CN112133962A - Preparation method of lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte - Google Patents
Preparation method of lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte Download PDFInfo
- Publication number
- CN112133962A CN112133962A CN202011024512.3A CN202011024512A CN112133962A CN 112133962 A CN112133962 A CN 112133962A CN 202011024512 A CN202011024512 A CN 202011024512A CN 112133962 A CN112133962 A CN 112133962A
- Authority
- CN
- China
- Prior art keywords
- carbon quantum
- lithium
- glucose carbon
- glucose
- quantum dots
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- -1 lithium bistrifluoromethanesulfonimide-glucose carbon Chemical compound 0.000 title claims abstract description 33
- 239000002096 quantum dot Substances 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000007784 solid electrolyte Substances 0.000 title claims description 21
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 17
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000008103 glucose Substances 0.000 claims abstract description 16
- 239000003792 electrolyte Substances 0.000 claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 8
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims abstract description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 4
- 239000011259 mixed solution Substances 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 claims description 7
- HNCXPJFPCAYUGJ-UHFFFAOYSA-N dilithium bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].[Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F HNCXPJFPCAYUGJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000004108 freeze drying Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 abstract description 2
- 238000001027 hydrothermal synthesis Methods 0.000 abstract 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 abstract 1
- 238000001035 drying Methods 0.000 abstract 1
- 238000007710 freezing Methods 0.000 abstract 1
- 230000008014 freezing Effects 0.000 abstract 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 238000003756 stirring Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 1
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical group C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Primary Cells (AREA)
Abstract
本发明涉及一种双三氟甲基磺酰亚胺锂‑葡萄糖碳量子点固态电解质的制备方法,此种固态电解质包括高分子聚合物和双三氟甲基磺酰亚胺锂‑葡萄糖碳量子点,所述高分子聚合物选自聚氧乙烯或聚1,3‑二氧戊环中的一种,其中的双三氟甲基磺酰亚胺锂‑葡萄糖碳量子点的制备方法包括下列步骤:将双三氟甲基磺酰亚胺锂5~10份与葡萄糖10份溶解于水中,将混合溶液加入水热反应釜中;将水热反应釜置于马弗炉中,在200~400摄氏度条件下加热6~24小时,随后自然冷却得到双三氟甲基磺酰亚胺锂‑葡萄糖碳量子点水溶液;对双三氟甲基磺酰亚胺锂‑葡萄糖碳量子点水溶液进行冷冻干燥处理,得到干燥的双三氟甲基磺酰亚胺锂‑葡萄糖碳量子点。
The invention relates to a preparation method of a lithium bis-trifluoromethylsulfonimide-glucose carbon quantum dot solid-state electrolyte. The solid-state electrolyte comprises a high molecular polymer and a lithium bis-trifluoromethylsulfonimide-glucose carbon quantum dot. point, the macromolecular polymer is selected from a kind of in polyoxyethylene or poly-1,3-dioxolane, and the preparation method of the lithium-glucose carbon quantum dot of bis-trifluoromethanesulfonimide comprises the following Steps: dissolving 5-10 parts of lithium bistrifluoromethanesulfonimide and 10 parts of glucose in water, adding the mixed solution into the hydrothermal reaction kettle; placing the hydrothermal reaction kettle in a muffle furnace, and at 200- Heating at 400 degrees Celsius for 6 to 24 hours, followed by natural cooling to obtain an aqueous solution of lithium bistrifluoromethylsulfonimide-glucose carbon quantum dots; freezing the aqueous solution of lithium bistrifluoromethylsulfonimide-glucose carbon quantum dots After drying, dry bistrifluoromethanesulfonimide lithium-glucose carbon quantum dots are obtained.
Description
技术领域technical field
本发明涉及一种聚合物电解质及制备方法,特别涉及一种双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质的制备方法。The invention relates to a polymer electrolyte and a preparation method, in particular to a preparation method of a lithium bistrifluoromethylsulfonimide-glucose carbon quantum dot solid electrolyte.
背景技术Background technique
固态电解质因为其高安全性受到了人们广泛的关注。然而由于传统固态电解质的离子传导比较困难从而导致离子电导率过低,此外由于电化学反应中的极化导致锂离子迁移数过低,限制了固态电解质在电池中的应用。Solid-state electrolytes have received extensive attention due to their high safety. However, due to the difficulty of ion conduction in traditional solid electrolytes, the ionic conductivity is too low, and the lithium ion migration number is too low due to the polarization in the electrochemical reaction, which limits the application of solid electrolytes in batteries.
为了提高固态电解质的离子电导率和锂离子迁移数,本发明提出制备双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质,达到制备高锂离子迁移数和离子电导率固态电解质的目的。In order to improve the ionic conductivity and lithium ion migration number of the solid electrolyte, the present invention proposes to prepare a lithium bis-trifluoromethylsulfonimide-glucose carbon quantum dot solid electrolyte, so as to achieve a high lithium ion migration number and ion conductivity solid electrolyte. Purpose.
发明内容SUMMARY OF THE INVENTION
本发明旨在通过提供一种双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质的制备方法,可有效地提高固态电解质的离子电导率和锂离子迁移率。本发明通过以下方案实现:The present invention aims to effectively improve the ionic conductivity and lithium ion mobility of the solid electrolyte by providing a preparation method of a lithium bistrifluoromethylsulfonimide-glucose carbon quantum dot solid electrolyte. The present invention is realized by the following scheme:
一种双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质的制备方法,此种固态电解质包括高分子聚合物和双三氟甲基磺酰亚胺锂-葡萄糖碳量子点,所述高分子聚合物选自聚氧乙烯或聚1,3-二氧戊环中的一种,其中的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点的制备方法包括下列步骤:A preparation method of a lithium bis-trifluoromethylsulfonimide-glucose carbon quantum dot solid-state electrolyte, the solid electrolyte comprises a high molecular polymer and a lithium bis-trifluoromethylsulfonimide-glucose carbon quantum dot. Described macromolecular polymer is selected from a kind of in polyoxyethylene or poly-1,3-dioxolane, wherein the preparation method of lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dots comprises the following steps:
1)将双三氟甲基磺酰亚胺锂5~10份与葡萄糖(10份)溶解于水中,将混合溶液加入水热反应釜中;1) Dissolve 5-10 parts of lithium bis-trifluoromethanesulfonimide and glucose (10 parts) in water, and add the mixed solution into the hydrothermal reactor;
2)将水热反应釜置于马弗炉中,在200~400摄氏度条件下加热6~24小时,随后自然冷却得到双三氟甲基磺酰亚胺锂-葡萄糖碳量子点水溶液;2) placing the hydrothermal reactor in a muffle furnace, heating at 200 to 400 degrees Celsius for 6 to 24 hours, and then naturally cooling to obtain an aqueous solution of lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dots;
3)对双三氟甲基磺酰亚胺锂-葡萄糖碳量子点水溶液进行冷冻干燥处理,得到干燥的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点。3) Freeze-drying the aqueous solution of lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dots to obtain dry lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dots.
优选地,双三氟甲基磺酰亚胺锂-葡萄糖碳量子点与高分子聚合物的质量比为(3-6):10。Preferably, the mass ratio of the lithium bistrifluoromethanesulfonimide-glucose carbon quantum dots to the high molecular polymer is (3-6):10.
将已经制备的碳量子点粉末(3~6份)与高分子聚合物粉末(10份)溶于有机溶液,加热搅拌至少12小时后浇注于模具中,经真空干燥(温度为30~100摄氏度)得到双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质。Dissolve the prepared carbon quantum dot powder (3-6 parts) and high molecular polymer powder (10 parts) in an organic solution, heat and stir for at least 12 hours, pour it into a mold, and dry it in a vacuum (temperature is 30-100 degrees Celsius). ) to obtain a lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid-state electrolyte.
本发明方便易行,通过这种方法制备出双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质,制备出的碳量子点有效地保留了双三氟甲基磺酰亚胺锂结构,同时构造出葡萄糖碳化后的碳量子点骨架结构。所制备的碳量子点兼具磺酰亚胺基对电子的高离域以及碳量子点的大尺寸特性。在电化学反应过程中,锂离子能较好地解离,同时碳量子点阴离子由于尺寸效应难以移动。从而获得兼具高离子电导率和锂离子迁移数性能的固态电解质。The invention is convenient and feasible, and the lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dot solid-state electrolyte is prepared by this method, and the prepared carbon quantum dots effectively retain the lithium bis-trifluoromethanesulfonimide At the same time, the carbon quantum dot skeleton structure after carbonization of glucose was constructed. The prepared carbon quantum dots have both the high delocalization of the sulfonimide group for electrons and the large size of carbon quantum dots. During the electrochemical reaction, the lithium ions can be dissociated well, while the anions of the carbon quantum dots are difficult to move due to the size effect. Thus, a solid electrolyte with both high ionic conductivity and lithium ion mobility number properties is obtained.
附图说明Description of drawings
图1为双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质与双三氟甲基磺酰亚胺锂固态电解质随温度变化的离子电导率。Figure 1 shows the ionic conductivity of the lithium bis-trifluoromethylsulfonimide-glucose carbon quantum dot solid electrolyte and the lithium bis-trifluoromethylsulfonimide solid electrolyte as a function of temperature.
图2为采用双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质制备的锂/锂对称电池的极化曲线。Figure 2 is a polarization curve of a lithium/lithium symmetric battery prepared using a lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid-state electrolyte.
图3为采用双三氟甲基磺酰亚胺锂固态电解质制备的锂/锂对称电池的极化曲线。Figure 3 is a polarization curve of a lithium/lithium symmetric battery prepared using a lithium bis-trifluoromethanesulfonimide solid electrolyte.
具体实施方式Detailed ways
制备双三氟甲基磺酰亚胺锂-葡萄糖碳量子点Preparation of Lithium Bistrifluoromethanesulfonimide-Glucose Carbon Quantum Dots
1)将双三氟甲基磺酰亚胺锂1g与葡萄糖1g分别加入烧杯中,并加入去20ml离子水进行溶解,随后将混合溶液加入水热反应釜;1) 1 g of lithium bis-trifluoromethanesulfonimide and 1 g of glucose are respectively added to the beaker, and 20 ml of ionized water are added to dissolve, and then the mixed solution is added to the hydrothermal reactor;
2)然后水热反应釜置于马弗炉中,在200摄氏度条件下加热12小时,随后自然冷却得到双三氟甲基磺酰亚胺锂-葡萄糖碳量子点水溶液。2) Then the hydrothermal reactor was placed in a muffle furnace, heated at 200 degrees Celsius for 12 hours, and then naturally cooled to obtain an aqueous solution of lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dots.
3)然后将双三氟甲基磺酰亚胺锂-葡萄糖碳量子点水溶液置于冷冻干燥箱中,冷冻至零下60摄氏度保持6小时,随后抽真空保持5Pa,随后关闭压缩机缓慢解冻使水升华得到干燥的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点。3) Then place the aqueous solution of lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dots in a freeze-drying box, freeze to minus 60 degrees Celsius for 6 hours, then vacuum to maintain 5Pa, and then turn off the compressor to slowly thaw the water. Sublimation yields dry lithium bistrifluoromethanesulfonimide-glucose carbon quantum dots.
实施例1Example 1
1)将制备完成的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点粉末20mg与聚氧乙烯80mg加入研钵中研磨;1) Add 20 mg of prepared lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot powder and 80 mg of polyoxyethylene into a mortar and grind;
2)然后将研磨后的混合粉末溶于乙腈10mL,搅拌6小时后浇注于模具中,经真空干燥(温度为50摄氏度)得到厚度为60μm的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质薄膜。2) Then the mixed powder after grinding was dissolved in 10 mL of acetonitrile, poured into a mold after stirring for 6 hours, and vacuum-dried (at a temperature of 50 degrees Celsius) to obtain lithium bistrifluoromethanesulfonimide-glucose carbon with a thickness of 60 μm Quantum dot solid-state electrolyte films.
经测试该双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质在25℃时离子电导率为4.32×10-4S/cm(图1),锂离子迁移率高达0.65(图2)。The ionic conductivity of the lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dot solid-state electrolyte was tested at 25°C to be 4.32×10 -4 S/cm (Fig. 1), and the lithium ion mobility was as high as 0.65 (Fig. 2). ).
实施例2Example 2
1)将制备完成的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点粉末20mg与聚1,3-二氧戊环80mg加入研钵中研磨;1) Add 20 mg of the prepared lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot powder and 80 mg of poly-1,3-dioxolane into a mortar and grind;
2)然后将研磨后的混合粉末溶于乙腈10mL,搅拌6小时后浇注于模具中,经真空干燥(温度为50摄氏度)得到厚度为60μm的双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质薄膜。2) Then the mixed powder after grinding was dissolved in 10 mL of acetonitrile, poured into a mold after stirring for 6 hours, and vacuum-dried (at a temperature of 50 degrees Celsius) to obtain a lithium bistrifluoromethanesulfonimide-glucose carbon with a thickness of 60 μm Quantum dot solid-state electrolyte films.
经测试该双三氟甲基磺酰亚胺锂-葡萄糖碳量子点固态电解质在25℃时离子电导率为3.29×10-5S/cm(图1),锂离子迁移率高达0.61。The ionic conductivity of the lithium bis-trifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte was tested at 25°C, and the ionic conductivity was 3.29×10 -5 S/cm (Fig. 1), and the lithium ion mobility was as high as 0.61.
对比例Comparative ratio
1)将双三氟甲基磺酰亚胺锂粉末20mg与聚1,3-二氧戊环80mg加入研钵中研磨;1) Add 20 mg of lithium bistrifluoromethanesulfonimide powder and 80 mg of poly-1,3-dioxolane into a mortar and grind;
2)然后将研磨后的混合粉末溶于乙腈10mL,搅拌6小时后浇注于模具中,经真空干燥(温度为50摄氏度)得到厚度为60μm的双三氟甲基磺酰亚胺锂固态电解质薄膜。2) Then the mixed powder after grinding was dissolved in 10 mL of acetonitrile, poured into a mold after stirring for 6 hours, and vacuum-dried (at a temperature of 50 degrees Celsius) to obtain a lithium bis-trifluoromethanesulfonimide solid electrolyte film with a thickness of 60 μm. .
经测试该双三氟甲基磺酰亚胺锂固态电解质薄膜在25℃时离子电导率为1.56×10-5S/cm(图1),锂离子迁移率为0.31(图3)。After testing, the ionic conductivity of the lithium bistrifluoromethylsulfonimide solid electrolyte film at 25°C was 1.56×10 -5 S/cm (Fig. 1), and the lithium ion mobility was 0.31 (Fig. 3).
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011024512.3A CN112133962A (en) | 2020-09-25 | 2020-09-25 | Preparation method of lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011024512.3A CN112133962A (en) | 2020-09-25 | 2020-09-25 | Preparation method of lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112133962A true CN112133962A (en) | 2020-12-25 |
Family
ID=73839519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011024512.3A Pending CN112133962A (en) | 2020-09-25 | 2020-09-25 | Preparation method of lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112133962A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112909333A (en) * | 2021-01-19 | 2021-06-04 | 中北大学 | Boron-containing carbon quantum dot nano composite solid electrolyte and preparation method thereof |
CN114430062A (en) * | 2022-01-24 | 2022-05-03 | 中南大学 | Composite electrolyte based on lithiation carbon point modification and preparation method and application thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106129469A (en) * | 2016-09-08 | 2016-11-16 | 中南大学 | A kind of composite solid polymer electrolyte and preparation method |
WO2018217044A1 (en) * | 2017-05-24 | 2018-11-29 | 신익수 | Electrochemical device comprising carbon quantum dot ionic compound electrolyte |
CN109096433A (en) * | 2017-06-20 | 2018-12-28 | 天津大学 | Single ion conductor polymer lithium salts and preparation method thereof |
CN109437155A (en) * | 2018-12-14 | 2019-03-08 | 青岛大学 | A kind of method and products thereof of carbon quantum dot and Nano carbon balls preparation simultaneously |
CN109486482A (en) * | 2017-09-11 | 2019-03-19 | 天津大学 | It is fluorinated carbon quantum dot, shine super-hydrophobic film and its preparation method and application |
CN109742444A (en) * | 2019-01-10 | 2019-05-10 | 天津大学 | Polymer solid electrolyte, its preparation method and preparation method of lithiated carbon dots |
CN110518285A (en) * | 2019-07-22 | 2019-11-29 | 中南大学 | Modified carbon quantum dot of a kind of ammonia and preparation method thereof and the application in lithium-sulfur cell electrolyte |
CN111261936A (en) * | 2018-11-30 | 2020-06-09 | 宁波晶牧太阳能科技有限公司 | Composite electrolyte and preparation method thereof |
-
2020
- 2020-09-25 CN CN202011024512.3A patent/CN112133962A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106129469A (en) * | 2016-09-08 | 2016-11-16 | 中南大学 | A kind of composite solid polymer electrolyte and preparation method |
WO2018217044A1 (en) * | 2017-05-24 | 2018-11-29 | 신익수 | Electrochemical device comprising carbon quantum dot ionic compound electrolyte |
CN109096433A (en) * | 2017-06-20 | 2018-12-28 | 天津大学 | Single ion conductor polymer lithium salts and preparation method thereof |
CN109486482A (en) * | 2017-09-11 | 2019-03-19 | 天津大学 | It is fluorinated carbon quantum dot, shine super-hydrophobic film and its preparation method and application |
CN111261936A (en) * | 2018-11-30 | 2020-06-09 | 宁波晶牧太阳能科技有限公司 | Composite electrolyte and preparation method thereof |
CN109437155A (en) * | 2018-12-14 | 2019-03-08 | 青岛大学 | A kind of method and products thereof of carbon quantum dot and Nano carbon balls preparation simultaneously |
CN109742444A (en) * | 2019-01-10 | 2019-05-10 | 天津大学 | Polymer solid electrolyte, its preparation method and preparation method of lithiated carbon dots |
CN110518285A (en) * | 2019-07-22 | 2019-11-29 | 中南大学 | Modified carbon quantum dot of a kind of ammonia and preparation method thereof and the application in lithium-sulfur cell electrolyte |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112909333A (en) * | 2021-01-19 | 2021-06-04 | 中北大学 | Boron-containing carbon quantum dot nano composite solid electrolyte and preparation method thereof |
CN112909333B (en) * | 2021-01-19 | 2022-08-23 | 中北大学 | Boron-containing carbon quantum dot nano composite solid electrolyte and preparation method thereof |
CN114430062A (en) * | 2022-01-24 | 2022-05-03 | 中南大学 | Composite electrolyte based on lithiation carbon point modification and preparation method and application thereof |
CN114430062B (en) * | 2022-01-24 | 2023-10-10 | 中南大学 | Composite electrolyte based on lithiated carbon point modification and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104409702B (en) | A kind of nitrogen-doped graphene wraps up the preparation method of micron silicon composite | |
CN107644985B (en) | A kind of NiCl2-GICs composite cathode material for thermal battery and preparation method thereof | |
WO2024000885A1 (en) | Preparation method for sodium ion battery porous hard carbon material, and product and use thereof | |
Shin et al. | Structural composite hydrogel electrolytes for flexible and durable Zn metal batteries | |
CN112133962A (en) | Preparation method of lithium bistrifluoromethanesulfonimide-glucose carbon quantum dot solid electrolyte | |
CN105870430A (en) | Method for preparing three-dimensional graphene-phosphotungstate | |
CN108400294B (en) | A kind of preparation method of multi-level structure silicon negative electrode for lithium ion battery | |
CN110048170A (en) | A kind of preparation method of all solid lithium sulphur button cell | |
CN113247902B (en) | Preparation method and application of ionic liquid derived carbon crosslinked MXene three-dimensional network material | |
CN104953101A (en) | Method for manufacturing thermal-treated graphene aerogel-loading tin dioxide electrode material | |
CN111525187B (en) | Sulfonated polyvinyl alcohol solid polymer electrolyte membrane for lithium battery and preparation method thereof | |
CN109755542A (en) | A kind of positive electrode of sodium-sulfur cell material and preparation method thereof | |
CN109411737B (en) | A polar sulfide-sulfur/porous carbon composite cathode material with three-dimensional structure and preparation method thereof | |
CN109119613B (en) | Method for synthesizing cathode material for lithium-sulfur battery using waste fly ash as raw material | |
CN114242955A (en) | High-efficiency siloxene negative electrode material prepared by rapid chemical prelithiation and application thereof | |
CN112018439A (en) | Preparation and application of solid electrolyte based on polyvinyl benzene sulfonic acid lithium-citric acid carbon dots | |
CN107425186A (en) | A kind of lithium ion battery negative material | |
CN117049505A (en) | Preparation method of hard carbon negative electrode material, hard carbon negative electrode material and sodium ion battery | |
CN111755735A (en) | A kind of porous organic compound electrolyte and its preparation method and application | |
CN115490238A (en) | A kind of SiO2 airgel/carbon composite porous powder material and preparation method thereof | |
CN110767902A (en) | A kind of preparation method of SnSe/graphene-coated cotton carbon fiber self-supporting material | |
CN108134085B (en) | Graphite lithium ion battery cathode material with multilayer graphene on surface and preparation method thereof | |
CN117174989B (en) | High-conductivity composite solid electrolyte with continuous interface and preparation method and application thereof | |
Zhang et al. | Design and Fabrication of PEO‐HPMC@ Ht Composite Solid‐state Electrolytes in All‐solid‐state Lithium Battery | |
CN112909333A (en) | Boron-containing carbon quantum dot nano composite solid electrolyte and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201225 |