WO2017142261A1 - Negative electrode manufacturing method and negative electrode - Google Patents

Negative electrode manufacturing method and negative electrode Download PDF

Info

Publication number
WO2017142261A1
WO2017142261A1 PCT/KR2017/001517 KR2017001517W WO2017142261A1 WO 2017142261 A1 WO2017142261 A1 WO 2017142261A1 KR 2017001517 W KR2017001517 W KR 2017001517W WO 2017142261 A1 WO2017142261 A1 WO 2017142261A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode
active material
density
graphite
Prior art date
Application number
PCT/KR2017/001517
Other languages
French (fr)
Korean (ko)
Inventor
송준혁
김은경
정주호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170016846A external-priority patent/KR101950859B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17753422T priority Critical patent/PL3301743T3/en
Priority to US15/740,048 priority patent/US10601026B2/en
Priority to EP17753422.9A priority patent/EP3301743B1/en
Priority to CN201780002425.8A priority patent/CN107851778B/en
Publication of WO2017142261A1 publication Critical patent/WO2017142261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode and a negative electrode produced by the above production method.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • a secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and transfers energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again during discharge by the first charge. Since it plays a role, it becomes possible to charge and discharge.
  • a lithium secondary battery has a structure in which a lithium electrolyte is impregnated into an electrode assembly including a cathode including a lithium transition metal oxide as an electrode active material, a cathode including a carbon-based active material, and a porous separator.
  • the positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil
  • the negative electrode is prepared by coating a negative electrode mixture including a carbon-based active material on a copper foil.
  • the first technical problem to be solved of the present invention by measuring the expansion curve of the plurality of negative electrode samples, by calculating the optimum electrode density according to the type of the negative electrode active material can be both excellent efficiency and life characteristics of the secondary battery It is to provide a method for producing a negative electrode.
  • the second technical problem to be solved of the present invention is to provide a negative electrode manufactured according to the manufacturing method of the negative electrode.
  • the third technical problem to be solved of the present invention is to provide a secondary battery, a battery module and a battery pack including the negative electrode.
  • the present invention includes a first step of preparing a plurality of negative electrode samples including the active material layer of the same composition, having a different electrode density; A second step of measuring a negative electrode expansion curve according to the SOC in the first charging cycle for each negative electrode sample; When the SOC value of the tangent slope with respect to the measured cathodic expansion curve is x (where x ⁇ 50), the difference between the slope values of the tangent lines with respect to the curve at x-5 and x + 5 is measured. The third step; A fourth step of selecting an optimal electrode density such that the difference in the measured tilt values satisfies a range of 0 to 0.5; And a fifth step of manufacturing the negative electrode under conditions satisfying the selected optimal electrode density.
  • the present invention is a negative electrode prepared according to the manufacturing method of the negative electrode, the negative electrode is graphite composed of secondary particles of low graphite degree as an active material, the electrode density of the negative electrode is 1.3 g / cc to 1.5 g / cc Provide a cathode.
  • the present invention is a negative electrode prepared according to the manufacturing method of the negative electrode, the negative electrode is graphite composed of secondary particles of high graphite degree as an active material, the electrode density of the negative electrode is 1.4 g / cc to 1.7 g / cc Provide a cathode.
  • the present invention provides a secondary battery including the negative electrode, the positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte, and a battery module and a battery pack including the same as a unit cell.
  • the negative electrode expansion curve according to the first charge cycle of each negative electrode sample is measured, and using the negative electrode expansion curve
  • Example 2 is a graph showing the capacity characteristics according to the cycle of each of the negative electrode samples prepared by Example 2 and Comparative Examples 1, 2 of the present application.
  • FIG. 3 is a graph showing the capacity characteristics according to the cycle of each of the negative electrode samples prepared by Examples 4, 6 and Comparative Example 3 of the present application.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the method of manufacturing a negative electrode according to the present invention includes a first step of preparing a plurality of negative electrode samples including active material layers having the same composition, and having different electrode densities; A second step of measuring a negative electrode expansion curve according to the SOC in the first charging cycle for each negative electrode sample; When the SOC value of the tangent slope with respect to the measured cathodic expansion curve is x (where x ⁇ 50), the difference between the slope values of the tangent lines with respect to the curve at x-5 and x + 5 is measured. The third step; A fourth step of selecting an optimal electrode density such that the difference in the measured tilt values satisfies a range of 0 to 0.5; And a fifth step of manufacturing the negative electrode under conditions satisfying the selected optimal electrode density.
  • a plurality of negative electrode samples including active material layers having the same composition but having different electrode densities are prepared (first step).
  • the preparation of the negative electrode may be prepared by applying a negative electrode slurry made by mixing a negative electrode active material, a conductive material and a binder mixed in an organic solvent on a negative electrode current collector, followed by drying and rolling.
  • the electrode density may be adjusted in the drying and rolling steps after applying the negative electrode slurry.
  • the expansion curve of the negative electrode may vary according to the type of active material in the negative electrode, and in particular, may vary according to the powder compression density of the active material.
  • the optimum electrode density can be calculated according to the type of the active material, and the negative electrode having excellent life characteristics and initial efficiency characteristics can be manufactured using the same.
  • the electrode density means the amount of the negative electrode copolymer coated in the same volume.
  • the powder compact density refers to the amount of the negative electrode active material coated in the same volume when 3 g of the negative electrode active material is compressed to 1000 kg under a powder compression density measurement condition of 10 mm.
  • the negative electrode active material having a powder pressing density of 1.75 g / cc does not refer to the negative electrode active material obtained by performing the compression treatment, but has a physical property value of a press density of 1.75 g / cc when the negative electrode active material is subjected to the compression treatment test. It means the negative electrode active material which has a.
  • the active material layer may include an active material, a conductive material, and / or a binder, and may include a graphite-based active material.
  • the graphite-based active materials particularly, natural graphite and artificial graphite have a staging phenomenon due to the insertion of lithium ions into the mesh, and thus the negative electrode expansion curve shows an S-shaped opening and a thick expanding opening.
  • the active material layer may include graphite composed of secondary particles having low graphitization degree or graphite having high graphite degree secondary particles as an active material.
  • manufacturing a plurality of negative electrode samples having different electrode densities in the first step may be performed by, for example, a method of manufacturing a plurality of negative electrode samples for each electrode density by varying the pressure at the time of manufacturing the negative electrode sample. Can be.
  • the negative electrode sample may be prepared at an electrode density of 1.3 g / cc to 1.8 g / cc.
  • the negative electrode sample may be coated with a negative electrode slurry prepared by mixing a negative electrode mixture including an active material, a conductive material, and a binder in an organic solvent on a negative electrode current collector, and then dried in a range of 200 kg / 5 cm to 2000 kg / 5 cm. By rolling at different pressures, a negative electrode sample having the above electrode density can be prepared. At this time, the powder compression density characteristics and the electrode density characteristics are in proportion.
  • the electrode density of the negative electrode and the type of the negative electrode active material are not limited as described above, and after selecting the negative electrode active material to be prepared as the negative electrode, By preparing a plurality of negative electrode samples, the optimum negative electrode density according to the type of the negative electrode active material can be calculated.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials, such as a polyphenylene derivative, etc. can be used, Specifically, acetylene black can be used.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor
  • Various types of binder polymers can be used, such as fonned EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or various copolymers.
  • CMC and SBR can be used.
  • the negative electrode expansion curve according to the SOC in the first charging cycle is measured (second step).
  • a coin-type half secondary battery including the negative electrode sample may be manufactured.
  • a metal lithium foil is used as a positive electrode
  • a plurality of negative electrode samples prepared in the first step are used as a negative electrode
  • an electrode assembly is prepared through a separator between the positive electrode and the negative electrode, and an electrolyte solution is injected.
  • an electrolyte solution is injected.
  • a coin type half secondary battery was manufactured for each of the plurality of negative electrode samples prepared in the first step, and then charged to measure the expansion curve of the negative electrode showing the change in thickness of the negative electrode according to SOC during charging. can do.
  • the thickness change of the SOC and the cathode may be measured by a real time thickness measurement method through a spring type real time displacement measuring device.
  • the optimum electrode density can be found through the section in which the SOC value is less than 50%. For example, when analyzing a section in which the SOC value exceeds 50%, it is difficult to analyze the characteristics according to the slope because the change of the slope is not sudden but appears constant.
  • the slope of the tangent to the measured cathodic expansion curve is less than 50% SOC of 1 and the SOC is 25%
  • the slope of the expansion curve at 20% of the SOC is 20 g (20 )
  • the slope of the expansion curve at 30% SOC can be represented by g (30)
  • the difference in the slope value of the curve can be represented by g (20)-g (30).
  • an optimal electrode density is selected such that the difference in the measured slope values satisfies the range of 0 to 0.5 (step 4).
  • the electrode when the difference between the measured tilt values is greater than 0.5, the electrode is overcompressed, and thus there is a problem that the initial efficiency is low and the swelling is severe due to poor life characteristics.
  • the difference in the slope value of the curve when the difference in the slope value of the curve is in the range of 0 to 0.5, it has an optimal electrode density corresponding to a specific negative electrode active material, and thus has a lifespan characteristic due to problems such as peeling or cracking of the active material that appeared when the electrode density is large. Problems such as a decrease in resistance and an increase in resistance can be prevented, and conversely, problems such as a decrease in capacity of the battery, which can occur when the electrode density is low, can be prevented.
  • a cathode is manufactured under the conditions satisfying the selected optimal electrode density (step 5).
  • a negative electrode having excellent life characteristics, efficiency, and capacity characteristics may all be manufactured, and a secondary battery having excellent life characteristics and efficiency may be manufactured including the same.
  • the secondary battery may include a separator and an electrolyte interposed between the negative electrode, the positive electrode, the negative electrode and the positive electrode.
  • the negative electrode may be manufactured in the same manner as the manufacturing process of the negative electrode sample in the first step.
  • the negative electrode mixture including the active material, the conductive material, and the binder may be mixed with an organic solvent to prepare a negative electrode slurry, and then the negative electrode slurry may be applied onto a current collector, dried, and rolled.
  • the negative electrode may include graphite composed of secondary particles having a low graphitization degree or graphite composed of secondary particles having a high graphitization degree as an active material.
  • an optimum electrode density of the negative electrode may be 1.3 g / cc to 1.5 g / cc.
  • the electrode density of a negative electrode including graphite composed of secondary particles having low graphite degree as an active material is less than 1.3 g / cc, the lifetime characteristics and initial efficiency of the battery including the electrode are low, and thus the electrode density is not suitable. If is more than 1.5 g / cc, the electrode may be over-compressed to increase the resistance or to decrease the life characteristics.
  • the optimum electrode density of the negative electrode may be 1.4 g / cc to 1.7 g / cc.
  • the electrode density of the negative electrode including graphite composed of secondary particles having high graphite degree as an active material is less than 1.4 g / cc, the lifespan characteristics and initial efficiency of the battery including the electrode are low, and thus the electrode density is not suitable. If is greater than 1.7 g / cc, the electrode may be over-compressed to increase the resistance or decrease the life characteristics.
  • the conductive material and the binder may be the same as described above, specifically, the conductive material may include acetylene black, the binder may include CMC and SBR.
  • the active material, the conductive material and the binder may be included in a weight ratio of 95 to 95.5: 0.5 to 1.5: 3.5 to 4, and specifically, may be included in a weight ratio of 95.3: 1: 3.7.
  • the positive electrode may be prepared by applying a slurry prepared by mixing a positive electrode mixture including an active material, a conductive material, and a binder to an organic solvent on a current collector, followed by drying and rolling.
  • the conductive material and the binder may be the same as or different from that used for the negative electrode active material.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl Lithium borate, imide and the like can be used.
  • the separator is a conventional porous polymer film conventionally used as a separator, for example, polyolefin-based, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. no.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having excellent capacity, efficiency characteristics and lifespan characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • Graphite composed of secondary particles of low graphitization degree having a powder compression density of 1.75 g / cc was prepared. 95.3% by weight of graphite composed of secondary particles of low graphitization degree, N-methyl-2P as a solvent of a negative electrode mixture containing 1% by weight of acetylene black series carbon particles as a conductive material and 3.7% by weight of CMC and SBR as a binder.
  • a negative electrode slurry was prepared by adding to Rollidone (NMP). The negative electrode slurry was applied to a copper thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried to prepare a negative electrode sample, followed by roll pressing.
  • the loading amount of the negative electrode was 250 mg / 25 cm 2 and roll press to 200 kg / 5 cm so that the electrode density of the negative electrode is 1.3 g / cc.
  • a spring was installed on the top plate to prepare a secondary battery capable of real-time thickness measurement according to the expansion of the negative electrode.
  • a real-time displacement measuring device was installed on the top plate to measure the thickness change according to charge and discharge.
  • an LCO-based cathode active material of 1.8 cm 2 was used as an anode, and an electrode assembly was prepared through a polyethylene separator between the cathode and the anode.
  • a non-aqueous electrolyte was prepared by adding 1 M LiPF 6 to a nonaqueous electrolyte solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2. Was prepared.
  • a negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compaction density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 200 kg / 5 cm to obtain an electrode density of 1.4 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
  • a negative electrode sample was prepared using graphite composed of high graphitized secondary particles having a powder compaction density of 1.95 g / cc as an active material, wherein the negative electrode was roll-pressed at 400 kg / 5 cm to obtain an electrode density of 1.5 g / cc.
  • a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1, except that.
  • a negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compaction density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 700 kg / 5 cm to have an electrode density of 1.6 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
  • a negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compression density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 900 kg / 5 cm so that the electrode density of the negative electrode sample was 1.7 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
  • the electrode density of the negative electrode sample prepared using the graphite composed of low graphitization secondary particles having a powder compression density of 1.75 g / cc as an active material is 1.6 g / cc.
  • a negative electrode and a secondary battery including the same were prepared.
  • a negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compression density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 1200 kg / 5 cm so that the electrode density of the negative electrode sample was 1.8 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
  • the cathodic expansion curve for fullness of the first cycle is shown in FIG. 1.
  • the SOC value is 25% when the slope is 1 when the SOC value is less than 50%, which is g (25)
  • the difference in the slope value of the tangent to the curve at g (20) and g (30) was measured as 0.1.
  • Example 4 when using graphite composed of secondary particles of high graphite degree as in Examples 4 to 6, and Comparative Example 3, Example 4, the difference in the slope value of the curve at x-5 and x + 5 is within 0.5 It can be seen that the value of 6 to 6 can be an optimum electrode density for the case of using graphite composed of the secondary particles of the high graphitization degree as the active material.
  • the difference in the slope value of the tangent to the curves at x-5 and x + 5 represents 0.5 in Example 7, and exceeds 0.5 in Comparative Example 3, whereby the active material exceeds the electrode of Example 7. It can be expected that the overcompression of the cathode in density will increase the resistance or decrease the lifetime characteristics.
  • the thickness of the negative electrode of the coin-type half secondary battery (CHC) was measured before and after the first cycle was carried out in Examples 1 to 7, and Comparative Examples 1 to 3, respectively.
  • the swelling characteristic of the negative electrode is determined based on the full layer thickness, and when the swelling is small, the performance of the secondary battery is determined to be excellent. It tends to decrease. This means that while the charging capacity is the same, the discharge capacity is lowered and the initial efficiency is lowered. As the rolling density increases, the absolute amount of the active material participating in the overall battery reaction decreases, thereby lowering the swelling characteristics. Accordingly, the initial efficiency of Examples 1 to 7 is excellent compared to Comparative Examples 1 to 3 where the swelling characteristics are relatively high.
  • the graphite composed of the low graphitization secondary particles as an active material, and the negative electrode having excellent initial efficiency and expansion characteristics is the electrode density between Example 1 and Example 3, which is the implementation
  • the difference in the slope value according to the SOC of the expansion curve is 0.5 or less, it can be seen that the results supporting the confirmation that the optimum electrode density between the electrode density between Example 1 and Example 3.
  • the graphite composed of the secondary particles of the high graphitization degree as an active material, and the negative electrode excellent in both initial efficiency and expansion characteristics is the electrode density between Example 4 and Example 7, which is the embodiment
  • the difference in the slope value according to the SOC of the expansion curve is 0.5 or less, it can be seen that the results supporting the confirmation that the optimum electrode density between the electrode density between Example 4 and Example 7.
  • a secondary battery including graphite composed of secondary particles of low graphite degree according to Example 2 and Comparative Examples 1 and 2 as a negative electrode active material, and high graphite degree according to Examples 4, 6, and Comparative Example 3 Capacity characteristics according to cycles were compared with respect to each of the secondary batteries including graphite composed of the secondary particles as the negative electrode active material, and the results are shown in FIGS. 2 and 3, respectively.
  • the lithium secondary battery having a battery capacity of 30mAh manufactured in Examples 2, 4, 6 and Comparative Examples 1 to 3 was charged at 25 ° C. until 1V constant current was 4.4V, and then charged at 4.4V constant voltage. The charging was terminated when the charging current reached 1.5 mA. Thereafter, it was left for 10 minutes, and then discharged until it became 3V at 0.5C constant current. The charge-discharge behavior was used as one cycle, and the cycle was repeated 200 times, and the capacity according to the cycles according to the present example and the comparative example was measured.
  • Example 2 in a secondary battery including graphite composed of secondary particles having low graphitization degree as a negative electrode active material, the secondary battery prepared in Example 2 was manufactured in Comparative Examples 1 and 2 while the cycle was repeated 200 times. Compared to the secondary battery, the cycle characteristics were found to be much better.
  • Experimental Example 1 in the case of Example 2 in the negative electrode expansion curve according to SOC in the first charging cycle, when the SOC value when the slope of the tangent is less than 50% SOC 1, x, This is because the difference in the slope values of the curves at x-5 and x + 5 satisfies a value of 0.5 or less, and thus has an optimum electrode density.
  • Figure 3 is a graph showing the capacity change during the cycle is repeated 200 times in the secondary battery comprising graphite composed of secondary particles of high graphite degree as a negative electrode active material, as shown in Figure 3, Example 4 And the secondary battery prepared in 6 exhibited excellent cycle characteristics compared to the secondary battery prepared in Comparative Example 3.
  • Experimental Example 1 in Examples 4 and 6, in the cathode expansion curve according to SOC in the first charging cycle, the SOC value when the tangential slope is less than 50% of SOC is x. This is because the difference in the slope values of the curves at x-5 and x + 5 satisfies a value of 0.5 or less, respectively, to have an optimum electrode density.

