하는 음이온 착화제의 사용을 개시하고 있으며, 이로써 리튬 양이온은 전기화학 전지에서 보다 큰 규모의 전류를 운반한다. 그러나, 운반율 t+에 대한 효과는 미미하다. 근래에, 나노스케일의 유기/실리카 하이브리드 물질 (NOHM)을 기재로 하는 무-용매성(solvent-free) 하이브리드 전해질이 리튬 염과 함께 구성되었다 [Nugent, J.L. et al, Adv. Mater., 2010, 22, 3677; Lu, Y. et al, J.Mater. Chem., 2012, 22, 4066]. 이 전해질은 일정하게 분산된 나노입자 코어를 가지며, 이 입자에 폴리에틸렌글리콜 (PEG) 사슬이 공유 결합된다. 이 전해질은 자가-현탁되어, 균질한 유체를 제공하는데, 여기서, PEG 올리고머는 동시에, 나노입자 코어에 대한 현탁 매질로서, 그리고 리튬 이온 수송을 위한 이온-전도성 네트워크로서 작용한다. WO2010/083041은 또한, 리튬 염으로 도핑된 폴리머 코로나인, 무기 나노입자 코어에 부착된 폴리머 코로나를 포함하는 NOHM계 하이브리드 전해질을 개시하고 있다. Chaefer, J. L. et al. (J. Mater. Chem., 2011, 21, 10094)은 또한, 리튬 염, 특히 리튬 비스(트리플루오로메탄설폰 이미드)으로 도핑된 올리고-PEG 사슬의 조밀한 브러시(dense brush)에 공유 결합된 Si02 나노입자계 하이브리드 전해질을 개시하고 있다. 이 전해질은 폴리에틸렌 글리콜 다이메틸 에테르 (PEGDME)에서 제조되며, 우수한 이온 전도성을 제공한다. 그러나, 리튬 염의 음이온은 전해질을 통해 자유롭게 이동하며, 전류의 2/3는 음이온에 의해 운반되어, 고농도의 분극 현상을 발생시키며, 따라서 내부 저항 및 전압 손실을 발생시킨다. In order to obtain an electrolyte that is compliant with the change in volume, it is preferable to use an organic polymer mattress. Typical examples include polyethylene oxide, polypropylene oxide or polyethyleneimine and copolymers thereof. These materials are used in combination with suitable lithium salts such as lithium bis (trifluoromethane sulfonyl imide [Li (CF3S02) 2N] and lithium tetrafluoroborate (LiBF4), referred to below as LiTFSI. The main disadvantage of the electrolyte is its ambipolar conductivity: When current is applied, both the anion and the cation are mobile such that about one third of the current through the electrolyte is carried by the cation and two thirds by the anion. This aspect is defined as t + = σ cation / σ cation + σ anion = D cation / D cation + D anion, where σ and D are the transport number t +, where conductivity and diffusion of each charge species is In most battery electrode systems, only positive ions react at the electrode, so electroneutrality accumulates salt around the anode, and salt near the cathode Since both overcondensed and depleted electrolytes have very low conductivity, the polarization of the cell increases significantly with decreasing power capacity. For example, US 5,569,560 discloses the use of an anionic complexing agent comprising a polyamine with a strong electron-removing unit CF3S02 attached to slow the anion, whereby lithium cations are used on a larger scale in electrochemical cells. However, the effect on the transport rate t + is negligible.In recent years, solvent-free hybrid electrolytes based on nanoscale organic / silica hybrid materials (NOHM) have been developed with lithium salts. Nugent, JL et al, Adv. Mater., 2010, 22, 3677; Lu, Y. et al, J. Mater. Chem., 2012, 22, 4066. mouth It has a purple core, and covalently bonded polyethylene glycol (PEG) chain to the particle. This electrolyte is self-suspended to provide a homogeneous fluid, wherein the PEG oligomers simultaneously act as a suspension medium for the nanoparticle core and as an ion-conducting network for lithium ion transport. WO2010 / 083041 also discloses a NOHM based hybrid electrolyte comprising a polymer corona doped with a lithium salt, a polymer corona attached to an inorganic nanoparticle core. Chaefer, J. L. et al. (J. Mater. Chem., 2011, 21, 10094) also covalently binds to dense brushes of oligo-PEG chains doped with lithium salts, in particular lithium bis (trifluoromethanesulfonimide). The disclosed Si02 nanoparticle hybrid electrolyte is disclosed. This electrolyte is made from polyethylene glycol dimethyl ether (PEGDME) and provides good ion conductivity. However, the negative ions of lithium salts move freely through the electrolyte, and two-thirds of the current is carried by the negative ions, resulting in high concentrations of polarization, thus causing internal resistance and voltage losses.
따라서, 본 발명이 이루고자 하는 기술적 과제는 전기화학소자를 구성하며 가역적 전기화학적 산화환원반응이 일어나는 전극을 구성하는 전극물질과 부반응을 일으켜 물질의 분해(decomposition)를 발생시키거나 이온염의 변형이 발생하지 않아 전기화학소자 안정성 및 성능 저하를 방지할 수 있으며 전기화학적 내구성을 향상시키고 전기화학 소자의 효율과 성능을 높일 수 있는 전기화학소자를 제공하는 것이다. Accordingly, the technical problem to be achieved by the present invention is to form an electrochemical device and to cause side reactions with the electrode material constituting the electrode in which the reversible electrochemical redox reaction occurs, thereby causing decomposition of the material or deformation of the ionic salt. As a result, it is possible to prevent electrochemical device stability and performance deterioration, to improve electrochemical durability, and to provide an electrochemical device capable of increasing the efficiency and performance of the electrochemical device.
상기 기술적 과제를 달성하기 위하여, 본 발명은 제1전극과,; 상기 제1전극과 이격된 제2전극 및; 상기 제1전극과 제2전극 사이에 전해질이 충진되되, 상기 제1전극 및 제2전극의 적어도 하나의 전극에서 가역적 전기화학적 산화환원반응이 일어나는 전기화학소자에 있어서, 상기 전해질은 평균직경이 2 내지 12 나노미터(nm) 범위이고 그 표면전위가 ―20mV 이하인 탄소 양자점 음이온과 금속 양이온의 염 형태인 탄소양자점 이온화합물을 포함한 것을 특징으로 한 전기화학소자를 제공한다.In order to achieve the above technical problem, the present invention and the first electrode; A second electrode spaced apart from the first electrode; In an electrochemical device in which an electrolyte is filled between the first electrode and the second electrode, and a reversible electrochemical redox reaction occurs at at least one electrode of the first electrode and the second electrode, the electrolyte has an average diameter of 2 The present invention provides an electrochemical device comprising a carbon quantum dot ionic compound in the form of a salt of a carbon quantum dot anion and a metal cation having a surface potential of -20 mV or less in a range of 12 nanometers (nm).
또한, 본 발명은 상기 금속이 Li, Na, K, Mg 및 Zn으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전기화학소자In addition, the present invention is an electrochemical device, characterized in that the metal is at least one selected from the group consisting of Li, Na, K, Mg and Zn.
또한, 본 발명은 상기 전기화학소자가 이차전지, 태양전지, 전기변색소자 및 전기발광소자로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 전기화학소자를 제공한다.In addition, the present invention provides an electrochemical device, characterized in that the electrochemical device is one selected from the group consisting of a secondary battery, a solar cell, an electrochromic device and an electroluminescent device.
또한, 본 발명은 상기 이차전지가 리튬이온전지 또는 리튬폴리머전지인 것을 특징으로 하는 전기화학소자를 제공한다.In addition, the present invention provides an electrochemical device, characterized in that the secondary battery is a lithium ion battery or a lithium polymer battery.
본 발명은 음이온과 양이온의 해리에너지(dissociation energy)가 매우 작아 이온 전도도가 향상되고, 음이온의 이동속도가 금속 양이온에 비해 상대적으로 매우 느리므로 금속 양이온만의 이동에 의한 전하이동을 가능케하고, 이온 편극성이 크고, 음이온의 열화학적/전기화학적 안정성이 높으므로, 소자구동 중의 부반응이 발생하지 않아 특정 양이온과의 선택적 이온전도도 향상과 소자내 전해질에 의한 부반응을 억제시켜 소자의 신뢰성과 성능을 향상시킬 수 있을 뿐 아니라, 액상, 겔, 그리고 고체상 모두 적용가능하여 그 응용성이 높은 탄소양자점 이온화합물을 전해질로 적용함으로써 소자의 신뢰도, 효율 및 내구성을 비약적으로 높인 전기화학소자를 제공할 수 있다. In the present invention, the dissociation energy of the anion and the cation is very small, and thus the ion conductivity is improved, and the movement speed of the anion is relatively slow compared to the metal cation. Since the polarization is large and the anion's thermochemical / electrochemical stability is high, no side reactions occur during device driving, thereby improving selective ion conductivity with specific cations and suppressing side reactions by electrolytes in the device, thereby improving reliability and performance of the device. In addition to the liquid, gel, and solid phase, it is applicable to all of the liquid phase, it is possible to provide an electrochemical device that can significantly increase the reliability, efficiency and durability of the device by applying a carbon quantum dot ionic compound having high application as an electrolyte.
도 1은 본 발명에 따른 전기화학소자 중 일예인 전기변색소자의 모식도 1 is a schematic diagram of an electrochromic device as an example of an electrochemical device according to the present invention
도 2(a)는 본 발명의 전기화학소자에 적용되는 탄소양자점 이온화합물의 전자현미경 사진과 구조를 이해하기 위한 모식도이고, (b)는 탄소양자점 이온화합물의 흡수 및 발광 영역을 그래프Figure 2 (a) is a schematic diagram for understanding the electron micrograph and structure of the carbon quantum dot ionic compound applied to the electrochemical device of the present invention, (b) is a graph showing the absorption and emission region of the carbon quantum dot ionic compound
[규칙 제91조에 의한 정정 17.07.2018] 
도 3은 본 발명의 일실시예로 탄소양자점 이온화합물을 함유하는 수용액 내에 변색물질을 포함하는 작업전극, 백금(Pt) 상대전극 그리고 기준전극(Ag/AgCl)로 구성된 3 전극 시스템하에서 다양한 Ferricyanide 농도별 순환전압전류법(cyclic voltammetry, CV) 측정결과
[Correction under Article 91 of the Rule 17.07.2018]
FIG. 3 shows various ferricyanide concentrations under a three-electrode system consisting of a working electrode, a platinum (Pt) counter electrode, and a reference electrode (Ag / AgCl) including a discoloring material in an aqueous solution containing a carbon quantum dot ionic compound according to one embodiment of the present invention. Cyclic Voltammetry (CV) Measurement Results
도 4(a)는 작업전극에 프러시안 블루(Prussian blue)를 코팅한 본 발명의 상기 3전극 시스템 조건하에서, 0.02 V/s 스캔 속도에서 순환전압전류법(cyclic voltammetry, CV)을 수행한 결과 및 (b)스캔속도를 변화시키면서 전류변화를 측정한 결과4 (a) shows the results of performing cyclic voltammetry (CV) at a scan rate of 0.02 V / s under the three-electrode system of the present invention in which Prussian blue is coated on a working electrode. And (b) measuring the current change while varying the scan rate.
도 5는 실시예 1 및 비교예 1의 전기화학소자에 대하여 3 전극 시스템 조건하에서 탄소양자점 이온화합물 중 금속 양이온을 변화시키며 측정한 전기화학 임피던스 분광도(electrochemical impedance spectroscopy)FIG. 5 is an electrochemical impedance spectroscopy of the electrochemical devices of Example 1 and Comparative Example 1 measured by changing metal cations in carbon quantum dot ionic compounds under three-electrode system conditions.
도 6은 본 발명의 일 실시예에서 10초의 펄스폭으로 1.2 V (발색 상태) 내지 -2.2 V (소색 상태)의 펄스 전압을 인가하여 변색 반응을 발생시키면서 700 nm에서 전기변색소자에 대하여 -0.16 V(소색 상태) 및 +0.4 V(발색 상태) 간의 전압 스위칭에 의한 투과율 및 전류 변화율을 측정한 결과6 is -0.16 for an electrochromic device at 700 nm while generating a color change reaction by applying a pulse voltage of 1.2 V (colored state) to -2.2 V (colored state) with a pulse width of 10 seconds in an embodiment of the present invention. Transmittance and current change rate due to voltage switching between V (discolored state) and +0.4 V (colored state)
도 7(a)는 본 발명에 따른 실시예 및 비교예에서 제조한 전기화학소자의 일예인 전기변색소자에 있어서 전해질별 내구성을 테스트한 결과 및 (b)는 탄소양자점 음이온-칼륨 양이온 전해질의 내구성 시험결과Figure 7 (a) is the result of testing the durability of each electrolyte in the electrochromic device as an example of the electrochemical device prepared in Examples and Comparative Examples according to the present invention and (b) is the durability of the carbon quantum anion-potassium cation electrolyte Test result
도 8은 본 발명에 따른 일실시예에서 전기변색소자의 전압 스위칭에 따른 투과율 변화 측정결과이며, 삽입도는 전기변색소자 투과율에 따른 소색/발색 사진8 is a result of measuring the change in transmittance according to the voltage switching of the electrochromic device in one embodiment according to the present invention, the insertion degree is a color / color photo according to the electrochromic device transmittance
도 9는 본 발명에 따른 일 실시예에서 전기발광소자에 대하여 2 전극 시스템 조건하에서 탄소양자점 이온화합물 농도에 따른 발광세기 측정 결과9 is a light emission intensity measurement results according to the carbon quantum dot ion compound concentration under the two-electrode system conditions for the electroluminescent device in one embodiment according to the present invention
도 10은 본 발명에 따른 일 실시예에서 탄소양자점 이온화합물이 적용된 리튬이차전지 충/방전 실험 결과10 is a lithium secondary battery charge / discharge test results applied carbon quantum dot ion compound in one embodiment according to the present invention
도 11(a) 내지 (c)는 각각 본 발명에 따라 제조한 탄소양자점 음이온-리튬 양이온 이온화합물 전해질의 농도(각 0.125, 0.25, 0.5 및 0.5M) 및 (d)는 대비를 위하여 1.1M LiPF6 전해질을 사용한 순환전압전류법 측정결과Figure 11 (a) to (c) is the concentration of the carbon quantum anion-lithium cation ion compound electrolyte prepared according to the present invention (0.125, 0.25, 0.5 and 0.5M, respectively) and (d) is 1.1M LiPF6 for contrast Cyclic voltammetry measurement results using electrolyte
도 12(a)는 본 발명의 실시예 중 전류밀도를 160mA/g의 조건하에서 cycling test 결과 및 (b)는 농도별 전류밀도 변화를 측정한 결과12 (a) shows the results of cycling test under the condition of the current density of 160mA / g in the embodiment of the present invention and (b) the change of the current density of each concentration
도 13(a)는 본 발명의 실시예 5에서 각각 본 발명의 탄소양자점 이온화합물 전해질과 LiPF6 전해질을 적용한 리튬이온전지의 전극에서 측정한 전압-정전용량의 측정결과이고 (b)는 전압에 대하여 미분한 결과FIG. 13 (a) is a voltage-capacitance measurement result measured at an electrode of a lithium ion battery to which a carbon quantum dot ion compound electrolyte and a LiPF6 electrolyte of the present invention are applied in Example 5 of the present invention, and (b) is a voltage Differential results
도 14은 본 발명의 전기화학소자의 일종인 리튬이온전지에서 양이온인 리튬이온의 전하이동지수를 계산하기 위하여 I0 및Iss 측정결과(위) 및 R0 및 Rss 측정결과(아래)14 is a result of measuring I0 and Iss (top) and R0 and Rss measurement (bottom) to calculate the charge transfer index of lithium ions as cations in a lithium ion battery, which is a kind of electrochemical device of the present invention.
이하에서 본 명세서에 첨부된 도면을 참조하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 명세서에서 '전기화학소자'의 용어는 제1전극, 상기 제1전극과 이격되고 전기적으로 반대극을 형성하는 제2전극 및 상기 제1전극과 제2전극 사이에 전해질이 충진되며, 상기 제1전극 및 제2전극 중 적어도 하나의 전극에서 가역적 전기화학적 산화환원반응이 발생하는 소자를 의미하며, '탄소양자점'이라는 용어는 평균직경이 2 내지 12 nm 범위이고 표면 및/또는 가장자리에 음이온이 될 수 있는 산소작용기를 적어도 하나 이상 구비하여 표면전위가 ―(마이너스)20mV 이하인 그라파이트 옥사이드 형태의 양자점 또는 상기 그라파이트 옥사이드 형태의 양자점과 중합가능한 유도기와 중합반응을 통해 형성된 탄소양자점 유도체를 의미하고, '탄소양자점 음이온'은 상기 산소작용기가 음이온화된 형태의 탄소 양자점을 의미한다. In the present specification, the term 'electrochemical device' refers to a first electrode, a second electrode spaced apart from the first electrode, and to form an electrically opposite electrode, and an electrolyte is filled between the first electrode and the second electrode. The device refers to a device in which reversible electrochemical redox reaction occurs in at least one of the first electrode and the second electrode, and the term 'carbon quantum point' has an average diameter in the range of 2 to 12 nm and anion on the surface and / or the edge. Quantum dots in the form of graphite oxide having at least one or more oxygen functional groups and having a surface potential of-(minus) of 20 mV or less, or carbon quantum dot derivatives formed through polymerization with a polymerizable inducer and the quantum dots in the form of graphite oxide, Carbon quantum dot anion 'means a carbon quantum dot of the oxygen functionalized form anion.
본 발명의 전기화학소자는 제1전극과,; 상기 제1전극과 이격되고 전기적으로 반대극을 형성하는 제2전극 및; 상기 제1전극과 제2전극 사이에 충진되는 전해질을 포함하되, 상기 제1전극 및 제2전극 중 적어도 하나의 전극에서 가역적 전기화학적 산화환원반응이 발생하는 소자로서, 상기 전해질은 평균직경이 0.1 내지 8 나노미터(nm) 범위이고 그 표면전하가 -(마이너스)20mV 이하인 탄소 양자점 음이온과 금속 양이온의 염 형태인 탄소양자점 이온화합물을 포함한 것을 특징으로 한다.Electrochemical device of the present invention, the first electrode; A second electrode spaced apart from the first electrode to form an electrically opposite electrode; An electrolyte filled between the first electrode and the second electrode, wherein the reversible electrochemical redox reaction occurs at at least one of the first electrode and the second electrode, the electrolyte has an average diameter of 0.1 And a carbon quantum dot ionic compound in the form of a salt of a carbon quantum dot anion and a metal cation having a range of from 8 nanometers (nm) and a surface charge of-(minus) of 20 mV or less.
본 발명의 전기화학소자는 제1전극과 상기 제1전극과 이격되고 전기적으로 반대극을 형성하는 제2전극을 포함한다. 본 발명에 있어서 상기 제1전극은 작업전극(working electorde) 또는 양극일 수 있고, 전기적으로 반대극을 형성하는 제2전극은 상대전극(counter electorde) 또는 음극일 수 있다. 이러한 제1전극 또는 제2전극의 적어도 하나의 전극에서 가역적인 전기화학적 산화환원반응을 수반하게 된다. The electrochemical device of the present invention includes a first electrode and a second electrode spaced apart from the first electrode to form an electrically opposite electrode. In the present invention, the first electrode may be a working electorde or an anode, and the second electrode forming an electrically opposite electrode may be a counter electorde or a cathode. At least one electrode of the first electrode or the second electrode is accompanied by a reversible electrochemical redox reaction.
본 발명에 있어 탄소양자점 음이온은 多음이온(polyanionic, An-)의 형태를 지니며, 내부는 방향족 구조이며, 표면과 가장자리에 산소 작용기를 지니고 있다. 이러한 탄소양자점 음이온은 금속양이온과 결합하여 염(salt) 형태의 이온화합물로 제조된다. 도 2(a)는 본 발명의 전기화학소자에 적용되는 탄소양자점 이온화합물의 전자현미경 사진과 구조를 이해하기 위한 모식도이고, (b)는 탄소양자점 이온화합물의 흡수 및 발광 영역을 그래프이다. 도 2에 도시된 바와 같은 탄소양자점 이온화합물은 다음과 같은 특징을 기대할 수 있다. 1) 표면 음전하로 인해 알카리 금속, 알카리 토금속, 전이금속과 같은 다양한 금속 양이온과 이온 결합이 가능하며, 2) 크기가 크고 표면전하가 多음이온기에 극성(polarity)이 크고 격자에너지(lattice energy)가 낮으며, 3) 내부구조의 공명에 의해 전자구름의 비편재화(delocalization)가 크다. 또한 4) 거대분자 음이온이기에 용액 내에서의 물질이동(mass transport)이 거의 없으며, 5) 전기화학적/열적 안정성으로 인해 전극계면에서의 부반응이 발생하지 않아 소자 구동 신뢰성이 향상될 수 있다는 장점을 지닌다. 본 발명의 탄소양자점 이온화합물은 수용액 및 비수용액계 용매에의 분산이 매우 용이할 뿐 아니라, 점성과 휘발성이 낮고 높은 유전율(permittivity)을 지닌 유기용매와의 혼합이 비교적 자유롭다. 이를 통해 높은 이온 전도도를 지닌 액체 전해질을 구현할 수 있다. Carbon quantum anion in the present invention has a polyanionic (A n- ) form, the inside is an aromatic structure, and has oxygen functional groups on the surface and edge. The carbon quantum dot anion is combined with a metal cation to produce a salt type ionic compound. Figure 2 (a) is a schematic diagram for understanding the electron micrograph and structure of the carbon quantum dot ionic compound applied to the electrochemical device of the present invention, (b) is a graph of the absorption and emission region of the carbon quantum dot ionic compound. Carbon quantum dot ionic compounds as shown in Figure 2 can be expected the following characteristics. 1) Due to the surface negative charges, ionic bonds with various metal cations such as alkali metals, alkaline earth metals and transition metals are possible, and 2) large size and large surface charges, which have a large polarity and lattice energy. 3) Delocalization of the electron cloud is large due to resonance of the internal structure. In addition, 4) it is a macromolecular anion, so there is almost no mass transport in the solution, and 5) there is no side reaction at the electrode interface due to electrochemical / thermal stability, thereby improving device driving reliability. . The carbon quantum dot ionic compound of the present invention is not only easy to disperse in aqueous solutions and non-aqueous solvents, but also relatively free of mixing with organic solvents having low viscosity, low volatility, and high permittivity. This enables the implementation of a liquid electrolyte with high ionic conductivity.
본 발명에 있어서 상기 탄소양자점 이온화합물 중 금속 양이온은 알카리 금속, 알카리 토금속 또는 전이금속일 수 있으며, 그 예로는 Li, Na, K, Mg 또는 Zn일 수 있다. 상기 탄소양자점 이온화합물은 액체, 겔, 고체 형태로 사용할 수 있으며, 그 형태에 따라 적절한 함량 조절이 가능하다. In the present invention, the metal cation in the carbon quantum dot ionic compound may be an alkali metal, an alkaline earth metal or a transition metal, for example, Li, Na, K, Mg or Zn. The carbon quantum dot ionic compound can be used in liquid, gel, solid form, it is possible to adjust the appropriate content according to the form.
본 발명의 전기화학소자에 적용되는 탄소양자점 이온화합물 전해질은 평균직경이 2 내지 12 nm 범위, 더욱 바람직하게는 5 내지 8nm 범위이고 표면 및/또는 가장자리에 음이온이 될 수 있는 산소작용기를 적어도 하나 이상 구비하여 표면전위가 -20mV 이하인 탄소양자점 음이온과 금속양이온의 이온화합물인 것이 바람직하다. 상기 탄소양자점의 평균직경이 2nm 미만이면 전기화학소자의 전극에 형성된 전위에 의해 탄소양자점 음이온이 양극으로 이동하게 된다. 이는 t+ (ion transport number) 가 감소하게 되어 전기변색 소자의 효율 저하가 발생하며, 또한 탄소양자점의 격자에너지가 감소하게 되어 이온 전도도 감소를 초래하게 된다. 반면 탄소양자점 평균 직경이 12 nm 이상일 경우, 탄소 양자점간의 π-π 상호작용이 증가하게 되고 이는 전기변색 소자 내 탄소 양자점간의 뭉칭 현상을 초래하여 결정화가 진행되어 소자의 신뢰성이 저하될 우려가 있기 때문이다. The carbon quantum dot ion compound electrolyte applied to the electrochemical device of the present invention has at least one oxygen functional group having an average diameter in the range of 2 to 12 nm, more preferably in the range of 5 to 8 nm, and which may be an anion on the surface and / or the edge. It is preferable that it is an ionic compound of a carbon quantum point anion and a metal cation having a surface potential of -20 mV or less. If the average diameter of the carbon quantum point is less than 2nm, the carbon quantum point anion is moved to the anode by the potential formed on the electrode of the electrochemical device. This decreases the t + (ion transport number), resulting in a decrease in the efficiency of the electrochromic device, and also reduces the lattice energy of the carbon quantum dots, resulting in a decrease in ion conductivity. On the other hand, if the average diameter of carbon quantum dots is 12 nm or more, the π-π interaction between the carbon quantum dots increases, which may cause agglomeration between carbon quantum dots in the electrochromic device, which may cause crystallization and degrade the reliability of the device to be.
본 발명의 전기화학소자에 적용되는 탄소양자점 이온화합물 전해질은 수용성 용매(methanol, ethanol), 비수용성 용매(acetonitrile, dimethyl carbonate, ethylene carbonate), 그리고 수용액(aqueous) 등에 용해하여 액상으로 사용할 수 있으며 경우에 따라 적절한 분산매/매트릭스 내에 분산하여 젤 형태로 사용할 수 있다. 본 출원인은 전술한 탄소양자점 이온화합물 전해질과 관련하여 대한민국 특허출원 제10-2017-0064227호를 통해 탄소양자점 이온화합물 전해질의 특성 및 그 제조방법에 관한 특허출원을 한 바 있으며, 전해질과 관련하여 더 상세한 내용은 전기한 본 출원인의 특허출원을 참고하면 될 것이므로 본 명세서에서 더 이상의 상세한 설명은 하지 않기로 한다. The carbon quantum dot ionic compound electrolyte applied to the electrochemical device of the present invention may be dissolved in an aqueous solvent (methanol, ethanol), a non-aqueous solvent (acetonitrile, dimethyl carbonate, ethylene carbonate), and an aqueous solution, and used in a liquid phase. It can be used in the form of a gel by dispersing in an appropriate dispersion medium / matrix according to. The present applicant has filed a patent application regarding the properties of the carbon quantum dot ionic compound electrolyte and its manufacturing method through Korean Patent Application No. 10-2017-0064227 with respect to the carbon quantum dot ionic compound electrolyte described above. Details of the present invention may be referred to the applicant's patent application, which will not be described in detail herein.
도 1은 본 발명에 따른 전기화학소자 중 일예인 전기변색소자의 모식도이다. 도 1에서 볼 수 있는 바와 같이, 본 발명의 전기화학소자는 제1전극(작업전극)과,; 상기 제1전극과 이격된 제2전극(상대전극) 및; 상기 제1전극과 제2전극 사이에 충진되는 전해질을 포함하고 있고, 소자의 특성상 기준전극을 더 포함하고 있다. 본 발명의 일실시예에서는 전기화학소자의 일예로 전기변색소자를 사용하였으나, 본 발명의 전기화학소자는 전기변색소자에 한정되지는 않으며, 전기화학발광소자, 이차전지 또는 태양전지와 같이 작업전극(물질) 또는 양극(음극)에서 가역적으로 전기화학적 산화환원반응을 수반하는 전기화학소자라면 모두 해당한다. 1 is a schematic diagram of an electrochromic device which is one example of electrochemical devices according to the present invention. As can be seen in Figure 1, the electrochemical device of the present invention comprises a first electrode (working electrode); A second electrode (relative electrode) spaced apart from the first electrode; It includes an electrolyte filled between the first electrode and the second electrode, and further includes a reference electrode due to the characteristics of the device. In an embodiment of the present invention, an electrochromic device is used as an example of an electrochemical device, but the electrochemical device of the present invention is not limited to an electrochromic device, and is a work electrode such as an electrochemical light emitting device, a secondary battery, or a solar cell. This applies to all electrochemical devices with reversible electrochemical redox reactions at the (material) or anode (cathode).
종래 전해질 금속 양이온의 낮은 확산계수 및 운반율로 인해 전기화학소자의 신뢰성과 성능이 저하된다. 예를 들어, 전기변색소자 등에서 금속 양이온의 확산계수가 이온성 액체를 구성하는 양이온에 비해 낮을 경우, 변색물질 내부로 양이온이 삽입될 수 없다. 따라서 변색물질이 전기적으로 중성 상태가 유지되기 어려워 변색효율이 저하되거나 물질의 분해가 발생되어 전기변색소자 신뢰성 및 성능이 저하된다. 전기변색소자내 인가되는 전압으로 인해서 전기장이 형성되고, 이로 인해 전해질 음이온들이 전기장의 방향에 따라 이동하게 된다. 이때 음이온은 변색물질 그리고 전극과 화학반응을 일으켜 전기변색소자 신뢰성 및 성능을 저하시킨다. 샌드위치 형태를 지닌 2전극 전기변색소자의 경우, 산화/환원 반응을 할 수 있는 물질이 포함되어야 한다. 그렇지 않을 경우, 양쪽 전극계면에 전하 불균형이 발생하여 전기변색소자의 신뢰성 및 성능이 저하된다. 본 발명에 따른 전기화학소자, 그 중 전기변색소자의 경우 탄소양자점 이온화합물을 전해질로 적용함으로써 전술한 부반응을 억제하여 전기화학소자의 신뢰성 및 내구성을 높일 수 있을 뿐 아니라, 전극과 전해액(질) 간 전하 불균형을 제어함으로써 전기에너지와 화학에너지간의 변환 효율을 높여 전기변색소자의 성능을 제고할 수 있다. Due to the low diffusion coefficient and transport rate of the conventional electrolyte metal cation, the reliability and performance of the electrochemical device is degraded. For example, when the diffusion coefficient of the metal cation in the electrochromic device or the like is lower than that of the cation constituting the ionic liquid, the cation cannot be inserted into the color change material. Therefore, the color change material is difficult to maintain an electrically neutral state, the color change efficiency is degraded or the decomposition of the material occurs, the electrochromic device reliability and performance is reduced. The electric field is formed by the voltage applied in the electrochromic device, which causes the electrolyte anions to move along the direction of the electric field. At this time, the negative ions cause chemical reactions with the discoloring material and the electrode, thereby reducing the reliability and performance of the electrochromic device. In the case of a two-electrode electrochromic device having a sandwich form, a material capable of performing an oxidation / reduction reaction should be included. Otherwise, charge imbalance occurs on both electrode interfaces, thereby degrading the reliability and performance of the electrochromic device. In the electrochemical device according to the present invention, among the electrochromic devices, by applying a carbon quantum dot ion compound as an electrolyte, the above-described side reactions can be suppressed to increase the reliability and durability of the electrochemical device, as well as the electrode and electrolyte (quality). By controlling the inter-charge imbalance, the efficiency of the electrochromic device can be improved by increasing the conversion efficiency between electric energy and chemical energy.
이하 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 본 발명의 이해를 돕기 위한 예시적인 것으로서, 본 발명의 범위가 이에 한정되는 것은 아니다. The present invention will be described in more detail with reference to the following examples. However, the following examples are intended to assist in understanding the present invention, and the scope of the present invention is not limited thereto.
실시예 1(탄소 양자점 전해질을 포함한 전기변색소자 제조)Example 1 (Manufacture of an electrochromic device including a carbon quantum dot electrolyte)
0.05 M HCl, 0.05 M K3Fe(CN)6, 그리고 0.05 M FeCl36H2O가 포함된 수용액에 전도성투명기판을 이용하여 변색물질을 형성한다. 이때 대시간 전위차법(chronopotentiometry)을 이용하여 전류와 시간을 조절하여 변색물질의 두께를 조절한다. 본 발명에서는 40 uA, 140 s 동안 변색물질을 작업전극에 형성하였다. 이어서 5 mM ZnCl2, 0.1 M KCl, 그리고 산소가 포화된 수용액에 전도성투명기판을 담근 후, 상온에서 -1 V를 인가하면서 1000 s 동안 ZnO 버퍼 층(buffer layer)을 형성하였다. 이후 연속적으로 ZnO 버퍼 층이 형성된 투명 전극을 0.5 mM ZnCl2, 0.1 M KCl, 그리고 산소가 포화된 수용액에 담근 후, -1 V를 인가하면서 80도, 1000 s 동안 ZnO NWs 층 (nanowire layer)을 형성하였다. 이를 상대전극으로 사용하였다. 열 테이프를 이용하여 작업전극과 상대전극을 샌드위치 형태로 부착하였다. 이때 두 전극의 간격은 60 um 이다. 이어서 상대전극에 형성된 미세 구멍을 통하여 양이온의 종류를 각각 Li, Na 및 K로 한 0.5M 농도의 탄소양자점 이온화합물을 충진 하였다. 이때 전해질 수용액의 pH는 4 로 조절하였다. A color change material is formed by using a conductive transparent substrate in an aqueous solution containing 0.05 M HCl, 0.05 MK 3 Fe (CN) 6 , and 0.05 M FeCl 3 6H 2 O. At this time, the thickness of the discolored material is controlled by controlling the current and time by using a time-potential potentiation method (chronopotentiometry). In the present invention, a color change material was formed on the working electrode for 40 uA and 140 s. Subsequently, the conductive transparent substrate was immersed in 5 mM ZnCl 2 , 0.1 M KCl, and oxygen-saturated aqueous solution, and then ZnO buffer layer was formed for 1000 s while applying −1 V at room temperature. Subsequently, the transparent electrode in which the ZnO buffer layer was continuously formed was immersed in 0.5 mM ZnCl 2 , 0.1 M KCl, and saturated oxygen solution, and then ZnO NWs layer (nanowire layer) was applied at 80 ° C. and 1000 s while applying -1 V. Formed. This was used as a counter electrode. The working electrode and the counter electrode were attached in the form of a sandwich using a thermal tape. At this time, the distance between the two electrodes is 60um. Subsequently, a carbon quantum dot ionic compound having a concentration of 0.5 M was charged with Li, Na and K, respectively, through the fine pores formed in the counter electrode. At this time, the pH of the aqueous electrolyte solution was adjusted to 4.
비교예 1(염화칼륨 전해질을 포함한 전기변색소자 제조)Comparative Example 1 (Manufacture of Electrochromic Device Including Potassium Chloride Electrolyte)
전해질로서 0.5M 염화칼륨(KCl)을 적용한 것을 제외하고는 모든 조건을 상기 실시예1과 동일하게 하여 전기변색소자를 제조하였다. An electrochromic device was manufactured in the same manner as in Example 1, except that 0.5 M potassium chloride (KCl) was used as the electrolyte.
상기 실시예 1 및 비교예 1에서 제조한 각각의 전기변색소자에 대하여 전기화학적 특성을 비교하였다. 도 3(a)는 본 발명의 실시예 1에서 탄소양자점 이온화합물을 함유하는 수용액 내에 변색물질을 포함하는 제1전극(작업전극), 백금(Pt) 제2전극(상대전극) 그리고 기준전극(Ag/AgCl)로 구성된 3 전극 전기화학셀 구조도 및 3(b)는 Ferricyanide 농도에 따른 순환전압전류법 측정결과이다. 또한, 도 4(a)는 작업전극에 프러시안 블루(Prussian blue)를 코팅한 본 발명의 상기 3전극 시스템 조건하에서, 0.02 V/s 스캔 속도에서 순환전압전류법(cyclic voltammetry, CV)을 수행한 결과 및 (b)스캔속도를 변화시키면서 전류변화를 측정한 결과이다. 시간전류법(chronoamperometry) 방식을 이용하여 -0.14/0.4 V, 10 s/10 s (50%duty cycle)로 전압을 인가하여 전기변색소자의 특성을 분석하였다. 도 4(b)에서 볼 수 있는 바와 같이, 본 발명의 전기화학소자는 스캔 속도가 높아져도 변색물질의 산화/환원 전류값이 그에 대응되는 것을 알 수 있다(산화전류는 발색반응(color reaction, PB) 그리고 환원전류는 소색반응(colorless reaction, PW)을 나타낸다.). 또한, 하기 표 1은 3 전극 시스템 조건하에서, 탄소양자점 이온화합물의 금속 양이온에 따른 확산속도값을 나타낸다. The electrochemical properties of each of the electrochromic devices prepared in Example 1 and Comparative Example 1 were compared. FIG. 3 (a) shows a first electrode (working electrode), a platinum (Pt) second electrode (relative electrode) and a reference electrode containing a color change material in an aqueous solution containing a carbon quantum dot ionic compound in Example 1 of the present invention. The structure of the three-electrode electrochemical cell composed of Ag / AgCl) and 3 (b) are the results of cyclic voltammetry measurements according to the concentration of Ferricyanide. 4 (a) shows cyclic voltammetry (CV) at a scanning speed of 0.02 V / s under the three-electrode system condition of the present invention in which Prussian blue is coated on a working electrode. And (b) the change of current while measuring the scan speed. The characteristics of the electrochromic device were analyzed by applying voltage at -0.14 / 0.4 V and 10 s / 10 s (50% duty cycle) by using a chronoamperometry method. As can be seen in Figure 4 (b), the electrochemical device of the present invention can be seen that the oxidation / reduction current value of the color change material corresponding thereto even if the scan speed is increased (oxidation current is a color reaction (color reaction, PB) and the reduction current shows a colorless reaction (PW). In addition, Table 1 below shows the diffusion rate value according to the metal cation of the carbon quantum dot ionic compound under the three-electrode system conditions.
Figure PCTKR2018005923-appb-T000001
Figure PCTKR2018005923-appb-T000001
또한, 도 5는 3전극 시스템에서 측정한 전기화학 임피던스 분광도 그래프이고, 하기 표 2는 3전극 시스템에서 순환전류전압법을 이용하여 소색반응 및 발색반응을 하며 측정한 임피던스 측정값을 정리한 것이다.In addition, Figure 5 is an electrochemical impedance spectroscopy graph measured in the three-electrode system, Table 2 summarizes the measured impedance measurement by the color reaction and color reaction using the cyclic current voltage method in the three-electrode system .
Figure PCTKR2018005923-appb-T000002
Figure PCTKR2018005923-appb-T000002
[규칙 제91조에 의한 정정 17.07.2018] 
또한, 실시예 1 및 비교예 1에서 제조한 전기변색소자의 내구성을 시험하였다. 도 7(a)는 본 발명에 따른 실시예 및 비교예에서 제조한 전기화학소자의 일예인 전기변색소자의 전해질별 내구성을 테스트한 결과 및 (b)는 탄소양자점 음이온-칼륨 양이온 전해질의 내구성 시험결과이다. 도 7에서 볼 수 있는 바와 같이, 종래 KCl 전해질을 사용한 전기변색 소자의 경우, 변색효율이 50 cycles 이내에서 초기 절반 이하 수준으로 감소하는데 비해 본 발명의 실시예인 이에 반해 (C-dot)-K+ 을 사용한 전기변색 소자의 경우, 1000 cycles 후에도 변색효율이 일정하게 유지됨을 알 수 있다. 이는 (C-dot)-K+ 전해질을 사용한 전기변색 소자 내구성이 우수하다는 것을 의미한다. 구체적으로는 (1) (C-dot)-K+ 이온 화합물이 전해질 역할을 수행함을 의미하며, (2) (C-dot)-K+ 전해질의 전기화학적 내구성이 우수하며, (3) 소자 내에서 일어나는 전기화학 부반응이 적다는 것을 의미한다. 변색 효율 (coloration efficiency. CE)은 발색 상태 또는 소색 상태에 필요한 전하량으로부터 흡광도의 변화 (ΔOD(λ) = log Tb/Tc, Tb 및 Tc는 700 nm에서 투과값을 의미함)에 의해 결정된다. 0.5 M KCl 및 (C-dot)+-K- 전해질의 변색 효율값은 각각 81.6 cm2C-1와 103.0 cm2C-1 로 측정되었다. 따라서 KCl 전해질에 비해 탄소양자점 이온화합물이 포함된 전기변색소자가 상대적으로 부반응이 억제되어 전기변색 안정성이 증가하고 전기에너지와 화학에너지간의 변환효율 증가로 인해 변색 효율이 우수하다는 것을 나타낸다.
[Correction under Article 91 of the Rule 17.07.2018]
In addition, the durability of the electrochromic devices prepared in Example 1 and Comparative Example 1 was tested. Figure 7 (a) is the result of testing the durability of each electrolyte of the electrochromic device as an example of the electrochemical device prepared in Examples and Comparative Examples according to the present invention and (b) is a durability test of carbon quantum anion-potassium cation electrolyte The result is. As can be seen in Figure 7, in the case of the electrochromic device using a conventional KCl electrolyte, while the color change efficiency is reduced to less than the initial half level within 50 cycles (C-dot) -K + to the embodiment of the present invention For the electrochromic device used, it can be seen that the discoloration efficiency remains constant even after 1000 cycles. This means that the electrochromic device durability using the (C-dot) -K + electrolyte is excellent. Specifically, (1) means that the (C-dot) -K + ionic compound serves as an electrolyte, (2) the electrochemical durability of the (C-dot) -K + electrolyte is excellent, and (3) It means less electrochemical side reactions. The coloration efficiency (CE) is based on the change in absorbance from the amount of charge required for a chromogenic or discolored state (ΔOD (λ) = log T b / T c , T b and T c mean transmission values at 700 nm). Is determined by The discoloration efficiency values of 0.5 M KCl and (C-dot) + -K - electrolyte were measured as 81.6 cm 2 C -1 and 103.0 cm 2 C -1 , respectively. Therefore, compared with KCl electrolyte, electrochromic devices containing carbon quantum dot ionic compounds are relatively suppressed from side reactions, indicating that the electrochromic stability is increased and the discoloration efficiency is excellent due to the conversion efficiency between electrical energy and chemical energy.
실제 전기변색소자 시스템을 적용하기 위해, 샌드위치 형태의 전기변색소자 특성을 평가하였다. 상기 소자 테스트에서 인가 전압 변화에 따라 700 nm 에서의 소자 투과도 변화를 모니터링 하였다. 상기 소자는 10초의 펄스폭으로 1.2 V (발색 상태) 내지 -2.2 V (소색 상태)의 펄스 전압을 인가하여 변색 반응을 발생시켰으며, 반복적이며 가역적으로 변화하는 것을 관찰할 수 있었다(도 6). 이론상으로 샌드위치 형태의 전기변색소자가 3 전극 시스템의 전기변색소자에 비해 전압강하(voltage drop) 현상으로 인해 상대적으로 고 전압의 전하 주입이 발생하였다.In order to apply the actual electrochromic device system, sandwich type electrochromic device characteristics were evaluated. In the device test, the change in device transmittance at 700 nm was monitored according to the applied voltage change. The device generates a discoloration reaction by applying a pulse voltage of 1.2 V (colored state) to -2.2 V (colored state) with a pulse width of 10 seconds, and it can be observed that the repetitive and reversible changes (FIG. 6). . Theoretically, the sandwich type electrochromic device has a relatively high voltage charge injection due to the voltage drop phenomenon compared to the electrochromic device of the three-electrode system.
Figure PCTKR2018005923-appb-T000003
Figure PCTKR2018005923-appb-T000003
또한, 도 8은 본 발명에 따른 실시예 1 및 비교예 1에서 전기변색소자의 전압 스위칭에 따른 투과율 변화 측정결과이며, 삽입도는 전기변색소자 투과율에 따른 소색/발색 사진이다. 도 8에서 볼 수 있는 바와 같이, 본 발명에 따른 전기변색소자는 발색 및 소색반응 속도와 효율에서 종래 전해질을 사용한 경우보다 월등히 우수함을 알 수 있다. In addition, Figure 8 is a result of measuring the change in transmittance according to the voltage switching of the electrochromic device in Example 1 and Comparative Example 1 according to the present invention, the insertion degree is a color / color photo according to the electrochromic device transmittance. As can be seen in Figure 8, it can be seen that the electrochromic device according to the present invention is significantly superior to the case of using a conventional electrolyte in the color and bleaching reaction rate and efficiency.
실시예 3(전기화학발광소자)Example 3 (electrochemical light emitting device)
(1) 음극 표면에 TiO2 입자 박막을 형성한다.(1) A thin film of TiO 2 particles is formed on the surface of the cathode.
(2) TiO2 박막의 전도도 및 투과도를 증가시키기 위해 120도 10분 열처리를 진행한다.(2) In order to increase the conductivity and permeability of the TiO 2 thin film, heat treatment is performed at 120 degrees for 10 minutes.
(3) 55도 6시간동안 TiO2 박막이 형성된 음극을 발광체가 녹은 용액에 담근다.(3) The cathode in which the TiO 2 thin film was formed was immersed in a solution in which the emitter was melted for 55 degrees 6 hours.
(4) 6시간 후 에탄올을 이용하여 음극 표면을 세척한다.(4) After 6 hours, the surface of the cathode was washed with ethanol.
(5) 음극과 양극을 열 테이프를 이용하여 부착한다.(5) The negative electrode and the positive electrode are attached using a thermal tape.
(6) 양극에 형성된 구멍을 통해 발광체와 전해질이 포함된 용액을 주입한다.(6) The solution containing the light-emitting body and the electrolyte is injected through the hole formed in the anode.
(7) 구멍을 밀봉한다.(7) Seal the hole.
도 9는 본 발명에 따른 일 실시예에서 전기발광소자에 대하여 2 전극 시스템 조건하에서 탄소양자점 이온화합물 농도에 따른 발광세기 측정 결과이다. 도 9에서 볼 수 있는 바와 같이, 탄소양자점 음이온-금속 양이온 이온 화합물 농도가 증가함에 따라 이온 전도도가 향상되어 소자 내 저항이 감소하게 되고 결국에는 발광세기가 증가하였다.9 is a light emission intensity measurement result according to the carbon quantum dot ion compound concentration under the two-electrode system conditions for the electroluminescent device in one embodiment according to the present invention. As can be seen in Figure 9, as the carbon quantum point anion-metal cation ion compound concentration increases, the ionic conductivity is improved to reduce the resistance in the device and eventually increase the luminescence intensity.
실시예 4(리튬이차전지)Example 4 (lithium secondary battery)
도 10은 기존 이차전지의 LiPF6 전해질 대신 본 발명의 탄소양자점 음이온-리튬 금속 양이온 이온화합물 전해질을 리튬이차전지에 적용한 후 충방전하며 측정한 비정전량을 측정한 결과를 도시한 것이다. 전지의 음극은 Li4Ti5O12(active material), 10 wt % PVDF(binder), NMP(Solvent)를 이용하여 구성하였고, 양극은 그라파이트를 적용하였다. 또한, 탄소양자점 음이온-리튬 금속 양이온 이온화합물 전해질의 농도는 0.5M 이었다. 도 10에서 볼 수 있는 바와 같이, 본 발명의 전기화학소자의 일예인 이차전지에서 안정적인 충/방전 사이클이 관찰됨을 알 수 있었다.FIG. 10 shows the results of measuring the specific capacitance measured after charging and discharging the carbon quantum anion-lithium metal cation ion compound electrolyte of the present invention instead of the LiPF 6 electrolyte of the conventional secondary battery in a lithium secondary battery. The negative electrode of the battery was constructed using Li 4 Ti 5 O 12 (active material), 10 wt% PVDF (binder), NMP (Solvent), and the positive electrode was graphite. In addition, the concentration of the carbon quantum point anion-lithium metal cation ion compound electrolyte was 0.5M. As can be seen in Figure 10, it was found that a stable charge / discharge cycle is observed in the secondary battery as an example of the electrochemical device of the present invention.
실시예 5(리튬이차전지 전해질 평가)Example 5 (lithium secondary battery electrolyte evaluation)
위 실시예 4의 리튬이온전지에 대하여 여러 가지 실험을 수행하며 전해질의 특성을 확인하였다. 우선, 본 발명의 전해질을 농도를 달리하며 순환전압법을 수행하였다. 그 결과를 도 11에 정리하였다. 도 11(a) 내지 (c)는 각각 본 발명에 따라 제조한 탄소양자점 음이온-리튬 양이온 이온화합물 전해질의 농도(각 0.125, 0.25 및 0.5M)에 따른 순환전압전류법 측정결과이고, (d)는 대비를 위하여 1.1M LiPF6 전해질을 사용한 순환전압전류법 측정결과다. 도 11에서 볼 수 있는 바와 같이, 전해질 농도가 높아질수록(함량이 증가 할수록 ) 의 충방전 data와 같은 경향성을 보이며 전기화학성능의 차이가 나타남을 알 수 있었다. 0.25M 샘플의 경우 2.5 V 이상부터 anodic 영역에서 불안정한 모습을 보이나, 0.5M 샘플의 경우 LTO의 이론적 Li ion intercalation/deintercalation 영역인 1.6 V을 기준으로 다소 shift되긴 하였지만, 뚜렷한 anodic/cathodic peak이 관찰되는 것을 알 수 있었다. 아래 표 4는 각 농도에 따른 polarization을 측정한 결과이다.Various experiments were performed on the lithium ion battery of Example 4 to check the characteristics of the electrolyte. First, the cyclic voltammetry was performed with varying concentrations of the electrolyte of the present invention. The results are summarized in FIG. 11 (a) to (c) are cyclic voltammetry measurements according to the concentrations (0.125, 0.25 and 0.5M, respectively) of the carbon quantum point anion-lithium cation ion compound electrolyte prepared according to the present invention, and (d) Is a cyclic voltammetry measurement using 1.1M LiPF6 electrolyte for contrast. As can be seen in Figure 11, the higher the electrolyte concentration (the higher the content) showed the same tendency as the charge-discharge data, it can be seen that the difference in electrochemical performance. The 0.25M sample showed unstable anodic region from 2.5 V or higher, while the 0.5M sample showed a slight anodic / cathodic peak, although slightly shifted from 1.6 V, which is the theoretical Li ion intercalation / deintercalation region of LTO. I could see that. Table 4 below shows the results of measuring polarization according to each concentration.
Figure PCTKR2018005923-appb-T000004
Figure PCTKR2018005923-appb-T000004
또한, 각 농도별 전해질의 율속특성을 알아보기 위해 80에서 400 mA/g의 다양한 전류밀도로 cycling을 진행하였고, 그 결과를 도 12에 개시하였다. 도 12(a)는 0.5M 농도 전해질의 결과이며, (b)는 각 농도별로 사이클을 진행하며 측정한 결과이다. 도 12에서 볼 수 있는 바와 같이, 상대적으로 고농도인 0.5M 샘플의 율속특성이 가장 좋은 것을 확인 할 수 있었으며, 각 전류밀도 별 평균용량을 계산하였을 때, 0.5 샘플의 용량이 모든 전류밀도에서 가장 우수한 용량을 보였다. 아래 표 5에 그 결과를 정리하였다. In addition, cycling was performed at various current densities of 80 to 400 mA / g in order to determine the rate characteristic of the electrolyte at each concentration, and the results are shown in FIG. 12. Figure 12 (a) is the result of the 0.5M concentration electrolyte, (b) is the result of measuring the cycle for each concentration. As can be seen in Figure 12, it can be seen that the rate characteristic of the relatively high concentration of 0.5M sample is the best, and when the average capacity for each current density is calculated, the capacity of 0.5 sample is the best at all current density Showed capacity. Table 5 summarizes the results.
0.1250.125 0.250.25 0.50.5
80 mA/g80 mA / g 193.47193.47 194.28194.28 194.33194.33
160 mA/g160 mA / g 166.45166.45 161.96161.96 171.67171.67
240mA/g240mA / g 148.38148.38 151.61151.61 162162
320 mA/g320 mA / g 121.36121.36 134.46134.46 149.33149.33
400 mA/g400 mA / g 78.9178.91 104.28104.28 134.33134.33
표 5에서 알 수 있는 바와 같이, 특히, 320, 400 mA/g의 전류밀도로 진행하였을 때에 각 샘플의 성능차가 가장 크게 나타나게 되는데, 이것은 전해질의 농도, 즉 Li ion의 함량차 때문이라 보여진다. As can be seen from Table 5, especially when the current density of 320, 400 mA / g is the largest difference in the performance of each sample appears to be due to the concentration of the electrolyte, that is, the difference in the content of Li ion.
또한, 위 실시예 4의 리튬이온전지에서 Half cell system을 구축한 후 전압을 변화시키면서 전극(anode)Li metal/electrolyte/graphite(cathode) 전지시스템에서의 specific capacity 변화를 관찰하였다. 또한, 비교를 위하여 전해질로서 LiPF6를 채용한 리튬이온전지를 제조하여 동일한 관찰을 수행하였다. 도 13(a)는 각각 본 발명의 탄소양자점 이온화합물 전해질과 LiPF6 전해질을 적용한 리튬이온전지의 전극에서 측정한 전압-정전용량의 측정결과이고, (b)는 전압에 대하여 미분한 결과이다. 도 13에서 볼 수 있는 바와 같이, LiPF6 를 전해질로 사용했을 경우, 0.75 V 에서 SEI 형성으로 추정되는 반응이 관찰되었으나, Carbon-dots 전해질로 사용했을 경우 0.75V에서의 반응은 관찰되지 않았으나 0.5 V 에서 반응이 관찰되었다. 이는 graphite 와 Li 반응으로 추정된다.In addition, after the half cell system was constructed in the lithium ion battery of Example 4, the specific capacity change of the anode (Li) metal / electrolyte / graphite (cathode) battery system was observed while changing the voltage. In addition, for comparison, a lithium ion battery employing LiPF 6 as an electrolyte was prepared and the same observation was performed. FIG. 13 (a) is a voltage-capacitance measurement result measured at an electrode of a lithium ion battery to which a carbon quantum dot ionic compound electrolyte and a LiPF6 electrolyte of the present invention are applied, and (b) is a result of differentiating voltage. As shown in FIG. 13, when LiPF6 was used as an electrolyte, a reaction estimated to form SEI at 0.75 V was observed, but when using as a carbon-dots electrolyte, a reaction at 0.75 V was not observed, but at 0.5 V. The reaction was observed. This is estimated by graphite and Li reaction.
또한, 본 발명의 전해질 사용시 양이온인 리튬이온의 이온이동도를 측정하였다. 하기 계산식 1은 양이온의 이온이동지수를 구하는 식이다. 계산식은 0~1까지의 수를 가지며, 1에 가까울수록 cation에 의한 전하이동의 기여가 높다고 판단할 수 있다.In addition, the ion mobility of lithium ions which are cations when the electrolyte of the present invention was used was measured. Formula 1 below is a formula for obtaining the ion mobility index of the cation. The formula has a number from 0 to 1, and the closer to 1, the higher the contribution of charge transfer by cation.
[계산식 1][Calculation 1]
Figure PCTKR2018005923-appb-I000005
Figure PCTKR2018005923-appb-I000005
상기 식에서 tC = Cation transference number, IC = Current carried by cations, IA = Current carried by anionsWhere t C = Cation transference number, I C = Current carried by cations, I A = Current carried by anions
위 계산식 1은 하기 계산식 2와 같이 표시하여 Li 이온의 이온이동지수를 측정할 수 있다. Equation 1 can be expressed as shown in Equation 2 below to measure the ion mobility index of Li ions.
[계산식 2][Calculation 2]
Figure PCTKR2018005923-appb-I000006
Figure PCTKR2018005923-appb-I000006
위 계산식 2에서 tLi = Lithium transference number이고, V = Applied potential이며, RO = Initial resistance of the passivation layer(계면저항), RSS = Resistance of the passivation layer(계면저항), IO = Initial current, ISS = Steady state current이다. In equation 2, t Li = Lithium transference number, V = Applied potential, R O = Initial resistance of the passivation layer, R SS = Resistance of the passivation layer, I O = Initial current , I SS = Steady state current.
Li metal / electrolyte / Li metal의 symmetrical cell 준비하고, 초기 impedance측정 (frequency 범위 : 100 kHz-0.1Hz) RO 측정하고, 0.05 mV에서 DC polarization 실험을 진행 ISS, IO 측정하였으며, 다시 impedance를 측정하여 RSS를 결정하였다. 도 14 및 하기 표 6은 그 결과를 정리한 것이고, 같은 방식으로 전해질로서 LiPF6를 사용한 결과를 비교예로서 측정하였다.Preparation Li metal / electrolyte cell of the symmetrical / Li metal, and an initial impedance measurement: We (frequency range 100 kHz-0.1Hz) R O measurement, progress I SS, I O measure the DC polarization experiment at 0.05 mV, the back impedance It was measured to determine the R SS . 14 and Table 6 summarize the results, and the result of using LiPF6 as the electrolyte in the same manner was measured as a comparative example.
Figure PCTKR2018005923-appb-T000005
Figure PCTKR2018005923-appb-T000005
도 14 및 위 표 6에서 알 수 있는 바와 같이, 본 발명의 탄소양자점 음이온-리튬 양이온 이온화합물 전해질은 LiPF6에 비해 1.5배 내지 2배 정도 양이온에 의한 전하이동지수가 높은 것을 알 수 있었다. 일반적으로 tLi이 작게 되면 전해질 내에서 음이온의 농도 분극화로 인한 셀의 전체적인 저항이 증가하게 된다. 양이온 수율은 온도, 전해질내의 염의 농도 및 이온의 반경에 의해서 영향을 받으며, 위의 실험에서 본 발명의 전해질에서 보여지는 높은 tLi는 carbon dot의 음이온 반경이 크기 때문으로 보여진다. As can be seen in Figure 14 and Table 6, the carbon quantum point anion-lithium cation ion compound electrolyte of the present invention was found to be 1.5 to 2 times higher charge transfer index by the cation than LiPF6. In general, when t Li is small, the overall resistance of the cell due to concentration polarization of anions in the electrolyte is increased. The cation yield is influenced by the temperature, the concentration of salt in the electrolyte and the radius of the ions, and the high t Li seen in the electrolyte of the present invention in the above experiments is due to the large anion radius of the carbon dot.
앞에서 설명된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.One embodiment of the present invention described above should not be construed as limiting the technical spirit of the present invention. The protection scope of the present invention is limited only by the matters described in the claims, and those skilled in the art can change and change the technical idea of the present invention in various forms. Therefore, such improvements and modifications will fall within the protection scope of the present invention, as will be apparent to those skilled in the art.

Claims (5)

  1. 제1전극과,; 상기 제1전극과 이격된 제2전극 및; 상기 제1전극과 제2전극 사이에 충진되는 전해질을 포함하되, 상기 제1전극 및 제2전극의 적어도 하나의 전극에서 가역적 전기화학적 산화환원반응이 일어나는 전기화학소자에 있어서, A first electrode; A second electrode spaced apart from the first electrode; In the electrochemical device comprising an electrolyte filled between the first electrode and the second electrode, the reversible electrochemical redox reaction occurs at at least one electrode of the first electrode and the second electrode,
    상기 전해질은 평균직경이 0.1 내지 8 나노미터(nm) 범위이고 그 표면전하가 -20mV 이하인 탄소 양자점 음이온과 금속 양이온의 염 형태인 탄소양자점 이온화합물을 포함한 것을 특징으로 하는 전기화학소자.The electrolyte is an electrochemical device comprising a carbon quantum dot ionic compound in the form of a salt of a carbon quantum dot anion and a metal cation having an average diameter of 0.1 to 8 nanometers (nm) and a surface charge of -20 mV or less.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속은 알칼리금속, 알칼리토금속 또는 전이금속인 것을 특징으로 하는 전기화학소자.The metal is an electrochemical device, characterized in that the alkali metal, alkaline earth metal or transition metal.
  3. 제2항에 있어서,The method of claim 2,
    상기 금속은 Li, Na, K, Mg 및 Zn으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전기화학소자. The metal is an electrochemical device, characterized in that at least one selected from the group consisting of Li, Na, K, Mg and Zn.
  4. 제1항에 있어서,The method of claim 1,
    상기 전기화학소자는 이차전지, 태양전지, 전기변색소자 또는 전기발광소자인 것을 특징으로 하는 전기화학소자.The electrochemical device is an electrochemical device, characterized in that the secondary battery, solar cell, electrochromic device or electroluminescent device.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 이차전지는 리튬이온전지 또는 리튬폴리머전지인 것을 특징으로 하는 전기화학소자.The secondary battery is an electrochemical device, characterized in that the lithium ion battery or lithium polymer battery.
PCT/KR2018/005923 2017-05-24 2018-05-24 Electrochemical device comprising carbon quantum dot ionic compound electrolyte WO2018217044A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020516361A JP6964768B2 (en) 2017-05-24 2018-05-24 Electrochemical device containing carbon quantum dot ion compound electrolyte
US16/616,304 US11996521B2 (en) 2017-05-24 2018-05-24 Electrochemical device comprising carbon quantum dot ionic compound electrolyte
CN201880034527.2A CN110662997B (en) 2017-05-24 2018-05-24 Electrochemical element comprising carbon quantum dot ionic compound electrolyte
EP18806882.9A EP3633445A4 (en) 2017-05-24 2018-05-24 Electrochemical device comprising carbon quantum dot ionic compound electrolyte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170064231 2017-05-24
KR10-2017-0064231 2017-05-24
KR1020180058236A KR102034205B1 (en) 2017-05-24 2018-05-23 Electriochemical device including carbon quantum dots ion compound electrolyte
KR10-2018-0058236 2018-05-23

Publications (1)

Publication Number Publication Date
WO2018217044A1 true WO2018217044A1 (en) 2018-11-29

Family

ID=64396873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005923 WO2018217044A1 (en) 2017-05-24 2018-05-24 Electrochemical device comprising carbon quantum dot ionic compound electrolyte

Country Status (1)

Country Link
WO (1) WO2018217044A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504451A (en) * 2019-08-09 2019-11-26 电子科技大学 A kind of preparation method of ultra-thin lithium an- ode
CN110504486A (en) * 2019-08-29 2019-11-26 河南景创新能源科技有限公司 A kind of functional quantum point composite solid electrolyte film and the preparation method and application thereof
CN112133962A (en) * 2020-09-25 2020-12-25 天津大学 Preparation method of bis (trifluoromethyl) sulfimide lithium-glucose carbon quantum dot solid electrolyte

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569560A (en) 1995-04-12 1996-10-29 Olsen; Ib I. Complexing agent for improved performance in a lithium based hybrid electrolyte
KR20060045803A (en) * 2004-04-19 2006-05-17 주식회사 엘지화학 Gel polymer electrolyte containing ionic liquid and electrochromic device using the same
KR20070071731A (en) * 2005-12-30 2007-07-04 주식회사 엘지화학 Electrochromic device having electrolyte comprising eutectic mixture
WO2010083041A1 (en) 2009-01-15 2010-07-22 Cornell University Nanoparticle organic hybrid materials (nohms)
KR20110003505A (en) 2008-04-24 2011-01-12 크로모제닉스 에이비 Electrolytes for electrochromic devices
KR20120035834A (en) * 2010-10-05 2012-04-16 제이 터치 코퍼레이션 Electrochromic module and stereo image display device having the same
KR20140003783A (en) * 2012-06-28 2014-01-10 한국전자통신연구원 Self-powered electrochromic devices using silicon solar cell
KR20150004124A (en) 2013-07-02 2015-01-12 이남석 Grain Roasting Device
KR101534313B1 (en) * 2014-08-04 2015-07-06 성균관대학교산학협력단 Electrochromic device including carbon-based material and viologen-based compound, and method for producing the same
KR20170064227A (en) 2015-12-01 2017-06-09 남광호 Rice cake with textures of fresh fruit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569560A (en) 1995-04-12 1996-10-29 Olsen; Ib I. Complexing agent for improved performance in a lithium based hybrid electrolyte
KR20060045803A (en) * 2004-04-19 2006-05-17 주식회사 엘지화학 Gel polymer electrolyte containing ionic liquid and electrochromic device using the same
KR20070071731A (en) * 2005-12-30 2007-07-04 주식회사 엘지화학 Electrochromic device having electrolyte comprising eutectic mixture
KR20110003505A (en) 2008-04-24 2011-01-12 크로모제닉스 에이비 Electrolytes for electrochromic devices
WO2010083041A1 (en) 2009-01-15 2010-07-22 Cornell University Nanoparticle organic hybrid materials (nohms)
KR20120035834A (en) * 2010-10-05 2012-04-16 제이 터치 코퍼레이션 Electrochromic module and stereo image display device having the same
KR20140003783A (en) * 2012-06-28 2014-01-10 한국전자통신연구원 Self-powered electrochromic devices using silicon solar cell
KR20150004124A (en) 2013-07-02 2015-01-12 이남석 Grain Roasting Device
KR101534313B1 (en) * 2014-08-04 2015-07-06 성균관대학교산학협력단 Electrochromic device including carbon-based material and viologen-based compound, and method for producing the same
KR20170064227A (en) 2015-12-01 2017-06-09 남광호 Rice cake with textures of fresh fruit

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHAEFER, J.L. ET AL., J. MATER. CHEM., vol. 21, 2011, pages 10094
G. LEFTHERIOTISS. PAPAEFTHIMIOUP. YIANOULIS, SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 83, 2004, pages 115
LU, Y. ET AL., J. MATER. CHEM., vol. 22, 2012, pages 4066
NJ DUDNEY, J. POWER SOURCES, vol. 89, 2000, pages 17
NUGENT, J.L. ET AL., ADV. MATER., vol. 22, 2010, pages 3677

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110504451A (en) * 2019-08-09 2019-11-26 电子科技大学 A kind of preparation method of ultra-thin lithium an- ode
CN110504451B (en) * 2019-08-09 2022-03-15 电子科技大学 Preparation method of ultrathin lithium metal cathode
CN110504486A (en) * 2019-08-29 2019-11-26 河南景创新能源科技有限公司 A kind of functional quantum point composite solid electrolyte film and the preparation method and application thereof
CN110504486B (en) * 2019-08-29 2023-04-07 河南景创新能源科技有限公司 Functionalized quantum dot composite solid electrolyte membrane and preparation method and application thereof
CN112133962A (en) * 2020-09-25 2020-12-25 天津大学 Preparation method of bis (trifluoromethyl) sulfimide lithium-glucose carbon quantum dot solid electrolyte

Similar Documents

Publication Publication Date Title
KR102034205B1 (en) Electriochemical device including carbon quantum dots ion compound electrolyte
KR102016642B1 (en) Electrolyte for electrochemical devices and preparation method
KR100663032B1 (en) Electrolyte comprising eutectic mixture and electrochromic device using the same
EP2234132B1 (en) Photoelectric conversion element comprising diamond or boron nitride particles
EP3944390A1 (en) Composite material and preparation method therefor, and lithium ion battery
Marcel et al. An all-plastic WO3· H2O/polyaniline electrochromic device
CN102598374B (en) Positive electrode active material for nonaqueous secondary battery
Chang et al. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline
WO2018217044A1 (en) Electrochemical device comprising carbon quantum dot ionic compound electrolyte
EP1244168A1 (en) Mesoporous network electrode for electrochemical cell
CN106298250A (en) A kind of solid lithium ion super capacitor hybrid battery
WO2012134166A2 (en) Polymer electrolyte composition and dye-sensitized solar cell containing the same
CN109638350A (en) The stable succinonitrile base solid electrolyte of a kind of pair of lithium, preparation method and applications
Sun et al. A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes
Cai et al. Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices
EP2332207A1 (en) A non-aqueous electrolyte containing as a solvent a borate ester and/or an aluminate ester
Chen et al. A salt-free poly (acrylic acid) hydrogel electrolyte with self-released ions for quasi-solid-state electrochromic devices
WO2018217043A1 (en) Electrolyte for electrochemical device and preparation method therefor
Visco et al. Polyorganodisulfide electrodes for solid-state batteries and electrochromic devices
JP2003161963A (en) Electrochromic element
KR20090029982A (en) Method for preparing electrochromic polymer nanotube and electrochromic device utilizing the same
ITRM20090072A1 (en) LITHIUM-ION BATTERY WITH HIGH DEGREE OF SAFETY
Guo et al. High-performance electrochromic device based on poly acrylamide gel polymer electrolyte containing hypromellose
KR102258224B1 (en) Electrolytic Device
WO2017086546A1 (en) Electrolyte solution for redox flow battery, and redox flow battery containing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806882

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806882

Country of ref document: EP

Effective date: 20200102