WO2021085767A1 - Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method - Google Patents

Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method Download PDF

Info

Publication number
WO2021085767A1
WO2021085767A1 PCT/KR2020/005542 KR2020005542W WO2021085767A1 WO 2021085767 A1 WO2021085767 A1 WO 2021085767A1 KR 2020005542 W KR2020005542 W KR 2020005542W WO 2021085767 A1 WO2021085767 A1 WO 2021085767A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
parts
weight
supercapacitor
active material
Prior art date
Application number
PCT/KR2020/005542
Other languages
French (fr)
Korean (ko)
Inventor
노광철
채지수
전수한
임병일
Original Assignee
코칩 주식회사
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코칩 주식회사, 한국세라믹기술원 filed Critical 코칩 주식회사
Publication of WO2021085767A1 publication Critical patent/WO2021085767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a composition for a supercapacitor electrode, a method of manufacturing a supercapacitor electrode, and a supercapacitor, and in more detail, it is possible to improve moldability, improve durability of the electrode, and improve electrode density. It relates to a composition for a supercapacitor electrode, a method of manufacturing a supercapacitor electrode, and a supercapacitor.
  • a general supercapacitor is composed of a porous electrode, a current collector, a separator, and an electrolyte.
  • Supercapacitors are also referred to as Electric Double Layer Capacitors (EDLC) and Ultra-capacitors, and this is a pair of charge layers with different codes at the interface between the electrode and the conductor and the electrolyte impregnated therein ( This is a device that does not require maintenance due to very low deterioration due to repetition of charging/discharging operation by using the generated electric double layer). Accordingly, supercapacitors are mainly used in the form of backing up ICs (integrated circuits) of various electric and electronic devices, and their use has been expanded in recent years and has been widely applied to toys, solar energy storage, and HEV (hybrid electric vehicle) power supplies. have.
  • ICs integrated circuits
  • Such supercapacitors generally include two electrodes, a positive electrode and a negative electrode impregnated with an electrolyte, and a separator made of a porous material for insulating and short-circuit prevention, and an electrolyte that is interposed between these two electrodes to enable only ion conduction. It has a unit cell composed of a gasket to prevent leakage of the body, insulation and short-circuit, and a metal cap as a conductor that wraps them. And it is completed by stacking one or more unit cells (usually 2 to 6 in the case of coin type) configured as above in series and combining the two terminals of the positive and negative electrodes.
  • the performance of a supercapacitor is determined by the electrode active material, electrolyte, and the like, and in particular, the main performance such as storage capacity is mostly determined by the electrode active material.
  • Activated carbon is mainly used as such an electrode active material, and the reserve capacity is known to be up to 19.3 F/cc based on the electrode of a commercial product.
  • activated carbon used as an electrode active material for supercapacitors is activated carbon with a high specific surface area of 1500 m 2 /g or more.
  • the problem to be solved by the present invention is to provide a composition for a supercapacitor electrode, a method of manufacturing a supercapacitor electrode, and a supercapacitor capable of improving moldability, improving durability of the electrode, and improving electrode density. have.
  • an electrode active material 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material
  • a composition for a supercapacitor electrode comprising 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive comprises 2-(dimethylamino)ethyl methacrylate.
  • composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material.
  • CBAA 2-[(3-acrylamidopropyl) dimethylammonio] acetate
  • the fluorine-containing binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
  • the present invention provides an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material.
  • Preparing a composition for a supercapacitor electrode by mixing 0.01 to 2 parts by weight of an additive and 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, and forming an electrode by pressing the composition for a supercapacitor electrode, or Coating the composition for a supercapacitor electrode on a metal foil or a current collector to form an electrode, or forming a sheet by pushing the composition for a supercapacitor electrode with a roller and attaching it to a metal foil or a current collector to form an electrode, and the shape of the electrode
  • a method of manufacturing a supercapacitor electrode comprising the step of forming a supercapacitor electrode by drying the resultant product, wherein the additive comprises 2-(dimethylamino)ethyl methacrylate.
  • composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material.
  • CBAA 2-[(3-acrylamidopropyl) dimethylammonio] acetate
  • the fluorine-containing binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
  • the present invention the anode made of a supercapacitor electrode manufactured by the above method; A cathode made of a supercapacitor electrode manufactured by the above method; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode; A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And a gasket for sealing the metal cap.
  • the present invention provides a first separator for preventing a short circuit, an anode comprising a supercapacitor electrode manufactured by the above method, a second separator for preventing a short circuit between the anode and the cathode, and a super capacitor manufactured by the above method.
  • a metal cap accommodating the winding element;
  • a sealing rubber for sealing the metal cap, wherein the winding element is impregnated with an electrolyte in which a lithium salt is dissolved.
  • the moldability can be improved, the durability of the electrode can be improved, and the electrode density can be improved.
  • the contact with other raw materials is good, resistance is low, density increase and durability are improved, so that excellent cell efficiency can be exhibited.
  • a supercapacitor manufactured using the composition for a supercapacitor electrode of the present invention has a high electrode density, exhibits high capacity characteristics as the energy density increases, and exhibits excellent specific capacity characteristics.
  • FIG. 1 is a cross-sectional view of a coin-type supercapacitor according to an example.
  • FIGS. 2 to 5 are views showing a wound-type supercapacitor according to an example.
  • Example 6 is a diagram showing electrochemical analysis results of a supercapacitor manufactured according to Example 1 and a supercapacitor manufactured according to a comparative example.
  • the composition for a supercapacitor electrode includes an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive includes 2-(dimethylamino)ethyl methacrylate.
  • a method of manufacturing a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, and 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material.
  • preparing a composition for a supercapacitor electrode by mixing 0.01 to 2 parts by weight of an additive with respect to 100 parts by weight of the electrode active material and 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, and the composition for a supercapacitor electrode Press-press to form an electrode, or coat the composition for a supercapacitor electrode on a metal foil or a current collector to form an electrode, or push the composition for a supercapacitor electrode with a roller to form a sheet, and then attach it to a metal foil or a current collector. And forming a supercapacitor electrode by attaching to form an electrode and drying the resulting product in the form of an electrode, wherein the additive includes 2-(dimethylamino)ethyl methacrylate. .
  • a supercapacitor includes an anode made of a supercapacitor electrode manufactured by the above method; A cathode made of a supercapacitor electrode manufactured by the above method; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode; A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And a gasket for sealing the metal cap.
  • a supercapacitor includes a first separator for preventing a short circuit, an anode made of a supercapacitor electrode manufactured by the above method, a second separator for preventing a short circuit between the anode and the cathode, and , A winding element in which a cathode made of a supercapacitor electrode manufactured by the above method is sequentially stacked to form a coiled roll shape; A first lead wire connected to the negative electrode; A second lead wire connected to the positive electrode; A metal cap accommodating the winding element; And a sealing rubber for sealing the metal cap, and the winding element is impregnated in an electrolyte solution in which a lithium salt is dissolved.
  • the composition for a supercapacitor electrode includes an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive includes 2-(dimethylamino)ethyl methacrylate.
  • composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material.
  • CBAA 2-[(3-acrylamidopropyl) dimethylammonio] acetate
  • the fluorine-containing binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
  • a method of manufacturing a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, and 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material.
  • preparing a composition for a supercapacitor electrode by mixing 0.01 to 2 parts by weight of an additive with respect to 100 parts by weight of the electrode active material and 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, and the composition for a supercapacitor electrode Press-press to form an electrode, or coat the composition for a supercapacitor electrode on a metal foil or a current collector to form an electrode, or push the composition for a supercapacitor electrode with a roller to form a sheet, and then attach it to a metal foil or a current collector. And forming a supercapacitor electrode by attaching to form an electrode and drying the resulting product in the form of an electrode, wherein the additive includes 2-(dimethylamino)ethyl methacrylate. .
  • the composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material.
  • CBAA 2-[(3-acrylamidopropyl dimethylammonio acetate)
  • the 2-[(3-acrylamidopropyl dimethylammonio acetate) enhances the binding power to the current collector, improves the impregnation property of the electrolyte, and enables the improvement of electrode density.
  • the fluorine-containing binder may include polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
  • a supercapacitor includes an anode made of a supercapacitor electrode manufactured by the above method; A cathode made of a supercapacitor electrode manufactured by the above method; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode; A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And a gasket for sealing the metal cap.
  • a supercapacitor includes a first separator for preventing a short circuit, an anode made of a supercapacitor electrode manufactured by the above method, a second separator for preventing a short circuit between the anode and the cathode, and , A winding element in which a cathode made of a supercapacitor electrode manufactured by the above method is sequentially stacked to form a coiled roll shape; A first lead wire connected to the negative electrode; A second lead wire connected to the positive electrode; A metal cap accommodating the winding element; And a sealing rubber for sealing the metal cap, and the winding element is impregnated in an electrolyte solution in which a lithium salt is dissolved.
  • the inventors of the present invention have studied a composition for a supercapacitor electrode that can exhibit excellent cell efficiency by improving contact with other raw materials, low resistance, increased electrode density, and improved durability by using a small amount of additives together with a binder. .
  • the composition for a supercapacitor electrode includes an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive includes 2-(dimethylamino)ethyl methacrylate.
  • the electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
  • the fluorine-containing binder may include polytetrafluoroethylene (PTFE). It is preferable that the fluorine-containing binder is contained in the composition for a supercapacitor electrode in an amount of 1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
  • PTFE polytetrafluoroethylene
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical changes, and examples thereof include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, carbon fiber, copper, nickel, Metal powder or metal fibers such as aluminum and silver are possible.
  • the conductive material is preferably contained in the composition for a supercapacitor electrode in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
  • the dispersion medium is methanol, ethanol, propanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, methyl isobutyl ketone, toluene and xylene ( Xylene), distilled water, and mixtures thereof.
  • the dispersion medium is preferably contained in the composition for a supercapacitor electrode in an amount of 100 to 300 parts by weight based on 100 parts by weight of the electrode active material.
  • the additive includes 2-(dimethylamino)ethyl methacrylate.
  • the 2-dimethylaminoethyl methacrylate improves the moldability, improves the durability of the electrode, and makes it possible to improve the electrode density.
  • the additive is preferably contained in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the electrode active material in the composition for a supercapacitor electrode.
  • the structural formula of 2-dimethylaminoethyl methacrylate is shown below.
  • the composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material.
  • CBAA 2-[(3-acrylamidopropyl dimethylammonio acetate)
  • the 2-[(3-acrylamidopropyl dimethylammonio acetate) enhances the binding power to the current collector, improves the impregnation property of the electrolyte, and enables the improvement of electrode density.
  • the composition for a supercapacitor electrode has good contact with other raw materials, low resistance, increased electrode density, and improved durability by using a small amount of additives together with a binder, thereby exhibiting excellent cell efficiency.
  • An electrode active material, a conductive material, a fluorine-containing binder, an additive, and a dispersion medium are mixed to prepare a composition for a supercapacitor electrode.
  • the composition for a supercapacitor electrode includes an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a binder based on 100 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material. It contains 0.01 to 2 parts by weight of the additive and 100 to 300 parts by weight of the dispersion medium based on 100 parts by weight of the electrode active material.
  • the electrode active material may include a porous carbon material such as activated carbon having a specific surface area of 1500 ⁇ 3000 m 2 /g, graphene having a specific surface area of 100 ⁇ 1000 m 2 /g, carbon nanotubes, carbon nanofibers, and the like.
  • a porous carbon material such as activated carbon having a specific surface area of 1500 ⁇ 3000 m 2 /g, graphene having a specific surface area of 100 ⁇ 1000 m 2 /g, carbon nanotubes, carbon nanofibers, and the like.
  • the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical changes, and examples thereof include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, carbon fiber, copper, nickel, Metal powder or metal fibers such as aluminum and silver are possible.
  • the conductive material is preferably contained in the composition for a supercapacitor electrode in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
  • the fluorine-containing binder may include polytetrafluoroethylene (PTFE). It is preferable that the fluorine-containing binder is contained in the composition for a supercapacitor electrode in an amount of 1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
  • PTFE polytetrafluoroethylene
  • the dispersion medium is methanol, ethanol, propanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, methyl isobutyl ketone, toluene and xylene ( Xylene), distilled water, and mixtures thereof.
  • the dispersion medium is preferably contained in the composition for a supercapacitor electrode in an amount of 100 to 300 parts by weight based on 100 parts by weight of the electrode active material.
  • the additive includes 2-(dimethylamino)ethyl methacrylate.
  • the 2-dimethylaminoethyl methacrylate improves the moldability, improves the durability of the electrode, and makes it possible to improve the electrode density.
  • the additive is preferably contained in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the electrode active material in the composition for a supercapacitor electrode.
  • the composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material.
  • CBAA 2-[(3-acrylamidopropyl dimethylammonio acetate)
  • the 2-[(3-acrylamidopropyl dimethylammonio acetate) improves moldability, improves durability of an electrode, and enables an increase in electrode density.
  • a high-speed mixer such as a planetary mixer
  • agitated for a predetermined period of time for example, 10 minutes to 12 hours
  • a composition for a supercapacitor electrode can be obtained.
  • a high-speed mixer such as a planetary mixer enables the preparation of a uniformly mixed supercapacitor electrode composition. At this time, it is also possible to induce uniform dispersion by using ultrasonic waves.
  • a composition for a supercapacitor electrode which is a mixture of an electrode active material, a conductive material, a fluorine-containing binder, an additive, and a dispersion medium, is pressed to form an electrode, or the composition for a supercapacitor electrode is coated on a metal foil or a current collector to form an electrode.
  • the supercapacitor electrode composition is pushed with a roller to form a sheet, and attached to a metal foil or a current collector to form an electrode, and the resultant formed in the electrode form is dried to form an electrode.
  • the composition for a supercapacitor electrode may be pressed and molded using a roll press molding machine.
  • the roll press molding machine is aimed at improving electrode density and controlling the thickness of the electrode through rolling, a controller that can control the thickness and heating temperature of the upper and lower rolls and rolls, and a winding that can unwind and wind the electrode. Includes wealth.
  • the pressurization pressure of the roll press is preferably 1 to 20 ton/cm 2 and the temperature of the roll is 0 to 150°C.
  • the composition for a supercapacitor electrode that has undergone the press-compression process as described above is subjected to a drying process.
  • the drying process is carried out at a temperature of 100°C to 350°C, preferably 150°C to 300°C.
  • the drying temperature is 100°C or higher and not more than 350°C.
  • the drying process is preferably carried out for about 10 minutes to 12 hours at the same temperature as above. This drying process improves the strength of the electrode by binding the electrode active material and the conductive material particles.
  • the composition for the supercapacitor electrode may be used as a metal foil such as a titanium foil, an aluminum foil, or an etching aluminum foil. It may be coated on a current collector such as an aluminum current collector, or the composition for a supercapacitor electrode may be pushed with a roller to form a sheet (rubber type) and attached to a metal foil or current collector to form a positive electrode or a negative electrode.
  • the etched aluminum foil means that the aluminum foil is etched in an uneven shape
  • the etched aluminum current collector means that the aluminum current collector is etched in a requested shape.
  • a drying process is performed on the shape of the anode or cathode that has undergone the above process.
  • the drying process is carried out at a temperature of 100°C to 350°C, preferably 150°C to 300°C.
  • a temperature of 100°C to 350°C preferably 150°C to 300°C.
  • the drying temperature is 100°C or higher and not more than 350°C.
  • the drying process is preferably carried out for about 10 minutes to 6 hours at the same temperature as above.
  • the supercapacitor electrode manufactured as described above can be usefully applied to a small coin-type supercapacitor as shown in FIG. 1, a wound-type supercapacitor as shown in FIGS. 2 to 5, and the like.
  • FIG. 1 is a state diagram of a use of a supercapacitor electrode according to the present invention, showing a cross-sectional view of a coin-type supercapacitor to which the supercapacitor electrode is applied.
  • reference numeral 190 denotes a metal cap as a conductor
  • reference numeral 160 denotes a separator made of a porous material for insulation and short-circuit prevention between the anode 120 and the cathode 110
  • reference numeral 192 denotes a leakage of electrolyte. It is a gasket to prevent protection and insulation and short-circuit prevention.
  • the positive electrode 120 and the negative electrode 110 are firmly fixed by a metal cap 190 and an adhesive.
  • the coin-type supercapacitor is disposed between the positive electrode 120 made of the above-described supercapacitor electrode, the negative electrode 110 made of the above-described supercapacitor electrode, and the positive electrode 120 and the negative electrode 110, and the positive electrode 120
  • a separator 160 for preventing a short circuit between the and the cathode 120 is disposed in the metal cap 190, and an electrolyte solution in which the electrolyte is dissolved between the anode 120 and the cathode 110 is injected, It can be manufactured by sealing with a gasket 192.
  • the separator is a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyester nonwoven fabric, a polyacrylonitrile porous separator, a poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, a cellulose porous separator, a kraft paper or rayon fiber, etc. If it is a separator generally used in the field, there is no particular limitation.
  • the electrolyte to be charged in the supercapacitor is TEABF 4 (tetraethylammonium tetrafluoborate) and TEMABF 4 (tetraethylammonium tetrafluoborate) and TEMABF 4 ( triethylmethylammonium tetrafluoborate) in which at least one selected salt is dissolved may be used.
  • the electrolyte may contain one or more ionic liquids selected from EMIBF 4 (1-ethyl-3-methyl imidazolium tetrafluoborate) and EMITFSI (1-ethyl-3-methyl imidazolium bis (trifluoromethane sulfonyl) imide). .
  • FIGS. 2 to 5 are diagrams illustrating a state of use of a supercapacitor electrode according to another example, and are views illustrating a wound-type supercapacitor to which a supercapacitor electrode is applied. A method of manufacturing a wound-type supercapacitor will be described in detail with reference to FIGS. 2 to 5.
  • lead wires 130 and 140 are attached to the anode 120 and cathode 110 made of the above-described supercapacitor electrode, respectively.
  • a first separator 150, an anode 120, a second separator 160, and a working electrode (cathode 110) are stacked and coiled to form a roll. After being manufactured with the winding element 175 of, it is wound around a roll with an adhesive tape 170 or the like so that the roll shape can be maintained.
  • the second separator 160 provided between the anode 120 and the cathode 110 serves to prevent a short circuit between the anode 120 and the cathode 110.
  • the first and second separators 150 and 160 are polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polyacrylonitrile porous separator, poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, cellulose porous separator, kraft paper. Alternatively, it is not particularly limited as long as it is a separator generally used in the field of batteries and capacitors such as rayon fibers.
  • a sealing rubber 180 is mounted on the resultant in the form of a roll, and a metal cap (eg, an aluminum case) 190 is inserted.
  • a metal cap eg, an aluminum case
  • the electrolyte is injected and sealed so that the roll-shaped winding element 175 (positive electrode 120 and negative electrode 110) is impregnated.
  • the electrolyte is 1 selected from TEABF 4 (tetraethylammonium tetrafluoborate) and TEMABF 4 (triethylmethylammonium tetrafluoborate) in at least one solvent selected from propylene carbonate (PC; propylene carbonate), acetonitrile (AN; acetonitrile) and sulfolane (SL). It is possible to use those in which more than one species are dissolved.
  • PC propylene carbonate
  • AN acetonitrile
  • SL sulfolane
  • the electrolyte may contain one or more ionic liquids selected from EMIBF 4 (1-ethyl-3-methyl imidazolium tetrafluoborate) and EMITFSI (1-ethyl-3-methyl imidazolium bis (trifluoromethane sulfonyl) imide). .
  • the wound-type supercapacitor manufactured as described above is schematically shown in FIG. 5.
  • DMAEMA' 2-(dimethylamino)ethyl methacrylate
  • the composition for electrodes in a kneaded state was molded in a roll press molding machine until the surface became smooth to form a sheet of the composition for electrodes.
  • the roll press molding machine is provided including an upper roll and a lower roll, and is formed by passing the electrode composition between the upper and lower rolls. The result of passing between the upper and lower rolls was folded in half, and the process of passing between the upper and lower rolls was repeated 15 times to obtain a composition sheet for electrodes having a smooth surface. Through rolling of the roll press molding machine, the electrode density can be improved and the thickness of the electrode can be controlled.
  • the pressing pressure applied to the electrode composition was about 10 ton/cm 2, and the heating temperature was about 60°C.
  • the electrode composition sheet formed using a roll press molding machine was punched into a size of 12 mm in diameter.
  • the resulting product formed by punching was dried in a vacuum dryer. The drying was performed at a temperature of 150° C. for 24 hours.
  • the electrode sheet thus prepared was used as a supercapacitor electrode.
  • a coin cell type supercapacitor having a diameter of 20 mm and a height of 3.2 mm was manufactured.
  • an electrolyte containing 1M of TEABF 4 in a propylene carbonate (PC) solvent was used, and TF4035 (manufactured by NKK, Japan) was used as the separator.
  • Example 1 A comparative example is presented so that the characteristics of Example 1 can be more easily grasped, and the comparative examples below are presented merely to aid understanding and are not prior art of the present invention.
  • PTFE polytetrafluoroethylene
  • the composition for electrodes in a kneaded state was molded in a roll press molding machine until the surface became smooth to form a sheet of the composition for electrodes.
  • the roll press molding machine is provided including an upper roll and a lower roll, and is formed by passing the electrode composition between the upper and lower rolls. The result of passing between the upper and lower rolls was folded in half, and the process of passing between the upper and lower rolls was repeated 15 times to obtain a composition sheet for electrodes having a smooth surface. Through rolling of the roll press molding machine, the electrode density can be improved and the thickness of the electrode can be controlled.
  • the pressing pressure applied to the electrode composition was about 10 ton/cm 2, and the heating temperature was about 60°C.
  • the electrode composition sheet formed using a roll press molding machine was punched into a size of 12 mm in diameter.
  • the resulting product formed by punching was dried in a vacuum dryer. The drying was performed at a temperature of 150° C. for 24 hours.
  • the electrode sheet thus prepared was used as a supercapacitor electrode.
  • a coin cell type supercapacitor having a diameter of 20 mm and a height of 3.2 mm was manufactured.
  • an electrolyte containing 1M of TEABF 4 in a propylene carbonate (PC) solvent was used, and TF4035 (manufactured by NKK, Japan) was used as the separator.
  • Table 1 below shows the moldability and mixing time of the electrode composition prepared according to Example 1 and the electrode composition prepared according to the comparative example.
  • the electrode density of the supercapacitor electrode manufactured according to Example 1 and the electrode density of the supercapacitor electrode manufactured according to the comparative example were measured, and are shown in Table 1 below.
  • the specific storage capacity of the supercapacitor manufactured according to Example 1 and the specific storage capacity of the supercapacitor manufactured according to the comparative example were measured and shown in Table 1 below.
  • the supercapacitor electrode manufactured according to Example 1 was found to have a higher electrode density than the supercapacitor electrode manufactured according to the comparative example.
  • the supercapacitor manufactured according to Example 1 was found to have superior storage capacity compared to the supercapacitor manufactured according to the comparative example.
  • first lead wire 140 second lead wire
  • first separation membrane 160 second separation membrane
  • the present invention it is possible to improve the moldability, the durability of the electrode can be improved, the electrode density can be improved, and there is industrial applicability.

Abstract

The present invention relates to a composition for a super-capacitor electrode, a method for manufacturing a super-capacitor electrode using same, and a super-capacitor manufactured using the manufacturing method, the composition comprising: an electrode active material; 0.1-20 parts by weight of a conductive material with respect to 100 parts by weight of the electrode active material; 1-20 parts by weight of a fluorine-containing binder with respect to 100 parts by weight of the electrode active material; 0.01-2 parts by weight of an additive with respect to 100 parts by weight of the electrode active material; and 100-300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, wherein the additive comprises 2-(dimethylamino)ethyl methacrylate. According to the present invention, formability can be enhanced, the durability of an electrode can be improved, and electrode density can be enhanced.

Description

전극밀도를 개선할 수 있는 슈퍼커패시터 전극용 조성물, 이를 이용한 슈퍼커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 슈퍼커패시터A composition for a supercapacitor electrode capable of improving electrode density, a method for manufacturing a supercapacitor electrode using the same, and a supercapacitor manufactured using the method
본 발명은 슈퍼커패시터 전극용 조성물, 슈퍼커패시터 전극의 제조방법 및 슈퍼커패시터에 관한 것으로, 더욱 상세하게는 성형성을 향상시킬 수 있고, 전극의 내구성을 개선할 수 있으며, 전극밀도를 향상시킬 수 있는 슈퍼커패시터 전극용 조성물, 슈퍼커패시터 전극의 제조방법 및 슈퍼커패시터에 관한 것이다.The present invention relates to a composition for a supercapacitor electrode, a method of manufacturing a supercapacitor electrode, and a supercapacitor, and in more detail, it is possible to improve moldability, improve durability of the electrode, and improve electrode density. It relates to a composition for a supercapacitor electrode, a method of manufacturing a supercapacitor electrode, and a supercapacitor.
차세대 에너지 저장장치들 중 슈퍼커패시터는 빠른 충·방전 속도, 높은 안정성, 그리고 친환경적 특성으로 인해, 차세대 에너지 저장장치로 각광받고 있다. 일반적인 슈퍼커패시터는 다공성 전극, 집전체, 분리막, 그리고 전해액 등으로 구성된다. Among next-generation energy storage devices, supercapacitors are in the spotlight as next-generation energy storage devices due to their fast charging/discharging speed, high stability, and eco-friendly characteristics. A general supercapacitor is composed of a porous electrode, a current collector, a separator, and an electrolyte.
슈퍼커패시터는 전기이중층 커패시터(Electric Double Layer Capacitor; EDLC), 울트라커패시터(Ultra-capacitor) 라고도 일컬어지며, 이는 전극 및 도전체와, 그것에 함침된 전해액의 계면에 각각 부호가 다른 한 쌍의 전하층(전기이중층)이 생성된 것을 이용하는 것으로, 충전/방전 동작의 반복으로 인한 열화가 매우 작아 보수가 필요없는 소자이다. 이에 따라 슈퍼커패시터는 각종 전기ㆍ전자기기의 IC(integrated circuit) 백업을 하는 형태로 주로 사용되고 있으며, 최근에는 그 용도가 확대되어 장난감, 태양열 에너지 저장, HEV(hybrid electric vehicle) 전원 등에까지 폭넓게 응용되고 있다.Supercapacitors are also referred to as Electric Double Layer Capacitors (EDLC) and Ultra-capacitors, and this is a pair of charge layers with different codes at the interface between the electrode and the conductor and the electrolyte impregnated therein ( This is a device that does not require maintenance due to very low deterioration due to repetition of charging/discharging operation by using the generated electric double layer). Accordingly, supercapacitors are mainly used in the form of backing up ICs (integrated circuits) of various electric and electronic devices, and their use has been expanded in recent years and has been widely applied to toys, solar energy storage, and HEV (hybrid electric vehicle) power supplies. have.
이와 같은 슈퍼커패시터는 일반적으로 전해액이 함침된 양극 및 음극의 두 전극과, 이러한 두 전극 사이에 개재되어 이온(ion) 전도만 가능케 하고 절연 및 단락 방지를 위한 다공성 재질의 분리막(separator)과, 전해액의 누액을 방지하고 절연 및 단락방지를 위한 가스켓(gasket), 그리고 이들을 포장하는 도전체로서의 금속 캡으로 구성된 단위셀을 갖는다. 그리고 위와 같이 구성된 단위셀 1개 이상(통상, 코인형의 경우 2∼6개)을 직렬로 적층하고 양극과 음극의 두 단자(terminal)를 조합하여 완성된다.Such supercapacitors generally include two electrodes, a positive electrode and a negative electrode impregnated with an electrolyte, and a separator made of a porous material for insulating and short-circuit prevention, and an electrolyte that is interposed between these two electrodes to enable only ion conduction. It has a unit cell composed of a gasket to prevent leakage of the body, insulation and short-circuit, and a metal cap as a conductor that wraps them. And it is completed by stacking one or more unit cells (usually 2 to 6 in the case of coin type) configured as above in series and combining the two terminals of the positive and negative electrodes.
슈퍼커패시터의 성능은 전극활물질, 전해액 등에 의하여 결정되며, 특히 축전용량 등 주요성능은 전극활물질에 의하여 대부분 결정된다. 이러한 전극활물질로는 활성탄이 주로 사용되고 있으며, 상용제품의 전극 기준으로 비축전용량은 최고 19.3 F/cc 정도로 알려져 있다. 일반적으로 슈퍼커패시터의 전극활물질로 사용되는 활성탄은 1500㎡/g 이상의 고비표면적 활성탄이 사용되고 있다. The performance of a supercapacitor is determined by the electrode active material, electrolyte, and the like, and in particular, the main performance such as storage capacity is mostly determined by the electrode active material. Activated carbon is mainly used as such an electrode active material, and the reserve capacity is known to be up to 19.3 F/cc based on the electrode of a commercial product. In general, activated carbon used as an electrode active material for supercapacitors is activated carbon with a high specific surface area of 1500 m 2 /g or more.
그러나, 슈퍼커패시터의 응용 분야의 확대에 따라 보다 높은 비축전용량과 에너지밀도가 요구되고 있어 보다 높은 축전용량을 발현하는 슈퍼커패시터의 개발이 요구되고 있다. However, as the application field of supercapacitors expands, higher specific storage capacity and energy density are required, and thus the development of supercapacitors that exhibit higher storage capacity is required.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
대한민국 특허등록번호 제10-1137719호Korean Patent Registration No. 10-1137719
본 발명이 해결하고자 하는 과제는 성형성을 향상시킬 수 있고, 전극의 내구성을 개선할 수 있으며, 전극밀도를 향상시킬 수 있는 슈퍼커패시터 전극용 조성물, 슈퍼커패시터 전극의 제조방법 및 슈퍼커패시터를 제공함에 있다. The problem to be solved by the present invention is to provide a composition for a supercapacitor electrode, a method of manufacturing a supercapacitor electrode, and a supercapacitor capable of improving moldability, improving durability of the electrode, and improving electrode density. have.
본 발명은, 전극활물질; 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부와, 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함하는 것을 특징으로 하는 슈퍼커패시터 전극용 조성물을 제공한다. The present invention, an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material , A composition for a supercapacitor electrode comprising 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive comprises 2-(dimethylamino)ethyl methacrylate. Provides.
상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함할 수 있다.The composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material. Can include.
상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함할 수 있다.The fluorine-containing binder may include polytetrafluoroethylene (PTFE).
상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. The electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
또한, 본 발명은, 전극활물질, 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부 및 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 혼합하여 슈퍼커패시터 전극용 조성물을 제조하는 단계와, 상기 슈퍼커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 금속 호일이나 집전체에 코팅하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일이나 집전체에 붙여서 전극 형태로 형성하는 단계 및 전극 형태로 형성된 결과물을 건조하여 슈퍼커패시터 전극을 형성하는 단계를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함하는 것을 특징으로 하는 슈퍼커패시터 전극의 제조방법을 제공한다. In addition, the present invention provides an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material. Preparing a composition for a supercapacitor electrode by mixing 0.01 to 2 parts by weight of an additive and 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, and forming an electrode by pressing the composition for a supercapacitor electrode, or Coating the composition for a supercapacitor electrode on a metal foil or a current collector to form an electrode, or forming a sheet by pushing the composition for a supercapacitor electrode with a roller and attaching it to a metal foil or a current collector to form an electrode, and the shape of the electrode A method of manufacturing a supercapacitor electrode, comprising the step of forming a supercapacitor electrode by drying the resultant product, wherein the additive comprises 2-(dimethylamino)ethyl methacrylate. Provides.
상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함할 수 있다.The composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material. Can include.
상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함할 수 있다.The fluorine-containing binder may include polytetrafluoroethylene (PTFE).
상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
또한, 본 발명은, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극; 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극; 상기 양극과 음극 사이에 배치되고 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막; 상기 양극, 상기 분리막 및 상기 음극이 내부에 배치되고 전해액이 주입된 금속 캡; 및 상기 금속 캡을 밀봉하기 위한 가스켓을 포함하는 슈퍼커패시터를 제공한다. In addition, the present invention, the anode made of a supercapacitor electrode manufactured by the above method; A cathode made of a supercapacitor electrode manufactured by the above method; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode; A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And a gasket for sealing the metal cap.
또한, 본 발명은, 단락을 방지하기 위한 제1 분리막과, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극과, 상기 양극과 음극의 단락을 방지하기 위한 제2 분리막과, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극이, 순차적으로 적층되어 코일링된 롤 형태를 이루는 권취소자; 상기 음극에 연결된 제1 리드선; 상기 양극에 연결된 제2 리드선; 상기 권취소자를 수용하는 금속캡; 및 상기 금속 캡을 밀봉하기 위한 실링 고무를 포함하며, 상기 권취소자는 리튬염이 용해되어 있는 전해액에 함침되어 있는 것을 특징으로 하는 슈퍼커패시터를 제공한다.In addition, the present invention provides a first separator for preventing a short circuit, an anode comprising a supercapacitor electrode manufactured by the above method, a second separator for preventing a short circuit between the anode and the cathode, and a super capacitor manufactured by the above method. A winding element in which a cathode made of a capacitor electrode is sequentially stacked to form a coiled roll shape; A first lead wire connected to the negative electrode; A second lead wire connected to the positive electrode; A metal cap accommodating the winding element; And a sealing rubber for sealing the metal cap, wherein the winding element is impregnated with an electrolyte in which a lithium salt is dissolved.
본 발명에 의하면, 성형성을 향상시킬 수 있고, 전극의 내구성을 개선할 수 있으며, 전극밀도를 향상시킬 수 있다. 바인더와 함께 첨가제를 소량 사용함에 의해 다른 원료들과의 접촉이 양호하고 저항이 낮으며 밀도 증가와 내구성이 향상되어 우수한 셀 효율을 나타낼 수 있게 한다. According to the present invention, the moldability can be improved, the durability of the electrode can be improved, and the electrode density can be improved. By using a small amount of additives together with a binder, the contact with other raw materials is good, resistance is low, density increase and durability are improved, so that excellent cell efficiency can be exhibited.
본 발명의 슈퍼커패시터 전극용 조성물을 이용하여 제조된 슈퍼커패시터는 전극밀도가 높고, 에너지 밀도가 증가함에 따라 고용량의 특성을 나타내고, 우수한 비축전용량 특성을 나타낸다. A supercapacitor manufactured using the composition for a supercapacitor electrode of the present invention has a high electrode density, exhibits high capacity characteristics as the energy density increases, and exhibits excellent specific capacity characteristics.
도 1은 일 예에 따른 코인형 슈퍼커패시터의 단면도를 보인 것이다.1 is a cross-sectional view of a coin-type supercapacitor according to an example.
도 2 내지 도 5는 일 예에 따른 권취형 슈퍼커패시터를 보여주는 도면이다.2 to 5 are views showing a wound-type supercapacitor according to an example.
도 6은 실시예 1에 따라 제조된 슈퍼커패시터와 비교예에 따라 제조된 슈퍼커패시터의 전기화학 분석 결과를 나타낸 도면이다.6 is a diagram showing electrochemical analysis results of a supercapacitor manufactured according to Example 1 and a supercapacitor manufactured according to a comparative example.
본 발명의 바람직한 실시예에 따른 슈퍼커패시터 전극용 조성물은, 전극활물질; 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부와, 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. The composition for a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive includes 2-(dimethylamino)ethyl methacrylate.
본 발명의 바람직한 실시예에 따른 슈퍼커패시터 전극의 제조방법은, 전극활물질, 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부 및 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 혼합하여 슈퍼커패시터 전극용 조성물을 제조하는 단계와, 상기 슈퍼커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 금속 호일이나 집전체에 코팅하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일이나 집전체에 붙여서 전극 형태로 형성하는 단계 및 전극 형태로 형성된 결과물을 건조하여 슈퍼커패시터 전극을 형성하는 단계를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. A method of manufacturing a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, and 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material. Parts, preparing a composition for a supercapacitor electrode by mixing 0.01 to 2 parts by weight of an additive with respect to 100 parts by weight of the electrode active material and 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, and the composition for a supercapacitor electrode Press-press to form an electrode, or coat the composition for a supercapacitor electrode on a metal foil or a current collector to form an electrode, or push the composition for a supercapacitor electrode with a roller to form a sheet, and then attach it to a metal foil or a current collector. And forming a supercapacitor electrode by attaching to form an electrode and drying the resulting product in the form of an electrode, wherein the additive includes 2-(dimethylamino)ethyl methacrylate. .
본 발명의 바람직한 일 실시예에 따른 슈퍼커패시터는, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극; 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극; 상기 양극과 음극 사이에 배치되고 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막; 상기 양극, 상기 분리막 및 상기 음극이 내부에 배치되고 전해액이 주입된 금속 캡; 및 상기 금속 캡을 밀봉하기 위한 가스켓을 포함한다. A supercapacitor according to a preferred embodiment of the present invention includes an anode made of a supercapacitor electrode manufactured by the above method; A cathode made of a supercapacitor electrode manufactured by the above method; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode; A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And a gasket for sealing the metal cap.
본 발명의 바람직한 다른 실시예에 따른 슈퍼커패시터는, 단락을 방지하기 위한 제1 분리막과, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극과, 상기 양극과 음극의 단락을 방지하기 위한 제2 분리막과, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극이, 순차적으로 적층되어 코일링된 롤 형태를 이루는 권취소자; 상기 음극에 연결된 제1 리드선; 상기 양극에 연결된 제2 리드선; 상기 권취소자를 수용하는 금속캡; 및 상기 금속 캡을 밀봉하기 위한 실링 고무를 포함하며, 상기 권취소자는 리튬염이 용해되어 있는 전해액에 함침되어 있다.A supercapacitor according to another preferred embodiment of the present invention includes a first separator for preventing a short circuit, an anode made of a supercapacitor electrode manufactured by the above method, a second separator for preventing a short circuit between the anode and the cathode, and , A winding element in which a cathode made of a supercapacitor electrode manufactured by the above method is sequentially stacked to form a coiled roll shape; A first lead wire connected to the negative electrode; A second lead wire connected to the positive electrode; A metal cap accommodating the winding element; And a sealing rubber for sealing the metal cap, and the winding element is impregnated in an electrolyte solution in which a lithium salt is dissolved.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are provided so that the present invention may be sufficiently understood by those of ordinary skill in the art, and may be modified in various other forms, and the scope of the present invention is limited to the examples described below. It does not become.
발명의 상세한 설명 또는 청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소를 더 포함할 수 있는 것으로 이해되어야 한다.In the detailed description of the invention or in the claims, when any one component "includes" another component, it is not construed as being limited to only the component unless otherwise stated, and other components are further included. It should be understood that it may contain.
본 발명의 바람직한 실시예에 따른 슈퍼커패시터 전극용 조성물은, 전극활물질; 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부와, 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. The composition for a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive includes 2-(dimethylamino)ethyl methacrylate.
상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함할 수 있다.The composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material. Can include.
상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함할 수 있다.The fluorine-containing binder may include polytetrafluoroethylene (PTFE).
상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. The electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
본 발명의 바람직한 실시예에 따른 슈퍼커패시터 전극의 제조방법은, 전극활물질, 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부 및 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 혼합하여 슈퍼커패시터 전극용 조성물을 제조하는 단계와, 상기 슈퍼커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 금속 호일이나 집전체에 코팅하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일이나 집전체에 붙여서 전극 형태로 형성하는 단계 및 전극 형태로 형성된 결과물을 건조하여 슈퍼커패시터 전극을 형성하는 단계를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. A method of manufacturing a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, and 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material. Parts, preparing a composition for a supercapacitor electrode by mixing 0.01 to 2 parts by weight of an additive with respect to 100 parts by weight of the electrode active material and 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material, and the composition for a supercapacitor electrode Press-press to form an electrode, or coat the composition for a supercapacitor electrode on a metal foil or a current collector to form an electrode, or push the composition for a supercapacitor electrode with a roller to form a sheet, and then attach it to a metal foil or a current collector. And forming a supercapacitor electrode by attaching to form an electrode and drying the resulting product in the form of an electrode, wherein the additive includes 2-(dimethylamino)ethyl methacrylate. .
상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함할 수 있다. 상기 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트는 집전체와의 결착력을 높이고, 전해액의 함침성을 높이며, 전극밀도의 향상을 가능케 한다.The composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material. The 2-[(3-acrylamidopropyl dimethylammonio acetate) enhances the binding power to the current collector, improves the impregnation property of the electrolyte, and enables the improvement of electrode density.
상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함할 수 있다.The fluorine-containing binder may include polytetrafluoroethylene (PTFE).
상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
본 발명의 바람직한 일 실시예에 따른 슈퍼커패시터는, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극; 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극; 상기 양극과 음극 사이에 배치되고 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막; 상기 양극, 상기 분리막 및 상기 음극이 내부에 배치되고 전해액이 주입된 금속 캡; 및 상기 금속 캡을 밀봉하기 위한 가스켓을 포함한다. A supercapacitor according to a preferred embodiment of the present invention includes an anode made of a supercapacitor electrode manufactured by the above method; A cathode made of a supercapacitor electrode manufactured by the above method; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode; A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And a gasket for sealing the metal cap.
본 발명의 바람직한 다른 실시예에 따른 슈퍼커패시터는, 단락을 방지하기 위한 제1 분리막과, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극과, 상기 양극과 음극의 단락을 방지하기 위한 제2 분리막과, 상기 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극이, 순차적으로 적층되어 코일링된 롤 형태를 이루는 권취소자; 상기 음극에 연결된 제1 리드선; 상기 양극에 연결된 제2 리드선; 상기 권취소자를 수용하는 금속캡; 및 상기 금속 캡을 밀봉하기 위한 실링 고무를 포함하며, 상기 권취소자는 리튬염이 용해되어 있는 전해액에 함침되어 있다.A supercapacitor according to another preferred embodiment of the present invention includes a first separator for preventing a short circuit, an anode made of a supercapacitor electrode manufactured by the above method, a second separator for preventing a short circuit between the anode and the cathode, and , A winding element in which a cathode made of a supercapacitor electrode manufactured by the above method is sequentially stacked to form a coiled roll shape; A first lead wire connected to the negative electrode; A second lead wire connected to the positive electrode; A metal cap accommodating the winding element; And a sealing rubber for sealing the metal cap, and the winding element is impregnated in an electrolyte solution in which a lithium salt is dissolved.
이하에서, 본 발명의 바람직한 실시예에 따른 슈퍼커패시터 전극용 조성물을 더욱 구체적으로 설명한다. Hereinafter, a composition for a supercapacitor electrode according to a preferred embodiment of the present invention will be described in more detail.
기존 활성탄 전극 제조 시 첨가되는 바인더는 전기 전도도 향상을 위하여 최소량의 사용을 권장하고 있다. 또한, 다른 첨가물과의 접촉이 원활하지 않으면 초기 저항이 높고 전기화학적 성능의 저하를 나타내기 때문에 이를 해결하기 위한 여러 연구가 진행되고 있다. It is recommended to use a minimum amount of a binder added in the manufacture of an existing activated carbon electrode to improve electrical conductivity. In addition, if the contact with other additives is not smooth, the initial resistance is high and the electrochemical performance is deteriorated, so several studies are being conducted to solve this problem.
본 발명의 발명자들은 바인더와 함께 첨가제를 소량 사용함에 의해 다른 원료들과의 접촉이 양호하고 저항이 낮으며 전극밀도 증가와 내구성이 향상되어 우수한 셀 효율을 나타낼 수 있는 슈퍼커패시터 전극용 조성물을 연구하였다.The inventors of the present invention have studied a composition for a supercapacitor electrode that can exhibit excellent cell efficiency by improving contact with other raw materials, low resistance, increased electrode density, and improved durability by using a small amount of additives together with a binder. .
본 발명의 바람직한 실시예에 따른 슈퍼커패시터 전극용 조성물은, 전극활물질; 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부와, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부와, 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 포함하며, 상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. The composition for a supercapacitor electrode according to a preferred embodiment of the present invention includes an electrode active material; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, and 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material, and the additive includes 2-(dimethylamino)ethyl methacrylate.
상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다. The electrode active material is composed of activated carbon with a specific surface area of 1500 to 3000 m 2 /g, graphene with a specific surface area of 100 to 1000 m 2 /g, carbon nanotubes (CNTs), and carbon nanofibers. It may contain one or more materials selected from the group.
상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함할 수 있다. 상기 불소 함유 바인더는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 1∼20중량부 함유되는 것이 바람직하다.The fluorine-containing binder may include polytetrafluoroethylene (PTFE). It is preferable that the fluorine-containing binder is contained in the composition for a supercapacitor electrode in an amount of 1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
상기 도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 슈퍼-피(Super-P), 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다. 상기 도전재는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 0.1∼20중량부 함유되는 것이 바람직하다.The conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical changes, and examples thereof include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, carbon fiber, copper, nickel, Metal powder or metal fibers such as aluminum and silver are possible. The conductive material is preferably contained in the composition for a supercapacitor electrode in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
상기 분산매는 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), 부탄올(Butanol), 메틸 에틸 케톤(Methyl Ethyl Ketone), 메틸 이소 부틸 케톤(Methyl Iso Buthyl Ketone), 톨루엔(Toluene) 및 크실렌(Xylene), 증류수, 이들의 혼합물 등을 포함할 수 있다. 상기 분산매는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 100∼300중량부 함유되는 것이 바람직하다. The dispersion medium is methanol, ethanol, propanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, methyl isobutyl ketone, toluene and xylene ( Xylene), distilled water, and mixtures thereof. The dispersion medium is preferably contained in the composition for a supercapacitor electrode in an amount of 100 to 300 parts by weight based on 100 parts by weight of the electrode active material.
상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. 상기 2-디메틸아미노에틸 메타아크릴레이트는 성형성을 향상시키고, 전극의 내구성을 개선하며, 전극밀도의 향상을 가능케 한다. 상기 첨가제는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 0.01∼2중량부 함유되는 것이 바람직하다. 아래에 2-디메틸아미노에틸 메타아크릴레이트의 구조식을 나타내었다. The additive includes 2-(dimethylamino)ethyl methacrylate. The 2-dimethylaminoethyl methacrylate improves the moldability, improves the durability of the electrode, and makes it possible to improve the electrode density. The additive is preferably contained in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the electrode active material in the composition for a supercapacitor electrode. The structural formula of 2-dimethylaminoethyl methacrylate is shown below.
[구조식 1][Structural Formula 1]
Figure PCTKR2020005542-appb-I000001
Figure PCTKR2020005542-appb-I000001
상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함할 수 있다. 상기 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트는 집전체와의 결착력을 높이고, 전해액의 함침성을 높이며, 전극밀도의 향상을 가능케 한다.The composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material. The 2-[(3-acrylamidopropyl dimethylammonio acetate) enhances the binding power to the current collector, improves the impregnation property of the electrolyte, and enables the improvement of electrode density.
아래에 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트의 구조식을 나타내었다.The structural formula of 2-[(3-acrylamidopropyl dimethylammonio acetate) is shown below.
[구조식 2][Structural Formula 2]
Figure PCTKR2020005542-appb-I000002
Figure PCTKR2020005542-appb-I000002
상기 슈퍼커패시터 전극용 조성물은 바인더와 함께 첨가제를 소량 사용함에 의해 다른 원료들과의 접촉이 양호하고 저항이 낮으며 전극밀도 증가와 내구성이 향상되어 우수한 셀 효율을 나타낼 수 있게 한다. The composition for a supercapacitor electrode has good contact with other raw materials, low resistance, increased electrode density, and improved durability by using a small amount of additives together with a binder, thereby exhibiting excellent cell efficiency.
이하에서, 상기 슈퍼커패시터 전극용 조성물을 이용하여 슈퍼커패시터 전극을 제조하는 방법을 더욱 구체적으로 설명한다. Hereinafter, a method of manufacturing a supercapacitor electrode using the composition for a supercapacitor electrode will be described in more detail.
전극활물질, 도전재, 불소 함유 바인더, 첨가제 및 분산매를 혼합하여 슈퍼커패시터 전극용 조성물을 제조한다. An electrode active material, a conductive material, a fluorine-containing binder, an additive, and a dispersion medium are mixed to prepare a composition for a supercapacitor electrode.
상기 슈퍼커패시터 전극용 조성물은, 전극활물질, 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부, 상기 전극활물질 100중량부에 대하여 바인더 1∼20 중량부, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부 및 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 포함한다. The composition for a supercapacitor electrode includes an electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a binder based on 100 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material. It contains 0.01 to 2 parts by weight of the additive and 100 to 300 parts by weight of the dispersion medium based on 100 parts by weight of the electrode active material.
상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄 등의 다공성 탄소재, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브, 카본나노파이버 등을 포함할 수 있다. The electrode active material may include a porous carbon material such as activated carbon having a specific surface area of 1500 ~ 3000 m 2 /g, graphene having a specific surface area of 100 ~ 1000 m 2 /g, carbon nanotubes, carbon nanofibers, and the like.
상기 도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 슈퍼-피(Super-P), 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다. 상기 도전재는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 0.1∼20중량부 함유되는 것이 바람직하다.The conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical changes, and examples thereof include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, carbon fiber, copper, nickel, Metal powder or metal fibers such as aluminum and silver are possible. The conductive material is preferably contained in the composition for a supercapacitor electrode in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함할 수 있다. 상기 불소 함유 바인더는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 1∼20중량부 함유되는 것이 바람직하다.The fluorine-containing binder may include polytetrafluoroethylene (PTFE). It is preferable that the fluorine-containing binder is contained in the composition for a supercapacitor electrode in an amount of 1 to 20 parts by weight based on 100 parts by weight of the electrode active material.
상기 분산매는 메탄올(Methanol), 에탄올(Ethanol), 프로판올(Propanol), 부탄올(Butanol), 메틸 에틸 케톤(Methyl Ethyl Ketone), 메틸 이소 부틸 케톤(Methyl Iso Buthyl Ketone), 톨루엔(Toluene) 및 크실렌(Xylene), 증류수, 이들의 혼합물 등을 포함할 수 있다. 상기 분산매는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 100∼300중량부 함유되는 것이 바람직하다. The dispersion medium is methanol, ethanol, propanol, butanol, methyl ethyl ketone, methyl isobutyl ketone, methyl isobutyl ketone, toluene and xylene ( Xylene), distilled water, and mixtures thereof. The dispersion medium is preferably contained in the composition for a supercapacitor electrode in an amount of 100 to 300 parts by weight based on 100 parts by weight of the electrode active material.
상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함한다. 상기 2-디메틸아미노에틸 메타아크릴레이트는 성형성을 향상시키고, 전극의 내구성을 개선하며, 전극밀도의 향상을 가능케 한다. 상기 첨가제는 상기 슈퍼커패시터 전극용 조성물에 상기 전극활물질 100중량부에 대하여 0.01∼2중량부 함유되는 것이 바람직하다.The additive includes 2-(dimethylamino)ethyl methacrylate. The 2-dimethylaminoethyl methacrylate improves the moldability, improves the durability of the electrode, and makes it possible to improve the electrode density. The additive is preferably contained in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the electrode active material in the composition for a supercapacitor electrode.
상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함할 수 있다. 상기 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트는 성형성을 향상시키고, 전극의 내구성을 개선하며, 전극밀도의 향상을 가능케 한다. The composition for the supercapacitor electrode further comprises 0.01 to 2 parts by weight of 2-[(3-acrylamidopropyl dimethylammonio acetate (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) based on 100 parts by weight of the electrode active material. The 2-[(3-acrylamidopropyl dimethylammonio acetate) improves moldability, improves durability of an electrode, and enables an increase in electrode density.
이들의 균일한 혼합(완전 분산)이 어려울 수 있는데, 플래니터리 믹서(Planetary mixer)와 같은 고속 믹서기(mixer)를 사용하여 소정 시간(예컨대, 10분∼12시간) 동안 교반시키면 전극 제조에 적합한 슈퍼커패시터 전극용 조성물을 얻을 수 있다. 플래니터리 믹서(Planetary mixer)와 같은 고속 믹서기는 균일하게 혼합된 슈퍼커패시터 전극용 조성물의 제조를 가능케 한다. 이때, 초음파(ultrasonic)를 이용하여 균일한 분산을 유도할 수도 있다. It may be difficult to evenly mix (completely disperse) these, but if a high-speed mixer such as a planetary mixer is used and agitated for a predetermined period of time (for example, 10 minutes to 12 hours), it is suitable for electrode manufacturing. A composition for a supercapacitor electrode can be obtained. A high-speed mixer such as a planetary mixer enables the preparation of a uniformly mixed supercapacitor electrode composition. At this time, it is also possible to induce uniform dispersion by using ultrasonic waves.
전극활물질, 도전재, 불소 함유 바인더, 첨가제 및 분산매를 혼합한 슈퍼커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 금속 호일이나 집전체에 코팅하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 롤러로 밀어 시트(sheet) 상태로 만들고 금속 호일이나 집전체에 붙여서 전극 형태로 형성하고, 전극 형태로 형성된 결과물을 건조하여 전극을 형성한다.A composition for a supercapacitor electrode, which is a mixture of an electrode active material, a conductive material, a fluorine-containing binder, an additive, and a dispersion medium, is pressed to form an electrode, or the composition for a supercapacitor electrode is coated on a metal foil or a current collector to form an electrode. , The supercapacitor electrode composition is pushed with a roller to form a sheet, and attached to a metal foil or a current collector to form an electrode, and the resultant formed in the electrode form is dried to form an electrode.
전극을 형성하는 예를 보다 구체적으로 설명하면, 슈퍼커패시터 전극용 조성물을 롤 프레스 성형기를 이용하여 압착하여 성형할 수 있다. 롤 프레스 성형기는 압연을 통한 전극밀도 향상 및 전극의 두께 제어를 목적으로 하고 있으며, 상단과 하단의 롤과 롤의 두께 및 가열 온도를 제어할 수 있는 컨트롤러와, 전극을 풀어주고 감아줄 수 있는 와인딩부를 포함한다. 롤상태의 전극이 롤 프레스를 지나면서 압연공정이 진행되고 이것이 다시 롤 상태로 감겨서 전극이 완성된다. 이때, 롤 프레스의 가압 압력은 1∼20 ton/㎠로 롤의 온도는 0∼150℃로 하는 것이 바람직하다. 상기와 같은 프레스 압착 공정을 거친 슈퍼커패시터 전극용 조성물은 건조 공정을 거친다. 건조 공정은 100℃∼350℃, 바람직하게는 150℃∼300℃의 온도에서 수행된다. 이때, 건조 온도가 100℃ 미만인 경우 분산매의 증발이 어려워 바람직하지 않으며, 350℃를 초과하는 고온 건조 시에는 도전재의 산화가 일어날 수 있으므로 바람직하지 않다. 따라서 건조 온도는 100℃ 이상이고, 350℃를 넘지 않는 것이 바람직하다. 그리고 건조 공정은 위와 같은 온도에서 약 10분∼12시간 동안 진행시키는 것이 바람직하다. 이와 같은 건조 공정은 전극활물질 및 도전재 입자를 결속시켜 전극의 강도를 향상시킨다.When an example of forming an electrode is described in more detail, the composition for a supercapacitor electrode may be pressed and molded using a roll press molding machine. The roll press molding machine is aimed at improving electrode density and controlling the thickness of the electrode through rolling, a controller that can control the thickness and heating temperature of the upper and lower rolls and rolls, and a winding that can unwind and wind the electrode. Includes wealth. As the rolled electrode passes through the roll press, the rolling process proceeds, and it is wound in a rolled state to complete the electrode. At this time, the pressurization pressure of the roll press is preferably 1 to 20 ton/cm 2 and the temperature of the roll is 0 to 150°C. The composition for a supercapacitor electrode that has undergone the press-compression process as described above is subjected to a drying process. The drying process is carried out at a temperature of 100°C to 350°C, preferably 150°C to 300°C. In this case, when the drying temperature is less than 100° C., evaporation of the dispersion medium is difficult, which is not preferable, and when drying at a high temperature exceeding 350° C., oxidation of the conductive material may occur, which is not preferable. Therefore, it is preferable that the drying temperature is 100°C or higher and not more than 350°C. And the drying process is preferably carried out for about 10 minutes to 12 hours at the same temperature as above. This drying process improves the strength of the electrode by binding the electrode active material and the conductive material particles.
또한, 전극을 형성하는 다른 예를 살펴보면, 상기 슈퍼커패시터 전극용 조성물을 티타늄 호일(Ti foil), 알루미늄 호일(Al foil), 에칭 알루미늄 호일(etching aluminum foil)과 같은 금속 호일(metal foil)이나 에칭 알루미늄 집전체와 같은 집전체에 코팅하거나, 상기 슈퍼커패시터 전극용 조성물을 롤러로 밀어 시트(sheet) 상태(고무 타입)로 만들고 금속 호일이나 집전체에 붙여서 양극 또는 음극 형상으로 제조할 수도 있다. 상기 에칭 알루미늄 호일이라 함은 알루미늄 호일을 요철 모양으로 에칭한 것을 의미하고, 상기 에칭 알루미늄 집전체라 함은 알루미늄 집전체를 요청 모양으로 에칭한 것을 의미한다. 상기와 같은 공정을 거친 양극 또는 음극 형상에 대하여 건조 공정을 거친다. 건조 공정은 100℃∼350℃, 바람직하게는 150℃∼300℃의 온도에서 수행된다. 이때, 건조 온도가 100℃ 미만인 경우 분산매의 증발이 어려워 바람직하지 않으며, 350℃를 초과하는 고온 건조 시에는 도전재의 산화가 일어날 수 있으므로 바람직하지 않다. 따라서 건조 온도는 100℃ 이상이고, 350℃를 넘지 않는 것이 바람직하다. 그리고 건조 공정은 위와 같은 온도에서 약 10분∼6시간 동안 진행시키는 것이 바람직하다. 상기 건조공정을 통해 전극활물질 및 도전재 입자를 결속시켜 전극의 강도를 향상시킨다.In addition, looking at another example of forming an electrode, the composition for the supercapacitor electrode may be used as a metal foil such as a titanium foil, an aluminum foil, or an etching aluminum foil. It may be coated on a current collector such as an aluminum current collector, or the composition for a supercapacitor electrode may be pushed with a roller to form a sheet (rubber type) and attached to a metal foil or current collector to form a positive electrode or a negative electrode. The etched aluminum foil means that the aluminum foil is etched in an uneven shape, and the etched aluminum current collector means that the aluminum current collector is etched in a requested shape. A drying process is performed on the shape of the anode or cathode that has undergone the above process. The drying process is carried out at a temperature of 100°C to 350°C, preferably 150°C to 300°C. In this case, when the drying temperature is less than 100° C., evaporation of the dispersion medium is difficult, which is not preferable, and when drying at a high temperature exceeding 350° C., oxidation of the conductive material may occur, which is not preferable. Therefore, it is preferable that the drying temperature is 100°C or higher and not more than 350°C. And the drying process is preferably carried out for about 10 minutes to 6 hours at the same temperature as above. Through the drying process, the electrode active material and the conductive material particles are bound to improve the strength of the electrode.
상기와 같이 제조된 슈퍼커패시터 전극은 도 1에 도시된 바와 같은 소형의 코인형 슈퍼커패시터, 도 2 내지 도 5에 도시된 바와 같은 권취형 슈퍼커패시터 등에 유용하게 적용될 수 있다. The supercapacitor electrode manufactured as described above can be usefully applied to a small coin-type supercapacitor as shown in FIG. 1, a wound-type supercapacitor as shown in FIGS. 2 to 5, and the like.
도 1은 본 발명에 따른 슈퍼커패시터 전극의 사용 상태도로서, 상기 슈퍼커패시터 전극이 적용된 코인형 슈퍼커패시터의 단면도를 보인 것이다. 도 1에서 도면부호 190은 도전체로서의 금속캡이고, 도면부호 160은 양극(120)과 음극(110) 간의 절연 및 단락 방지를 위한 다공성 재질의 분리막(separator)이며, 도면부호 192는 전해액의 누액을 방지하고 절연 및 단락방지를 위한 가스켓이다. 이때, 상기 양극(120)과 음극(110)은 금속캡(190)과 접착제에 의해 견고하게 고정된다.1 is a state diagram of a use of a supercapacitor electrode according to the present invention, showing a cross-sectional view of a coin-type supercapacitor to which the supercapacitor electrode is applied. In FIG. 1, reference numeral 190 denotes a metal cap as a conductor, reference numeral 160 denotes a separator made of a porous material for insulation and short-circuit prevention between the anode 120 and the cathode 110, and reference numeral 192 denotes a leakage of electrolyte. It is a gasket to prevent protection and insulation and short-circuit prevention. At this time, the positive electrode 120 and the negative electrode 110 are firmly fixed by a metal cap 190 and an adhesive.
상기 코인형 슈퍼커패시터는, 상술한 슈퍼커패시터 전극으로 이루어진 양극(120)과, 상술한 슈퍼커패시터 전극으로 이루어진 음극(110)과, 양극(120)과 음극(110) 사이에 배치되고 양극(120)과 음극(120)의 단락을 방지하기 위한 분리막(seperator)(160)을 금속캡(190) 내에 배치하고, 양극(120)와 음극(110) 사이에 전해질이 용해되어 있는 전해액을 주입한 후, 가스켓(192)으로 밀봉하여 제조할 수 있다. The coin-type supercapacitor is disposed between the positive electrode 120 made of the above-described supercapacitor electrode, the negative electrode 110 made of the above-described supercapacitor electrode, and the positive electrode 120 and the negative electrode 110, and the positive electrode 120 A separator 160 for preventing a short circuit between the and the cathode 120 is disposed in the metal cap 190, and an electrolyte solution in which the electrolyte is dissolved between the anode 120 and the cathode 110 is injected, It can be manufactured by sealing with a gasket 192.
상기 분리막은 폴리에틸렌 부직포, 폴리프로필렌 부직포, 폴리에스테르 부직포, 폴리아크릴로니트릴 다공성 격리막, 폴리(비닐리덴 플루오라이드) 헥사플루오로프로판 공중합체 다공성 격리막, 셀룰로스 다공성 격리막, 크라프트지 또는 레이온 섬유 등 전지 및 커패시터 분야에서 일반적으로 사용되는 분리막이라면 특별히 제한되지 않는다.The separator is a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, a polyester nonwoven fabric, a polyacrylonitrile porous separator, a poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, a cellulose porous separator, a kraft paper or rayon fiber, etc. If it is a separator generally used in the field, there is no particular limitation.
한편, 슈퍼커패시터에 충전되는 전해액은 프로필렌카보네이트(PC; propylene carbonate), 아세토니트릴(AN; acetonitrile) 및 술포란(SL; sulfolane) 중에서 선택된 1종 이상의 용매에 TEABF4(tetraethylammonium tetrafluoborate) 및 TEMABF4(triethylmethylammonium tetrafluoborate) 중에서 선택된 1종 이상의 염이 용해된 것을 사용할 수 있다. 또한, 상기 전해액은 EMIBF4(1-ethyl-3-methyl imidazolium tetrafluoborate) 및 EMITFSI(1-ethyl-3-methyl imidazolium bis(trifluoromethane sulfonyl)imide) 중에서 선택된 1종 이상의 이온성 액체를 포함하는 것일 수도 있다. On the other hand, the electrolyte to be charged in the supercapacitor is TEABF 4 (tetraethylammonium tetrafluoborate) and TEMABF 4 (tetraethylammonium tetrafluoborate) and TEMABF 4 ( triethylmethylammonium tetrafluoborate) in which at least one selected salt is dissolved may be used. In addition, the electrolyte may contain one or more ionic liquids selected from EMIBF 4 (1-ethyl-3-methyl imidazolium tetrafluoborate) and EMITFSI (1-ethyl-3-methyl imidazolium bis (trifluoromethane sulfonyl) imide). .
도 2 내지 도 5는 다른 예에 따른 슈퍼커패시터 전극의 사용 상태도로서, 슈퍼커패시터 전극이 적용된 권취형 슈퍼커패시터를 보여주는 도면이다. 도 2 내지 도 5를 참조하여 권취형 슈퍼커패시터를 제조하는 방법을 구체적으로 설명한다.2 to 5 are diagrams illustrating a state of use of a supercapacitor electrode according to another example, and are views illustrating a wound-type supercapacitor to which a supercapacitor electrode is applied. A method of manufacturing a wound-type supercapacitor will be described in detail with reference to FIGS. 2 to 5.
도 2에 도시된 바와 같이, 상술한 슈퍼커패시터 전극으로 이루어진 양극(120) 및 음극(110)에 각각 리드선(130, 140)을 부착한다. As shown in FIG. 2, lead wires 130 and 140 are attached to the anode 120 and cathode 110 made of the above-described supercapacitor electrode, respectively.
도 3에 도시된 바와 같이, 제1 분리막(150), 양극(120), 제2 분리막(160) 및 작업전극(음극(110))을 적층하고, 코일링(coling)하여 롤(roll) 형태의 권취소자(175)로 제작한 후, 롤(roll) 주위로 접착 테이프(170) 등으로 감아 롤 형태가 유지될 수 있게 한다. As shown in FIG. 3, a first separator 150, an anode 120, a second separator 160, and a working electrode (cathode 110) are stacked and coiled to form a roll. After being manufactured with the winding element 175 of, it is wound around a roll with an adhesive tape 170 or the like so that the roll shape can be maintained.
상기 양극(120)과 음극(110) 사이에 구비된 제2 분리막(160)은 양극(120)과 음극(110)의 단락을 방지하는 역할을 한다. 제1 및 제2 분리막(150,160)은 폴리에틸렌 부직포, 폴리프로필렌 부직포, 폴리에스테르 부직포, 폴리아크릴로니트릴 다공성 격리막, 폴리(비닐리덴 플루오라이드) 헥사플루오로프로판 공중합체 다공성 격리막, 셀룰로스 다공성 격리막, 크라프트지 또는 레이온 섬유 등 전지 및 커패시터 분야에서 일반적으로 사용되는 분리막이라면 특별히 제한되지 않는다.The second separator 160 provided between the anode 120 and the cathode 110 serves to prevent a short circuit between the anode 120 and the cathode 110. The first and second separators 150 and 160 are polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polyacrylonitrile porous separator, poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, cellulose porous separator, kraft paper. Alternatively, it is not particularly limited as long as it is a separator generally used in the field of batteries and capacitors such as rayon fibers.
도 4에 도시된 바와 같이, 롤(roll) 형태의 결과물에 실링 고무(sealing rubber)(180)를 장착하고, 금속캡(예컨대, 알루미늄 케이스(Al Case))(190)에 삽착시킨다. As shown in FIG. 4, a sealing rubber 180 is mounted on the resultant in the form of a roll, and a metal cap (eg, an aluminum case) 190 is inserted.
롤 형태의 권취소자(175)(양극(120)과 음극(110))가 함침되게 전해액을 주입하고, 밀봉한다. 상기 전해액은 프로필렌카보네이트(PC; propylene carbonate), 아세토니트릴(AN; acetonitrile) 및 술포란(SL; sulfolane) 중에서 선택된 1종 이상의 용매에 TEABF4(tetraethylammonium tetrafluoborate) 및 TEMABF4(triethylmethylammonium tetrafluoborate) 중에서 선택된 1종 이상의 염이 용해된 것을 사용할 수 있다. 또한, 상기 전해액은 EMIBF4(1-ethyl-3-methyl imidazolium tetrafluoborate) 및 EMITFSI(1-ethyl-3-methyl imidazolium bis(trifluoromethane sulfonyl)imide) 중에서 선택된 1종 이상의 이온성 액체를 포함하는 것일 수도 있다. The electrolyte is injected and sealed so that the roll-shaped winding element 175 (positive electrode 120 and negative electrode 110) is impregnated. The electrolyte is 1 selected from TEABF 4 (tetraethylammonium tetrafluoborate) and TEMABF 4 (triethylmethylammonium tetrafluoborate) in at least one solvent selected from propylene carbonate (PC; propylene carbonate), acetonitrile (AN; acetonitrile) and sulfolane (SL). It is possible to use those in which more than one species are dissolved. In addition, the electrolyte may contain one or more ionic liquids selected from EMIBF 4 (1-ethyl-3-methyl imidazolium tetrafluoborate) and EMITFSI (1-ethyl-3-methyl imidazolium bis (trifluoromethane sulfonyl) imide). .
이와 같이 제작된 권취형 슈퍼커패시터를 도 5에 개략적으로 나타내었다. The wound-type supercapacitor manufactured as described above is schematically shown in FIG. 5.
이하에서, 본 발명에 따른 실시예를 구체적으로 제시하며, 다음에 제시하는 실시예에 본 발명이 한정되는 것은 아니다. In the following, examples according to the present invention are specifically presented, and the present invention is not limited to the following examples.
<실시예 1><Example 1>
에탄올과 물이 1:1의 부피비로 혼합된 분산매 5g에 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate, 이하 'DMAEMA'라 함) 0.05g을 넣고 교반하여 DMAEMA 용액을 형성하였다. 0.05 g of 2-(dimethylamino)ethyl methacrylate (hereinafter referred to as'DMAEMA') was added to 5 g of a dispersion medium in which ethanol and water were mixed in a volume ratio of 1:1, followed by stirring to form a DMAEMA solution. .
상기 2-디메틸아미노에틸 메타아크릴레이트 용액에 불소 함유 바인더인 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene) 0.45g과 분산매인 증류수 15g을 첨가하고 고속 믹서기를 이용하여 2000rpm의 속도로 고속 교반하여 DMAEMA-바인더 혼합용액을 형성하였다. To the 2-dimethylaminoethyl methacrylate solution, 0.45 g of polytetrafluoroethylene (PTFE) as a fluorine-containing binder and 15 g of distilled water as a dispersion medium were added and stirred at a speed of 2000 rpm using a high-speed mixer to DMAEMA-binder. A mixed solution was formed.
전극활물질로 상용 활성탄인 YP50F(Kurary, Japan) 9g, 도전재인 슈퍼-P(super-P) 0.05g를 상기 DMAEMA-바인더 혼합용액에 넣은 후 고속 믹서기를 이용하여 반죽 상태의 전극용 조성물을 제조하였다. 9g of commercial activated carbon, YP50F (Kurary, Japan) as an electrode active material, and 0.05g of super-P (super-P) as a conductive material were added to the DMAEMA-binder mixed solution, and a paste-formed electrode composition was prepared using a high-speed mixer. .
반죽 상태의 전극용 조성물을 롤 프레스(roll press) 성형기에서 표면이 매끈해질 때까지 성형하여 전극용 조성물 시트를 형성하였다. 상기 롤 프레스 성형기는 상단의 롤과 하단의 롤을 포함하여 구비된 것으로, 상단의 롤과 하단의 롤 사이로 전극용 조성물을 통과시켜 성형하였다. 상단 롤과 하단의 롤 사이를 통과한 결과물을 반으로 접고 다시 상단의 롤과 하단의 롤 사이를 통과시키는 과정을 15회 반복하여 매끈한 표면을 갖는 전극용 조성물 시트를 얻을 수 있었다. 상기 롤 프레스 성형기의 압연을 통하여 전극 밀도를 향상시킬 수 있고 전극의 두께도 제어할 수 있다. 전극용 조성물에 인가되는 가압 압력은 10 ton/㎠ 정도 였고, 가열 온도는 60℃ 정도였다. The composition for electrodes in a kneaded state was molded in a roll press molding machine until the surface became smooth to form a sheet of the composition for electrodes. The roll press molding machine is provided including an upper roll and a lower roll, and is formed by passing the electrode composition between the upper and lower rolls. The result of passing between the upper and lower rolls was folded in half, and the process of passing between the upper and lower rolls was repeated 15 times to obtain a composition sheet for electrodes having a smooth surface. Through rolling of the roll press molding machine, the electrode density can be improved and the thickness of the electrode can be controlled. The pressing pressure applied to the electrode composition was about 10 ton/cm 2, and the heating temperature was about 60°C.
롤프레스 성형기를 이용하여 형성된 전극용 조성물 시트를 직경 12㎜의 크기로 펀칭하였다. 펀칭되어 형성된 결과물을 진공건조기에서 건조하였다. 상기 건조는 150℃의 온도에서 24시간 동안 수행하였다. The electrode composition sheet formed using a roll press molding machine was punched into a size of 12 mm in diameter. The resulting product formed by punching was dried in a vacuum dryer. The drying was performed at a temperature of 150° C. for 24 hours.
이렇게 제조된 전극 시트를 슈퍼커패시터 전극으로 사용하였다.The electrode sheet thus prepared was used as a supercapacitor electrode.
제조된 슈퍼커패시터 전극을 양극과 음극으로 사용하여 직경 20㎜, 높이 3.2㎜를 갖는 코인셀 형태의 슈퍼커패시터를 제조하였다. 이때, 코인셀을 제작함에 있어 전해액은 프로필렌 카보네이트(propylene carbonate; PC) 용매에 1M의 TEABF4로가 함유된 것을 사용하였으며, 분리막은 TF4035(일본 NKK사 제품)을 사용하였다. Using the prepared supercapacitor electrode as an anode and a cathode, a coin cell type supercapacitor having a diameter of 20 mm and a height of 3.2 mm was manufactured. At this time, in manufacturing the coin cell, an electrolyte containing 1M of TEABF 4 in a propylene carbonate (PC) solvent was used, and TF4035 (manufactured by NKK, Japan) was used as the separator.
상기 실시예 1의 특성을 보다 용이하게 파악할 수 있도록 비교예를 제시하며, 아래의 비교예는 단순히 이해를 돕기 위하여 제시하는 것으로 본 발명의 선행기술이 아니다.A comparative example is presented so that the characteristics of Example 1 can be more easily grasped, and the comparative examples below are presented merely to aid understanding and are not prior art of the present invention.
<비교예><Comparative Example>
폴리테트라플루오로에틸렌(polytetrafluoroethylene; PTFE) 0.45g을 분산매인 증류수 20g에 첨가하고 고속 믹서기를 이용하여 2000rpm의 속도로 고속 교반하여 바인더 용액을 형성하였다. 0.45 g of polytetrafluoroethylene (PTFE) was added to 20 g of distilled water as a dispersion medium, and stirred at a high speed of 2000 rpm using a high-speed mixer to form a binder solution.
전극활물질로 상용 활성탄인 YP50F (Kurary, Japan) 9g, 도전재인 슈퍼-P(super-P) 0.05g를 상기 바인더 용액에 넣은 후 고속 믹서기를 이용하여 반죽 상태의 전극용 조성물을 제조하였다. 9 g of YP50F (Kurary, Japan) commercially available as an electrode active material, and 0.05 g of super-P (super-P) as a conductive material were added to the binder solution, and then a paste-like electrode composition was prepared using a high-speed mixer.
반죽 상태의 전극용 조성물을 롤 프레스(roll press) 성형기에서 표면이 매끈해질 때까지 성형하여 전극용 조성물 시트를 형성하였다. 상기 롤 프레스 성형기는 상단의 롤과 하단의 롤을 포함하여 구비된 것으로, 상단의 롤과 하단의 롤 사이로 전극용 조성물을 통과시켜 성형하였다. 상단 롤과 하단의 롤 사이를 통과한 결과물을 반으로 접고 다시 상단의 롤과 하단의 롤 사이를 통과시키는 과정을 15회 반복하여 매끈한 표면을 갖는 전극용 조성물 시트를 얻을 수 있었다. 상기 롤 프레스 성형기의 압연을 통하여 전극 밀도를 향상시킬 수 있고 전극의 두께도 제어할 수 있다. 전극용 조성물에 인가되는 가압 압력은 10 ton/㎠ 정도 였고, 가열 온도는 60℃ 정도였다. The composition for electrodes in a kneaded state was molded in a roll press molding machine until the surface became smooth to form a sheet of the composition for electrodes. The roll press molding machine is provided including an upper roll and a lower roll, and is formed by passing the electrode composition between the upper and lower rolls. The result of passing between the upper and lower rolls was folded in half, and the process of passing between the upper and lower rolls was repeated 15 times to obtain a composition sheet for electrodes having a smooth surface. Through rolling of the roll press molding machine, the electrode density can be improved and the thickness of the electrode can be controlled. The pressing pressure applied to the electrode composition was about 10 ton/cm 2, and the heating temperature was about 60°C.
롤프레스 성형기를 이용하여 형성된 전극용 조성물 시트를 직경 12㎜의 크기로 펀칭하였다. 펀칭되어 형성된 결과물을 진공건조기에서 건조하였다. 상기 건조는 150℃의 온도에서 24시간 동안 수행하였다. The electrode composition sheet formed using a roll press molding machine was punched into a size of 12 mm in diameter. The resulting product formed by punching was dried in a vacuum dryer. The drying was performed at a temperature of 150° C. for 24 hours.
이렇게 제조된 전극 시트를 슈퍼커패시터 전극으로 사용하였다.The electrode sheet thus prepared was used as a supercapacitor electrode.
제조된 슈퍼커패시터 전극을 양극과 음극으로 사용하여 직경 20㎜, 높이 3.2㎜를 갖는 코인셀 형태의 슈퍼커패시터를 제조하였다. 이때, 코인셀을 제작함에 있어 전해액은 프로필렌 카보네이트(propylene carbonate; PC) 용매에 1M의 TEABF4로가 함유된 것을 사용하였으며, 분리막은 TF4035(일본 NKK사 제품)을 사용하였다. Using the prepared supercapacitor electrode as an anode and a cathode, a coin cell type supercapacitor having a diameter of 20 mm and a height of 3.2 mm was manufactured. At this time, in manufacturing the coin cell, an electrolyte containing 1M of TEABF 4 in a propylene carbonate (PC) solvent was used, and TF4035 (manufactured by NKK, Japan) was used as the separator.
아래의 표 1에 실시예 1에 따라 제조된 전극용 조성물과 비교예에 따라 제조된 전극용 조성물의 성형성과 혼합시간을 나타내었다. 또한, 실시예 1에 따라 제조된 슈퍼커패시터 전극의 전극밀도와 비교예에 따라 제조된 슈퍼커패시터 전극의 전극밀도를 측정하여 아래의 표 1에 나타내었다. 또한, 실시예 1에 따라 제조된 슈퍼커패시터의 비축전용량과 비교예에 따라 제조된 슈퍼커패시터의 비축전용량을 측정하여 아래의 표 1에 나타내었다.Table 1 below shows the moldability and mixing time of the electrode composition prepared according to Example 1 and the electrode composition prepared according to the comparative example. In addition, the electrode density of the supercapacitor electrode manufactured according to Example 1 and the electrode density of the supercapacitor electrode manufactured according to the comparative example were measured, and are shown in Table 1 below. In addition, the specific storage capacity of the supercapacitor manufactured according to Example 1 and the specific storage capacity of the supercapacitor manufactured according to the comparative example were measured and shown in Table 1 below.
성형성Formability 혼합시간(분)Mixing time (minutes) 전극밀도(g/cc)Electrode density (g/cc) 비축전용량(F/cc)Reserve capacity (F/cc)
비교예Comparative example 보통usually 1515 0.500.50 14.814.8
실시예 1Example 1 매우 좋음Very good 1010 0.650.65 16.516.5
실시예 1에 따라 제조된 슈퍼커패시터와 비교예에 따라 제조된 슈퍼커패시터의 전기화학 분석 결과를 도 6에 나타내었다.표 1 및 도 6을 참조하면, 실시예 1에 따라 제조된 전극용 조성물은 비교예에 따라 제조된 전극용 조성물에 비하여 성형성이 우수한 것으로 나타났다. The electrochemical analysis results of the supercapacitor prepared according to Example 1 and the supercapacitor prepared according to Comparative Example are shown in Fig. 6. Referring to Table 1 and Fig. 6, the electrode composition prepared according to Example 1 is It was found that the moldability was excellent compared to the electrode composition prepared according to the comparative example.
실시예 1에 따라 제조된 슈퍼커패시터 전극은 비교예에 따라 제조된 슈퍼커패시터 전극에 비하여 전극밀도가 높은 것으로 나타났다. The supercapacitor electrode manufactured according to Example 1 was found to have a higher electrode density than the supercapacitor electrode manufactured according to the comparative example.
실시예 1에 따라 제조된 슈퍼커패시터는 비교예에 따라 제조된 슈퍼커패시터에 비하여 비축전용량이 우수한 것으로 나타났다. The supercapacitor manufactured according to Example 1 was found to have superior storage capacity compared to the supercapacitor manufactured according to the comparative example.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.In the above, a preferred embodiment of the present invention has been described in detail, but the present invention is not limited to the above embodiment, and various modifications may be made by those of ordinary skill in the art.
[부호의 설명][Explanation of code]
110: 음극 120: 양극110: cathode 120: anode
130: 제1 리드선 140: 제2 리드선130: first lead wire 140: second lead wire
150: 제1 분리막 160: 제2 분리막150: first separation membrane 160: second separation membrane
170: 접착 테이프 175: 권취소자170: adhesive tape 175: winding element
180: 실링 고무 190: 금속캡180: sealing rubber 190: metal cap
192: 가스켓192: gasket
본 발명에 의하면, 성형성을 향상시킬 수 있고, 전극의 내구성을 개선할 수 있으며, 전극밀도를 향상시킬 수 있고, 산업상 이용가능성이 있다.According to the present invention, it is possible to improve the moldability, the durability of the electrode can be improved, the electrode density can be improved, and there is industrial applicability.

Claims (10)

  1. 전극활물질; Electrode active material;
    상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부; 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material;
    상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부; 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material;
    상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부; 및0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material; And
    상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 포함하며, It contains 100 to 300 parts by weight of a dispersion medium based on 100 parts by weight of the electrode active material,
    상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함하는 것을 특징으로 하는 슈퍼커패시터 전극용 조성물.The additive composition for a supercapacitor electrode, characterized in that it comprises 2-dimethylaminoethyl methacrylate (2-(dimethylamino)ethyl methacrylate).
  2. 제1항에 있어서, 상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함하는 것을 특징으로 하는 슈퍼커패시터 전극용 조성물.The method of claim 1, wherein the composition for a supercapacitor electrode is 2-[(3-acrylamidopropyl dimethylammonio acetate) based on 100 parts by weight of the electrode active material. A composition for a supercapacitor electrode, characterized in that it further comprises 0.01 to 2 parts by weight.
  3. 제1항에 있어서, 상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함하는 것을 특징으로 하는 슈퍼커패시터 전극용 조성물.The composition for a supercapacitor electrode according to claim 1, wherein the fluorine-containing binder comprises polytetrafluoroethylene (PTFE).
  4. 제1항에 있어서, 상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 슈퍼커패시터 전극용 조성물.The method of claim 1, wherein the electrode active material has a specific surface area of 1500 ~ 3000 m 2 / g of activated carbon having a specific surface area of 100 ~ 1000 m 2 / g of graphene, carbon nanotubes (CNT; carbon nanotube) and the carbon nanofibers A composition for a supercapacitor electrode comprising at least one material selected from the group consisting of (carbon nanofiber).
  5. 전극활물질, 상기 전극활물질 100중량부에 대하여 도전재 0.1∼20 중량부, 상기 전극활물질 100중량부에 대하여 불소 함유 바인더 1∼20 중량부, 상기 전극활물질 100중량부에 대하여 첨가제 0.01∼2 중량부 및 상기 전극활물질 100중량부에 대하여 분산매 100∼300 중량부를 혼합하여 슈퍼커패시터 전극용 조성물을 제조하는 단계; Electrode active material, 0.1 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 1 to 20 parts by weight of a fluorine-containing binder based on 100 parts by weight of the electrode active material, 0.01 to 2 parts by weight of an additive based on 100 parts by weight of the electrode active material And preparing a composition for a supercapacitor electrode by mixing 100 to 300 parts by weight of a dispersion medium with respect to 100 parts by weight of the electrode active material.
    상기 슈퍼커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 금속 호일이나 집전체에 코팅하여 전극 형태로 형성하거나, 상기 슈퍼커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일이나 집전체에 붙여서 전극 형태로 형성하는 단계; 및The composition for supercapacitor electrodes is pressed to form an electrode, or the composition for supercapacitor electrodes is coated on a metal foil or a current collector to form an electrode, or the composition for supercapacitor electrodes is pushed with a roller to form a sheet. Attaching to a metal foil or a current collector to form an electrode shape; And
    전극 형태로 형성된 결과물을 건조하여 슈퍼커패시터 전극을 형성하는 단계를 포함하며,And forming a supercapacitor electrode by drying the resultant product formed in the form of an electrode,
    상기 첨가제는 2-디메틸아미노에틸 메타아크릴레이트(2-(dimethylamino)ethyl methacrylate)를 포함하는 것을 특징으로 하는 슈퍼커패시터 전극의 제조방법.The additive is a method of manufacturing a supercapacitor electrode, characterized in that it contains 2-(dimethylamino)ethyl methacrylate.
  6. 제5항에 있어서, 상기 슈퍼커패시터 전극용 조성물은 상기 전극활물질 100중량부에 대하여 2-[(3-아크릴마이도프로필 디메틸암모니오 아세테이트(CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) 0.01∼2 중량부를 더 포함하는 것을 특징으로 하는 슈퍼커패시터 전극의 제조방법.The method of claim 5, wherein the composition for a supercapacitor electrode is 2-[(3-acrylamidopropyl dimethylammonio acetate) based on 100 parts by weight of the electrode active material (CBAA; 2-[(3-acrylamidopropyl) dimethylammonio] acetate) Method of manufacturing a supercapacitor electrode, characterized in that it further comprises 0.01 to 2 parts by weight.
  7. 제5항에 있어서, 상기 불소 함유 바인더는 폴리테트라플루오로에틸렌(PTFE; polytetrafluoroethylene)을 포함하는 것을 특징으로 하는 슈퍼커패시터 전극의 제조방법.The method of claim 5, wherein the fluorine-containing binder comprises polytetrafluoroethylene (PTFE).
  8. 제5항에 있어서, 상기 전극활물질은 비표면적이 1500 ~ 3000 m2/g인 활성탄, 비표면적이 100 ~ 1000 m2/g인 그래핀, 카본나노튜브(CNT; carbon nanotube) 및 카본나노파이버(carbon nanofiber)로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 슈퍼커패시터 전극의 제조방법.The method of claim 5, wherein the electrode active material has a specific surface area of 1500 ~ 3000 m 2 / g of activated carbon having a specific surface area of 100 ~ 1000 m 2 / g of graphene, carbon nanotubes (CNT; carbon nanotube) and the carbon nanofibers A method of manufacturing a supercapacitor electrode, comprising at least one material selected from the group consisting of (carbon nanofiber).
  9. 제5항에 기재된 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극; An anode made of a supercapacitor electrode manufactured by the method of claim 5;
    제5항에 기재된 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극; A negative electrode made of a supercapacitor electrode manufactured by the method of claim 5;
    상기 양극과 음극 사이에 배치되고 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막; A separator disposed between the anode and the cathode and configured to prevent a short circuit between the anode and the cathode;
    상기 양극, 상기 분리막 및 상기 음극이 내부에 배치되고 전해액이 주입된 금속 캡; 및A metal cap in which the anode, the separator, and the cathode are disposed and an electrolyte is injected; And
    상기 금속 캡을 밀봉하기 위한 가스켓을 포함하는 슈퍼커패시터.Supercapacitor comprising a gasket for sealing the metal cap.
  10. 단락을 방지하기 위한 제1 분리막과, 제5항에 기재된 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 양극과, 상기 양극과 음극의 단락을 방지하기 위한 제2 분리막과, 제5항에 기재된 방법으로 제조된 슈퍼커패시터 전극으로 이루어진 음극이, 순차적으로 적층되어 코일링된 롤 형태를 이루는 권취소자; A first separator for preventing a short circuit, an anode comprising a supercapacitor electrode manufactured by the method described in claim 5, a second separator for preventing a short circuit between the anode and the cathode, and manufactured by the method described in claim 5 A winding element in which a cathode made of a supercapacitor electrode is sequentially stacked to form a coiled roll;
    상기 음극에 연결된 제1 리드선;A first lead wire connected to the negative electrode;
    상기 양극에 연결된 제2 리드선; A second lead wire connected to the positive electrode;
    상기 권취소자를 수용하는 금속캡; 및A metal cap accommodating the winding element; And
    상기 금속 캡을 밀봉하기 위한 실링 고무를 포함하며, It includes a sealing rubber for sealing the metal cap,
    상기 권취소자는 리튬염이 용해되어 있는 전해액에 함침되어 있는 것을 특징으로 하는 슈퍼커패시터.The winding element is a supercapacitor, characterized in that impregnated with an electrolytic solution in which a lithium salt is dissolved.
PCT/KR2020/005542 2019-10-31 2020-04-27 Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method WO2021085767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0137161 2019-10-31
KR1020190137161A KR102188242B1 (en) 2019-10-31 2019-10-31 Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method

Publications (1)

Publication Number Publication Date
WO2021085767A1 true WO2021085767A1 (en) 2021-05-06

Family

ID=73778983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005542 WO2021085767A1 (en) 2019-10-31 2020-04-27 Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method

Country Status (2)

Country Link
KR (1) KR102188242B1 (en)
WO (1) WO2021085767A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114604863A (en) * 2022-03-31 2022-06-10 哈尔滨摆渡新材料有限公司 Graphene preparation method and graphene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028423A (en) * 2011-09-09 2013-03-19 울산대학교 산학협력단 Electrode for supercapacitor using graphene/metal oxide nanocomposite
KR101486429B1 (en) * 2013-12-20 2015-01-26 한국세라믹기술원 Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method
KR101635763B1 (en) * 2015-08-12 2016-07-04 한국세라믹기술원 Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR20180019812A (en) * 2016-08-17 2018-02-27 한국세라믹기술원 Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR20180110335A (en) * 2017-03-29 2018-10-10 한국세라믹기술원 Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137719B1 (en) 2010-12-07 2012-04-24 한국세라믹기술원 Manufacturing method of active carbon electrode for supercapacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130028423A (en) * 2011-09-09 2013-03-19 울산대학교 산학협력단 Electrode for supercapacitor using graphene/metal oxide nanocomposite
KR101486429B1 (en) * 2013-12-20 2015-01-26 한국세라믹기술원 Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method
KR101635763B1 (en) * 2015-08-12 2016-07-04 한국세라믹기술원 Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR20180019812A (en) * 2016-08-17 2018-02-27 한국세라믹기술원 Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR20180110335A (en) * 2017-03-29 2018-10-10 한국세라믹기술원 Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method

Also Published As

Publication number Publication date
KR102188242B1 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP6374117B2 (en) Electrochemical device including cellulose nanofiber separation membrane and method for producing the same
WO2021091323A1 (en) Two-dimensional ni-organic framework/rgo composite and electrode for secondary battery or super-capacitor comprising same
KR101793040B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode using the electrode active material and ultracapacitorusing the electrode active material
KR101486429B1 (en) Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method
US20020089807A1 (en) Polymer electrochemical capacitors
KR101635763B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR101166696B1 (en) Supercapacitor and manufacturing method of the same
WO2021085767A1 (en) Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method
KR102081616B1 (en) Supercapacitor having excellent stability for high voltage and method for manufacturing the same
KR100358107B1 (en) Redox supercapacitor and the preparation thereof
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR100434827B1 (en) Composite Electrode for Supercapacitor with Polypyrrole and Method of Fabrication the Same
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
WO2016153284A1 (en) Electrode material for electronic device and electronic device comprising the same
WO2011132952A2 (en) Electrochemical device electrode, method for manufacturing same, and electrochemical device
KR101494622B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite
KR102013179B1 (en) Manufacturing method of electrode active material for supercapacitor, manufacturing method of supercapacitor electrode and manufacturing method of supercapacitor
KR101936044B1 (en) Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode
KR102172605B1 (en) Electrolyte of supercapacitor, high voltage supercapacitor and manufacturing method of the high voltage supercapacitor using the electrolyte
KR102347581B1 (en) Electrolyte of supercapacitor, high voltage supercapacitor and manufacturing method of the high voltage supercapacitor using the electrolyte
KR100451133B1 (en) Supercapacitor with Composite Electrode Comprising Polypyrrole
KR102172610B1 (en) Manufacturing method of electrode active material for supercapacitor, manufacturing method of supercapacitor electrode for high power and supercapacitor for high power
KR102343771B1 (en) Electrolyte of supercapacitor, high voltage supercapacitor using the same and method of manufacturing thereof
KR101409178B1 (en) Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20883365

Country of ref document: EP

Kind code of ref document: A1