Abstract

The present invention relates to a negative electrode manufacturing method and a negative electrode manufactured by the manufacturing method. Particularly, the present invention provides a negative electrode manufacturing method and a negative electrode manufactured by the method, which comprises: a first step of manufacturing a plurality of negative electrode samples comprising the same composition of active material layers and having different electrode densities; a second step of measuring a negative electrode expansion curve that follows a SOC at a first charging cycle with regard to each negative electrode sample; a third step of measuring, provided that x refers to an SOC value having "1" as the inclination of a tangent to the measured negative electrode expansion curve (but x<50), the difference between inclination values of tangents to the curve at (x-5) and (x+5); a fourth step of selecting an optimal electrode density such that the measured difference between inclination values satisfies the range of 0-0.5; and a fifth step of manufacturing a negative electrode in such a condition that the selected optimal electrode density is satisfied. According to the present invention, negative electrode samples having different electrode densities are manufactured, and, if the rate of change of the inclination value of a tangent to a negative electrode expansion curve that follows first charging of the negative samples satisfies a specific value in a range in which the expansion curve increases and in which the initial SOC is less than 50%, a secondary battery manufactured using the negative electrode that has the above electrode density can exhibit the most excellent life characteristics and initial efficiency in connection with the corresponding active material.

Description

음극 제조방법 및 음극Cathode Manufacturing Method and Cathode
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 2월 15일자 한국특허출원 제2016-0017214호 및 2017년 2월 7일자 2017-0016846호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 2016-0017214 dated February 15, 2016 and 2017-0016846 dated February 7, 2017, and all contents disclosed in the documents of the Korean patent application are Included as part of the.
기술분야Technical Field
본 발명은 음극의 제조방법 및 상기 제조방법에 의해 제조된 음극에 관한 것이다.The present invention relates to a method for producing a negative electrode and a negative electrode produced by the above production method.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy or clean energy is increasing, and the most actively researched fields are power generation and storage using electrochemical reactions.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도와 작동 전위를 나타내고 싸이클 수명이 길며 자기 방전율이 낮은 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.A representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing. Recently, as the development and demand for portable devices such as portable computers, portable telephones and cameras increases, the demand for secondary batteries as a source of energy is rapidly increasing. Many researches have been conducted on this long, low self-discharge rate lithium battery and are commercially available and widely used.
일반적으로 이차 전지는 양극, 음극, 전해질로 구성되며, 첫 번째 충전에 의해 양극 활물질로부터 나온 리튬 이온이 카본 입자와 같은 음극 활물질 내에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.In general, a secondary battery is composed of a positive electrode, a negative electrode, and an electrolyte, and transfers energy while reciprocating both electrodes such that lithium ions from the positive electrode active material are inserted into a negative electrode active material such as carbon particles and are detached again during discharge by the first charge. Since it plays a role, it becomes possible to charge and discharge.
예를 들어, 리튬 이차전지는 전극 활물질로서 리튬 전이금속 산화물을 포함하는 양극과, 카본계 활물질을 포함하는 음극 및 다공성 분리막으로 이루어진 전극 조립체에 리튬 전해질이 함침되어 있는 구조로 이루어져 있다. 양극은 리튬 전이금속 산화물을 포함하는 양극 합제를 알루미늄 호일에 코팅하여 제조되며, 음극은 카본계 활물질을 포함하는 음극 합제를 구리 호일에 코팅하여 제조된다.For example, a lithium secondary battery has a structure in which a lithium electrolyte is impregnated into an electrode assembly including a cathode including a lithium transition metal oxide as an electrode active material, a cathode including a carbon-based active material, and a porous separator. The positive electrode is prepared by coating a positive electrode mixture containing a lithium transition metal oxide on an aluminum foil, and the negative electrode is prepared by coating a negative electrode mixture including a carbon-based active material on a copper foil.
한편, 상기 이차 전지의 고용량화를 달성하기 위하여, 수명, 저항 등의 성능을 동등하게 유지한 채, 단위 부피 안에 가능한 한 많은 음극 활물질을 활용하기 위해서는 고밀도의 전극을 구현하는 것이 필수적이다. On the other hand, in order to achieve high capacity of the secondary battery, it is essential to implement a high-density electrode in order to utilize as many negative electrode active materials as possible in a unit volume while maintaining performances such as lifespan and resistance.
종래는 음극 활물질의 물성을 고려하지 않고, 가능한 한 최대로 압연하여 고밀도 전극을 구현하려는 시도가 있었으나, 이는 활물질의 박리, 균열 등을 야기시켜 저항 증가 및 수명 특성 감소를 야기시킬 우려가 있었다. Conventionally, attempts have been made to implement the high density electrode by rolling as much as possible without considering the physical properties of the negative electrode active material, but this may cause peeling, cracking, etc. of the active material, causing increased resistance and reduced lifetime characteristics.
이에 따라, 음극 활물질의 종류에 따라 최적의 성능을 발휘할 수 있는 전극 밀도의 구현을 통해 전지의 성능을 개선시킬 수 있는 방법의 개발이 요구된다.Accordingly, the development of a method for improving the performance of the battery through the implementation of the electrode density that can exhibit the optimum performance according to the type of the negative electrode active material is required.
본 발명의 해결하고자 하는 제1 기술적 과제는, 복수개의 음극 샘플의 팽창 곡선을 측정하여, 음극 활물질의 종류에 따른 최적의 전극 밀도를 산출함으로써 이차 전지의 효율 및 수명 특성이 모두 우수하게 나타날 수 있는 음극의 제조 방법을 제공하는 것이다. The first technical problem to be solved of the present invention, by measuring the expansion curve of the plurality of negative electrode samples, by calculating the optimum electrode density according to the type of the negative electrode active material can be both excellent efficiency and life characteristics of the secondary battery It is to provide a method for producing a negative electrode.
본 발명의 해결하고자 하는 제2 기술적 과제는, 상기 음극의 제조방법에 따라 제조된 음극을 제공하는 것이다.The second technical problem to be solved of the present invention is to provide a negative electrode manufactured according to the manufacturing method of the negative electrode.
본 발명의 해결하고자 하는 제3 기술적 과제는 상기 음극을 포함하는 이차 전지, 전지 모듈 및 전지 팩을 제공하는 것이다.The third technical problem to be solved of the present invention is to provide a secondary battery, a battery module and a battery pack including the negative electrode.
상기 과제를 해결하기 위하여, 본 발명은 동일한 조성의 활물질층을 포함하되, 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플을 제조하는 제1단계; 상기 음극 샘플 각각에 대하여 첫 충전 싸이클에서의 SOC에 따른 음극 팽창 곡선을 측정하는 제2단계; 상기 측정된 음극 팽창 곡선에 대한 접선의 기울기가 1인 SOC 값을 x(단, x<50)라 할 때, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이를 측정하는 제3단계; 상기 측정된 기울기 값의 차이가 0 내지 0.5의 범위를 만족하도록 최적 전극 밀도를 선택하는 제4단계; 및, 선택된 최적 전극 밀도를 만족하는 조건으로 음극을 제조하는 제5단계를 포함하는 음극의 제조방법을 제공한다.In order to solve the above problems, the present invention includes a first step of preparing a plurality of negative electrode samples including the active material layer of the same composition, having a different electrode density; A second step of measuring a negative electrode expansion curve according to the SOC in the first charging cycle for each negative electrode sample; When the SOC value of the tangent slope with respect to the measured cathodic expansion curve is x (where x <50), the difference between the slope values of the tangent lines with respect to the curve at x-5 and x + 5 is measured. The third step; A fourth step of selecting an optimal electrode density such that the difference in the measured tilt values satisfies a range of 0 to 0.5; And a fifth step of manufacturing the negative electrode under conditions satisfying the selected optimal electrode density.
또한, 본 발명은 상기 음극의 제조방법에 따라 제조된 음극으로서, 상기 음극은 활물질로 저흑연화도의 2차 입자로 구성된 흑연이며, 상기 음극의 전극 밀도가 1.3 g/cc 내지 1.5 g/cc인 음극을 제공한다.In addition, the present invention is a negative electrode prepared according to the manufacturing method of the negative electrode, the negative electrode is graphite composed of secondary particles of low graphite degree as an active material, the electrode density of the negative electrode is 1.3 g / cc to 1.5 g / cc Provide a cathode.
또한, 본 발명은 상기 음극의 제조방법에 따라 제조된 음극으로서, 상기 음극은 활물질로 고흑연화도의 2차 입자로 구성된 흑연이며, 상기 음극의 전극 밀도가 1.4 g/cc 내지 1.7 g/cc 인 음극을 제공한다.In addition, the present invention is a negative electrode prepared according to the manufacturing method of the negative electrode, the negative electrode is graphite composed of secondary particles of high graphite degree as an active material, the electrode density of the negative electrode is 1.4 g / cc to 1.7 g / cc Provide a cathode.
나아가, 본 발명은 상기 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막, 및 전해액을 포함하는 이차 전지와, 이를 단위셀로 포함하는 전지 모듈 및 전지 팩을 제공한다.Furthermore, the present invention provides a secondary battery including the negative electrode, the positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte, and a battery module and a battery pack including the same as a unit cell.
본 발명에 따르면, 동일한 조성의 활물질층을 갖는 복수개의 음극 샘플을 서로 다른 전극 밀도로 제조한 후, 각각의 음극 샘플의 첫 번째 충전 싸이클에 따른 음극 팽창 곡선을 측정하고, 상기 음극 팽창 곡선을 이용하여 해당 조성의 최적 전극 밀도를 산출하여 음극을 제조함으로써, 우수한 수명 특성 및 초기 효율을 갖는 이차 전지를 제조할 수 있다.According to the present invention, after preparing a plurality of negative electrode samples having an active material layer of the same composition at different electrode densities, the negative electrode expansion curve according to the first charge cycle of each negative electrode sample is measured, and using the negative electrode expansion curve By calculating the optimum electrode density of the composition to produce a negative electrode, it is possible to manufacture a secondary battery having excellent life characteristics and initial efficiency.
도 1은 본원의 실시예 1 내지 7 및 비교예 1 내지 3에 의해 제조된 음극 샘플들의 팽창 곡선을 나타낸 그래프이다.1 is a graph showing the expansion curve of the negative electrode samples prepared by Examples 1 to 7 and Comparative Examples 1 to 3 of the present application.
도 2는 본원의 실시예 2 및 비교예 1, 2에 의해 제조된 음극 샘플 각각의 싸이클에 따른 용량 특성을 나타낸 그래프이다.2 is a graph showing the capacity characteristics according to the cycle of each of the negative electrode samples prepared by Example 2 and Comparative Examples 1, 2 of the present application.
도 3은 본원의 실시예 4, 6 및 비교예 3에 의해 제조된 음극 샘플 각각의 싸이클에 따른 용량 특성을 나타낸 그래프이다. 3 is a graph showing the capacity characteristics according to the cycle of each of the negative electrode samples prepared by Examples 4, 6 and Comparative Example 3 of the present application.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
구체적으로, 본 발명에 따른 음극의 제조방법은, 동일한 조성의 활물질층을 포함하되, 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플을 제조하는 제1단계; 상기 음극 샘플 각각에 대하여 첫 충전 싸이클에서의 SOC에 따른 음극 팽창 곡선을 측정하는 제2단계; 상기 측정된 음극 팽창 곡선에 대한 접선의 기울기가 1인 SOC 값을 x(단, x<50)라 할 때, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이를 측정하는 제3단계; 상기 측정된 기울기 값의 차이가 0 내지 0.5의 범위를 만족하도록 최적 전극 밀도를 선택하는 제4단계; 및, 선택된 최적 전극 밀도를 만족하는 조건으로 음극을 제조하는 제5단계를 포함하는 음극의 제조방법을 제공한다. Specifically, the method of manufacturing a negative electrode according to the present invention includes a first step of preparing a plurality of negative electrode samples including active material layers having the same composition, and having different electrode densities; A second step of measuring a negative electrode expansion curve according to the SOC in the first charging cycle for each negative electrode sample; When the SOC value of the tangent slope with respect to the measured cathodic expansion curve is x (where x <50), the difference between the slope values of the tangent lines with respect to the curve at x-5 and x + 5 is measured. The third step; A fourth step of selecting an optimal electrode density such that the difference in the measured tilt values satisfies a range of 0 to 0.5; And a fifth step of manufacturing the negative electrode under conditions satisfying the selected optimal electrode density.
이하, 본 발명에 따른 음극의 제조방법을 각 단계별로 상세히 설명한다. Hereinafter, a method of manufacturing a negative electrode according to the present invention will be described in detail for each step.
먼저, 동일한 조성의 활물질층을 포함하되, 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플을 제조한다(제1단계). 구체적으로, 상기 음극의 제조는 음극 활물질, 도전재 및 바인더를 포함하는 음극 합제가 유기 용매에 혼합되어 만들어진 음극 슬러리를 음극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다. 이때, 상기 음극 슬러리 도포 후, 건조 및 압연하는 단계에서 전극 밀도를 조절할 수 있다.First, a plurality of negative electrode samples including active material layers having the same composition but having different electrode densities are prepared (first step). Specifically, the preparation of the negative electrode may be prepared by applying a negative electrode slurry made by mixing a negative electrode active material, a conductive material and a binder mixed in an organic solvent on a negative electrode current collector, followed by drying and rolling. In this case, the electrode density may be adjusted in the drying and rolling steps after applying the negative electrode slurry.
통상 음극 내의 활물질의 종류에 따라 음극의 팽창 곡선이 달라질 수 있으며, 특히 상기 활물질의 분체 압축 밀도에 따라 달라질 수 있다. 본원의 방법을 이용하면 활물질의 종류에 따라 각각의 최적 전극 밀도를 산출할 수 있고, 이를 이용하여 수명 특성 및 초기 효율 특성이 우수한 음극을 제조할 수 있다. Usually, the expansion curve of the negative electrode may vary according to the type of active material in the negative electrode, and in particular, may vary according to the powder compression density of the active material. By using the method of the present application, the optimum electrode density can be calculated according to the type of the active material, and the negative electrode having excellent life characteristics and initial efficiency characteristics can be manufactured using the same.
여기에서, 상기 전극 밀도란, 동일한 부피 내에 코팅된 음극 합체의 양을 의미한다.Here, the electrode density means the amount of the negative electrode copolymer coated in the same volume.
상기 분체 압축 밀도란, 음극 활물질 3g을 10mm의 분체 압축 밀도 측정 조건에서 1000kg으로 압축 처리하였을 때, 동일한 부피 내에 코팅된 음극 활물질의 양을 의미한다. 나아가, 분체 가압 밀도가 1.75 g/cc인 음극 활물질이란, 압축 처리를 행하는 것에 의해 얻어진 음극 활물질을 가리키는 것이 아니라, 음극 활물질을 압축 처리 시험을 하였을 경우에, 가압 밀도가 1.75 g/cc인 물성 값을 가지고 있는 음극 활물질을 의미한다.The powder compact density refers to the amount of the negative electrode active material coated in the same volume when 3 g of the negative electrode active material is compressed to 1000 kg under a powder compression density measurement condition of 10 mm. Further, the negative electrode active material having a powder pressing density of 1.75 g / cc does not refer to the negative electrode active material obtained by performing the compression treatment, but has a physical property value of a press density of 1.75 g / cc when the negative electrode active material is subjected to the compression treatment test. It means the negative electrode active material which has a.
한편, 상기 활물질층은 활물질, 도전재 및/또는 바인더를 포함할 수 있으며, 상기 활물질로 흑연계 활물질을 포함할 수 있다. 상기 흑연계 활물질 중에서도 특히 천연 흑연이나 인조 흑연이 리튬이온의 망면 삽입에 따라 스테이징(staging) 현상이 발현되고, 이에 따라 음극 팽창 곡선이 S자 개형의 두께 팽창 개형을 나타내기 때문에 보다 바람직하다. 예를 들어, 상기 활물질층은 활물질로 저흑연화도의 2차 입자로 구성된 흑연 또는 고흑연화도의 2차 입자로 구성된 흑연을 포함할 수 있다.The active material layer may include an active material, a conductive material, and / or a binder, and may include a graphite-based active material. Among the graphite-based active materials, particularly, natural graphite and artificial graphite have a staging phenomenon due to the insertion of lithium ions into the mesh, and thus the negative electrode expansion curve shows an S-shaped opening and a thick expanding opening. For example, the active material layer may include graphite composed of secondary particles having low graphitization degree or graphite having high graphite degree secondary particles as an active material.
한편, 상기 제1단계에서 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플을 제조하는 것은, 예를 들어, 음극 샘플의 제조시에 압력을 달리하여 전극 밀도별로 복수개의 음극 샘플을 제조하는 방법으로 수행될 수 있다.Meanwhile, manufacturing a plurality of negative electrode samples having different electrode densities in the first step may be performed by, for example, a method of manufacturing a plurality of negative electrode samples for each electrode density by varying the pressure at the time of manufacturing the negative electrode sample. Can be.
구체적으로, 상기 음극 샘플은 1.3 g/cc 내지 1.8 g/cc의 전극 밀도로 제조될 수 있다. 예를 들면, 상기 음극 샘플은 활물질, 도전재 및 바인더를 포함하는 음극 합제가 유기 용매에 혼합되어 만들어진 음극 슬러리를 음극 집전체 상에 도포 및 건조한 후, 200 kg/5cm 내지 2000kg/5cm의 범위에서 서로 다른 압력으로 압연함으로써 상기와 같은 전극 밀도를 갖는 음극 샘플을 제조할 수 있다. 이때, 분체압축밀도 특성과 전극밀도 특성은 비례한다. 다만, 음극을 서로 다른 전극 밀도별로 제조하는 방법에 있어서, 음극의 전극 밀도 및 음극활물질의 종류가 상기한 바와 같이 제한되는 것은 아니며, 음극으로 제조하고자 하는 음극 활물질을 선택한 후, 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플을 제조함에 따라, 음극활물질의 종류에 따른 최적의 음극 밀도를 산출할 수 있다. Specifically, the negative electrode sample may be prepared at an electrode density of 1.3 g / cc to 1.8 g / cc. For example, the negative electrode sample may be coated with a negative electrode slurry prepared by mixing a negative electrode mixture including an active material, a conductive material, and a binder in an organic solvent on a negative electrode current collector, and then dried in a range of 200 kg / 5 cm to 2000 kg / 5 cm. By rolling at different pressures, a negative electrode sample having the above electrode density can be prepared. At this time, the powder compression density characteristics and the electrode density characteristics are in proportion. However, in the method of manufacturing the negative electrode by different electrode densities, the electrode density of the negative electrode and the type of the negative electrode active material are not limited as described above, and after selecting the negative electrode active material to be prepared as the negative electrode, By preparing a plurality of negative electrode samples, the optimum negative electrode density according to the type of the negative electrode active material can be calculated.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 써멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있으며, 구체적으로는 아세틸렌 블랙을 사용할 수 있다. The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials, such as a polyphenylene derivative, etc. can be used, Specifically, acetylene black can be used.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있고, 특히 CMC와 SBR이 사용될 수 있다. The binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor Various types of binder polymers can be used, such as fonned EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or various copolymers. In particular, CMC and SBR can be used.
다음으로, 상기 제1단계에서 제조된 음극 샘플 각각에 대하여 첫 충전 싸이클에서의 SOC에 따른 음극 팽창 곡선을 측정한다(제2단계).Next, for each of the negative electrode samples prepared in the first step, the negative electrode expansion curve according to the SOC in the first charging cycle is measured (second step).
구체적으로, 상기 제1단계에서 제조된 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플 각각의 팽창 곡선을 측정하기 위해, 상기 음극 샘플을 포함하는 코인 타입의 반쪽 이차 전지를 제조할 수 있다. 예를 들어, 양극으로는 금속 리튬 호일을 사용하고, 음극으로서 상기 제1단계에서 제조된 복수개의 음극 샘플을 사용하고, 상기 양극 및 음극 사이에 분리막을 개재하여 전극 조립체를 제조하고, 전해액을 주입하여 코인 타입의 반쪽 이차 전지를 제조할 수 있다. Specifically, in order to measure the expansion curve of each of a plurality of negative electrode samples having different electrode densities prepared in the first step, a coin-type half secondary battery including the negative electrode sample may be manufactured. For example, a metal lithium foil is used as a positive electrode, a plurality of negative electrode samples prepared in the first step are used as a negative electrode, an electrode assembly is prepared through a separator between the positive electrode and the negative electrode, and an electrolyte solution is injected. To produce a coin-type half secondary battery.
상기한 바와 같이, 상기 제1단계에서 제조된 복수개의 음극 샘플에 대하여 각각 코인 타입의 반쪽 이차 전지를 제조한 뒤, 충전하여 충전시의 SOC에 따른 음극의 두께 변화를 나타낸 음극의 팽창 곡선을 측정할 수 있다. As described above, a coin type half secondary battery was manufactured for each of the plurality of negative electrode samples prepared in the first step, and then charged to measure the expansion curve of the negative electrode showing the change in thickness of the negative electrode according to SOC during charging. can do.
이때, 상기 SOC 및 음극의 두께 변화는 스프링 타입의 실시간 변위 측정 기기를 통해 실시간 두께 측정 방법으로 측정할 수 있다.In this case, the thickness change of the SOC and the cathode may be measured by a real time thickness measurement method through a spring type real time displacement measuring device.
다음으로, 상기 측정된 음극 팽창 곡선에 대한 접선의 기울기가 1인 SOC 값을 x(단, x<50)라 할 때, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이를 측정한다(제3단계).Next, when the SOC value of the tangent slope with respect to the measured cathodic expansion curve is x (where x <50), the difference of the slope of the tangent line with respect to the curve at x-5 and x + 5 is different. Measure (step 3).
상기 제2단계에서 측정된 음극 팽창 곡선 중에서도, SOC 값이 50% 미만인 구간을 통해 최적의 전극 밀도를 알아낼 수 있다. 예를 들어, SOC 값이 50%를 초과하는 구간을 분석할 경우, 기울기의 변화가 급격하지 않고 일정하게 나타나기 때문에 기울기에 따른 특성을 분석하기가 어렵다. Among the cathode expansion curves measured in the second step, the optimum electrode density can be found through the section in which the SOC value is less than 50%. For example, when analyzing a section in which the SOC value exceeds 50%, it is difficult to analyze the characteristics according to the slope because the change of the slope is not sudden but appears constant.
예를 들어, 상기 측정된 음극 팽창 곡선에 대한 접선의 기울기가 SOC 50% 미만에서 1인 경우의 SOC를 25%라고 할 때, SOC가 20%인 곳에서의 상기 팽창 곡선의 기울기를 g(20)이라 하고, SOC가 30%인 곳에서의 상기 팽창 곡선의 기울기를 g(30)이라고 나타낼 수 있으며, 곡선의 기울기 값의 차이는 g(20)-g(30)로 나타낼 수 있다. For example, when the slope of the tangent to the measured cathodic expansion curve is less than 50% SOC of 1 and the SOC is 25%, the slope of the expansion curve at 20% of the SOC is 20 g (20 ), The slope of the expansion curve at 30% SOC can be represented by g (30), the difference in the slope value of the curve can be represented by g (20)-g (30).
이어서, 상기 측정된 기울기 값의 차이가 0 내지 0.5의 범위를 만족하도록 최적의 전극 밀도를 선택한다(제 4 단계).Subsequently, an optimal electrode density is selected such that the difference in the measured slope values satisfies the range of 0 to 0.5 (step 4).
예를 들어, 상기 측정된 기울기 값의 차이가 0.5를 초과할 경우에는 전극이 과압축된 경우이므로, 초기효율이 낮고, 수명 특성이 떨어져 스웰링이 심해진다는 문제점이 있다. For example, when the difference between the measured tilt values is greater than 0.5, the electrode is overcompressed, and thus there is a problem that the initial efficiency is low and the swelling is severe due to poor life characteristics.
따라서, 곡선의 기울기 값의 차이가 0 내지 0.5의 범위인 경우에는 특정 음극 활물질에 해당하는 최적의 전극 밀도를 가짐으로써, 전극 밀도가 큰 경우 나타났던 활물질의 박리 또는 균열 등의 문제로 인한 수명특성의 감소 및 저항의 증가 등의 문제점을 방지할 수 있고, 반대로 전극 밀도가 낮은 경우 나타났던 전지의 용량 저하 등의 문제점을 방지할 수 있다. Therefore, when the difference in the slope value of the curve is in the range of 0 to 0.5, it has an optimal electrode density corresponding to a specific negative electrode active material, and thus has a lifespan characteristic due to problems such as peeling or cracking of the active material that appeared when the electrode density is large. Problems such as a decrease in resistance and an increase in resistance can be prevented, and conversely, problems such as a decrease in capacity of the battery, which can occur when the electrode density is low, can be prevented.
마지막으로, 선택된 최적 전극 밀도를 만족하는 조건으로 음극을 제조한다(제5단계). Finally, a cathode is manufactured under the conditions satisfying the selected optimal electrode density (step 5).
상기와 같이 선택된 최적 전극 밀도를 만족할 경우, 수명 특성과 효율 및 용량 특성이 모두 우수한 음극을 제조할 수 있고, 이를 포함하여 우수한 수명 특성 및 효율을 갖는 이차 전지를 제조할 수 있다. 상기 이차 전지는 상기 음극 및, 양극, 상기 음극과 양극 사이에 개재된 분리막과 전해액을 포함할 수 있다.When the optimal electrode density selected as described above is satisfied, a negative electrode having excellent life characteristics, efficiency, and capacity characteristics may all be manufactured, and a secondary battery having excellent life characteristics and efficiency may be manufactured including the same. The secondary battery may include a separator and an electrolyte interposed between the negative electrode, the positive electrode, the negative electrode and the positive electrode.
이때, 상기 음극은 상기 제1단계에서의 음극 샘플의 제조과정과 동일하게 제조할 수 있다. 구체적으로, 활물질, 도전재 및 바인더를 포함하는 음극 합제를 유기 용매에 혼합하여 음극슬러리를 제조한 후, 상기 음극슬러리를 집전체 상에 도포하고, 건조 및 압연하여 제조할 수 있다.In this case, the negative electrode may be manufactured in the same manner as the manufacturing process of the negative electrode sample in the first step. Specifically, the negative electrode mixture including the active material, the conductive material, and the binder may be mixed with an organic solvent to prepare a negative electrode slurry, and then the negative electrode slurry may be applied onto a current collector, dried, and rolled.
구체적으로, 상기 음극은 활물질로 저흑연화도의 2차 입자로 구성된 흑연 또는 고흑연화도의 2차 입자로 구성된 흑연을 포함할 수 있다.Specifically, the negative electrode may include graphite composed of secondary particles having a low graphitization degree or graphite composed of secondary particles having a high graphitization degree as an active material.
상기 음극 활물질이 저흑연화도의 2차 입자로 구성된 흑연인 경우, 상기 음극의 최적 전극 밀도는 1.3 g/cc 내지 1.5 g/cc일 수 있다. 저흑연화도의 2차 입자로 구성된 흑연을 활물질로 포함하는 음극의 전극 밀도가 1.3 g/cc 미만일 경우, 상기 전극을 포함하는 전지의 수명 특성 및 초기 효율 등이 낮아서 사용하기 적합하지 않고, 전극 밀도가 1.5 g/cc를 초과할 경우, 전극이 과압축되어 저항이 증가하거나, 수명 특성이 감소할 수 있다.When the negative electrode active material is graphite composed of secondary particles having a low graphitization degree, an optimum electrode density of the negative electrode may be 1.3 g / cc to 1.5 g / cc. When the electrode density of a negative electrode including graphite composed of secondary particles having low graphite degree as an active material is less than 1.3 g / cc, the lifetime characteristics and initial efficiency of the battery including the electrode are low, and thus the electrode density is not suitable. If is more than 1.5 g / cc, the electrode may be over-compressed to increase the resistance or to decrease the life characteristics.
상기 음극 활물질이 고흑연화도의 2차 입자로 구성된 흑연인 경우, 상기 음극의 최적 전극 밀도는 1.4 g/cc 내지 1.7 g/cc일 수 있다. 고흑연화도의 2차 입자로 구성된 흑연을 활물질로 포함하는 음극의 전극 밀도가 1.4 g/cc 미만일 경우, 상기 전극을 포함하는 전지의 수명 특성 및 초기 효율 등이 낮아서 사용하기 적합하지 않고, 전극 밀도가 1.7 g/cc를 초과할 경우, 전극이 과압축되어 저항이 증가하거나, 수명 특성이 감소할 수 있다.When the negative electrode active material is graphite composed of secondary particles having a high graphitization degree, the optimum electrode density of the negative electrode may be 1.4 g / cc to 1.7 g / cc. When the electrode density of the negative electrode including graphite composed of secondary particles having high graphite degree as an active material is less than 1.4 g / cc, the lifespan characteristics and initial efficiency of the battery including the electrode are low, and thus the electrode density is not suitable. If is greater than 1.7 g / cc, the electrode may be over-compressed to increase the resistance or decrease the life characteristics.
또한, 상기 도전재 및 바인더는 전술한 바와 동일할 수 있으며, 구체적으로 상기 도전재는 아세틸렌 블랙을 포함하고, 바인더는 CMC와 SBR을 포함할 수 있다. In addition, the conductive material and the binder may be the same as described above, specifically, the conductive material may include acetylene black, the binder may include CMC and SBR.
상기 활물질, 도전재 및 바인더는 95 내지 95.5:0.5 내지 1.5:3.5 내지 4의 중량비로 포함될 수 있으며, 구체적으로는 95.3:1:3.7의 중량비로 포함될 수 있다. The active material, the conductive material and the binder may be included in a weight ratio of 95 to 95.5: 0.5 to 1.5: 3.5 to 4, and specifically, may be included in a weight ratio of 95.3: 1: 3.7.
또한, 상기 양극은 활물질, 도전재 및 바인더를 포함하는 양극 합제를 유기 용매에 혼합하여 만들어진 슬러리를 집전체 상에 도포 후, 건조 및 압연하여 제조할 수 있다.In addition, the positive electrode may be prepared by applying a slurry prepared by mixing a positive electrode mixture including an active material, a conductive material, and a binder to an organic solvent on a current collector, followed by drying and rolling.
상기 양극 활물질은 리튬 니켈 망간 복합 산화물(LNMO) 외에, 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나; Li(NiaCobMnc)O2 (0<a<1, 0<b<1, 0<c<1, a+b+c=1)와 같은 전이금속으로 치환된 리튬 전이금속 복합산화물; LiMnO3, LiMn2O4, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; LiFe3O4; LiFePO4, LiCoPO4, LiFexMn1 - xPO4 등의 리튬 인산화물; 화학식 LiNi1 - xMxO2 (여기서, M는 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x는 0.01 내지 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - xMxO2 (여기서, M는 Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x는 0.01 내지 0.1 임) 또는 Li2Mn3MO8 (여기서, M는 Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물 등을 함께 사용할 수도 있지만, 이들만으로 한정되는 것은 아니다.The positive electrode active material is, in addition to lithium nickel manganese composite oxide (LNMO), for example, layered compounds such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ); Lithium transition metal composite oxide substituted with a transition metal such as Li (Ni a Co b Mn c ) O 2 (0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1) ; Lithium manganese oxides such as LiMnO 3 , LiMn 2 O 4 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; LiFe 3 O 4 ; LiFePO 4 , Lithium phosphate such as LiCoPO 4 , LiFe x Mn 1 - x PO 4 ; Ni-site type lithium nickel oxide represented by the formula LiNi 1 - x MxO 2 , wherein M is Co, Mn, Al, Cu, Fe, Mg, B or Ga, and x is 0.01 to 0.3; Formula LiMn 2 - x MxO 2 , wherein M is Co, Ni, Fe, Cr, Zn or Ta, x is 0.01 to 0.1, or Li 2 Mn 3 MO 8 , where M is Fe, Co, Ni, Lithium manganese composite oxides represented by Cu or Zn) may be used together, but are not limited thereto.
상기 도전재 및 바인더 등은 상기 음극활물질에 사용되는 것과 동일하거나, 또는 상이한 것을 이용할 수 있다.The conductive material and the binder may be the same as or different from that used for the negative electrode active material.
또한, 상기 전해액은 비수계 유기용매와 금속염을 포함할 수 있다. In addition, the electrolyte may include a non-aqueous organic solvent and a metal salt.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The metal salt may be a lithium salt, the lithium salt is a material that is good to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenyl Lithium borate, imide and the like can be used.
상기 분리막으로는 종래에 분리막으로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.The separator is a conventional porous polymer film conventionally used as a separator, for example, polyolefin-based, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer The porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. no.
또한, 본 발명의 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 우수한 용량, 효율특성 및 수명 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.Further, according to another embodiment of the present invention, a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having excellent capacity, efficiency characteristics and lifespan characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예Example 1 One
[음극 샘플의 제조]Preparation of Cathode Sample
분체 압축 밀도가 1.75 g/cc인 저흑연화도의 2차 입자로 구성된 흑연을 준비하였다. 상기 저흑연화도의 2차 입자로 구성된 흑연 95.3 중량%, 도전재로 아세틸렌 블랙계열 카본 입자를 1 중량%, 바인더로 CMC 및 SBR을 3.7 중량%로 한 음극 합제를 용제인 N-메틸-2 피롤리돈(NMP)에 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께가 10 ㎛의 음극 집전체인 구리 박막에 도포 및 건조하여 음극 샘플을 제조한 후 롤 프레스를 실시하였다.Graphite composed of secondary particles of low graphitization degree having a powder compression density of 1.75 g / cc was prepared. 95.3% by weight of graphite composed of secondary particles of low graphitization degree, N-methyl-2P as a solvent of a negative electrode mixture containing 1% by weight of acetylene black series carbon particles as a conductive material and 3.7% by weight of CMC and SBR as a binder. A negative electrode slurry was prepared by adding to Rollidone (NMP). The negative electrode slurry was applied to a copper thin film, which is a negative electrode current collector having a thickness of 10 μm, and dried to prepare a negative electrode sample, followed by roll pressing.
이때, 음극의 로딩양은 250 mg/25 cm2로 하고 음극의 전극 밀도가 1.3g/cc가 되도록 200kg/5cm로 롤프레스 하였다.At this time, the loading amount of the negative electrode was 250 mg / 25 cm 2 and roll press to 200 kg / 5 cm so that the electrode density of the negative electrode is 1.3 g / cc.
[이차전지의 제조][Manufacture of Secondary Battery]
상기에서 제조한 음극 샘플을 사용하여, 상판에 스프링이 설치되어 음극의 팽창에 따라 실시간 두께 측정이 가능한 이차전지를 제조하였다. 상판 위에 실시간 변위 측정기기를 설치하여 충방전에 따른 두께 변화를 측정하였다. Using the negative electrode sample prepared above, a spring was installed on the top plate to prepare a secondary battery capable of real-time thickness measurement according to the expansion of the negative electrode. A real-time displacement measuring device was installed on the top plate to measure the thickness change according to charge and discharge.
이때, 양극으로는 1.8 cm2의 LCO계 양극활물질을 사용하였으며, 상기 음극 및 양극 사이에 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하였다. 에틸렌 카르보네이트와 디에틸 카르보네이트가 1:2의 부피비로 혼합된 비수 전해액 용매에 1 M의 LiPF6를 첨가하여 비수 전해액을 제조한 후, 상기 전극 조립체에 주입하여 코인 타입의 반쪽 이차전지를 제조하였다. In this case, an LCO-based cathode active material of 1.8 cm 2 was used as an anode, and an electrode assembly was prepared through a polyethylene separator between the cathode and the anode. A non-aqueous electrolyte was prepared by adding 1 M LiPF 6 to a nonaqueous electrolyte solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2. Was prepared.
실시예Example 2 2
분체 압축 밀도가 1.75 g/cc인 저흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 제조된 음극 샘플의 전극 밀도가 1.4 g/cc가 되도록 500 kg/5cm로 롤 프레스 하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.Except for rolling press at 500 kg / 5 cm to obtain an electrode density of 1.4 g / cc of a negative electrode sample prepared using graphite composed of low graphitization secondary particles having a powder compaction density of 1.75 g / cc as an active material. In the same manner as in Example 1, a negative electrode and a secondary battery including the same were prepared.
실시예Example 3 3
분체 압축 밀도가 1.75 g/cc인 저흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 제조된 음극 샘플의 전극 밀도가 1.5 g/cc가 되도록 800 kg/5cm로 롤 프레스 하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.Except for rolling press at 800 kg / 5 cm to obtain an electrode density of 1.5 g / cc of the negative electrode sample prepared by using graphite composed of low graphitization secondary particles having a powder compression density of 1.75 g / cc as an active material. In the same manner as in Example 1, a negative electrode and a secondary battery including the same were prepared.
실시예Example 4 4
분체 압축 밀도가 1.95 g/cc인 고흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 음극 샘플을 제조하였으며, 이때 상기 음극 샘플의 전극 밀도가 1.4 g/cc가 되도록 200 kg/5cm로 롤 프레스하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.A negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compaction density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 200 kg / 5 cm to obtain an electrode density of 1.4 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
실시예Example 5 5
분체 압축 밀도가 1.95 g/cc인 고흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 음극 샘플을 제조하였으며, 이때 상기 음극 샘플의 전극 밀도가 1.5 g/cc가 되도록 400kg/5cm로 롤 프레스하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.A negative electrode sample was prepared using graphite composed of high graphitized secondary particles having a powder compaction density of 1.95 g / cc as an active material, wherein the negative electrode was roll-pressed at 400 kg / 5 cm to obtain an electrode density of 1.5 g / cc. A negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1, except that.
실시예Example 6 6
분체 압축 밀도가 1.95 g/cc인 고흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 음극 샘플을 제조하였으며, 이때 상기 음극 샘플의 전극 밀도가 1.6 g/cc가 되도록 700 kg/5cm로 롤 프레스 하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.A negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compaction density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 700 kg / 5 cm to have an electrode density of 1.6 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
실시예Example 7 7
분체 압축 밀도가 1.95 g/cc인 고흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 음극 샘플을 제조하였으며, 이때 상기 음극 샘플의 전극 밀도가 1.7 g/cc가 되도록 900 kg/5cm로 롤 프레스하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.A negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compression density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 900 kg / 5 cm so that the electrode density of the negative electrode sample was 1.7 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
비교예Comparative example 1 One
분체 압축 밀도가 1.75 g/cc인 저흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 제조된 음극 샘플의 전극 밀도가 1.6 g/cc가 되도록 1000kg/5cm로 롤 프레스하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.Except for rolling press at 1000 kg / 5 cm so that the electrode density of the negative electrode sample prepared using the graphite composed of low graphitization secondary particles having a powder compression density of 1.75 g / cc as an active material is 1.6 g / cc. In the same manner as in Example 1, a negative electrode and a secondary battery including the same were prepared.
비교예Comparative example 2 2
분체 압축 밀도가 1.75 g/cc인 저흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 제조된 음극 샘플의 전극 밀도가 1.8 g/cc가 되도록 2000 kg/5cm로 롤 프레스 하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.Except for rolling press at 2000 kg / 5 cm so that the electrode density of the negative electrode sample prepared using the graphite composed of low graphitization secondary particles having a powder compaction density of 1.75 g / cc is 1.8 g / cc as an active material. In the same manner as in Example 1, a negative electrode and a secondary battery including the same were prepared.
비교예Comparative example 3 3
분체 압축 밀도가 1.95 g/cc인 고흑연화도의 2차 입자로 구성된 흑연을 활물질로서 사용하여 음극 샘플을 제조하였으며, 이때 상기 음극 샘플의 전극 밀도가 1.8 g/cc가 되도록 1200 kg/5cm로 롤 프레스 하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 음극 및 이를 포함하는 이차전지를 제조하였다.A negative electrode sample was prepared using graphite composed of high graphitization secondary particles having a powder compression density of 1.95 g / cc as an active material, wherein the negative electrode was rolled at 1200 kg / 5 cm so that the electrode density of the negative electrode sample was 1.8 g / cc. Except for pressing, a negative electrode and a secondary battery including the same were manufactured in the same manner as in Example 1.
실험예Experimental Example 1: 음극의 팽창 곡선을 통한 최적의 전극 밀도 측정 1: Measurement of Optimal Electrode Density by Cathode Expansion Curve
상기 실시예 1 내지 7 및 비교예 1 내지 3에서 각각 제조된 코인 타입의 반쪽 이차 전지를, 충전 CC/CV, 0.2 C, 5 mv, 0.005 C cut의 조건으로 첫 번째 싸이클의 만충을 진행한 후, 상기 첫 번째 싸이클의 만충에 대한 음극 팽창 곡선을 도 1에 나타내었다. 예를 들어, 상기 실시예 2에서와 같이, 음극의 전극 밀도가 1.4 g/cc인 경우, SOC 값이 50% 미만에서 기울기가 1인 경우의 SOC 값은 25%였고, 이를 g(25)라 할때, g(20) 및 g(30)에서의 곡선에 대한 접선의 기울기 값의 차이가 0.1로 측정되었다. After the first cycle of the coin-type half secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 3, respectively, under the conditions of charging CC / CV, 0.2 C, 5 mv, and 0.005 C cut, , The cathodic expansion curve for fullness of the first cycle is shown in FIG. 1. For example, as in Example 2, when the electrode density of the cathode is 1.4 g / cc, the SOC value is 25% when the slope is 1 when the SOC value is less than 50%, which is g (25) When, the difference in the slope value of the tangent to the curve at g (20) and g (30) was measured as 0.1.
하기 표 1에 실시예 1 내지 7 및 비교예 1 내지 3에서 각각 제조한 코인 타입의 반쪽 이차 전지의 음극의 팽창 곡선에서, SOC 50% 미만에서 접선의 기울기가 1인 경우의 SOC 값을 x라 할때, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이를 각각 나타내었다.In Table 1 below, in the expansion curves of the negative electrodes of the coin-type half secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 3, respectively, the SOC value when the slope of the tangent line is less than 50% of SOC is x. When the difference between the slope of the tangent to the curve at x-5 and x + 5, respectively.
음극의 종류Type of cathode SOC 50% 미만에서 접선의 기울기가 1인 경우의 SOC(x)SOC (x) when the tangent slope is less than 50% SOC x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이Difference of Slope Value of Tangent to Curve at x-5 and x + 5
실시예 1Example 1 2525 0.10.1
실시예 2Example 2 2525 0.10.1
실시예 3Example 3 2121 0.50.5
비교예 1Comparative Example 1 1212 0.90.9
비교예 2Comparative Example 2 1212 1.21.2
실시예 4Example 4 2424 0.20.2
실시예 5Example 5 2424 0.20.2
실시예 6Example 6 2424 0.20.2
실시예 7Example 7 1919 0.50.5
비교예 3Comparative Example 3 1515 1.11.1
상기 표 1을 통해 관찰한 결과, 실시예 1 내지 3 및 비교예 1 및 2와 같이 활물질로 저흑연화도의 2차 입자로 구성된 흑연을 사용할 경우, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이가 0.5 이내인 실시예 1 내지 3이 상기 저흑연화도의 2차 입자로 구성된 흑연을 활물질로 사용하는 경우에 대한 최적의 전극 밀도임을 알 수 있었다. 더불어, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이는 실시예 3에서 0.5를 나타내고, 비교예 1 및 2에서 0.5를 초과하여, 이를 통해 상기 활물질은 실시예 3을 초과하는 전극밀도에서 음극의 과압축에 의해 저항이 증가되거나 수명 특성이 감소될 것으로 예측할 수 있다.As a result of observing through Table 1, when using graphite composed of secondary particles of low graphite degree as the active material as in Examples 1 to 3 and Comparative Examples 1 and 2, the curves for x-5 and x + 5 It can be seen that Examples 1 to 3, in which the difference in the tangent slope value is within 0.5, are the optimum electrode densities for the case where the graphite composed of the low graphitization secondary particles is used as the active material. In addition, the difference in the slope value of the tangent to the curves at x-5 and x + 5 represents 0.5 in Examples 3 and above 0.5 in Comparative Examples 1 and 2, whereby the active material exceeds Example 3 It can be expected that the overpressure of the cathode will increase the resistance or decrease the life characteristics at the electrode density.
또한, 실시예 4 내지 6, 및 비교예 3과 같이 고흑연화도의 2차 입자로 구성된 흑연을 사용할 경우, x-5 및 x+5에서의 곡선의 기울기 값의 차이가 0.5 이내인 실시예 4 내지 6의 값이 상기 고흑연화도의 2차 입자로 구성된 흑연을 활물질로 사용하는 경우에 대한 최적의 전극 밀도가 될 수 있음을 알 수 있었다. 더불어, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이는 실시예 7에서 0.5를 나타내고, 비교예 3에서 0.5를 초과하여, 이를 통해 상기 활물질은 실시예 7을 초과하는 전극밀도에서 음극의 과압축에 의해 저항이 증가되거나 수명 특성이 감소될 것으로 예측할 수 있다.In addition, when using graphite composed of secondary particles of high graphite degree as in Examples 4 to 6, and Comparative Example 3, Example 4, the difference in the slope value of the curve at x-5 and x + 5 is within 0.5 It can be seen that the value of 6 to 6 can be an optimum electrode density for the case of using graphite composed of the secondary particles of the high graphitization degree as the active material. In addition, the difference in the slope value of the tangent to the curves at x-5 and x + 5 represents 0.5 in Example 7, and exceeds 0.5 in Comparative Example 3, whereby the active material exceeds the electrode of Example 7. It can be expected that the overcompression of the cathode in density will increase the resistance or decrease the lifetime characteristics.
실험예Experimental Example 2: 최종 음극 두께 및 초기 효율을 통한 전지 특성 평가 2: Evaluation of Battery Characteristics Through Final Cathode Thickness and Initial Efficiency
상기 실시예 1 내지 7, 비교예 1 내지 3에서 각각 실시한 첫 번째 싸이클의 만충을 진행하기 전과 후의 코인 타입의 반쪽 이차 전지(CHC)의 음극의 두께를 측정하였다. The thickness of the negative electrode of the coin-type half secondary battery (CHC) was measured before and after the first cycle was carried out in Examples 1 to 7, and Comparative Examples 1 to 3, respectively.
또한, 상기 첫 번째 싸이클의 만충 후, 방전을 CC, 0.2 C, 1.0 V까지 진행한 후, 전지의 초기 효율을 측정하고 그 결과를 하기 표 2에 도시하였다. In addition, after full charge of the first cycle, the discharge was advanced to CC, 0.2 C, 1.0 V, and then the initial efficiency of the battery was measured and the results are shown in Table 2 below.
음극 샘플의 종류Type of cathode sample 음극의 초기 두께(㎛)Initial thickness of the cathode (μm) 음극의 최종 두께(㎛)Final thickness of the cathode (μm) CHC 초기 효율 (%)CHC Initial Efficiency (%) 방전용량(mAh)Discharge Capacity (mAh)
실시예 1Example 1 7272 98.098.0 93.893.8 5.675.67
실시예 2Example 2 7272 98.098.0 93.893.8 5.685.68
실시예 3Example 3 7272 97.597.5 93.293.2 5.595.59
비교예 1Comparative Example 1 7272 94.094.0 92.092.0 5.415.41
비교예 2Comparative Example 2 7272 94.094.0 91.591.5 5.335.33
실시예 4Example 4 7272 96.096.0 94.194.1 5.695.69
실시예 5Example 5 7272 96.096.0 94.094.0 5.685.68
실시예 6Example 6 7272 94.594.5 94.094.0 5.685.68
실시예 7Example 7 7272 94.094.0 93.593.5 5.615.61
비교예 3Comparative Example 3 7272 93.093.0 92.292.2 5.395.39
표 2에 나타낸 바와 같이, 저흑연화도의 2차 입자로 구성된 흑연을 활물질로 사용한 실시예 1 내지 3, 비교예 1 및 2의 초기 효율 특성을 검토하여보면, 실시예 1 및 2에서 가장 우수하고, 비교예 2 및 3의 특성은 0.5%p 차이로 동등한 수준으로 나타남을 알 수 있다. 나아가, 음극의 두께로 판단하였을 때도, 음극의 팽창 특성은 실시예 1 및 2에서 가장 저조하며, 비교예 1 및 2에서 동등하게 나타나, 음극에서 최종 두께 및 초기 효율 특성이 급격히 변화하는 전극 밀도 지점이 유사함을 알 수 있다. As shown in Table 2, the initial efficiency characteristics of Examples 1 to 3 and Comparative Examples 1 and 2 using graphite composed of secondary particles of low graphitization degree as the active material were the best in Examples 1 and 2, and , Comparative Examples 2 and 3 can be seen that the equivalent level by 0.5% p difference. Further, even when judged by the thickness of the negative electrode, the expansion characteristics of the negative electrode were the lowest in Examples 1 and 2, and the same in Comparative Examples 1 and 2, and the electrode density point at which the final thickness and initial efficiency characteristics rapidly changed in the negative electrode. It can be seen that this is similar.
일반적으로, 이차전지에서 만층 두께를 기준으로 음극의 스웰링 특성을 판단하여 스웰링이 작을 경우 이차전지의 성능이 우수한 것으로 판단하나, 상기 표 2를 참조하면, 방전용량이 압연 밀도의 증가에 따라 감소하는 경향을 나타낸다. 이는, 충전 용량이 동일한 반면, 방전 용량이 낮아져 초기 효율이 낮아지는 것으로, 압연 밀도가 증가할수록 전체 전지 반응에 참여하는 활물질의 절대량이 감소하여 스웰링 특성이 낮아지는 것이다. 이에 따라, 스웰링 특성이 상대적으로 높은 비교예 1 내지 3에 비해 실시예 1 내지 7의 초기 효율이 우수하게 나타나는 것이다. In general, in the secondary battery, the swelling characteristic of the negative electrode is determined based on the full layer thickness, and when the swelling is small, the performance of the secondary battery is determined to be excellent. It tends to decrease. This means that while the charging capacity is the same, the discharge capacity is lowered and the initial efficiency is lowered. As the rolling density increases, the absolute amount of the active material participating in the overall battery reaction decreases, thereby lowering the swelling characteristics. Accordingly, the initial efficiency of Examples 1 to 7 is excellent compared to Comparative Examples 1 to 3 where the swelling characteristics are relatively high.
이를 통해, 상기 저흑연화도의 2차 입자로 구성된 흑연을 활물질로 사용하며, 초기 효율 및 팽창 특성이 모두 우수한 음극은, 실시예 1과 실시예 3 사이의 전극 밀도임을 알 수 있으며, 이는 상기 실시예와 같이, 팽창 곡선의 SOC에 따른 기울기 값의 차이가 0.5 이하로 나타나, 최적의 전극 밀도가 실시예 1과 실시예 3 사이의 전극 밀도임을 확인할 수 있는 것을 뒷받침하는 결과임을 알 수 있다. Through this, it can be seen that the graphite composed of the low graphitization secondary particles as an active material, and the negative electrode having excellent initial efficiency and expansion characteristics, is the electrode density between Example 1 and Example 3, which is the implementation As an example, the difference in the slope value according to the SOC of the expansion curve is 0.5 or less, it can be seen that the results supporting the confirmation that the optimum electrode density between the electrode density between Example 1 and Example 3.
더불어, 상기 고흑연화도의 2차 입자로 구성된 흑연을 활물질로 사용한 실시예 5 내지 7 및 비교예 3의 초기 효율 특성을 검토하여보면, 실시예 5 내지 7은 유사 수준으로 우수하며, 비교예 3에서 급격히 특성이 나빠지는 것을 확인할 수 있다.In addition, when examining the initial efficiency characteristics of Examples 5 to 7 and Comparative Example 3 using graphite composed of the secondary particles of the high graphitization degree, Examples 5 to 7 are excellent at a similar level, Comparative Example 3 It can be seen that the characteristics rapidly deteriorate at.
이를 통해, 상기 고흑연화도의 2차 입자로 구성된 흑연을 활물질로 사용하며, 초기 효율 및 팽창 특성 모두 우수한 음극은, 실시예 4와 실시예 7 사이의 전극 밀도임을 알 수 있으며, 이는 상기 실시예와 같이, 팽창 곡선의 SOC에 따른 기울기 값의 차이가 0.5 이하로 나타나, 최적의 전극 밀도가 실시예 4와 실시예 7사이의 전극 밀도임을 확인할 수 있는 것을 뒷받침 하여주는 결과임을 알 수 있다. Through this, it can be seen that the graphite composed of the secondary particles of the high graphitization degree as an active material, and the negative electrode excellent in both initial efficiency and expansion characteristics, is the electrode density between Example 4 and Example 7, which is the embodiment As shown, the difference in the slope value according to the SOC of the expansion curve is 0.5 or less, it can be seen that the results supporting the confirmation that the optimum electrode density between the electrode density between Example 4 and Example 7.
실험예Experimental Example 3: 전지의 수명 특성 평가 3: evaluation of battery life characteristics
상기 실시예 2, 4, 6 및, 비교예 1 내지 3에서 각각 제조한 이차 전지에 대하여 싸이클에 따른 수명 특성을 평가하였다.The life characteristics of the secondary batteries prepared in Examples 2, 4, 6, and Comparative Examples 1 to 3, respectively, were evaluated.
구체적으로, 상기 실시예 2 및 비교예 1, 2에 따른 저흑연화도의 2차 입자로 구성된 흑연을 음극활물질로 포함하는 이차전지 및 상기 실시예 4, 6, 및 비교예 3에 따른 고흑연화도의 2차 입자로 구성된 흑연을 음극활물질로 포함하는 이차전지 각각에 대하여 싸이클에 따른 용량 특성을 비교하였고, 그 결과를 각각 도 2 및 도 3에 나타내었다.Specifically, a secondary battery including graphite composed of secondary particles of low graphite degree according to Example 2 and Comparative Examples 1 and 2 as a negative electrode active material, and high graphite degree according to Examples 4, 6, and Comparative Example 3 Capacity characteristics according to cycles were compared with respect to each of the secondary batteries including graphite composed of the secondary particles as the negative electrode active material, and the results are shown in FIGS. 2 and 3, respectively.
구체적으로, 상기 실시예 2, 4, 6 및, 비교예 1 내지 3에서 제조된 전지용량 30mAh의 리튬 이차전지를 25℃에서 1C 정전류로 4.4V가 될때까지 충전하고, 이후 4.4V의 정전압으로 충전하여, 충전 전류가 1.5mA이 되면 충전을 종료하였다. 이후 10분 간 방치한 다음, 0.5C 정전류로 3V가 될때까지 방전하였다. 상기 충방전 거동을 1 싸이클로하며, 이러한 싸이클을 200회 반복 실시한 후, 본 실시예 및 비교예에 따른 싸이클에 따른 용량을 측정하였다. Specifically, the lithium secondary battery having a battery capacity of 30mAh manufactured in Examples 2, 4, 6 and Comparative Examples 1 to 3 was charged at 25 ° C. until 1V constant current was 4.4V, and then charged at 4.4V constant voltage. The charging was terminated when the charging current reached 1.5 mA. Thereafter, it was left for 10 minutes, and then discharged until it became 3V at 0.5C constant current. The charge-discharge behavior was used as one cycle, and the cycle was repeated 200 times, and the capacity according to the cycles according to the present example and the comparative example was measured.
도 2에 나타난 바와 같이, 저흑연화도의 2차 입자로 구성된 흑연을 음극활물질로 포함하는 이차전지에서, 싸이클이 200회 반복될 동안 실시예 2에서 제조된 이차전지가 비교예 1 및 2에서 제조된 이차전지에 비해 싸이클 특성이 월등히 우수한 것으로 나타났다. 이는, 상기 실험예 1에서 나타난 바와 같이, 실시예 2의 경우 첫 충전 싸이클에서의 SOC에 따른 음극 팽창 곡선에서, SOC 50% 미만에서 접선의 기울기가 1인 경우의 SOC 값을 x라 할때, x-5 및 x+5에서의 곡선의 기울기 값의 차이가 0.5 이하의 값을 만족하여, 최적의 전극 밀도를 가지기 때문인 것이다.As shown in FIG. 2, in a secondary battery including graphite composed of secondary particles having low graphitization degree as a negative electrode active material, the secondary battery prepared in Example 2 was manufactured in Comparative Examples 1 and 2 while the cycle was repeated 200 times. Compared to the secondary battery, the cycle characteristics were found to be much better. This, as shown in Experimental Example 1, in the case of Example 2 in the negative electrode expansion curve according to SOC in the first charging cycle, when the SOC value when the slope of the tangent is less than 50% SOC 1, x, This is because the difference in the slope values of the curves at x-5 and x + 5 satisfies a value of 0.5 or less, and thus has an optimum electrode density.
한편, 도 3은 고흑연화도의 2차 입자로 구성된 흑연을 음극활물질로 포함하는 이차전지에서, 싸이클이 200회 반복될 동안의 용량 변화를 나타낸 그래프로서, 도 3에 나타난 바와 같이, 실시예 4 및 6에서 제조된 이차전지가 비교예 3에서 제조된 이차전지에 비해 우수한 싸이클 특성을 나타냈다. 이는, 상기 실험예 1에서 나타난 바와 같이, 실시예 4 및 6의 경우 첫 충전 싸이클에서의 SOC에 따른 음극 팽창 곡선에서, SOC 50% 미만에서 접선의 기울기가 1인 경우의 SOC 값을 x라 할때, x-5 및 x+5에서의 곡선의 기울기 값의 차이가 각각 0.5 이하의 값을 만족하여, 최적 전극 밀도를 가지기 때문인 것이다. On the other hand, Figure 3 is a graph showing the capacity change during the cycle is repeated 200 times in the secondary battery comprising graphite composed of secondary particles of high graphite degree as a negative electrode active material, as shown in Figure 3, Example 4 And the secondary battery prepared in 6 exhibited excellent cycle characteristics compared to the secondary battery prepared in Comparative Example 3. As shown in Experimental Example 1, in Examples 4 and 6, in the cathode expansion curve according to SOC in the first charging cycle, the SOC value when the tangential slope is less than 50% of SOC is x. This is because the difference in the slope values of the curves at x-5 and x + 5 satisfies a value of 0.5 or less, respectively, to have an optimum electrode density.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니며, 이하의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of the invention.

Claims (12)

  1. 동일한 조성의 활물질층을 포함하되, 서로 다른 전극 밀도를 갖는 복수개의 음극 샘플을 제조하는 제1단계;A first step of preparing a plurality of negative electrode samples including active material layers having the same composition and having different electrode densities;
    상기 음극 샘플 각각에 대하여 첫 충전 싸이클에서의 SOC에 따른 음극 팽창 곡선을 측정하는 제2단계;A second step of measuring a negative electrode expansion curve according to the SOC in the first charging cycle for each negative electrode sample;
    상기 측정된 음극 팽창 곡선에 대한 접선의 기울기가 1인 SOC 값을 x(단, x<50)라 할 때, x-5 및 x+5에서의 곡선에 대한 접선의 기울기 값의 차이를 측정하는 제3단계; When the SOC value of the tangent slope with respect to the measured cathodic expansion curve is x (where x <50), the difference between the slope values of the tangent lines with respect to the curve at x-5 and x + 5 is measured. The third step;
    상기 측정된 기울기 값의 차이가 0 내지 0.5의 범위를 만족하도록 최적의 전극 밀도를 선택하는 제4단계; 및A fourth step of selecting an optimal electrode density such that the difference in the measured tilt values satisfies a range of 0 to 0.5; And
    선택된 최적 전극 밀도를 만족하는 조건으로 음극을 제조하는 제5단계를 포함하는 음극의 제조방법.The manufacturing method of the negative electrode comprising a fifth step of manufacturing a negative electrode under the conditions satisfying the selected optimal electrode density.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 활물질층은 활물질로 저흑연화도의 2차 입자로 구성된 흑연 또는 고흑연화도의 2차 입자로 구성된 흑연을 포함하는 것인 음극의 제조방법.The active material layer is a method for producing a negative electrode comprising a graphite consisting of secondary particles of low graphite degree or a high graphite degree as an active material.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 활물질층은 활물질, 도전재, 및 바인더를 95 내지 95.5 : 0.5 내지 1.5 : 3.5 내지 4의 중량비로 포함하는 것인 음극의 제조방법.The active material layer is a method for producing a negative electrode comprising an active material, a conductive material, and a binder in a weight ratio of 95 to 95.5: 0.5 to 1.5: 3.5 to 4.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 제1단계에서 상기 음극 샘플은 각각 1.3 g/cc 내지 1.8 g/cc의 전극 밀도로 제조되는 것인 음극의 제조방법.In the first step, the negative electrode sample is prepared with an electrode density of 1.3 g / cc to 1.8 g / cc respectively.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 제5단계는 활물질, 도전재 및 바인더를 포함하는 음극 합제를 유기 용매에 혼합하여 만들어진 슬러리를 집전체 상에 도포 후, 건조 및 압연하는 방법으로 수행되되,The fifth step is performed by applying a slurry made by mixing the negative electrode mixture including the active material, the conductive material and the binder in an organic solvent on a current collector, followed by drying and rolling,
    상기 압연은 상기 제4단계에서 선택된 최적 전극 밀도를 만족하도록 수행되는 것인 음극의 제조방법.The rolling is performed to satisfy the optimum electrode density selected in the fourth step.
  6. 청구항 1의 방법에 의해 제조된 음극으로서, As a negative electrode produced by the method of claim 1,
    상기 음극은 활물질로 저흑연화도의 2차 입자로 구성된 흑연을 포함하며, 상기 음극의 전극 밀도가 1.3 g/cc 내지 1.5 g/cc인 음극.The negative electrode includes a graphite composed of secondary particles of low graphite degree as an active material, the negative electrode has an electrode density of 1.3 g / cc to 1.5 g / cc.
  7. 청구항 1의 방법에 의해 제조된 음극으로서, As a negative electrode produced by the method of claim 1,
    상기 음극은 활물질로 고흑연화도의 2차 입자로 구성된 흑연을 포함하며, 상기 음극의 전극 밀도가 1.4 g/cc 내지 1.7 g/cc인 음극.The negative electrode comprises a graphite composed of secondary particles of high graphite degree as an active material, the negative electrode having an electrode density of 1.4 g / cc to 1.7 g / cc.
  8. 청구항 6 또는 청구항 7에 있어서, The method according to claim 6 or 7,
    상기 활물질, 도전재 및 바인더의 중량비는 95 내지 95.5 : 0.5 내지 1.5 : 3.5 내지 4인 것을 특징으로 하는 음극.The weight ratio of the active material, the conductive material and the binder is 95 to 95.5: 0.5 to 1.5: 3.5 to the negative electrode, characterized in that.
  9. 청구항 6 또는 청구항 7의 음극과, 양극, 상기 음극 및 양극 사이에 개재된 분리막, 및 전해액을 포함하는 것을 특징으로 하는 이차전지.A secondary battery comprising a negative electrode of claim 6 or 7, a separator interposed between the positive electrode, the negative electrode and the positive electrode, and an electrolyte solution.
  10. 청구항 9의 이차 전지를 단위 셀로 포함하는 것을 특징으로 하는 전지 모듈.A battery module comprising the secondary battery of claim 9 as a unit cell.
  11. 청구항 10의 전지 모듈을 포함하며, 중대형 디바이스의 전원으로 사용되는 것을 특징으로 하는 전지 팩.A battery pack comprising the battery module of claim 10 and used as a power source for medium and large devices.
  12. 청구항 11에 있어서, The method according to claim 11,
    상기 중대형 디바이스가 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 것을 특징으로 하는 전지 팩.The medium-to-large device is a battery pack, characterized in that selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles and power storage systems.
PCT/KR2017/001517 2016-02-15 2017-02-13 Negative electrode manufacturing method and negative electrode WO2017142261A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL17753422T PL3301743T3 (en) 2016-02-15 2017-02-13 Method of manufacturing negative electrode
US15/740,048 US10601026B2 (en) 2016-02-15 2017-02-13 Method of manufacturing negative electrode and negative electrode
EP17753422.9A EP3301743B1 (en) 2016-02-15 2017-02-13 Method of manufacturing negative electrode
CN201780002425.8A CN107851778B (en) 2016-02-15 2017-02-13 Method for producing anode and anode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0017214 2016-02-15
KR20160017214 2016-02-15
KR10-2017-0016846 2017-02-07
KR1020170016846A KR101950859B1 (en) 2016-02-15 2017-02-07 Method for manufacturing of negative electrode and negative electrode

Publications (1)

Publication Number Publication Date
WO2017142261A1 true WO2017142261A1 (en) 2017-08-24

Family

ID=59625206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001517 WO2017142261A1 (en) 2016-02-15 2017-02-13 Negative electrode manufacturing method and negative electrode

Country Status (1)

Country Link
WO (1) WO2017142261A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111024681A (en) * 2019-12-17 2020-04-17 国联汽车动力电池研究院有限责任公司 Ternary lithium ion battery positive pole piece analysis method
WO2020106106A1 (en) * 2018-11-22 2020-05-28 에스케이이노베이션 주식회사 Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075039A (en) * 2004-02-12 2008-08-13 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
KR20090016462A (en) * 2006-06-02 2009-02-13 니폰 카본 컴퍼니 리미티드 Negative electrode active material for lithium ion rechargeable battery and negative electrode
JP4448279B2 (en) * 2001-01-25 2010-04-07 日立化成工業株式会社 Artificial graphite particles and production method thereof, nonaqueous electrolyte secondary battery negative electrode and production method thereof, and lithium secondary battery
JP2012248544A (en) * 2006-10-02 2012-12-13 Nec Energy Devices Ltd Lithium polymer battery
JP2014082157A (en) * 2012-10-18 2014-05-08 Hitachi Vehicle Energy Ltd Lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448279B2 (en) * 2001-01-25 2010-04-07 日立化成工業株式会社 Artificial graphite particles and production method thereof, nonaqueous electrolyte secondary battery negative electrode and production method thereof, and lithium secondary battery
KR20080075039A (en) * 2004-02-12 2008-08-13 미쓰비시 가가꾸 가부시키가이샤 Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same, and lithium secondary battery
KR20090016462A (en) * 2006-06-02 2009-02-13 니폰 카본 컴퍼니 리미티드 Negative electrode active material for lithium ion rechargeable battery and negative electrode
JP2012248544A (en) * 2006-10-02 2012-12-13 Nec Energy Devices Ltd Lithium polymer battery
JP2014082157A (en) * 2012-10-18 2014-05-08 Hitachi Vehicle Energy Ltd Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020106106A1 (en) * 2018-11-22 2020-05-28 에스케이이노베이션 주식회사 Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
CN111024681A (en) * 2019-12-17 2020-04-17 国联汽车动力电池研究院有限责任公司 Ternary lithium ion battery positive pole piece analysis method

Similar Documents

Publication Publication Date Title
WO2018008953A1 (en) Negative electrode for secondary battery
WO2017164702A1 (en) Negative electrode and method for manufacturing same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
US10622625B2 (en) Positive electrode and secondary battery including the same
EP3301743B1 (en) Method of manufacturing negative electrode
WO2020149622A1 (en) Anode and secondary battery comprising said anode
CN101228654A (en) Cathode active material and lithium secondary battery containing them
WO2019078544A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2012086939A2 (en) Cathode active material and secondary battery using same
WO2012077929A2 (en) Cathode material and secondary battery using same
KR20200067009A (en) Positive electrode active material for secondary battery, method for manufacturing the same, positive electrode for secondary battery and lithium secondary battery comprising the same
WO2014081237A1 (en) Lithium secondary battery
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2012091301A2 (en) Negative electrode active material, and secondary battery using same
KR20210117212A (en) Positive electrode material for lithium secondary battery, positive electrode and secondary battery
WO2017142261A1 (en) Negative electrode manufacturing method and negative electrode
WO2020149681A1 (en) Anode and secondary battery comprising anode
KR101779638B1 (en) Cathode active material, preparation method thereof, and lithium secondary battery comprising the same
WO2018135929A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2020149618A1 (en) Method for preparing negative electrode active material
WO2019221450A1 (en) Anode, and lithium secondary battery comprising anode
WO2018008954A1 (en) Positive electrode and secondary battery including same positive electrode
WO2014081240A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020076139A1 (en) Negative electrode and rechargeable battery comprising same
KR20170038296A (en) Method for manufacturing of secondary battery and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15740048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE