WO2014162991A1 - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
WO2014162991A1
WO2014162991A1 PCT/JP2014/059032 JP2014059032W WO2014162991A1 WO 2014162991 A1 WO2014162991 A1 WO 2014162991A1 JP 2014059032 W JP2014059032 W JP 2014059032W WO 2014162991 A1 WO2014162991 A1 WO 2014162991A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens group
distance measuring
imaging optical
measuring device
Prior art date
Application number
PCT/JP2014/059032
Other languages
English (en)
French (fr)
Inventor
新井 聡
由美 中川
Original Assignee
株式会社ニコン・トリンブル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・トリンブル filed Critical 株式会社ニコン・トリンブル
Publication of WO2014162991A1 publication Critical patent/WO2014162991A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Definitions

  • the present invention relates to a distance measuring device.
  • the measurement light output from a light source such as a laser diode is reflected or scattered by the target object, and the light receiving element receives the return light.
  • the target is based on the time from when the measurement light is emitted until the return light is received.
  • a distance measuring device for measuring a distance to an object is known. Since such a distance measuring device has a narrow field of view, it is difficult to capture the target object within the field of view of the distance measuring device, which takes time. Therefore, a distance measuring device provided with a wide-angle optical system with a wide field of view separately from the telephoto optical system has been proposed (see Patent Document 1).
  • the parallax between the telephoto optical system and the wide-angle optical system since the telephoto optical system and the wide-angle optical system are provided separately, the parallax between the telephoto optical system and the wide-angle optical system, particularly when measuring the distance to the target object close to the distance measuring device. Will become bigger. If the parallax between the telephoto optical system and the wide-angle optical system is large, the target object may not be captured within the field of view of the telephoto optical system even if the target object is captured within the field of view of the wide-angle optical system. It was inconvenient to misrecognize the target object or to readjust the field of view.
  • a distance measuring device includes a transmission optical system that irradiates measurement light onto a target object, a reception optical system that receives reception light reflected or scattered by the target object, and a target.
  • An imaging optical system that forms an image of an object and an imaging device that captures an image of a target object imaged by the imaging optical system are provided, and the imaging optical system has a zooming function.
  • the size of the imaging device is Is
  • the size of one pixel of the imaging device is p
  • the maximum half angle of view of the imaging optical system is When ⁇ is satisfied, it is preferable that the following conditional expression (1) is satisfied.
  • the variable magnification optical system includes a first lens group having negative refractive power arranged in order from the object side, and positive refractive power.
  • the second lens group has a focal length f1
  • the second lens group has a focal length f2
  • the magnification of the zoom optical system at the wide angle end is ⁇ w
  • the zoom optical system at the telephoto end It is preferable to satisfy the following conditional expressions (2) and (3) where ⁇ t is ⁇ t.
  • the imaging optical system has a first lens group having a positive refractive power and a negative refractive power arranged in order from the object side.
  • the second lens group includes a third lens group having a positive refractive power and a fourth lens group having a negative refractive power, and the second lens is used for zooming from the wide-angle end state to the telephoto end state.
  • the group and the third lens group move along the optical axis direction, and a reflecting member for guiding received light to the receiving optical system is disposed between the third lens group and the fourth lens group.
  • the zoom ratio of the imaging optical system is 10 times or more
  • the focal length of the first lens group is f11
  • the focal point of the second lens group is 10 times or more
  • the distance is f12
  • the combined focal length of the first lens group, the second lens group, and the third lens group in the telephoto end state of the imaging optical system is f123t , and the imaging in the telephoto end state of the imaging optical system is performed. If the focal length of the entire optical system is ft, it is preferable to satisfy the following conditional expressions (5) and (6).
  • the size of the imaging element is Is
  • the size of one pixel of the imaging element is p
  • the imaging optical system When the maximum half angle of view is ⁇ , it is preferable that the following conditional expression (8) is satisfied.
  • the present invention there is no parallax between the telephoto state and the wide-angle state, and the user can observe the image of the target object.
  • FIG. 6 is an aberration diagram of the optical system in front of the zoom optical system in the imaging optical system according to the first example according to the first embodiment. It is an aberration diagram of the image pickup optical system according to the first example according to the first embodiment. It is a figure explaining the structure of the ranging apparatus by the 2nd Example which concerns on 1st Embodiment. It is an aberration diagram of the image pickup optical system according to the second example according to the first embodiment. It is a figure which illustrates roughly the structure of the ranging device which concerns on 2nd Embodiment. It is a figure explaining the mode of zooming of the imaging optical system by 2nd Embodiment.
  • FIG. 15 is a diagram for explaining a state in which a target object (a striped object) is observed by a conventional distance measuring device.
  • a target object a striped object
  • FIG. 15 shows that the display center positions of the display screen using the wide-angle optical system and the display screen using the telephoto optical system are shifted.
  • the target object may not be captured in the field of view of the telephoto optical system.
  • the target object may not be captured in the field of view of the telephoto optical system.
  • there is a possibility that an object different from the target object originally aimed is collimated and measured.
  • the parallax can be reduced by bringing the optical axes of the telephoto optical system and the wide-angle optical system close to each other, this has physical limitations, and it is difficult to completely eliminate the parallax. Further, even if each image of the telephoto optical system and the wide-angle optical system is displayed on the display device, since each optical system has a single focal point, the displayed image is either a telephoto or a wide-angle image, and is not necessarily a user. May not be the desired magnification.
  • the distance measuring apparatus provides a zooming function to the imaging optical system so that there is no parallax between the telephoto state and the wide-angle state, and the user can observe the target object image. It is comprised so that it can be made to.
  • the distance measuring apparatus of the present embodiment will be described in detail.
  • FIG. 1 is a diagram illustrating the configuration of a distance measuring device 1 according to the present embodiment. 1 shows the telephoto end state, and the lower side of FIG. 1 shows the wide-angle end state.
  • the distance measuring apparatus 1 includes an imaging optical system 2 for photographing a target object (not shown), a transmission optical system 3 for irradiating the target object with measurement light, and the measurement light reflected or scattered by the target object.
  • Receiving optical system 4 for receiving the return light (received light).
  • the imaging optical system 2, the transmission optical system 3, and the reception optical system 4 are configured as a coaxial optical system that shares the objective optical system 5.
  • the imaging optical system 2 includes an objective optical system 5, a dichroic prism 13, a focusing lens 6, a variable magnification optical system 20, and an imaging element 7 arranged in order from the target object side.
  • the light from the target object that has passed through the objective optical system 5 passes through the dichroic prism 13, the focusing lens 6, and the variable magnification optical system 20 in order, and forms an image on the imaging surface of the imaging device 7.
  • the transmission optical system 3 includes a light source 12, a collimator lens 11, a reflecting mirror 10, and an objective optical system 5 in this order from the measurement light emission side.
  • the reflecting mirror 10 is disposed in the optical path between the objective optical system 5 and the focusing lens 6.
  • the collimator lens 11 and the light source 12 are disposed on the reflected light path of the reflecting mirror 10.
  • As the light source 12 an LED, a laser diode, or the like is used.
  • the measurement light emitted from the light source 12 is preferably infrared light, but is not limited thereto, and may be, for example, red light having a wavelength of around 650 (nm).
  • the receiving optical system 4 is composed of an objective optical system 5, a dichroic prism 13, and a light receiving element 14.
  • the dichroic prism 13 is arranged as a light splitting element in the optical path between the reflecting mirror 10 and the focusing lens 6.
  • the light receiving element 14 is disposed near the focal position of the objective optical system 5 of the dichroic prism 13.
  • the measurement light emitted from the light source 12 passes through the collimator lens 11, is reflected by the reflecting mirror 10, and is irradiated onto the target object as a substantially parallel light beam via the objective optical system 5.
  • the measurement light scattered by the target object or reflected by the corner cube arranged in the vicinity of the target object passes again through the objective optical system 5 through the periphery of the reflecting mirror 10 as received light.
  • the received light is reflected by the reflective coating portion 15 in the dichroic prism 13, further travels through the dichroic prism 13, is emitted, and enters the light receiving element 14.
  • a control unit (not shown) of the distance measuring device 1 calculates the distance from the distance measuring device 1 to the target object based on the time difference between the timing when the measurement light is emitted from the light source 12 and the timing when the received light is received by the light receiving element 14. To do. In this way, the user can measure the distance to the target object using the distance measuring device 1.
  • the measurement light from the light source 12 is red light
  • the measurement position on the target object can be observed as a red spot image by thinning the measurement light beam and irradiating the target object.
  • the distance measuring device When the imaging optical system of the distance measuring device constitutes an ophthalmic optical system (afocal optical system) including an eyepiece optical system, the distance measuring device is considered in view of eye relief, telescope magnification, pupil diameter, optical performance, etc. The diameter of this is as large as 30 to 60 mm. However, in the present embodiment, it is also assumed that the inexpensive distance measuring apparatus 1 is provided by diverting the objective optical system 5 used in the visual optical system as the imaging optical system 2.
  • the variable magnification optical system 20 is a so-called two-group zoom lens composed of a first lens group G1 and a second lens group G2 arranged in order from the target object side.
  • aberrations are corrected to some extent up to the optical system (objective optical system 5, dichroic prism 13, and focusing lens 6) in front of the variable magnification optical system 20 in the imaging optical system 2. Therefore, the optical performance up to the optical system in front of the variable magnification optical system 20 may be maintained at the telephoto end of the variable magnification optical system 20. Therefore, at the telephoto end, it is desirable that the light beam passing through the zoom optical system 20 passes as close as possible to the optical axis and does not cause a change in optical performance.
  • the first lens group G1 is configured to have a negative refractive power
  • the second lens group G2 is configured to have a positive refractive power.
  • the first lens group G1 and the second lens group G2 are arranged along the optical axis so that the distance between the first lens group G1 and the second lens group G2 is narrowed. Moving. On the other hand, when zooming from the telephoto end to the wide-angle end, the first lens group G1 and the second lens group G2 are arranged on the optical axis so that the distance between the first lens group G1 and the second lens group G2 is widened. Move along.
  • the zoom optical system 20 may be a zoom lens having a three-group configuration or a zoom lens having a four-group configuration. In view of cost, a zoom lens having a two-group configuration is desirable.
  • variable magnification optical system 20 is disposed closer to the image sensor 7 than the reflecting mirror 10 and the dichroic prism 13.
  • the zooming function can be realized without affecting the transmission optical system 3 and the reception optical system 4.
  • an existing optical system can be used as the transmission optical system 3 and the reception optical system 4.
  • the image of the target object is formed on the imaging surface of the image sensor 7 by the imaging optical system 2. Therefore, the minimum angle at which the angle can be measured on the object side varies depending on the pixel pitch of the image sensor 7. Specifically, the minimum angle ⁇ 1 [rad] that can be measured and changes depending on the pixel pitch of the image sensor 7 is expressed by the following equation (1).
  • p [mm] is the size (pixel pitch) of one pixel of the image sensor 7
  • f [mm] is the focal length of the imaging optical system 2.
  • f [mm] is the focal length of the imaging optical system 2 when performing angle measurement, and may be any focal length from the wide-angle end to the telephoto end. That is, the angle measurement may be performed in any state from the wide-angle end to the telephoto end in the imaging optical system 2.
  • the minimum angle at which the angle can be measured also varies depending on the resolution of the imaging optical system 2.
  • the minimum angle ⁇ 2 [seconds] that can be measured and changes depending on the resolution of the imaging optical system 2 is expressed by the following equation (2).
  • D [mm] is the entrance pupil diameter of the imaging optical system 2.
  • the focal length f [mm] of the imaging optical system 2 is represented by the following formula (4).
  • Equation (5) the entrance pupil diameter D [mm] of the imaging optical system 2 is expressed by Equation (5) below.
  • the entrance pupil of the image pickup optical system 2 The diameter D [mm] desirably satisfies the following conditional expression (6).
  • conditional expression (7) is obtained by dividing conditional expression (6) by 20. That is, it is desirable that the imaging optical system 2 satisfies the conditional expression (7).
  • Equation (8) ⁇ t is the maximum half field angle at the telephoto end of the imaging optical system 2.
  • conditional expression (9) is the magnification of the variable magnification optical system 20 at the telephoto end
  • ⁇ w is the magnification of the variable magnification optical system 20 at the wide angle end
  • conditional expression (10) f1 is the focal length of the first lens group G1 in the variable magnification optical system 20, and f2 is the focal length of the second lens group G2 in the variable magnification optical system 20. 1.1 ⁇
  • conditional expression (13) is satisfied.
  • WTL is the total optical length at the wide-angle end of the variable magnification optical system 20 (the distance from the lens surface closest to the object side of the variable magnification optical system 20 to the image sensor 7)
  • TL is the imaging optical. This is the optical total length of the system 2 (the distance from the lens surface closest to the object side of the imaging optical system 2 to the imaging device 7). 0 ⁇ WTL / TL ⁇ 0.5 (13)
  • FIG. 1 is a diagram for explaining the configuration of a distance measuring device 1 according to the first embodiment.
  • the first lens group G1 of the variable magnification optical system 20 is composed of one concave lens L11
  • the second lens group G2 is composed of one convex lens L21.
  • the aperture stop is disposed in front of the first surface.
  • Tables 1 to 3 show values of specifications of the imaging optical system 2 according to the first example.
  • the description of the reflecting mirror 10 is omitted.
  • the surface number is the order of the optical surfaces counted from the object side
  • r is the radius of curvature of each optical surface
  • d is the surface spacing of the optical surfaces
  • the description of the refractive index nd of air 1.000 is omitted.
  • (variable) is a variable surface interval.
  • di indicates a variable surface interval at the surface number i.
  • ⁇ t represents the maximum half angle of view at the telephoto end of the imaging optical system 2
  • ⁇ w represents the maximum half angle of view at the telephoto end of the imaging optical system 2.
  • mm is used as a unit of focal length, radius of curvature, and other lengths listed in all the following specification values.
  • the optical system is not limited to this because the same optical performance can be obtained even when proportionally enlarged or reduced.
  • the unit is not limited to “mm”, and other appropriate units may be used. The above symbols are the same in the following other embodiments, and the description thereof is omitted.
  • the imaging optical system 2 according to the first example satisfies the conditional expressions (7) to (14).
  • FIG. 2 shows spherical aberration, astigmatism in the optical system (objective optical system 5, dichroic prism 13, and focusing lens 6) in front of the variable magnification optical system 20 of the imaging optical system 2 according to the first embodiment. It is a figure which shows a distortion aberration and a lateral aberration. As can be seen from FIG. 2, in the optical system in front of the variable magnification optical system 20, various aberrations are corrected and good optical performance is ensured.
  • FIG. 3 is a diagram showing spherical aberration, astigmatism, distortion and lateral aberration at the telephoto end and the wide-angle end of the imaging optical system 2 according to the first embodiment.
  • the variable magnification optical system 20 maintains good optical performance up to the optical system before this, and the imaging optical system 2 has both the telephoto end and the wide angle end. It can be seen that various aberrations are corrected and good optical performance is ensured.
  • FIG. 4 is a diagram for explaining the configuration of the distance measuring apparatus 1 according to the second embodiment.
  • the first lens group G1 of the variable magnification optical system 20 includes, in order from the object side, a cemented lens of a concave lens L12 and a convex lens L13, and a convex lens L14.
  • the second lens group G2 includes two convex lenses L22 and L23.
  • the aperture stop is disposed in front of the first surface.
  • Tables 4 to 6 show values of specifications of the imaging optical system 2 according to the second example. In Table 4, the description of the reflecting mirror 10 is omitted.
  • the imaging optical system 2 according to the second example satisfies the conditional expressions (7) to (14).
  • FIG. 5 is a diagram showing spherical aberration, astigmatism, distortion and lateral aberration at the telephoto end and wide-angle end of the image pickup optical system 2 according to the second embodiment.
  • various aberrations are corrected at both the telephoto end and the wide-angle end of the imaging optical system 2, and good optical performance is ensured.
  • the distance measuring device 1 includes a transmission optical system 3 that irradiates measurement light onto a target object, a reception optical system 4 that receives reception light that is reflected or scattered by the target object, and an image of the target object.
  • An imaging optical system 2 that forms an image, and an imaging element 7 that captures an image of a target object imaged by the imaging optical system 2.
  • the imaging optical system 2, the transmission optical system 3, and the reception optical system 4 include:
  • the objective optical system 5 directed to the target object is shared coaxially, and the imaging optical system 2 has a zooming function. Thereby, the user can observe the image of the target object without parallax between the telephoto state and the wide-angle state.
  • the distance measuring device 1 is disposed in the imaging optical system 2 and is disposed in the imaging optical system 2 and the reflecting mirror 10 that guides the measurement light emitted from the transmission optical system 3 to the target object.
  • the imaging optical system 2 further includes a variable magnification optical system 20 arranged on the image side of the reflecting mirror 10 and the dichroic prism 13. As a result, the zooming function can be realized without affecting the transmission optical system 3 and the reception optical system 4. Further, an existing optical system can be used as the transmission optical system 3 and the reception optical system 4.
  • the distance measuring apparatus As in the first embodiment, the distance measuring apparatus according to the second embodiment also provides a zooming function to the imaging optical system so that the user can view the target object image without parallax between the telephoto state and the wide-angle state. It is comprised so that it can be made to observe.
  • the imaging optical system is a four-group zoom lens unlike the first embodiment, and can achieve a higher zoom ratio than the first embodiment.
  • the distance measuring apparatus of the present embodiment will be described in detail.
  • FIG. 6 is a diagram schematically illustrating the configuration of the distance measuring device 100 according to the present embodiment.
  • the distance measuring device 100 includes a transmission optical system 101, a reception optical system 102, and an imaging optical system 103.
  • the transmission optical system 101 transmits measurement light to the target object or a corner cube arranged near the target object (these are not shown, and will be simply referred to as “target object” hereinafter) via the objective optical system 104. Irradiate.
  • the receiving optical system 102 receives the measurement light reflected and scattered by the target object via the objective optical system 104.
  • the imaging optical system 103 forms an image of the target object on the image sensor 112.
  • the imaging optical system 103 shares the transmission optical system 101 and the reception optical system 102 with the objective optical system 104 coaxially.
  • the imaging optical system 103 has a scaling function, and the object range imaged on the imaging element 112 changes due to the change in the viewing angle due to zooming.
  • a control unit 121 and a display unit 122 are connected to the image sensor 112 as the image processing device 120.
  • the control unit 121 displays an image captured by the image sensor 112 on the display unit 122.
  • the imaging optical system 103 includes a first lens group G11, a second lens group G12, a third lens group G13, a dichroic prism 111, a fourth lens group G14, and an imaging element 112 arranged in order from the object side. Is composed of.
  • the imaging optical system 103 is more convenient to use when the viewing angle at the wide-angle end is at least 10 times the viewing angle at the telephoto end.
  • the first lens group G11, the second lens group G12, and the third lens group G13 constitute the objective optical system 104. That is, the first lens group G11, the second lens group G12, and the third lens group G13 are coaxially shared by the transmission optical system 101, the reception optical system 102, and the imaging optical system 103.
  • FIG. 7 is a diagram for explaining the movement trajectory of the lens group when the imaging optical system 103 is zoomed.
  • the components other than the first to fourth lens groups G11 to G14 and the image sensor 112 are omitted.
  • the second lens group G12 is imaged from the object side so that the air gap between the second lens group G12 and the third lens group G13 decreases during zooming from the wide-angle end side to the telephoto end side.
  • the third lens group G13 moves only from the image side to the object side.
  • the second lens group G12 and the third lens group G13 move only in one direction, so that a trajectory returning in the middle is not taken.
  • the moving mechanism of the lens group G12 and the third lens group G13 can be simplified.
  • the aperture stop S is disposed between the second lens group G12 and the third lens group G13.
  • the aperture stop S is disposed at this position in order to cut off excess light particularly in the wide-angle end state of the imaging optical system 103.
  • an IR cut filter F is disposed between the fourth lens group G14 and the image sensor 112, but this is disposed as necessary.
  • measuring distance When measuring the distance and angle to the target object (hereinafter simply referred to as “measuring distance”), first, an image of the target object is formed on the image sensor 112 using the imaging optical system 103. At this time, by setting the imaging optical system 103 to the wide-angle end state having a large viewing angle, it is possible to capture a wide range at a time, and thus it is possible to search for a target object in a short time. Further, by forming an image of the target object on the image sensor 112, a plurality of users can simultaneously confirm images captured by the image sensor 112, and even users who are not familiar with eyepieces can easily catch the target object. . Moreover, there is also an advantage that the distance measuring device 100 can be made more compact by not installing an eyepiece.
  • the imaging optical system 103 After searching for the target object, the imaging optical system 103 is set to the telephoto end state, and the distance to the target object is measured using the transmission optical system 101 and the reception optical system 102.
  • the target object is Distance measurement can be performed without deviation from the center of the visual field. It is easy to align the target object with the center of the visual field in the wide-angle end state. Therefore, distance measurement can be performed with a very simple operation.
  • the user When performing distance measurement using the distance measuring device 100, the user sets the target object at the center of the visual field on the image sensor 112 with the imaging optical system 103 in the wide-angle end state. Thereafter, the imaging optical system 103 is zoomed to the telephoto end state. The distance measuring mode is entered while the imaging optical system 102 is in the telephoto end state.
  • the transmission optical system 101 includes a light source 110, a relay optical system 116, a dichroic prism 111, and an objective optical system 104 in order from the measurement light emission side.
  • the reception optical system 102 includes an objective optical system 104, a dichroic prism 111, and a light receiving element 113 in order from the target object side.
  • the light source 110 for supplying measurement light for example, a semiconductor pulse laser that emits infrared light having a wavelength of 870 nm is used.
  • a semiconductor pulse laser that emits infrared light having a wavelength of 870 nm is used.
  • other suitable light sources such as LD (laser diode) and LED (light emitting diode) can be used.
  • the dichroic prism 111 includes an isosceles prism P1, a first triangular prism P2, and a second triangular prism P3.
  • the dichroic prism 111 has a function of separating the measurement light applied to the target object and the received light reflected by the target object, and the received light and visible light from the target object.
  • the isosceles prism P1 is formed by cutting three corners of an isosceles triangular prism. Since the isosceles prism P1 has three corners cut to reduce the size, it is not always necessary to cut the corners.
  • the isosceles prism P1 includes two planes R2 and R4 that are parallel to the optical axis OA of the objective lens 3, and two planes R1 and R3 that are orthogonal to the optical axis OA.
  • the plane R2, the plane R3, and the plane R4 are cut surfaces.
  • the isosceles prism P1 includes a first inclined surface R12 and a second inclined surface R13 that are inclined with respect to the plane R1 and the optical axis OA. Since the first inclined surface R12 and the second inclined surface R13 are two sides of an isosceles triangle, they are inclined at substantially symmetrical angles in opposite directions.
  • the isosceles prism P1 and the first triangular prism P2 which is an auxiliary optical member are joined.
  • the isosceles prism P1 and the second triangular prism P3 which is an auxiliary optical member are joined.
  • One surface of the first triangular prism P2 is preferably parallel to the plane R3 of the isosceles prism P1.
  • one surface of the first triangular prism P2 does not have to be the same surface as the plane R3 of the isosceles prism P1.
  • a dichroic coat for separating light by wavelength is formed on the first inclined surface R12 of the isosceles prism P1.
  • This dichroic coat has a characteristic of reflecting light having a long wavelength of, for example, 870 nm or longer and transmitting visible light having a wavelength of, for example, 400 nm to 650 nm. Therefore, the dichroic coat separates the light reflected from the target object and transmitted through the objective optical system 104 into received light and visible light from the target object.
  • Visible light from the target object that has passed through the isosceles prism P1 passes through the dichroic coat, then passes through the fourth lens group G14 and the IR cut filter F, and forms an image on the imaging surface of the image sensor 112.
  • the received light reflected by the dichroic coat is reflected inside the dichroic prism 111, passes through the second inclined surface R ⁇ b> 13 of the dichroic prism 111, and enters the light receiving element 113.
  • an APD avalanche photo diode
  • the second inclined surface R13 of the isosceles prism P1 has a specific shape that separates the measurement light (transmission light) emitted from the light source 110 and the reception light reflected or scattered by the target object and returned.
  • the reflector is formed. This reflector transmits the received light reflected inside the isosceles prism P1 and reflects the transmitted light emitted from the light source 110.
  • Transmitted light (measurement light) emitted from the light source 110 via the relay optical system 116 is incident on the plane R1 of the isosceles prism P1 that is away from the optical axis OA of the objective lens 3.
  • the transmitted light incident on the plane R1 is reflected by the second inclined surface R13 and travels again to the plane R1.
  • the transmitted light traveling from the second inclined surface R13 to the plane R1 is totally reflected at the plane R1 because the incident angle is shallow, and travels toward the first inclined surface R12.
  • the transmitted light is also totally reflected at the first inclined surface R12 and is incident perpendicular to the plane R1.
  • the transmitted light incident perpendicularly to the plane R1 passes through the plane R1 and is emitted from the isosceles prism P1.
  • the transmission light emitted from the isosceles prism P1 passes through the objective optical system 104 and is irradiated onto the target object.
  • the transmitted light applied to the target object is reflected or scattered by the target object, passes through the objective optical system 104 again as received light, and travels toward the dichroic prism 111 again.
  • the received light is incident on the plane R1 of the isosceles prism P1 and travels toward the first inclined surface R12.
  • the received light is reflected by the dichroic coat on the first inclined surface R12.
  • the received light having a shallow incident angle is totally reflected by the plane R1
  • the received light that has entered the second triangular prism P3 passes through the plane R5, which is one side of the second triangular prism P3, and enters the light receiving element 113.
  • visible light from the target object passes through the objective optical system 104 and enters the dichroic prism 111.
  • Visible light from the target object passes through the first inclined surface R12, and then passes through the fourth lens group G14 and the IR cut filter F, and forms an image on the imaging surface of the imaging device 112.
  • the user can visually recognize the image of the target object captured by the image sensor 112. That is, the received light and the visible light from the target object are separated by the dichroic coating on the first inclined surface R12 of the dichroic prism 111.
  • FIG. 8 is a diagram showing a reflector having a specific shape, which is provided on the second inclined surface R13 and separates transmitted light and received light.
  • the function of separating the transmitted light and the received light on the second inclined surface R13 is formed by depositing a reflector RB having a specific shape that reflects one light flux of the transmitted light and the received light on the second inclined surface R13.
  • the shape of the reflector RB includes a reflector RB1 whose center is a reflection region, a semicircular reflector RB2 whose left or right is a reflection region, a center which is a transmission region, and a surrounding region.
  • the reflector RB Judging from the transmission light emitted from the light source 110, the reflector RB is formed in the range necessary for the transmission light on the second inclined surface R13.
  • the reflector RB1 when the transmission light from the light source 110 is incident on the plane R1 of the isosceles prism P1, the reflector RB1 whose center is a reflection region is preferable.
  • the transmitted light is not diffused and is reflected by the reflector RB1 with its light beam diameter being small.
  • the reflected received light is often scattered from the target object, and since the distance is long, the light flux is often spread.
  • the NA (numerical aperture) of the objective optical system 104 is set larger than the NA of the transmission light, the reception light enters the dichroic prism 111 from the outer peripheral side of the transmission light. Therefore, the received light passes outside the reflector RB1 on the second inclined surface R13.
  • the light source 110 and the light receiving element 113 can be formed as the distance measuring device 100 even if the arrangement locations are changed. That is, even if the transmission light from the light source 110 is incident on the plane R5 of the second triangular prism P3, the target object can be measured.
  • the reflector RB3 in which the center is the transmission region and the surrounding annular zone is the reflection region is preferable.
  • the distance measuring device 100 calculates the distance from the distance measuring device 100 to the target object based on the time difference between the timing when the light source 110 is emitted and the timing when the received light is received by the light receiving element 113. If necessary, the angle is also calculated.
  • the user can check the target object itself.
  • infrared light having a wavelength of 870 nm is used as measurement light
  • the infrared light is invisible, and thus the user cannot confirm the measurement light. Therefore, in this case, as a laser pointer for collimation assistance, as shown in FIG. 6, a light source 114 (denoted by a dotted line) and a reflecting mirror 115 that reflects light from the light source 114 and guides it to the first lens group G11. (Denoted with a dotted line).
  • the reflecting mirror 115 is disposed between the first lens group G11 and the second lens group G12.
  • the imaging optical system 103 is more convenient to use when the viewing angle at the wide-angle end is 10 times or more than the viewing angle at the telephoto end. Therefore, in the distance measuring device 100 of the present embodiment, in order to ensure a zoom ratio of 10 times or higher, the imaging optical system 103 is arranged in order from the object side and has a first lens group G11 having a positive refractive power, The lens unit includes a second lens group G12 having a negative refractive power, a third lens group G13 having a positive refractive power, and a fourth lens group G14 having a negative refractive power.
  • conditional expression (15) f11 is the focal length of the first lens group G11, and f12 is the focal length of the second lens group G12. 5.6 ⁇
  • Conditional expression (15) defines the optimum range of the ratio of the focal lengths of the first lens group G11 and the second lens group G12. By satisfying conditional expression (15), a high zoom ratio of 10 times or more is secured. In addition, by satisfying the conditional expression (15), the first lens group G11 and the second lens group G12 are at the wide-angle end where the distance between the first lens group G11 and the second lens group G12 is the narrowest. Since a sufficient interval can be ensured, as described above, it is possible to install the reflecting mirror 115 and reduce the emission light from the light source 114 to irradiate the target object.
  • a light source having a wavelength of about 650 nm is directly arranged at the focal position of the first lens group G11, and this light source is used as a light source for supplying measurement light, and is also used as a laser pointer for collimation assistance. Also good.
  • the first lens group G11 and the second lens group G12 interfere with each other, and a high zoom ratio of 10 times or more can be obtained. Can not. Further, even if the zoom ratio is increased by increasing the refractive power of the third lens group G13 and the fourth lens group G14 in a state where the value of
  • conditional expression (17) is satisfied.
  • conditional expression (17) f 123t is the combined focal length of the first lens group G11, the second lens group G12, and the third lens group G13 at the telephoto end of the imaging optical system 103, and ft Is the focal length of the entire imaging optical system 103 at the telephoto end of the imaging optical system 103.
  • Conditional expression (17) is the combined focal length (that is, the focal length of the objective optical system 104) of the first lens group G11, the second lens group G12, and the third lens group G13 at the telephoto end of the imaging optical system 103. And the optimum range of the ratio of the focal length of the entire imaging optical system 103.
  • the transmission optical system 101 and the reception optical system 102 share the objective optical system 104 coaxially with the imaging optical system 103.
  • the objective optical system 104 is used as the transmission optical system 101, it is desirable to arrange the light source 110 at a substantially focal position of the objective optical system 104.
  • the measurement light from the light source 110 is irradiated onto the target object in a substantially parallel light state, so that the intensity of the reflected / scattered light at the target object is increased and a more accurate distance measurement can be performed.
  • the position where the light receiving element 113 is arranged is a focal point of the objective optical system 104 that can be guided to the light receiving element 113 in a state where the intensity of the received light is the strongest. Location is desirable.
  • the focal length of the objective optical system 104 is shorter than the focal length of the imaging optical system 103 at the telephoto end.
  • the arrangement of the transmission optical system 101 and the reception optical system 102 that is, the arrangement of the light source 110 and the arrangement of the light receiving element 113 taking into account the passage of the dichroic prism 111 is hindered.
  • exceeds the upper limit value of the conditional expression (17)
  • the objective optical system 104 becomes insufficient in refractive power, and the zooming performed by the first lens group G11 to the third lens group G13.
  • the aberration generated in the portion cannot be corrected even if the refractive power of the fourth lens group G14 is increased.
  • the fourth lens group G14 plays a role of forming an image formed by the zoom unit including the first lens group G11 to the third lens group G13, and the light flux passing through the fourth lens group G14 at the time of zooming is substantially constant. This is because the fourth lens group G14 functions as an independent lens in a zoom lens having a four-group structure.
  • conditional expression (18) f13 is the focal length of the third lens group G13, and f14 is the focal length of the fourth lens group G14. 3 ⁇
  • the dichroic prism 111 is disposed between the third lens group G13 and the fourth lens group G14 of the imaging optical system 103.
  • the dichroic prism 111 is used for a distance measuring device that separates infrared light and visible light by the dichroic prism 111 and uses a wavelength separated (for example, ranging using infrared light, collimating using visible light).
  • the dichroic prism 111 is used for a distance measuring device that separates infrared light and visible light by the dichroic prism 111 and uses a wavelength separated (for example, ranging using infrared light, collimating using visible light).
  • Conditional expression (18) is for placing the dichroic prism 111 in the middle of the imaging optical system 103 without difficulty, and so as not to interfere with zooming.
  • conditional expression (19) is the focal length of the first lens group G11. 70 ⁇ f11 ⁇ 90 (19)
  • the dichroic prism 111 is disposed between the third lens group G13 and the fourth lens group G14 in the imaging optical system 103.
  • the transmission optical system 101 and the reception optical system 102 are configured to share the dichroic prism 111.
  • a dichroic prism 111 that branches the reflection and transmission optical paths depending on the wavelength region is disposed between the third lens group G13 and the fourth lens group G14, so that a high-power laser can be obtained. It can also be used as a light source.
  • the dichroic prism 111 by reflecting the relatively long wave side light by the dichroic prism 111, the long wave side light is reduced and enters the image sensor 112, and red coloring on the image sensor 112 is reduced. If the dichroic prism 111 is disposed between the second lens group G12 and the third lens group G13, chromatic aberration due to the prism may occur during zooming. Therefore, it is desirable that the dichroic prism 111 is disposed between the third lens group G13 and the fourth lens group G14.
  • conditional expression (7) is satisfied as in the first embodiment described above.
  • conditional expression (8) it is desirable to satisfy the conditional expression (8).
  • FIG. 9 is a diagram illustrating the configuration of the distance measuring apparatus 100 according to the third embodiment.
  • the imaging optical system 103 according to the third example includes, in order from the object side, a first lens group G11 having a positive refractive power, a second lens group G12 having a negative refractive power, an aperture stop S, and a positive refraction.
  • the third lens group G13 having power, the dichroic prism 111, the fourth lens group G14 having negative refractive power, and the IR cut filter F are configured.
  • the imaging surface of the imaging device 112 is described as an image plane I.
  • the image processing device 120 and the like are not shown here.
  • the first lens group G11 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L111 having a convex surface directed toward the object side and a biconvex positive lens L112, and a positive meniscus lens having a convex surface directed toward the object side. L113.
  • the second lens group G12 includes, in order from the object side, a negative lens L121 having a biconcave shape (with a concave surface facing the object side), a negative lens L122 having a biconcave shape, and a positive meniscus lens L123 having a convex surface facing the object side. And a cemented negative lens made up of An aperture stop S is installed between the second lens group G12 and the third lens group G13.
  • the third lens group G13 includes, in order from the object side, a biconvex positive lens L131, and a cemented positive lens formed by cementing a negative meniscus lens L132 having a convex surface toward the object side and a biconvex positive lens L133. It is configured.
  • a dichroic prism 111 is disposed between the third lens group G13 and the fourth lens group G14. Note that the dichroic prism 111 is drawn in a form omitted in the drawing.
  • the fourth lens group G14 includes, in order from the object side, a lens group G14a having a positive refractive power, a lens group G14b having a negative refractive power, and a lens group G14c having a positive refractive power.
  • the lens group G14a includes, in order from the object side, a cemented positive lens formed by cementing a positive meniscus lens L141 having a convex surface toward the object side and a negative meniscus lens L142 having a convex surface toward the object side.
  • the lens group G14b includes, in order from the object side, a cemented negative lens formed by cementing a biconvex positive lens L143 and a biconcave negative lens L144.
  • the lens group G14c includes a positive meniscus lens L145 having a convex surface directed toward the object side.
  • an IR cut filter F is also arranged, but this is arranged as necessary.
  • the target object is near infinity. If the target object is at a short distance, the fourth lens group of the imaging optical system 103 is assumed.
  • the lens group G14b having negative refractive power in G14 in the optical axis direction as an in-focus lens adjustment can be made so that the imaging surface (image surface I) of the imaging device 112 is in focus.
  • Tables 7 to 10 below show specifications of the imaging optical system 103 according to the third example.
  • (aperture) indicates an aperture stop S
  • (prism) indicates a dichroic prism 111
  • (filter) indicates an IR cut filter F
  • an image plane indicates an image plane I.
  • f represents a focal length
  • FNO represents an F number
  • Y represents an image height
  • Bf represents a back focus.
  • FIG. 10 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral aberration at the telephoto end and the wide-angle end of the imaging optical system 103 according to the third example.
  • various aberrations are corrected at both the telephoto end and the wide-angle end, and good optical performance is ensured.
  • FIG. 11 is a diagram illustrating the configuration of the distance measuring apparatus 100 according to the fourth embodiment.
  • the imaging optical system 103 according to the fourth example includes, in order from the object side, a first lens group G11 having a positive refractive power, a second lens group G12 having a negative refractive power, an aperture stop S, and a positive refraction.
  • the lens unit includes a third lens group G13 having power, a dichroic prism 111, and a fourth lens group G14 having negative refractive power.
  • the imaging surface of the imaging device 112 is described as an image plane I.
  • the image processing device 120 and the like are not shown here.
  • the first lens group G11 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L111 having a convex surface directed toward the object side and a biconvex positive lens L112, and a positive meniscus lens having a convex surface directed toward the object side. L113.
  • the second lens group G12 includes, in order from the object side, a negative lens L121 having a biconcave shape (with a concave surface facing the object side), a negative lens L122 having a biconcave shape, and a positive meniscus lens L123 having a convex surface facing the object side. And a cemented negative lens made up of An aperture stop S is installed between the second lens group G12 and the third lens group G13.
  • the third lens group G13 is composed of, in order from the object side, a biconvex positive lens L131, a negative meniscus lens L132 having a convex surface facing the object side, and a positive meniscus lens L133 having a convex surface facing the object side. And a positive lens.
  • a dichroic prism 111 is disposed between the third lens group G13 and the fourth lens group G14. Note that the dichroic prism 111 is drawn in a form omitted in the drawing.
  • the fourth lens group G14 includes, in order from the object side, a lens group G14a having a positive refractive power, a lens group G14b having a negative refractive power, and a lens group G14c having a positive refractive power.
  • the lens group G14a includes, in order from the object side, a cemented positive lens formed by cementing a positive meniscus lens L141 having a convex surface toward the object side and a negative meniscus lens L142 having a convex surface toward the object side.
  • the lens group G14b includes, in order from the object side, a cemented negative lens formed by cementing a biconvex positive lens L143 and a biconcave negative lens L144.
  • the lens group G14c includes a positive meniscus lens L145 having a convex surface directed toward the object side. Furthermore, in this embodiment, an example in which the IR cut filter F is not arranged is shown.
  • the fourth of the imaging optical system 103 is assumed.
  • moving the lens group G14b having negative refractive power in the lens group G14 in the optical axis direction as an in-focus lens adjustment can be made so that the imaging surface of the image sensor 112 is in focus.
  • Tables 11 to 14 below show values of specifications of the imaging optical system 103 according to the fourth example.
  • FIG. 12 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral aberration at the telephoto end and the wide-angle end of the imaging optical system 103 according to the fourth example.
  • various aberrations are corrected at both the telephoto end and the wide-angle end, and good optical performance is ensured.
  • FIG. 13 is a diagram illustrating the configuration of the distance measuring apparatus 100 according to the fifth embodiment.
  • the imaging optical system 103 according to the fifth example includes, in order from the object side, a first lens group G11 having a positive refractive power, a second lens group G12 having a negative refractive power, an aperture stop S, and a positive refraction.
  • the third lens group G13 having power, the dichroic prism 111, the fourth lens group G14 having negative refractive power, and the IR cut filter F are configured.
  • the imaging surface of the imaging device 112 is described as an image plane I.
  • the image processing device 120 and the like are not shown here.
  • the first lens group G11 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L111 having a convex surface directed toward the object side and a biconvex positive lens L112, and a positive meniscus lens having a convex surface directed toward the object side. L113.
  • the second lens group G12 includes, in order from the object side, a negative lens L121 having a biconcave shape (with a concave surface facing the object side), a negative lens L122 having a biconcave shape, and a positive meniscus lens L123 having a convex surface facing the object side. And a cemented negative lens made up of An aperture stop S is installed between the second lens group G12 and the third lens group G13.
  • the third lens group G13 includes, in order from the object side, a biconvex positive lens L131, and a cemented positive lens formed by cementing a negative meniscus lens L132 having a convex surface toward the object side and a biconvex positive lens L133. It is configured.
  • a dichroic prism 111 is disposed between the third lens group G13 and the fourth lens group G14. Note that the dichroic prism 111 is drawn in a form omitted in the drawing.
  • the fourth lens group G14 includes, in order from the object side, a lens group G14a having a positive refractive power, a lens group G14b having a negative refractive power, and a lens group G14c having a positive refractive power.
  • the lens group G14a includes, in order from the object side, a cemented positive lens formed by cementing a biconvex positive lens L141 and a biconcave negative lens L142.
  • the lens group G14b includes, in order from the object side, a cemented negative lens formed by cementing a biconvex positive lens L143 and a biconcave negative lens L144.
  • the lens group G14c includes a positive meniscus lens L145 having a convex surface directed toward the object side.
  • an IR cut filter F is also arranged.
  • Tables 15 to 18 below show values of specifications of the imaging optical system 103 according to the fifth example.
  • FIG. 14 is a diagram illustrating spherical aberration, astigmatism, distortion, and lateral aberration at the telephoto end and the wide-angle end of the imaging optical system 103 according to the fifth example.
  • various aberrations are corrected at both the telephoto end and the wide-angle end, and good optical performance is ensured.
  • the distance measuring apparatus 100 includes a transmission optical system 101 that irradiates measurement light onto a target object, a reception optical system 102 that receives reception light that is reflected or scattered by the target object, and an image of the target object.
  • An imaging optical system 103 that forms an image, and an imaging element 112 that captures an image of a target object imaged by the imaging optical system 103.
  • the imaging optical system 103, the transmission optical system 101, and the reception optical system 102 are:
  • the objective optical system 104 directed to the target object is shared coaxially, and the imaging optical system 103 has a zooming function. Thereby, the user can observe the image of the target object without parallax between the telephoto state and the wide-angle state.
  • the imaging optical system 103 includes a first lens group G11 having a positive refractive power, a second lens group G12 having a negative refractive power, and a positive lens arranged in order from the object side.
  • the third lens group G13 having refractive power and the fourth lens group G14 having negative refractive power are configured.
  • the second lens group G12 and the third lens group G13 are moved along the optical axis direction during zooming from the wide-angle end state to the telephoto end state. With such a configuration, in the distance measuring device 100, the imaging optical system 103 can ensure a high zoom ratio of 10 times or more.
  • the measurement light emitted from the light source 110 is guided to the objective optical system 104 between the third lens group G13 and the fourth lens group G14, and is received through the objective optical system 104.
  • a dichroic prism 111 for guiding light to the light receiving element 113 is arranged.
  • a light beam from a target object is incident on a distance image sensor side and an eyepiece lens side using a branching prism. Branches with the light to be. Although the ratio of the amount of light splitting in the branching prism is unknown, the amount of light incident on the image sensor is reduced, which may cause a measurement failure by the position detection means.
  • the branching prism does not branch by wavelength, if a laser is used as the light source for emitting the measurement light, the laser light is also incident on the eyepiece lens side. A collimation (manual) while a person looks into the eyepiece becomes impossible.
  • the dichroic prism 111 receives the received light received by the distance measuring light receiving element 113 and the image of the target object from the target object received by the image sensor 112 for the user to confirm. Visible light is separated by wavelength. Therefore, the decrease in the amount of received light can be reduced as compared with the case of using a branching prism that is not branched by wavelength. In addition, since the measurement light can be prevented from entering the imaging element 112 side, a high-power laser beam can be used as the measurement light.
  • the reflecting mirror 10 that guides the measurement light emitted from the light source 12 to the target object and the dichroic prism 13 that guides the received light to the light receiving element 14 has been described.
  • the dichroic prism 111 that guides the measurement light emitted from the light source to the target object and guides the received light to the light receiving element is provided. It may be.
  • the reflecting mirror 10 that guides the measurement light emitted from the light source 12 to the target object and the dichroic prism that guides the received light to the light receiving element 14. 13 may be provided.
  • the distance measuring method using the distance measuring apparatus 100 can be rephrased as follows.
  • the image of the target object is observed with the imaging optical system 103 in the distance measuring apparatus 100 in the wide-angle state, and then the distance from the distance measuring apparatus 100 to the target object is measured with the imaging optical system 103 in the telephoto state.
  • the present invention is not limited to the above-described configuration, and various aspects may be changed.
  • the number of lenses constituting each lens group, the radius of curvature of each lens, the surface interval, the glass material, and the like may be appropriately changed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lenses (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

 測距装置は、目標物体へ測定光を照射する送信光学系と、目標物体によって測定光が反射または散乱された受信光を受光する受信光学系と、目標物体の像を結像させる撮像光学系と、撮像光学系により結像された目標物体の像を撮像する撮像素子と、を備え、撮像光学系は、変倍機能を有する。

Description

測距装置
 本発明は、測距装置に関する。
 従来、レーザーダイオードなどの光源から出力された測定光が目標物体で反射または散乱された戻り光を受光素子で受光し、測定光が射出されてから戻り光を受光するまでの時間に基づいて目標物体までの距離を測定する測距装置が知られている。このような測距装置は視野が狭いため、目標物体を測距装置の視野内に捉えることが難しく時間がかかっていた。そこで、望遠光学系とは別に、視野の広い広角光学系を設けた測距装置が提案されている(特許文献1参照)。
日本国特許第3626141号公報
 上記従来技術では、望遠光学系と広角光学系とが別々に設けられているため、特に測距装置に近い目標物体までの距離を測定する際には、望遠光学系と広角光学系との視差が大きくなってしまう。望遠光学系と広角光学系との視差が大きいと、広角光学系の視野内に目標物体を捉えていても、望遠光学系の視野内に目標物体を捉えられていない場合があり、この場合、目標物体を誤認識したり、視野の再調整が必要になったりと不便であった。
 本発明の第1の態様によると、測距装置は、目標物体へ測定光を照射する送信光学系と、目標物体によって測定光が反射または散乱された受信光を受光する受信光学系と、目標物体の像を結像させる撮像光学系と、撮像光学系により結像された目標物体の像を撮像する撮像素子と、を備え、撮像光学系は、変倍機能を有する。
 本発明の第2の態様によると、第1の態様の測距装置において、撮像光学系内に配置され、送信光学系から照射された測定光を目標物体へ導く第1反射部材と、撮像光学系内に配置され、受信光を受信光学系へ導く第2反射部材と、をさらに備え、撮像光学系は、第1反射部材および第2反射部材よりも像側に配置された変倍光学系を有することが好ましい。
 本発明の第3の態様によると、第2の態様の測距装置において、撮像素子の大きさをIsとし、撮像素子の1画素の大きさをpとし、撮像光学系の最大半画角をωとすると、以下の条件式(1)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000003

 本発明の第4の態様によると、第3の態様の測距装置において、変倍光学系は、物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、から構成され、第1レンズ群の焦点距離をf1、第2レンズ群の焦点距離をf2、広角端における変倍光学系の倍率をβw、望遠端における変倍光学系の倍率をβtとすると、以下の条件式(2)および(3)を満たすことが好ましい。
 1.1<|βt/βw|<2.5…(2)
 1<|f1/f2|<2.5…(3)
 本発明の第5の態様によると、第4の態様の測距装置において、撮像光学系の光学全長をTLとし、変倍光学系の広角端における光学全長をWTLとすると、以下の条件式(4)を満たすことが好ましい。
 0<WTL/TL<0.5…(4)
 本発明の第6の態様によると、第1の態様の測距装置において、撮像光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、から構成され、広角端状態から望遠端状態への変倍に際し、第2レンズ群と第3レンズ群とが光軸方向に沿って移動し、第3レンズ群と第4レンズ群との間には、受信光を受信光学系へ導く反射部材が配置されることが好ましい。
 本発明の第7の態様によると、第6の態様の測距装置において、撮像光学系のズーム比は10倍以上であり、第1レンズ群の焦点距離をf11とし、第2レンズ群の焦点距離をf12とし、撮像光学系の望遠端状態における、第1レンズ群と第2レンズ群と第3レンズ群とを合わせた合成焦点距離をf123tとし、撮像光学系の望遠端状態における、撮像光学系全系の焦点距離をftとすると、以下の条件式(5)および(6)を満たすことが好ましい。
 |f11/f12|>5.6…(5)
 0.5<|f123t/ft|<0.7…(6)
 本発明の第8の態様によると、第6または7の態様の測距装置において、第3レンズ群の焦点距離をf13とし、第4レンズ群の焦点距離をf14とすると、以下の条件式(7)を満たすことが好ましい。
 3<|f14/f13|<3.5…(7)
 本発明の第9の態様によると、第6~8のいずれか一態様の測距装置において、撮像素子の大きさをIsとし、撮像素子の1画素の大きさをpとし、撮像光学系の最大半画角をωとすると、以下の条件式(8)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000004
 本発明によれば、望遠状態と広角状態での視差がなく、目標物体の像を使用者に観察させることができる。
第1の実施形態に係る第1実施例による測距装置の構成を説明する図である。 第1の実施形態に係る第1実施例による撮像光学系において、変倍光学系よりも手前の光学系の収差図である。 第1の実施形態に係る第1実施例による撮像光学系の収差図である。 第1の実施形態に係る第2実施例による測距装置の構成を説明する図である。 第1の実施形態に係る第2実施例による撮像光学系の収差図である。 第2の実施形態に係る測距装置の構成を概略的に説明する図である。 第2の実施形態による撮像光学系のズーミングの様子を説明する図である。 ダイクロイックプリズムに形成される反射体を説明する図である。 第2の実施形態に係る第3実施例による測距装置の構成を説明する図である。 第2の実施形態に係る第3実施例による撮像光学系の収差図である。 第2の実施形態に係る第4実施例による測距装置の構成を説明する図である。 第2の実施形態に係る第4実施例による撮像光学系の収差図である。 第2の実施形態に係る第5実施例による測距装置の構成を説明する図である。 第2の実施形態に係る第5実施例による撮像光学系の収差図である。 従来の測距装置によって目標物体を観察する様子を説明する図である。
-第1の実施形態-
 図面を参照して本発明の第1の実施形態について説明する。まず、第1の実施形態の説明に入る前に、従来の測距装置における問題点について説明する。図15は、従来の測距装置によって目標物体(縞模様の物体)を観察する様子を説明する図である。従来の測距装置では、上述したように、望遠光学系と広角光学系とが別々に設けられているため、望遠光学系と広角光学系とで視差が生じてしまう。したがって、図15に示すように、広角光学系による表示画面と望遠光学系による表示画面とでそれぞれの表示中心位置がずれてしまう。ゆえに、広角光学系の視野内に目標物体を捉えていても、望遠光学系の視野内に目標物体を捉えられていない場合がある。この場合、本来狙っていた目標物体とは異なる物体を視準・測距してしまうおそれがある。また、望遠光学系の視野内に目標物体を捉えるための再調整が必要であり、手間がかかってしまう。
 望遠光学系と広角光学系との光軸を近づけることで視差を小さくすることはできるが、これには物理的な限界があり、視差を完全になくすことは困難である。また、表示装置に望遠光学系と広角光学系のそれぞれの画像を表示しても、各光学系が単焦点であるため、表示された画像は望遠または広角いずれかの画像であり、必ずしも使用者が望む倍率ではない場合がある。
 このような事情を鑑みて、本実施形態の測距装置は、撮像光学系に変倍機能を持たせることにより、望遠状態と広角状態での視差がなく、目標物体の像を使用者に観察させることができるように構成されている。以下、本実施形態の測距装置について詳しく説明する。
 図1は、本実施形態による測距装置1の構成を説明する図である。なお、図1の上側が望遠端状態を示し、図1の下側が広角端状態を示す。測距装置1は、図示しない目標物体を撮影するための撮像光学系2と、目標物体に測定光を照射するための送信光学系3と、測定光が目標物体で反射或いは散乱して戻ってきた戻り光(受信光)を受光するための受信光学系4と、を備える。撮像光学系2と送信光学系3と受信光学系4とは、対物光学系5を共有する同軸光学系として構成されている。
 撮像光学系2は、目標物体側から順に並んだ、対物光学系5と、ダイクロイックプリズム13と、合焦レンズ6と、変倍光学系20と、撮像素子7と、から構成される。対物光学系5を透過した目標物体からの光は、ダイクロイックプリズム13、合焦レンズ6および変倍光学系20を順に透過して、撮像素子7の撮像面に結像される。
 また、送信光学系3は、測定光の射出側から順に、光源12と、コリメータレンズ11と、反射鏡10と、対物光学系5と、から構成される。反射鏡10は、対物光学系5と合焦レンズ6との間の光路中に配置されている。コリメータレンズ11と光源12とは、反射鏡10の反射光路上に配置されている。また、光源12としては、LEDやレーザーダイオード等が使用される。なお、光源12から射出される測定光は、赤外光が望ましいが、これに限らなくてもよく、例えば、波長650(nm)前後の赤色光であってもよい。
 さらに、受信光学系4は、対物光学系5と、ダイクロイックプリズム13と、受光素子14と、から構成される。ダイクロイックプリズム13は、反射鏡10と合焦レンズ6との間の光路中に光分割素子として配置されている。受光素子14は、ダイクロイックプリズム13の対物光学系5の焦点位置付近に配置されている。
 以上の構成の下、光源12から射出された測定光は、コリメータレンズ11を経た後、反射鏡10によって反射され、対物光学系5を介して略平行光束として目標物体に照射される。これにより、目標物体で散乱した、或いは、目標物体付近に配置されたコーナーキューブで反射した測定光が再び対物光学系5を介して反射鏡10の周辺部を受信光として通過する。そしてこの受信光は、ダイクロイックプリズム13内の反射コート部15で反射され、さらにダイクロイックプリズム13内部を進行して射出され、受光素子14へ入射する。
 測距装置1の図示しない制御部は、光源12から測定光を射出したタイミングと受信光が受光素子14により受光されたタイミングとの時間差に基づき、測距装置1から目標物体までの距離を演算する。このようにして使用者は、測距装置1を用いて目標物体までの距離を測定することができる。なお、光源12からの測定光が赤色光である場合に、測定光の光束を細くして目標物体に照射すれば、目標物体における測定位置を赤色のスポット像として観察することが可能となる。
 測距装置の撮像光学系が、接眼光学系を含む眼視光学系(アフォーカル光学系)を構成している場合、アイレリーフ、望遠鏡倍率、瞳径、光学性能等を鑑みて、測距装置の口径は、30~60mmと大きなものになる。しかしながら、本実施形態では、眼視光学系の時に使用していた対物光学系5を撮像光学系2として流用することで、安価な測距装置1を提供することも想定している。
 変倍光学系20は、目標物体側から順に並んだ、第1レンズ群G1と、第2レンズ群G2とから構成される、いわゆる2群構成のズームレンズである。本実施形態では、撮像光学系2における変倍光学系20よりも手前の光学系(対物光学系5、ダイクロイックプリズム13および合焦レンズ6)までで、ある程度収差が補正される。そのため、変倍光学系20よりも手前の光学系までの光学性能を、変倍光学系20の望遠端では維持すればよい。したがって、望遠端において、変倍光学系20を通過する光線が可能な限り光軸近辺を通過し、光学性能の変動を起こさせないことが望ましい。これを実現するため、第1レンズ群G1は負の屈折力を有し、第2レンズ群G2は正の屈折力を有するように構成される。
 広角端から望遠端への変倍の際には、第1レンズ群G1と第2レンズ群G2との間隔が狭まるように、第1レンズ群G1および第2レンズ群G2が光軸に沿って移動する。一方、望遠端から広角端への変倍の際には、第1レンズ群G1と第2レンズ群G2との間隔が広がるように、第1レンズ群G1および第2レンズ群G2が光軸に沿って移動する。
 なお、変倍光学系20は、3群構成のズームレンズ、または4群構成のズームレンズであってもよい。コストの面を鑑みると、2群構成のズームレンズの方が望ましい。
 本実施形態の測距装置1では、変倍光学系20は、反射鏡10およびダイクロイックプリズム13よりも撮像素子7側に配置されている。これにより、送信光学系3や受信光学系4に影響を与えることなく、変倍機能を実現することができる。また、送信光学系3や受信光学系4として、既存の光学系を用いることができる。
 また、本実施形態の測距装置1では、撮像光学系2によって目標物体の像を撮像素子7の撮像面に結像させている。ゆえに、物体側において測角が可能な最小の角度は、撮像素子7の画素ピッチによって変化する。具体的に、撮像素子7の画素ピッチによって変化する、測角が可能な最小の角度θ1[rad]は、以下の式(1)で表される。式(1)において、p[mm]は撮像素子7の1画素の大きさ(画素ピッチ)であり、f[mm]は撮像光学系2の焦点距離である。なお、f[mm]は、測角を行う際の撮像光学系2の焦点距離であり、広角端から望遠端までのいずれの焦点距離であってもよい。すなわち、測角は、撮像光学系2において広角端から望遠端までのいずれの状態で行ってもよい。
Figure JPOXMLDOC01-appb-M000005
 また、測距装置1において、測角が可能な最小の角度は、撮像光学系2の分解能によっても変化する。具体的に、撮像光学系2の分解能によって変化する、測角が可能な最小の角度θ2[秒]は、以下の式(2)で表される。なお、式(2)において、D[mm]は撮像光学系2の入射瞳直径である。
Figure JPOXMLDOC01-appb-M000006
 測距装置1において、できるだけ小さい角度で測角を可能とするためには、θ1=θ2とすればよい。θ1=θ2とすると、上記式(1)および式(2)から、撮像光学系2の入射瞳直径D[mm]は、以下の式(3)で表される。
Figure JPOXMLDOC01-appb-M000007
 また、撮像素子7の大きさ(撮像エリアの対角長)をIs[mm]、撮像光学系2の最大半画角をω[°](すなわち最大画角は2ω[°])とすると、撮像光学系2の焦点距離f[mm]は、以下の式(4)で表される。
Figure JPOXMLDOC01-appb-M000008
 ゆえに、式(3)に式(4)を代入することにより、撮像光学系2の入射瞳直径D[mm]は、以下の式(5)で表される。
Figure JPOXMLDOC01-appb-M000009
 撮像素子7の大きさIs[mm]、1画素の大きさp[mm]、撮像光学系2の最大半画角ω[°]について現実的な数値を考慮すると、撮像光学系2の入射瞳直径D[mm]は、以下の条件式(6)を満たすことが望ましい。なお、条件式(6)を20で割ることにより、以下の条件式(7)となる。すなわち、撮像光学系2は、条件式(7)を満足することが望ましい。
Figure JPOXMLDOC01-appb-M000010

