WO2017086546A1 - Electrolyte solution for redox flow battery, and redox flow battery containing same - Google Patents

Electrolyte solution for redox flow battery, and redox flow battery containing same Download PDF

Info

Publication number
WO2017086546A1
WO2017086546A1 PCT/KR2016/001976 KR2016001976W WO2017086546A1 WO 2017086546 A1 WO2017086546 A1 WO 2017086546A1 KR 2016001976 W KR2016001976 W KR 2016001976W WO 2017086546 A1 WO2017086546 A1 WO 2017086546A1
Authority
WO
WIPO (PCT)
Prior art keywords
redox flow
group
solvent
flow battery
active material
Prior art date
Application number
PCT/KR2016/001976
Other languages
French (fr)
Korean (ko)
Inventor
오승모
김현승
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2017086546A1 publication Critical patent/WO2017086546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a redox flow battery and a redox flow battery comprising the same, and more particularly, to an electrolyte solution for a redox flow battery comprising a solute and a solvent, wherein the solute is chemically and electrochemically stable Substituted compounds having a functional group capable of dissolving a large amount of the electrolyte in the electrolytes and capable of expressing a large capacity per unit volume, and a redox flow cell comprising the same.
  • a redox flow battery which is a secondary battery having a long service life in addition to its economical efficiency, is in the spotlight.
  • the operating voltage of the cell is determined.
  • the capacity is expressed by the oxidation-reduction reaction of the electrolyte supplied from the external tank, there is an advantage that the capacity of the entire cell can be easily controlled by adjusting the size of the external storage tank.
  • the redox reaction of the active redox couples occurs on the surface of the anode and the cathode, so that the electrode has less physical deformation than the conventional ion-based battery, and thus the life characteristic is excellent.
  • Vanadium-based salts and water have been mainly used as active materials and solvents for redox flow batteries.
  • Typical examples are all vanadium redox flow batteries, which are prepared by dissolving vanadium salts in both electrolytic solution and negative electrolytic solution.
  • the point that is not influenced by the surrounding environment, that is, the temperature, and the operating voltage are important characteristics. Thus, improvement of the existing water system is required.
  • All vanadium-based batteries show some drawbacks because they use water as a solvent. The first is that when the cell is driven at a potential higher than 1.23 V, which is the water potential window, electrolyte loss due to solvent decomposition occurs. That is, this is a limit point for the operating voltage. The next point is that it is difficult to drive below 0 ° C due to the thermodynamic properties of water. In addition, there is a disadvantage due to the active material of the entire vanadium-based battery, which is caused by the high temperature precipitation of the cathode active material. The most prevalent sulfuric acid-based active vanadium-based redox flow cell has been found to precipitate 5-valent vanadium at V 2 O 5 at about 40 ° C in the M. Skyllas-Kazacos 1990 paper JOURNAL OF APPLIED ELECTROCHEMISTRY , 20 , 463-467.
  • Organic solvents have been proposed as a solvent for a redox flow cell, which can take advantage of 1.5 to 2 times the driving voltage in order to improve the energy density in comparison with existing water system.
  • the limit of the selection of the redox pair generated due to the decomposition voltage of water and the limit of the driving temperature due to the freezing point of the water are relatively small
  • there are no disadvantages such as precipitation of vanadium salt at high temperature, and therefore research is actively conducted.
  • the active material than the conventional water-based systems i.e. 2013, the disadvantage of the solubility in solvents of the oxidation-reduction pair significantly lower by W. Wang Advanced Functional years.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a redox flow battery having improved solubility in solvents due to functional groups of the solute It is possible to dissolve a larger amount of solute in the solvent as compared with the redox flow battery, to exhibit a capacity per unit volume, to have a low redox potential, to be applicable to an anode material for a non-aqueous flow cell, And a redox flow battery including the electrolyte solution.
  • an electrolytic solution for a redox flow battery comprising a solvent and a solute, wherein the solute is at least one organic compound selected from a phthalimide compound represented by the following formula (1) Organic material ').
  • the solvent may be an aqueous solvent, an organic solvent, or a mixture thereof.
  • the aqueous solvent may be at least one selected from sulfuric acid, hydrochloric acid and phosphoric acid
  • the organic solvent may include acetonitrile, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, dimethyl It may be at least one selected from formamide, propylene carbonate, ethylene carbonate, N -methyl-2-pyrrolidone, fluoroethylene carbonate, gamma butyl lactone, tetraethylene glycol dimethyl ether, ethanol and methanol.
  • the electrolyte solution may further include a supporting electrolyte.
  • the supporting electrolyte may be at least one selected from the group consisting of an alkyl ammonium salt, a lithium salt and a sodium salt.
  • alkyl ammonium salt PF 6 -, BF 4 - , AsF 6 -, ClO 4 -, CF 3 SO 3 -, CF 3 SO 3 -, C (SO 2 CF 3) 3 -, N (CF 3 SO 2) 2 - and CH (CF 3 SO 2 ) 2 - , and a combination of ammonium cations in which alkyl is methyl, ethyl, butyl or propyl in the tetraalkylammonium cation.
  • the lithium salt LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiCF 3 SO 3, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (CF 3 SO 2) 2 , and LiCH (CF 3 SO 2 ) < 2 >
  • the solubility of the organic substance in the electrolyte solution may be a 0.1 M ⁇ 10 M.
  • the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte dissolved in the solvent using the organic material as the negative electrode active material and the positive electrode active material dissolved in the solvent may be 1.4 V or higher.
  • the difference (E pa -E pc ) at which the peak current of the reaction and the reduction reaction are confirmed can be 0.5 V or less.
  • the organic material may be used as a negative electrode active material.
  • a redox flow battery according to the present invention is characterized by including an electrolyte solution for a redox flow battery according to the present invention.
  • the solubility of the organic material may be 0.1 M to 10 M.
  • the organic material may be used as a negative electrode active material.
  • the redox flow battery according to the present invention may include a negative electrolyte containing the organic material as a negative electrode active material, and a positive electrode active material including a positive electrode active material.
  • the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte in which the negative electrode active material containing the organic substance is dissolved in the solvent and the positive electrode active material in which the positive electrode active material is dissolved in the solvent may be 1.4 V or more.
  • the cathode active material may be at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
  • an electrolyte solution containing the metal-ligand compound may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
  • an electrolyte solution containing the organic compound that performs the oxidation-reduction reaction may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
  • the electrolyte solution for a redox flow battery produced by dissolving a chemically and electrochemically stably reacting organic material in a solvent as a solute in accordance with the present invention unlike the prior art, by applying an optimal solute to a redox flow battery, A larger amount of solute can be dissolved in a solvent as compared with a redox flow battery, a capacity per unit volume can be manifested, a difference in reaction voltage of the redox pair is large, an operating voltage is high, and a battery having a high energy density can be realized There is an advantage.
  • the electrolytic solution for the redox flow battery of the present invention exhibits stable lifetime characteristics without decomposition of the material even when the redox reaction is repeated due to the stable electrochemical reaction, and also prevents mutual contamination, A battery having a life characteristic can be designed.
  • FIG. 1 is a graph showing a current-voltage curve by a circulating current-voltage method using the electrolyte of Example 1.
  • FIG. 2 is a graph showing a current-voltage curve by a circulating current-voltage method using the electrolyte of Example 2.
  • the electrolytic solution for a redox flow battery according to the present invention comprises a solvent and a solute, and the solute includes at least one organic material selected from phthalimide compounds represented by the following general formula (1).
  • R 1 represents an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, a bromopropyl group, a CH 2 Ph, a benzyl group, a butoxycarbonylmethyl group, Aminocarbonylmethyl group, and X is selected from H, F, Cl, Br and I.
  • the solvent to dissolve the organic material may be an aqueous solvent, an organic solvent, or a mixture thereof.
  • the aqueous solvent may be at least one selected from sulfuric acid, hydrochloric acid and phosphoric acid.
  • the organic solvent may be at least one selected from the group consisting of acetonitrile, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, , Propylene carbonate, ethylene carbonate, N -methyl-2-pyrrolidone, gamma butyl lactone, fluoroethylene carbonate, ethanol and methanol.
  • a supporting electrolyte may be further added in order to additionally impart conductivity to the electrolytic solution.
  • the supporting electrolyte may be at least one selected from the group consisting of an alkylammonium salt, a lithium salt, and a sodium salt.
  • alkyl ammonium salt PF 6 -, BF 4 - , AsF 6 -, ClO 4 -, CF 3 SO 3 -, CF 3 SO 3 -, C (SO 2 CF 3) 3 -, N (CF 3 SO 2) 2 - and CH (CF 3 SO 2 ) 2 - , and a combination of ammonium cations in which alkyl is methyl, ethyl, butyl or propyl in the tetraalkylammonium cation.
  • the lithium salt LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiCF 3 SO 3, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (CF 3 SO 2) 2 , and LiCH (CF 3 SO 2 ) < 2 >
  • the solubility of the organic material is preferably 0.1 M to 10 M , and more preferably 1.1 M to 10 M.
  • the solubility of the organic material is less than 0.1 M , the energy density is extremely low, so that it is difficult to realize the effect of the present invention.
  • an electrolyte having an excessively high solubility of more than 10 M is produced, Precipitation of organic matter in the supersaturated solution may occur.
  • the organic material may be used as a negative electrode active material.
  • the cathode active material may be at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
  • metal-ligand compound examples include, but are not limited to, metal-acetylacetonate-based materials, metal-biphenyl-based materials, and metal-tetradentate tetradecane-based materials have.
  • oxidation-reduction organic compound there are no particular restrictions on the oxidation-reduction organic compound, and any compound applicable to a cathode active material having a high voltage capable of being oxidized by losing electrons can be used.
  • the organic material may be used as a negative electrode active material, and at least one selected from the metal-ligand and the organic compound that performs the redox reaction may be used as the positive electrode active material. It is preferable that the operating voltage obtained from the oxidation and reduction of the organic solvent should be higher than 1.23 V, which is the maximum working voltage of the water system, in terms of energy density.
  • the maximum reduction potential of the cathode electrolyte Fc / Fc + (ferrocene / ferro when titanium) compared to the reference electrode, respectively -0.8 ⁇ -2.0 V
  • the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte dissolved in the solvent as the negative electrode active material and the positive electrode active material dissolving the positive electrode active material in the solvent is preferably 1.4 V or more.
  • an electrolytic solution containing the organic substance as a solute having a concentration of 0.01 M by a cyclic voltammetry which is the most typical electrochemical analysis method for confirming this, is oxidized at a scanning rate of 300 mV s -1
  • the difference (E pa -E pc ) at which the peak currents of the oxidation reaction and the reduction reaction are confirmed is 0.5 V or less.
  • the electrolytic solution for a redox flow battery according to the present invention, may be used by combining two different electrolytic solutions having different dissolved solutes, with a separating film interposed therebetween.
  • a redox flow battery according to the present invention is characterized by including an electrolyte solution for a redox flow battery containing the organic material according to the present invention.
  • the solubility of the organic material may be 0.1 M to 10 M.
  • the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte in which the negative electrode active material containing the organic material is dissolved in the solvent and the positive electrode solution in which the positive electrode active material is dissolved in the solvent may be 1.4 V or more .
  • the organic material may be used as a negative electrode active material.
  • the cathode active material may be at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
  • an electrolyte solution containing the metal-ligand compound may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
  • an electrolyte solution containing the organic compound that performs the oxidation-reduction reaction may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
  • the present invention provides an electrolyte solution for a redox flow cell including a solvent and a solute, wherein the solute includes the organic compound which is a compound that chemically and electrochemically stably reacts, wherein at least one electron moves during the reaction,
  • N - (3-bromopropyl) phthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetrafluoroborated tetraethyl ammonium to prepare an electrolytic solution.
  • N -butylphthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetra-fluoroborated tetraethyl ammonium to prepare an electrolytic solution.
  • N - (3-bromopropyl) phthalimide purchased from Sigma-Aldrich was dissolved in a propylene carbonate solution containing tetrafluoroborated tetraethylammonium as much as possible to prepare an electrolytic solution.
  • N -butylphthalimide purchased from Sigma-Aldrich was dissolved in a propylene carbonate solution containing tetraethylboron tetrafluoroborate as much as possible to prepare an electrolytic solution.
  • N -methylphthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetrafluoroborated tetraethyl ammonium to prepare an electrolytic solution.
  • N -methylphthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetra-fluoroborated tetramethylammonium fluoride as much as possible to prepare an electrolytic solution.
  • Example 1-2 Using an electrolytic solution obtained in Example 1-2, and a potential scan rate 300 mV s - it was carried out an experiment on a 1. Ferrocene was used as an internal reference for precise voltage determination in the organic electrolyte solution. A glacier carbon electrode was used as the working electrode and platinum was used as the counter electrode. The electrochemical cell was constructed using these materials and the cyclic voltammetry experiment was carried out.
  • Example 1 In the case of Example 1, it was confirmed that the oxidation voltage and the reduction voltage were -1.75 V and -1.87 V, respectively. Through these two reactions, it was confirmed that the redox voltage could be used as an anode active material of the redox flow cell having -1.81 V Respectively.
  • Example 2 it was confirmed that the oxidation voltage and the reduction voltage were -1.83 V and -1.96 V, respectively. Through these two reactions, it was confirmed that the redox voltage could be used as an anode active material of a redox flow cell having a -1.90 V Respectively.
  • the difference between the equilibrium potential of the ferrocene is -0.9 to -2.44 V ( vs. Fc / Fc + ) because the solvent used can be decomposed by reduction if the reaction voltage is too negative.
  • Comparative Example 1 Comparative Example 1 in which the organic materials of Examples 1 and 2 were driven under the same system as a cell composed of an anode material containing anode active material and 0.56 V ( vs. Fc / Fc + ) cathode material It can be seen that Examples 1 and 2 containing an organic material having a functional group according to the present invention exhibit higher solubility and exhibit a significantly higher energy density than Comparative Example 1. [

Abstract

The present invention relates to: an electrolyte solution for a redox flow battery, comprising a solute and a solvent, wherein the solute comprises at least one of organic materials substituted with a functional group, which chemically and electrochemically reacts stably, and thus a larger amount thereof is dissolved in an electrolyte, thereby enabling a large capacity per volume to be expressed; and a redox flow battery containing the same.

Description

레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지Electrolyte for redox flow battery and redox flow battery containing same
본 발명은 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지에 관한 것으로, 더욱 상세하게는, 용질 및 용매를 포함하는 레독스 플로우 전지용 전해액에 있어서, 상기 용질은 화학적 및 전기화학적으로 안정하게 반응하는 작용기가 치환된 화합물 중 적어도 하나를 포함함으로써 보다 많은 양이 전해질에 용해되어 큰 부피당 용량을 발현할 수 있는 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지에 관한 것이다.The present invention relates to an electrolyte for a redox flow battery and a redox flow battery comprising the same, and more particularly, to an electrolyte solution for a redox flow battery comprising a solute and a solvent, wherein the solute is chemically and electrochemically stable Substituted compounds having a functional group capable of dissolving a large amount of the electrolyte in the electrolytes and capable of expressing a large capacity per unit volume, and a redox flow cell comprising the same.
정보사회의 발달로 인한 개인 IT 디바이스의 발전과, 전기에너지에 대한 의존도가 높아지면서, 이 에너지를 효율적으로 저장하고 활용함에 대한 기술이 필수적이 되어가고 있다. 특히, 석유를 대체할 전력의 공급원으로서 신재생에너지가 부각되면서 이 발전 시스템을 통한 안정적인 전력 공급이 필요하게 되고, 기존의 발전 시설을 통한 전력의 효율적인 공급을 위하여 중대형 에너지 저장 시스템(Energy Storage System, ESS)이 스마트 그리드의 중요성과 더불어 주목받고 있다.With the development of personal IT devices and the reliance on electric energy due to the development of the information society, the technology to efficiently store and utilize this energy is becoming essential. In particular, as new renewable energy sources are emerging as a source of power to replace petroleum, it is necessary to supply stable power through this power generation system. In order to efficiently supply power through existing power generation facilities, ESS) is getting attention with the importance of smart grid.
여기서 경제성과 더불어 긴 수명을 가지는 이차전지인 레독스 플로우 전지가 각광받고 있다. 기존의 리튬, 소듐을 사용한 이차전지와는 달리, 레독스 플로우 전지의 경우 용매 속에 활물질이 녹아 있는 상태로 양극과 음극에서 각각의 활물질이 산화 환원 반응을 거치면서, 충전되고 방전되는 용량 발현 메커니즘을 가진다.Here, a redox flow battery, which is a secondary battery having a long service life in addition to its economical efficiency, is in the spotlight. Unlike conventional lithium and sodium secondary batteries, in the redox flow battery, the capacitive expression mechanism in which the active material is dissolved in the solvent and the active material is subjected to the redox reaction through the redox reaction in the anode and the cathode, I have.
이렇게, 전극의 활물질이 용매에 녹아서 반응을 하는 이차전지이기 때문에, 음전해액과 양전해액으로 사용되는 전해액에 각각 녹여 주는 활물질의 산화환원쌍의 표준 환원 전위를 달리 하게 되면, 이 각각의 전위 차로 인하여 셀의 작동 전압이 결정되는 특성을 가진다.Since the active material of the electrode melts in the solvent and reacts, the standard reduction potential of the redox pair of the active material dissolving in the electrolyte used as the negative electrolyte and the positive electrolyte is different, The operating voltage of the cell is determined.
또한 외부 탱크에서 공급되는 전해액의 산화 환원 반응으로 용량이 발현되므로, 외부의 저장 탱크의 크기 조절을 통한 전체 셀의 용량 조절이 용이하다는 장점이 존재한다. 이것에 더하여, 활물질인 레독스 커플의 산화 환원 반응이 양극과 음극의 표면에서 발생하므로, 기존의 이온에 기반한 전지에 비하여 전극의 물리적인 변형이 적어 수명 특성이 우수한 장점이 있다. Also, since the capacity is expressed by the oxidation-reduction reaction of the electrolyte supplied from the external tank, there is an advantage that the capacity of the entire cell can be easily controlled by adjusting the size of the external storage tank. In addition to this, the redox reaction of the active redox couples occurs on the surface of the anode and the cathode, so that the electrode has less physical deformation than the conventional ion-based battery, and thus the life characteristic is excellent.
이런 레독스 플로우 전지의 활물질과 용매로는 주로 바나듐 계열의 염과 물이 주로 사용되어 왔다. 대표적으로 전바나듐계 레독스 플로우 전지가 그러한데, 양전해액과 음전해액에 바나듐 염을 녹여서 사용한다. 다만, 중대형 에너지 저장 시스템의 경우 주변 환경, 즉 온도 등에 영향을 받지 않는 점과 작동 전압이 중요한 특성이 되는데, 이런 점을 위시하여 기존 수계 시스템의 개선이 요구되고 있는 실정이다. Vanadium-based salts and water have been mainly used as active materials and solvents for redox flow batteries. Typical examples are all vanadium redox flow batteries, which are prepared by dissolving vanadium salts in both electrolytic solution and negative electrolytic solution. However, in the case of the medium and large-sized energy storage system, the point that is not influenced by the surrounding environment, that is, the temperature, and the operating voltage are important characteristics. Thus, improvement of the existing water system is required.
전바나듐계 전지의 경우 물을 용매로 사용하기 때문에 몇 가지 단점을 드러낸다. 물의 전위창인 1.23 V보다 높은 전위에서 셀을 구동하게 되면 용매의 분해로 인한 전해액의 손실이 발생한다는 것이 그 첫 번째이다. 즉, 작동 전압에 있어서의 한계점이다. 다음으로는 물의 열역학적 특성으로 인하여 0 ℃ 이하에서 구동하기 어렵다는 점이 바로 그것이다. 추가적으로 전바나듐계 전지의 활물질로 인한 단점이 존재하는데, 이는 양극 활물질의 고온 침전에서 기인한다. 가장 널리 알려진 황산을 기반으로 한 전바나듐계 레독스 플로우 전지의 활물질의 경우 40 ℃ 가량에서 5가의 바나듐이 V2O5로 침전이 일어나는 것이 M. Skyllas-Kazacos의 1990년 논문인 JOURNAL OF APPLIED ELECTROCHEMISTRY, 20, 463-467에서 밝혀진바 있다. All vanadium-based batteries show some drawbacks because they use water as a solvent. The first is that when the cell is driven at a potential higher than 1.23 V, which is the water potential window, electrolyte loss due to solvent decomposition occurs. That is, this is a limit point for the operating voltage. The next point is that it is difficult to drive below 0 ° C due to the thermodynamic properties of water. In addition, there is a disadvantage due to the active material of the entire vanadium-based battery, which is caused by the high temperature precipitation of the cathode active material. The most prevalent sulfuric acid-based active vanadium-based redox flow cell has been found to precipitate 5-valent vanadium at V 2 O 5 at about 40 ° C in the M. Skyllas-Kazacos 1990 paper JOURNAL OF APPLIED ELECTROCHEMISTRY , 20 , 463-467.
이런 특성으로 인하여 황산을 기반으로 한 전바나듐계 레독스 플로우 전지의 전해액의 경우, 용량과 직결되는 용질의 농도마저 이 침전으로 인하여 저해되는 단점을 보인다. 고용량, 장수명과 더불어 고신뢰성이 중요시되는 중대형 전력 저장 시스템의 적용에 있어서, 이 문제는 단점으로 지적되고 있다.Due to this property, the concentration of the solute directly connected to the capacity of the electrolytic solution of the all-vanadium-based redox flow cell based on sulfuric acid is disadvantageous because of this precipitation. This problem is pointed out as a disadvantage in the application of medium and large power storage systems in which high reliability and high capacity are important along with high capacity and long life.
현재 기존의 수계 시스템에 대비하여, 에너지 밀도의 개선을 위하여 구동전압에 있어서 1.5∼2배 가량의 장점을 가져갈 수 있는 레독스 플로우 전지의 용매로 유기 용매가 제시되고 있다. 이렇게 유기 용매를 전해액 용매로 사용한 레독스 플로우 전지의 경우, 기존 수계 기반의 레독스 플로우 전지에 비하여 물의 분해전압으로 인하여 발생하는 산화환원쌍 선정의 한계나 물의 어는점으로 인한 구동 온도의 한계가 비교적 적은 장점이 있으며, 바나듐 염의 고온에서의 침전과 같은 단점이 존재하지 않아 활발히 연구가 진행되고 있다. 다만, 기존에 진행된 연구에 의하면, 기존의 수계 시스템에 비하여 활물질, 즉 산화환원쌍의 용매에 대한 용해도가 현저히 낮다는 단점이 W. Wang에 의하여 2013년에 Advanced Functional. Materials, 23, 970-986에 제시되었고, 양극 활물질과 음극 활물질의 표준환원전위의 차이가 수계에 비하여 작거나 혹은 비슷한 물질이 적용되어 개선점이 부각되지 않는 경우가 Sleightholme에 의하여 Journal of power sources, 196, 5742-5745에 보고된 바 있다. 이를 해결하기 위해서는, 다량의 산화환원쌍이 용매에 용해됨과 동시에, 용해된 물질의 표준환원전위의 차이가 수계 시스템에 비하여 넓게 되도록 구성하여, 이 시스템을 주효하게 만들어야 할 것이다.Organic solvents have been proposed as a solvent for a redox flow cell, which can take advantage of 1.5 to 2 times the driving voltage in order to improve the energy density in comparison with existing water system. In the redox flow cell using the organic solvent as the electrolyte solvent, the limit of the selection of the redox pair generated due to the decomposition voltage of water and the limit of the driving temperature due to the freezing point of the water are relatively small And there are no disadvantages such as precipitation of vanadium salt at high temperature, and therefore research is actively conducted. However, according to research conducted in conventional, the active material than the conventional water-based systems, i.e. 2013, the disadvantage of the solubility in solvents of the oxidation-reduction pair significantly lower by W. Wang Advanced Functional years. Materials, 23 , 970-986, and the case where the difference between the standard reduction potentials of the cathode active material and the anode active material is smaller than that of the aqueous system, and the improvement is not emphasized, is disclosed by Sleightholme in Journal of power sources , 196 , ≪ / RTI > 5742-5745. In order to solve this problem, it is necessary to constitute the system so that a large amount of oxidation-reduction groups are dissolved in the solvent and the difference in the standard reduction potential of the dissolved substance is wider than that of the aqueous system.
따라서, 다량의 산화환원쌍이 용매에 다량 용해됨과 동시에, 용해된 물질의 표준환원전위의 차이가 수계 시스템에 비하여 높을 뿐만 아니라, 유기물의 용해도가 기존에 발표된 유기계 전해액에 비해 매우 커서, 기존 시스템에 비하여 고에너지 밀도를 가질 뿐만 아니라, 안정적인 수명 특성을 갖는 전해액에 대한 개발이 요구되고 있다.Therefore, a large amount of oxidation-reduction groups are dissolved in a large amount in a solvent, and the difference in the standard reduction potential of the dissolved substance is higher than that of the aqueous system, and the solubility of the organic material is much larger than that of the previously- Development of an electrolytic solution having a high energy density as well as stable lifetime characteristics is demanded.
본 발명은 상기 문제점을 해결하기 위한 것으로서, 종래와 달리, 레독스 플로우 전지에 최적의 용질(활물질, 산화환원 쌍)을 적용함으로써, 상기 용질의 작용기로 인해 용매에 대한 용해도가 향상되어 기존에 알려진 레독스 플로우 전지에 비하여 더 많은 양의 용질이 용매에 용해될 수 있어 큰 부피당 용량을 발현할 수 있고, 산화환원 전위가 낮아, 비수계 플로우 전지용 음극재에 적용가능하고, 높은 에너지 밀도를 지니는 전해액을 구현할 수 있는 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지를 제공하는 것을 목적으로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a redox flow battery having improved solubility in solvents due to functional groups of the solute It is possible to dissolve a larger amount of solute in the solvent as compared with the redox flow battery, to exhibit a capacity per unit volume, to have a low redox potential, to be applicable to an anode material for a non-aqueous flow cell, And a redox flow battery including the electrolyte solution.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 레독스 플로우 전지용 전해액은 용매 및 용질을 포함하고, 상기 용질은 하기 화학식 1로 표시되는 프탈이미드계 화합물로부터 선택되는 1종 이상의 유기물(이하, '유기물'이라고도 함)을 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided an electrolytic solution for a redox flow battery comprising a solvent and a solute, wherein the solute is at least one organic compound selected from a phthalimide compound represented by the following formula (1) Organic material ').
[화학식 1][Chemical Formula 1]
Figure PCTKR2016001976-appb-I000001
Figure PCTKR2016001976-appb-I000001
(여기에서, R1은 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 터셔리 부틸기, 브로모 프로필기, CH2Ph(Ph=페닐기), 벤질기, 부톡시카보닐메틸기, 카르복실메틸기 및 아미노카보닐메틸기로부터 선택되고, X는 H, F, Cl, Br 및 I로부터 선택된다.)(Wherein R 1 represents a group selected from the group consisting of an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, a bromopropyl group, CH 2 Ph (Ph = phenyl group), a benzyl group, a butoxycarbonylmethyl group , A carboxylmethyl group and an aminocarbonylmethyl group, and X is selected from H, F, Cl, Br and I.)
본 발명의 레독스 플로우 전지용 전해액에 있어서, 상기 용매는 수계 용매, 유기계 용매 또는 이들의 혼합물일 수 있다.In the electrolytic solution for a redox flow battery of the present invention, the solvent may be an aqueous solvent, an organic solvent, or a mixture thereof.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 수계 용매는 황산, 염산 및 인산으로부터 선택되는 1종 이상일 수 있고, 상기 유기계 용매는 아세토나이트릴, 디메틸카보네이트, 디에틸카보네이트, 디메틸술폭사이드, 디메틸포름아미드, 프로필렌카보네이트, 에틸렌카보네이트, N-메틸-2-피롤리돈, 플루오로에틸렌카보네이트, 감마부틸락톤, 테트라에틸렌글리콜 디메틸에테르, 에탄올 및 메탄올로부터 선택되는 1종 이상일 수 있다.In the electrolytic solution for a redox flow battery according to the present invention, the aqueous solvent may be at least one selected from sulfuric acid, hydrochloric acid and phosphoric acid, and the organic solvent may include acetonitrile, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, dimethyl It may be at least one selected from formamide, propylene carbonate, ethylene carbonate, N -methyl-2-pyrrolidone, fluoroethylene carbonate, gamma butyl lactone, tetraethylene glycol dimethyl ether, ethanol and methanol.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 전해액은 지지전해질을 더 포함할 수 있다.In the electrolyte solution for a redox flow battery according to the present invention, the electrolyte solution may further include a supporting electrolyte.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 지지전해질은 알킬암모늄염, 리튬염 및 소듐염으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.In the electrolytic solution for a redox flow battery according to the present invention, the supporting electrolyte may be at least one selected from the group consisting of an alkyl ammonium salt, a lithium salt and a sodium salt.
상기 알킬암모늄염은, PF6 -, BF4 -, AsF6 -, ClO4 -, CF3SO3 -, CF3SO3 -, C(SO2CF3)3 -, N(CF3SO2)2 - 및 CH(CF3SO2)2 -로부터 선택되는 하나의 음이온과, 테트라알킬암모늄 양이온에서 알킬이 메틸, 에틸, 부틸 또는 프로필인 암모늄 양이온의 조합으로 이루어질 수 있다.The alkyl ammonium salt, PF 6 -, BF 4 - , AsF 6 -, ClO 4 -, CF 3 SO 3 -, CF 3 SO 3 -, C (SO 2 CF 3) 3 -, N (CF 3 SO 2) 2 - and CH (CF 3 SO 2 ) 2 - , and a combination of ammonium cations in which alkyl is methyl, ethyl, butyl or propyl in the tetraalkylammonium cation.
상기 리튬염은, LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2로부터 선택되는 1종 이상일 수 있다.The lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiCF 3 SO 3, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (CF 3 SO 2) 2 , and LiCH (CF 3 SO 2 ) < 2 >
상기 소듐염은, NaPF6, NaBF4, NaAsF6, NaClO4, NaCF3SO3, NaCF3SO3, NaC(SO2CF3)3, NaN(CF3SO2)2 및 NaCH(CF3SO2)2로부터 선택되는 1종 이상일 수 있다.The sodium salt, NaPF 6, NaBF 4, NaAsF 6, NaClO 4, NaCF 3 SO 3, NaCF 3 SO 3, NaC (SO 2 CF 3) 3, NaN (CF 3 SO 2) 2 , and NaCH (CF 3 SO 2 ) < 2 >
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 전해액 중의 상기 유기물의 용해도는 0.1 M∼10 M일 수 있다.In the redox flow battery electrolyte according to the present invention, the solubility of the organic substance in the electrolyte solution may be a 0.1 M~ 10 M.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 유기물을 음극 활물질로 하여 용매에 용해한 음전해액과, 양극 활물질을 용매에 용해한 양전해액 간의 산화반응과 환원반응의 전압차이가 1.4 V 이상일 수 있다.In the electrolytic solution for the redox flow battery according to the present invention, the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte dissolved in the solvent using the organic material as the negative electrode active material and the positive electrode active material dissolved in the solvent may be 1.4 V or higher.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 0.01 M의 농도를 가지는 상기 유기물을 포함하는 전해액을 300 mV s-1의 주사속도로 순환전류전압법으로 산화환원 반응을 확인하였을 때, 각각의 산화반응과 환원반응의 피크 전류 (Peak current)가 확인되는 전압의 차이(Epa-Epc)가 0.5 V 이하일 수 있다.When the electrolytic solution containing the organic substance having the concentration of 0.01 M in the electrolytic solution for the redox flow battery according to the present invention was confirmed by the cyclic voltammetric method at a scanning rate of 300 mV s -1 , The difference (E pa -E pc ) at which the peak current of the reaction and the reduction reaction are confirmed can be 0.5 V or less.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 유기물은 음극 활물질로 사용될 수 있다.In the electrolyte for a redox flow battery according to the present invention, the organic material may be used as a negative electrode active material.
다음으로, 본 발명에 따른 레독스 플로우 전지는, 본 발명에 따른 레독스 플로우 전지용 전해액을 포함하는 것을 특징으로 한다.Next, a redox flow battery according to the present invention is characterized by including an electrolyte solution for a redox flow battery according to the present invention.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 유기물의 용해도는 0.1 M 내지 10 M일 수 있다.In the redox flow battery according to the present invention, the solubility of the organic material may be 0.1 M to 10 M.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 유기물은 음극 활물질로 사용할 수 있다.In the redox flow battery according to the present invention, the organic material may be used as a negative electrode active material.
본 발명에 따른 레독스 플로우 전지는 상기 유기물을 음극 활물질로 포함하는 음전해액과 양극 활물질을 포함하는 양전해액을 포함할 수 있다.The redox flow battery according to the present invention may include a negative electrolyte containing the organic material as a negative electrode active material, and a positive electrode active material including a positive electrode active material.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 유기물을 포함하는 음극 활물질을 용매에 용해한 음전해액과 양극 활물질을 용매에 용해한 양전해액 간의 산화반응과 환원반응의 전압차이가 1.4 V 이상일 수 있다.In the redox flow battery according to the present invention, the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte in which the negative electrode active material containing the organic substance is dissolved in the solvent and the positive electrode active material in which the positive electrode active material is dissolved in the solvent may be 1.4 V or more.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 양극 활물질은 금속-리간드 화합물 및 산화환원반응을 하는 유기화합물로부터 선택되는 1종 이상일 수 있다.In the redox flow battery according to the present invention, the cathode active material may be at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 금속-리간드 화합물을 포함하는 전해액을 양극으로 하고, 상기 유기물을 포함하는 전해액을 음극으로 하여 구성할 수 있다.In the redox flow battery according to the present invention, an electrolyte solution containing the metal-ligand compound may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 산화환원반응을 하는 유기화합물을 포함하는 전해액을 양극으로 하고, 상기 유기물을 포함하는 전해액을 음극으로 하여 구성할 수 있다.In the redox flow battery according to the present invention, an electrolyte solution containing the organic compound that performs the oxidation-reduction reaction may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
본 발명에 따른 화학적 및 전기화학적으로 안정하게 반응하는 유기물을 용질로서 용매에 용해시켜 제조하는 레독스 플로우 전지용 전해액에 따르면, 종래와 달리, 레독스 플로우 전지에 최적의 용질을 적용함으로써, 기존에 알려진 레독스 플로우 전지에 비하여 더 많은 양의 용질이 용매에 용해될 수 있어 큰 부피당 용량을 발현할 수 있고, 산화환원쌍의 반응 전압 차이가 커 작동전압이 높아, 높은 에너지 밀도를 지니는 전지를 구현할 수 있는 장점이 있다.According to the electrolyte solution for a redox flow battery produced by dissolving a chemically and electrochemically stably reacting organic material in a solvent as a solute in accordance with the present invention, unlike the prior art, by applying an optimal solute to a redox flow battery, A larger amount of solute can be dissolved in a solvent as compared with a redox flow battery, a capacity per unit volume can be manifested, a difference in reaction voltage of the redox pair is large, an operating voltage is high, and a battery having a high energy density can be realized There is an advantage.
또한, 레독스 플로우 전지에 최적의 용질과 용매를 사용함으로써, 종래의 수계시스템에 비해 현저히 높은 작동 전압을 구현할 수 있을 뿐만 아니라, 유기물의 용해도가 기존의 유기계 전해액에 비해 다량 용해되어 기존 시스템에 비하여 고에너지 밀도 및 높은 작동전압을 가지는 전해액을 제공할 수 있다.In addition, by using the optimal solute and solvent for the redox flow battery, it is possible to realize a remarkably high operating voltage as compared with the conventional aqueous system, and the solubility of the organic material is much larger than that of the conventional organic electrolyte, It is possible to provide an electrolytic solution having a high energy density and a high operating voltage.
또한, 본 발명의 레독스 플로우 전지용 전해액은 안정한 전기화학적인 반응으로 인하여 산화환원 반응을 거듭하여 진행하여도 물질의 분해가 없이 안정적인 수명 특성을 나타낼 뿐만 아니라, 상호 오염을 막아주어, 보다 더 뛰어난 장기 수명 특성을 가지는 전지를 설계할 수 있다.In addition, the electrolytic solution for the redox flow battery of the present invention exhibits stable lifetime characteristics without decomposition of the material even when the redox reaction is repeated due to the stable electrochemical reaction, and also prevents mutual contamination, A battery having a life characteristic can be designed.
도 1은 실시예 1의 전해액을 이용한 순환전류전압법에 의한 전류-전압 곡선을 나타낸 그래프이다.FIG. 1 is a graph showing a current-voltage curve by a circulating current-voltage method using the electrolyte of Example 1. FIG.
도 2는 실시예 2의 전해액을 이용한 순환전류전압법에 의한 전류-전압 곡선을 나타낸 그래프이다.2 is a graph showing a current-voltage curve by a circulating current-voltage method using the electrolyte of Example 2. FIG.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라, 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. It is intended that the disclosure of the present invention be limited only by the terms of the appended claims.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless defined otherwise, all terms (including technical and scientific terms) used herein may be used in a sense commonly understood by one of ordinary skill in the art to which this invention belongs. In addition, commonly used predefined terms are not ideally or excessively interpreted unless explicitly defined otherwise.
본 발명에 따른 레독스 플로우 전지용 전해액은, 용매 및 용질을 포함하고, 상기 용질은 하기 화학식 1로 표시되는 프탈이미드계 화합물로부터 선택되는 1종 이상의 유기물을 포함하는 것을 특징으로 한다.The electrolytic solution for a redox flow battery according to the present invention comprises a solvent and a solute, and the solute includes at least one organic material selected from phthalimide compounds represented by the following general formula (1).
[화학식 1][Chemical Formula 1]
Figure PCTKR2016001976-appb-I000002
Figure PCTKR2016001976-appb-I000002
(여기에서, R1은 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 터셔리 부틸기, 브로모 프로필기, CH2Ph, 벤질기, 부톡시카보닐메틸기, 카르복실메틸기 및 아미노카보닐메틸기로부터 선택되고, X는 H, F, Cl, Br 및 I로부터 선택된다.)(Wherein R 1 represents an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, a bromopropyl group, a CH 2 Ph, a benzyl group, a butoxycarbonylmethyl group, Aminocarbonylmethyl group, and X is selected from H, F, Cl, Br and I.)
본 발명의 레독스 플로우 전지용 전해액에 있어서, 상기와 같은 치환기로 프탈이미드계 화합물을 구성하면, 치환기의 효과로 용해도가 증가하여 용량을 증진시키는 효과를 발현할 수 있고, 또한 상기와 같은 치환기들 중에서 전자주개적 특성을 가지는 치환기를 도입하게 되면, 분자의 전기화학적인 환원이 어렵게 되어, 음극 활물질로 적용가능한 화합물의 경우 작동전압을 보다 음으로 이동시켜 전지의 구성 시에 더욱 높은 작동 전위도 확보할 수 있으며, 탄화수소계 기반의 치환기들도 이런 역할이 가능하기 때문에 용해도 증가와 더불어 에너지 밀도를 더욱 향상시킬 수 있다.In the electrolytic solution for a redox flow battery of the present invention, when a phthalimide compound is constituted by such a substituent as described above, the solubility is increased by the effect of the substituent and the effect of increasing the capacity can be exhibited. It is difficult to electrochemically reduce the number of molecules, and in the case of a compound applicable to an anode active material, the operation voltage is shifted to a negative side so that a higher working potential is secured Substituents based on hydrocarbons are also capable of this role, which can increase the solubility and further improve the energy density.
본 발명의 레독스 플로우 전지용 전해액에 있어서, 상기 유기물을 용해시킬 용매로는 수계 용매, 유기계 용매 또는 이들의 혼합물일 수 있다.In the electrolytic solution for a redox flow battery of the present invention, the solvent to dissolve the organic material may be an aqueous solvent, an organic solvent, or a mixture thereof.
상기 유기물의 용해도 등을 극대화하기 위하여, 상기 수계용매는 황산, 염산 또는 인산으로부터 선택되는 1종 이상일 수 있고, 상기 유기계 용매는 아세토나이트릴, 디메틸카보네이트, 디에틸카보네이트, 디메틸술폭사이드, 디메틸포름아미드, 프로필렌카보네이트, 에틸렌카보네이트, N-메틸-2-피롤리돈, 감마부틸락톤, 플루오로에틸렌카보네이트, 에탄올 및 메탄올로부터 선택되는 1종 이상일 수 있다.In order to maximize solubility of the organic material, the aqueous solvent may be at least one selected from sulfuric acid, hydrochloric acid and phosphoric acid. The organic solvent may be at least one selected from the group consisting of acetonitrile, dimethyl carbonate, diethyl carbonate, dimethylsulfoxide, , Propylene carbonate, ethylene carbonate, N -methyl-2-pyrrolidone, gamma butyl lactone, fluoroethylene carbonate, ethanol and methanol.
본 발명에서는, 전해액에 전도도를 부가적으로 부여하기 위하여 지지전해질을 더 첨가할 수도 있는데, 상기 지지전해질은 알킬암모늄염, 리튬염 및 소듐염으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.In the present invention, a supporting electrolyte may be further added in order to additionally impart conductivity to the electrolytic solution. The supporting electrolyte may be at least one selected from the group consisting of an alkylammonium salt, a lithium salt, and a sodium salt.
상기 알킬암모늄염은, PF6 -, BF4 -, AsF6 -, ClO4 -, CF3SO3 -, CF3SO3 -, C(SO2CF3)3 -, N(CF3SO2)2 - 및 CH(CF3SO2)2 -로부터 선택되는 하나의 음이온과, 테트라알킬암모늄 양이온에서 알킬이 메틸, 에틸, 부틸 또는 프로필인 암모늄 양이온의 조합으로 이루어질 수 있다.The alkyl ammonium salt, PF 6 -, BF 4 - , AsF 6 -, ClO 4 -, CF 3 SO 3 -, CF 3 SO 3 -, C (SO 2 CF 3) 3 -, N (CF 3 SO 2) 2 - and CH (CF 3 SO 2 ) 2 - , and a combination of ammonium cations in which alkyl is methyl, ethyl, butyl or propyl in the tetraalkylammonium cation.
상기 리튬염은, LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2로부터 선택되는 1종 이상일 수 있다.The lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiCF 3 SO 3, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (CF 3 SO 2) 2 , and LiCH (CF 3 SO 2 ) < 2 >
상기 소듐염은, NaPF6, NaBF4, NaAsF6, NaClO4, NaCF3SO3, NaCF3SO3, NaC(SO2CF3)3, NaN(CF3SO2)2 및 NaCH(CF3SO2)2로부터 선택되는 1종 이상일 수 있다.The sodium salt, NaPF 6, NaBF 4, NaAsF 6, NaClO 4, NaCF 3 SO 3, NaCF 3 SO 3, NaC (SO 2 CF 3) 3, NaN (CF 3 SO 2) 2 , and NaCH (CF 3 SO 2 ) < 2 >
본 발명의 레독스 플로우 전지용 전해액에서, 상기 유기물의 용해도는 0.1 M 내지 10 M인 것이 바람직하며, 더욱 바람직하게는, 1.1 M 내지 10 M인 것이 효과적이다. 상기 유기물의 용해도가 0.1 M 미만인 경우에는, 에너지밀도가 현저히 낮아 본 발명의 효과를 구현하기 어려운 문제가 있으며, 10 M을 초과하는 과한 용해도를 가지는 전해액을 제조할 경우 점도가 높아 전해액의 펌핑이 어려워지고, 과포화된 용액에서의 유기물의 침전이 발생할 수 있다.In the electrolytic solution for a redox flow battery of the present invention, the solubility of the organic material is preferably 0.1 M to 10 M , and more preferably 1.1 M to 10 M. When the solubility of the organic material is less than 0.1 M , the energy density is extremely low, so that it is difficult to realize the effect of the present invention. When an electrolyte having an excessively high solubility of more than 10 M is produced, Precipitation of organic matter in the supersaturated solution may occur.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 유기물은 음극 활물질로 사용될 수 있다.In the electrolyte for a redox flow battery according to the present invention, the organic material may be used as a negative electrode active material.
상기 양극 활물질은 금속-리간드 화합물 및 산화환원반응을 하는 유기화합물로부터 선택되는 1종 이상일 수 있다.The cathode active material may be at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
상기 금속-리간드 화합물로는, 특별히 한정은 없고, 예를 들면 금속-아세틸아세토네이트 계열의 물질, 금속-바이페닐 계열의 물질, 금속-테트라덴테이트테트라데케인계의 물질로부터 선택되는 1종 이상일 수 있다.Examples of the metal-ligand compound include, but are not limited to, metal-acetylacetonate-based materials, metal-biphenyl-based materials, and metal-tetradentate tetradecane-based materials have.
상기 산화환원반응을 하는 유기화합물은, 특별히 한정은 없고 전자를 잃어 산화될 수 있는 전압이 높은 양극 활물질로 적용가능한 화합물은 모두 사용가능하다.There are no particular restrictions on the oxidation-reduction organic compound, and any compound applicable to a cathode active material having a high voltage capable of being oxidized by losing electrons can be used.
본 발명의 레독스 플로우 전지용 전해액에 있어서, 상기 유기물을 음극 활물질로 사용하고, 상기 금속-리간드 및 산화환원반응을 하는 유기화합물로부터 선택되는 1종 이상을 양극 활물질로 사용할 수 있으며, 이렇게 조합한 각각의 산화 및 환원으로부터 얻어지는 작동전압이 수계의 최대 작동전압인 1.23 V보다 높아야 에너지 밀도 측면에서 바람직하다.In the electrolytic solution for the redox flow battery of the present invention, the organic material may be used as a negative electrode active material, and at least one selected from the metal-ligand and the organic compound that performs the redox reaction may be used as the positive electrode active material. It is preferable that the operating voltage obtained from the oxidation and reduction of the organic solvent should be higher than 1.23 V, which is the maximum working voltage of the water system, in terms of energy density.
따라서, 음극 전해액의 환원 최대전위가 Fc/Fc+(페로센/페로시늄) 기준전극 대비 각각 -0.8 ∼ -2.0 V이고, 양극 전해액의 산화 최대전위가 Fc/Fc+ 기준전극 대비 0 V보다 더 양의 값을 가지는 것이 바람직하고, 상기 유기물을 음극 활물질로서 상기 용매에 용해한 음전해액과 상기 양극 활물질을 상기 용매에 용해한 양전해액 간의 산화반응과 환원반응의 전압차이가 1.4 V 이상인 것이 바람직하다.Thus, the maximum reduction potential of the cathode electrolyte Fc / Fc + (ferrocene / ferro when titanium) compared to the reference electrode, respectively -0.8 ~ -2.0 V, and the maximum oxidation potential of the anode electrolyte Fc / Fc + standard electrode more positive than 0 V against And the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte dissolved in the solvent as the negative electrode active material and the positive electrode active material dissolving the positive electrode active material in the solvent is preferably 1.4 V or more.
또한, 모든 산화환원 쌍은 전기화학적 가역성이 높아서 산화전위와 환원전위간의 차이가 작아야 한다. 그렇지 않은 경우에는 완전지 구성시에 충전 및 방전시의 전압차이가 커져서 에너지 효율이 저하될 수 있다. 따라서, 음극 활물질과 양극 활물질의 각각의 반응에서 발생하는 산화 및 환원반응이 발생하는 전압(peak potential)의 차이가 작아야 한다.In addition, all redox pairs are highly electrochemically reversible so that the difference between the oxidation potential and the reduction potential should be small. Otherwise, the voltage difference at the time of charge and discharge in the complete construction becomes large, and energy efficiency may be lowered. Accordingly, the difference in peak potential between the anode active material and the cathode active material, in which oxidation and reduction reactions occur, must be small.
따라서, 본 발명에서, 이를 확인하기 위한 가장 대표적인 전기화학 분석법인 순환전압전류법(Cyclic Voltammetry)으로 0.01 M의 농도를 가지는 상기 유기물을 용질로서 포함하는 전해액을 300 mV s-1의 주사속도로 산화환원 반응을 확인하였을 때, 산화반응과 환원반응 각각의 피크 전류(Peak current)가 확인되는 전압의 차이(Epa-Epc)가 0.5 V 이하인 것이 바람직하다.Therefore, in the present invention, an electrolytic solution containing the organic substance as a solute having a concentration of 0.01 M by a cyclic voltammetry, which is the most typical electrochemical analysis method for confirming this, is oxidized at a scanning rate of 300 mV s -1 When the reduction reaction is confirmed, it is preferable that the difference (E pa -E pc ) at which the peak currents of the oxidation reaction and the reduction reaction are confirmed to be 0.5 V or less.
본 발명에 따른 레독스 플로우 전지용 전해액에 있어서, 상기 전해액은, 분리막을 사이에 두고, 용해되어 있는 용질이 다른 두 개의 다른 전해액이 조합되어 사용될 수도 있다.In the electrolytic solution for a redox flow battery according to the present invention, the electrolytic solution may be used by combining two different electrolytic solutions having different dissolved solutes, with a separating film interposed therebetween.
다음으로, 본 발명에 따른 레독스 플로우 전지는, 본 발명에 따른 상기 유기물을 포함하는 레독스 플로우 전지용 전해액을 포함하는 것을 특징으로 한다.Next, a redox flow battery according to the present invention is characterized by including an electrolyte solution for a redox flow battery containing the organic material according to the present invention.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 유기물의 용해도는 0.1 M 내지 10 M일 수 있다.In the redox flow battery according to the present invention, the solubility of the organic material may be 0.1 M to 10 M.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 유기물을 포함하는 음극 활물질을 상기 용매에 용해한 음전해액과 양극 활물질을 상기 용매에 용해한 양전해액 간의 산화반응과 환원반응의 전압차이가 1.4 V 이상일 수 있다.In the redox flow battery according to the present invention, the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode electrolyte in which the negative electrode active material containing the organic material is dissolved in the solvent and the positive electrode solution in which the positive electrode active material is dissolved in the solvent may be 1.4 V or more .
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 유기물은 음극 활물질로 사용할 수 있다.In the redox flow battery according to the present invention, the organic material may be used as a negative electrode active material.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 양극 활물질은 금속-리간드 화합물 및 산화환원반응을 하는 유기화합물로부터 선택되는 1종 이상일 수 있다.In the redox flow battery according to the present invention, the cathode active material may be at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 금속-리간드 화합물을 포함하는 전해액을 양극으로 하고, 상기 유기물을 포함하는 전해액을 음극으로 하여 구성할 수 있다.In the redox flow battery according to the present invention, an electrolyte solution containing the metal-ligand compound may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
본 발명에 따른 레독스 플로우 전지에 있어서, 상기 산화환원반응을 하는 유기화합물을 포함하는 전해액을 양극으로 하고, 상기 유기물을 포함하는 전해액을 음극으로 하여 구성할 수 있다.In the redox flow battery according to the present invention, an electrolyte solution containing the organic compound that performs the oxidation-reduction reaction may be used as a positive electrode, and an electrolyte solution containing the organic compound may be used as a negative electrode.
즉, 본 발명은, 용매 및 용질을 포함한 레독스 플로우 전지용 전해액으로서, 상기 용질이 화학적 및 전기화학적으로 안정하게 반응하는 화합물인 상기 유기물을 포함하고 있으며, 반응시 1개 이상의 전자가 이동하며, 상기 유기물이 안정적으로 용매 내부에 용해되어 있어 전해질내에서 침전이 일어나지 않는 레독스 플로우 전지용 전해액 및 이를 이용하는 레독스 플로우 전지를 제공한다.That is, the present invention provides an electrolyte solution for a redox flow cell including a solvent and a solute, wherein the solute includes the organic compound which is a compound that chemically and electrochemically stably reacts, wherein at least one electron moves during the reaction, An electrolyte for a redox flow cell in which organic matter is stably dissolved in a solvent and does not cause precipitation in an electrolyte, and a redox flow battery using the same.
이하에서는, 본 발명의 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지의 우수성을 입증하기 위하여, 본 발명에 따른 실시예와 비교예에 대한 다양한 실험을 실시하였으며, 그 결과는 다음과 같다.In order to demonstrate the superiority of the electrolytic solution for a redox flow battery of the present invention and the redox flow battery comprising the same according to the present invention, various experiments of the present invention and a comparative example have been carried out.
실시예 1 내지 4 및 비교예 1 내지 2Examples 1 to 4 and Comparative Examples 1 to 2
실시예 1. (Example 1. ( NN -(3-브로모프로필)프탈이미드를 포함하는 전해액)- (3-bromopropyl) phthalimide)
시그마알드리치 사에서 구입한 N-(3-브로모프로필)프탈이미드를 테트라플루오르붕산화 테트라에틸암모늄이 포함된 프로필렌카보네이트 용액에 0.01 M 용해하여 전해액을 제조하였다.0.01 M of N - (3-bromopropyl) phthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetrafluoroborated tetraethyl ammonium to prepare an electrolytic solution.
실시예 2. (Example 2. ( NN -부틸프탈이미드를 포함하는 전해액)- an electrolytic solution containing butyl phthalimide)
시그마알드리치 사에서 구입한 N-부틸프탈이미드를 테트라플루오르붕산화 테트라에틸암모늄이 포함된 프로필렌카보네이트 용액에 0.01 M 용해하여 전해액을 제조하였다.0.01 M of N -butylphthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetra-fluoroborated tetraethyl ammonium to prepare an electrolytic solution.
실시예 3. (Example 3. ( NN -(3-브로모프로필)프탈이미드의 용해도 실험)- (3-bromopropyl) phthalimide Solubility experiment)
시그마알드리치 사에서 구입한 N-(3-브로모프로필)프탈이미드를 테트라플루오르붕산화 테트라에틸암모늄이 포함된 프로필렌카보네이트 용액에 최대한 용해하여 전해액을 제조하였다. N - (3-bromopropyl) phthalimide purchased from Sigma-Aldrich was dissolved in a propylene carbonate solution containing tetrafluoroborated tetraethylammonium as much as possible to prepare an electrolytic solution.
실시예 4. (Example 4. ( NN -부틸프탈이미드의 용해도 실험)- Solubility test of butylphthalimide)
시그마알드리치 사에서 구입한 N-부틸프탈이미드를 테트라플루오르붕산화 테트라에틸암모늄이 포함된 프로필렌카보네이트 용액에 최대한 용해하여 전해액을 제조하였다. N -butylphthalimide purchased from Sigma-Aldrich was dissolved in a propylene carbonate solution containing tetraethylboron tetrafluoroborate as much as possible to prepare an electrolytic solution.
비교예 1. (Comparative Example 1. ( NN -메틸프탈이미드를 포함하는 전해액)- an electrolyte solution containing methylphthalimide)
시그마알드리치 사에서 구입한 N-메틸프탈이미드를 테트라플루오르붕산화 테트라에틸암모늄이 포함된 프로필렌카보네이트 용액에 0.01 M 용해하여 전해액을 제조하였다.0.01 M of N -methylphthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetrafluoroborated tetraethyl ammonium to prepare an electrolytic solution.
비교예 2. (Comparative Example 2. ( NN -메틸프탈이미드의 용해도 실험)- Solubility test of methylphthalimide)
시그마알드리치 사에서 구입한 N-메틸프탈이미드를 테트라플루오르붕산화 테트라에틸암모늄이 포함된 프로필렌카보네이트 용액에 최대한 용해시켜 전해액을 제조하였다. N -methylphthalimide purchased from Sigma-Aldrich Co. was dissolved in a propylene carbonate solution containing tetra-fluoroborated tetramethylammonium fluoride as much as possible to prepare an electrolytic solution.
순환전압전류법(Cyclic Voltammetry)Cyclic Voltammetry
[전해액의 반응 전압 확인][Confirmation of Reaction Voltage of Electrolyte]
상기 실시예 1∼2에서 얻은 전해액을 사용하고, 전위 주사 속도를 300 mV s-1로 하여 실험을 진행하였다. 유기전해액에서의 정확한 전압 결정을 위하여 기준 전극(internal reference)으로 페로센을 사용하였고, 작동전극으로는 글래시 카본 전극을, 카운터전극으로는 백금을 사용하였다. 이들을 이용하여 전기화학 셀을 구성하여 순환전압전류법 실험을 진행하였다.Using an electrolytic solution obtained in Example 1-2, and a potential scan rate 300 mV s - it was carried out an experiment on a 1. Ferrocene was used as an internal reference for precise voltage determination in the organic electrolyte solution. A glacier carbon electrode was used as the working electrode and platinum was used as the counter electrode. The electrochemical cell was constructed using these materials and the cyclic voltammetry experiment was carried out.
[음극 활물질의 반응 전압 확인][Determination of Reaction Voltage of Negative Active Material]
실시예 1의 경우에는 각각의 산화 전압과 환원 전압이 -1.75 V, -1.87 V임을 확인하였고, 이 두 반응을 통하여 산화환원전압이 -1.81 V의 레독스 플로우 전지의 음극 활물질로 사용 가능함을 확인하였다. In the case of Example 1, it was confirmed that the oxidation voltage and the reduction voltage were -1.75 V and -1.87 V, respectively. Through these two reactions, it was confirmed that the redox voltage could be used as an anode active material of the redox flow cell having -1.81 V Respectively.
실시예 2의 경우에는 각각의 산화 전압과 환원 전압이 -1.83 V, -1.96 V임을 확인하였고, 이 두 반응을 통하여 산화환원전압이 -1.90 V의 레독스 플로우 전지의 음극 활물질로 사용 가능함을 확인하였다.In the case of Example 2, it was confirmed that the oxidation voltage and the reduction voltage were -1.83 V and -1.96 V, respectively. Through these two reactions, it was confirmed that the redox voltage could be used as an anode active material of a redox flow cell having a -1.90 V Respectively.
[재료의 수명 특성 확인][Determination of material life characteristics]
상기 실시예 1∼2에서 얻은 전해액을 사용하여 전위 주사 속도를 300 mV s-1로 하여 실험을 진행하였다. 유기전해액에서의 정확한 전압 결정을 위하여 기준 전극으로 페로센을 사용하였고, 작업전극으로는 글래시 카본 전극을, 카운터전극으로는 백금을 사용하였고, 이들을 이용하여 전기화학 셀을 구성하여 순환전압전류법 실험을 진행하였다.Experiments were conducted using the electrolytes obtained in Examples 1 and 2 at a potential scanning speed of 300 mV s -1 . Ferrocene was used as a reference electrode for accurate voltage determination in the organic electrolytic solution. A glacier carbon electrode was used as a working electrode and platinum was used as a counter electrode. An electrochemical cell was constructed using these electrodes, .
실험결과, 산화환원쌍이 산화환원을 각각 50회 반복적으로 반응이 진행되었음에도 불구하고, 실시예 1∼2의 전해액에서 반응전압의 변화 및 비가역반응으로 인한 전류값의 감소현상이 발견되지 않았다.As a result of the experiment, although the reaction was repeated 50 times each time the redox pair was oxidized and reduced, no decrease in the current value due to the change of the reaction voltage and the irreversible reaction was found in the electrolytes of Examples 1 and 2.
[전해액의 용해도 및 하프-웨이브 포텐셜을 이용한 전압 및 에너지밀도 비교][Comparison of voltage and energy density using electrolyte solubility and half-wave potential]
상기 실시예 1∼2와 비교예 1의 전해액의 최대 용해도 실험(실시예 3∼4 및 비교예 2) 결과와, 실시예 1∼2와 비교예 1의 전해액에 대해 확인한 E0와 유사한 값을 가진다고 가정할 수 있는 하프-웨이브 포텐셜을 표 1에 기재하였다. 이것과 비교예 1을 0.56 V(vs. Fc/Fc+)의 양극재와 조합한 셀의 구동전압과, 용해도를 통하여 에너지 밀도를 비교하였다. 에너지 밀도의 비교 결과는 하기 표 2에 나타내었다.The results of the maximum solubility experiments (Examples 3 to 4 and Comparative Example 2) of the electrolytes of Examples 1 to 2 and Comparative Example 1 and the values similar to E 0 for the electrolytes of Examples 1 to 2 and Comparative Example 1 The half-wave potential, which can be assumed to have, is shown in Table 1. The energy density was compared through the driving voltage and the solubility of the cell in which this and Comparative Example 1 were combined with a cathode material of 0.56 V ( vs. Fc / Fc + ). The comparison results of energy density are shown in Table 2 below.
용해도 / MSolubility / M 환원restoration
하프-웨이브 포텐셜/ V (vs. Fc/Fc+)Half-wave potential / V ( vs. Fc / Fc + )
실시예 1, 3Examples 1 and 3 1.31.3 -1.81-1.81
실시예 2, 4Examples 2 and 4 55 -1.90-1.90
비교예 1, 2Comparative Examples 1 and 2 0.50.5 1.081.08
표 1에 나타낸 바와 같이, 동일한 유기계 용매를 적용하여 제조한 전해액에서, 본 발명에 따른 작용기가 도입된 유기물의 반응 전압과 용해도가 변화하여 레독스 플로우 전지의 전해액으로 사용하였을 때, 더 높은 에너지 밀도를 가지는 전해액을 설계할 수 있음을 예측할 수 있다. 이러한 유기물의 경우에는 충분한 에너지 밀도를 구현하기 위하여 유기용매에서 용해도는 높을수록 유리하며, 0.2 M 이상의 용해도를 지니는 것이 바람직하며, 0.4 M 이상까지 용해도를 지니는 것이 더욱 바람직하다.As shown in Table 1, when the reaction voltage and the solubility of the organic substance into which the functional group is introduced according to the present invention were changed in the electrolyte prepared by applying the same organic solvent, when used as the electrolyte of the redox flow cell, Can be designed. In the case of such an organic material, the higher the solubility in the organic solvent is, the more advantageous it is to have a solubility of 0.2 M or more, and the solubility to 0.4 M or more is more preferable.
반응전압은 너무 음의 값을 지니게 되면 사용하는 용매가 환원 분해될 수 있기 때문에 페로센의 평형전위와의 차이가 -0.9 내지 -2.44 V (vs. Fc/Fc+)인 것이 바람직하다.It is preferable that the difference between the equilibrium potential of the ferrocene is -0.9 to -2.44 V ( vs. Fc / Fc + ) because the solvent used can be decomposed by reduction if the reaction voltage is too negative.
조합Combination 용해도 / M Solubility / M 1전자1 electron 에너지밀도 / W h L-1 Energy density / W h L -1
작동 전압 / VOperating Voltage / V
실시예 1, 3Examples 1 and 3 1.31.3 2.372.37 41.2941.29
실시예 2, 4Examples 2 and 4 55 2.462.46 164.83164.83
비교예 1, 2Comparative Examples 1 and 2 0.50.5 1.391.39 18.6218.62
표 2에서 나타낸 바와 같이, 실시예 1∼2의 유기물이 음극 활물질로서 포함된 음극재와 0.56 V (vs. Fc/Fc+)의 양극재와 조합하여 이루어진 셀과 같은 시스템 하에서 구동하는 비교예 1과 비교해보면, 본 발명에 따른 작용기를 도입한 유기물을 포함하는 실시예 1∼2의 경우, 비교예 1보다 용해도가 높고, 상당히 높은 에너지 밀도를 발현하는 효과를 나타냄을 알 수 있다.As shown in Table 2, in Comparative Example 1 (Comparative Example 1) in which the organic materials of Examples 1 and 2 were driven under the same system as a cell composed of an anode material containing anode active material and 0.56 V ( vs. Fc / Fc + ) cathode material It can be seen that Examples 1 and 2 containing an organic material having a functional group according to the present invention exhibit higher solubility and exhibit a significantly higher energy density than Comparative Example 1. [

Claims (17)

  1. 레독스 플로우 전지용 전해액에 있어서, 상기 전해액은 용매 및 용질을 포함하고, 상기 용질은 하기 화학식 1로 표시되는 프탈이미드계 화합물로부터 선택되는 1종 이상의 유기물을 포함하는 레독스 플로우 전지용 전해액:An electrolytic solution for a redox flow cell, wherein the electrolytic solution includes a solvent and a solute, and the solute includes at least one organic material selected from a phthalimide-based compound represented by the following formula (1)
    [화학식 1][Chemical Formula 1]
    Figure PCTKR2016001976-appb-I000003
    Figure PCTKR2016001976-appb-I000003
    (여기에서, R1은 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 터셔리 부틸기, 브로모 프로필기, CH2Ph, 벤질기, 부톡시카보닐메틸기, 카르복실메틸기 및 아미노카보닐메틸기로부터 선택되고, X는 H, F, Cl, Br 및 I로부터 선택된다.).(Wherein R 1 represents an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tertiary butyl group, a bromopropyl group, a CH 2 Ph, a benzyl group, a butoxycarbonylmethyl group, Aminocarbonylmethyl group, and X is selected from H, F, Cl, Br and I).
  2. 제1항에 있어서,The method according to claim 1,
    상기 용매는 수계 용매, 유기계 용매 또는 이들의 혼합물인 것을 특징으로 하는 레독스 플로우 전지용 전해액.Wherein the solvent is an aqueous solvent, an organic solvent, or a mixture thereof.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 수계 용매는 황산, 염산 및 인산으로부터 선택되는 1종 이상이고, 상기 유기계 용매는 아세토나이트릴, 디메틸카보네이트, 디에틸카보네이트, 디메틸술폭사이드, 디메틸포름아미드, 프로필렌카보네이트, 에틸렌카보네이트, N-메틸-2-피롤리돈, 플루오로에틸렌카보네이트, 감마부틸락톤, 테트라에틸렌글리콜 디메틸에테르, 에탄올 및 메탄올로부터 선택되는 1종 이상인 것을 특징으로 하는 레독스 플로우 전지용 전해액.The organic solvent is at least one selected from the group consisting of acetonitrile, dimethyl carbonate, diethyl carbonate, dimethyl sulfoxide, dimethylformamide, propylene carbonate, ethylene carbonate, N -methyl- Wherein the electrolytic solution is at least one selected from the group consisting of 2-pyrrolidone, fluoroethylene carbonate, gamma-butyllactone, tetraethylene glycol dimethyl ether, ethanol and methanol.
  4. 제1항에 있어서,The method according to claim 1,
    상기 전해액은 지지전해질을 더 포함하는 것을 특징으로 하는 레독스 플로우 전지용 전해액.Wherein the electrolytic solution further comprises a supporting electrolyte.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 지지전해질은 알킬암모늄염, 리튬염 및 소듐염으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 레독스 플로우 전지용 전해액.Wherein the supporting electrolyte is at least one selected from the group consisting of an alkylammonium salt, a lithium salt, and a sodium salt.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 알킬암모늄염은, PF6 -, BF4 -, AsF6 -, ClO4 -, CF3SO3 -, CF3SO3 -, C(SO2CF3)3 -, N(CF3SO2)2 - 및 CH(CF3SO2)2 -로부터 선택되는 하나의 음이온과, 테트라알킬암모늄 양이온에서 알킬이 메틸, 에틸, 부틸 또는 프로필인 암모늄 양이온의 조합으로 이루어지는 것을 특징으로 하는 레독스 플로우 전지용 전해액.The alkyl ammonium salt, PF 6 -, BF 4 - , AsF 6 -, ClO 4 -, CF 3 SO 3 -, CF 3 SO 3 -, C (SO 2 CF 3) 3 -, N (CF 3 SO 2) 2 - and CH (CF 3 SO 2 ) 2 - and an alkyl cation in the tetraalkylammonium cation in combination with an ammonium cation such as methyl, ethyl, butyl or propyl .
  7. 제5항에 있어서,6. The method of claim 5,
    상기 리튬염은, LiPF6, LiBF4, LiAsF6, LiClO4, LiCF3SO3, LiCF3SO3, LiC(SO2CF3)3, LiN(CF3SO2)2 및 LiCH(CF3SO2)2로부터 선택되는 1종 이상인 것을 특징으로 하는 레독스 플로우 전지용 전해액.The lithium salt, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiCF 3 SO 3, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (CF 3 SO 2) 2 , and LiCH (CF 3 SO 2 ) < 2 & gt ;. 2. The electrolytic solution for a redox flow battery according to claim 1,
  8. 제5항에 있어서,6. The method of claim 5,
    상기 소듐염은, NaPF6, NaBF4, NaAsF6, NaClO4, NaCF3SO3, NaCF3SO3, NaC(SO2CF3)3, NaN(CF3SO2)2 및 NaCH(CF3SO2)2로부터 선택되는 1종 이상인 것을 특징으로 하는 레독스 플로우 전지용 전해액.The sodium salt, NaPF 6, NaBF 4, NaAsF 6, NaClO 4, NaCF 3 SO 3, NaCF 3 SO 3, NaC (SO 2 CF 3) 3, NaN (CF 3 SO 2) 2 , and NaCH (CF 3 SO 2 ) < 2 & gt ;. 2. The electrolytic solution for a redox flow battery according to claim 1,
  9. 제1항에 있어서,The method according to claim 1,
    상기 전해액 중의 상기 유기물의 용해도는 0.1 M∼10 M인 것을 특징으로 하는 레독스 플로우 전지용 전해액. Wherein the solubility of the organic material in the electrolyte solution is 0.1 M to 10 M.
  10. 제1항에 있어서,The method according to claim 1,
    상기 유기물을 음극 활물질로 하여 용매에 용해한 음전해액과, 양극 활물질을 용매에 용해한 양전해액 간의 산화반응과 환원반응의 전압차이가 1.4 V 이상인 것을 특징으로 하는 레독스 플로우 전지용 전해액.Wherein the voltage difference between the oxidation reaction and the reduction reaction between the negative electrode active material dissolved in the solvent and the positive electrode active material dissolved in the solvent is not less than 1.4 V. 2. The electrolytic solution for a redox flow cell according to claim 1,
  11. 제1항에 있어서,The method according to claim 1,
    0.01 M의 농도를 가지는 상기 유기물을 포함하는 전해액을 300 mV s-1의 주사속도로 순환전류전압법으로 산화환원 반응을 확인하였을 때, 각각의 산화반응과 환원반응의 피크 전류 (Peak current)가 확인되는 전압의 차이(Epa-Epc)가 0.5 V 이하인 것을 특징으로 하는 레독스 플로우 전지용 전해액.0.01 M having a concentration of the redox reaction to determine when the electrolytic solution containing the organic matter in a circular current-voltage law to the scan rate 300 mV s -1, a (Peak current), each of the peak current of oxidation and reduction reactions Wherein the difference (E pa -E pc ) of the voltage to be verified is 0.5 V or less.
  12. 제1항에 있어서,The method according to claim 1,
    상기 유기물은 음극 활물질인 것을 특징으로 하는 레독스 플로우 전지용 전해액.Wherein the organic material is a negative electrode active material.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 레독스 플로우 전지용 전해액을 포함하는 레독스 플로우 전지.12. A redox flow battery comprising an electrolyte solution for a redox flow battery according to any one of claims 1 to 12.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 전지는 상기 유기물을 음극 활물질로서 용매에 용해한 음전해액과 양극 활물질을 용매에 용해한 양전해액을 포함하는 것을 특징으로 하는 레독스 플로우 전지.Wherein the battery comprises a negative electrode electrolyte in which the organic material is dissolved in a solvent as a negative electrode active material, and a positive electrode active material in which the positive electrode active material is dissolved in a solvent.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 양극 활물질은 금속-리간드 화합물 및 산화환원반응을 하는 유기화합물로부터 선택되는 1종 이상인 것을 특징으로 하는 레독스 플로우 전지.Wherein the cathode active material is at least one selected from a metal-ligand compound and an organic compound that performs a redox reaction.
  16. 제15항에 있어서,16. The method of claim 15,
    상기 금속-리간드 화합물을 포함하는 전해액을 양극으로 하고, 상기 유기물을 포함하는 전해액을 음극으로 하여 구성되는 것을 특징으로 하는 레독스 플로우 전지.Wherein the electrolyte solution containing the metal-ligand compound is used as a positive electrode, and the electrolyte solution containing the organic compound is used as a negative electrode.
  17. 제15항에 있어서,16. The method of claim 15,
    상기 산화환원반응을 하는 유기화합물을 포함하는 전해액을 양극으로 하고, 상기 유기물을 포함하는 전해액을 음극으로 하여 구성되는 것을 특징으로 하는 레독스 플로우 전지.Wherein an electrolyte solution containing the organic compound that performs the oxidation-reduction reaction is used as a positive electrode, and an electrolyte solution containing the organic compound is used as a negative electrode.
PCT/KR2016/001976 2015-11-19 2016-02-29 Electrolyte solution for redox flow battery, and redox flow battery containing same WO2017086546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0162341 2015-11-19
KR1020150162341A KR101763406B1 (en) 2015-11-19 2015-11-19 Electrolyte for redox flow battery and redox flow battery including the same

Publications (1)

Publication Number Publication Date
WO2017086546A1 true WO2017086546A1 (en) 2017-05-26

Family

ID=58719007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001976 WO2017086546A1 (en) 2015-11-19 2016-02-29 Electrolyte solution for redox flow battery, and redox flow battery containing same

Country Status (2)

Country Link
KR (1) KR101763406B1 (en)
WO (1) WO2017086546A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110088881A (en) * 2010-01-29 2011-08-04 삼성전자주식회사 Redox flow battery
KR20140044106A (en) * 2012-10-04 2014-04-14 삼성전자주식회사 Organic electrolyte solution and redox flow battery comprising the same
KR101465732B1 (en) * 2012-12-04 2014-12-01 한국에너지기술연구원 Electrolyte solution including all organic redox couples and redox flow battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110088881A (en) * 2010-01-29 2011-08-04 삼성전자주식회사 Redox flow battery
KR20140044106A (en) * 2012-10-04 2014-04-14 삼성전자주식회사 Organic electrolyte solution and redox flow battery comprising the same
KR101465732B1 (en) * 2012-12-04 2014-12-01 한국에너지기술연구원 Electrolyte solution including all organic redox couples and redox flow battery using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAM, CHANG HAN ET AL.: "The Preparation of Phthalimide and 4-hydroxy-tempo Derivatives as Organic Electrolyte: Application for Redox Flow Battery", 115TH GENERAL MEETING OF THE KOREAN CHEMICAL SOCIETY, 15 April 2015 (2015-04-15) *
KWAK, HYEON SU ET AL.: "The Convenient Preparation of Phthalimide Derivatives as High Energy Density Organic Electrolyte: Application for Redox Flow Battery", 116TH GENERAL MEETING OF THE KOREAN CHEMICAL SOCIETY, 14 October 2015 (2015-10-14) *

Also Published As

Publication number Publication date
KR20170059036A (en) 2017-05-30
KR101763406B1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
Beltrop et al. Does size really matter? New insights into the intercalation behavior of anions into a graphite-based positive electrode for dual-ion batteries
WO2015053588A1 (en) Electrolyte solution for redox flow battery and redox flow battery comprising same
Hagiwara et al. Ionic liquids for electrochemical devices
KR101465732B1 (en) Electrolyte solution including all organic redox couples and redox flow battery using the same
KR101686127B1 (en) Redox flow battery comprising all organic redox couple as an active material
JP2006210331A (en) Ionic conduction material showing good corrosion resistance
CN107293793A (en) Electrolyte and electrochemical cell
US11557788B2 (en) Preparation of ionic liquids based on boron clusters
WO2018016844A1 (en) Electrochemical conversion system for carbon dioxide
US20130273459A1 (en) Ionic Conductive Chromophores and Nonaqueous Redox Flow Batteries
EP3482441B1 (en) Non-aqueous redox flow batteries
KR102082368B1 (en) Electrolyte composition having high ion conductivity for Lithium-based redox flow battery
CN113036234A (en) Aqueous electrolyte and aqueous metal ion battery
JP2006190618A (en) Ionic liquid composition and electrochemical device containing same
Wang et al. Novel electrolytes for Li4Ti5O12-based high power lithium ion batteries with nitrile solvents
WO2017086546A1 (en) Electrolyte solution for redox flow battery, and redox flow battery containing same
Ito et al. Optimized synthesis of cyclic fluorinated sulfonylimide lithium salts to suppress aluminum corrosion in lithium-ion batteries
KR101874634B1 (en) Single redox couples for non-aqueous electrolytes and redox flow batteries comprising same
KR20170005926A (en) Electrolyte for redox flow battery and redox flow battery including the same
JP4023337B2 (en) Polymer, and electrolyte and electrochemical device using the same
KR101721589B1 (en) Electrolyte for redox flow battery and redox flow battery including the same
WO2018056732A2 (en) Organic positive electrode active material for aqueous redox flow battery
KR0182154B1 (en) Lithium secondary battery
US20170200978A1 (en) Electrochemical Cell, Electrolyte Suitable for the Filling Thereof, Production Method Thereof, and Method for the Operation Thereof
KR20210150075A (en) Electrolyte for redox flow battery, redox flow battery using the same and preparing method of active materials for redox flow battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866499

Country of ref document: EP

Kind code of ref document: A1