WO2024085273A1 - Zinc-bromine supercapattery - Google Patents

Zinc-bromine supercapattery Download PDF

Info

Publication number
WO2024085273A1
WO2024085273A1 PCT/KR2022/015965 KR2022015965W WO2024085273A1 WO 2024085273 A1 WO2024085273 A1 WO 2024085273A1 KR 2022015965 W KR2022015965 W KR 2022015965W WO 2024085273 A1 WO2024085273 A1 WO 2024085273A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
bromine
zinc
electrode
supercapacitor
Prior art date
Application number
PCT/KR2022/015965
Other languages
French (fr)
Korean (ko)
Inventor
이주혁
김완영
안제헌
곽정권
Original Assignee
주식회사 코스모스랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코스모스랩 filed Critical 주식회사 코스모스랩
Publication of WO2024085273A1 publication Critical patent/WO2024085273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a zinc-bromine supercapacitor, and more specifically, to a zinc-bromine supercapacitor with high energy density and power density and excellent lifespan characteristics.
  • water-based secondary batteries using zinc and bromine have excellent material price competitiveness, have a high charging voltage of over 1.8 V, and have an energy density of 85 Wh/kg, which is similar to that of lead acid batteries (40 Wh/kg) and vanadium flow batteries. It is receiving a lot of attention as it is superior to (300 Wh/kg).
  • zinc metal and halide-based bromine which are abundant and inexpensive elements on Earth, have a much more fluid raw material production network and supply chain compared to lithium-ion batteries.
  • the theoretical energy density of aqueous zinc-bromine batteries is low, so it is difficult to develop as a technology targeting various consumers and devices without an intrinsic electrochemical solution at the cell level that can improve this. It has limitations. In particular, the quantitative target values of 300 Wh/kg (energy density), 8,500 W/kg (output), and Water-based battery technology that can achieve less than $90/kWh (manufacturing cost) is needed.
  • a zinc bromine ‘supercapattery’ system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage (Materials Horizons, 2020)
  • the present invention seeks to provide a zinc-bromine supercapacitor with high energy density and power density and excellent lifespan characteristics.
  • One embodiment of the present invention includes first and second carbon electrodes having micropores; and an electrolyte solution containing an aqueous solvent and a Zn/Br redox couple.
  • the micropores may include micro pores, meso pores, and macro pores.
  • the first and second carbon electrodes may include one or more carbon materials selected from the group consisting of activated carbon, graphite, hard carbon, and porous carbon materials.
  • the first and second carbon electrodes may include activated carbon with an average particle size of 1 to 10 ⁇ m and a porosity of 80% or more.
  • the first and second carbon electrodes may include 60 to 90 parts by weight of the carbon body, 5 to 20 parts by weight of the conductive material, and 5 to 20 parts by weight of the binder.
  • the first and second carbon electrodes may be formed on a carbon body current collector.
  • Zn 2+ and Br - are adsorbed and desorbed in micropores to form an electric double layer (EDLC), a non-Faraday reaction, and Zn 2+ and Br are formed on the microsurface of the electrode.
  • EDLC electric double layer
  • a non-Faraday reaction Zn 2+ and Br are formed on the microsurface of the electrode.
  • - A reaction in which ions undergo underpotential deposition and a Faradaic reaction in which Zn 2+ and Br - ions are deposited on the surface of the electrode can be performed.
  • the electrolyte solution may contain ZnBr 2 (Zinc bromide), hydrobromic acid, acids other than hydrobromic acid, bromine complexing agents, and other additives.
  • the zinc-bromine supercapacitor according to one embodiment of the present invention is a compound word of battery and supercapacitor, and is an electrochemical energy storage device that combines the advantages of batteries and supercapacitors.
  • the supercapacitor according to one embodiment of the present invention is based on an aqueous electrolyte containing a Zn/Br redox couple, is non-flammable, and uses a carbon electrode with a fine pore structure to form an electric double layer (EDLC, Electric) of the capacitor.
  • EDLC electric double layer
  • Capacity based on double layer capacitor, pseudo-capacitor, and battery principles can all be implemented.
  • FIG. 1 is a cross-sectional view schematically showing a zinc-bromine supercapacitor according to an embodiment of the present invention.
  • Figure 2 is a graph showing the coverage ( ⁇ ) of the material adsorbed (electrosoprtion) on the surface and the change in pseudocapacitance (C ⁇ ) according to voltage.
  • Figure 3 is a graph showing cyclic voltammetry (CV) curve characteristics combining the EDLC response and pseudocapacitance response at the electrode.
  • Figure 4 shows the results of a charge/discharge test at a constant current state of the zinc-bromine supercapacitor according to the above manufacturing example.
  • Figure 5 shows the Coulombic efficiency measurement results of the zinc-bromine supercapacitor according to the above manufacturing example.
  • Figure 6 shows the results of a voltage curve experiment of a zinc-bromine supercapacitor according to the above manufacturing example.
  • Figure 7 is a schematic diagram of a voltage curve according to charge/discharge current density.
  • the present invention relates to a zinc-bromine supercapacitor and a method of driving the same.
  • ‘supercapacitor’ is a compound word of battery and supercapacitor, and can be understood as an electrochemical energy storage device that combines the advantages of batteries and supercapacitors.
  • the supercapacitor according to an embodiment of the present invention is based on an aqueous electrolyte containing a Zn/Br redox couple, and uses a carbon electrode with a micropore structure to form an electric double layer capacitor (EDLC). ), pseudo-capacitor, and battery principle-based capacity can all be implemented.
  • EDLC electric double layer capacitor
  • the supercapacitor according to one embodiment of the present invention applies carbon electrodes with micropores to both the anode and cathode, so that Zn 2+ and Br - can implement three types of electrochemical charging and discharging at the carbon electrode interface, respectively. It was designed.
  • the reaction in which Zn 2+ and Br - adsorb and desorb to the micropores of the carbon electrode to form an electric double layer (electric double layer capacitance, EDLC), and the low potential of Zn 2+ and Br - ions generated on the microsurface of the electrode may be performed.
  • the pseudocapacitance reaction is a principle that is not utilized in existing batteries. This is explained in more detail below.
  • FIG. 1 is a cross-sectional view schematically showing a zinc-bromine supercapacitor according to an embodiment of the present invention.
  • it may include a first electrode 221 and a second electrode 222, a separator 240 disposed between the first and second electrodes, and an electrolyte solution.
  • Figure 1 illustrates a unit cell of a zinc-bromine supercapacitor.
  • the zinc-bromine supercapacitor may be implemented by stacking one or more unit cells.
  • the unit cells can be stacked to form small batteries such as pouch, cylindrical, or square shapes.
  • the first carbon electrode and the second carbon electrode may have polarities opposite to each other.
  • the first electrode 221 formed on the first current collector 211 may be an anode.
  • the second electrode 222 formed on the second current collector 212 may be a negative electrode.
  • the materials of the first carbon electrode and the second carbon electrode are not particularly limited, and materials commonly used in the art can be used. It is not limited thereto, but for example, a carbon body, etc. can be used.
  • the electrode may have micropores. More specifically, it may have micro pores, meso pores, and macro pores.
  • the average size of micropores may be 2 nm or less, the average size of mesopores may be 2 to 50 nm, and the average size of macropores may be 50 nm or more.
  • the electrode may be formed to have a thickness of 5 to 300 ⁇ m to provide an active site.
  • the cathode may be formed to a thickness of 5 to 100 ⁇ m
  • the anode may be formed to a thickness of 50 to 300 ⁇ m.
  • the specific surface area of the electrode is preferably formed to be large, and is not limited thereto, but may be, for example, 500 to 3,000 m 2 /g.
  • the carbon body may be activated carbon, graphite, hard carbon, or porous carbon material.
  • the porous carbon material is not limited to this, but carbon felt, carbon cloth, or carbon paper may be used.
  • activated carbon can be used, and activated carbon with an average particle size of 1 to 10 ⁇ m can be used, and activated carbon with a porosity of 80% or more can be used.
  • the carbon electrode may additionally include a conductive material, binder, etc.
  • the conductive material is not limited to this, but for example, carbon-based conductive materials such as carbon black, carbon fiber, carbon nanotubes, or graphite can be used.
  • the carbon black is not limited thereto, but for example, acetylene black, Ketjen black, Super P, channel black, furnace black, lamp black, or thermal black can be used.
  • the graphite may be natural graphite or artificial graphite.
  • the conductive material can be used in an amount of 5 to 20 parts by weight, specifically 5 to 10 parts by weight, based on 100 parts by weight of the carbon electrode. If the content is less than 5 parts by weight, the electrical conductivity of the electrode is low and there is a risk of deteriorating the performance of the supercapacitor. In addition, conductive materials are prone to agglomeration due to the fine particle size, and uniform distribution is difficult. Accordingly, if it exceeds 20 parts by weight, capacity may be reduced in some areas, and resistance characteristics may increase in other areas.
  • the binder is not limited to this, but for example, carboxymethyl cellulose, styrene butadiene rubber, polyvinylidene fluoride, or polytetrafluoroethylene may be used. .
  • the binder may be used in an amount of 5 to 20 parts by weight, specifically 5 to 10 parts by weight, based on 100 parts by weight of the carbon electrode. If the content is less than 5 parts by weight, there is a risk that it may not function as a binding agent between the active material and the conductive material or as a binding agent to the current collector. If it exceeds 20 parts by weight, internal resistance characteristics may increase, capacity may decrease, and the amount of activated carbon filled may decrease, causing damage to the capacitor. There is a risk of deteriorating performance.
  • the reaction performed at the electrode according to one embodiment of the present invention is as follows.
  • Equation (1) Taking Zn 2+ of the cathode as an example, following a charging reaction based on the EDLC principle in which zinc cations are adsorbed to the electrode, the pseudocapacitance capacity can be expressed as equation (1) below.
  • Zn 2+ cations are adsorbed onto the carbon electrode (M), they are adsorbed on the electrode surface according to the electron exchange reaction as shown in Equation (1).
  • Equation (2) C Zn2+ is the concentration of Zn 2+ , ⁇ is the degree of adsorption of MZn ads on the electrode surface, K is the reaction rate constant, F is Faraday's constant, R is the ideal gas constant, V is the electrode potential, and T is the temperature.
  • Equation (3) E represents the equilibrium potential and E 0 represents the reference potential.
  • the pseudocapacitance (capacitance of pseudocapacitance (C ⁇ )) can be expressed as in equation (4) below.
  • FIG. 2 is a graph showing the coverage ( ⁇ ) of the electrosorbed material on the surface according to Equation 4 above, and the change in pseudocapacitance (C ⁇ ) according to voltage.
  • Figure 3 is a graph showing cyclic voltammetry (CV) curve characteristics combining the EDLC response and pseudocapacitance response at the electrode.
  • the first and second carbon electrodes may be formed on the carbon body current collectors 211 and 212.
  • the carbon body current collector may refer to a current collector made only of carbon body without other materials mixed.
  • the supercapacitor according to one embodiment of the present invention may use an acidic aqueous electrolyte, but if a metal current collector is used, side reactions, chemical corrosion, and electrochemical corrosion may occur.
  • the carbon body current collector may have lower electrical conductivity than the metal current collector, but side reactions with the acidic aqueous electrolyte solution do not occur and corrosion does not progress, so lifespan characteristics can be improved.
  • the carbon body is not limited thereto, and may be, for example, graphite foil, carbon cloth, carbon paper, or a mixture thereof.
  • the carbon body current collector may have an electrical conductivity of 1.38 ⁇ 10 7 to 3.49 ⁇ 10 7 S/m, specifically 2.46 ⁇ 10 7 to 3.49 ⁇ 10 7 S/m.
  • the carbon body current collector can enable charging and discharging at an appropriate current density without increasing the transfer resistance of the carbon electrode.
  • the carbon body current collector does not contain any other material other than the carbon body, so it has higher electrical conductivity than the carbon electrode, and can have a strength sufficient to be applied to the coating process of the electrode material.
  • the specific surface area characteristics are not considered, and it can function as a current collector even with a small thickness.
  • the carbon body current collector may have a thickness of 10 to 50 ⁇ m. Specifically, it may be 20 to 30 ⁇ m. If the thickness is less than 10 ⁇ m, it may be difficult to apply to the electrode formation process, and if it exceeds 50 ⁇ m, the thickness of the current collector may be too thick, causing difficulties in the process, or the energy density of the cell may be significantly lowered.
  • a porous structure When mixing a polymer, etc. with a carbon body to use it as a current collector, a porous structure may be formed through the mixing process. Due to this porous structure, strength may decrease, resistance may increase, and electrolyte may be absorbed. there is.
  • the carbon body current collector according to one embodiment of the present invention is not mixed with other materials and has excellent electrical conductivity.
  • it is hydrophobic and has no pores on the surface, so it has excellent strength and may not absorb electrolytes.
  • the electrolyte solution may include an aqueous solvent (water) and a Zn/Br redox couple.
  • the aqueous electrolyte solution may be acidic and the pH may be 2 or less.
  • the electrolyte solution may further include bromonic acid, an acidic substance other than bromous acid, a bromine complexing agent, and other additives.
  • the bromine complexing agent may include quaternary ammonium bromide. It is not limited thereto, but for example, pyridinium bromide substituted with 1 or more alkyl groups having 1 to 10 carbon atoms, imidazolium bromide substituted with 1 or more alkyl groups having 1 to 10 carbon atoms, or 1 -Ethyl-1-methylpyrrolidinium bromide, etc. can be used.
  • the bromous acid (HBr) is an acidic substance, which serves to lower the pH of the electrolyte and increases the content of bromine ions (Br - ) through ionization, thereby improving the charge/discharge efficiency of the zinc-bromine battery.
  • Acidic substances other than hydrobromic acid (HBr) are not limited thereto, but include, for example, a strong acid with a pH of 2.0 or less or -1.0 to 2.0, specifically hydrochloric acid, nitric acid, sulfuric acid, hydroiodide acid, or two types thereof. A mixture of the above can be used.
  • additives may include Na 2 SO 4 , NaCl, etc.
  • the separator 140 performs the main functions of separating the positive and negative electrolytes during charging or discharging, preventing internal short circuits during charging or discharging, and containing the electrolyte.
  • the material of the separator 140 is not particularly limited, and may be, for example, a polyolefin film containing polyethylene or polypropylene, polyvinyl chloride, cellulose, polyester, or a fibrous nonwoven fabric containing polypropylene.
  • a carbon electrode prepared by mixing 80 parts by weight of activated carbon with an average particle size of 1 to 10 ⁇ m and a porosity of 80% or more, 10 parts by weight of a conductive material, and 10 parts by weight of a binder was composed of an anode and a cathode.
  • Graphite foil was used as the current collector, and an aqueous electrolyte containing ZnBr 2 (Zinc bromide) was used as the electrolyte.
  • Figure 4 shows the results of a charge/discharge test at a constant current state of the zinc-bromine supercapacitor according to the above manufacturing example.
  • the charging voltage instantaneously shows 1.82V, which is the theoretical charge potential shown by zinc bromine batteries classified as existing secondary batteries. It can be seen that charging follows a linear rise section from 1.7V to 1.85V and charging under a certain voltage after reaching a voltage of 1.7V or more and 1.85V or less.
  • the linear voltage rise section before 1.82V during the first 500 seconds of charging is a mixed potential section caused by the charging reactions (Capacitive reaction, Pseudocapacitive reaction, Faradic reaction) of the supercapacitor, pseudocapacitor, and battery occurring simultaneously.
  • adsorption ion desorption reaction occurs similar to the discharge reaction of pseudocapacitors and supercapacitors, and discharge occurs sequentially.
  • Figure 5 shows the Coulombic efficiency measurement results of the zinc-bromine supercapacitor according to the above manufacturing example.
  • the zinc-bromine supercapacitor according to an embodiment of the present invention is a completely new energy storage system that can be actually implemented for about 25 cycles.
  • Figure 6 shows the results of a voltage curve experiment of a zinc-bromine supercapacitor according to the above manufacturing example.
  • Figure 6(a) is the result of a voltage curve experiment of charging and discharging at a charge and discharge current density of 0.5 mA cm -2
  • Figure 6(b) is the result of a voltage curve experiment of charge and discharge at a charge and discharge current density of 10 mA cm -2
  • Figure 6(c) is the result of a voltage curve experiment performed at a charge/discharge current density of 40 mA cm -2
  • Figure 7 is a schematic diagram of a voltage curve according to charge/discharge current density.
  • the diffusion length to reach the electrode from the electrolyte inside the three-dimensional structure is a term that takes into account diffusion time (t d ) and diffusion coefficient (D). It can be assumed that the value is much larger than .
  • the zinc-bromine supercapacitor according to one embodiment of the present invention is a compound word of battery and supercapacitor, and is an electrochemical energy storage device that combines the advantages of batteries and supercapacitors.
  • the supercapacitor according to one embodiment of the present invention is based on an aqueous electrolyte containing a Zn/Br redox couple, is non-flammable, and uses a carbon electrode with a fine pore structure to form an electric double layer (EDLC, Electric) of the capacitor.
  • EDLC electric double layer
  • Capacity based on double layer capacitor, pseudo-capacitor, and battery principles can all be implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

The present invention relates to a zinc-bromine supercapacitor. The zinc-bromine supercapacitor according to one embodiment of the present invention may comprise first and second carbon electrodes having micropores; and an electrolyte solution containing an aqueous solvent and a Zn-Br redox couple.

Description

아연-브롬 슈퍼커패터리Zinc-bromine supercapacitor
본 발명은 아연-브롬 슈퍼커패터리에 관한 것으로, 보다 구체적으로 높은 에너지 밀도 및 전력 밀도를 가지고, 수명 특성이 우수한 아연-브롬 슈퍼커패터리에 관한 것이다.The present invention relates to a zinc-bromine supercapacitor, and more specifically, to a zinc-bromine supercapacitor with high energy density and power density and excellent lifespan characteristics.
전 세계적으로 지구 온난화에 대한 대책으로 태양광 및 풍력 발전 등 신에너지 도입의 요구가 커지고 있다. 하지만 간헐적으로 특정 조건하에서 전력이 생산되는 신재생 에너지의 불규칙한 특성을 보완하기 위해서, 전력의 저장 기능을 지닌 이차전지가 큰 주목을 받고 있다. Around the world, there is a growing demand for the introduction of new energy such as solar and wind power generation as a measure against global warming. However, in order to compensate for the irregular characteristics of renewable energy, in which power is produced intermittently and under certain conditions, secondary batteries with a power storage function are receiving great attention.
다양한 이차전지 중 높은 에너지 밀도 (250 Wh/kg & 650 Wh/L이상)와 구동 전압(3.2 V 이상)을 가지고, 사이클 수명(3000사이클 이상)이 우수할 뿐만 아니라, 오랜 시간 제조 공정이 고도화되어 제품화가 용이한 리튬이온 전지가 널리 사용되고 있다. 하지만 리튬이온 전지는 발화성을 지닌 소재를 사용한다는 단점으로 인하여 ESS, 전기차, 소형 디바이스 등에서 빈번한 화재 사고가 일어나고 있다. 이는 배터리가 단락(Short-circuit)되면서 발생된 온도 상승이 발화성을 지닌 유기계 전해액의 점화를 부추기기 때문이다. 따라서 신재생에너지 기반의 전력 사용을 중심으로 한 글로벌 에코 시스템 변화를 위해서는 고안정성과 고성능을 지닌 차세대 이차전지 기술이 요구된다.Among various secondary batteries, it has the highest energy density (over 250 Wh/kg & 650 Wh/L) and driving voltage (over 3.2 V), and not only has excellent cycle life (over 3000 cycles), but also has an advanced long-term manufacturing process. Lithium-ion batteries, which are easy to commercialize, are widely used. However, due to the disadvantage of lithium-ion batteries using flammable materials, frequent fire accidents occur in ESS, electric vehicles, small devices, etc. This is because the temperature rise caused by the battery short-circuit encourages ignition of the flammable organic electrolyte. Therefore, in order to change the global ecosystem centered on the use of renewable energy-based power, next-generation secondary battery technology with high stability and high performance is required.
이런 흐름에 맞춰 전 세계적으로 수계 전해질을 사용하는 에너지 저장 시스템이 학계와 산업계에서 큰 주목을 받고 있다. 특히, 아연과 브롬을 활용한 수계 이차전지는 소재 가격 경쟁력이 우수하며, 1.8 V 이상의 높은 충전 전압을 지니고 있으며, 에너지밀도는 85 Wh/kg 수준으로 납축전지(40 Wh/kg), 바나듐 흐름 전지(300 Wh/kg)보다도 우수하여 많은 관심을 받고 있다. 특히, 지구상에 풍부하고 저렴한 원소물질인 아연 금속과 할라이드 계열의 브롬은 리튬이온전지와 대비하여 훨씬 유동적인 원료 생산망과 공급망을 지니고 있다.In line with this trend, energy storage systems using aqueous electrolytes are receiving great attention from academia and industry around the world. In particular, water-based secondary batteries using zinc and bromine have excellent material price competitiveness, have a high charging voltage of over 1.8 V, and have an energy density of 85 Wh/kg, which is similar to that of lead acid batteries (40 Wh/kg) and vanadium flow batteries. It is receiving a lot of attention as it is superior to (300 Wh/kg). In particular, zinc metal and halide-based bromine, which are abundant and inexpensive elements on Earth, have a much more fluid raw material production network and supply chain compared to lithium-ion batteries.
하지만 리튬이온 전지와 비교하여 수계 아연-브롬 전지의 이론적 에너지 밀도는 낮으므로, 이를 개선할 수 있는 셀-레벨에서의 본질적이고 전기화학적인 솔루션 없이는 다양한 소비자와 디바이스를 대상으로 한 기술로써 발전하기 어렵다는 한계를 지니고 있다. 특히, 현재, 차세대 전지로 인식되는 비발화성 전고체 리튬 금속 전지(All-solid state lithium metal battery)가 목표로 하는 정량적 목표 수치인 300 Wh/kg(에너지 밀도), 8,500 W/kg(출력)와 $90 /kWh (제조 비용) 이하를 달성할 수 있는 수계 전지 기술이 필요하다.However, compared to lithium-ion batteries, the theoretical energy density of aqueous zinc-bromine batteries is low, so it is difficult to develop as a technology targeting various consumers and devices without an intrinsic electrochemical solution at the cell level that can improve this. It has limitations. In particular, the quantitative target values of 300 Wh/kg (energy density), 8,500 W/kg (output), and Water-based battery technology that can achieve less than $90/kWh (manufacturing cost) is needed.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
한국등록특허 제10-1862368호Korean Patent No. 10-1862368
한국등록특허 제10-2255426호Korean Patent No. 10-2255426
[비특허문헌][Non-patent literature]
Brian Evanko et al: "Stackable bipolar pouch cells with corrosionresistant current collectors enable high-power aqueous electrochemical energy storage"(14 June 2018, Energy & Environmental Science)Brian Evanko et al: "Stackable bipolar pouch cells with corrosionresistant current collectors enable high-power aqueous electrochemical energy storage" (14 June 2018, Energy & Environmental Science)
A zinc bromine ‘supercapattery’ system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage(Materials Horizons, 2020)A zinc bromine ‘supercapattery’ system combining triple functions of capacitive, pseudocapacitive and battery-type charge storage (Materials Horizons, 2020)
본 발명은 높은 에너지 밀도 및 전력 밀도를 가지고, 수명 특성이 우수한 아연-브롬 슈퍼커패터리를 제공하고자 한다.The present invention seeks to provide a zinc-bromine supercapacitor with high energy density and power density and excellent lifespan characteristics.
본 발명의 일 실시형태는 미세 기공을 가지는 제1 및 제2 탄소 전극; 및 수계 용매, 및 Zn/Br 레독스 커플을 포함하는 전해액;을 포함하는 아연-브롬 슈퍼커패터리를 제공한다.One embodiment of the present invention includes first and second carbon electrodes having micropores; and an electrolyte solution containing an aqueous solvent and a Zn/Br redox couple.
상기 미세기공은 마이크로 포어(micro pore), 메조 포어(meso pore) 및 매크로 포어(macro pore)를 포함할 수 있다. The micropores may include micro pores, meso pores, and macro pores.
상기 제1 및 제2 탄소 전극은 활성탄, 그라파이트, 하드 카본 및 다공성 카본재로 이루어진 군에 선택되는 1종 이상의 탄소체를 포함할 수 있다. The first and second carbon electrodes may include one or more carbon materials selected from the group consisting of activated carbon, graphite, hard carbon, and porous carbon materials.
상기 제1 및 제2 탄소 전극은 평균 입자 크기가 1 내지 10 ㎛이고, 기공률이 80%이상인 활성탄을 포함할 수 있다. The first and second carbon electrodes may include activated carbon with an average particle size of 1 to 10 ㎛ and a porosity of 80% or more.
상기 제1 및 제2 탄소 전극은 탄소체 60 내지 90 중량부, 도전재 5 내지 20 중량부, 및 바인더 5 내지 20 중량부를 포함할 수 있다.The first and second carbon electrodes may include 60 to 90 parts by weight of the carbon body, 5 to 20 parts by weight of the conductive material, and 5 to 20 parts by weight of the binder.
상기 제1 및 제2 탄소 전극은 탄소체 집전체 상에 형성될 수 있다. The first and second carbon electrodes may be formed on a carbon body current collector.
상기 제1 및 제2 탄소 전극에서는 미세 기공에 Zn2+ 및 Br-가 흡탈착하여 전기 이중층(Electric double layer, EDLC)을 형성하는 비패러데이 반응과, 전극의 미세 표면에 Zn2+, 및 Br- 이온이 저전위 전착(Underpotential deposition)하는 반응 및 전극의 표면에 Zn2+ 및 Br- 이온이 전착(Deposition)하는 패러데이 반응(Faradaic reaction)이 수행될 수 있다.In the first and second carbon electrodes, Zn 2+ and Br - are adsorbed and desorbed in micropores to form an electric double layer (EDLC), a non-Faraday reaction, and Zn 2+ and Br are formed on the microsurface of the electrode. - A reaction in which ions undergo underpotential deposition and a Faradaic reaction in which Zn 2+ and Br - ions are deposited on the surface of the electrode can be performed.
상기 전해액은 ZnBr2(Zinc bromide), 브롬산, 브롬산 이외의 산성물질, 브롬 착화제, 및 기타 첨가제를 포함할 수 있다.The electrolyte solution may contain ZnBr 2 (Zinc bromide), hydrobromic acid, acids other than hydrobromic acid, bromine complexing agents, and other additives.
본 발명의 일 실시형태에 따른 아연-브롬 슈퍼커패터리는 배터리와 슈퍼커패시터의 합성어로써, 배터리와 슈퍼커패시터의 장점을 결합한 전기화학적 에너지 저장 장치이다.The zinc-bromine supercapacitor according to one embodiment of the present invention is a compound word of battery and supercapacitor, and is an electrochemical energy storage device that combines the advantages of batteries and supercapacitors.
본 발명의 일 실시형태에 따른 슈퍼커패터리는 Zn/Br 레독스 커플을 포함하는 수계 전해액을 기반으로 한 것으로, 비발화성이며, 미세 기공 구조을 가진 탄소 전극을 사용하여 커패시터의 전기 이중층(EDLC, Electric double layer capacitor), 유사커패시터(Pseudo-capacitor), 배터리 원리 기반의 용량을 모두 구현할 수 있다.The supercapacitor according to one embodiment of the present invention is based on an aqueous electrolyte containing a Zn/Br redox couple, is non-flammable, and uses a carbon electrode with a fine pore structure to form an electric double layer (EDLC, Electric) of the capacitor. Capacity based on double layer capacitor, pseudo-capacitor, and battery principles can all be implemented.
도 1은 본 발명의 일 실시형태에 따른 아연-브롬 슈퍼커패터리를 개략적으로 나타내는 단면도이이다.1 is a cross-sectional view schematically showing a zinc-bromine supercapacitor according to an embodiment of the present invention.
도 2는 표면에 흡착(electrosoprtion)된 물질의 커버리지(coverage, θ), 그리고 전압에 따른 유사커패시턴스(Pseudocapacitance(Cø)) 변화를 나타내는 그래프이다.Figure 2 is a graph showing the coverage (θ) of the material adsorbed (electrosoprtion) on the surface and the change in pseudocapacitance (C ø ) according to voltage.
도 3은 전극에서의 EDLC 반응과 유사커패시턴스(Pseudocapacitance) 반응이 결합된 순환전압전류(Cyclic voltammetry, CV) 곡선 특성을 나타내는 그래프이다. Figure 3 is a graph showing cyclic voltammetry (CV) curve characteristics combining the EDLC response and pseudocapacitance response at the electrode.
도 4는 상기 제조예에 따른 아연-브롬 슈퍼커패터리의 일정 전류 상태에서의 충방전실험 결과이다.Figure 4 shows the results of a charge/discharge test at a constant current state of the zinc-bromine supercapacitor according to the above manufacturing example.
도 5는 상기 제조예에 따른 아연-브롬 슈퍼커패터리의 쿨롱 효율(Coulombic efficiency) 측정결과이다. Figure 5 shows the Coulombic efficiency measurement results of the zinc-bromine supercapacitor according to the above manufacturing example.
도 6은 상기 제조예에 따른 아연-브롬 슈퍼커패터리의 전압 곡선 실험 결과이다. Figure 6 shows the results of a voltage curve experiment of a zinc-bromine supercapacitor according to the above manufacturing example.
도 7은 충방전 전류밀도에 따른 전압 곡선 모식도이다.Figure 7 is a schematic diagram of a voltage curve according to charge/discharge current density.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예 및 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다.Hereinafter, implementation examples and examples of the present invention will be described in detail so that those skilled in the art can easily practice it. However, the present invention may be implemented in various different forms and is not limited to the implementation examples and examples described herein.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features or steps. , it should be understood that it does not exclude in advance the possibility of the existence or addition of operations, components, parts, or combinations thereof.
또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Additionally, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless clearly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
본 발명은 아연-브롬 슈퍼커패터리 및 이의 구동방법에 관한 것이다. The present invention relates to a zinc-bromine supercapacitor and a method of driving the same.
본 명세서에서 ‘슈퍼커패터리’는 배터리와 슈퍼커패시터의 합성어로써, 배터리와 슈퍼커패시터의 장점을 결합한 전기화학적 에너지 저장 장치로 이해될 수 있다.In this specification, ‘supercapacitor’ is a compound word of battery and supercapacitor, and can be understood as an electrochemical energy storage device that combines the advantages of batteries and supercapacitors.
본 발명의 일 실시형태에 따른 슈퍼커패터리는 Zn/Br 레독스 커플을 포함하는 수계 전해액을 기반으로 한 것으로, 미세 기공 구조를 가진 탄소 전극을 사용하여 커패시터의 전기 이중층(EDLC, Electric double layer capacitor), 유사커패시터(Pseudo-capacitor), 배터리 원리 기반의 용량을 모두 구현할 수 있다. The supercapacitor according to an embodiment of the present invention is based on an aqueous electrolyte containing a Zn/Br redox couple, and uses a carbon electrode with a micropore structure to form an electric double layer capacitor (EDLC). ), pseudo-capacitor, and battery principle-based capacity can all be implemented.
본 발명의 일 실시형태에 따른 슈퍼커패터리는 미세 기공을 가지는 탄소 전극을 양극과 음극에 모두 적용함으로써 Zn2+, Br-가 각각 탄소 전극 계면에서 3가지 전기화학적인 충전과 방전이 구현가능 하도록 설계하였다.The supercapacitor according to one embodiment of the present invention applies carbon electrodes with micropores to both the anode and cathode, so that Zn 2+ and Br - can implement three types of electrochemical charging and discharging at the carbon electrode interface, respectively. It was designed.
구체적으로, 탄소 전극의 미세 기공에 Zn2+, Br-가 흡탈착하여 전기 이중층을 형성하는 반응(Electric double layer capacitance, EDLC), 전극 미세 표면에서 발생되는 Zn2+, Br- 이온의 저전위 전착(Underpotential deposition) 반응 유사커패시턴스(Pseudocapacitance), 및 전극의 표면에서 발생되는 Zn2+, Br- 이온의 전착(deposition) 반응(Faradaic reaction)이 수행될 수 있다. 특히, pseudocapacitance 반응은 기존의 배터리에는 활용되지 않는 원리이다. 이에 대하여 하기에서 보다 구체적으로 설명한다.Specifically, the reaction in which Zn 2+ and Br - adsorb and desorb to the micropores of the carbon electrode to form an electric double layer (electric double layer capacitance, EDLC), and the low potential of Zn 2+ and Br - ions generated on the microsurface of the electrode. Underpotential deposition reaction, pseudocapacitance, and deposition reaction of Zn 2+ and Br - ions generated on the surface of the electrode may be performed. In particular, the pseudocapacitance reaction is a principle that is not utilized in existing batteries. This is explained in more detail below.
도 1은 본 발명의 일 실시형태에 따른 아연-브롬 슈퍼커패터리를 개략적으로 나타내는 단면도이이다. 도 1을 참조하면, 제1 전극(221) 및 제2 전극(222), 상기 제1 및 제2 전극 사이에 배치되는 분리막(240), 및 전해액을 포함할 수 있다. 도 1은 아연-브롬 슈퍼커패터리의 단위 셀을 도시한 것으로, 아연-브롬 슈퍼커패터리는 1개 이상의 단위 셀을 스택하여 구현될 수 있다. 상기 단위 셀을 스택하여 파우치 형태, 원통형, 각형 등의 소형 전지로 구현할 수 있다.1 is a cross-sectional view schematically showing a zinc-bromine supercapacitor according to an embodiment of the present invention. Referring to FIG. 1, it may include a first electrode 221 and a second electrode 222, a separator 240 disposed between the first and second electrodes, and an electrolyte solution. Figure 1 illustrates a unit cell of a zinc-bromine supercapacitor. The zinc-bromine supercapacitor may be implemented by stacking one or more unit cells. The unit cells can be stacked to form small batteries such as pouch, cylindrical, or square shapes.
본 발명의 일 실시형태에 따르면, 상기 제1 탄소 전극 및 제2 탄소 전극은 서로 반대되는 극성을 가질 수 있고, 예를 들어, 제1 집전체(211)에 형성된 제1 전극(221)이 양극이고, 제2 집전체(212)에 형성된 제2 전극(222)이 음극일 수 있다. According to one embodiment of the present invention, the first carbon electrode and the second carbon electrode may have polarities opposite to each other. For example, the first electrode 221 formed on the first current collector 211 may be an anode. , and the second electrode 222 formed on the second current collector 212 may be a negative electrode.
상기 제1 탄소 전극 및 제2 탄소 전극의 재료는 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 것을 사용할 수 있다. 이에 제한되지 않으나, 예를 들면 탄소체 등을 사용할 수 있다. 본 발명의 일 실시형태에 따르면, 상기 전극은 미세기공을 가질 수 있다. 보다 구체적으로 마이크로 포어(micro pore), 메조포어(meso pore) 및 매크로포어(macro pore)를 가질 수 있다.The materials of the first carbon electrode and the second carbon electrode are not particularly limited, and materials commonly used in the art can be used. It is not limited thereto, but for example, a carbon body, etc. can be used. According to one embodiment of the present invention, the electrode may have micropores. More specifically, it may have micro pores, meso pores, and macro pores.
본 발명에서 마이크로 포어의 평균 크기는 2 nm이하일 수 있고, 메조 포어의 평균 크기는 2 내지 50 nm일 수 있으며, 매크로 포어의 평균 크기는 50 nm 이상일 수 있다. In the present invention, the average size of micropores may be 2 nm or less, the average size of mesopores may be 2 to 50 nm, and the average size of macropores may be 50 nm or more.
본 발명의 일 실시형태에 따르면, 상기 전극은 활성 사이트를 제공하기 위하여 5 내지 300 ㎛의 두께로 형성될 수 있다. 구체적으로 음극의 경우 5 내지 100 ㎛의 두께로 형성되고, 양극의 경우 50 내지 300 ㎛의 두께로 형성될 수 있다. 또한, 전극의 비표면적은 크게 형성되는 것이 좋으며, 이에 제한되지 않으나, 예를 들면 500 내지 3,000 m2/g로 형성될 수 있다. According to one embodiment of the present invention, the electrode may be formed to have a thickness of 5 to 300 ㎛ to provide an active site. Specifically, the cathode may be formed to a thickness of 5 to 100 ㎛, and the anode may be formed to a thickness of 50 to 300 ㎛. In addition, the specific surface area of the electrode is preferably formed to be large, and is not limited thereto, but may be, for example, 500 to 3,000 m 2 /g.
본 발명의 일 실시형태에 따르면 상기 탄소체는 활성탄, 그라파이트, 하드 카본 또는 다공성 카본재 등을 사용할 수 있다. 상기 다공성 카본재는 이에 제한되지 않으나, 카본 펠트(carbon felt), 카본 클로스(carbon cloth) 또는 카본 페이퍼(carbon paper) 등을 사용할 수 있다. 구체적으로 활성탄을 사용할 수 있으며, 평균 입자 크기가 1 내지 10 ㎛인 활성탄을 사용할 수 있고, 기공률이 80%이상인 활성탄을 사용할 수 있다. According to one embodiment of the present invention, the carbon body may be activated carbon, graphite, hard carbon, or porous carbon material. The porous carbon material is not limited to this, but carbon felt, carbon cloth, or carbon paper may be used. Specifically, activated carbon can be used, and activated carbon with an average particle size of 1 to 10 ㎛ can be used, and activated carbon with a porosity of 80% or more can be used.
또한 상기 탄소 전극은 도전재, 바인더 등을 추가로 포함할 수 있다. 상기 도전재는 이에 제한되지 않으나, 예를 들면 카본블랙, 탄소섬유, 카본나노튜브, 또는 흑연 등의 탄소계 도전재를 사용할 수 있다. 상기 카본 블랙은 이에 제한되지 않으나, 예를 들면 아세틸렌 블랙, 케첸 블랙, 슈퍼 P, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙을 사용할 수 있다. 상기 흑연은 천연 흑연 또는 인조 흑연일 수 있다.Additionally, the carbon electrode may additionally include a conductive material, binder, etc. The conductive material is not limited to this, but for example, carbon-based conductive materials such as carbon black, carbon fiber, carbon nanotubes, or graphite can be used. The carbon black is not limited thereto, but for example, acetylene black, Ketjen black, Super P, channel black, furnace black, lamp black, or thermal black can be used. The graphite may be natural graphite or artificial graphite.
상기 도전재는 탄소 전극 100 중량부에 대하여 5 내지 20 중량부를 사용할 수 있고, 구체적으로 5 내지 10 중량부를 사용할 수 있다. 상기 함량이 5 중량부 미만이면 전극의 전기전도도가 낮아 슈퍼커패터리의 성능을 저하시킬 우려가 있다. 또한 도전재는 입자의 미세크기로 인하여 응집이 잘 일어나며, 균일한 분포가 어렵다. 이에 따라 20 중량부를 초과하는 경우 일부 영역에서 용량이 줄어들 수 있고, 다른 영역에서는 저항특성이 증가할 수 있다. The conductive material can be used in an amount of 5 to 20 parts by weight, specifically 5 to 10 parts by weight, based on 100 parts by weight of the carbon electrode. If the content is less than 5 parts by weight, the electrical conductivity of the electrode is low and there is a risk of deteriorating the performance of the supercapacitor. In addition, conductive materials are prone to agglomeration due to the fine particle size, and uniform distribution is difficult. Accordingly, if it exceeds 20 parts by weight, capacity may be reduced in some areas, and resistance characteristics may increase in other areas.
상기 바인더는 이에 제한되지 않으나, 예를 들면 카르복시메틸 셀룰로스(Carboxymethyl cellulose), 스티렌 부타디엔 고무(Styrene Butadiene Rubber), 폴리비닐리덴 플로라이드(Polyvinylidene Fluoride) 또는 폴리테트라플루오르에틸렌(Polytetrafluoroethylene) 등을 사용할 수 있다.The binder is not limited to this, but for example, carboxymethyl cellulose, styrene butadiene rubber, polyvinylidene fluoride, or polytetrafluoroethylene may be used. .
상기 바인더는 탄소 전극 100 중량부에 대하여 5 내지 20 중량부를 사용할 수 있고, 구체적으로 5 내지 10 중량부를 사용할 수 있다. 상기 함량이 5 중량부 미만이면 활물질과 도전재의 바인딩 역할을 못하거나 집전체와의 바인딩 역할을 못할 우려가 있고, 20 중량부를 초과하면 내부 저항 특성이 증가하거나 용량 감소, 활성탄의 충진량 감소 등 커패시터의 성능을 저하시킬 우려가 있다. The binder may be used in an amount of 5 to 20 parts by weight, specifically 5 to 10 parts by weight, based on 100 parts by weight of the carbon electrode. If the content is less than 5 parts by weight, there is a risk that it may not function as a binding agent between the active material and the conductive material or as a binding agent to the current collector. If it exceeds 20 parts by weight, internal resistance characteristics may increase, capacity may decrease, and the amount of activated carbon filled may decrease, causing damage to the capacitor. There is a risk of deteriorating performance.
본 발명의 일 실시형태에 따라 전극에서 수행되는 반응은 하기와 같다. The reaction performed at the electrode according to one embodiment of the present invention is as follows.
음극의 Zn2+를 예로 들면, 아연 양이온이 전극에 흡착하는 EDLC원리 기반 충전반응에 이어서, 유사커패시턴스(Pseseudocapacitance) 용량은 하기 식 (1)과 같이 표현이 가능하다. 탄소 전극(M) 위로 Zn2+ 양이온이 흡착(Electrosorption)하게 되면 식(1)과 같은 전자를 주고받는 반응에 따라 전극표면에 흡착하게 된다.Taking Zn 2+ of the cathode as an example, following a charging reaction based on the EDLC principle in which zinc cations are adsorbed to the electrode, the pseudocapacitance capacity can be expressed as equation (1) below. When Zn 2+ cations are adsorbed onto the carbon electrode (M), they are adsorbed on the electrode surface according to the electron exchange reaction as shown in Equation (1).
[식 1][Equation 1]
Figure PCTKR2022015965-appb-img-000001
Figure PCTKR2022015965-appb-img-000001
이러한 흡착과정은 이상적으로 Langmuir 형태의 흡착등온식(Electrosorption isotherm)을 따른다고 가정하면, 하기 식(2)와 같이 표현가능하다. CZn2+ 는 Zn2+의 농도, θ는 MZnads의 전극 표면의 흡착 정도, K는 반응 속도 상수, F는 패러데이 상수, R은 이상 기체 상수, V는 전극 전위, 그리고 T는 온도를 나타낸다.Assuming that this adsorption process ideally follows a Langmuir type electrosorption isotherm, it can be expressed as Equation (2) below. C Zn2+ is the concentration of Zn 2+ , θ is the degree of adsorption of MZn ads on the electrode surface, K is the reaction rate constant, F is Faraday's constant, R is the ideal gas constant, V is the electrode potential, and T is the temperature.
[식 2][Equation 2]
Figure PCTKR2022015965-appb-img-000002
Figure PCTKR2022015965-appb-img-000002
상기 식(2)를 기존의 전기화학적인 산화환원 반응을 설명하는 네른스트 방정식(Nernst equation)에 대입하면, 식(3)과 같이 변환이 가능하다. E는 평형 전위, E0는 기준 전위를 나타낸다.By substituting the above equation (2) into the Nernst equation that describes the existing electrochemical redox reaction, conversion is possible as shown in equation (3). E represents the equilibrium potential and E 0 represents the reference potential.
[식 3][Equation 3]
Figure PCTKR2022015965-appb-img-000003
Figure PCTKR2022015965-appb-img-000003
따라서, 전극의 표면에 단일층으로써 MZnads가 흡착할 때 필요한 전하를 q라고 가정하면, 하기 식(4)와 같이 유사커패시턴스(Pseudocapacitance의 용량(Cø))이 표현 가능하다.Therefore, assuming that the charge required for adsorption of MZn ads as a single layer on the surface of the electrode is q, the pseudocapacitance (capacitance of pseudocapacitance (C ø )) can be expressed as in equation (4) below.
[식 4][Equation 4]
Figure PCTKR2022015965-appb-img-000004
Figure PCTKR2022015965-appb-img-000004
상기 식(4)와 같이, 유사커패시턴스(Pseudocapacitance) 용량은 θ=0.5일 때(전극 표면적의 50%에 MZnads가 50% 차지할 경우) 최대 용량을 구현할 수 있다는 것을 나타낼 뿐만 아니라, 전극에 인가되는 전위와 표면에 전기흡착(electrosorption)된 이온이 유사커패시턴스 용량과 함수적인 비례 관계를 가진다는 것을 증명한다.As shown in Equation (4) above, the pseudocapacitance capacity not only indicates that the maximum capacity can be realized when θ = 0.5 (when MZn ads occupy 50% of the electrode surface area), but also indicates that the maximum capacity can be achieved when θ = 0.5. It is proven that the potential and the ions electrosorbed on the surface have a functional proportional relationship with the pseudocapacitance capacity.
도 2는 상기 식 4에 따른 표면에 전기흡착(electrosoprtion된 물질의 coverage(θ), 그리고 전압에 따른 유사커패시턴스(Pseudocapacitance(Cø)) 변화를 나타내는 그래프이다.FIG. 2 is a graph showing the coverage (θ) of the electrosorbed material on the surface according to Equation 4 above, and the change in pseudocapacitance (C ø ) according to voltage.
도 3은 전극에서의 EDLC 반응과 유사커패시턴스(Pseudocapacitance) 반응이 결합된 순환전압전류(Cyclic voltammetry, CV) 곡선 특성을 나타내는 그래프이다. Figure 3 is a graph showing cyclic voltammetry (CV) curve characteristics combining the EDLC response and pseudocapacitance response at the electrode.
도 3과 같이, EDLC, 유사커패시턴스(Pseudocapacitance) 반응으로 인한 용량을 통해 패러데이 반응(배터리 구동 원리)외에 추가적인 용량 구현이 가능하게 된다.As shown in Figure 3, it is possible to implement additional capacity in addition to Faraday reaction (battery driving principle) through capacity due to EDLC and pseudocapacitance reaction.
본 발명의 일 실시형태에 따르면, 제1 및 제2 탄소전극은 탄소체 집전체(211, 212) 상에 형성될 수 있다. 상기 탄소체 집전체는 다른 물질이 혼합되지 않은 탄소체로만 이루어진 집전체를 의미할 수 있다. According to one embodiment of the present invention, the first and second carbon electrodes may be formed on the carbon body current collectors 211 and 212. The carbon body current collector may refer to a current collector made only of carbon body without other materials mixed.
본 발명의 일 실시형태에 따른 슈퍼커패터리는 산성 수계 전해액을 사용할 수 있는데, 금속 집전체를 사용하면 부반응, 화학적 부식 및 전기 화학적 부식이 일어날 수 있다. The supercapacitor according to one embodiment of the present invention may use an acidic aqueous electrolyte, but if a metal current collector is used, side reactions, chemical corrosion, and electrochemical corrosion may occur.
탄소체 집전체는 금속 집전체 보다 전기 전도도가 낮을 수 있으나, 산성 수계 전해액과의 부반응이 발생하지 않고, 부식이 진행되지 않아 수명 특성이 향상될 수 있다.The carbon body current collector may have lower electrical conductivity than the metal current collector, but side reactions with the acidic aqueous electrolyte solution do not occur and corrosion does not progress, so lifespan characteristics can be improved.
상기 탄소체는 이에 제한되지 않으며, 예를 들면 그라파이트 호일(graphite foil), 카본 클로스(carbon cloth), 카본 페이퍼(carbon paper) 또는 이들의 혼합물일 수 있다.The carbon body is not limited thereto, and may be, for example, graphite foil, carbon cloth, carbon paper, or a mixture thereof.
상기 탄소체 집전체는 전기 전도도가 1.38×107 내지 3.49×107 S/m일 수 있고, 구체적으로 2.46×107 내지 3.49×107 S/m일 수 있다. The carbon body current collector may have an electrical conductivity of 1.38×10 7 to 3.49×10 7 S/m, specifically 2.46×10 7 to 3.49×10 7 S/m.
상기 탄소체 집전체는 탄소 전극의 전달 저항을 높이지 않으면서 적절한 전류밀도에서 충전과 방전을 가능하도록 할 수 있다.The carbon body current collector can enable charging and discharging at an appropriate current density without increasing the transfer resistance of the carbon electrode.
상기 탄소체 집전체는 탄소체 이외에 다른 물질을 포함하지 않아 탄소 전극보다 전기 전도도가 높으며, 전극 물질의 코팅 공정 적용될 수 있을 정도의 강도를 가질 수 있다.The carbon body current collector does not contain any other material other than the carbon body, so it has higher electrical conductivity than the carbon electrode, and can have a strength sufficient to be applied to the coating process of the electrode material.
탄소체를 집전체로 사용하는 경우 비표면적 특성을 고려되지 않으며, 얇은 두께로도 집전체의 역할을 수행할 수 있다. When using a carbon body as a current collector, the specific surface area characteristics are not considered, and it can function as a current collector even with a small thickness.
상기 탄소체 집전체는 두께가 10 내지 50 ㎛ 일 수 있다. 구체적으로, 20 내지 30 ㎛ 일 수 있다. 상기 두께가 10 ㎛가 미만이면 전극 형성 공정에 적용되기 어려울 수 있고, 50 ㎛를 초과하면 집전체의 두께가 너무 두꺼워 공정상의 어려움을 겪거나, 셀의 에너지 밀도가 현저하게 낮아질 수 있다.The carbon body current collector may have a thickness of 10 to 50 ㎛. Specifically, it may be 20 to 30 ㎛. If the thickness is less than 10 ㎛, it may be difficult to apply to the electrode formation process, and if it exceeds 50 ㎛, the thickness of the current collector may be too thick, causing difficulties in the process, or the energy density of the cell may be significantly lowered.
탄소체를 집전체로 사용하기 위하여 탄소체와 함께 폴리머 등을 혼합하는 경우 혼합 공정에 의하여 다공성 구조가 형성될 수 있는데, 이러한 다공성 구조에 의하여 강도가 저하되고, 저항이 증가하며 전해질이 흡수될 수 있다. When mixing a polymer, etc. with a carbon body to use it as a current collector, a porous structure may be formed through the mixing process. Due to this porous structure, strength may decrease, resistance may increase, and electrolyte may be absorbed. there is.
그러나 본 발명의 일 실시형태에 따른 탄소체 집전체는 다른 물질과 혼합되지 않은 것으로, 전기전도도가 우수하다. 또한 소수성을 가지며 표면에 기공을 가지지 않아 강도가 우수하고, 전해질을 흡수하지 않을 수 있다However, the carbon body current collector according to one embodiment of the present invention is not mixed with other materials and has excellent electrical conductivity. In addition, it is hydrophobic and has no pores on the surface, so it has excellent strength and may not absorb electrolytes.
본 발명의 일 실시형태에 따르면, 상기 전해액은 수계 용매(물), Zn/Br 레독스 커플을 포함할 수 있다. 본 발명의 일 실시형태에 따르면, 상기 수계 전해액은 산성일 수 있고, pH는 2이하일 수 있다.According to one embodiment of the present invention, the electrolyte solution may include an aqueous solvent (water) and a Zn/Br redox couple. According to one embodiment of the present invention, the aqueous electrolyte solution may be acidic and the pH may be 2 or less.
또한 본 발명의 일 실시형태에 따르면, 상기 전해액은 브롬산, 브롬산 이외의 산성물질, 브롬 착화제, 및 기타 첨가제를 추가로 포함할 수 있다. Additionally, according to one embodiment of the present invention, the electrolyte solution may further include bromonic acid, an acidic substance other than bromous acid, a bromine complexing agent, and other additives.
상기 브롬 착화제로는 4급 암모늄 브롬화물(Quaternary ammonium bromide)을 포함할 수 있다. 이에 제한되지 않으나, 예를 들면 탄소수 1 내지 10의 알킬기가 1이상 치환된 피리디니윰 브로마이드(Pyridinium Bromide), 탄소수 1 내지 10의 알킬기가 1이상 치환된 이미다졸리움 브로마이드(Imidazolium Bromide), 또는 1-에틸-1-메틸 피롤리디늄 브로마이드(1-Ethyl-1-methylpyrrolidinium bromide) 등을 사용할 수 있다.The bromine complexing agent may include quaternary ammonium bromide. It is not limited thereto, but for example, pyridinium bromide substituted with 1 or more alkyl groups having 1 to 10 carbon atoms, imidazolium bromide substituted with 1 or more alkyl groups having 1 to 10 carbon atoms, or 1 -Ethyl-1-methylpyrrolidinium bromide, etc. can be used.
상기 브롬산(HBr)은 산성물질로서, 전해액의 pH를 낮추는 역할을 하며, 이온화를 통해 브롬이온(Br-)의 함량을 증가시켜, 상기 아연-브롬 전지의 충방전 효율을 향상시킬 수 있다.The bromous acid (HBr) is an acidic substance, which serves to lower the pH of the electrolyte and increases the content of bromine ions (Br - ) through ionization, thereby improving the charge/discharge efficiency of the zinc-bromine battery.
상기 브롬산(HBr) 이외의 산성 물질은 이에 제한되지 않으나, 예를 들면, pH 2.0이하, 또는 -1.0 내지 2.0의 강산, 구체적으로, 염산, 질산, 황산, 아이오딘화 수소산 또는 이들의 2종 이상의 혼합물을 사용할 수 있다.Acidic substances other than hydrobromic acid (HBr) are not limited thereto, but include, for example, a strong acid with a pH of 2.0 or less or -1.0 to 2.0, specifically hydrochloric acid, nitric acid, sulfuric acid, hydroiodide acid, or two types thereof. A mixture of the above can be used.
또한, 기타 첨가제로 Na2SO4, NaCl 등을 포함할 수 있다.Additionally, other additives may include Na 2 SO 4 , NaCl, etc.
상기 분리막(140)은 충전 또는 방전 시 양극 전해액과 음극 전해액을 분리시키고, 충전 또는 방전 시 내부 단락을 방지하고 전해액을 함유하는 주요 기능을 수행한다. 상기 분리막(140)의 소재는 특별히 한정되지 않으며, 예를 들면 폴리에틸렌 또는 폴리프로필렌을 함유하는 폴리올레핀 필름, 폴리비닐 클로라이드, 셀룰로오스, 폴리에스테르 또는 폴리프로필렌을 함유하는 섬유 부직포일 수 있다.The separator 140 performs the main functions of separating the positive and negative electrolytes during charging or discharging, preventing internal short circuits during charging or discharging, and containing the electrolyte. The material of the separator 140 is not particularly limited, and may be, for example, a polyolefin film containing polyethylene or polypropylene, polyvinyl chloride, cellulose, polyester, or a fibrous nonwoven fabric containing polypropylene.
이하, 본 발명의 일 실시형태에 따른 실시예를 통하여 본 발명을 보다 구체적으로 설명하나, 이러한 실시예가 본 발명의 범위를 제한하는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples according to one embodiment of the present invention, but these examples do not limit the scope of the present invention.
[실시예][Example]
제조예Manufacturing example
평균 입자 크기가 1 내지 10 ㎛이고, 기공율이 80%이상인 활성탄(Activated carbon) 80 중량부, 도전재 10 중량부 및 바인더 10 중량부를 혼합하여 제조된 탄소 전극을 양극 및 음극으로 구성하였다. 집전체는 그라파이트 호일을 사용하였고, 전해액은 ZnBr2(Zinc bromide)를 포함하는 수계 전해액을 사용하였다. A carbon electrode prepared by mixing 80 parts by weight of activated carbon with an average particle size of 1 to 10 ㎛ and a porosity of 80% or more, 10 parts by weight of a conductive material, and 10 parts by weight of a binder was composed of an anode and a cathode. Graphite foil was used as the current collector, and an aqueous electrolyte containing ZnBr 2 (Zinc bromide) was used as the electrolyte.
평가evaluation
도 4는 상기 제조예에 따른 아연-브롬 슈퍼커패터리의 일정 전류 상태에서의 충방전실험 결과이다. 도 4를 참조하면, 아연-브롬 슈퍼커패터리는 충전 시 충전 전압이 기존의 이차전지로 분류되었던 아연브롬전지들이 나타내는 이론 충전 전압(Theoretical charge potential)인 1.82V를 순간적으로 나타내며 충전되는 것과 달리, 1.7V 부터 1.85V까지의 선형적인 상승 구간에 따른 충전과 1.7V이상 1.85V 이하의 전압에 도달한 한 후에 일정 전압하에서 충전되는 현상을 알 수 있다.Figure 4 shows the results of a charge/discharge test at a constant current state of the zinc-bromine supercapacitor according to the above manufacturing example. Referring to Figure 4, unlike the zinc-bromine supercapacitor, when charging, the charging voltage instantaneously shows 1.82V, which is the theoretical charge potential shown by zinc bromine batteries classified as existing secondary batteries. It can be seen that charging follows a linear rise section from 1.7V to 1.85V and charging under a certain voltage after reaching a voltage of 1.7V or more and 1.85V or less.
충전 초반 500초동안 1.82V 이전의 선형적인 전압 상승 구간은 슈퍼커패시터와 유사커패시터, 배터리의 충전 반응(Capacitive reaction, Pseudocapacitive reaction, Faradic reaction)이 동시에 발생함으로써 나타나는 혼성 전위구간임을 알 수 있다.It can be seen that the linear voltage rise section before 1.82V during the first 500 seconds of charging is a mixed potential section caused by the charging reactions (Capacitive reaction, Pseudocapacitive reaction, Faradic reaction) of the supercapacitor, pseudocapacitor, and battery occurring simultaneously.
[대표적인 Pseudocapacitor 반응에 의한 반응식][Reaction equation based on representative pseudocapacitor reaction]
Anode: Zn2+ + AC + 2e-→ Zn@ACAnode: Zn 2+ + AC + 2e - → Zn@AC
Cathode: 3Br- + AC → Br-@AC +2e- Cathode: 3Br - + AC → Br - @AC +2e -
[Faradaic 반응에 의한 반응식][Reaction formula based on Faradaic reaction]
Anode: xZn2+ + Zn@AC + 2e- → Znx@ACAnode: xZn 2+ + Zn@AC + 2e - → Zn x @AC
Cathode: Br3 -+ Br3 -@AC → Br3x -@AC + 2e- Cathode: Br 3 - + Br 3 - @AC → Br 3x - @AC + 2e -
충전 초기 500초 이후, 약 3000초간은 1.82V가 유지되는 것을 알 수 있다. 이 구간은 전극 계면과 전해액사이에서 농도가 분극되며 물질 전달 저항에 의한 전극 계면에서 국부적인 배터리 반응이 주요하게 발생되기 때문이다. It can be seen that 1.82V is maintained for about 3000 seconds after the initial 500 seconds of charging. In this section, the concentration is polarized between the electrode interface and the electrolyte, and local battery reactions mainly occur at the electrode interface due to mass transfer resistance.
방전 시 배터리 방전 반응과 유사하게 활물질 탈착 반응(Dissolution)이 발생한다.When discharging, a dissolution reaction of the active material occurs similar to the battery discharge reaction.
Anode: Znx@AC → xZn2+ + Zn@AC + 2e- Anode: Zn x @AC → xZn 2+ + Zn@AC + 2e -
Cathode: Br3x -@AC + 2e- → Br3 - +Br3 -@AC Cathode: Br 3x - @AC + 2e - → Br 3 - +Br 3 - @AC
활물질 탈착반응 이후, 유사커패시터와 슈퍼커패시터의 방전 반응과 유사하게 흡착 이온 탈착반응(Desorption)이 발생하며 순차적으로 방전이 된다.After the active material desorption reaction, adsorption ion desorption reaction occurs similar to the discharge reaction of pseudocapacitors and supercapacitors, and discharge occurs sequentially.
Anode: Zn@AC → Zn2+ + AC + 2e- Anode: Zn@AC → Zn 2+ + AC + 2e -
Cathode: Br-@AC + 2e- → 3Br- +ACCathode: Br - @AC + 2e - → 3Br - +AC
도 5는 상기 제조예에 따른 아연-브롬 슈퍼커패터리의 쿨롱 효율(Coulombic efficiency) 측정결과이다. 도 5를 참조하면, 본 발명의 일 실시형태에 따른 아연-브롬 슈퍼커패터리는 25 사이클 정도 실제 구현이 되는 완전히 새로운 에너지 저장 시스템임을 확인할 수 있다.Figure 5 shows the Coulombic efficiency measurement results of the zinc-bromine supercapacitor according to the above manufacturing example. Referring to FIG. 5, it can be seen that the zinc-bromine supercapacitor according to an embodiment of the present invention is a completely new energy storage system that can be actually implemented for about 25 cycles.
도 6은 상기 제조예에 따른 아연-브롬 슈퍼커패터리의 전압 곡선 실험 결과이다. 도 6(a)은 충방전 전류밀도 0.5 mA cm-2에서 충방전한 전압 곡선 실험 결과이고, 도 6(b)은 충방전 전류밀도 10 mA cm-2에서 충방전한 전압 곡선 실험 결과이며, 도 6(c)는 충방전 전류밀도 40 mA cm-2에서 충방전한 전압 곡선 실험 결과이다. 도 7은 충방전 전류밀도에 따른 전압 곡선 모식도이다. Figure 6 shows the results of a voltage curve experiment of a zinc-bromine supercapacitor according to the above manufacturing example. Figure 6(a) is the result of a voltage curve experiment of charging and discharging at a charge and discharge current density of 0.5 mA cm -2 , and Figure 6(b) is the result of a voltage curve experiment of charge and discharge at a charge and discharge current density of 10 mA cm -2 , Figure 6(c) is the result of a voltage curve experiment performed at a charge/discharge current density of 40 mA cm -2 . Figure 7 is a schematic diagram of a voltage curve according to charge/discharge current density.
실제로 3차원 구조체의 탄소 전극 내부로 활물질 이온이 침투하여 레독스 반응이 일어나기 위해서는 충방전 속도에 따른 확산 거리(Diffusion length)를 고려하여 해석할 필요가 있다. 아래 식 (5)와 같이, 3차원 구조체 내부로 전해질로부터 전극에 도달하는데는 확산 거리(diffusion length)가 확산 시간(diffusion time (td))와 확산 계수(diffusion coefficient(D))를 고려한 항보다 훨씬 값이 크다고 가정할 수 있다.In fact, in order for active material ions to penetrate into the carbon electrode of a three-dimensional structure and cause a redox reaction, it is necessary to analyze it by considering the diffusion length according to the charge and discharge speed. As shown in equation (5) below, the diffusion length to reach the electrode from the electrolyte inside the three-dimensional structure is a term that takes into account diffusion time (t d ) and diffusion coefficient (D). It can be assumed that the value is much larger than .
[식 5][Equation 5]
Figure PCTKR2022015965-appb-img-000005
Figure PCTKR2022015965-appb-img-000005
특히, 충방전 전류밀도가 높아짐에 따라서 3차원 구조체 전극 내부에서는 확산 계수(Diffusion coefficient(D))의 한계로 인하여, 농도분극이 발생하게 되어 한계전류밀도(Limiting current density)에 의한 과전압 현상이 발생된다. In particular, as the charge/discharge current density increases, concentration polarization occurs due to the limit of the diffusion coefficient (D) inside the three-dimensional structure electrode, resulting in an overvoltage phenomenon due to limiting current density. do.
도 6(a) 내지 도 6(c)와 같이, 충방전 전류밀도가 증가됨에 따라서, 충전 전압은 0.8, 1.2, 1.9V로 증가하게 된다. 즉, 전극의 표면적을 모두 활용하는 것이 아닌 최외각 전극의 일부 표면만 충·방전에 관여하게 되는 상황이 발생된 것으로 사료된다. 빠른 충방전 전류밀도로 인하여 전극 내 농도 분극 현상이 발생하여, 아연 양이온과 브로마이드 음이온이 전극의 계면을 반응 면적으로써 모두 활용하지 못한 결과이다.As shown in FIGS. 6(a) to 6(c), as the charge/discharge current density increases, the charge voltage increases to 0.8, 1.2, and 1.9V. In other words, it appears that a situation has arisen in which only a portion of the surface of the outermost electrode is involved in charging and discharging, rather than utilizing the entire surface area of the electrode. Due to the rapid charge/discharge current density, concentration polarization occurs within the electrode, resulting in the zinc cations and bromide anions not being able to utilize the interface of the electrode as a reaction area.
따라서, 슈퍼커패터리의 이론 용량을 모두 구현하기 위해서는 농도 분극 현상을 유발하지 않는 적절한 충방전 전류밀도에 따른 구동 조건을 선별하는 것이 매우 중요할 뿐만 아니라, 이론 및 실험적으로도 모두 슈퍼커패터리의 기술이 실제 전류밀도(Currnet density)란 변수를 통해 자유롭게 조절가능하고 구현 가능함을 증명한 것이다.Therefore, in order to realize the full theoretical capacity of the supercapacitor, it is very important to select driving conditions according to the appropriate charging and discharging current density that do not cause concentration polarization, and it is also important to improve the supercapacitor technology both theoretically and experimentally. This actual current density has been proven to be freely adjustable and implementable through variables.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present embodiment, and those skilled in the art will be able to make various modifications and variations without departing from the essential characteristics of the present embodiment. Accordingly, the present embodiments are not intended to limit the technical idea of the present embodiment, but rather to explain it, and the scope of the technical idea of the present embodiment is not limited by these examples. The scope of protection of this embodiment should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of rights of this embodiment.
[부호의 설명][Explanation of symbols]
211, 212: 집전체211, 212: The whole house
221, 222: 탄소 전극221, 222: Carbon electrode
240: 분리막240: Separator
본 발명의 일 실시형태에 따른 아연-브롬 슈퍼커패터리는 배터리와 슈퍼커패시터의 합성어로써, 배터리와 슈퍼커패시터의 장점을 결합한 전기화학적 에너지 저장 장치이다.The zinc-bromine supercapacitor according to one embodiment of the present invention is a compound word of battery and supercapacitor, and is an electrochemical energy storage device that combines the advantages of batteries and supercapacitors.
본 발명의 일 실시형태에 따른 슈퍼커패터리는 Zn/Br 레독스 커플을 포함하는 수계 전해액을 기반으로 한 것으로, 비발화성이며, 미세 기공 구조을 가진 탄소 전극을 사용하여 커패시터의 전기 이중층(EDLC, Electric double layer capacitor), 유사커패시터(Pseudo-capacitor), 배터리 원리 기반의 용량을 모두 구현할 수 있다.The supercapacitor according to one embodiment of the present invention is based on an aqueous electrolyte containing a Zn/Br redox couple, is non-flammable, and uses a carbon electrode with a fine pore structure to form an electric double layer (EDLC, Electric) of the capacitor. Capacity based on double layer capacitor, pseudo-capacitor, and battery principles can all be implemented.

Claims (8)

  1. 미세 기공을 가지는 제1 및 제2 탄소 전극; 및First and second carbon electrodes having micropores; and
    수계 용매, 및 Zn/Br 레독스 커플을 포함하는 전해액;An electrolyte solution containing an aqueous solvent and a Zn/Br redox couple;
    을 포함하는 아연-브롬 슈퍼커패터리.Zinc-bromine supercapacitor containing.
  2. 제1항에 있어서,According to paragraph 1,
    상기 미세기공은 마이크로 포어(micro pore), 메조 포어(meso pore) 및 매크로 포어(macro pore)를 포함하는 아연-브롬 슈퍼커패터리.The micropores include micro pores, meso pores, and macro pores.
  3. 제1항에 있어서,According to paragraph 1,
    상기 제1 및 제2 탄소 전극은 활성탄, 그라파이트, 하드 카본 및 다공성 카본재로 이루어진 군에 선택되는 1종 이상의 탄소체를 포함하는 아연-브롬 슈퍼커패터리.The first and second carbon electrodes are a zinc-bromine supercapacitor comprising at least one carbon material selected from the group consisting of activated carbon, graphite, hard carbon, and porous carbon materials.
  4. 제1항에 있어서,According to paragraph 1,
    상기 제1 및 제2 탄소 전극은 평균 입자 크기가 1 내지 10 ㎛이고, 기공률이 80%이상인 활성탄을 포함하는 아연-브롬 슈퍼커패터리.The first and second carbon electrodes include activated carbon having an average particle size of 1 to 10 ㎛ and a porosity of 80% or more.
  5. 제1항에 있어서,According to paragraph 1,
    상기 제1 및 제2 탄소 전극은 탄소체 60 내지 90 중량부, 도전재 5 내지 20 중량부, 및 바인더 5 내지 20 중량부를 포함하는 아연-브롬 슈퍼커패터리.The first and second carbon electrodes include 60 to 90 parts by weight of carbon body, 5 to 20 parts by weight of conductive material, and 5 to 20 parts by weight of binder.
  6. 제1항에 있어서,According to paragraph 1,
    상기 제1 및 제2 탄소 전극은 탄소체 집전체 상에 형성되는 아연-브롬 슈퍼커패터리.The first and second carbon electrodes are zinc-bromine supercapacitors formed on a carbon body current collector.
  7. 제1항에 있어서,According to paragraph 1,
    상기 제1 및 제2 탄소 전극에서는 미세기공에 Zn2+ 및 Br-가 흡탈착하여 전기 이중층을 형성하는 반응, 전극의 미세 표면에 Zn2+, 및 Br- 이온이 저전위 전착(Underpotential deposition)하는 반응 및 전극의 표면에 Zn2+ 및 Br- 이온이 전착(Deposition)하는 패러데이 반응(Faradaic reaction)이 수행되는 것인 아연-브롬 슈퍼커패터리.In the first and second carbon electrodes, Zn 2+ and Br - adsorb and desorb in micropores to form an electric double layer, and Zn 2+ and Br - ions form an underpotential deposition on the microscopic surface of the electrode. A zinc-bromine supercapacitor in which a Faradaic reaction is carried out, in which Zn 2+ and Br - ions are deposited on the surface of the electrode.
  8. 제1항에 있어서,According to paragraph 1,
    상기 전해액은 ZnBr2(Zinc bromide), 브롬산, 브롬산 이외의 산성물질, 브롬 착화제, 및 기타 첨가제를 포함하는 아연-브롬 슈퍼커패터리.The electrolyte is a zinc-bromine supercapacitor containing ZnBr 2 (Zinc bromide), hydrobromic acid, acids other than hydrobromic acid, bromine complexing agent, and other additives.
PCT/KR2022/015965 2022-10-18 2022-10-19 Zinc-bromine supercapattery WO2024085273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0133760 2022-10-18
KR1020220133760A KR102577084B1 (en) 2022-10-18 2022-10-18 Zinc-bromine Supercapattery

Publications (1)

Publication Number Publication Date
WO2024085273A1 true WO2024085273A1 (en) 2024-04-25

Family

ID=88020192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015965 WO2024085273A1 (en) 2022-10-18 2022-10-19 Zinc-bromine supercapattery

Country Status (2)

Country Link
KR (1) KR102577084B1 (en)
WO (1) WO2024085273A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142208A (en) * 2012-05-10 2013-12-30 인하대학교 산학협력단 Preparation of microporous carbon materials and microporous carbon-based electrodes for supercapacitor
US20140211370A1 (en) * 2013-01-25 2014-07-31 Ionova Technologies, Inc. Electrochemical Cell, Related Material, Process for Production, and Use Thereof
KR20170130999A (en) * 2016-05-20 2017-11-29 한국전기연구원 Pouch-type electric double layer capacitor
KR20180028314A (en) * 2016-09-08 2018-03-16 롯데케미칼 주식회사 Method for operating zinc-bromine chemical flow battery
KR20190094383A (en) * 2016-12-22 2019-08-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 Methods, devices, and systems for activated carbon supercapacitors with macroporous electrodes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255426B1 (en) 2019-08-30 2021-05-24 한국과학기술원 Positive electrode for Zn-Br Battery (ZBB) and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130142208A (en) * 2012-05-10 2013-12-30 인하대학교 산학협력단 Preparation of microporous carbon materials and microporous carbon-based electrodes for supercapacitor
US20140211370A1 (en) * 2013-01-25 2014-07-31 Ionova Technologies, Inc. Electrochemical Cell, Related Material, Process for Production, and Use Thereof
KR20170130999A (en) * 2016-05-20 2017-11-29 한국전기연구원 Pouch-type electric double layer capacitor
KR20180028314A (en) * 2016-09-08 2018-03-16 롯데케미칼 주식회사 Method for operating zinc-bromine chemical flow battery
KR20190094383A (en) * 2016-12-22 2019-08-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 Methods, devices, and systems for activated carbon supercapacitors with macroporous electrodes

Also Published As

Publication number Publication date
KR102577084B1 (en) 2023-09-11

Similar Documents

Publication Publication Date Title
Zheng et al. The effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors
CN103413904B (en) A kind of manufacture method of diaphragm for polymer lithium ion battery
KR20170142937A (en) Nano fiber of carbon aerogel and graphene composite and manufacturing method of the same
WO2014123385A1 (en) Graphene lithium ion capacitor
WO2014163272A1 (en) Electrode composition for supercapacitor, cured product of said composition, electrode comprising said cured product, capacitor comprising said electrode, and manufacturing method for said supercapacitor
KR101138584B1 (en) Lithum ion capacitor
BR9712213A (en) Double layer capacitor, and its manufacturing process.
CN104466188B (en) Its lithium ion battery of MULTILAYER COMPOSITE anode pole piece and this pole piece preparation method and application
CN103258655B (en) A kind of preparation method of electric field activated form ultracapacitor
WO2015035683A1 (en) Lithium-air battery and manufacturing method therefor
CN110048062A (en) A kind of anti-overcharge battery diaphragm and the lithium ion battery using the diaphragm
CN112614703B (en) Negative electrode material of ionic capacitor and preparation method and application thereof
WO2024085652A1 (en) Membrane electrode assembly and zinc-bromine supercapattery comprising same
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
Yin et al. Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a “directly-inserted” method
CN109346335A (en) Lithium source active material, anode pole piece, lithium-ion capacitor and preparation method thereof
CN102842703A (en) Chemical power supply
WO2024085273A1 (en) Zinc-bromine supercapattery
CN109545567B (en) All-solid-state battery type capacitor
CN209730033U (en) A kind of functionality composite diaphragm
WO2024101735A1 (en) Method for charging zinc-bromine supercapattery
CN101615666A (en) Lithium ion battery and cathode sheets thereof
WO2021085767A1 (en) Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method
WO2016153284A1 (en) Electrode material for electronic device and electronic device comprising the same
CN103779578B (en) Two grades corrode three-dimensional porous lithium battery collector and preparation method thereof