Figure JPOXMLDOC01-appb-M000011
 また、さらに効率よく光学性能と測角精度を適合させるには、撮像光学系2を望遠端にして測角を行うことが望ましく、以下の条件式(8)を満足することが望ましい。なお、式(8)において、ωtは、撮像光学系2の望遠端における最大半画角である。
Figure JPOXMLDOC01-appb-M000012
 また、本実施形態の測距装置1では、以下の条件式(9)および(10)を満足することが望ましい。この条件式(9)および(10)を満足することで、良好な光学性能を確保することができる。なお、条件式(9)において、βtは望遠端における変倍光学系20の倍率であり、βwは広角端における変倍光学系20の倍率である。また、条件式(10)において、f1は変倍光学系20における第1レンズ群G1の焦点距離であり、f2は変倍光学系20における第2レンズ群G2の焦点距離である。
 1.1< |βt/βw| <2.5 …(9)
 1 < |f1/f2| <2.5 …(10)
 なお、さらに光学性能を確保するためには、以下の条件式(11)および(12)を満足することが望ましい。
 1.1< |βt/βw| <2 …(11)
 1 < |f1/f2| <2 …(12)
 また、本実施形態の測距装置1では、以下の条件式(13)を満足することが望ましい。この条件式(13)を満足することで、撮像光学系2を、光軸方向にコンパクトにすることができる。なお、条件式(13)において、WTLは変倍光学系20の広角端における光学全長(変倍光学系20の最も物体側のレンズ面から撮像素子7までの距離)であり、TLは撮像光学系2の光学全長(撮像光学系2の最も物体側のレンズ面から撮像素子7までの距離)である。
 0 < WTL/TL < 0.5 …(13)
 なお、さらに光軸方向にコンパクトでありつつ、良好な光学性能を確保するには、以下の条件式(14)を満足することが望ましい。
 0.1 < WTL/TL < 0.35 …(14)
(第1の実施形態に係る第1実施例)
 次に、第1の実施形態に係る第1実施例を説明する。図1は、第1実施例による測距装置1の構成を説明する図である。第1実施例に係る測距装置1において、変倍光学系20の第1レンズ群G1は、1枚の凹レンズL11から構成され、第2レンズ群G2は、1枚の凸レンズL21から構成される。また、第1実施例による撮像光学系2では、開口絞りは第1面の手前に配置されている。
 表1~表3に、第1実施例に係る撮像光学系2の諸元の値を示す。なお、表1では、反射鏡10の記載を省略している。表において、面番号は物体側から数えた光学面の順序、rは各光学面の曲率半径、dは光学面の面間隔、ndはd線(波長λ=587.56nm)に対する屈折率、νdはd線(波長λ=587.56nm)に対するアッベ数をそれぞれ示している。なお、空気の屈折率nd=1.00000は記載を省略している。また、(可変)は、可変の面間隔である。di(i:整数)は面番号iでの可変の面間隔をそれぞれ示す。ωtは撮像光学系2の望遠端における最大半画角を示し、ωwは撮像光学系2の望遠端における最大半画角を示す。以下の全ての諸元値において掲載されている焦点距離、曲率半径、その他の長さの単位は一般に「mm」が使われる。しかし光学系は、比例拡大又は縮小しても同等の光学性能が得られるため、これに限られるものではない。また、単位は「mm」に限定されることなく他の適当な単位を用いることもできる。以上の記号は、以降の他の実施例においても同様とし説明を省略する。
[表1](レンズデータ)
Figure JPOXMLDOC01-appb-I000013
[表2]
Figure JPOXMLDOC01-appb-I000014
[表3](条件式対応値)
Figure JPOXMLDOC01-appb-I000015
 表3に示すように、第1実施例による撮像光学系2は、条件式(7)~(14)を満足する。
 また、図2は、第1実施例による撮像光学系2の変倍光学系20よりも手前の光学系(対物光学系5、ダイクロイックプリズム13および合焦レンズ6)における球面収差、非点収差、歪曲収差および横収差を示す図である。図2によれば、変倍光学系20よりも手前の光学系では、種々の収差が補正され、良好な光学性能が確保されていることがわかる。
 図3は、第1実施例による撮像光学系2の望遠端および広角端における球面収差、非点収差、歪曲収差および横収差を示す図である。図3によれば、第1実施例では、変倍光学系20がこれよりも手前の光学系までの良好な光学性能を維持し、撮像光学系2では、望遠端および広角端のいずれにおいても、種々の収差が補正され、良好な光学性能が確保されていることがわかる。
(第1の実施形態に係る第2実施例)
 次に、第1の実施形態に係る第2実施例を説明する。図4は、第2実施例における測距装置1の構成を説明する図である。第2実施例に係る測距装置1において、変倍光学系20の第1レンズ群G1は、物体側から順に、凹レンズL12および凸レンズL13の接合レンズと、凸レンズL14とから構成される。第2レンズ群G2は、2枚の凸レンズL22,L23から構成される。また、第2実施例による撮像光学系2では、開口絞りは第1面の手前に配置されている。表4~表6に、第2実施例に係る撮像光学系2の諸元の値を示す。なお、表4では、反射鏡10の記載を省略している。
[表4](レンズデータ)
Figure JPOXMLDOC01-appb-I000016
[表5]
Figure JPOXMLDOC01-appb-I000017
[表6](条件式対応値)
Figure JPOXMLDOC01-appb-I000018
 表6に示すように、第2実施例による撮像光学系2は、条件式(7)~(14)を満足する。
 また、図5は、第2実施例による撮像光学系2の望遠端および広角端における球面収差、非点収差、歪曲収差および横収差を示す図である。図5によれば、第2実施例では、撮像光学系2の望遠端および広角端のいずれにおいても、種々の収差が補正され、良好な光学性能が確保されていることがわかる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)測距装置1は、目標物体へ測定光を照射する送信光学系3と、目標物体によって測定光が反射または散乱された受信光を受光する受信光学系4と、目標物体の像を結像させる撮像光学系2と、撮像光学系2により結像された目標物体の像を撮像する撮像素子7と、を備え、撮像光学系2と送信光学系3と受信光学系4とは、目標物体に向けられる対物光学系5を同軸で共有し、撮像光学系2は、変倍機能を有するようにした。これにより、望遠状態と広角状態との視差なく、目標物体の像を使用者に観察させることができる。
(2)測距装置1は、撮像光学系2内に配置され、送信光学系3から照射された測定光を目標物体へ導く反射鏡10と、撮像光学系2内に配置され、受信光を受光素子14へ導くダイクロイックプリズム13と、をさらに備え、撮像光学系2は、反射鏡10およびダイクロイックプリズム13よりも像側に配置された変倍光学系20を有するようにした。これにより、送信光学系3や受信光学系4に影響を与えることなく、変倍機能を実現することができる。また、送信光学系3や受信光学系4として、既存の光学系を用いることができる。
-第2の実施形態-
 次に、図面を参照して本発明の第2の実施形態について説明する。第2の実施形態による測距装置も、第1の実施形態と同様に、撮像光学系に変倍機能を持たせることにより、望遠状態と広角状態との視差なく、目標物体の像を使用者に観察させることができるように構成されている。第2の実施形態では、撮像光学系が第1の実施形態と異なり4群構成のズームレンズであり、第1の実施形態よりも高いズーム比を実現することができるようになっている。以下、本実施形態の測距装置について詳しく説明する。
 図6は、本実施形態による測距装置100の構成を概略的に説明する図である。図6に示すように、測距装置100は、送信光学系101と、受信光学系102と、撮像光学系103と、を備える。送信光学系101は、目標物体あるいは、目標物体付近へ配置されたコーナーキューブ(これらは不図示であり、以下、単に「目標物体」とのみ記す)へ、対物光学系104を介して測定光を照射する。受信光学系102は、目標物体で反射・散乱された測定光を、対物光学系104を介して受光する。撮像光学系103は、目標物体の像を撮像素子112上に結像させる。
 撮像光学系103は、送信光学系101および受信光学系102と、対物光学系104を同軸にて共有する。撮像光学系103は変倍機能を有し、ズーミングによる視野角の変化によって、撮像素子112上に結像する物体範囲が変化する。撮像素子112には、画像処理装置120として、制御部121および表示部122が接続されている。制御部121は、撮像素子112により撮像された画像を表示部122に表示する。
 撮像光学系103は、物体側から順に並んだ、第1レンズ群G11と、第2レンズ群G12と、第3レンズ群G13と、ダイクロイックプリズム111と、第4レンズ群G14と、撮像素子112と、から構成される。撮像光学系103は、広角端での視野角が望遠端での視野角の10倍以上ある方がより使い勝手がよい。このうち、第1レンズ群G11と第2レンズ群G12と第3レンズ群G13とが対物光学系104を構成する。すなわち、第1レンズ群G11と第2レンズ群G12と第3レンズ群G13とを、送信光学系101、受信光学系102および撮像光学系103とで同軸にて共有している。
 図7は、撮像光学系103の変倍の際のレンズ群の移動軌跡を説明する図である。なお、図7では、第1~第4レンズ群G11~G14と撮像素子112以外は省略して記載している。撮像光学系103では、広角端側から望遠端側への変倍に際し、第2レンズ群G12と第3レンズ群G13との空気間隔が減少するように、第2レンズ群G12が物体側から像側へのみ移動し、第3レンズ群G13が像側から物体側へのみ移動する。このように、広角端から望遠端への変倍に際して、第2レンズ群G12と第3レンズ群G13とが一方向にのみ移動することで、途中で戻る軌跡を取ることがないので、第2レンズ群G12と第3レンズ群G13の移動機構を簡素化することができる。
 なお、図6に示すように、開口絞りSは、第2レンズ群G12と第3レンズ群G13との間に配置されている。開口絞りSは、特に撮像光学系103の広角端状態において余分な光をカットするため、この位置に配置されている。
 また、第4レンズ群G14と撮像素子112との間にIRカットフィルタFが配置されているが、これは必要に応じて配置される。
 目標物体までの距離や角度を測定する(以下、単に「距離を測定する」とのみ記す)際、まずは撮像光学系103を用いて目標物体の像を撮像素子112上に結像させる。このとき、撮像光学系103を大きな視野角を持つ広角端状態にすることにより、一度に広範囲を捉えることが可能となるため、目標物体を短時間で探すことが可能となる。さらに、目標物体を撮像素子112上に結像させることで、複数の使用者で同時に撮像素子112による撮像画像を確認でき、接眼レンズを使い慣れていない使用者でも容易に目標物体を捉えることができる。また、接眼レンズを設置しないことで、測距装置100をよりコンパクトにできるという利点もある。
 目標物体を探し出した後、撮像光学系103を望遠端状態にして、送信光学系101および受信光学系102を用いて、目標物体までの距離を測定する。このとき、望遠端状態と広角端状態とで視差が発生しないので、最初に広角端状態で目標物体を視野中心に位置させておけば、その後ズーミングを行い望遠端状態にしても、目標物体は視野中心からずれることなく、距離測定を行うことができる。広角端状態で目標物体を視野中心に合わせることは容易である。そのため、非常に簡単な操作で距離測定を行うことができる。
 測距装置100を用いて距離測定を行う際、使用者は、撮像光学系103を広角端状態として、目標物体を撮像素子112上の視野中心にセットする。その後、撮像光学系103を変倍して望遠端状態とする。撮像光学系102が望遠端状態のまま、距離測定モードに入る。
 送信光学系101は、測定光の射出側から順に、光源110と、リレー光学系116と、ダイクロイックプリズム111と、対物光学系104とから構成されている。受信光学系102は、目標物体側から順に、対物光学系104と、ダイクロイックプリズム111と、受光素子113とから構成されている。
 測定光を供給するための光源110としては、例えば波長870nmの赤外光を射出する半導体パルスレーザが用いられる。なお、光源110としては、LD(レーザーダイオード)、LED(発光ダイオード)のような他の適当な光源を用いることもできる。
 ダイクロイックプリズム111は、二等辺プリズムP1と、第1三角形プリズムP2と、第2三角形プリズムP3と、を備える。ダイクロイックプリズム111は、目標物体へ照射される測定光と目標物体で反射された受信光とを分別したり、受信光と目標物体からの可視光とを分別したりする機能を有している。
 二等辺プリズムP1は、二等辺三角形のプリズムの3つの角をカットすることにより形成されている。二等辺プリズムP1は大きさを小さくするために3つの角がカットされているのであって、必ずしも角をカットする必要はない。二等辺プリズムP1は、対物レンズ3の光軸OAと平行する二つの平面R2および平面R4と、光軸OAと直交する二つの平面R1および平面R3とを備える。平面R2、平面R3および平面R4はカットされた面である。
 さらに、二等辺プリズムP1は、平面R1と光軸OAとに対して傾斜する第一傾斜面R12と第二傾斜面R13とを備える。第一傾斜面R12と第二傾斜面R13とは、二等辺三角形の二つの辺であるので、お互いに逆向きでほぼ対称的な角度で傾斜されている。
 二等辺プリズムP1の第一傾斜面R12で、二等辺プリズムP1と補助光学部材である第1三角形プリズムP2とが接合される。また第二傾斜面R13で、二等辺プリズムP1と補助光学部材である第2三角形プリズムP3とが接合される。第1三角形プリズムP2の一面は、二等辺プリズムP1の平面R3と平行になることが好ましい。しかし、図6に描かれるように、第1三角形プリズムP2の一面は、二等辺プリズムP1の平面R3と同一面である必要はない。
 二等辺プリズムP1の第一傾斜面R12には、波長で光を分別するダイクロイックコートが形成されている。このダイクロイックコートは、例えば波長870nm以上の長い波長の光は反射し、例えば波長400nm~650nm付近の可視光を透過させる特性を有する。ゆえにダイクロイックコートは、目標物体から反射されて対物光学系104を透過して入射された光を、受信光と目標物体からの可視光とにそれぞれ分別する。
 二等辺プリズムP1を通過した目標物体からの可視光は、ダイクロイックコートを透過した後、第4レンズ群G14、IRカットフィルタFを透過して、撮像素子112の撮像面に結像される。また、ダイクロイックコートで反射された受信光は、ダイクロイックプリズム111の内部で反射されて、ダイクロイックプリズム111の第二傾斜面R13を透過して、受光素子113に入射される。受光素子113には、例えばAPD(アバランシェ・フォト・ダイオード)などが用いられる。
 また、二等辺プリズムP1の第二傾斜面R13には、光源110から射出された測定光(送信光)と測定光が目標物体で反射或いは散乱して戻ってきた受信光とを分別する特定形状の反射体が形成されている。この反射体は、二等辺プリズムP1の内部で反射されてきた受信光を透過させ、光源110から射出された送信光を反射させる。
 ここで、測距装置100における光路について説明する。光源110からリレー光学系116を経由して射出された送信光(測定光)は、対物レンズ3の光軸OAから離れた二等辺プリズムP1の平面R1に入射される。平面R1に入射した送信光は第二傾斜面R13で反射され、再び平面R1に向かう。第二傾斜面R13から平面R1へ向かう送信光は、入射角が浅いため平面R1で全反射して、第一傾斜面R12に向かう。送信光は、第一傾斜面R12でも全反射されて、平面R1に対して垂直に入射する。平面R1に垂直に入射した送信光は、平面R1を通過して二等辺プリズムP1から射出される。二等辺プリズムP1から射出された送信光は、対物光学系104を透過して、目標物体に照射される。
 目標物体に照射された送信光がこの目標物体で反射又は散乱され、受信光として再度対物光学系104を透過して、再びダイクロイックプリズム111に向かう。受信光は、二等辺プリズムP1の平面R1に入射され、第一傾斜面R12に向かう。受信光は、第一傾斜面R12におけるダイクロイックコートにより反射される。その後入射角が浅く入った受信光は、平面R1で全反射されて、第二傾斜面R13を透過して第2三角形プリズムP3に入射する。第2三角形プリズムP3に入射した受信光は、第2三角形プリズムP3の一つの辺である平面R5を透過して受光素子113に入射する。光源110から射出された送信光の光路と目標物体から反射された受信光の光路とは、殆ど重複しているが、この第二傾斜面R13で、送信光と受信光とを分別することができる。
 一方、目標物体からの可視光は、対物光学系104を透過してダイクロイックプリズム111に入射する。目標物体からの可視光は、第一傾斜面R12を透過し、その後、第4レンズ群G14、IRカットフィルタFを透過して、撮像素子112の撮像面に結像される。これにより、使用者は、撮像素子112により撮像された目標物体の画像を視認することができる。即ち、ダイクロイックプリズム111の第一傾斜面R12におけるダイクロイックコートにより、受信光と目標物体からの可視光とを分別する。
 図8は、第二傾斜面R13に設けられた、送信光と受信光とを分別する特定形状の反射体を示す図である。第二傾斜面R13における送信光と受信光との分別機能は、第二傾斜面R13に送信光および受信光の一方の光束を反射させる特定形状の反射体RBを蒸着することにより形成される。図8に示すように、この反射体RBの形状としては、中央が反射領域である反射体RB1、左右のどちらかが反射領域である半円状の反射体RB2、中央が透過領域で周囲の輪帯が反射領域である反射体RB3などがある。
 光源110から射出された送信光から判断して、第二傾斜面R13で送信光に必要な範囲に反射体RBが形成される。たとえば、図6に示したように、光源110からの送信光が二等辺プリズムP1の平面R1に入射する場合には、中央が反射領域である反射体RB1が好ましい。送信光は拡散しておらず、その光束径が小さいまま反射体RB1で反射される。その一方、反射された受信光は、目標物体から散乱していることも多く、また距離が長いため光束が広がっていることが多い。したがって、対物光学系104のNA(開口数)を送信光のNAよりも大きくしておくと送信光の外周側から受信光がダイクロイックプリズム111に入射する。このため受信光は第二傾斜面R13の反射体RB1の外側を通過することになる。
 また、図示しないが、光源110と受光素子113とは配置場所を入れ替えても測距装置100として成立する。すなわち、光源110からの送信光が第2三角形プリズムP3の平面R5に入射しても、目標物体の測距が可能である。このように光源110からの送信光が第2三角形プリズムP3の平面R5から入射する場合には、中央が透過領域で周囲の輪帯が反射領域である反射体RB3が好ましい。
 測距装置100は、光源110を発光したタイミングと、受信光が受光素子113で受光されたタイミングとの時間差に基づき、測距装置100から目標物体までの距離を演算する。さらに必要な場合は、角度も演算する。
 測距装置100では、目標物体の像を撮像光学系103により撮像素子112上に結像させているため、使用者は目標物体の確認自体は可能である。しかしながら、測定光として波長870nmの赤外光を用いた場合、赤外光は不可視のため、測定光を使用者が確認することはできない。そこで、この場合、視準補助のためのレーザポインタとして、図6に示すように、光源114(点線で記す)と、光源114からの光を反射して第1レンズ群G11に導く反射鏡115(点線で記す)とを設置する。反射鏡115は、第1レンズ群G11と第2レンズ群G12との間に配置される。光源114からの射出光(波長650nm程度)の光束を細くして目標物体に照射することで、使用者は、目標物体における測定位置を赤色のスポット像として観察することが可能となる。
 また、撮像光学系103は、広角端での視野角が望遠端での視野角の10倍以上ある方がより使い勝手がよい。そこで、本実施形態の測距装置100では、10倍以上の高いズーム比を確保するため、撮像光学系103が、物体側から順に並んだ、正の屈折力を有する第1レンズ群G11と、負の屈折力を有する第2レンズ群G12と、正の屈折力を有する第3レンズ群G13と、負の屈折力を有する第4レンズ群G14とから構成されている。
 また、本実施形態の測距装置100では、以下の条件式(15)を満足することが望ましい。なお、条件式(15)において、f11は第1レンズ群G11の焦点距離であり、f12は第2レンズ群G12の焦点距離である。
 5.6<|f11/f12|<6.7 ・・・(15)
 条件式(15)は、第1レンズ群G11と第2レンズ群G12との焦点距離の比の最適な範囲を規定している。条件式(15)を満足することにより、10倍以上という高いズーム比を確保している。また、この条件式(15)を満足することにより、第1レンズ群G11と第2レンズ群G12との間隔が最も狭くなる広角端においても、第1レンズ群G11と第2レンズ群G12との間に十分な間隔が確保できるため、上述したように、反射鏡115を設置し、光源114からの射出光を細くして目標物体に照射することが可能となる。なお、波長650nm程度の光源を第1レンズ群G11の焦点位置にダイレクトに配置し、この光源を、測定光を供給する光源として用いつつ、視準補助のためのレーザポインタとして共用するようにしてもよい。
 |f11/f12|の値が条件式(15)の下限値を下回る状態では、第1レンズ群G11と第2レンズ群G12とが干渉してしまい、10倍以上の高いズーム比を得ることができない。さらに、|f11/f12|の値が条件式(15)の下限値を下回る状態で、第3レンズ群G13、第4レンズ群G14の屈折力を強めズーム比を高くしようとしても、10倍以上の高いズーム比を得ることはできない。
 なお、さらに高い光学性能を確保するためには、以下の条件式(16)を満足することが望ましい。
 5.6<|f11/f12|<6.1 ・・・(16)
 また、本実施形態の測距装置100では、以下の条件式(17)を満足することが望ましい。なお、条件式(17)において、f123tは、撮像光学系103の望遠端における、第1レンズ群G11、第2レンズ群G12、および第3レンズ群G13を合わせた合成焦点距離であり、ftは、撮像光学系103の望遠端における撮像光学系103全系の焦点距離である。
 0.5<|f123t/ft|<0.7 ・・・(17)
 条件式(17)は、撮像光学系103の望遠端における、第1レンズ群G11、第2レンズ群G12、および第3レンズ群G13を合わせた合成焦点距離(すなわち対物光学系104の焦点距離)と、撮像光学系103全系の焦点距離との比の最適な範囲を規定している。上述したように、送信光学系101および受信光学系102は、対物光学系104を撮像光学系103と同軸にて共有している。送信光学系101として対物光学系104を用いる場合、対物光学系104のほぼ焦点位置に光源110を配置することが望ましい。すると、光源110からの測定光をほぼ平行光の状態で目標物体に照射することとなるので、目標物体での反射・散乱光の強度が大きくなり、より高精度な距離測定を行うことができる。また、受信光学系102として対物光学系104を用いる場合、受光素子113を配置する位置は、受信光の強度が最も強い状態で受光素子113へ導くことが可能となる、対物光学系104の焦点位置が望ましい。以上のことをふまえ、条件式(17)は、実際に光学系を配置する上での制約と、対物光学系104の撮像光学系103に対するパワー配置(収差補正)のバランスを考慮した上で得られたものである。
 |f123t/ft|の値が条件式(17)の下限値を下回る場合、対物光学系104の焦点距離が望遠端における撮像光学系103の焦点距離と比較して短い状態となっており、送信光学系101や受信光学系102の配置、すなわちダイクロイックプリズム111の通過も考慮した上での光源110の配置や受光素子113の配置に支障を来たす。逆に、|f123t/ft|の値が条件式(17)の上限値を上回る場合、対物光学系104が屈折力不足となって、第1レンズ群G11~第3レンズ群G13でなるズーム部で発生した収差は第4レンズ群G14の屈折力を強めても補正しきれない。第4レンズ群G14は、第1レンズ群G11から第3レンズ群G13からなるズーム部でできた像を結像する役割を果たしており、変倍時に第4レンズ群G14を通過する光束はほぼ一定であり、4群構成のズームレンズにおいて第4レンズ群G14は独立したレンズとして作用しているためである。
 また、本実施形態の測距装置100では、以下の条件式(18)を満足することが望ましい。なお、条件式(18)において、f13は第3レンズ群G13の焦点距離であり、f14は第4レンズ群G14の焦点距離である。
 3<|f14/f13|<3.5 ・・・(18)
 本実施形態では、撮像光学系103の、第3レンズ群G13と第4レンズ群G14の間にダイクロイックプリズム111を配置している。ダイクロイックプリズム111により赤外光と可視光とを分離しており、波長を分離して(例えば赤外光で測距、可視光で視準を行うなど)用いる測距装置にとっては、ダイクロイックプリズム111は必須の部品である。条件式(18)は、撮像光学系103の途中にダイクロイックプリズム111を無理なく配置し、かつズーミングの妨げにならないようにするためのものである。|f14/f13|の値が条件式(18)の下限を超えると、第3レンズ群G13と第4レンズ群G14の間隔が狭くなりすぎて、ダイクロイックプリズム111を配置できなくなる。一方、|f14/f13|の値が条件式(18)の上限を超えると、第4レンズ群G14と撮像素子112の間隔(バックフォーカス)が短くなりすぎ、IRカットフィルタFを配置できなかったり、第4レンズ群G14にもし異物などが付着していた場合に撮像素子112に映りこんでしまったりする。
 また、上述したように、視準補助のために光源114を設け、第1レンズ群G11と第2レンズ群G12の間に反射鏡115を配置する場合には、第1レンズ群G11の焦点位置に光源114を配置することが望ましい。その場合は、以下の条件式(19)を満足することがより望ましい。なお、条件式(19)において、f11は第1レンズ群G11の焦点距離である。
 70≦f11≦90 ・・・(19)
 f11が条件式(19)の下限値を下回る場合には、第1レンズ群G11の屈折力が大きくなり、それに伴って第2レンズ群G12の屈折力も大きくしなければならず、広角端状態においては、歪曲収差が増大し、コマ収差が発生しやすくなる。また、望遠端状態においては、球面収差の増大等が生じてしまう。一方、f11が条件式(19)の上限値を上回る場合、高いズーム比を得ようとすると、第3レンズ群G13の変倍時の移動量が増加する。その結果、第2レンズ群G12と第3レンズ群G13との干渉を防止するために、第2レンズ群G12と第3レンズ群G13との間隔を長くする必要が生じ、撮像光学系103の全長が大きくなってしまう。
 また、本実施形態の測距装置100では、撮像光学系103において、第3レンズ群G13と第4レンズ群G14との間に、ダイクロイックプリズム111を配置している。撮像光学系103を望遠端状態として目標物体までの距離を測定する際、送信光学系101と受信光学系102とがダイクロイックプリズム111を共有して構成される。本実施形態の測距装置100では、第3レンズ群G13と第4レンズ群G14の間に、波長域によって反射と透過の光路を分岐するダイクロイックプリズム111を配置することで、高出力のレーザを光源として用いることも可能となる。また、ダイクロイックプリズム111で比較的長波側の光を反射させることで、撮像素子112には、長波側の光が低減されて入ることとなり、撮像素子112上において赤色の色付きが軽減される。なお、ダイクロイックプリズム111を第2レンズ群G12と第3レンズ群G13の間に配置してしまうと、ズーミング中にプリズムによる色収差が発生する可能性もある。したがって、ダイクロイックプリズム111は、第3レンズ群G13と第4レンズ群G14との間に配置されるのが望ましい。
 また、本実施形態の測距装置100では、上述した第1の実施形態と同様に、上記条件式(7)を満足することが望ましい。そして、さらに効率よく光学性能と測角精度を適合させるには、上記条件式(8)を満足することが望ましい。
(第2の実施形態に係る第3実施例)
 次に、第2の実施形態に係る第3実施例を説明する。図9は、第3実施例による測距装置100の構成を説明する図である。第3実施例による撮像光学系103は、物体側から順に、正の屈折力を有する第1レンズ群G11と、負の屈折力を有する第2レンズ群G12と、開口絞りSと、正の屈折力を有する第3レンズ群G13と、ダイクロイックプリズム111と、負の屈折力を有する第4レンズ群G14と、IRカットフィルタFとから構成されている。なお、撮像素子112の撮像面を像面Iとして記している。画像処理装置120などについては、ここでは図示は省略する。
 第1レンズ群G11は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL111および両凸形状の正レンズL112の接合よりなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL113と、から構成されている。
 第2レンズ群G12は、物体側より順に、両凹(物体側には凹面を向けた)形状の負レンズL121と、両凹形状の負レンズL122および物体側に凸面を向けた正メニスカスレンズL123の接合よりなる接合負レンズと、から構成されている。第2レンズ群G12と第3レンズ群G13の間には、開口絞りSが設置されている。
 第3レンズ群G13は、物体側より順に、両凸形状の正レンズL131と、物体側に凸面を向けた負メニスカスレンズL132および両凸形状の正レンズL133の接合よりなる接合正レンズと、から構成されている。第3レンズ群G13と第4レンズ群G14との間にダイクロイックプリズム111が配置されている。なお、ダイクロイックプリズム111は、図では省略した形で描かれている。
 第4レンズ群G14は、物体側より順に、正の屈折力を有するレンズ群G14aと、負の屈折力を有するレンズ群G14bと、正の屈折力を有するレンズ群G14cと、から構成されている。レンズ群G14aは、物体側より順に、物体側に凸面を向けた正メニスカスレンズL141と物体側に凸面を向けた負メニスカスレンズL142との接合よりなる接合正レンズから構成されている。レンズ群G14bは、物体側より順に、両凸形状の正レンズL143と両凹形状の負レンズL144との接合よりなる接合負レンズから構成されている。レンズ群G14cは、物体側に凸面を向けた正メニスカスレンズL145から構成されている。さらに本実施例では、IRカットフィルタFも配置されているが、これは必要に応じての配置となる。
 撮像光学系103を望遠端状態として距離を測定する際、目標物体が無限遠に近い状態を想定しているが、もし目標物体が近距離にある場合は、撮像光学系103の第4レンズ群G14中の負の屈折力を有するレンズ群G14bを内焦レンズとして光軸方向に移動させることで、撮像素子112の撮像面(像面I)でピントが合うように調整可能である。
 以下の表7~表10に、第3実施例に係る撮像光学系103の諸元の値を示す。以下の表において、(絞り)は開口絞りS、(プリズム)はダイクロイックプリズム111、(フィルタ)はIRカットフィルタF、像面は像面Iをそれぞれ示している。また、fは焦点距離、FNOはFナンバー、Yは像高、Bfはバックフォーカスをそれぞれ示す。以上の記号は、以降の他の実施例においても同様とし説明を省略する。
[表7](レンズデータ)
Figure JPOXMLDOC01-appb-I000019
[表8](各種データ)
Figure JPOXMLDOC01-appb-I000020
[表9](各レンズ群のデータ)
Figure JPOXMLDOC01-appb-I000021
[表10](条件式対応値)
Figure JPOXMLDOC01-appb-I000022
 表10に示すように、第3実施例は、上述した条件式(7)、(8)、(15)~(19)を満足する。また、図10は、第3実施例による撮像光学系103の望遠端および広角端における球面収差、非点収差、歪曲収差および横収差を示す図である。図10によれば、第3実施例による撮像光学系103では、望遠端および広角端のいずれにおいても、種々の収差が補正され、良好な光学性能が確保されていることがわかる。
(第2の実施形態に係る第4実施例)
 次に、第2の実施形態に係る第4実施例を説明する。図11は、第4実施例による測距装置100の構成を説明する図である。第4実施例による撮像光学系103は、物体側から順に、正の屈折力を有する第1レンズ群G11と、負の屈折力を有する第2レンズ群G12と、開口絞りSと、正の屈折力を有する第3レンズ群G13と、ダイクロイックプリズム111と、負の屈折力を有する第4レンズ群G14とから構成されている。なお、撮像素子112の撮像面を像面Iとして記している。画像処理装置120などについては、ここでは図示は省略する。
 第1レンズ群G11は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL111および両凸形状の正レンズL112の接合よりなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL113と、から構成されている。
 第2レンズ群G12は、物体側より順に、両凹(物体側には凹面を向けた)形状の負レンズL121と、両凹形状の負レンズL122および物体側に凸面を向けた正メニスカスレンズL123の接合よりなる接合負レンズと、から構成されている。第2レンズ群G12と第3レンズ群G13の間には、開口絞りSが設置されている。
 第3レンズ群G13は、物体側より順に、両凸形状の正レンズL131と、物体側に凸面を向けた負メニスカスレンズL132および物体側に凸面を向けた正メニスカスレンズL133との接合よりなる接合正レンズと、から構成されている。第3レンズ群G13と第4レンズ群G14との間にダイクロイックプリズム111が配置されている。なお、ダイクロイックプリズム111は、図では省略した形で描かれている。
 第4レンズ群G14は、物体側より順に、正の屈折力を有するレンズ群G14aと、負の屈折力を有するレンズ群G14bと、正の屈折力を有するレンズ群G14cと、から構成されている。レンズ群G14aは、物体側より順に、物体側に凸面を向けた正メニスカスレンズL141と物体側に凸面を向けた負メニスカスレンズL142との接合よりなる接合正レンズから構成されている。レンズ群G14bは、物体側より順に、両凸形状の正レンズL143と両凹形状の負レンズL144との接合よりなる接合負レンズから構成されている。レンズ群G14cは、物体側に凸面を向けた正メニスカスレンズL145から構成されている。さらに本実施例では、IRカットフィルタFは配置されていない例を示す。
 なお、撮像光学系103を望遠端状態として距離を測定する際、目標物体が無限遠に近い状態を想定しているが、もし目標物体が近距離にある場合は、撮像光学系103の第4レンズ群G14中の負の屈折力を有するレンズ群G14bを内焦レンズとして光軸方向に移動させることで、撮像素子112の撮像面でピントが合うように調整可能である。
 以下の表11~14に第4実施例に係る撮像光学系103の諸元の値を示す。
[表11](レンズデータ)
Figure JPOXMLDOC01-appb-I000023
[表12](各種データ)
Figure JPOXMLDOC01-appb-I000024
[表13](各レンズ群のデータ)
Figure JPOXMLDOC01-appb-I000025
[表14](条件式対応値)
Figure JPOXMLDOC01-appb-I000026
 表14に示すように、第4実施例は、上述した条件式(7)、(8)、(15)~(19)を満足する。また、図12は、第4実施例による撮像光学系103の望遠端および広角端における球面収差、非点収差、歪曲収差および横収差を示す図である。図12によれば、第4実施例による撮像光学系103では、望遠端および広角端のいずれにおいても、種々の収差が補正され、良好な光学性能が確保されていることがわかる。
(第2の実施形態に係る第5実施例)
 次に、第2の実施形態に係る第5実施例を説明する。図13は、第5実施例による測距装置100の構成を説明する図である。第5実施例による撮像光学系103は、物体側から順に、正の屈折力を有する第1レンズ群G11と、負の屈折力を有する第2レンズ群G12と、開口絞りSと、正の屈折力を有する第3レンズ群G13と、ダイクロイックプリズム111と、負の屈折力を有する第4レンズ群G14と、IRカットフィルタFとから構成されている。なお、撮像素子112の撮像面を像面Iとして記している。画像処理装置120などについては、ここでは図示は省略する。
 第1レンズ群G11は、物体側より順に、物体側に凸面を向けた負メニスカスレンズL111および両凸形状の正レンズL112の接合よりなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL113と、から構成されている。
 第2レンズ群G12は、物体側より順に、両凹(物体側には凹面を向けた)形状の負レンズL121と、両凹形状の負レンズL122および物体側に凸面を向けた正メニスカスレンズL123の接合よりなる接合負レンズと、から構成されている。第2レンズ群G12と第3レンズ群G13の間には、開口絞りSが設置されている。
 第3レンズ群G13は、物体側より順に、両凸形状の正レンズL131と、物体側に凸面を向けた負メニスカスレンズL132および両凸形状の正レンズL133の接合よりなる接合正レンズと、から構成されている。第3レンズ群G13と第4レンズ群G14との間にダイクロイックプリズム111が配置されている。なお、ダイクロイックプリズム111は、図では省略した形で描かれている。
 第4レンズ群G14は、物体側より順に、正の屈折力を有するレンズ群G14aと、負の屈折力を有するレンズ群G14bと、正の屈折力を有するレンズ群G14cと、から構成されている。レンズ群G14aは、物体側より順に、両凸形状の正レンズL141と両凹形状の負レンズL142との接合よりなる接合正レンズから構成されている。レンズ群G14bは、物体側より順に、両凸形状の正レンズL143と両凹形状の負レンズL144との接合よりなる接合負レンズから構成されている。レンズ群G14cは、物体側に凸面を向けた正メニスカスレンズL145から構成されている。さらに第5実施例では、IRカットフィルタFも配置されている。
 以下の表15~18に第5実施例に係る撮像光学系103の諸元の値を示す。
[表15](レンズデータ)
Figure JPOXMLDOC01-appb-I000027
[表16](各種データ)
Figure JPOXMLDOC01-appb-I000028
[表17](各レンズ群のデータ)
Figure JPOXMLDOC01-appb-I000029
[表18](条件式対応値)
Figure JPOXMLDOC01-appb-I000030
 表18に示すように、第5実施例は、上述した条件式(7)、(8)、(15)~(19)を満足する。また、図14は、第5実施例による撮像光学系103の望遠端および広角端における球面収差、非点収差、歪曲収差および横収差を示す図である。図14によれば、第5実施例による撮像光学系103では、望遠端および広角端のいずれにおいても、種々の収差が補正され、良好な光学性能が確保されていることがわかる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)測距装置100は、目標物体へ測定光を照射する送信光学系101と、目標物体によって測定光が反射または散乱された受信光を受光する受信光学系102と、目標物体の像を結像させる撮像光学系103と、撮像光学系103により結像された目標物体の像を撮像する撮像素子112と、を備え、撮像光学系103と送信光学系101と受信光学系102とは、目標物体に向けられる対物光学系104を同軸で共有し、撮像光学系103は、変倍機能を有するようにした。これにより、望遠状態と広角状態との視差なく、目標物体の像を使用者に観察させることができる。
(2)測距装置100において、撮像光学系103は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G11と、負の屈折力を有する第2レンズ群G12と、正の屈折力を有する第3レンズ群G13と、負の屈折力を有する第4レンズ群G14と、から構成されるようにした。そして、広角端状態から望遠端状態への変倍に際し、第2レンズ群G12と第3レンズ群G13とが光軸方向に沿って移動するようにした。このような構成により、測距装置100において、撮像光学系103は、10倍以上の高いズーム比を確保することができる。
(3)測距装置100では、第3レンズ群G13と第4レンズ群G14との間に、光源110から射出された測定光を対物光学系104へ導き、且つ対物光学系104を透過した受信光を受光素子113へ導くダイクロイックプリズム111を配置するようにした。
 たとえば、特許第4343648号公報に開示されている従来の測距装置では、分岐プリズムを用いて、目標物体からの光束を、測距用のイメージセンサ側に入射する光と、接眼レンズ側へ入射する光とを分岐している。分岐プリズムにおける光量の分岐の割合は不明であるが、イメージセンサへ入射する光量が低下してしまい位置検出手段による測定不良の原因となる可能性がある。また、分岐プリズムでは波長による分岐を行っていないため、測定光を射出する光源としてレーザを用いてしまうと接眼レンズ側にもレーザ光が入射してしまい、比較的強度とされるレーザ光では使用者が接眼レンズを覗きながらの視準(手動)は不可能となってしまう。
 これに対して、本実施形態では、ダイクロイックプリズム111によって、測距用の受光素子113が受光する受信光と目標物体の像を使用者が確認するための撮像素子112が受光する目標物体からの可視光とを波長によって分別するようにした。したがって、波長による分岐を行っていない分岐プリズムを用いる場合と比較して、受信光の光量の低下を小さくすることができる。また、測定光が撮像素子112側に入射するのを防止できるので、高出力のレーザ光を測定光として用いることもできる。
-変形例-
 上述した第1の実施形態では、光源12から射出された測定光を目標物体へ導く反射鏡10と受信光を受光素子14へ導くダイクロイックプリズム13とを設ける例について説明した。しかしながら、上述した第1の実施形態においても、上述した第2の実施形態と同様に、光源から射出された測定光を目標物体へ導き、且つ受信光を受光素子へ導くダイクロイックプリズム111を設けるようにしてもよい。
 また、上述した第2の実施形態においても、上述した第1の実施形態と同様に、光源12から射出された測定光を目標物体へ導く反射鏡10と受信光を受光素子14へ導くダイクロイックプリズム13とを設けるようにしてもよい。
 また、上述した実施の形態による測距装置100を用いた測距方法は、以下のように言い換えることができる。測距方法は、測距装置100における撮像光学系103を広角状態として目標物体の像を観察してから、撮像光学系103を望遠状態として測距装置100から目標物体までの距離を測定する。
 以上の説明はあくまで一例であり、上述した構成に何ら限定されるものではなく、種々の態様を変更してもよい。例えば、各レンズ群を構成するレンズ数や、各レンズの曲率半径、面間隔、硝材等を適宜変更してもよい。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2013年第76811号(2013年4月2日出願)
1,100…測距装置、2,103…撮像光学系、3,101…送信光学系、4,102…受信光学系、5,104…対物光学系、7,112…撮像素子、13,111…ダイクロイックプリズム、20…変倍光学系

Claims (9)

  1.  目標物体へ測定光を照射する送信光学系と、
     前記目標物体によって前記測定光が反射または散乱された受信光を受光する受信光学系と、
     前記目標物体の像を結像させる撮像光学系と、
     前記撮像光学系により結像された前記目標物体の像を撮像する撮像素子と、
     を備え、
     前記撮像光学系は、変倍機能を有する測距装置。
  2.  請求項1に記載の測距装置において、
     前記撮像光学系内に配置され、前記送信光学系から照射された前記測定光を前記目標物体へ導く第1反射部材と、
     前記撮像光学系内に配置され、前記受信光を前記受信光学系へ導く第2反射部材と、
     をさらに備え、
     前記撮像光学系は、前記第1反射部材および前記第2反射部材よりも像側に配置された変倍光学系を有する測距装置。
  3.  請求項2に記載の測距装置において、
     前記撮像素子の大きさをIsとし、前記撮像素子の1画素の大きさをpとし、前記撮像光学系の最大半画角をωとすると、以下の条件式(1)を満たす測距装置。
    Figure JPOXMLDOC01-appb-M000001
  4.  請求項3に記載の測距装置において、
     前記変倍光学系は、物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、から構成され、前記第1レンズ群の焦点距離をf1、前記第2レンズ群の焦点距離をf2、広角端における前記変倍光学系の倍率をβw、望遠端における前記変倍光学系の倍率をβtとすると、以下の条件式(2)および(3)を満たす測距装置。
     1.1< |βt/βw| <2.5 …(2)
     1 < |f1/f2| <2.5 …(3)
  5.  請求項4に記載の測距装置において、
     前記撮像光学系の光学全長をTLとし、前記変倍光学系の広角端における光学全長をWTLとすると、以下の条件式(4)を満たす測距装置。
     0 < WTL/TL < 0.5 …(4)
  6.  請求項1に記載の測距装置において、
     前記撮像光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、から構成され、広角端状態から望遠端状態への変倍に際し、前記第2レンズ群と前記第3レンズ群とが光軸方向に沿って移動し、
     前記第3レンズ群と前記第4レンズ群との間には、前記受信光を前記受信光学系へ導く反射部材が配置される測距装置。
  7.  請求項6に記載の測距装置において、
     前記撮像光学系のズーム比は10倍以上であり、
     前記第1レンズ群の焦点距離をf11とし、前記第2レンズ群の焦点距離をf12とし、前記撮像光学系の望遠端状態における、前記第1レンズ群と前記第2レンズ群と前記第3レンズ群とを合わせた合成焦点距離をf123tとし、前記撮像光学系の望遠端状態における、前記撮像光学系全系の焦点距離をftとすると、以下の条件式(5)および(6)を満たす測距装置。
     |f11/f12|>5.6 …(5)
     0.5<|f123t/ft|<0.7 …(6)
  8.  請求項6または7に記載の測距装置において、
     前記第3レンズ群の焦点距離をf13とし、前記第4レンズ群の焦点距離をf14とすると、以下の条件式(7)を満たす測距装置。
     3<|f14/f13|<3.5 …(7)
  9.  請求項6~8のいずれか一項に記載の測距装置において、
     前記撮像素子の大きさをIsとし、前記撮像素子の1画素の大きさをpとし、前記撮像光学系の最大半画角をωとすると、以下の条件式(8)を満たす測距装置。
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2014/059032 2013-04-02 2014-03-27 測距装置 WO2014162991A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-076811 2013-04-02
JP2013076811A JP2016114355A (ja) 2013-04-02 2013-04-02 測距装置

Publications (1)

Publication Number Publication Date
WO2014162991A1 true WO2014162991A1 (ja) 2014-10-09

Family

ID=51658289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059032 WO2014162991A1 (ja) 2013-04-02 2014-03-27 測距装置

Country Status (2)

Country Link
JP (1) JP2016114355A (ja)
WO (1) WO2014162991A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526613A (zh) * 2016-12-21 2017-03-22 苏州穿山甲机器人股份有限公司 机器人的大面积防撞机构
US11215445B2 (en) * 2019-03-19 2022-01-04 Ricoh Company, Ltd. Optical apparatus and distance measuring system
CN116500587A (zh) * 2023-06-25 2023-07-28 成都量芯集成科技有限公司 可调激光测距系统
JP7403328B2 (ja) 2020-01-22 2023-12-22 株式会社トプコン 測量装置
WO2024010062A1 (ja) * 2022-07-07 2024-01-11 株式会社ニコン 光学系、光学装置、および光学系の製造方法
WO2024010090A1 (ja) * 2022-07-07 2024-01-11 株式会社ニコン 光学系、光学装置、および光学系の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067361A (ja) * 2018-10-24 2020-04-30 パイオニア株式会社 測距装置、測距方法、プログラム及び記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123788A (ja) * 1983-12-07 1985-07-02 Nissan Riyokuka Kk 自動測量方法およびその装置
JP2006105769A (ja) * 2004-10-05 2006-04-20 Nikon Vision Co Ltd 測距装置
JP2010243236A (ja) * 2009-04-02 2010-10-28 Nikon-Trimble Co Ltd 測距装置
JP2012163616A (ja) * 2011-02-03 2012-08-30 Nikon Corp 顕微鏡用ズームレンズおよび顕微鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123788A (ja) * 1983-12-07 1985-07-02 Nissan Riyokuka Kk 自動測量方法およびその装置
JP2006105769A (ja) * 2004-10-05 2006-04-20 Nikon Vision Co Ltd 測距装置
JP2010243236A (ja) * 2009-04-02 2010-10-28 Nikon-Trimble Co Ltd 測距装置
JP2012163616A (ja) * 2011-02-03 2012-08-30 Nikon Corp 顕微鏡用ズームレンズおよび顕微鏡

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106526613A (zh) * 2016-12-21 2017-03-22 苏州穿山甲机器人股份有限公司 机器人的大面积防撞机构
CN106526613B (zh) * 2016-12-21 2023-10-13 苏州穿山甲机器人股份有限公司 机器人的大面积防撞机构
US11215445B2 (en) * 2019-03-19 2022-01-04 Ricoh Company, Ltd. Optical apparatus and distance measuring system
JP7403328B2 (ja) 2020-01-22 2023-12-22 株式会社トプコン 測量装置
WO2024010062A1 (ja) * 2022-07-07 2024-01-11 株式会社ニコン 光学系、光学装置、および光学系の製造方法
WO2024010090A1 (ja) * 2022-07-07 2024-01-11 株式会社ニコン 光学系、光学装置、および光学系の製造方法
CN116500587A (zh) * 2023-06-25 2023-07-28 成都量芯集成科技有限公司 可调激光测距系统
CN116500587B (zh) * 2023-06-25 2023-08-22 成都量芯集成科技有限公司 可调激光测距系统

Also Published As

Publication number Publication date
JP2016114355A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
WO2014162991A1 (ja) 測距装置
US10895720B2 (en) Imaging optical system, microscope apparatus including the imaging optical system, and stereoscopic microscope apparatus
US7999924B2 (en) Range binoculars
JPH09222563A (ja) 反射型の光学系及びそれを用いた撮像装置
WO2018047335A1 (ja) 立体視内視鏡
US9709790B2 (en) Immersion microscope objective and microscope using the same
CN116500587B (zh) 可调激光测距系统
JP7026933B2 (ja) 撮像光学系および撮像装置
JP2009008701A (ja) 照明装置及びこの照明装置を備えたズーム顕微鏡
US10473905B2 (en) Microscope having an optical coherence tomography device
US11237399B2 (en) Optical beam shaping unit, distance measuring device and laser illuminator
JP5409580B2 (ja) レーザー距離計
JP5624727B2 (ja) 測距装置
US7466481B2 (en) Binocular with disparate fields of view
RU2498363C1 (ru) Зеркально-линзовый объектив
EP2244060B1 (en) Range binoculars
JP2005031449A (ja) 偏心光学系、送光装置、受光装置および光学システム
RU2302021C1 (ru) Объектив
WO2020183622A1 (ja) 光学系及びそれを備えた光学装置
JP2015184544A (ja) 反射屈折光学系及びそれを有する撮像装置
CN115327755A (zh) 光学放大系统
RU2392647C1 (ru) Оптическая система
RU2302024C1 (ru) Окуляр
JP2020177095A (ja) 観察光学系
JP2017021310A (ja) ファインダー光学系及びそれを有する撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP