WO2018038479A1 - Electrode for secondary battery comprising fine holes - Google Patents

Electrode for secondary battery comprising fine holes Download PDF

Info

Publication number
WO2018038479A1
WO2018038479A1 PCT/KR2017/009079 KR2017009079W WO2018038479A1 WO 2018038479 A1 WO2018038479 A1 WO 2018038479A1 KR 2017009079 W KR2017009079 W KR 2017009079W WO 2018038479 A1 WO2018038479 A1 WO 2018038479A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
mixture layer
electrode mixture
fine holes
secondary battery
Prior art date
Application number
PCT/KR2017/009079
Other languages
French (fr)
Korean (ko)
Inventor
이솔닢
이혁무
오송택
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170101381A external-priority patent/KR102054326B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780004280.5A priority Critical patent/CN108292737B/en
Priority to EP17843899.0A priority patent/EP3370280B1/en
Priority to US15/772,755 priority patent/US10818929B2/en
Publication of WO2018038479A1 publication Critical patent/WO2018038479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery electrode containing fine holes.
  • lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries is high.
  • the electrode assembly constituting the secondary battery has a structure in which a positive electrode and a negative electrode are manufactured by forming an electrode mixture layer including an electrode active material on one or both surfaces of the electrode assembly, and a separator is interposed between the positive electrode and the negative electrode. Is formed.
  • the capacity of such an electrode assembly may be maximized by increasing the loading amount of the electrode mixture layer on the current collector.
  • the electrode having a very high loading amount of the electrode mixture layer has an excessively thick thickness of the electrode mixture layer, so that electrolyte diffusion does not easily occur in the depth direction of the electrode mixture layer, and the electrode loading layer has a lower loading amount than the electrode. , Li-plating phenomenon in which lithium is precipitated at low SOC occurs frequently.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • a plurality of fine particles consisting of a horn shape in which the electrode mixture layer is sequentially reduced in diameter from the vertical cross-sectional surface toward the current collector
  • the electrolyte can be more easily diffused through the fine holes in the depth direction of the electrode mixture layer, and thus, despite the high loading amount of the electrode mixture layer, lithium-plating phenomenon
  • the fine holes include protrusions corresponding to the fine holes Since it is formed by a mold or a roller to be formed, compared to the conventional form of a pattern structure using a laser, The present invention has been completed to prevent a decrease in capacity and to eliminate or significantly reduce a defective rate of a product caused by particles separated from the electrode mixture layer by the laser.
  • An electrode mixture layer containing an electrode active material is formed on one or both surfaces of the current collector;
  • the electrode mixture layer includes a plurality of fine holes indented toward the current collector from the vertical cross-sectional surface
  • Each of the fine holes may have a horn-shaped structure in which the diameter decreases gradually from the surface in the vertical section toward the current collector.
  • the electrolyte can be more easily diffused in the depth direction of the electrode mixture layer, thereby preventing the occurrence of lithium-plating phenomenon, despite the high loading amount of the electrode mixture layer, Deterioration of the electrical performance of the electrode can be prevented, and during the charging and discharging process, the lithium ions can be smoothly moved, thereby improving the quick charging performance.
  • the fine holes may be a structure formed in the electrode mixture layer having a loading amount of 3.5 to 5.5 mAh / cm 2 and porosity of 25% to 35%.
  • the loading amount and porosity range of the electrode mixture layer is a range capable of exhibiting a desired high capacity of the secondary battery including the electrode, and the electrode for secondary batteries according to the present invention has an electrode mixture layer to have the loading amount and porosity range.
  • the electrolyte can be more easily diffused in the depth direction of the electrode mixture layer, whereby a desired effect can be obtained.
  • the electrode When the loading amount of the electrode mixture layer is out of the range, is too small, or the porosity is out of the range, is too large, the capacity of the secondary battery including the electrode cannot be improved, on the contrary, the electrode When the loading amount of the mixture layer is out of the range, is too large, or the porosity is out of the range, and is too small, easy diffusion of the electrolyte may be difficult even though the plurality of fine holes are formed in the electrode mixture layer. .
  • the depth of the fine hole may be 80% to 90% of the depth of the electrode mixture layer corresponding to the depth formed from the surface portion in the vertical section toward the current collector.
  • the depth of the fine holes is less than 80% of the thickness of the corresponding electrode mixture layer, the depth of the fine holes is too low, so that the electrolyte cannot be easily diffused in the depth direction of the electrode mixture layer. It may not work.
  • a mold or a roller for forming a fine hole including a corresponding protrusion may be formed to form the fine holes.
  • an excessively high pressure may be applied to the electrode mixture layer portion located in the current collector direction end portion of the micro-holes, which causes the portion to be rolled to lower the porosity of the electrode mixture layer. Rather, there is a problem that the diffusion of the electrolyte can be reduced.
  • the fine holes are made to be indented into a horn shape whose diameter gradually decreases toward the current collector from the vertical cross-sectional surface, if the desired effect can be achieved, the planar structure is not significantly limited, in detail
  • the micro holes may be triangular, square, pentagonal, hexagonal, circular, semicircular, or elliptical in planar shape on the surface of the electrode mixture layer, and more specifically, uniform diffusion of an electrolyte and the process of forming the fine holes. Considering the uniform transmission of the pressure applied in the, it may be circular.
  • the fine holes may have an average diameter of 100 micrometers to 200 micrometers in the surface portion on the vertical cross section, and an average diameter of 20 micrometers to 50 micrometers in the inner end portion.
  • the average diameter of the micro holes in the surface portion on the vertical cross section is less than 100 micrometers, the diameter of the micro holes in the surface portion where the electrolyte starts to flow is too small, so that diffusion of the electrolyte through the micro holes may not be easy.
  • the average diameter of the fine holes in the surface portion on the vertical cross section exceeds 200 micrometers, the diameter of the fine holes in the surface portion is too large, rather, the capacity of the electrode may be lowered.
  • the projections of the mold or the roller for forming the fine holes in the electrode mixture layer become too thin, so that the fine holes are formed by pressing against the electrode mixture layer.
  • the average diameter at the inner end portion exceeds 50 micrometers, on the contrary, the protruding end of the metal mold or the roller for forming the micro holes is too large, and the electrode In the process of forming the fine holes by pressing against the mixture layer, the inner end portion may be rolled, and as a result, the porosity decreases at the inner end portion of the fine hole of the electrode mixture layer, rather the electrolyte diffusion decreases. Can be.
  • the inner end portion of the micro-holes may be formed in a circular arc shape in the vertical cross-section, so that the diameter of the inner end portion, in the end portion formed of the circular arc shape, the side edges of the fine holes made of a linear shape and the circular arc It means the diameter in the site where the end portion formed in the shape abuts.
  • the inner end portion of the fine hole has a needle-like structure, since the protrusion end of the micro-hole forming die or roller corresponding thereto must also have a very thin needle-like structure, in the pressing process by the mold or roller, As the protrusions are deformed, the minute holes may not be easily formed in the electrode mixture layer.
  • the plurality of fine holes may have a regular arrangement in planar shape at the surface portion of the electrode mixture layer.
  • the electrolyte solution can be more uniformly diffused to all parts of the electrode mixture layer, and the performance degradation due to the local diffusion difference of the electrolyte solution can be prevented.
  • the fine hole may have a structure having a shape in which the diameter decreases continuously or discontinuously from the vertical cross section surface toward the current collector.
  • the micro holes may have a shape having a shape of continuously decreasing diameter so that the micro holes may be more easily formed.
  • a predetermined pattern is formed on the electrode mixture layer while detaching a part of the electrode mixture layer using a laser so as to solve the problem of lowering of electrolyte diffusion of a conventional electrode having a high loading amount of the electrode mixture layer.
  • FIG. 1 schematically illustrates a vertical cross-sectional structure of an electrode in which patterned fine holes are formed in an electrode mixture layer using a conventional laser
  • FIG. 2 illustrates an enlarged structure of part “A” of FIG. 1. A schematic partial enlarged view is shown.
  • an electrode mixture layer 120 is formed on an upper surface of the current collector 110.
  • the plurality of fine holes 130 are formed in the electrode mixture layer 120 to form a predetermined pattern.
  • the diameter R1 is formed in a substantially uniform structure toward the current collector 110 from the surface of the electrode mixture layer 120 on a vertical cross section. have.
  • the fine holes 130 are in contact with the upper surface of the current collector (110).
  • the depth D1 is formed to be equal to the thickness T1 of the electrode mixture layer 120.
  • the present invention provides a device for manufacturing the secondary battery electrode to solve this problem
  • the device includes a mold for forming a fine hole;
  • the micro holes are formed in the mold for forming fine holes such that when one surface is pressed in a state facing the surface of the electrode mixture layer, horn-shaped fine holes indented toward the current collector from the surface portion of the electrode mixture layer may be formed.
  • Horn-shaped protrusions corresponding to the structure may protrude on one surface.
  • the apparatus includes a roller for forming fine holes;
  • the fine hole forming rollers may be formed such that when the outer surface is pressed against the surface of the electrode mixture layer in a rotational manner, horn-shaped fine holes indented toward the current collector from the surface of the electrode mixture layer may be formed. Horn-shaped protrusions corresponding to the structure may protrude to the outer surface.
  • the electrode manufacturing apparatus for a secondary battery according to the present invention may have a structure in which protrusions protruding from the mold or the roller press the electrode mixture layer to form fine holes.
  • the horn-shaped protrusions have an average diameter of 100 micrometers to 200 micrometers at an end portion having a relatively large diameter in a vertical cross section, and an average diameter of 20 micrometers at an end portion having a relatively small diameter. To 50 micrometers.
  • the electrolyte solution is easily impregnated in the depth direction of the electrode mixture layer, while preventing a decrease in capacity, the electrode at the inner end portion of the fine holes The phenomenon that a mixture layer rolls can be prevented easily.
  • the present invention also provides a method for manufacturing the secondary battery electrode, the method is
  • the fine holes of the electrode mixture layer may be formed by pressing the metal mold or roller for forming the hole.
  • the electrode mixture layer formed in the process b) may be a structure having a loading amount of 3.5 to 5.5 mAh / cm 2 and porosity of 25% to 35%.
  • the fine holes may prevent the lowering of the capacity of the electrode mixture layer while exhibiting an excellent effect of diffusion of the electrolyte solution in a structure in which the loading amount of the electrode mixture layer is high so as to maximize the capacity of the electrode.
  • the mold or roller may have a structure including minute hole forming protrusions formed in a shape corresponding to the horn-shaped fine holes at a portion facing the surface of the dried and rolled electrode mixture layer.
  • the fine holes of the electrode mixture layer may be formed by the metal hole forming protrusions formed in the metal mold or the roller, when the pressure is applied to the surface of the electrode mixture layer by a mold or roller, accordingly Unlike the conventional method of detaching some electrode mixture layers using a laser, a decrease in electrode capacity can be prevented, and a reduction in product defect rate and an increase in manufacturing cost that can occur due to scattering electrode mixture layer particles can be suppressed.
  • each of the horn-shaped projections by adjusting the particle diameter of the fine holes formed by the projections in the above range, while easily impregnating the electrolyte in the depth direction of the electrode mixture layer, while preventing a decrease in capacity
  • the diameter of each portion may be adjusted to a specific range, and in detail, each of the horn-shaped protrusions may have a relatively large vertical cross section. It may have a structure in which the average diameter at the end portion having the diameter is 100 micrometers to 200 micrometers, and the average diameter at the end portion having the relatively small diameter is 20 micrometers to 50 micrometers.
  • the electrode for secondary batteries according to the present invention is configured such that the electrode mixture layer includes a plurality of fine holes formed in a horn shape, the diameter of which gradually decreases from the surface in the vertical section toward the current collector.
  • the electrode mixture layer includes a plurality of fine holes formed in a horn shape, the diameter of which gradually decreases from the surface in the vertical section toward the current collector.
  • the electrolyte can be more easily diffused in the depth direction of the electrode mixture layer, thereby preventing the occurrence of lithium-plating phenomenon, despite the high loading amount of the electrode mixture layer, It is possible to prevent the electrical performance deterioration, in the process of charging and discharging, the smooth movement of lithium ions can be improved, the rapid charging performance can be improved, the fine holes are formed by a mold or a roller including protrusions corresponding to the fine holes Therefore, as compared with the conventional method of forming a pattern structure by using a laser, it is possible to prevent a decrease in capacitance of the electrode and There is an effect that can eliminate
  • FIG. 1 is a schematic diagram schematically showing a vertical cross-sectional structure of an electrode in which fine holes having a pattern shape are formed in an electrode mixture layer using a conventional laser;
  • FIG. 2 is a partially enlarged view schematically showing an enlarged structure of a portion “A” of FIG. 1;
  • FIG. 3 is a schematic diagram schematically showing a vertical cross-sectional structure of a secondary battery electrode according to an embodiment of the present invention
  • FIG. 4 is a partially enlarged view schematically showing an enlarged structure of part “B” of FIG. 3;
  • FIG. 5 is a partially enlarged view schematically showing an enlarged structure of a portion “C” of FIG. 4;
  • 6 and 7 are schematic diagrams illustrating a process of forming fine holes in the electrode mixture layer using the electrode manufacturing apparatus for a secondary battery according to another embodiment of the present invention.
  • Example 8 is a graph showing the negative electrode profile for the battery of Example 1 and Comparative Example.
  • FIG. 3 is a schematic diagram schematically showing a vertical cross-sectional structure of a secondary battery electrode according to one embodiment of the present invention
  • FIG. 4 is a partially enlarged view schematically showing an enlarged structure of part “B” of FIG. 3.
  • 5 is a partially enlarged view schematically showing an enlarged structure of a portion “C” of FIG. 3.
  • an electrode mixture layer 320 is formed on an upper surface of the current collector 310.
  • a plurality of fine holes 330 is formed in a structure having a regular arrangement.
  • the fine holes 330 are indented toward the current collector 310 from the vertical cross-sectional surface, and have a horn shape in which diameters R2 and R3 continuously decrease toward the current collector 310.
  • the fine hole 330 is formed such that the depth D2 formed from the surface portion toward the current collector 310 has a size of about 90% of the thickness T2 of the electrode mixture layer 320 corresponding thereto.
  • the fine holes 330 may have an average diameter R2 at the surface portion of 100 micrometers to 200 micrometers, and the average diameter R3 at the inner end portion 332 may be 20 micrometers to 50 micrometers. Can be done.
  • the fine hole 330 has a circular arc shape in which the inner end portion 332 is rounded in a vertical cross section, so that the average diameter R3 of the inner end portion 332 is formed in a straight shape. It means the average diameter R3 in the site
  • FIG. 6 and 7 schematically show a process of forming fine holes in the electrode mixture layer using the electrode manufacturing apparatus for a secondary battery according to another embodiment of the present invention.
  • an electrode manufacturing apparatus for a secondary battery includes a metal hole forming mold 640.
  • the horn-shaped protrusions 641 corresponding to the fine holes 630 protrude from one surface facing the surface of the electrode mixture layer 620.
  • the one surface of the fine hole forming mold 640 is pressed in a state facing the surface of the electrode mixture layer 620, so that the shape of the horn is indented from the surface portion of the electrode mixture layer 620 toward the current collector 610.
  • Fine holes 630 may be easily formed.
  • the fine hole forming mold 640 is separated from the electrode mixture layer 620.
  • an electrode manufacturing apparatus for a secondary battery includes a roller 740 for forming a fine hole.
  • the horn-shaped protrusions 741 corresponding to the fine holes 730 protrude from the outer surface facing the surface of the electrode mixture layer 720.
  • the outer surface of the fine hole forming roller 740 is rotated and pressed in a state facing the surface of the electrode mixture layer 720, the horn-shaped fine holes indented toward the current collector from the surface portion of the electrode mixture layer 720 730 can be easily formed.
  • the fine hole forming roller 740 is separated from the electrode mixture layer 720.
  • the pressure is applied while the mold for forming the micro holes having the horn-shaped protrusions is formed to face the surface of the negative electrode mixture layer, thereby forming a plurality of fine holes in the horn shape in the negative electrode mixture layer. Formed. At this time, the diameter of the microholes was 200 micrometers at the surface portion and 35 micrometers at the inner end portion.
  • Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 is used as a positive electrode active material, and is mixed with carbon black and PVDF in distilled water at 96: 2: 2 to prepare a positive electrode slurry. It was. The positive electrode slurry was coated on aluminum foil to form a thin electrode plate, dried at 135 or more for 3 hours, and rolled to prepare a positive electrode.
  • ethylene carbonate and ethyl methyl carbonate were mixed at a vol% ratio of 3: 7, and LiPF 6 was added thereto at a concentration of 1.0 M.
  • vinylene carbonate, propane sultone and ethylene sulfate were added in an amount of 0.2% by weight based on the total amount of the electrolyte.
  • a battery was manufactured using the negative electrode, the positive electrode, and the electrolyte solution prepared above.
  • Celcel 2320 was used as a separator.
  • a battery was manufactured in the same manner as in Example 1, except that the loading amount of the negative electrode was changed to 3.7 mAh / cm 2 and the porosity was 34%.
  • a battery was manufactured in the same manner as in Example 1, except that the loading amount of the negative electrode was changed to 5.3 mAh / cm 2 and the porosity was changed to 27%.
  • a secondary battery was manufactured in the same manner as in Example, except that a negative electrode prepared by omitting the process of forming fine holes in the negative electrode mixture layer was used.
  • Example 8 analyzes the negative electrode profile for the cells of Example 1 and Comparative Example.
  • the negative electrode profile was identified by differentially extracting the negative electrode profile (1.5C charge) during charging through the three-electrode system and differentially graphing the potential value for the SOC.
  • A is the battery of Example 1
  • B is the point where the inclination of the battery is changed.
  • the battery according to Example 1 has a depth of charge about 7% deeper than that of the battery of Comparative Example, thereby preventing lithium plating. It can be seen that there is an effect.
  • Example 9 is a result of measuring the capacity of the batteries of Example 1 and Comparative Example. According to FIG. 9, the Example 1 cell appears to show little loss in capacity compared to the Comparative Example cell.
  • Example 1 Example 2
  • Example 3 Comparative example Lithium Precipitation X X X O
  • the electrode for secondary batteries of the present invention prevents the occurrence of lithium-plating phenomenon, despite the high loading amount of the electrode mixture layer, while having almost no loss of capacity compared to the electrode without the conventional fine holes. The performance degradation can be prevented.

Abstract

The present invention relates to an electrode for a secondary battery, comprising an electrode combined layer comprising an electrode active material formed on one side or both sides of a current collector, wherein the electrode combined layer comprises a plurality of fine holes indented from a vertical cross-sectional surface toward the current collector, and each of the fine holes has a horn shape which gradually decreases in diameter in the direction from the vertical cross-sectional surface toward the current collector.

Description

미세 홀들을 포함하고 있는 이차전지용 전극Secondary Battery Electrode with Fine Holes
본 발명은 미세 홀들을 포함하고 있는 이차전지용 전극에 관한 것이다.The present invention relates to a secondary battery electrode containing fine holes.
최근, 화석연료의 고갈에 의한 에너지원의 가격 상승, 환경 오염의 관심이 증폭되며, 친환경 대체 에너지원에 대한 요구가 미래생활을 위한 필수 불가결한 요인이 되고 있다. 이에 원자력, 태양광, 풍력, 조력 등 다양한 전력 생산기술들에 대한 연구가 지속되고 있으며, 이렇게 생산된 에너지를 더욱 효율적으로 사용하기 위한 전력저장장치 또한 지대한 관심이 이어지고 있다.Recently, the increase in the price of energy sources due to the depletion of fossil fuels, interest in environmental pollution is amplified, and the demand for environmentally friendly alternative energy sources has become an indispensable factor for future life. Accordingly, researches on various power production technologies such as nuclear power, solar energy, wind power, tidal power, etc. continue, and power storage devices for more efficient use of the generated energy are also drawing attention.
특히, 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 많은 연구가 행해지고 있다.In particular, as technology development and demand for mobile devices increase, the demand for batteries as energy sources is rapidly increasing, and accordingly, a lot of researches on batteries that can meet various needs have been conducted.
대표적으로 전지의 형상 면에서는 얇은 두께로 휴대폰 등과 같은 제품들에 적용될 수 있는 각형 이차전지와 파우치형 이차전지에 대한 수요가 높고, 재료 면에서는 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지에 대한 수요가 높다.Representatively, there is a high demand for square and pouch type secondary batteries that can be applied to products such as mobile phones with a thin thickness in terms of shape of batteries, and high energy density, discharge voltage, and output stability in terms of materials. Demand for lithium secondary batteries such as lithium ion batteries and lithium ion polymer batteries is high.
일반적으로, 이러한 이차전지를 구성하는 전극조립체는 전극조립체의 일면 또는 양면에 전극 활물질을 포함하는 전극 합제층을 형성함으로써, 양극 및 음극을 제조하고, 상기 양극과 음극 사이에 분리막을 개재시킨 구조로 형성된다.In general, the electrode assembly constituting the secondary battery has a structure in which a positive electrode and a negative electrode are manufactured by forming an electrode mixture layer including an electrode active material on one or both surfaces of the electrode assembly, and a separator is interposed between the positive electrode and the negative electrode. Is formed.
최근에는, 상기 집전체 상에 전극 합제층의 로딩량을 증가시킴으로써, 이러한 전극조립체의 용량을 극대화시키기도 한다. Recently, the capacity of such an electrode assembly may be maximized by increasing the loading amount of the electrode mixture layer on the current collector.
그러나, 이처럼 전극 합제층의 로딩량이 매우 높은 전극은, 상기 전극 합제층의 두께가 지나치게 두꺼워, 상기 전극 합제층의 깊이 방향으로 전해액 확산이 용이하게 일어나지 않고, 전극 합제층의 로딩량이 낮은 전극에 비해, 낮은 SOC에서 리튬이 석출되는 리튬-플레이팅(Li-plating) 현상이 빈번하게 발생하는 문제점이 있다.However, the electrode having a very high loading amount of the electrode mixture layer has an excessively thick thickness of the electrode mixture layer, so that electrolyte diffusion does not easily occur in the depth direction of the electrode mixture layer, and the electrode loading layer has a lower loading amount than the electrode. , Li-plating phenomenon in which lithium is precipitated at low SOC occurs frequently.
특히, 최근에는 모바일 기기에 대한 수요가 증가함에 따라, 급속 충전이 가능한 전지에 대한 연구가 활발해지고 있으나, 상기 문제점으로 인해, 전극의 용량을 극대화시킬 수 있도록, 전극 합제층의 로딩량을 높게 구성한 전극의 경우, 급속 충전이 더욱 어려워질 수 있다.In particular, in recent years, as the demand for mobile devices increases, research into a battery capable of rapid charging has been actively conducted. However, due to the above problem, the loading amount of the electrode mixture layer is increased to maximize the capacity of the electrode. In the case of electrodes, rapid charging may be more difficult.
즉, 전극의 용량을 극대화시킬 수 있도록, 집전체 상에 형성되는 전극 합제층의 로딩량을 높일 경우, 상기 전극 합제층의 깊이 방향으로의 전해액 확산이 용이하지 않고, 이로 인해, 리튬-플레이팅 현상이 발생하거나, 전극 합제층의 로딩량이 높은 전극을 포함하는 이차전지의 경우, 급속 충전이 더욱 어려울 수 있는 문제점이 있다.That is, when the loading amount of the electrode mixture layer formed on the current collector is increased so as to maximize the capacity of the electrode, diffusion of the electrolyte solution in the depth direction of the electrode mixture layer is not easy, and thus, lithium-plating If a phenomenon occurs or a secondary battery including an electrode having a high loading amount of an electrode mixture layer, there is a problem that rapid charging may be more difficult.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.Therefore, there is a high need for a technology that can fundamentally solve these problems.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.The present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 전극 합제층이 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 순차적으로 감소하는 뿔(horn) 형상으로 이루어진 복수의 미세 홀들을 포함하도록 구성함으로써, 상기 미세 홀들을 통해, 전극 합제층의 깊이 방향으로 전해액이 보다 용이하게 확산될 수 있으며, 이에 따라, 상기 전극 합제층의 높은 로딩량에도 불구하고, 리튬-플레이팅 현상의 발생을 예방해, 전극의 전기적 성능 저하를 방지할 수 있고, 충방전 과정에서, 리튬 이온의 이동이 원활해져, 급속 충전 성능이 향상될 수 있으며, 상기 미세 홀들은 상기 미세 홀들에 대응하는 돌기들을 포함하는 금형 또는 롤러에 의해 형성되므로, 레이저를 이용해 패턴 구조를 형성하는 종래에 비해, 전극의 용량 저하를 방지하고, 상기 레이저에 의해 전극 합제층으로부터 이탈된 입자들로 인해 발생하는 제품의 불량률을 없애거나, 현저히 감소시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.After extensive research and various experiments, the inventors of the present application, as will be described later, a plurality of fine particles consisting of a horn shape in which the electrode mixture layer is sequentially reduced in diameter from the vertical cross-sectional surface toward the current collector By including holes, the electrolyte can be more easily diffused through the fine holes in the depth direction of the electrode mixture layer, and thus, despite the high loading amount of the electrode mixture layer, lithium-plating phenomenon It is possible to prevent the occurrence of the electrical performance of the electrode, and to prevent the deterioration of the electrode, during the charging and discharging process, the movement of lithium ions is smooth, the rapid charging performance can be improved, the fine holes include protrusions corresponding to the fine holes Since it is formed by a mold or a roller to be formed, compared to the conventional form of a pattern structure using a laser, The present invention has been completed to prevent a decrease in capacity and to eliminate or significantly reduce a defective rate of a product caused by particles separated from the electrode mixture layer by the laser.
이러한 목적을 달성하기 위한 본 발명에 따른 이차전지용 전극은,Secondary battery electrode according to the present invention for achieving this object,
집전체의 일면 또는 양면에 전극 활물질을 포함하는 전극 합제층이 형성되어 있고;An electrode mixture layer containing an electrode active material is formed on one or both surfaces of the current collector;
상기 전극 합제층은 수직 단면상 표면으로부터 집전체 쪽으로 만입된 복수의 미세 홀들을 포함하고 있으며,The electrode mixture layer includes a plurality of fine holes indented toward the current collector from the vertical cross-sectional surface,
각각의 미세 홀은 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 순차적으로 감소하는 뿔(horn) 형상으로 이루어진 구조일 수 있다.Each of the fine holes may have a horn-shaped structure in which the diameter decreases gradually from the surface in the vertical section toward the current collector.
따라서, 상기 미세 홀들을 통해, 전극 합제층의 깊이 방향으로 전해액이 보다 용이하게 확산될 수 있으며, 이에 따라, 상기 전극 합제층의 높은 로딩량에도 불구하고, 리튬-플레이팅 현상의 발생을 예방해, 전극의 전기적 성능 저하를 방지할 수 있고, 충방전 과정에서, 리튬 이온의 이동이 원활해져, 급속 충전 성능이 향상될 수 있다.Therefore, through the fine holes, the electrolyte can be more easily diffused in the depth direction of the electrode mixture layer, thereby preventing the occurrence of lithium-plating phenomenon, despite the high loading amount of the electrode mixture layer, Deterioration of the electrical performance of the electrode can be prevented, and during the charging and discharging process, the lithium ions can be smoothly moved, thereby improving the quick charging performance.
하나의 구체적인 예에서, 상기 미세 홀들은 3.5 내지 5.5 mAh/cm2의 로딩량 및 25% 내지 35%의 공극률을 가진 전극 합제층에 형성되는 구조일 수 있다.In one specific example, the fine holes may be a structure formed in the electrode mixture layer having a loading amount of 3.5 to 5.5 mAh / cm 2 and porosity of 25% to 35%.
즉, 상기 전극 합제층의 로딩량 및 공극률 범위는 상기 전극을 포함하는 이차전지가 소망하는 고용량을 발휘할 수 있는 범위로서, 본 발명에 따른 이차전지용 전극은 상기 로딩량 및 공극률 범위를 갖도록 전극 합제층이 형성되어 있음에도 불구하고, 종래의 전극과 달리, 전극 합제층의 깊이 방향으로 전해액이 보다 용이하게 확산될 수 있으며, 이에 따라, 소망하는 효과를 발휘할 수 있다.That is, the loading amount and porosity range of the electrode mixture layer is a range capable of exhibiting a desired high capacity of the secondary battery including the electrode, and the electrode for secondary batteries according to the present invention has an electrode mixture layer to have the loading amount and porosity range. Despite this formation, unlike the conventional electrodes, the electrolyte can be more easily diffused in the depth direction of the electrode mixture layer, whereby a desired effect can be obtained.
만일, 상기 전극 합제층의 로딩량이 상기 범위를 벗어나, 지나치게 적거나, 공극률이 상기 범위를 벗어나, 지나치게 클 경우에는, 상기 전극을 포함하는 이차전지의 용량을 향상시킬 수 없고, 이와 반대로, 상기 전극 합제층의 로딩량이 상기 범위를 벗어나, 지나치게 크거나, 공극률이 상기 범위를 벗어나, 지나치게 작을 경우에는, 상기 복수의 미세 홀들이 전극 합제층에 형성됨에도 불구하고, 전해액의 용이한 확산이 어려울 수 있다.If the loading amount of the electrode mixture layer is out of the range, is too small, or the porosity is out of the range, is too large, the capacity of the secondary battery including the electrode cannot be improved, on the contrary, the electrode When the loading amount of the mixture layer is out of the range, is too large, or the porosity is out of the range, and is too small, easy diffusion of the electrolyte may be difficult even though the plurality of fine holes are formed in the electrode mixture layer. .
또한, 상기 미세 홀은 수직 단면상 표면 부위로부터 집전체 쪽으로 형성된 깊이가 이에 대응하는 전극 합제층의 두께에 대해 80% 내지 90%의 크기일 수 있다.In addition, the depth of the fine hole may be 80% to 90% of the depth of the electrode mixture layer corresponding to the depth formed from the surface portion in the vertical section toward the current collector.
만일, 상기 미세 홀의 깊이가 이에 대응하는 전극 합제층의 두께에 대해 80% 미만일 경우에는, 상기 미세 홀의 깊이가 지나치게 낮아, 상기 전극 합제층의 깊이 방향으로 전해액을 용이하게 확산시킬 수 없으므로, 소망하는 효과를 발휘하지 못할 수 있다.If the depth of the fine holes is less than 80% of the thickness of the corresponding electrode mixture layer, the depth of the fine holes is too low, so that the electrolyte cannot be easily diffused in the depth direction of the electrode mixture layer. It may not work.
이와 반대로, 상기 미세 홀의 깊이가 이에 대응하는 전극 합제층의 두께에 대해 90%를 초과할 경우에는, 상기 미세 홀을 형성할 수 있도록, 이에 대응되는 돌기를 포함하는 미세 홀 형성용 금형 또는 롤러를 이용해 전극 합제층을 가압하는 과정에서, 상기 미세 홀의 집전체 방향 단부 부위에 위치하는 전극 합제층 부위에 지나치게 높은 압력이 인가될 수 있으며, 이로 인해 상기 부위가 압연되어 전극 합제층의 공극률이 지나치게 낮아져, 오히려 전해액의 확산이 저하될 수 있는 문제점이 있다.On the contrary, when the depth of the fine holes exceeds 90% of the thickness of the electrode mixture layer corresponding thereto, a mold or a roller for forming a fine hole including a corresponding protrusion may be formed to form the fine holes. In the process of pressurizing the electrode mixture layer by using, an excessively high pressure may be applied to the electrode mixture layer portion located in the current collector direction end portion of the micro-holes, which causes the portion to be rolled to lower the porosity of the electrode mixture layer. Rather, there is a problem that the diffusion of the electrolyte can be reduced.
한편, 상기 미세 홀은 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 순차적으로 감소하는 뿔 형상으로 만입되도록 이루어짐으로써, 소망하는 효과를 발휘할 수 있다면, 그 평면상 구조가 크게 제한되는 것은 아니며, 상세하게는, 상기 미세 홀은 전극 합제층의 표면 부위에서 평면상으로 삼각형, 사각형, 오각형, 육각형, 원형, 반원형, 또는 타원형 형상일 수 있고, 보다 상세하게는, 전해액의 균일한 확산 및 상기 미세 홀 형성 과정에서 인가되는 압력의 균일한 전달 등을 고려하였을 때, 원형일 수 있다.On the other hand, the fine holes are made to be indented into a horn shape whose diameter gradually decreases toward the current collector from the vertical cross-sectional surface, if the desired effect can be achieved, the planar structure is not significantly limited, in detail The micro holes may be triangular, square, pentagonal, hexagonal, circular, semicircular, or elliptical in planar shape on the surface of the electrode mixture layer, and more specifically, uniform diffusion of an electrolyte and the process of forming the fine holes. Considering the uniform transmission of the pressure applied in the, it may be circular.
하나의 구체적인 예에서, 상기 미세 홀은 수직 단면상 표면 부위에서의 평균 직경이 100 마이크로미터 내지 200 마이크로미터이고, 내측 단부 부위에서의 평균 직경이 20 마이크로미터 내지 50 마이크로미터일 수 있다.In one specific example, the fine holes may have an average diameter of 100 micrometers to 200 micrometers in the surface portion on the vertical cross section, and an average diameter of 20 micrometers to 50 micrometers in the inner end portion.
만일, 상기 수직 단면상 표면 부위에서의 미세 홀의 평균 직경이 100 마이크로미터 미만일 경우에는, 전해액이 유입되기 시작하는 표면 부위에서의 미세 홀 직경이 지나치게 작아, 상기 미세 홀을 통한 전해액의 확산이 용이하지 않을 수 있고, 이와 반대로, 상기 상기 수직 단면상 표면 부위에서의 미세 홀의 평균 직경이 200 마이크로미터를 초과할 경우에는, 상기 표면 부위에서의 미세 홀 직경이 지나치게 커져 오히려, 전극의 용량이 저하될 수 있다.If the average diameter of the micro holes in the surface portion on the vertical cross section is less than 100 micrometers, the diameter of the micro holes in the surface portion where the electrolyte starts to flow is too small, so that diffusion of the electrolyte through the micro holes may not be easy. On the contrary, when the average diameter of the fine holes in the surface portion on the vertical cross section exceeds 200 micrometers, the diameter of the fine holes in the surface portion is too large, rather, the capacity of the electrode may be lowered.
또한, 상기 내측 단부 부위에서의 평균 직경이 20 마이크로미터 미만일 경우에는, 전극 합제층에 상기 미세 홀을 형성시키기 위한 금형 내지 롤러의 돌기가 지나치게 얇아져, 상기 전극 합제층에 대한 가압에 의해 미세 홀을 용이하게 형성하지 못할 수 있으며, 이와 반대로, 상기 내측 단부 부위에서의 평균 직경이 50 마이크로미터를 초과할 경우에는, 상기 미세 홀을 형성시키기 위한 금형 내지 롤러의 돌기 단부가 지나치게 큰 경우로서, 상기 전극 합제층에 대한 가압에 의해 미세 홀을 형성하는 과정에서, 상기 내측 단부 부위가 압연될 수 있으며, 이에 따라, 상기 전극 합제층의 미세 홀 내측 단부 부위에서 공극률이 감소함에 따라, 오히려 전해액 확산이 저하될 수 있다.In addition, when the average diameter at the inner end portion is less than 20 micrometers, the projections of the mold or the roller for forming the fine holes in the electrode mixture layer become too thin, so that the fine holes are formed by pressing against the electrode mixture layer. On the contrary, when the average diameter at the inner end portion exceeds 50 micrometers, on the contrary, the protruding end of the metal mold or the roller for forming the micro holes is too large, and the electrode In the process of forming the fine holes by pressing against the mixture layer, the inner end portion may be rolled, and as a result, the porosity decreases at the inner end portion of the fine hole of the electrode mixture layer, rather the electrolyte diffusion decreases. Can be.
여기서, 상기 미세 홀의 내측 단부 부위는 수직 단면상 둥근 원호 형상으로 이루어질 수 있으며, 이에 따라, 상기 내측 단부 부위의 직경은, 상기 둥근 원호 형상으로 이루어진 단부 부위 중에서, 직선 형상으로 이루어진 미세 홀의 측변과 상기 원호 형상으로 이루어진 단부 부위가 접하는 부위에서의 직경을 의미한다.Here, the inner end portion of the micro-holes may be formed in a circular arc shape in the vertical cross-section, so that the diameter of the inner end portion, in the end portion formed of the circular arc shape, the side edges of the fine holes made of a linear shape and the circular arc It means the diameter in the site where the end portion formed in the shape abuts.
만일, 상기 미세 홀의 내측 단부 부위가 침상 구조로 이루어질 경우에는, 이에 대응하는 미세 홀 형성용 금형 내지 롤러의 돌기 단부 역시, 매우 얇은 침상 구조로 이루어져야만 하므로, 상기 금형 내지 롤러에 의한 가압 과정에서, 상기 돌기가 변형됨으로써, 전극 합제층에 상기 미세 홀을 용이하게 형성하지 못할 수 있다.If the inner end portion of the fine hole has a needle-like structure, since the protrusion end of the micro-hole forming die or roller corresponding thereto must also have a very thin needle-like structure, in the pressing process by the mold or roller, As the protrusions are deformed, the minute holes may not be easily formed in the electrode mixture layer.
한편, 상기 복수의 미세 홀들은 전극 합제층의 표면 부위에서 평면상으로 규칙적인 배열 구조를 가질 수 있다.On the other hand, the plurality of fine holes may have a regular arrangement in planar shape at the surface portion of the electrode mixture layer.
따라서, 전극 합제층의 모든 부위에 대해 전해액이 보다 균일하게 확산될 수 있으며, 상기 전해액의 국부적 확산 차이로 인한 성능 저하를 방지할 수 있다.Therefore, the electrolyte solution can be more uniformly diffused to all parts of the electrode mixture layer, and the performance degradation due to the local diffusion difference of the electrolyte solution can be prevented.
하나의 구체적인 예에서, 상기 미세 홀은 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 연속적 또는 비연속적으로 감소하는 형상을 가진 구조일 수 있으며, 상세하게는, 미세 홀 형성용 금형 또는 롤러에 의한 가압에 의해, 상기 미세 홀이 보다 용이하게 형성될 수 있도록, 직경이 연속적으로 감소하는 형상을 가진 구조일 수 있다.In one specific example, the fine hole may have a structure having a shape in which the diameter decreases continuously or discontinuously from the vertical cross section surface toward the current collector. As a result, the micro holes may have a shape having a shape of continuously decreasing diameter so that the micro holes may be more easily formed.
한편, 최근에는 전극 합제층의 로딩량이 높은 종래의 전극이 갖는 전해액 확산 저하의 문제점을 해결할 수 있도록, 레이저를 이용해 상기 전극 합제층의 일부를 탈리시키면서, 상기 전극 합제층 상에 소정의 패턴을 형성하는 기술이 사용되기도 한다.On the other hand, in recent years, a predetermined pattern is formed on the electrode mixture layer while detaching a part of the electrode mixture layer using a laser so as to solve the problem of lowering of electrolyte diffusion of a conventional electrode having a high loading amount of the electrode mixture layer. Some techniques are used.
도 1에는 종래의 레이저를 이용해 전극 합제층에 패턴 형상의 미세 홀들을 형성한 전극의 수직 단면 구조를 개략적으로 나타낸 모식도가 도시되어 있으며, 도 2에는 도 1의 "A" 부분의 구조를 확대하여 개략적으로 나타낸 부분 확대도가 도시되어 있다.FIG. 1 schematically illustrates a vertical cross-sectional structure of an electrode in which patterned fine holes are formed in an electrode mixture layer using a conventional laser, and FIG. 2 illustrates an enlarged structure of part “A” of FIG. 1. A schematic partial enlarged view is shown.
도 1 및 2를 함께 참조하면, 집전체(110)의 상면에는 전극 합제층(120)이 형성되어 있다.1 and 2 together, an electrode mixture layer 120 is formed on an upper surface of the current collector 110.
전극 합제층(120)에는 복수의 미세 홀들(130)이 소정의 패턴을 형성하도록 형성되어 있다.The plurality of fine holes 130 are formed in the electrode mixture layer 120 to form a predetermined pattern.
미세 홀(130)은 레이저에 의해 일부 전극 합제층(120)이 탈리되어 형성되므로, 수직 단면상 전극 합제층(120)의 표면으로부터 집전체(110) 쪽으로 직경(R1)이 대체로 균일한 구조로 이루어져 있다.Since the fine hole 130 is formed by detaching some of the electrode mixture layer 120 by a laser, the diameter R1 is formed in a substantially uniform structure toward the current collector 110 from the surface of the electrode mixture layer 120 on a vertical cross section. have.
특히, 레이저를 이용해 미세 홀(130)을 형성하는 경우에는, 상기 미세 홀(130)의 깊이(D1)를 조절하기가 용이하지 않으므로, 미세 홀(130)은 집전체(110)의 상면까지 접하도록, 전극 합제층(120)의 두께(T1)와 동일한 깊이(D1)로 형성되어 있다.In particular, when forming the fine holes 130 using a laser, it is not easy to adjust the depth (D1) of the fine holes 130, the fine holes 130 are in contact with the upper surface of the current collector (110). The depth D1 is formed to be equal to the thickness T1 of the electrode mixture layer 120.
그러나, 이처럼 레이저를 이용해 미세 홀을 형성하는 기술은 상기 미세 홀을 형성하는 과정에서, 일부 전극 합제층을 탈리시키므로, 전극의 전체적인 용량을 감소시키고, 상기 탈리된 전극 합제층 입자들이 전극의 제조 공정에서, 대기 중에 비산하는 불순물로 작용함으로써, 제품의 불량을 유발하며, 이를 방지하기 위한 추가적인 공정 내지 장치가 필요하므로, 전극의 전체적인 제조 비용을 증가시킬 수 있는 문제점이 있다.However, such a technique of forming fine holes using a laser desorbs some of the electrode mixture layers in the process of forming the micro holes, thereby reducing the overall capacity of the electrode, and removing the electrode mixture layer particles from the electrode manufacturing process. In, by acting as an impurity scattering in the atmosphere, causing a defect of the product, there is a problem that can increase the overall manufacturing cost of the electrode because it requires an additional process or apparatus to prevent it.
이에 대해, 본 발명은 이러한 문제점을 해결할 수 있도록, 상기 이차전지용 전극을 제조하는 장치를 제공하는 바, 상기 장치는 미세 홀 형성용 금형을 포함하고 있고; 상기 미세 홀 형성용 금형은, 일면이 전극 합제층의 표면에 대면한 상태에서 가압될 때, 전극 합제층의 표면 부위로부터 집전체 쪽으로 만입된 뿔 형상의 미세 홀들이 형성될 수 있도록, 상기 미세 홀들에 대응하는 뿔 형상의 돌기들이 일면에 돌출되어 있는 구조일 수 있다.On the other hand, the present invention provides a device for manufacturing the secondary battery electrode to solve this problem, the device includes a mold for forming a fine hole; The micro holes are formed in the mold for forming fine holes such that when one surface is pressed in a state facing the surface of the electrode mixture layer, horn-shaped fine holes indented toward the current collector from the surface portion of the electrode mixture layer may be formed. Horn-shaped protrusions corresponding to the structure may protrude on one surface.
또 다른 구체적인 예에서, 상기 장치는 미세 홀 형성용 롤러를 포함하고 있고; 상기 미세 홀 형성용 롤러는, 외면이 전극 합제층의 표면에 대면한 상태에서 회전 가압될 때, 전극 합제층 표면 부위로부터 집전체 쪽으로 만입된 뿔 형상의 미세 홀들이 형성될 수 있도록, 상기 미세 홀들에 대응하는 뿔 형상의 돌기들이 외면에 돌출되어 있는 구조일 수 있다.In another specific example, the apparatus includes a roller for forming fine holes; The fine hole forming rollers may be formed such that when the outer surface is pressed against the surface of the electrode mixture layer in a rotational manner, horn-shaped fine holes indented toward the current collector from the surface of the electrode mixture layer may be formed. Horn-shaped protrusions corresponding to the structure may protrude to the outer surface.
즉, 본 발명에 따른 이차전지용 전극 제조장치는 상기 금형 또는 롤러에 돌출되어 있는 돌기들이 전극 합제층을 가압함으로써, 미세 홀들을 형성하는 구조일 수 있다.That is, the electrode manufacturing apparatus for a secondary battery according to the present invention may have a structure in which protrusions protruding from the mold or the roller press the electrode mixture layer to form fine holes.
따라서, 레이저를 사용하는 종래의 이차전지용 전극 제조장치와 달리, 상기 전극 합제층의 일부를 탈리시키지 않으므로, 전극의 용량 저하를 방지하고, 상기 탈리된 전극 합제층 입자들로 인해 발생할 수 있는 제품 불량률 증가와 제조 비용 증가의 문제를 효과적으로 예방할 수 있다.Therefore, unlike a conventional electrode manufacturing apparatus for a secondary battery using a laser, since a part of the electrode mixture layer is not detached, a reduction in the capacity of the electrode is prevented, and a product defect rate that may occur due to the detached electrode mixture layer particles. The problem of increase and increase of manufacturing cost can be effectively prevented.
이러한 경우에, 상기 뿔 형상의 돌기들은 수직 단면상 상대적으로 큰 직경을 갖는 단부 부위에서의 평균 직경이 100 마이크로미터 내지 200 마이크로미터이고, 상대적으로 작은 직경을 갖는 단부 부위에서의 평균 직경이 20 마이크로미터 내지 50 마이크로미터일 수 있다.In this case, the horn-shaped protrusions have an average diameter of 100 micrometers to 200 micrometers at an end portion having a relatively large diameter in a vertical cross section, and an average diameter of 20 micrometers at an end portion having a relatively small diameter. To 50 micrometers.
따라서, 상기 돌기들에 의해 형성되는 미세 홀들의 입경을 상기 범위 내로 조절함으로써, 전극 합제층의 깊이 방향으로 전해액을 용이하게 함침시키는 동시에, 용량 저하를 방지하고, 상기 미세 홀들의 내측 단부 부위에서 전극 합제층이 압연되는 현상을 용이하게 방지할 수 있다.Therefore, by adjusting the particle diameter of the fine holes formed by the protrusions in the above range, the electrolyte solution is easily impregnated in the depth direction of the electrode mixture layer, while preventing a decrease in capacity, the electrode at the inner end portion of the fine holes The phenomenon that a mixture layer rolls can be prevented easily.
본 발명은 또한, 상기 이차전지용 전극을 제조하는 방법을 제공하는 바, 상기 방법은,The present invention also provides a method for manufacturing the secondary battery electrode, the method is
a) 집전체 상에 전극 활물질을 포함하는 전극 합제용 슬러리를 도포하는 과정;a) applying a slurry for electrode mixture including an electrode active material on a current collector;
b) 상기 전극 합제용 슬러리가 도포된 집전체를 건조 및 압연하여 전극 합제층을 형성하는 과정; 및b) drying and rolling the current collector coated with the slurry for electrode mixture to form an electrode mixture layer; And
c) 금형 또는 롤러를 상기 전극 합제층의 표면에 대면시킨 상태로 압력을 인가하여, 상기 전극 합제층에 뿔 형상으로 만입된 복수의 미세 홀들을 형성하는 과정; c) applying a pressure with the mold or roller facing the surface of the electrode mixture layer to form a plurality of fine holes indented in the shape of a horn in the electrode mixture layer;
을 포함할 수 있다.It may include.
즉, 상기 전극 합제층의 미세 홀들은 전극 합제층이 형성된 이후에, 미세 홀 형성용 금형 또는 롤러의 가압에 의해 형성될 수 있다.That is, after the electrode mixture layer is formed, the fine holes of the electrode mixture layer may be formed by pressing the metal mold or roller for forming the hole.
이러한 경우에, 상기 과정 b)에서 형성된 전극 합제층은 3.5 내지 5.5 mAh/cm2의 로딩량 및 25% 내지 35%의 공극률을 가진 구조일 수 있다.In this case, the electrode mixture layer formed in the process b) may be a structure having a loading amount of 3.5 to 5.5 mAh / cm 2 and porosity of 25% to 35%.
즉, 상기 미세 홀들은 전극의 용량을 극대화시킬 수 있도록, 전극 합제층의 로딩량이 높은 구조에서, 상기 전극 합제층의 용량 저하를 방지하는 동시에, 우수한 전해액 확산의 효과를 발휘할 수 있다.That is, the fine holes may prevent the lowering of the capacity of the electrode mixture layer while exhibiting an excellent effect of diffusion of the electrolyte solution in a structure in which the loading amount of the electrode mixture layer is high so as to maximize the capacity of the electrode.
또한, 상기 금형 또는 롤러는, 건조 및 압연된 전극 합제층의 표면에 대면하는 부위에, 상기 뿔 형상의 미세 홀들에 대응하는 형상으로 이루어진 미세 홀 형성용 돌기들을 포함하고 있는 구조일 수 있다.In addition, the mold or roller may have a structure including minute hole forming protrusions formed in a shape corresponding to the horn-shaped fine holes at a portion facing the surface of the dried and rolled electrode mixture layer.
따라서, 상기 전극 합제층의 미세 홀들은 금형 또는 롤러에 의해, 상기 전극 합제층 표면에 압력이 인가되는 경우에, 상기 금형 또는 롤러에 형성된 미세 홀 형성용 돌기들에 의해 형성될 수 있으며, 이에 따라, 레이저를 이용해 일부 전극 합제층을 탈리시키는 종래와 달리, 전극 용량의 저하를 방지하고, 비산하는 전극 합제층 입자들로 인해 발생할 수 있는 제품 불량률 저하와 제조 비용 증가를 억제할 수 있다.Therefore, the fine holes of the electrode mixture layer may be formed by the metal hole forming protrusions formed in the metal mold or the roller, when the pressure is applied to the surface of the electrode mixture layer by a mold or roller, accordingly Unlike the conventional method of detaching some electrode mixture layers using a laser, a decrease in electrode capacity can be prevented, and a reduction in product defect rate and an increase in manufacturing cost that can occur due to scattering electrode mixture layer particles can be suppressed.
한편, 상기 뿔 형상의 돌기들 각각은 상기 돌기들에 의해 형성되는 미세 홀들의 입경을 상기 범위 내로 조절함으로써, 전극 합제층의 깊이 방향으로 전해액을 용이하게 함침시키는 동시에, 용량 저하를 방지하고, 상기 미세 홀들의 내측 단부 부위에서 전극 합제층이 압연되는 현상을 방지할 수 있도록, 각 부위의 직경이 특정한 범위로 조절될 수 있으며, 상세하게는, 상기 뿔 형상의 돌기들 각각은 수직 단면상 상대적으로 큰 직경을 갖는 단부 부위에서의 평균 직경이 100 마이크로미터 내지 200 마이크로미터이고, 상대적으로 작은 직경을 갖는 단부 부위에서의 평균 직경이 20 마이크로미터 내지 50 마이크로미터인 구조일 수 있다.On the other hand, each of the horn-shaped projections by adjusting the particle diameter of the fine holes formed by the projections in the above range, while easily impregnating the electrolyte in the depth direction of the electrode mixture layer, while preventing a decrease in capacity, In order to prevent the electrode mixture layer from rolling at the inner end portions of the fine holes, the diameter of each portion may be adjusted to a specific range, and in detail, each of the horn-shaped protrusions may have a relatively large vertical cross section. It may have a structure in which the average diameter at the end portion having the diameter is 100 micrometers to 200 micrometers, and the average diameter at the end portion having the relatively small diameter is 20 micrometers to 50 micrometers.
상기 구성 내지 구조를 제외한 이차전지용 전극 내지 전극 제조장치의 나머지 구성은 당업계에 공지되어 있으므로, 본 명세서에서는 이에 대한 자세한 설명은 생략한다.Since the rest of the configuration of the secondary battery electrode to the electrode manufacturing apparatus except for the above structure to the structure is known in the art, detailed description thereof will be omitted herein.
이상에서 설명한 바와 같이, 본 발명에 따른 이차전지용 전극은, 전극 합제층이 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 순차적으로 감소하는 뿔(horn) 형상으로 이루어진 복수의 미세 홀들을 포함하도록 구성함으로써, 상기 미세 홀들을 통해, 전극 합제층의 깊이 방향으로 전해액이 보다 용이하게 확산될 수 있으며, 이에 따라, 상기 전극 합제층의 높은 로딩량에도 불구하고, 리튬-플레이팅 현상의 발생을 예방해, 전극의 전기적 성능 저하를 방지할 수 있고, 충방전 과정에서, 리튬 이온의 이동이 원활해져, 급속 충전 성능이 향상될 수 있으며, 상기 미세 홀들은 상기 미세 홀들에 대응하는 돌기들을 포함하는 금형 또는 롤러에 의해 형성되므로, 레이저를 이용해 패턴 구조를 형성하는 종래에 비해, 전극의 용량 저하를 방지하고, 상기 레이저에 의해 전극 합제층으로부터 이탈된 입자들로 인해 발생하는 제품의 불량률을 없애거나, 현저히 감소시킬 수 있는 효과가 있다.As described above, the electrode for secondary batteries according to the present invention is configured such that the electrode mixture layer includes a plurality of fine holes formed in a horn shape, the diameter of which gradually decreases from the surface in the vertical section toward the current collector. Through the fine holes, the electrolyte can be more easily diffused in the depth direction of the electrode mixture layer, thereby preventing the occurrence of lithium-plating phenomenon, despite the high loading amount of the electrode mixture layer, It is possible to prevent the electrical performance deterioration, in the process of charging and discharging, the smooth movement of lithium ions can be improved, the rapid charging performance can be improved, the fine holes are formed by a mold or a roller including protrusions corresponding to the fine holes Therefore, as compared with the conventional method of forming a pattern structure by using a laser, it is possible to prevent a decrease in capacitance of the electrode and There is an effect that can eliminate or significantly reduce the defective rate of the product caused by the particles separated from the electrode mixture layer by the weiser.
도 1은 종래의 레이저를 이용해 전극 합제층에 패턴 형상의 미세 홀들을 형성한 전극의 수직 단면 구조를 개략적으로 나타낸 모식도이다; 1 is a schematic diagram schematically showing a vertical cross-sectional structure of an electrode in which fine holes having a pattern shape are formed in an electrode mixture layer using a conventional laser;
도 2는 도 1의 "A" 부분의 구조를 확대하여 개략적으로 나타낸 부분 확대도이다;FIG. 2 is a partially enlarged view schematically showing an enlarged structure of a portion “A” of FIG. 1;
도 3은 본 발명의 하나의 실시예에 따른 이차전지용 전극의 수직 단면 구조를 개략적으로 나타낸 모식도이다;3 is a schematic diagram schematically showing a vertical cross-sectional structure of a secondary battery electrode according to an embodiment of the present invention;
도 4는 도 3의 "B" 부분의 구조를 확대하여 개략적으로 나타낸 부분 확대도이다;FIG. 4 is a partially enlarged view schematically showing an enlarged structure of part “B” of FIG. 3;
도 5는 도 4의 "C" 부분의 구조를 확대하여 개략적으로 나타낸 부분 확대도이다;FIG. 5 is a partially enlarged view schematically showing an enlarged structure of a portion “C” of FIG. 4;
도 6 및 7은 본 발명의 또 다른 실시예에 따른 이차전지용 전극 제조장치를 사용해, 전극 합제층에 미세 홀을 형성하는 과정을 개략적으로 나타낸 모식도이다.6 and 7 are schematic diagrams illustrating a process of forming fine holes in the electrode mixture layer using the electrode manufacturing apparatus for a secondary battery according to another embodiment of the present invention.
도 8은 실시예 1 및 비교예의 전지에 대한 음극 프로파일을 나타낸 그래프이다.8 is a graph showing the negative electrode profile for the battery of Example 1 and Comparative Example.
도 9는 실시예 1 및 비교예의 전지에 대한 용량을 측정한 결과이다. 9 is a result of measuring the capacity of the batteries of Example 1 and Comparative Example.
이하, 본 발명의 실시예에 따른 도면들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the drawings according to embodiments of the present invention, but the scope of the present invention is not limited thereto.
도 3에는 본 발명의 하나의 실시예에 따른 이차전지용 전극의 수직 단면 구조를 개략적으로 나타낸 모식도가 도시되어 있고, 도 4에는 도 3의 "B" 부분의 구조를 확대하여 개략적으로 나타낸 부분 확대도가 도시되어 있으며, 도 5는 도 3의 "C" 부분의 구조를 확대하여 개략적으로 나타낸 부분 확대도가 도시되어 있다.FIG. 3 is a schematic diagram schematically showing a vertical cross-sectional structure of a secondary battery electrode according to one embodiment of the present invention, and FIG. 4 is a partially enlarged view schematically showing an enlarged structure of part “B” of FIG. 3. 5 is a partially enlarged view schematically showing an enlarged structure of a portion “C” of FIG. 3.
도 3 내지 5를 함께 참조하면, 집전체(310)의 상면에는 전극 합제층(320)이 형성되어 있다.3 to 5 together, an electrode mixture layer 320 is formed on an upper surface of the current collector 310.
전극 합제층(320)에는 복수의 미세 홀들(330)이 규칙적인 배열 구조를 갖는 구조로 형성되어 있다.In the electrode mixture layer 320, a plurality of fine holes 330 is formed in a structure having a regular arrangement.
미세 홀(330)은 수직 단면상 표면으로부터 집전체(310) 쪽으로 만입된 구조로서, 집전체(310) 쪽으로 갈수록 직경(R2, R3)이 연속적으로 감소하는 뿔 형상으로 이루어져 있다.The fine holes 330 are indented toward the current collector 310 from the vertical cross-sectional surface, and have a horn shape in which diameters R2 and R3 continuously decrease toward the current collector 310.
미세 홀(330)은 표면 부위로부터 집전체(310) 쪽으로 형성된 깊이(D2)가 이에 대응하는 전극 합제층(320)의 두께(T2)에 대해 약 90%의 크기를 갖도록 이루어져 있다.The fine hole 330 is formed such that the depth D2 formed from the surface portion toward the current collector 310 has a size of about 90% of the thickness T2 of the electrode mixture layer 320 corresponding thereto.
미세 홀(330)은 표면 부위에서의 평균 직경(R2)이 100 마이크로미터 내지 200 마이크로미터로 이루어질 수 있고, 내측 단부 부위(332)에서의 평균 직경(R3)이 20 마이크로미터 내지 50 마이크로미터로 이루어질 수 있다.The fine holes 330 may have an average diameter R2 at the surface portion of 100 micrometers to 200 micrometers, and the average diameter R3 at the inner end portion 332 may be 20 micrometers to 50 micrometers. Can be done.
미세 홀(330)은 수직 단면상 내측 단부 부위(332)가 둥근 원호 형상으로 이루어져 있으며, 이에 따라, 상기 내측 단부 부위(332)에서의 평균 직경(R3)은 직선 형상으로 이루어진 미세 홀(330)의 측변(331)과 상기 원호 형상으로 이루어진 내측 단부 부위(332)가 접하는 부위(333)에서의 평균 직경(R3)을 의미한다.The fine hole 330 has a circular arc shape in which the inner end portion 332 is rounded in a vertical cross section, so that the average diameter R3 of the inner end portion 332 is formed in a straight shape. It means the average diameter R3 in the site | part 333 which the side edge 331 and the inner end part 332 which consists of said arc shape contact | connects.
도 6 및 7에는 본 발명의 또 다른 실시예에 따른 이차전지용 전극 제조장치를 사용해, 전극 합제층에 미세 홀을 형성하는 과정을 개략적으로 나타낸 모식도가 도시되어 있다.6 and 7 schematically show a process of forming fine holes in the electrode mixture layer using the electrode manufacturing apparatus for a secondary battery according to another embodiment of the present invention.
우선, 도 6을 참조하면, 이차전지용 전극 제조장치는 미세 홀 형성용 금형(640)을 포함하고 있다.First, referring to FIG. 6, an electrode manufacturing apparatus for a secondary battery includes a metal hole forming mold 640.
미세 홀 형성용 금형(640)은, 전극 합제층(620)의 표면에 대면하는 일면에, 미세 홀들(630)에 대응하는 뿔 형상의 돌기들(641)이 돌출되어 있다.In the fine hole forming mold 640, the horn-shaped protrusions 641 corresponding to the fine holes 630 protrude from one surface facing the surface of the electrode mixture layer 620.
따라서, 미세 홀 형성용 금형(640)의 일면이 전극 합제층(620)의 표면에 대면한 상태에서 가압됨으로써, 전극 합제층(620)의 표면 부위로부터 집전체(610) 쪽으로 만입된 뿔 형상의 미세 홀들(630)이 용이하게 형성될 수 있다.Accordingly, the one surface of the fine hole forming mold 640 is pressed in a state facing the surface of the electrode mixture layer 620, so that the shape of the horn is indented from the surface portion of the electrode mixture layer 620 toward the current collector 610. Fine holes 630 may be easily formed.
전극 합제층(620)에 미세 홀들(630)이 형성된 이후에, 미세 홀 형성용 금형(640)은 전극 합제층(620)으로부터 분리된다.After the fine holes 630 are formed in the electrode mixture layer 620, the fine hole forming mold 640 is separated from the electrode mixture layer 620.
도 7을 참조하면, 이차전지용 전극 제조장치는 미세 홀 형성용 롤러(740)를 포함하고 있다.Referring to FIG. 7, an electrode manufacturing apparatus for a secondary battery includes a roller 740 for forming a fine hole.
미세 홀 형성용 롤러(740)는, 전극 합제층(720)의 표면에 대면하는 외면에, 미세 홀들(730)에 대응하는 뿔 형상의 돌기들(741)이 돌출되어 있다.In the fine hole forming roller 740, the horn-shaped protrusions 741 corresponding to the fine holes 730 protrude from the outer surface facing the surface of the electrode mixture layer 720.
따라서, 미세 홀 형성용 롤러(740)의 외면이 전극 합제층(720)의 표면에 대면한 상태에서 회전 가압됨으로써, 전극 합제층(720)의 표면 부위로부터 집전체 쪽으로 만입된 뿔 형상의 미세 홀들(730)이 용이하게 형성될 수 있다.Therefore, the outer surface of the fine hole forming roller 740 is rotated and pressed in a state facing the surface of the electrode mixture layer 720, the horn-shaped fine holes indented toward the current collector from the surface portion of the electrode mixture layer 720 730 can be easily formed.
전극 합제층(720)에 미세 홀들(730)이 형성된 이후에, 미세 홀 형성용 롤러(740)는 전극 합제층(720)으로부터 분리된다.After the fine holes 730 are formed in the electrode mixture layer 720, the fine hole forming roller 740 is separated from the electrode mixture layer 720.
이하에서는 실시예를 통해 본 발명의 내용을 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail by way of examples, but the following examples are provided to illustrate the present invention, and the scope of the present invention is not limited thereto.
<실시예 1><Example 1>
인조 흑연, 카본 블랙, CMC, SBR을 95.8:1:1.2:2의 중량비로 증류수와 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 호일 위에 코팅하여 얇은 극판의 형태로 만들고, 135℃에서 3시간 이상 건조시킨 후 압연하여 음극 합제를 제조하였다. 상기 음극 합제의 로딩량은 4.5mAh/㎠이고, 기공의 장경이 0.5㎛ 내지 3㎛인 기공의 부피가 30%였다. 이후 도 5에 도시된 바와 같이 뿔 형상의 돌기가 형성된 미세 홀 형성용 금형을 상기 음극 합제층의 표면에 대면시킨 상태로 압력을 인가하여, 음극 합제층에 뿔 형상으로 만입된 복수의 미세 홀들을 형성시켰다. 이 때 미세 홀의 직경은, 표면 부위가 200 마이크로미터, 내측 단부가 35 마이크로미터였다. Artificial graphite, carbon black, CMC, and SBR were mixed with distilled water in a weight ratio of 95.8: 1: 1.2: 2 to prepare a negative electrode slurry. The negative electrode slurry was coated on a copper foil to form a thin electrode plate, dried at 135 ° C. for at least 3 hours, and then rolled to prepare a negative electrode mixture. The loading amount of the negative electrode mixture was 4.5 mAh / cm 2, and the volume of the pores having a long diameter of the pores of 0.5 μm to 3 μm was 30%. Thereafter, as shown in FIG. 5, the pressure is applied while the mold for forming the micro holes having the horn-shaped protrusions is formed to face the surface of the negative electrode mixture layer, thereby forming a plurality of fine holes in the horn shape in the negative electrode mixture layer. Formed. At this time, the diameter of the microholes was 200 micrometers at the surface portion and 35 micrometers at the inner end portion.
양극으로는 Li(Ni1/3Co1/3Mn1/3)O2를 양극 활물질로 하고, 카본블랙, PVDF와 함께 96:2:2로 증류수에 넣고 혼합(mixing)하여 양극 슬러리를 준비하였다. 상기 양극 슬러리를 알루미늄 호일에 코팅하여 얇은 극판 형태로 만든 후, 135에서 3시간 이상 건조하고, 압연하여 양극을 제조하였다. Li (Ni 1/3 Co 1/3 Mn 1/3 ) O 2 is used as a positive electrode active material, and is mixed with carbon black and PVDF in distilled water at 96: 2: 2 to prepare a positive electrode slurry. It was. The positive electrode slurry was coated on aluminum foil to form a thin electrode plate, dried at 135 or more for 3 hours, and rolled to prepare a positive electrode.
전해액은 에틸렌카보네이트와 에틸메틸카보네이트를 3:7의 vol%비율로 혼합하고, 여기에 LiPF6을 1.0M 농도로 첨가하였다. 또한, 비닐렌카보네이트, 프로판 설톤, 에틸렌 설페이트를 전해액 총량 대비 각각 0.2중량%로 첨가하였다. In the electrolyte solution, ethylene carbonate and ethyl methyl carbonate were mixed at a vol% ratio of 3: 7, and LiPF 6 was added thereto at a concentration of 1.0 M. In addition, vinylene carbonate, propane sultone and ethylene sulfate were added in an amount of 0.2% by weight based on the total amount of the electrolyte.
상기에서 제조된 음극, 양극 및 전해액을 이용하여 전지를 제조하였다. 분리막으로는 celgard2320을 사용하였다. A battery was manufactured using the negative electrode, the positive electrode, and the electrolyte solution prepared above. Celcel 2320 was used as a separator.
<실시예 2><Example 2>
음극의 로딩량을 3.7 mAh/㎠, 기공율을 34%로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다. A battery was manufactured in the same manner as in Example 1, except that the loading amount of the negative electrode was changed to 3.7 mAh / cm 2 and the porosity was 34%.
<실시예 3><Example 3>
음극의 로딩량을 5.3 mAh/㎠, 기공율을 27%로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 전지를 제조하였다. A battery was manufactured in the same manner as in Example 1, except that the loading amount of the negative electrode was changed to 5.3 mAh / cm 2 and the porosity was changed to 27%.
<비교예>Comparative Example
상기 실시예에서 음극 합제층에 미세홀을 형성하는 공정을 생략하여 제조된 음극을 사용한 것을 제외하고는 실시예와 동일한 방법으로 이차전지를 제조하였다. A secondary battery was manufactured in the same manner as in Example, except that a negative electrode prepared by omitting the process of forming fine holes in the negative electrode mixture layer was used.
<리튬 플레이팅 억제 효과><Lithium Plating Suppression Effect>
도 8은 실시예 1 및 비교예의 전지에 대한 음극 프로파일을 분석한 것이다. 음극 프로파일은 삼전극 시스템을 통해 충전시의 음극 프로파일(1.5C 충전)을 별도로 추출한 뒤 SOC에 대한 전위 값으로 표현된 그래프를 미분하여 확인하였다. 도 8에서 A는 실시예 1 전지, B는 비교예 전지에서 기울기가 변화되는 지점으로, 실시예 1에 따른 전지가 비교예에 따른 전지에 비해 충전 심도가 7% 정도 깊어져 리튬 플레이팅이 억제되는 효과가 있음을 알 수 있다. 8 analyzes the negative electrode profile for the cells of Example 1 and Comparative Example. The negative electrode profile was identified by differentially extracting the negative electrode profile (1.5C charge) during charging through the three-electrode system and differentially graphing the potential value for the SOC. In FIG. 8, A is the battery of Example 1, and B is the point where the inclination of the battery is changed. The battery according to Example 1 has a depth of charge about 7% deeper than that of the battery of Comparative Example, thereby preventing lithium plating. It can be seen that there is an effect.
<용량 측정><Capacity Measurement>
도 9는 실시예 1 및 비교예의 전지에 대한 용량을 측정한 결과이다. 도 9에 따르면, 실시예 1 전지는 비교예 전지와 비교해 손실되는 용량이 거의 나타나지 않는 것으로 보인다. 9 is a result of measuring the capacity of the batteries of Example 1 and Comparative Example. According to FIG. 9, the Example 1 cell appears to show little loss in capacity compared to the Comparative Example cell.
<리튬석출 여부 관찰><Observation of lithium precipitation>
실시예 1 내지 3 및 비교예의 전지에 대하여 4.1-2.5V 구동전압 범위 내에서 0.3C 방전/1C 충전의 조건으로 100 cycle 충/방전을 실시한 후, 전지를 분해하여 전극에 리튬의 석출 여부를 육안으로 관찰하여, 그 결과를 표 1에 나타내었다. 100 cycles of charging / discharging were performed on the batteries of Examples 1 to 3 and Comparative Examples under the condition of 0.3C discharge / 1C charging within the 4.1-2.5V driving voltage range, and then the batteries were disassembled to visually check whether lithium was deposited on the electrodes. Observation, and the results are shown in Table 1.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 Comparative example
리튬 석출 여부Lithium Precipitation XX XX XX OO
이상과 같이 본 발명의 이차전지용 전극은, 종래 미세 홀이 없는 전극 대비 용량의 손실이 거의 없으면서도, 전극 합제층의 높은 로딩량에도 불구하고, 리튬-플레이팅 현상의 발생을 예방해, 전극의 전기적 성능 저하를 방지할 수 있다.As described above, the electrode for secondary batteries of the present invention prevents the occurrence of lithium-plating phenomenon, despite the high loading amount of the electrode mixture layer, while having almost no loss of capacity compared to the electrode without the conventional fine holes. The performance degradation can be prevented.

Claims (14)

  1. 이차전지용 전극으로서, 집전체의 일면 또는 양면에 전극 활물질을 포함하는 전극 합제층이 형성되어 있고;As an electrode for secondary batteries, the electrode mixture layer containing an electrode active material is formed in one or both surfaces of an electrical power collector;
    상기 전극 합제층은 수직 단면상 표면으로부터 집전체 쪽으로 만입된 복수의 미세 홀들을 포함하고 있으며,The electrode mixture layer includes a plurality of fine holes indented toward the current collector from the vertical cross-sectional surface,
    각각의 미세 홀은 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 순차적으로 감소하는 뿔(horn) 형상으로 이루어진 것을 특징으로 하는 이차전지용 전극.Each fine hole is a secondary battery electrode, characterized in that the horn (horn) shape that the diameter gradually decreases toward the current collector from the vertical cross-section surface.
  2. 제 1 항에 있어서, 상기 미세 홀들은 3.5 내지 5.5 mAh/cm2의 로딩량 및 25% 내지 35%의 공극률을 가진 전극 합제층에 형성되는 것을 특징으로 하는 이차전지용 전극.The electrode of claim 1, wherein the fine holes are formed in an electrode mixture layer having a loading amount of 3.5 to 5.5 mAh / cm 2 and a porosity of 25% to 35%.
  3. 제 1 항에 있어서, 상기 미세 홀은 수직 단면상 표면 부위로부터 집전체 쪽으로 형성된 깊이가 이에 대응하는 전극 합제층의 두께에 대해 80% 내지 90%의 크기인 것을 특징으로 하는 이차전지용 전극.The method of claim 1, wherein the fine hole is a secondary battery electrode, characterized in that the depth formed from the surface portion in the vertical cross-section toward the current collector has a size of 80% to 90% of the thickness of the electrode mixture layer corresponding thereto.
  4. 제 1 항에 있어서, 상기 미세 홀은 전극 합제층의 표면 부위에서 평면상으로 삼각형, 사각형, 오각형, 육각형, 원형, 반원형, 또는 타원형 형상인 것을 특징으로 하는 이차전지용 전극.The electrode of claim 1, wherein the fine holes have a triangular, square, pentagonal, hexagonal, circular, semicircular, or elliptical shape in plan view at the surface portion of the electrode mixture layer.
  5. 제 1 항에 있어서, 상기 미세 홀은 수직 단면상 표면 부위에서의 평균 직경이 100 마이크로미터 내지 200 마이크로미터이고, 내측 단부 부위에서의 평균 직경이 20 마이크로미터 내지 50 마이크로미터인 것을 특징으로 하는 이차전지용 전극.The method of claim 1, wherein the fine hole has a mean diameter of 100 micrometers to 200 micrometers in the surface portion on the vertical cross section, the average diameter at the inner end portion of 20 to 50 micrometers for secondary batteries electrode.
  6. 제 1 항에 있어서, 상기 복수의 미세 홀들은 전극 합제층의 표면 부위에서 평면상으로 규칙적인 배열 구조를 가진 것을 특징으로 하는 이차전지용 전극.The electrode of claim 1, wherein the plurality of fine holes have a regular arrangement in planar shape at a surface portion of the electrode mixture layer.
  7. 제 1 항에 있어서, 상기 미세 홀은 수직 단면상 표면으로부터 집전체 쪽으로 갈수록 직경이 연속적 또는 비연속적으로 감소하는 형상을 가진 것을 특징으로 하는 이차전지용 전극.The secondary battery electrode of claim 1, wherein the fine holes have a shape in which the diameter decreases continuously or discontinuously from the surface in the vertical section toward the current collector.
  8. 제 1 항에 따른 이차전지용 전극을 제조하는 장치로서,An apparatus for manufacturing the secondary battery electrode according to claim 1,
    상기 장치는 미세 홀 형성용 금형을 포함하고 있고;The apparatus includes a mold for forming fine holes;
    상기 미세 홀 형성용 금형은, 일면이 전극 합제층의 표면에 대면한 상태에서 가압될 때, 전극 합제층의 표면 부위로부터 집전체 쪽으로 만입된 뿔 형상의 미세 홀들이 형성될 수 있도록, 상기 미세 홀들에 대응하는 뿔 형상의 돌기들이 일면에 돌출되어 있는 것을 특징으로 하는 이차전지용 전극 제조장치.The micro holes are formed in the mold for forming fine holes such that when one surface is pressed in a state facing the surface of the electrode mixture layer, horn-shaped fine holes indented toward the current collector from the surface portion of the electrode mixture layer may be formed. Electrode manufacturing apparatus for a secondary battery, characterized in that the projections of the horn shape corresponding to the protruding on one surface.
  9. 제 1 항에 따른 이차전지용 전극을 제조하는 장치로서,An apparatus for manufacturing the secondary battery electrode according to claim 1,
    상기 장치는 미세 홀 형성용 롤러를 포함하고 있고;The apparatus comprises a roller for forming fine holes;
    상기 미세 홀 형성용 롤러는, 외면이 전극 합제층의 표면에 대면한 상태에서 회전 가압될 때, 전극 합제층 표면 부위로부터 집전체 쪽으로 만입된 뿔 형상의 미세 홀들이 형성될 수 있도록, 상기 미세 홀들에 대응하는 뿔 형상의 돌기들이 외면에 돌출되어 있는 것을 특징으로 하는 이차전지용 전극 제조장치.The fine hole forming rollers may be formed such that when the outer surface is pressed against the surface of the electrode mixture layer in a rotational manner, horn-shaped fine holes indented toward the current collector from the surface of the electrode mixture layer may be formed. Electrode manufacturing apparatus for a secondary battery, characterized in that the projections of the horn shape corresponding to the projecting on the outer surface.
  10. 제 8 항 또는 제 9 항에 있어서, 상기 뿔 형상의 돌기들은 수직 단면상 상대적으로 큰 직경을 갖는 단부 부위에서의 평균 직경이 100 마이크로미터 내지 200 마이크로미터이고, 상대적으로 작은 직경을 갖는 단부 부위에서의 평균 직경이 20 마이크로미터 내지 50 마이크로미터인 것을 특징으로 하는 이차전지용 전극 제조장치.10. The horn shaped projections of claim 8 or 9, wherein the horn-shaped protrusions have an average diameter at an end portion having a relatively large diameter in a vertical cross section of 100 micrometers to 200 micrometers, and at an end portion having a relatively small diameter. Secondary battery electrode manufacturing apparatus, characterized in that the average diameter is 20 to 50 micrometers.
  11. 제 1 항 내지 제 7 항 중 어느 하나에 따른 이차전지용 전극을 제조하는 방법으로서, A method for manufacturing the secondary battery electrode according to any one of claims 1 to 7,
    a) 집전체 상에 전극 활물질을 포함하는 전극 합제용 슬러리를 도포하는 과정;a) applying a slurry for electrode mixture including an electrode active material on a current collector;
    b) 상기 전극 합제용 슬러리가 도포된 집전체를 건조 및 압연하여 전극 합제층을 형성하는 과정; 및b) drying and rolling the current collector coated with the slurry for electrode mixture to form an electrode mixture layer; And
    c) 금형 또는 롤러를 상기 전극 합제층의 표면에 대면시킨 상태로 압력을 인가하여, 상기 전극 합제층에 뿔 형상으로 만입된 복수의 미세 홀들을 형성하는 과정; c) applying a pressure with the mold or roller facing the surface of the electrode mixture layer to form a plurality of fine holes indented in the shape of a horn in the electrode mixture layer;
    을 포함하는 것을 특징으로 하는 이차전지용 전극 제조방법.Secondary battery electrode manufacturing method comprising a.
  12. 제 11 항에 있어서, 상기 과정 b)에서 형성된 전극 합제층은 3.5 내지 5.5 mAh/cm2의 로딩량 및 25% 내지 35%의 공극률을 가진 것을 특징으로 하는 이차전지용 전극 제조방법.The method of claim 11, wherein the electrode mixture layer formed in step b) has a loading amount of 3.5 to 5.5 mAh / cm 2 and a porosity of 25% to 35%.
  13. 제 11 항에 있어서, 상기 금형 또는 롤러는, 건조 및 압연된 전극 합제층의 표면에 대면하는 부위에, 상기 뿔 형상의 미세 홀들에 대응하는 형상으로 이루어진 미세 홀 형성용 돌기들을 포함하고 있는 것을 특징으로 하는 이차전지용 전극 제조방법.12. The method of claim 11, wherein the mold or roller, the site facing the surface of the electrode mixture layer dried and rolled, and comprises a fine hole forming projections formed in a shape corresponding to the horn-shaped fine holes Secondary battery electrode manufacturing method.
  14. 제 13 항에 있어서, 상기 뿔 형상의 돌기들 각각은 수직 단면상 상대적으로 큰 직경을 갖는 단부 부위에서의 평균 직경이 100 마이크로미터 내지 200 마이크로미터이고, 상대적으로 작은 직경을 갖는 단부 부위에서의 평균 직경이 20 마이크로미터 내지 50 마이크로미터인 것을 특징으로 하는 이차전지용 전극 제조방법.15. The method of claim 13, wherein each of the horn-shaped protrusions has an average diameter at an end portion having a relatively large diameter in a vertical cross section of 100 micrometers to 200 micrometers, and an average diameter at an end portion having a relatively small diameter. 20 micrometers-50 micrometers, The electrode manufacturing method for secondary batteries characterized by the above-mentioned.
PCT/KR2017/009079 2016-08-25 2017-08-21 Electrode for secondary battery comprising fine holes WO2018038479A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780004280.5A CN108292737B (en) 2016-08-25 2017-08-21 Electrode for secondary battery having fine pores
EP17843899.0A EP3370280B1 (en) 2016-08-25 2017-08-21 Electrode for secondary battery having fine holes
US15/772,755 US10818929B2 (en) 2016-08-25 2017-08-21 Electrode for secondary battery having fine holes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160108048 2016-08-25
KR10-2016-0108048 2016-08-25
KR10-2017-0101381 2017-08-10
KR1020170101381A KR102054326B1 (en) 2016-08-25 2017-08-10 Electrode for Secondary Battery Having Fine Holes

Publications (1)

Publication Number Publication Date
WO2018038479A1 true WO2018038479A1 (en) 2018-03-01

Family

ID=61246151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009079 WO2018038479A1 (en) 2016-08-25 2017-08-21 Electrode for secondary battery comprising fine holes

Country Status (1)

Country Link
WO (1) WO2018038479A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686918A (en) * 2018-12-25 2019-04-26 遵化市清吉电池科技有限公司 A kind of electrodes of lithium-ion batteries and preparation method thereof
US20210050599A1 (en) * 2019-08-16 2021-02-18 Samsung Sdi Co., Ltd. High loading electrodes having high areal capacity and energy storage devices including the same
CN113991064A (en) * 2021-10-09 2022-01-28 湖南立方新能源科技有限责任公司 Thick electrode structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017040A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Electrode for lithium secondary battery, and manufacturing method thereof
JP2012190625A (en) * 2011-03-10 2012-10-04 Hitachi Ltd Nonaqueous secondary battery
JP5572974B2 (en) * 2009-03-24 2014-08-20 セイコーエプソン株式会社 Manufacturing method of solid secondary battery
KR20150051046A (en) * 2013-11-01 2015-05-11 주식회사 엘지화학 Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
WO2016039264A1 (en) * 2014-09-10 2016-03-17 三菱マテリアル株式会社 Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017040A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Electrode for lithium secondary battery, and manufacturing method thereof
JP5572974B2 (en) * 2009-03-24 2014-08-20 セイコーエプソン株式会社 Manufacturing method of solid secondary battery
JP2012190625A (en) * 2011-03-10 2012-10-04 Hitachi Ltd Nonaqueous secondary battery
KR20150051046A (en) * 2013-11-01 2015-05-11 주식회사 엘지화학 Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
WO2016039264A1 (en) * 2014-09-10 2016-03-17 三菱マテリアル株式会社 Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686918A (en) * 2018-12-25 2019-04-26 遵化市清吉电池科技有限公司 A kind of electrodes of lithium-ion batteries and preparation method thereof
US20210050599A1 (en) * 2019-08-16 2021-02-18 Samsung Sdi Co., Ltd. High loading electrodes having high areal capacity and energy storage devices including the same
CN113991064A (en) * 2021-10-09 2022-01-28 湖南立方新能源科技有限责任公司 Thick electrode structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2014116029A1 (en) Anode for lithium secondary battery and lithium secondary battery including same
WO2017171409A1 (en) Anode for secondary battery, manufacturing method therefor, and secondary battery comprising same
WO2015041450A1 (en) Porous silicon-based anode active material, and lithium secondary battery containing same
WO2013154253A1 (en) Electrode including porous coating layer, method for manufacturing same, and electrochemical device including same
WO2010016727A2 (en) Method of preparing gel polymer electrolyte secondary battery and gel polymer electrolyte secondary battery
CN210123779U (en) Through-hole lithium film prefabricated part, composite negative electrode and energy storage device
WO2011145871A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2020149622A1 (en) Anode and secondary battery comprising said anode
WO2018038479A1 (en) Electrode for secondary battery comprising fine holes
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
KR102054326B1 (en) Electrode for Secondary Battery Having Fine Holes
WO2016114474A1 (en) Slurry composition for electrode, electrode, and secondary battery
WO2019164343A1 (en) Secondary battery
WO2019045552A1 (en) Method for manufacturing flexible battery, and flexible battery manufactured thereby
WO2020122459A1 (en) Anode active material for lithium secondary battery and secondary battery comprising same
WO2019147084A1 (en) Method for manufacturing lithium secondary battery anode
WO2017142261A1 (en) Negative electrode manufacturing method and negative electrode
WO2020149618A1 (en) Method for preparing negative electrode active material
WO2019103546A2 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
WO2018008954A1 (en) Positive electrode and secondary battery including same positive electrode
WO2018128321A1 (en) Patterning for lithium metal and electrochemical device using same
WO2022092679A1 (en) Electrode assembly and battery cell including same
WO2022086103A1 (en) Electrode for secondary battery, secondary battery including same, and electrode manufacturing method
WO2022045852A1 (en) Negative electrode and secondary battery comprising same
WO2016153255A1 (en) Cathode active material and preparation method therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE