WO2024010062A1 - 光学系、光学装置、および光学系の製造方法 - Google Patents

光学系、光学装置、および光学系の製造方法 Download PDF

Info

Publication number
WO2024010062A1
WO2024010062A1 PCT/JP2023/025109 JP2023025109W WO2024010062A1 WO 2024010062 A1 WO2024010062 A1 WO 2024010062A1 JP 2023025109 W JP2023025109 W JP 2023025109W WO 2024010062 A1 WO2024010062 A1 WO 2024010062A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens group
optical
focal length
conditional expression
Prior art date
Application number
PCT/JP2023/025109
Other languages
English (en)
French (fr)
Inventor
孝道 倉茂
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2024010062A1 publication Critical patent/WO2024010062A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives

Definitions

  • the present disclosure relates to an optical system, an optical device, and a method for manufacturing an optical system.
  • the optical system of the present disclosure includes, in order from the object side, a front lens group and an optical path branching member having a branching surface that transmits a part of incident light and reflects at least another part different from the part of the incident light. and a first rear lens group into which one of the transmitted light and the reflected light is incident, a front lens group, and an optical path branching member, in order from the object side. and a second rear lens group into which the other of the transmitted light and the reflected light enters, and satisfies the following conditional expression.
  • T(gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f(gr1) Composite focal length of the front lens group
  • the optical system of the present disclosure includes, in order from the object side, a front lens group, a prism having a branching surface that transmits part of the incident light and reflects at least another part different from the part of the incident light; a first optical system having a first rear lens group into which one of the transmitted light and the reflected light is incident; a front lens group; a prism; and the transmitted light, in order from the object side. and a second rear lens group into which the other of the reflected light enters, the total optical length of the first optical system being longer than the total optical length of the second optical system. , both satisfy the following conditional expressions.
  • the optical total length is the length obtained by adding the back focus in air equivalent length to the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image plane side.
  • f (fL) Focal length of the first optical system and second optical system Longer focal length of the system
  • the optical system of the present disclosure includes, in order from the object side, a front lens group, a prism having a branching surface that transmits part of the incident light and reflects at least another part different from the part of the incident light; a first optical system having a first rear lens group into which one of the transmitted light and the reflected light is incident; a front lens group; a prism; and the transmitted light, in order from the object side. and a second rear lens group into which the other of the reflected light enters, the total optical length of the first optical system being longer than the total optical length of the second optical system. , both satisfy the following conditional expressions.
  • T (gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f (fS) Focal length of the first optical system and second optical system
  • T (pfS) Length on the optical axis of the prism in the optical system with the shorter focal length among the first optical system and the second optical system
  • the method for manufacturing an optical system of the present disclosure includes, in order from the object side, a front lens group and a branching surface that transmits a part of incident light and reflects at least another part different from the part of the incident light.
  • a first optical system including an optical path branching member, a first rear lens group into which one of the transmitted light and the reflected light is incident, a front lens group, and an optical path branching member in order from the object side. and a second rear lens group into which the other of the transmitted light and the reflected light enters, the total optical length of the first optical system being equal to the second optical system.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of an optical system of a first example.
  • FIG. 3 is a cross-sectional view of the first optical system included in the optical system of the first embodiment.
  • FIG. 3 is a diagram showing various aberrations of the first optical system included in the optical system of the first example.
  • FIG. 3 is a sectional view of a second optical system included in the optical system of the first embodiment.
  • FIG. 7 is a diagram showing various aberrations of the second optical system included in the optical system of the first embodiment.
  • FIG. 7 is a cross-sectional view of the first optical system included in the optical system of the second embodiment.
  • FIG. 7 is a diagram showing various aberrations of the first optical system included in the optical system of the second example.
  • FIG. 7 is a cross-sectional view of a second optical system included in the optical system of the second embodiment.
  • FIG. 7 is a diagram showing various aberrations of the second optical system included in the optical system of the second example.
  • FIG. 7 is a cross-sectional view of the first optical system included in the optical system of the third embodiment.
  • FIG. 7 is a diagram showing various aberrations of the first optical system included in the optical system of the third example.
  • FIG. 7 is a cross-sectional view of a second optical system included in the optical system of the third embodiment.
  • FIG. 7 is a diagram showing various aberrations of the second optical system included in the optical system of the third example.
  • FIG. 7 is a schematic diagram illustrating a schematic configuration of an optical system of a fourth example.
  • FIG. 7 is a cross-sectional view of the first optical system included in the optical system of the fourth embodiment.
  • FIG. 7 is a diagram showing various aberrations of the first optical system included in the optical system of the fourth example.
  • FIG. 7 is a cross-sectional view of a second optical system included in the optical system of the fourth embodiment.
  • FIG. 7 is a diagram showing various aberrations of the second optical system included in the optical system of the fourth example.
  • FIG. 7 is a schematic diagram illustrating a schematic configuration of an optical system of a fifth example. It is a sectional view of the first optical system included in the optical system of the fifth example.
  • FIG. 7 is a diagram of various aberrations of the first optical system included in the optical system of the fifth example.
  • FIG. 7 is a cross-sectional view of a second optical system included in the optical system of the fifth embodiment.
  • FIG. 7 is a diagram of various aberrations of the second optical system included in the optical system of the fifth example.
  • FIG. 1 is a schematic diagram of an optical device equipped with an optical system of this embodiment. 1 is a flowchart illustrating an outline of a method for manufacturing an optical system according to the present embodiment.
  • the optical system of this embodiment includes, in order from the object side, a front lens group and an optical path branching surface that transmits a part of incident light and reflects at least another part different from the part of the incident light.
  • a first optical system including a member, a first rear lens group into which one of transmitted light and reflected light is incident, a front lens group, and an optical path branching member in order from the object side.
  • a second rear lens group into which the other of the transmitted light and the reflected light enters, and satisfies the following conditional expression.
  • T(gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f(gr1) Composite focal length of the front lens group
  • the entire optical system can be downsized by using the front lens group in the first optical system and the second optical system.
  • Conditional expression (18) defines the ratio of the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group and the composite focal length of the front lens group. do.
  • the optical system of this embodiment suppresses an increase in the lens diameter of the lens closest to the object, while suppressing an increase in the total optical length in the first optical system and the second optical system. It is possible to suppress and appropriately correct various aberrations such as field curvature and distortion.
  • conditional expression (18) if the value of conditional expression (18) exceeds the upper limit, the lens diameter of the lens closest to the object side becomes too large, and various aberrations such as field curvature, astigmatism, and distortion are corrected. becomes difficult.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (18) to 3.80, 3.20, and further 2.60.
  • conditional expression (18) if the value of conditional expression (18) is below the lower limit, the lens diameter of the lens closest to the object will become too large, and it will be difficult to correct various aberrations such as field curvature and distortion. becomes.
  • Conditional expression (19) is the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group, and the distance on the optical axis from the lens surface closest to the object side of the front lens group, and the distance The ratio of the negative lens arranged on the side to the composite focal length of the negative lens arranged continuously on the image plane side is defined.
  • the optical system of the present embodiment suppresses an increase in the lens diameter of the lens closest to the object, suppresses an increase in the total optical length in the first optical system, and suppresses an increase in the image plane.
  • Various aberrations such as curvature and distortion can be appropriately corrected.
  • conditional expression (19) exceeds the upper limit in the optical system of this embodiment, the total optical length of the first optical system becomes too large, and it becomes difficult to correct various aberrations such as field curvature and distortion.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (19) to 3.80, 3.10, and further 2.40.
  • conditional expression (19) if the value of conditional expression (19) is below the lower limit, the lens diameter of the lens closest to the object side becomes too large, and it is difficult to correct various aberrations such as field curvature and distortion. becomes.
  • Conditional expression (26) defines the ratio of the total optical length of the first optical system to the total optical length of the second optical system.
  • conditional expression (26) if the value of conditional expression (26) exceeds the upper limit, the total optical length of the first optical system becomes too large, and it becomes difficult to correct various aberrations such as spherical aberration and coma aberration.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (26) to 2.80, 2.20, and further 1.60.
  • the optical system of this embodiment includes, in order from the object side, a front lens group, and a prism having a branching surface that transmits a part of the incident light and reflects at least another part that is different from the part of the incident light.
  • a first optical system having a first rear lens group into which one of the transmitted light and the reflected light is incident; a front lens group; a prism in order from the object side; a second rear lens group into which the other of the light and the reflected light enters, and the total optical length of the first optical system is longer than the total optical length of the second optical system. long, and both satisfy the following conditional expressions.
  • T (gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f (fL) Focal length of the first optical system and second optical system Longer focal length of the system
  • T (pfL) Length on the optical axis of the prism in the optical system with the longer focal length among the first optical system and the second optical system
  • the entire optical system can be downsized by using the front lens group in the first optical system and the second optical system.
  • Conditional expression (20) is based on the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group, the focal length of the first optical system, and the second optical system.
  • the ratio between the longer focal length of is based on the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group, the focal length of the first optical system, and the second optical system.
  • conditional expression (20) if the value of conditional expression (20) exceeds the upper limit, the total optical length of the longer focal length of the first optical system and the second optical system becomes too large, and curvature of field occurs. This makes it difficult to correct various aberrations such as distortion.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (20) to 4.70, 4.20, and further 3.80.
  • conditional expression (20) if the value of conditional expression (20) is below the lower limit, the lens diameter of the lens closest to the object will become too large, and it will be difficult to correct various aberrations such as field curvature and distortion. becomes.
  • Conditional expression (21) is based on the length on the optical axis of the prism in the optical system with the longer focal length among the first optical system and the second optical system, the focal length of the first optical system, and the focal point of the second optical system. Specify the ratio to the longer distance.
  • the optical system of the present embodiment suppresses an increase in the lens diameter of the lens closest to the object, and the optical system is capable of suppressing an increase in the lens diameter of the lens closest to the object side, while also suppressing the increase in the focal length of the first optical system and the second optical system. In this case, an increase in the total optical length can be suppressed, and various aberrations such as field curvature and distortion can be appropriately corrected.
  • conditional expression (21) if the value of conditional expression (21) exceeds the upper limit, the total optical length of the longer focal length of the first optical system and the second optical system becomes too large, and curvature of field occurs. This makes it difficult to correct various aberrations such as distortion.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (21) to 8.80, 7.10, and further 6.50.
  • conditional expression (21) if the value of conditional expression (21) is below the lower limit, it becomes difficult to correct various aberrations such as field curvature and distortion.
  • the optical system of this embodiment includes, in order from the object side, a front lens group, and a prism having a branching surface that transmits a part of the incident light and reflects at least another part that is different from the part of the incident light.
  • a first optical system having a first rear lens group into which one of the transmitted light and the reflected light is incident; a front lens group; a prism in order from the object side; a second rear lens group into which the other of the light and the reflected light enters, and the total optical length of the first optical system is longer than the total optical length of the second optical system. long, and both satisfy the following conditional expressions.
  • T (gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f (fS) Focal length of the first optical system and second optical system
  • T (pfS) Length on the optical axis of the prism in the optical system with the shorter focal length among the first optical system and the second optical system
  • the entire optical system can be downsized by using the front lens group in the first optical system and the second optical system.
  • Conditional expression (22) is based on the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group, the focal length of the first optical system, and the second optical system. and the shorter focal length of
  • the optical system of the present embodiment suppresses an increase in the total optical length of the first optical system and the second optical system, whichever has the shorter focal length, and also suppresses field curvature.
  • Various aberrations such as distortion can be appropriately corrected.
  • conditional expression (22) if the value of conditional expression (22) exceeds the upper limit, the total optical length of the shorter focal length of the first optical system and the second optical system becomes too large, and curvature of field occurs. This makes it difficult to correct various aberrations such as distortion.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (22) to 8.60, 7.70, and further 6.80.
  • conditional expression (22) if the value of conditional expression (22) is below the lower limit, the lens diameter of the lens closest to the object will become too large, and it will be difficult to correct various aberrations such as field curvature and distortion. becomes.
  • Conditional expression (23) is based on the length on the optical axis of the prism in the optical system with the shorter focal length among the first optical system and the second optical system, the focal length of the first optical system, and the focal point of the second optical system. Specify the ratio to the shorter of the distances.
  • the optical system of the present embodiment suppresses an increase in the total optical length of the first optical system and the second optical system, whichever has the shorter focal length, and also suppresses the curvature of field.
  • Various aberrations such as distortion can be appropriately corrected.
  • conditional expression (23) if the value of conditional expression (23) exceeds the upper limit, the total optical length of the one with the shorter focal length of the first optical system and the second optical system becomes too large, and the curvature of field increases. This makes it difficult to correct various aberrations such as distortion.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (23) to 19.00, 18.00, and further 17.00.
  • conditional expression (23) if the value of conditional expression (23) is below the lower limit, it becomes difficult to correct various aberrations such as field curvature and distortion.
  • T (pL) Length of the prism on the optical axis in the first optical system
  • T (pS) Length of the prism on the optical axis in the second optical system
  • Conditional expression (2) defines the ratio of the length of the prism on the optical axis in the first optical system to the length on the optical axis of the prism in the second optical system.
  • conditional expression (2) if the value of conditional expression (2) exceeds the upper limit, it becomes difficult to correct various aberrations such as spherical aberration and coma aberration.
  • conditional expression (2) if the value of conditional expression (2) is below the lower limit, it becomes difficult to correct various aberrations such as spherical aberration and coma aberration. Furthermore, the peripheral light flux of the first optical system is restricted, and the amount of peripheral light is reduced.
  • Conditional expression (12) defines the ratio between the length of the prism on the optical axis in the second optical system and the focal length of the second optical system.
  • the optical system of the present embodiment appropriately corrects various aberrations such as spherical aberration, coma aberration, and curvature of field while suppressing an increase in the total optical length in the second optical system. can do.
  • conditional expression (12) if the value of conditional expression (12) is less than the upper limit, the total optical length becomes too large in the second optical system, and various aberrations such as spherical aberration, coma aberration, and curvature of field cannot be corrected. It becomes difficult.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (12) to 5.70, 5.00, and even 4.40.
  • conditional expression (12) in the optical system of this embodiment falls below the lower limit, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and field curvature in the second optical system.
  • Conditional expression (13) defines the ratio between the length of the prism on the optical axis in the first optical system and the focal length of the second optical system.
  • conditional expression (13) if the value of conditional expression (13) is less than the upper limit, the total optical length in the first optical system becomes too large and correction of various aberrations such as spherical aberration, coma aberration, and curvature of field becomes difficult. It becomes difficult.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (13) to 19.00, 17.50, and further 16.50.
  • conditional expression (13) in the optical system of this embodiment falls below the lower limit, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and field curvature in the first optical system.
  • the prism preferably includes a total reflection surface that totally reflects at least light on the optical axis among the light reflected by the branching surface after passing through the front lens group.
  • the angle of incidence of the incident light on the branching surface can be reduced, and the difficulty in manufacturing the branching surface having a predetermined performance can be lowered.
  • Conditional expression (14) defines the ratio of the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group and the focal length of the second optical system. It is something to do.
  • conditional expression (14) the optical system of this embodiment suppresses an increase in the total optical length while appropriately correcting various aberrations such as spherical aberration, coma aberration, and curvature of field. can do.
  • conditional expression (14) if the value of conditional expression (14) is less than the upper limit, the total optical length becomes too large in the second optical system, and correction of various aberrations such as spherical aberration, coma aberration, and curvature of field becomes difficult. It becomes difficult.
  • conditional expression (14) in the optical system of this embodiment falls below the lower limit, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and field curvature in the second optical system.
  • Conditional expression (15) defines the ratio of the distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group and the focal length of the first optical system. It is something to do.
  • the optical system of this embodiment suppresses an increase in the total optical length while appropriately correcting various aberrations such as spherical aberration, coma aberration, and curvature of field. can do.
  • conditional expression (15) if the value of conditional expression (15) is less than the upper limit, the total optical length in the first optical system becomes too large and correction of various aberrations such as spherical aberration, coma aberration, and curvature of field becomes difficult. It becomes difficult.
  • conditional expression (15) in the optical system of this embodiment falls below the lower limit, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and field curvature in the first optical system.
  • Conditional expression (1) is the composite focal length of the negative lens placed closest to the object side among the negative lenses included in the front lens group, and the negative lens placed successively on the image plane side, and of the first optical system. Define the ratio to the focal length.
  • the optical system of this embodiment suppresses an increase in the lens diameter of the lens closest to the object, and appropriately reduces various aberrations such as field curvature, astigmatism, and distortion. Can be corrected.
  • conditional expression (1) when the value of conditional expression (1) exceeds the upper limit, the lens diameter of the lens closest to the object becomes too large, and various aberrations such as field curvature, astigmatism, and distortion are corrected. becomes difficult.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (1) to 3.80, 3.35, and further 2.90.
  • conditional expression (1) if the value of conditional expression (1) is below the lower limit, the total optical length of the second optical system becomes too large, and it becomes difficult to correct various aberrations such as spherical aberration and coma aberration. . Furthermore, the peripheral light flux of the first optical system is restricted, and the amount of peripheral light is reduced.
  • Conditional expression (3) is the composite focal length of the negative lens placed closest to the object side among the negative lenses included in the front lens group and the negative lens placed successively on the image plane side, and the second optical system. This defines the ratio to the focal length.
  • the optical system of this embodiment suppresses an increase in the lens diameter of the lens closest to the object, and appropriately reduces various aberrations such as field curvature, astigmatism, and distortion. Can be corrected.
  • conditional expression (3) if the value of conditional expression (3) exceeds the upper limit, the lens diameter of the lens closest to the object becomes too large, and various aberrations such as field curvature, astigmatism, and distortion are corrected. becomes difficult.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (3) to 4.00, 3.70, and further 3.40.
  • conditional expression (3) if the value of conditional expression (3) is below the lower limit, it becomes difficult to correct various aberrations such as field curvature, astigmatism, and distortion.
  • the second rear lens group has an aperture stop and satisfies the following conditional expression. (6) 0.50 ⁇ f(gr2S)/(-f(gr1)) ⁇ 3.40 however, f(gr2S): Composite focal length of the lens closer to the image plane than the aperture stop in the second rear lens group f(gr1): Composite focal length of the front lens group
  • Conditional expression (6) defines the ratio of the composite focal length of the lenses on the image plane side of the aperture stop in the second rear lens group and the composite focal length of the front lens group.
  • conditional expression (6) if the value of conditional expression (6) exceeds the upper limit, the refractive power of the lens on the image plane side of the aperture stop in the second optical system becomes weaker, and the total optical length becomes too large. It becomes difficult to correct various aberrations such as field curvature, coma aberration, and distortion aberration.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (6) to 3.10, 2.80, and further 2.50.
  • conditional expression (6) falls below the lower limit, the refractive power of the front lens group becomes weak, the lens diameter of the lens closest to the object becomes too large, and the second optical It becomes difficult to correct various aberrations such as field curvature and distortion in the system.
  • the first rear lens group has an aperture stop and satisfies the following conditional expression. (7) 0.40 ⁇ f(gr2L)/(-f(gr1)) ⁇ 4.20 however, f(gr2L): Composite focal length of the lens closer to the image plane than the aperture stop in the first rear lens group f(gr1): Composite focal length of the front lens group
  • Conditional expression (7) defines the ratio of the composite focal length of the lenses closer to the image plane than the aperture stop in the first rear lens group and the composite focal length of the front lens group.
  • conditional expression (7) if the value of conditional expression (7) exceeds the upper limit, the refractive power of the lens on the image plane side of the aperture stop in the first optical system becomes weaker, and the total optical length becomes too large. It becomes difficult to correct various aberrations such as field curvature, coma aberration, and distortion aberration.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (7) to 3.80, 3.50, and further 3.20.
  • conditional expression (7) falls below the lower limit, the refractive power of the front lens group becomes weak, the lens diameter of the lens closest to the object becomes too large, and the first optical It becomes difficult to correct various aberrations such as field curvature and distortion in the system.
  • Conditional expression (8) is based on the focal length of the lens closest to the image plane in the second rear lens group, and the focal length of the negative lens included in the front lens group that is located closest to the object side to the image plane side. This defines the ratio of the negative lens to the composite focal length of the negative lens arranged as follows.
  • the optical system of this embodiment suppresses an increase in the lens diameter of the lens closest to the object, suppresses an increase in the total optical length in the second optical system, and suppresses field curvature.
  • Various aberrations such as , coma, and distortion can be appropriately corrected.
  • conditional expression (8) if the value of conditional expression (8) falls below the upper limit, the refractive power of the lens closest to the image plane in the second optical system becomes weak, the total optical length becomes too large, and field curvature occurs. It becomes difficult to correct various aberrations such as , coma, and distortion.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (8) to 5.30, 4.80, and further 4.20.
  • conditional expression (8) if the value of conditional expression (8) falls below the lower limit, the refractive power of the front lens group becomes weak, the lens diameter of the lens closest to the object side becomes too large, and the second optical system It becomes difficult to correct various aberrations such as field curvature and distortion.
  • Conditional expression (9) is the focal length of the lens closest to the image plane in the first rear lens group, and the focal length of the lens closest to the object side of the negative lens included in the front lens group, which is continuous from the negative lens disposed closest to the object side to the image plane side. This defines the ratio of the negative lens to the composite focal length of the negative lens arranged as follows.
  • the optical system of this embodiment suppresses an increase in the lens diameter of the lens closest to the object side, suppresses an increase in the total optical length in the first optical system, and suppresses field curvature.
  • Various aberrations such as , coma, and distortion can be appropriately corrected.
  • conditional expression (9) if the value of conditional expression (9) is less than the upper limit, the refractive power of the lens closest to the image plane in the first optical system becomes weak, the total optical length becomes too large, and field curvature occurs. It becomes difficult to correct various aberrations such as , coma, and distortion.
  • the effects of this embodiment can be made more reliable. Furthermore, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (9) to 6.30, 5.00, and further 3.90.
  • conditional expression (9) falls below the lower limit, the refractive power of the front lens group becomes weak, the lens diameter of the lens closest to the object becomes too large, and the first optical system It becomes difficult to correct various aberrations such as field curvature and distortion.
  • the second rear lens group has an aperture stop and satisfies the following conditional expression. (10) 1.60 ⁇ f(gr2S)/f(S) ⁇ 5.60 however, f(gr2S): Combined focal length of the lens closer to the image plane than the aperture stop in the second rear lens group f(S): Focal length of the second optical system
  • Conditional expression (10) defines the ratio between the composite focal length of the lens on the image plane side of the aperture stop in the second rear lens group and the focal length of the second optical system.
  • conditional expression (10) the optical system of this embodiment suppresses an increase in the total optical length in the second optical system, and appropriately corrects various aberrations such as spherical aberration, coma aberration, and curvature of field. be able to.
  • conditional expression (10) falls below the upper limit, the refractive power of the lens on the image plane side of the aperture stop in the second optical system becomes weaker, and the total optical length becomes too large. It becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and curvature of field.
  • the effects of this embodiment can be made more reliable. Further, in order to further ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (10) to 5.00, 4.50, and further 3.90.
  • conditional expression (10) when the value of conditional expression (10) is less than the lower limit value, the refractive power of the lens on the image plane side is stronger than the aperture stop in the second optical system, and spherical aberration and It becomes difficult to correct various aberrations such as coma aberration and curvature of field.
  • the first rear lens group has an aperture stop and satisfies the following conditional expression. (11) 2.30 ⁇ f(gr2L)/f(L) ⁇ 8.80 however, f(gr2L): Composite focal length of the lens closer to the image plane than the aperture stop in the first rear lens group f(L): Focal length of the first optical system
  • Conditional expression (11) defines the ratio of the combined focal length of the lens closer to the image plane than the aperture stop in the first rear lens group and the focal length of the first optical system.
  • conditional expression (11) falls below the upper limit, the refractive power of the lens on the image plane side of the aperture stop in the first optical system becomes weaker, and the total optical length becomes too large. It becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and curvature of field.
  • conditional expression (11) when the value of conditional expression (11) is less than the lower limit value, the refractive power of the lens on the image plane side is stronger than the aperture stop in the first optical system, and spherical aberration and It becomes difficult to correct various aberrations such as coma aberration and curvature of field.
  • Conditional expression (17) defines the ratio of the focal length of the lens closest to the image plane in the second rear lens group to the focal length of the lens closest to the image plane in the first rear lens group. .
  • the optical system of this embodiment can reduce the deviation of the imaging position on the image plane with respect to a predetermined angle of view in the first optical system and the second optical system.
  • conditional expression (17) falls below the upper limit, it becomes difficult to correct the distortion aberration of the first optical system and the second optical system so that their respective distortion aberrations approach each other.
  • the deviation of the imaging position on the image plane with respect to a predetermined angle of view in the system becomes large.
  • the effects of this embodiment can be made more reliable. Further, in order to ensure the effects of this embodiment, it is preferable to set the upper limit of conditional expression (17) to 1.40, 1.30, and further 1.20.
  • conditional expression (17) falls below the lower limit, it becomes difficult to correct the distortion aberration of the first optical system and the second optical system so that their respective distortion aberrations become close to each other.
  • the deviation of the imaging position on the image plane with respect to a predetermined angle of view in the system becomes large.
  • f(gr1p) Synthetic focal length of the positive lens placed closest to the object side among the positive lenses included in the front lens group and the positive lens placed successively on the image plane side.
  • Conditional expression (5) is the composite focal length of the negative lens that is placed in succession from the negative lens that is placed closest to the object side to the image plane side among the negative lenses that are included in the front lens group, and the negative lens that is included in the front lens group. This defines the ratio of the positive lens placed closest to the object side to the composite focal length of the positive lenses placed successively on the image plane side.
  • conditional expression (5) when the value of conditional expression (5) exceeds the upper limit, the angle of incidence on the branching surface becomes too large, making it difficult to manufacture a branching surface with a predetermined performance.
  • conditional expression (5) falls below the lower limit, the refractive power of the front lens group becomes weak, the lens diameter of the lens closest to the object becomes too large, and the field curvature occurs. , it becomes difficult to correct various aberrations such as distortion.
  • Conditional expression (16) defines the average refractive index for the s-line of the negative lens included in the front lens group.
  • the optical system of this embodiment can appropriately correct various aberrations such as distortion and field curvature by satisfying conditional expression (16).
  • conditional expression (16) falls below the upper limit, the refractive power for the s-line of the negative lens included in the front lens group becomes too strong, resulting in various aberrations such as distortion and curvature of field. It becomes difficult to correct.
  • conditional expression (16) if the value of conditional expression (16) is below the lower limit, the refractive power for the s-line of the negative lens included in the front lens group becomes too weak, resulting in various aberrations such as distortion and curvature of field. It becomes difficult to correct.
  • the front lens group has negative refractive power.
  • the front lens group each have one or more positive lenses and one or more negative lenses.
  • the optical system of this embodiment can appropriately correct various aberrations such as field curvature and astigmatism.
  • the first optical system and the second optical system each have a positive lens closest to the image plane.
  • the optical system of this embodiment can satisfactorily correct various aberrations such as distortion, field curvature, astigmatism, and coma.
  • Conditional expression (24) defines the entire angle of view of the first optical system.
  • the optical system of this embodiment can obtain an image representing a wide range by the first optical system by satisfying conditional expression (24).
  • conditional expression (24) if the value of conditional expression (24) is below the lower limit, it is not possible to obtain an image representing a wide range with the first optical system.
  • Conditional expression (25) defines the entire angle of view of the second optical system.
  • the optical system of this embodiment can obtain an image representing a wider range by the second optical system by satisfying conditional expression (25).
  • conditional expression (25) if the value of conditional expression (25) is below the lower limit, it is not possible to obtain an image representing a wide range with the second optical system.
  • one of the transmitted light and the reflected light is visible light, and the other is near-infrared light, and among the first optical system and the second optical system,
  • the optical system that uses visible light from the branching surface to the image plane side has a cemented lens, and the optical system that uses near-infrared light from the branching surface to the image plane side consists of only a single lens.
  • the optical system that uses visible light from the branching surface to the image plane side has a cemented lens, so that chromatic aberration can be appropriately corrected.
  • the optical system that uses near-infrared light from the branching surface to the image plane side is configured with only a single lens, so that the optical system can be miniaturized.
  • the optical device of this embodiment has an optical system configured as described above. As a result, it is possible to realize an optical device that can appropriately form images of the incident light transmitted by the branching surface and the light reflected by the branching surface, and perform processing using each image. can.
  • the method for manufacturing an optical system of the present disclosure includes, in order from the object side, a front lens group and a branching surface that transmits a part of incident light and reflects at least another part different from the part of the incident light.
  • a first optical system including an optical path branching member, a first rear lens group into which one of the transmitted light and the reflected light enters, a front lens group, and an optical path branching member in order from the object side.
  • a method for manufacturing an optical system comprising: a member; and a second rear lens group into which the other of the transmitted light and the reflected light enters, the method comprising: a first optical system;
  • Each lens group and the optical path branching member are arranged so that the total optical length of the system is equal to or longer than the total optical length of the second optical system, and the following conditional expression is satisfied.
  • the method for manufacturing an optical system of the present disclosure includes, in order from the object side, a front lens group and a branching surface that transmits a part of incident light and reflects at least another part different from the part of the incident light.
  • a first optical system having a prism, a first rear lens group into which one of the transmitted light and the reflected light enters, and in order from the object side, a front lens group, a prism, and a transmitted light; a second rear lens group into which the other of the reflected light and the reflected light enters; is longer than the total optical length of the second optical system, and each lens group and prism are arranged so that both of the following conditional expressions are satisfied.
  • T (gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f (fL) Focal length of the first optical system and second optical system Longer focal length of the system
  • T (pfL) Length on the optical axis of the prism in the optical system with the longer focal length among the first optical system and the second optical system
  • the method for manufacturing an optical system of the present disclosure includes, in order from the object side, a front lens group and a branching surface that transmits a part of incident light and reflects at least another part different from the part of the incident light.
  • a first optical system having a prism, a first rear lens group into which one of the transmitted light and the reflected light enters, and in order from the object side, a front lens group, a prism, and a transmitted light; a second rear lens group into which the other of the reflected light and the reflected light enters; is longer than the total optical length of the second optical system, and each lens group and prism are arranged so that both of the following conditional expressions are satisfied.
  • T (gr1) Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group
  • f (fS) Focal length of the first optical system and second optical system
  • T (pfS) Length on the optical axis of the prism in the optical system with the shorter focal length among the first optical system and the second optical system
  • FIG. 1 is a schematic diagram illustrating the schematic configuration of the optical system of the first embodiment.
  • the light in order from the object side, the light enters the front lens group GR1, the optical path branching member OB having the branching surface BF, the front lens group GR1 and the optical path branching member OB, and is transmitted through the branching surface BF.
  • the first optical system OS1 includes a first rear lens group GR2L into which light enters.
  • light in order from the object side, light enters the front lens group GR1, the optical path branching member OB, the front lens group GR1 and the optical path branching member OB, and is reflected by the branching surface BF. It has a second optical system OS2 including a second rear lens group GR2S.
  • the total optical length of the first optical system OS1 is longer than the total optical length of the second optical system OS2.
  • the first optical axis X1 of the first optical system OS1 and the second optical axis X2 of the second optical system OS2 are shown on the object side with respect to the branch plane BF so as not to overlap each other for the sake of explanation. .
  • the optical path branching member OB is a dichroic prism having a branching surface BF that transmits visible light and reflects near-infrared light.
  • Visible light includes, for example, d-line (wavelength: 587.6 nm) or g-line (wavelength: 435.8 nm), and near-infrared light includes, for example, s-line (wavelength: 852.1 nm).
  • the first optical system OS1 of this embodiment focuses light (near infrared light) emitted from the front lens group GR1 and reflected by the branching surface BF and the total reflection surface TRF of the optical path branching member OB onto the image plane I1.
  • the second optical system OS2 of this embodiment images the light (visible light) emitted from the front lens group GR1 and transmitted through the branching surface BF of the optical path branching member OB onto the image plane I2.
  • the optical system 1 of this embodiment appropriately controls the light reflected by the branching surface BF and the light transmitted by the branching surface BF out of the incident light by the first optical system OS1 and the second optical system OS2, respectively. It can be imaged.
  • FIG. 2 is a cross-sectional view of the first optical system OS1 included in the optical system 1 of the first embodiment.
  • the first optical system OS1 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a concave surface facing the object side.
  • An image sensor composed of a CCD, CMOS, or the like is arranged on the image plane I1.
  • a filter FL1 is arranged between the positive lens L14, which is arranged closest to the image plane I1, and the image plane I1.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L11, the aperture stop ST1, the positive lens L12, the negative lens L13, and the positive lens L14 are included in the first rear lens group GR2L.
  • Table 1-1 below lists the values of the specifications of the first optical system OS1 of this example.
  • m is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface spacing
  • n(d) is the refractive index for the d-line
  • n(s) is The refractive index for the s-line and ⁇ d indicate the Abbe number for the d-line.
  • optical surfaces marked with "*" indicate that they are aspheric surfaces.
  • m is the optical surface corresponding to the aspheric data
  • K is the conic constant
  • A4 to A10 are the aspheric coefficients.
  • the height of the aspherical surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangent plane of the vertex of each aspherical surface to each aspherical surface at the height y is S(y)
  • the radius of curvature (paraxial radius of curvature) of the reference sphere is r
  • the conic constant is K
  • the nth-order aspherical coefficient is An
  • the units of focal length f, radius of curvature r, and other lengths listed in Table 1-1 are "mm".
  • the optical system is not limited to this because the same optical performance can be obtained even if the optical system is proportionally enlarged or reduced.
  • FIG. 3 is a diagram showing various aberrations of the first optical system OS1 included in the optical system 1 of the first embodiment.
  • the spherical aberration diagram shows the ratio to the maximum aperture
  • the astigmatism diagram shows the value of the half angle of view
  • the coma aberration diagram shows the ratio to the maximum image height.
  • Each aberration diagram shows s-line values.
  • S indicates a sagittal image plane
  • T indicates a meridional image plane.
  • the first optical system OS1 of this example appropriately corrects various aberrations and has high optical performance with respect to the s-line.
  • FIG. 4 is a cross-sectional view of the second optical system OS2 included in the optical system 1 of the first embodiment.
  • the second optical system OS2 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a concave surface facing the object side.
  • It has a cemented negative lens consisting of a positive lens L23 and a biconcave negative lens L24, a meniscus-shaped positive lens L25 with a convex surface facing the object side, and a meniscus-shaped positive lens L26 with a convex surface facing the object side. ing.
  • An image sensor composed of a CCD, CMOS, etc. is arranged on the image plane I2.
  • a filter FL2 is disposed between the positive lens L26, which is disposed closest to the image plane I2, and the image plane I2.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L21, the aperture stop ST2, the positive lens L22, the cemented negative lens of the positive lens L23 and the negative lens L24, the positive lens L25, and the positive lens L26 are included in the second rear lens group GR2S. included.
  • Table 1-2 lists the values of the specifications of the second optical system OS2 of this example.
  • FIG. 5 is a diagram showing various aberrations of the second optical system OS2 included in the optical system 1 of the first embodiment. Each aberration diagram shows d-line and g-line values, respectively.
  • the second optical system OS2 of this example appropriately corrects various aberrations and has high optical performance for the d-line and the g-line.
  • the optical system 1 of this embodiment has the same general configuration as the optical system 1 of the first embodiment described with reference to FIG.
  • the optical path branching member OB is a dichroic prism having a branching surface BF that transmits near-infrared light and reflects visible light.
  • the first optical system OS1 of this embodiment images the light (visible light) emitted from the front lens group GR1 and reflected by the branching surface BF and the total reflection surface TRF of the optical path branching member OB onto the image plane I1.
  • the second optical system OS2 of this embodiment images the light (near-infrared light) emitted from the front lens group GR1 and transmitted through the branching surface BF of the optical path branching member OB onto the image plane I2.
  • the optical system 1 of this embodiment appropriately controls the light reflected by the branching surface BF and the light transmitted by the branching surface BF out of the incident light by the first optical system OS1 and the second optical system OS2, respectively. It can be imaged.
  • FIG. 6 is a cross-sectional view of the first optical system OS1 included in the optical system 1 of the second embodiment.
  • the first optical system OS1 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a convex surface facing the object side.
  • It has a cemented negative lens consisting of a positive lens L13 and a biconcave negative lens L14, a meniscus-shaped positive lens L15 with a convex surface facing the object side, and a meniscus-shaped positive lens L16 with a convex surface facing the object side. ing.
  • An image sensor composed of a CCD, CMOS, or the like is arranged on the image plane I1.
  • a filter FL1 is arranged between the positive lens L16 disposed closest to the image plane I1 and the image plane I1.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L11, the aperture stop ST1, the negative lens L12, the cemented negative lens of the negative lens L13 and the positive lens L14, the positive lens L15, and the positive lens L16 are included in the first rear lens group GR2L. included.
  • Table 2-1 lists the values of the specifications of the first optical system OS1 of this example.
  • FIG. 7 is a diagram showing various aberrations of the first optical system OS1 included in the optical system 1 of the second embodiment. Each aberration diagram shows d-line and g-line values, respectively.
  • the first optical system OS1 of this example appropriately corrects various aberrations and has high optical performance for the d-line and the g-line.
  • FIG. 8 is a cross-sectional view of the second optical system OS2 included in the optical system 1 of the second embodiment.
  • the second optical system OS2 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a convex surface facing the object side.
  • An image sensor composed of a CCD, CMOS, etc. is arranged on the image plane I2.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the negative lens L21, the aperture stop ST2, the positive lens L22, the positive lens L23, and the positive lens L24 are included in the second rear lens group GR2S.
  • Table 2-2 lists the values of the specifications of the second optical system OS2 of this example.
  • FIG. 9 is a diagram showing various aberrations of the second optical system OS2 included in the optical system 1 of the second embodiment. Each aberration diagram shows s-line values.
  • the second optical system OS2 of this example appropriately corrects various aberrations and has high optical performance for the s-line.
  • the optical system 1 of this embodiment has the same general configuration as the optical system 1 of the first embodiment described with reference to FIG.
  • the optical path branching member OB is a dichroic prism having a branching surface BF that transmits visible light and reflects near-infrared light.
  • the first optical system OS1 of this embodiment focuses light (near infrared light) emitted from the front lens group GR1 and reflected by the branching surface BF and the total reflection surface TRF of the optical path branching member OB onto the image plane I1.
  • the second optical system OS2 of this embodiment images the light (visible light) emitted from the front lens group GR1 and transmitted through the branching surface BF of the optical path branching member OB onto the image plane I2.
  • the optical system 1 of this embodiment appropriately controls the light reflected by the branching surface BF and the light transmitted by the branching surface BF out of the incident light by the first optical system OS1 and the second optical system OS2, respectively. It can be imaged.
  • FIG. 10 is a cross-sectional view of the first optical system OS1 included in the optical system 1 of the third embodiment.
  • the first optical system OS1 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a concave surface facing the object side.
  • An image sensor composed of a CCD, CMOS, or the like is arranged on the image plane I1.
  • a filter FL1 is arranged between the positive lens L15, which is arranged closest to the image plane I1, and the image plane I1.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L11, the aperture stop ST1, the positive lens L12, the positive lens L13, the positive lens L14, and the positive lens L15 are included in the first rear lens group GR2L.
  • Table 3-1 lists the values of the specifications of the first optical system OS1 of this example.
  • FIG. 11 is a diagram showing various aberrations of the first optical system OS1 included in the optical system 1 of the third embodiment. Each aberration diagram shows s-line values.
  • the first optical system OS1 of this example appropriately corrects various aberrations and has high optical performance with respect to the s-line.
  • FIG. 12 is a cross-sectional view of the second optical system OS2 included in the optical system 1 of the third embodiment.
  • the second optical system OS2 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a concave surface facing the object side.
  • It has a cemented negative lens consisting of a positive lens L23 and a biconcave negative lens L24, a meniscus-shaped positive lens L25 with a convex surface facing the object side, and a meniscus-shaped positive lens L26 with a convex surface facing the object side. ing.
  • An image sensor composed of a CCD, CMOS, etc. is arranged on the image plane I2.
  • a filter FL2 is disposed between the positive lens L26, which is disposed closest to the image plane I2, and the image plane I2.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L21, the aperture stop ST2, the positive lens L22, the cemented negative lens of the positive lens L23 and the negative lens L24, the positive lens L25, and the positive lens L26 are included in the second rear lens group GR2S. included.
  • Table 3-2 lists the values of the specifications of the second optical system OS2 of this example.
  • FIG. 13 is a diagram showing various aberrations of the second optical system OS2 included in the optical system 1 of the third embodiment. Each aberration diagram shows d-line and g-line values, respectively.
  • the second optical system OS2 of this example appropriately corrects various aberrations and has high optical performance for the d-line and the g-line.
  • FIG. 14 is a schematic diagram illustrating the schematic configuration of the optical system of the fourth example.
  • the light in order from the object side, the light enters the front lens group GR1, the optical path branching member OB having the branching surface BF, the front lens group GR1 and the optical path branching member OB, and is transmitted through the branching surface BF.
  • the first optical system OS1 includes a first rear lens group GR2L into which light enters.
  • light in order from the object side, light enters the front lens group GR1, the optical path branching member OB, the front lens group GR1 and the optical path branching member OB, and is reflected by the branching surface BF. It has a second optical system OS2 including a second rear lens group GR2S.
  • the total optical length of the first optical system OS1 is longer than the total optical length of the second optical system OS2.
  • the first optical axis X1 of the first optical system OS1 and the second optical axis X2 of the second optical system OS2 are shown so as not to overlap each other for the sake of explanation on the object side of the branch plane BF. .
  • the optical path branching member OB is a dichroic prism having a branching surface BF that transmits near-infrared light and reflects visible light.
  • the first optical system OS1 of this embodiment focuses light (near infrared light) emitted from the front lens group GR1 and transmitted by the branching surface BF and the total reflection surface TRF of the optical path branching member OB onto the image plane I1.
  • the second optical system OS2 of this embodiment images the light (visible light) emitted from the front lens group GR1 and reflected by the branching surface BF of the optical path branching member OB onto the image plane I2.
  • the optical system 1 of this embodiment appropriately controls the light transmitted by the branching surface BF and the light reflected by the branching surface BF out of the incident light by the first optical system OS1 and the second optical system OS2, respectively. It can be imaged.
  • FIG. 15 is a cross-sectional view of the first optical system OS1 included in the optical system 1 of the fourth embodiment.
  • the first optical system OS1 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a convex surface facing the object side.
  • An image sensor composed of a CCD, CMOS, or the like is arranged on the image plane I1.
  • a filter FL1 is arranged between the positive lens L14, which is arranged closest to the image plane I1, and the image plane I1.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L11, the aperture stop ST1, the positive lens L12, the positive lens L13, and the positive lens L14 are included in the first rear lens group GR2L.
  • Table 4-1 lists the values of the specifications of the first optical system OS1 of this example.
  • FIG. 16 is a diagram showing various aberrations of the first optical system OS1 included in the optical system 1 of the fourth embodiment. Each aberration diagram shows s-line values.
  • the first optical system OS1 of this example appropriately corrects various aberrations and has high optical performance with respect to the s-line.
  • FIG. 17 is a cross-sectional view of the second optical system OS2 included in the optical system 1 of the fourth embodiment.
  • the second optical system OS2 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a biconcave negative lens L2, and a meniscus-shaped negative lens L2 with a convex surface facing the object side.
  • It has a cemented negative lens with a shaped negative lens L8, a meniscus-shaped positive lens L25 with a convex surface facing the object side, and a meniscus-shaped positive lens L26 with a convex surface facing the object side.
  • An image sensor composed of a CCD, CMOS, etc. is arranged on the image plane I2.
  • a filter FL2 is disposed between the positive lens L26, which is disposed closest to the image plane I2, and the image plane I2.
  • the negative lens L1, the negative lens L2, and the positive lens L3 are included in the front lens group GR1. Further, the positive lens L21, the aperture stop ST2, the positive lens L22, the cemented negative lens of the positive lens L23 and the negative lens L24, the positive lens L25, and the positive lens L26 are included in the second rear lens group GR2S. included.
  • Table 4-2 below lists the values of the specifications of the second optical system OS2 of this example.
  • FIG. 18 is a diagram showing various aberrations of the second optical system OS2 included in the optical system 1 of the fourth example. Each aberration diagram shows d-line and g-line values, respectively.
  • the second optical system OS2 of this example appropriately corrects various aberrations and has high optical performance for the d-line and the g-line.
  • FIG. 19 is a schematic diagram illustrating the schematic configuration of the optical system of the fifth embodiment.
  • the light in order from the object side, the light enters the front lens group GR1, the optical path branching member OB having the branching surface BF, the front lens group GR1 and the optical path branching member OB, and is reflected by the branching surface BF.
  • the first optical system OS1 includes a first rear lens group GR2L into which light enters.
  • light in order from the object side, light enters the front lens group GR1, the optical path branching member OB, the front lens group GR1, and the optical path branching member OB and is transmitted by the branching surface BF. It has a second optical system OS2 including a second rear lens group GR2S.
  • the total optical length of the first optical system OS1 is longer than the total optical length of the second optical system OS2.
  • the first optical axis X1 of the first optical system OS1 and the second optical axis X2 of the second optical system OS2 are shown so as not to overlap each other for the sake of explanation on the object side of the branching surface BF. .
  • the optical path branching member OB is a dichroic mirror having a branching surface BF that transmits near-infrared light and reflects visible light.
  • the first optical system OS1 of this embodiment images the light (visible light) emitted from the front lens group GR1 and reflected by the branching surface BF and the total reflection surface TRF of the optical path branching member OB onto the image plane I1.
  • the second optical system OS2 of this embodiment images the light (near-infrared light) emitted from the front lens group GR1 and transmitted through the branching surface BF of the optical path branching member OB onto the image plane I2.
  • the optical system 1 of this embodiment appropriately controls the light reflected by the branching surface BF and the light transmitted by the branching surface BF out of the incident light by the first optical system OS1 and the second optical system OS2, respectively. It can be imaged.
  • FIG. 20 is a cross-sectional view of the first optical system OS1 included in the optical system 1 of the fifth embodiment.
  • the first optical system OS1 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a meniscus-shaped negative lens L2 with a convex surface facing the object side, and a concave lens lens L2 with a convex surface facing the object side.
  • a meniscus-shaped negative lens L3 with its convex surface facing the object side a biconvex positive lens L11, an aperture stop ST1, a meniscus-shaped positive lens L12 with its convex surface facing the object side, a biconvex positive lens L13, and a biconcave It has a cemented negative lens with a shaped negative lens L14, a meniscus-shaped positive lens L15 with a convex surface facing the object side, and a biconvex-shaped positive lens L16.
  • An image sensor composed of a CCD, CMOS, or the like is arranged on the image plane I1.
  • a filter FL1 is arranged between the positive lens L16 disposed closest to the image plane I1 and the image plane I1.
  • the negative lens L1, the negative lens L2, and the negative lens L3 are included in the front lens group GR1. Further, the positive lens L11, the aperture stop ST1, the positive lens L12, the cemented negative lens of the positive lens L13 and the negative lens L14, the positive lens L15, and the positive lens L16 are included in the first rear lens group GR2L. included.
  • Table 5-1 lists the values of the specifications of the first optical system OS1 of this example.
  • FIG. 21 is a diagram showing various aberrations of the first optical system OS1 included in the optical system 1 of the fifth embodiment. Each aberration diagram shows d-line and g-line values, respectively.
  • the first optical system OS1 of this example appropriately corrects various aberrations and has high optical performance for the d-line and the g-line.
  • FIG. 22 is a cross-sectional view of the second optical system OS2 included in the optical system 1 of the fifth embodiment.
  • the second optical system OS2 of this embodiment includes, in order from the object side, a meniscus-shaped negative lens L1 with a convex surface facing the object side, a meniscus-shaped negative lens L2 with a convex surface facing the object side, and a concave lens facing the object side.
  • An image sensor composed of a CCD, CMOS, etc. is arranged on the image plane I2.
  • the negative lens L1, the negative lens L2, and the negative lens L3 are included in the front lens group GR1. Further, the positive lens L21, the aperture stop ST2, the positive lens L22, the positive lens L23, and the positive lens L24 are included in the second rear lens group GR2S.
  • Table 5-2 lists the values of the specifications of the second optical system OS2 of this example.
  • FIG. 23 is a diagram showing various aberrations of the second optical system OS2 included in the optical system 1 of the fifth embodiment. Each aberration diagram shows s-line values.
  • the second optical system OS2 of this example appropriately corrects various aberrations and has high optical performance for the s-line.
  • f(L) is the focal length of the first optical system OS1
  • f(S) is the focal length of the second optical system OS2.
  • TL(L) is the optical total length of the first optical system OS1
  • TL(S) is the optical total length of the second optical system OS2.
  • f(fL) is the longer of the focal length of the first optical system OS1 and the focal length of the second optical system OS2
  • f(fS) is the focal length of the first optical system OS1 and the focal length of the second optical system OS2. is the shorter of the focal lengths of
  • f(gr1) is the composite focal length of the front lens group GR1.
  • f(gr1n) is the composite focal length of the negative lens arranged in succession from the negative lens disposed closest to the object side to the image plane side among the negative lenses included in the front lens group GR1.
  • f(gr1p) is the composite focal length of the positive lens arranged in succession from the positive lens disposed closest to the object side to the image plane side among the positive lenses included in the front lens group GR1.
  • T(gr1) is the distance on the optical axis from the lens surface of the front lens group GR1 closest to the object side to the lens surface of the front lens group GR1 closest to the image plane.
  • T(pL) is the length of the prism on the optical axis in the first optical system OS1
  • T(pS) is the length of the prism on the optical axis in the second optical system OS2.
  • T(pfL) is the length on the optical axis of the prism in the optical system with the longer focal length among the first optical system OS1 and the second optical system OS2
  • T(pfS) is the length of the prism on the optical axis of the first optical system OS1 and the second optical system OS2. and the length on the optical axis of the prism in the optical system with the shorter focal length among the second optical systems OS2.
  • f(gr2L) is the composite focal length of the lens closer to the image plane than the aperture stop ST1 in the first rear lens group GR2L
  • f(gr2S) is the composite focal length of the lens closer to the image plane than the aperture stop ST2 in the second rear lens group GR2S. This is the composite focal length of the side lens.
  • f(lL) is the focal length of the lens closest to the image plane in the first rear lens group GR2L
  • f(lS) is the focal length of the lens closest to the image plane in the second rear lens group GR2S.
  • Nave(s) is the average refractive index for the s-line of the negative lens included in the front lens group GR1.
  • 2 ⁇ L is the total angle of view of the first optical system OS1
  • 2 ⁇ S is the total angle of view of the second optical system OS2.
  • FIG. 24 is a schematic diagram of an optical device 10 including the optical system 1 of this embodiment.
  • the optical device 10 includes the optical system 1 according to the first embodiment, an information processing device 2, a first imaging section IS1, and a second imaging section IS2.
  • the first imaging section IS1 and the second imaging section IS2 each include an imaging element configured from a CCD, CMOS, or the like.
  • the optical system 1 appropriately controls each of the incident light reflected by the branching surface BF and the light transmitted by the branching surface BF by a first optical system OS1 and a second optical system OS2. to form an image.
  • the first imaging section IS1 and the second imaging section IS2 are arranged on the image plane I1 of the first optical system OS1 and the image plane I2 of the second optical system OS2, respectively, and output data corresponding to the incident light.
  • the information processing device 2 executes processing using data output by each of the first imaging section IS1 and the second imaging section IS2.
  • the optical system 1 included in the optical device 10 has a branching surface BF that transmits visible light among the light that enters the optical system 1 from the object and reflects near-infrared light.
  • the first optical system OS1 included in the optical system 1 forms an image of near-infrared light
  • the second optical system OS2 forms an image of visible light.
  • the information processing device 2 included in the optical device 10 detects the distance to the object from the image formed by the first optical system OS1. Further, the information processing device 2 included in the optical device 10 detects the appearance of the object by generating image data from the image obtained by the second optical system OS2.
  • the optical device 10 appropriately images each of the light transmitted by the branching surface BF and the light reflected by the branching surface BF among the incident light, and executes processing using each image. be able to.
  • the optical device 10 includes an optical system in which the first optical system OS1 forms an image of visible light and the second optical system OS2 forms an image of near-infrared light. You can.
  • the information processing device 2 detects the appearance of the object by generating image data from the image formed by the first optical system OS1, and detects the distance from the image formed by the second optical system OS2 to the object.
  • FIG. 25 is a flowchart outlining the method for manufacturing the optical system 1 of this embodiment.
  • the method for manufacturing the optical system 1 of this embodiment shown in FIG. 25 includes the following steps S1, S2, and S3.
  • Step S1 Prepare the front lens group GR1, the optical path branching member OB having the branching surface BF, the first rear lens group GR2L, and the second rear lens group GR2S.
  • Step S2 The total optical length of the first optical system OS1 is set to be equal to or longer than the total optical length of the second optical system OS2.
  • Step S3 Each lens group and optical path branching member OB are arranged so as to satisfy the following conditional expression. (18) 0.50 ⁇ T(gr1)/(-f(gr1)) ⁇ 4.50 however, T(gr1): Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group f(gr1): Composite focal length of the front lens group
  • steps S1 and S3 in the method for manufacturing the optical system 1 of this embodiment shown in FIG. 25 may be replaced with steps S1A and S3A shown below, respectively.
  • Step S1A Prepare a front lens group GR1, a prism having a branching surface BF, a first rear lens group GR2L, and a second rear lens group GR2S.
  • Step S3A Each lens group and prism are arranged so as to satisfy the following conditional expression. (20) 1.10 ⁇ T(gr1)/f(fL) ⁇ 5.20 (21) 1.00 ⁇ T(pfL)/f(fL) ⁇ 11.50 however, T (gr1): Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group f (fL): Focal length of the first optical system and second optical system Longer focal length of the system T (pfL): Length on the optical axis of the prism in the optical system with the longer focal length among the first optical system and the second optical system
  • step S3B shown below may be performed in place of step S3A in the manufacturing method of the modification described above.
  • Step S3B Each lens group and prism are arranged so as to satisfy the following conditional expression. (22) 2.50 ⁇ T(gr1)/f(fS) ⁇ 9.50 (23) 3.00 ⁇ T(pfS)/f(fS) ⁇ 20.00 however, T (gr1): Distance on the optical axis from the lens surface closest to the object side of the front lens group to the lens surface closest to the image plane of the front lens group f (fS): Focal length of the first optical system and second optical system Shorter focal length of the system T (pfS): Length on the optical axis of the prism in the optical system with the shorter focal length among the first optical system and the second optical system
  • an optical system of the present embodiment it is possible to manufacture an optical system that appropriately images each of the light transmitted by the branching surface and the light reflected by the branching surface among the incident light.
  • the lens surface may be formed of a spherical surface, a flat surface, or an aspherical surface. It is preferable that the lens surface is spherical or flat because it facilitates lens processing and assembly adjustment and prevents deterioration of optical performance due to errors in processing and assembly adjustment. Further, it is preferable that the lens surface is spherical or flat because there is less deterioration in depiction performance when the image plane shifts.
  • the aspherical surface may be formed by grinding the glass or by glass molding using a mold having an aspherical shape, and may be formed on the surface of a resin bonded to the surface of the glass. Good too.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • an antireflection film having high transmittance over a wide wavelength range may be applied to the lens surface of the lens constituting the optical system of this embodiment. This makes it possible to reduce flare and ghost and achieve optical performance with high contrast.
  • a lens frame or the like may be used instead of providing an independent member as the aperture diaphragm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

前側レンズ群と、入射した光を分岐させる分岐面を有する光路分岐部材と、分岐される光のうち一方が入射する第1後側レンズ群と、を有する第1光学系と、前側レンズ群と、光路分岐部材と、分岐される光のうち他方が入射する第2後側レンズ群と、を有する第2光学系と、を備え、第1光学系の光学全長は第2光学系の光学全長と等しいか、第2光学系の光学全長よりも長い光学系を、以下の条件式を満足するように構成する。 0.50 < T(gr1)/(-f(gr1)) < 4.50 但し、T(gr1)は前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離であり、f(gr1)は前側レンズ群の合成焦点距離である。

Description

光学系、光学装置、および光学系の製造方法
 本開示は、光学系、光学装置および光学系の製造方法に関する。
 入射光を第1の光と第2の光とに分けて出射する光学系が提案されている(例えば特許文献1参照)。
特開2006-324810号公報
 本開示の光学系は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有する光路分岐部材と、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、光路分岐部材と、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、以下の条件式を満足する。
(18) 0.50 < T(gr1)/(-f(gr1)) < 4.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(gr1) : 前側レンズ群の合成焦点距離
 本開示の光学系は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、プリズムと、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、第1光学系の光学全長は第2光学系の光学全長よりも長く、以下の条件式をともに満足する。なお、本開示において光学全長は、最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の距離に、空気換算長でのバックフォーカスを加えた長さである。
(20) 1.10 < T(gr1)/f(fL) < 5.20
(21) 1.00 < T(pfL)/f(fL) < 11.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fL)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち長い方
 T(pfL) : 第1光学系および第2光学系のうち焦点距離が長い方の光学系におけるプリズムの光軸上の長さ
 本開示の光学系は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、プリズムと、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、第1光学系の光学全長は第2光学系の光学全長よりも長く、以下の条件式をともに満足する。
(22) 2.50 < T(gr1)/f(fS) < 9.50
(23) 3.00 < T(pfS)/f(fS) < 20.00
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fS)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち短い方
 T(pfS) : 第1光学系および第2光学系のうち焦点距離が短い方の光学系におけるプリズムの光軸上の長さ
 本開示の光学系の製造方法は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有する光路分岐部材と、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、光路分岐部材と、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、第1光学系の光学全長は第2光学系の光学全長と等しいか、第2光学系の光学全長よりも長い光学系の製造方法であって、以下の条件式を満足するように各レンズ群および光路分岐部材を配置する。
(18) 0.50 < T(gr1)/(-f(gr1)) < 4.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(gr1) : 前側レンズ群の合成焦点距離
第1実施例の光学系の概略構成を説明する模式図である。 第1実施例の光学系が備える第1光学系の断面図である。 第1実施例の光学系が備える第1光学系の諸収差図である。 第1実施例の光学系が備える第2光学系の断面図である。 第1実施例の光学系が備える第2光学系の諸収差図である。 第2実施例の光学系が備える第1光学系の断面図である。 第2実施例の光学系が備える第1光学系の諸収差図である。 第2実施例の光学系が備える第2光学系の断面図である。 第2実施例の光学系が備える第2光学系の諸収差図である。 第3実施例の光学系が備える第1光学系の断面図である。 第3実施例の光学系が備える第1光学系の諸収差図である。 第3実施例の光学系が備える第2光学系の断面図である。 第3実施例の光学系が備える第2光学系の諸収差図である。 第4実施例の光学系の概略構成を説明する模式図である。 第4実施例の光学系が備える第1光学系の断面図である。 第4実施例の光学系が備える第1光学系の諸収差図である。 第4実施例の光学系が備える第2光学系の断面図である。 第4実施例の光学系が備える第2光学系の諸収差図である。 第5実施例の光学系の概略構成を説明する模式図である。 第5実施例の光学系が備える第1光学系の断面図である。 第5実施例の光学系が備える第1光学系の諸収差図である。 第5実施例の光学系が備える第2光学系の断面図である。 第5実施例の光学系が備える第2光学系の諸収差図である。 本実施形態の光学系を備えた光学機器の模式図である。 本実施形態の光学系の製造方法の概略を示すフローチャートである。
 以下、本願の実施形態の光学系、光学機器、および光学系の製造方法について説明する。
 本実施形態の光学系は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有する光路分岐部材と、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、光路分岐部材と、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、以下の条件式を満足する。
(18) 0.50 < T(gr1)/(-f(gr1)) < 4.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(gr1) : 前側レンズ群の合成焦点距離
 本実施形態の光学系は、前側レンズ群を第1光学系と第2光学系とで用いることで、光学系全体を小型化することができる。
 条件式(18)は、前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離と、前側レンズ群の合成焦点距離との比を規定する。本実施形態の光学系は、条件式(18)を満足することで、最も物体側のレンズのレンズ径の増大を抑制しつつ、第1光学系および第2光学系において、光学全長の増大を抑制し、像面湾曲、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(18)の値が上限値を上回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、非点収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(18)の上限値を4.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(18)の上限値を3.80、3.20、さらに2.60に設定することが好ましい。
 また、本実施形態の光学系において条件式(18)の値が下限値を下回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(18)の下限値を0.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(18)の下限値を0.70、0.90、さらに1.00に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(19) 0.80 < T(gr1)/(-f(gr1n)) < 4.60
但し、
 f(gr1n) : 前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
 条件式(19)は、前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離と、前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離との比を規定する。本実施形態の光学系は、条件式(19)を満足することで、最も物体側のレンズのレンズ径の増大を抑制しつつ、第1光学系において、光学全長の増大を抑制し、像面湾曲、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(19)の値が上限値を上回ると、第1光学系の光学全長が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(19)の上限値を4.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(19)の上限値を3.80、3.10、さらに2.40に設定することが好ましい。
 また、本実施形態の光学系において条件式(19)の値が下限値を下回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(19)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(19)の下限値を0.95、1.10、さらに1.20に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(26)  1.00 < TL(L)/TL(S) < 3.50 
 TL(L)  : 第1光学系の光学全長
 TL(S)  : 第2光学系の光学全長
 条件式(26)は、第1光学系の光学全長と第2光学系の光学全長との比を規定するものである。本実施形態の光学系は、条件式(26)を満足することで、第1光学系の光学全長の増大を抑制しつつ、球面収差、コマ収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(26)の値が上限値を上回ると、第1光学系の光学全長が大きくなりすぎるとともに、球面収差、コマ収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(26)の上限値を3.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(26)の上限値を2.80、2.20、さらに1.60に設定することが好ましい。
 本実施形態の光学系は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、プリズムと、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、第1光学系の光学全長は第2光学系の光学全長よりも長く、以下の条件式をともに満足する。
(20) 1.10 < T(gr1)/f(fL) < 5.20
(21) 1.00 < T(pfL)/f(fL) < 11.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fL)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち長い方
 T(pfL) : 第1光学系および第2光学系のうち焦点距離が長い方の光学系におけるプリズムの光軸上の長さ
 本実施形態の光学系は、前側レンズ群を第1光学系と第2光学系とで用いることで、光学系全体を小型化することができる。
 条件式(20)は、前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離と、第1光学系の焦点距離および第2光学系の焦点距離のうち長い方との比を規定する。本実施形態の光学系は、条件式(20)を満足することで、最も物体側のレンズのレンズ径の増大を抑制しつつ、第1光学系および第2光学系のうち焦点距離が長い方において、光学全長の増大を抑制するとともに、像面湾曲、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(20)の値が上限値を上回ると、第1光学系および第2光学系のうち焦点距離が長い方の光学全長が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(20)の上限値を5.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(20)の上限値を4.70、4.20、さらに3.80に設定することが好ましい。
 また、本実施形態の光学系において条件式(20)の値が下限値を下回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(20)の下限値を1.10に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(20)の下限値を1.50、1.80、さらに2.10に設定することが好ましい。
 条件式(21)は、第1光学系および第2光学系のうち焦点距離が長い方の光学系におけるプリズムの光軸上の長さと、第1光学系の焦点距離および第2光学系の焦点距離のうち長い方との比を規定する。本実施形態の光学系は、条件式(21)を満足することで、最も物体側のレンズのレンズ径の増大を抑制しつつ、第1光学系および第2光学系のうち焦点距離が長い方において、光学全長の増大を抑制するとともに、像面湾曲、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(21)の値が上限値を上回ると、第1光学系および第2光学系のうち焦点距離が長い方の光学全長が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(21)の上限値を11.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(21)の上限値を8.80、7.10、さらに6.50に設定することが好ましい。
 また、本実施形態の光学系において条件式(21)の値が下限値を下回ると、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(21)の下限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(21)の下限値を1.40、1.80、さらに2.20に設定することが好ましい。
 本実施形態の光学系は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、プリズムと、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、第1光学系の光学全長は第2光学系の光学全長よりも長く、以下の条件式をともに満足する。
(22) 2.50 < T(gr1)/f(fS) < 9.50
(23) 3.00 < T(pfS)/f(fS) < 20.00
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fS)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち短い方
 T(pfS) : 第1光学系および第2光学系のうち焦点距離が短い方の光学系におけるプリズムの光軸上の長さ
 本実施形態の光学系は、前側レンズ群を第1光学系と第2光学系とで用いることで、光学系全体を小型化することができる。
 条件式(22)は、前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離と、第1光学系の焦点距離および第2光学系の焦点距離のうち短い方との比を規定する。本実施形態の光学系は、条件式(22)を満足することで、第1光学系および第2光学系のうち焦点距離が短い方において、光学全長の増大を抑制するとともに、像面湾曲、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(22)の値が上限値を上回ると、第1光学系および第2光学系のうち焦点距離が短い方の光学全長が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(22)の上限値を9.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(22)の上限値を8.60、7.70、さらに6.80に設定することが好ましい。
 また、本実施形態の光学系において条件式(22)の値が下限値を下回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(22)の下限値を2.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(22)の下限値を3.00、3.50、さらに3.90に設定することが好ましい。
 条件式(23)は、第1光学系および第2光学系のうち焦点距離が短い方の光学系におけるプリズムの光軸上の長さと、第1光学系の焦点距離および第2光学系の焦点距離のうち短い方との比を規定する。本実施形態の光学系は、条件式(23)を満足することで、第1光学系および第2光学系のうち焦点距離が短い方において、光学全長の増大を抑制するとともに、像面湾曲、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(23)の値が上限値を上回ると、第1光学系および第2光学系のうち焦点距離が短い方の光学全長が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(23)の上限値を20.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(23)の上限値を19.00、18.00、さらに17.00に設定することが好ましい。
 また、本実施形態の光学系において条件式(23)の値が下限値を下回ると、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(23)の下限値を3.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(23)の下限値を3.40、3.80、さらに4.20に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(2) 1.10 < T(pL)/T(pS) < 5.50
但し、
 T(pL) : 第1光学系におけるプリズムの光軸上の長さ
 T(pS) : 第2光学系におけるプリズムの光軸上の長さ
 条件式(2)は、第1光学系におけるプリズムの光軸上の長さと、第2光学系におけるプリズムの光軸上の長さとの比を規定する。本実施形態の光学系は、条件式(2)を満足することで、球面収差、コマ収差といった諸収差を適切に補正し、周辺光量を確保することができる。
 本実施形態の光学系において条件式(2)の値が上限値を上回ると、球面収差、コマ収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(2)の上限値を5.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の上限値を4.70、3.80、さらに3.00に設定することが好ましい。
 また、本実施形態の光学系において条件式(2)の値が下限値を下回ると、球面収差、コマ収差といった諸収差の補正が困難となる。また、第1光学系の周辺光束が制限され、周辺光量が低下する。
 本実施形態の光学系では、条件式(2)の下限値を1.10に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を1.60、2.10、さらに2.60に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(12) 1.20 < T(pS)/f(S) < 6.40
但し、
 T(pS)   : 第2光学系におけるプリズムの光軸上の長さ
 f(S)    : 第2光学系の焦点距離
 条件式(12)は、第2光学系におけるプリズムの光軸上の長さと第2光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(12)を満足することで、第2光学系において、光学全長の増大を抑制しつつ、球面収差、コマ収差、像面湾曲といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(12)の値が上限値を下回ると、第2光学系において、光学全長が大きくなりすぎるとともに、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(12)の上限値を6.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(12)の上限値を5.70、5.00、さらに4.40に設定することが好ましい。
 本実施形態の光学系において条件式(12)の値が下限値を下回ると、第2光学系において、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(12)の下限値を1.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(12)の下限値を1.50、1.80、さらに2.20に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(13) 2.40 < T(pL)/f(L) < 20.50
 T(pL)   : 第1光学系におけるプリズムの光軸上の長さ
 f(L)    : 第1光学系の焦点距離
 条件式(13)は、第1光学系における前記プリズムの光軸上の長さと第2光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(13)を満足することで、第1光学系において、光学全長の増大を抑制しつつ、球面収差、コマ収差、像面湾曲といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(13)の値が上限値を下回ると、第1光学系において、光学全長が大きくなりすぎるとともに、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(13)の上限値を20.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(13)の上限値を19.00、17.50、さらに16.50に設定することが好ましい。
 本実施形態の光学系において条件式(13)の値が下限値を下回ると、第1光学系において、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(13)の下限値を2.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(13)の下限値を3.20、4.00、さらに4.80に設定することが好ましい。
 本実施形態の光学系では、プリズムは、前側レンズ群を通過した後に分岐面で反射された光のうち少なくとも光軸上の光を全反射する全反射面を備えることが好ましい。
 本実施形態の光学系では、全反射面を備えることで、入射した光の分岐面への入射角度を小さくすることができ、所定の性能を有する分岐面の製造難易度を下げることができる。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(14) 1.40 < T(gr1)/f(S)< 6.90
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(S)   : 第2光学系の焦点距離
 条件式(14)は、前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離と、第2光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(14)を満足することで、第2光学系において、光学全長の増大を抑制しつつ、球面収差、コマ収差、像面湾曲といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(14)の値が上限値を下回ると、第2光学系において、光学全長が大きくなりすぎるとともに、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(14)の上限値を6.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(14)の上限値を6.30、5.70、さらに5.10に設定することが好ましい。
 本実施形態の光学系において条件式(14)の値が下限値を下回ると、第2光学系において、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(14)の下限値を1.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(14)の下限値を1.90、2.40、さらに2.80に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(15) 1.00 < T(gr1)/f(L) < 9.80
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(L)   : 第1光学系の焦点距離
 条件式(15)は、前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離と、第1光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(15)を満足することで、第1光学系において、光学全長の増大を抑制しつつ、球面収差、コマ収差、像面湾曲といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(15)の値が上限値を下回ると、第1光学系において、光学全長が大きくなりすぎるとともに、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(15)の上限値を9.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(15)の上限値を8.80、7.80、さらに6.80に設定することが好ましい。
 本実施形態の光学系において条件式(15)の値が下限値を下回ると、第1光学系において、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(15)の下限値を1.00に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(15)の下限値を1.40、1.80、さらに2.10に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(1) 0.80 < -f(gr1n)/f(L) < 4.30
但し、
 f(gr1n) : 前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
 f(L)    : 第1光学系の焦点距離
 条件式(1)は、前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離と、第1光学系の焦点距離との比を規定する。本実施形態の光学系は、条件式(1)を満足することで、最も物体側のレンズのレンズ径の増大を抑制しつつ、像面湾曲、非点収差、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(1)の値が上限値を上回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、非点収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(1)の上限値を4.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を3.80、3.35、さらに2.90に設定することが好ましい。
 また、本実施形態の光学系において条件式(1)の値が下限値を下回ると、第2光学系の光学全長が大きくなりすぎるとともに、球面収差、コマ収差といった諸収差の補正が困難となる。また、第1光学系の周辺光束が制限され、周辺光量が低下する。
 本実施形態の光学系では、条件式(1)の下限値を0.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の下限値を1.10、1.40、さらに1.70に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(3) 0.50 < -f(gr1n)/f(S) < 4.40
但し、
 f(S) : 第2光学系の焦点距離
 条件式(3)は、前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離と、第2光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(3)を満足することで、最も物体側のレンズのレンズ径の増大を抑制しつつ、像面湾曲、非点収差、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(3)の値が上限値を上回ると、最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、非点収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(3)の上限値を4.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の上限値を4.00、3.70、さらに3.40に設定することが好ましい。
 また、本実施形態の光学系において条件式(3)の値が下限値を下回ると、像面湾曲、非点収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(3)の下限値を0.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の下限値を0.80、1.15、さらに1.50に設定することが好ましい。
 また、本実施形態の光学系では、第2後側レンズ群は開口絞りを有し、以下の条件式を満足することが好ましい。
(6) 0.50 < f(gr2S)/(-f(gr1)) < 3.40
但し、
 f(gr2S) : 第2後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離
 f(gr1)  : 前側レンズ群の合成焦点距離
 条件式(6)は、第2後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離と前側レンズ群の合成焦点距離との比を規定するものである。本実施形態の光学系は、条件式(6)を満足することで、最も物体側のレンズのレンズ径の増大を抑制し、第2光学系において光学全長の増大を抑制するとともに、像面湾曲、コマ収差、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(6)の値が上限値を上回ると、第2光学系において開口絞りよりも像面側のレンズの屈折力が弱くなって光学全長が大きくなりすぎるとともに、像面湾曲、コマ収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(6)の上限値を3.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の上限値を3.10、2.80、さらに2.50に設定することが好ましい。
 また、本実施形態の光学系において条件式(6)の値が下限値を下回ると、前側レンズ群の屈折力が弱くなって最も物体側のレンズのレンズ径が大きくなりすぎるとともに、第2光学系において像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(6)の下限値を0.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の下限値を0.65、0.80、さらに0.95に設定することが好ましい。
 また、本実施形態の光学系では、第1後側レンズ群は開口絞りを有し、以下の条件式を満足することが好ましい。
(7) 0.40 < f(gr2L)/(-f(gr1)) < 4.20
但し、
 f(gr2L) : 第1後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離
 f(gr1)  : 前側レンズ群の合成焦点距離
 条件式(7)は、第1後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離と前側レンズ群の合成焦点距離との比を規定するものである。本実施形態の光学系は、条件式(7)を満足することで、最も物体側のレンズのレンズ径の増大を抑制し、第1光学系において光学全長の増大を抑制するとともに、像面湾曲、コマ収差、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(7)の値が上限値を上回ると、第1光学系において開口絞りよりも像面側のレンズの屈折力が弱くなって光学全長が大きくなりすぎるとともに、像面湾曲、コマ収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(7)の上限値を4.20に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の上限値を3.80、3.50、さらに3.20に設定することが好ましい。
 また、本実施形態の光学系において条件式(7)の値が下限値を下回ると、前側レンズ群の屈折力が弱くなって最も物体側のレンズのレンズ径が大きくなりすぎるとともに、第1光学系において像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(7)の下限値を0.40に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の下限値を0.75、1.10、さらに1.45に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(8) 0.70 < f(lS)/(-f(gr1n)) < 5.90
但し、
 f(lS) : 第2後側レンズ群の最も像面側のレンズの焦点距離
 条件式(8)は、第2後側レンズ群の最も像面側のレンズの焦点距離と、前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離との比を規定するものである。本実施形態の光学系は、条件式(8)を満足することで、最も物体側のレンズのレンズ径の増大を抑制し、第2光学系において光学全長の増大を抑制するとともに、像面湾曲、コマ収差、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(8)の値が上限値を下回ると、第2光学系において最も像面側のレンズの屈折力が弱くなって光学全長が大きくなりすぎるとともに、像面湾曲、コマ収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(8)の上限値を5.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の上限値を5.30、4.80、さらに4.20に設定することが好ましい。
 本実施形態の光学系において条件式(8)の値が下限値を下回ると、前側レンズ群の屈折力が弱くなって最も物体側のレンズのレンズ径が大きくなりすぎるとともに、第2光学系において像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(8)の下限値を0.70に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の下限値を1.00、1.35、さらに1.70に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(9) 1.50 < f(lL)/(-f(gr1n)) < 7.70
但し、
 f(lL) : 第1後側レンズ群の最も像面側のレンズの焦点距離
 条件式(9)は、第1後側レンズ群の最も像面側のレンズの焦点距離と、前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離との比を規定するものである。本実施形態の光学系は、条件式(9)を満足することで、最も物体側のレンズのレンズ径の増大を抑制し、第1光学系において光学全長の増大を抑制するとともに、像面湾曲、コマ収差、歪曲収差といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(9)の値が上限値を下回ると、第1光学系において最も像面側のレンズの屈折力が弱くなって光学全長が大きくなりすぎるとともに、像面湾曲、コマ収差、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(9)の上限値を7.70に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の上限値を6.30、5.00、さらに3.90に設定することが好ましい。
 本実施形態の光学系において条件式(9)の値が下限値を下回ると、前側レンズ群の屈折力が弱くなって最も物体側のレンズのレンズ径が大きくなりすぎるとともに、第1光学系において像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(9)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の下限値を1.70、1.90、さらに2.10に設定することが好ましい。
 また、本実施形態の光学系では、第2後側レンズ群は開口絞りを有し、以下の条件式を満足することが好ましい。
(10) 1.60 < f(gr2S)/f(S) < 5.60
但し、
 f(gr2S) : 第2後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離
 f(S)    : 第2光学系の焦点距離
 条件式(10)は、第2後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離と、第2光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(10)を満足することで、第2光学系において光学全長の増大を抑制するとともに、球面収差、コマ収差、像面湾曲といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(10)の値が上限値を下回ると、第2光学系において開口絞りよりも像面側のレンズの屈折力が弱くなって光学全長が大きくなりすぎるとともに、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(10)の上限値を5.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(10)の上限値を5.00、4.50、さらに3.90に設定することが好ましい。
 本実施形態の光学系において条件式(10)の値が下限値を下回ると、第2光学系において開口絞りよりも像面側のレンズの屈折力が強くなり、第2光学系において球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(10)の下限値を1.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(10)の下限値を2.00、2.40、さらに2.80に設定することが好ましい。
 また、本実施形態の光学系では、第1後側レンズ群は開口絞りを有し、以下の条件式を満足することが好ましい。
(11) 2.30 < f(gr2L)/f(L) < 8.80
但し、
 f(gr2L) : 第1後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離
 f(L)    : 第1光学系の焦点距離
 条件式(11)は、第1後側レンズ群における開口絞りよりも像面側のレンズの合成焦点距離と、第1光学系の焦点距離との比を規定するものである。本実施形態の光学系は、条件式(11)を満足することで、第1光学系において光学全長の増大を抑制するとともに、球面収差、コマ収差、像面湾曲といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(11)の値が上限値を下回ると、第1光学系において開口絞りよりも像面側のレンズの屈折力が弱くなって光学全長が大きくなりすぎるとともに、球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(11)の上限値を8.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(11)の上限値を8.00、7.20、さらに6.40に設定することが好ましい。
 本実施形態の光学系において条件式(11)の値が下限値を下回ると、第1光学系において開口絞りよりも像面側のレンズの屈折力が強くなり、第2光学系において球面収差、コマ収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(11)の下限値を2.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(11)の下限値を3.00、3.70、さらに4.30に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(17) 0.23 < f(lS)/f(lL) < 1.50
但し、
 f(lS) : 第2後側レンズ群の最も像面側のレンズの焦点距離
 f(lL) : 第1後側レンズ群の最も像面側のレンズの焦点距離
 条件式(17)は、第2後側レンズ群の最も像面側のレンズの焦点距離と、第1後側レンズ群の最も像面側のレンズの焦点距離との比を規定するものである。本実施形態の光学系は、条件式(17)を満足することで、第1光学系および第2光学系における所定の画角に対する像面での結像位置のずれを小さくすることができる。
 本実施形態の光学系において条件式(17)の値が上限値を下回ると、第1光学系と第2光学系とをそれぞれの歪曲収差が近づくように補正することが困難となり、それぞれの光学系における所定の画角に対する像面での結像位置のずれが大きくなる。
 本実施形態の光学系では、条件式(17)の上限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(17)の上限値を1.40、1.30、さらに1.20に設定することが好ましい。
 本実施形態の光学系において条件式(17)の値が下限値を下回ると、第1光学系と第2光学系とをそれぞれの歪曲収差が近づくように補正することが困難となり、それぞれの光学系における所定の画角に対する像面での結像位置のずれが大きくなる。
 本実施形態の光学系では、条件式(17)の下限値を0.23に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(17)の下限値を0.36、0.49、さらに0.62に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(5) 0.01 < -f(gr1n)/f(gr1p) < 0.21
但し、
 f(gr1p) : 前側レンズ群に含まれる正レンズのうち最も物体側に配置される正レンズから像面側に連続して配置される正レンズの合成焦点距離
 条件式(5)は、前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離と、前側レンズ群に含まれる正レンズのうち最も物体側に配置される正レンズから像面側に連続して配置される正レンズの合成焦点距離との比を規定するものである。本実施形態の光学系は、条件式(5)を満足することで、最も物体側のレンズのレンズ径の増大を抑制し、像面湾曲、歪曲収差といった諸収差を適切に補正するとともに、所定の性能を有する分岐面の製造難易度を下げることができる。
 本実施形態の光学系において条件式(5)の値が上限値を上回ると、分岐面への入射角度が大きくなりすぎ、所定の性能を有する分岐面の製造が困難となる。
 本実施形態の光学系では、条件式(5)の上限値を0.21に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を0.18、0.15、さらに0.12に設定することが好ましい。
 また、本実施形態の光学系において条件式(5)の値が下限値を下回ると、前側レンズ群の屈折力が弱くなって最も物体側のレンズのレンズ径が大きくなりすぎるとともに、像面湾曲、歪曲収差といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(5)の下限値を0.01に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を0.02、0.03、さらに0.04に設定することが好ましい。
 また、本実施形態の光学系では、以下の条件式を満足することが好ましい。
(16) 1.50 < Nave(s) < 1.90
但し、
 Nave(s) : 前側レンズ群に含まれる負レンズのs線についての屈折率の平均
 条件式(16)は、前側レンズ群に含まれる負レンズのs線についての屈折率の平均を規定するものである。本実施形態の光学系は、条件式(16)を満足することで、歪曲収差、像面湾曲の補正といった諸収差を適切に補正することができる。
 本実施形態の光学系において条件式(16)の値が上限値を下回ると、前側レンズ群に含まれる負レンズのs線についての屈折力が強くなりすぎ、歪曲収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(16)の上限値を1.90に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(16)の上限値を1.84、1.77、さらに1.70に設定することが好ましい。
 本実施形態の光学系において条件式(16)の値が下限値を下回ると、前側レンズ群に含まれる負レンズのs線についての屈折力が弱くなりすぎ、歪曲収差、像面湾曲といった諸収差の補正が困難となる。
 本実施形態の光学系では、条件式(16)の下限値を1.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(16)の下限値を1.55、1.57、1.58、さらに1.60に設定することが好ましい。
 また、本実施形態の光学系では、前側レンズ群は負の屈折力を有することが好ましい。
 本実施形態の光学系では、このような構成を有することにより、最も物体側のレンズのレンズ径の増大を抑制することができる。
 また、本実施形態の光学系では、前側レンズ群は、正レンズおよび負レンズをそれぞれ1枚以上有することが好ましい。
 本実施形態の光学系では、このような構成を有することにより、像面湾曲、非点収差といった諸収差を適切に補正することができる。
 また、本実施形態の光学系では、第1光学系および第2光学系は、それぞれ最も像面側に正レンズを有することが好ましい。
 本実施形態の光学系では、このような構成を有することにより、歪曲収差、像面湾曲、非点収差、コマ収差といった諸収差を良好に補正することができる。
 また、本実施形態の光学系では、以下の条件式をともに満足することが好ましい。
(24) 80.0° < 2ωL
(25) 80.0° < 2ωS
但し、
 2ωL : 第1光学系の全画角
 2ωS : 第2光学系の全画角
 条件式(24)は、第1光学系の全画角を規定するものである。本実施形態の光学系は、条件式(24)を満足することで、第1光学系により広い範囲を表す像を得ることができる。
 本実施形態の光学系において条件式(24)の値が下限値を下回ると、第1光学系により広い範囲を表す像を得ることができない。
 本実施形態の光学系では、条件式(24)の下限値を80.0°に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(24)の下限値を84.00°、87.00°、さらに90.00°に設定することが好ましい。
 条件式(25)は、第2光学系の全画角を規定するものである。本実施形態の光学系は、条件式(25)を満足することで、第2光学系により広い範囲を表す像を得ることができる。
 本実施形態の光学系において条件式(25)の値が下限値を下回ると、第2光学系により広い範囲を表す像を得ることができない。
 本実施形態の光学系では、条件式(25)の下限値を80.0°に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(25)の下限値を84.00°、87.00°、さらに90.00°に設定することが好ましい。
 また、本実施形態の光学系では、透過される光および前記反射される光のうち、一方は可視光であり、他方は近赤外光であり、第1光学系および第2光学系のうち、分岐面から像面側で可視光を用いる光学系は接合レンズを有し、分岐面から像面側で近赤外光を用いる光学系は単レンズのみからなることが好ましい。
 本実施形態の光学系では、分岐面から像面側で可視光を用いる光学系が接合レンズを有することで、色収差を適切に補正することができる。また、本実施形態の光学系では、分岐面から像面側で近赤外光を用いる光学系を単レンズのみで構成することで、光学系を小型化することができる。
 以上の構成により、入射した光のうち分岐面で透過される光および分岐面で反射される光のそれぞれを適切に結像させる光学系を実現することができる。
 本実施形態の光学機器は、上述した構成の光学系を有している。これにより、入射した光のうち分岐面で透過される光および分岐面で反射される光のそれぞれを適切に結像させ、それぞれの像を用いた処理を実行可能な光学機器を実現することができる。
 本開示の光学系の製造方法は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有する光路分岐部材と、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、光路分岐部材と、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備える光学系の製造方法であって、第1光学系の光学全長は第2光学系の光学全長と等しいか、第2光学系の光学全長よりも長く、以下の条件式を満足するように各レンズ群および光路分岐部材を配置する。
(18) 0.50 < T(gr1)/(-f(gr1)) < 4.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(gr1) : 前側レンズ群の合成焦点距離
 本開示の光学系の製造方法は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、プリズムと、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備える光学系の製造方法であって、第1光学系の光学全長は第2光学系の光学全長よりも長く、以下の条件式をともに満足するように各レンズ群およびプリズムを配置する。
(20) 1.10 < T(gr1)/f(fL) < 5.20
(21) 1.00 < T(pfL)/f(fL) < 11.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fL)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち長い方
 T(pfL) : 第1光学系および第2光学系のうち焦点距離が長い方の光学系におけるプリズムの光軸上の長さ
 本開示の光学系の製造方法は、物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに入射した光の一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、透過される光および反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、物体側から順に、前側レンズ群と、プリズムと、透過される光および反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備える光学系の製造方法であって、第1光学系の光学全長は第2光学系の光学全長よりも長く、以下の条件式をともに満足するように各レンズ群およびプリズムを配置する。
(22) 2.50 < T(gr1)/f(fS) < 9.50
(23) 3.00 < T(pfS)/f(fS) < 20.00
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fS)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち短い方
 T(pfS) : 第1光学系および第2光学系のうち焦点距離が短い方の光学系におけるプリズムの光軸上の長さ
 このような光学系の製造方法により、入射した光のうち分岐面で透過される光および分岐面で反射される光のそれぞれを適切に結像させる光学系を製造することができる。
 (数値実施例)
 以下、本願の実施例を図面に基づいて説明する。
 (第1実施例)
 図1は、第1実施例の光学系の概略構成を説明する模式図である。
 本実施例の光学系1は、物体側から順に、前側レンズ群GR1と、分岐面BFを有する光路分岐部材OBと、前側レンズ群GR1および光路分岐部材OBに入射し分岐面BFで透過される光が入射する第1後側レンズ群GR2Lと、を備える第1光学系OS1を有する。また、本実施例の光学系1は、物体側から順に、前側レンズ群GR1と、光路分岐部材OBと、前側レンズ群GR1および光路分岐部材OBに入射し分岐面BFで反射される光が入射する第2後側レンズ群GR2Sと、を備える第2光学系OS2を有する。第1光学系OS1の光学全長は、第2光学系OS2の光学全長よりも長い。
 図1では、第1光学系OS1の第1光軸X1および第2光学系OS2の第2光軸X2は、分岐面BFよりも物体側において、説明のため互いに重ならないように記載されている。
 本実施例の光学系1において、光路分岐部材OBは、可視光を透過し、近赤外光を反射する分岐面BFを有するダイクロイックプリズムである。可視光は、例えばd線(波長587.6nm)またはg線(波長435.8nm)を含み、近赤外光は、例えばs線(波長852.1nm)を含む。
 本実施例の第1光学系OS1は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFおよび全反射面TRFで反射された光(近赤外光)を、像面I1に結像する。本実施例の第2光学系OS2は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFで透過された光(可視光)を、像面I2に結像する。
 本実施例の光学系1は、入射した光のうち分岐面BFで反射される光および分岐面BFで透過される光のそれぞれを、第1光学系OS1および第2光学系OS2によってそれぞれ適切に結像させることができる。
 図2は、第1実施例の光学系1が有する第1光学系OS1の断面図である。
 本実施例の第1光学系OS1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凹面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、両凸形状の正レンズL11と、開口絞りST1と、物体側に凸面を向けたメニスカス形状の正レンズL12と、物体側に凹面を向けたメニスカス形状の負レンズL13と、両凸形状の正レンズL14とを有している。
 像面I1上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I1側に配置される正レンズL14と像面I1との間には、フィルタFL1が配置される。
 本実施例の第1光学系OS1において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL11と、開口絞りST1と、正レンズL12と、負レンズL13と、正レンズL14とは、第1後側レンズ群GR2Lに含まれる。
 以下の表1-1に、本実施例の第1光学系OS1の諸元の値を掲げる。表1-1の[レンズ諸元]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔、n(d)はd線に対する屈折率、n(s)はs線に対する屈折率、νdはd線に対するアッベ数を示す。曲率半径r=∞は平面を示している。また、[レンズ諸元]において、「*」の付された光学面は非球面であることを示している。
 [非球面データ]において、mは非球面データに対応する光学面、Kは円錐定数、A4~A10は非球面係数を示す。
 非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、各実施例において、2次の非球面係数A2は0である。また、「E-n」は「×10-n」を示す。
(a) S(y) = (y2/r) / { 1 + (1-K×y2/r2)1/2 }
        + A4×y4 + A6×y6 + A8×y8 + A10×y10
 表1-1の[全体諸元]において、Fnoは光学系のF値、fは光学系全系の焦点距離、TLは光学全長、Yは像高、2ωは全画角(度)を示す。なお、[全体諸元]に記載されるこれらの値は、d線についての値である。
 表1-1に記載される焦点距離f、曲率半径rおよびその他の長さの単位は「mm」である。しかし、光学系は比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 以上に述べた表1-1の符号は、後述する本実施例の第2光学系OS2および他の実施例の表においても同様に使用する。
 (表1-1)
[レンズ諸元]
 m    r     d  n(d)  νd  ns
 1)  23.24716  2.500 1.618 63.34 1.610 
 2)   8.85754  6.000
 3)  -62.73425  1.300 1.618 63.34 1.610
 4)  10.07820  2.940
 5)  -62.37902  5.500 1.755 27.57 1.735
 6)  -30.02650  0.800
 7)   ∞    32.500 1.517 63.88 1.510  (光路分岐部材OB)
 8)   ∞    0.230
 9)  15.44687  2.850 1.835 42.73 1.819
 10) -300.00000  1.400
 11>   ∞    1.650            (開口絞りST1)
 12)  10.79653  2.850 1.835 42.73 1.819
 13)  350.00000  0.920
 14)  -15.64213  0.500 1.835 42.73 1.819
 15)  -83.64620  1.190
*16)  300.00000  4.150 1.835 42.73 1.819
*17)  -25.21347  3.490
 18)   ∞    0.210 1.517 63.88 1.510  (フィルタFL1)
 19)   ∞    0.343

[非球面データ]
 m   K    A4     A6     A8    A10
16)  9.2225  7.80E-05  2.38E-06  1.06E-06 -3.67E-08
17) -2.9888  4.80E-04 -1.15E-05  3.76E-06 -1.49E-07

[全体諸元]
Fno  1.18 
f   2.81 
TL  71.25 
Y   2.29 
2ω  92.00
 図3は、第1実施例の光学系1が有する第1光学系OS1の諸収差図である。
 各収差図において、球面収差図(LONGITUDINAL SPHERICAL ABER.)では最大口径に対する割合を示し、非点収差図(ASTIGMATIC FIELD CURVES)および歪曲収差図(DISTORTION)では半画角の値を示し、コマ収差図では最大像高に対する割合を示す。各収差図は、s線の値を示す。非点収差図において、Sはサジタル像面、Tはメリディオナル像面をそれぞれ示す。後述する他の実施例の諸収差図においても、本実施例の諸収差図と同様の符号を使用する。
 各収差図より、本実施例の第1光学系OS1は、諸収差を適切に補正し、s線について高い光学性能を有していることがわかる。
 図4は、第1実施例の光学系1が有する第2光学系OS2の断面図である。
 本実施例の第2光学系OS2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凹面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、物体側に凸面を向けたメニスカス形状の正レンズL21と、開口絞りST2と、物体側に凸面を向けたメニスカス形状の正レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL25と、物体側に凸面を向けたメニスカス形状の正レンズL26とを有している。
 像面I2上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I2側に配置される正レンズL26と像面I2との間には、フィルタFL2が配置される。
 本実施例の第2光学系OS2において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL21と、開口絞りST2と、正レンズL22と、正レンズL23と負レンズL24との接合負レンズと、正レンズL25と、正レンズL26とは、第2後側レンズ群GR2Sに含まれる。
 以下の表1-2に、本実施例の第2光学系OS2の諸元の値を掲げる。
 (表1-2)
[レンズ諸元]
 m    r     d   n(d)   νd
 1)  23.24716  2.500  1.618  63.34
 2)   8.85754  6.000
 3)  -62.73425  1.300  1.618  63.34
 4)  10.07820  2.940
 5)  -62.37902  5.500  1.755  27.57
 6)  -30.02650  0.800
 7)   ∞    11.000  1.517  63.88   (光路分岐部材OB)
 8)   ∞    0.150
 9)  18.88785  5.650  1.700  48.10
 10)  300.00000  1.540
 11>   ∞    1.550            (開口絞りST2)
 12)  14.36704  2.600  1.697  55.52
 13)  313.89814  0.150
 14)  15.11805  2.200  1.519  69.89
 15)  -25.38622  0.400  1.755  27.57
 16)   9.06631  0.930
 17)   9.42227  2.400  1.623  58.12
 18)  42.81721  1.830
*19)  11.33584  4.500  1.623  58.12
*20)  23.57318  4.660
 21)   ∞    0.500  1.517  63.88   (フィルタFL2)
 22)   ∞    0.359

[非球面データ]
 m   K    A4     A6     A8    A10
19) -1.1497 -7.48E-05 -1.27E-06 -8.15E-08  7.15E-10
20) -4.4220  8.96E-05 -2.30E-06 -3.03E-08  3.23E-10

[全体諸元]
Fno  2.00
f   4.99
TL  59.29
Y   4.01
2ω  92.00
 図5は、第1実施例の光学系1が有する第2光学系OS2の諸収差図である。各収差図は、d線およびg線の値をそれぞれ示す。
 各収差図より、本実施例の第2光学系OS2は、諸収差を適切に補正し、d線およびg線について高い光学性能を有していることがわかる。
 (第2実施例)
 本実施例の光学系1は、図1を参照して説明した第1実施例の光学系1と同様の概略構成を有する。
 本実施例の光学系1において、光路分岐部材OBは、近赤外光を透過し、可視光を反射する分岐面BFを有するダイクロイックプリズムである。
 本実施例の第1光学系OS1は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFおよび全反射面TRFで反射された光(可視光)を、像面I1に結像する。本実施例の第2光学系OS2は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFで透過された光(近赤外光)を、像面I2に結像する。
 本実施例の光学系1は、入射した光のうち分岐面BFで反射される光および分岐面BFで透過される光のそれぞれを、第1光学系OS1および第2光学系OS2によってそれぞれ適切に結像させることができる。
 図6は、第2実施例の光学系1が有する第1光学系OS1の断面図である。
 本実施例の第1光学系OS1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凸面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、物体側に凸面を向けたメニスカス形状の正レンズL11と、開口絞りST1と、物体側に凸面を向けたメニスカス形状の負レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL15と、物体側に凸面を向けたメニスカス形状の正レンズL16とを有している。
 像面I1上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I1側に配置される正レンズL16と像面I1との間には、フィルタFL1が配置される。
 本実施例の第1光学系OS1において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL11と、開口絞りST1と、負レンズL12と、負レンズL13と正レンズL14との接合負レンズと、正レンズL15と、正レンズL16とは、第1後側レンズ群GR2Lに含まれる。
 以下の表2-1に、本実施例の第1光学系OS1の諸元の値を掲げる。
 (表2-1)
[レンズ諸元]
 m    r     d   n(d)   νd
 1)  29.68900  1.200  1.640  60.19
 2)   9.70090  5.000
 3) -195.75730  1.200  1.618  63.34
 4)  11.92140  1.550
 5)  28.18830  2.000  1.755  27.57
 6)  43.38750  1.000
 7)   ∞    32.500  1.517  63.88   (光路分岐部材OB)
 8)   ∞    0.500
 9)  12.82210  2.620  1.700  48.10
 10)  302.64820  3.760
 11>   ∞    0.100            (開口絞りST1)
 12)  30.12150  0.955  1.651  56.24
 13)  26.67870  0.100
 14)  10.81720  2.710  1.519  69.89
 15)  -14.47040  0.350  1.755  27.57
 16)  16.24750  0.100
 17)   9.11660  1.150  1.620  60.24
 18)  10.15080  1.039
*19)  14.74820  5.500  1.620  60.24
*20)  270.84350  1.000
 21)   ∞    0.300  1.517  63.88   (フィルタFL1)
 22)   ∞    7.217

[非球面データ]
 m   K    A4     A6     A8    A10
19) -3.2435 -2.20E-04 -3.59E-06  3.52E-09  2.17E-10
20) 11.0000 -4.40E-05 -1.45E-06  4.57E-08 -2.20E-10

[全体諸元]
Fno  2.10 
f   5.03 
TL  71.75 
Y   4.02 
2ω  92.00
 図7は、第2実施例の光学系1が有する第1光学系OS1の諸収差図である。各収差図は、d線およびg線の値をそれぞれ示す。
 各収差図より、本実施例の第1光学系OS1は、諸収差を適切に補正し、d線およびg線について高い光学性能を有していることがわかる。
 図8は、第2実施例の光学系1が有する第2光学系OS2の断面図である。
 本実施例の第2光学系OS2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凸面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、物体側に凸面を向けたメニスカス形状の負レンズL21と、開口絞りST2と、両凸形状の正レンズL22と、物体側に凸面を向けたメニスカス形状の正レンズL23と、両凸形状の正レンズL24とを有している。
 像面I2上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 本実施例の第2光学系OS2において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、負レンズL21と、開口絞りST2と、正レンズL22と、正レンズL23と、正レンズL24とは、第2後側レンズ群GR2Sに含まれる。
 以下の表2-2に、本実施例の第2光学系OS2の諸元の値を掲げる。
 (表2-2)
[レンズ諸元]
 m    r     d  n(d)  νd  ns
 1)  29.68897  1.200 1.640 60.20 1.631
 2)   9.70092  5.000
 3) -195.75734  1.200 1.618 63.34 1.610
 4)  11.92145  1.550
 5)  28.18828  2.000 1.755 27.57 1.735
 6)  43.38751  1.000
 7)   ∞    12.000 1.517 63.88 1.510  (光路分岐部材OB)
 8)   ∞    0.500
 9)  16.64118  0.350 1.532 48.78 1.523
 10)   9.69527  11.748
 11>   ∞    0.100            (開口絞りST2)
 12)  16.58651  3.000 1.755 27.57 1.735
 13) -531.70077  4.273
 14)  10.44070  5.497 1.755 27.57 1.735
 15)  14.92879  0.647
*16)  13.31421  5.500 1.774 47.18 1.760
 17) -128.00260  4.854

[非球面データ]
 m   K    A4     A6     A8    A10
16) -4.0120 -1.07E-04 -5.73E-06  1.74E-08  6.04E-10

[全体諸元]
Fno  1.20 
f   2.77 
TL  60.42 
Y   2.20 
2ω  92.00
 図9は、第2実施例の光学系1が有する第2光学系OS2の諸収差図である。各収差図は、s線の値を示す。
 各収差図より、本実施例の第2光学系OS2は、諸収差を適切に補正し、s線について高い光学性能を有していることがわかる。
 (第3実施例)
 本実施例の光学系1は、図1を参照して説明した第1実施例の光学系1と同様の概略構成を有する。
 本実施例の光学系1において、光路分岐部材OBは、可視光を透過し、近赤外光を反射する分岐面BFを有するダイクロイックプリズムである。
 本実施例の第1光学系OS1は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFおよび全反射面TRFで反射された光(近赤外光)を、像面I1に結像する。本実施例の第2光学系OS2は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFで透過された光(可視光)を、像面I2に結像する。
 本実施例の光学系1は、入射した光のうち分岐面BFで反射される光および分岐面BFで透過される光のそれぞれを、第1光学系OS1および第2光学系OS2によってそれぞれ適切に結像させることができる。
 図10は、第3実施例の光学系1が有する第1光学系OS1の断面図である。
 本実施例の第1光学系OS1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凹面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、両凸形状の正レンズL11と、開口絞りST1と、物体側に凸面を向けたメニスカス形状の正レンズL12と、物体側に凸面を向けたメニスカス形状の正レンズL13と、物体側に凸面を向けたメニスカス形状の正レンズL14と、物体側に凹面を向けたメニスカス形状の正レンズL15とを有している。
 像面I1上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I1側に配置される正レンズL15と像面I1との間には、フィルタFL1が配置される。
 本実施例の第1光学系OS1において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL11と、開口絞りST1と、正レンズL12と、正レンズL13と、正レンズL14と、正レンズL15とは、第1後側レンズ群GR2Lに含まれる。
 以下の表3-1に、本実施例の第1光学系OS1の諸元の値を掲げる。
 (表3-1)
[レンズ諸元]
 m    r     d  n(d)  νd  ns
 1)  22.65975  2.000 1.603 60.69 1.595
 2)   8.58484  6.013
 3)  -46.67377  0.800 1.519 69.89 1.512
 4)  10.08192  3.049
 5)  -69.22039  2.313 1.755 27.57 1.735
 6)  -40.41329  0.988
 7)   ∞    47.000 1.517 63.88 1.510  (光路分岐部材OB)
 8)   ∞    1.805
 9)  33.91430  3.017 1.720 50.27 1.708
 10)  -66.06093  0.100
 11>   ∞    0.100            (開口絞りST1)
 12)  26.49772  2.147 1.623 58.12 1.614
 13)  74.01188  0.100
 14)  19.60218  2.271 1.593 67.90 1.586
 15)  46.09410  0.100
 16)  13.36196  2.584 1.487 70.31 1.481
 17)  29.13116  4.967
*18)  -19.16636  5.496 1.487 70.31 1.481
*19)  -9.49217  0.182
 20)   ∞    0.300 1.517 63.88 1.510  (フィルタFL1)
 21)   ∞    3.000

[非球面データ]
 m   K    A4     A6     A8    A10
18) -2.2395 -3.29E-04  3.25E-06  1.17E-07 -4.08E-09
19)  0.3196 -1.85E-05  1.28E-05 -1.34E-07 -8.44E-09

[全体諸元]
Fno  1.20
f   2.93
TL  88.00
Y   2.29
2ω  92.00
 図11は、第3実施例の光学系1が有する第1光学系OS1の諸収差図である。各収差図は、s線の値を示す。
 各収差図より、本実施例の第1光学系OS1は、諸収差を適切に補正し、s線について高い光学性能を有していることがわかる。
 図12は、第3実施例の光学系1が有する第2光学系OS2の断面図である。
 本実施例の第2光学系OS2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凹面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、物体側に凸面を向けたメニスカス形状の正レンズL21と、開口絞りST2と、物体側に凸面を向けたメニスカス形状の正レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL25と、物体側に凸面を向けたメニスカス形状の正レンズL26とを有している。
 像面I2上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I2側に配置される正レンズL26と像面I2との間には、フィルタFL2が配置される。
 本実施例の第2光学系OS2において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL21と、開口絞りST2と、正レンズL22と、正レンズL23と負レンズL24との接合負レンズと、正レンズL25と、正レンズL26とは、第2後側レンズ群GR2Sに含まれる。
 以下の表3-2に、本実施例の第2光学系OS2の諸元の値を掲げる。
 (表3-2)
[レンズ諸元]
 m    r     d   n(d)   νd
 1)  22.65975  2.000  1.603  60.69
 2)   8.58484  6.013
 3)  -46.67377  0.800  1.519  69.89
 4)  10.08192  3.049
 5)  -69.22039  2.313  1.755  27.57
 6)  -40.41329  0.988
 7)   ∞    17.000  1.517  63.88   (光路分岐部材OB)
 8)   ∞    0.384
 9)  15.15381  2.574  1.720  50.27
 10)  516.88017  4.098
 11>   ∞    0.100            (開口絞りST2)
 12)  15.83971  2.165  1.651  56.24
 13)  42.97328  0.100
 14)  12.34848  2.119  1.519  69.89
 15)  -21.04824  0.350  1.755  27.57
 16)  10.90829  0.100
 17)   9.48441  2.289  1.620  60.24
 18)  23.82029  1.297
*19)  12.79368  5.503  1.620  60.24
*20)  25.72131  1.000
 21)   ∞    0.300  1.517  63.88   (フィルタFL2)
 22)   ∞    3.960

[非球面データ]
 m   K    A4     A6     A8    A10
19) -2.0024 -1.76E-04 -2.50E-06 -1.86E-08  3.06E-10
20) 11.0000  8.87E-05 -1.45E-06  1.92E-08  4.13E-09

[全体諸元]
Fno  2.00 
f   4.93 
TL  58.40 
Y   4.01 
2ω  92.00
 図13は、第3実施例の光学系1が有する第2光学系OS2の諸収差図である。各収差図は、d線およびg線の値をそれぞれ示す。
 各収差図より、本実施例の第2光学系OS2は、諸収差を適切に補正し、d線およびg線について高い光学性能を有していることがわかる。
 (第4実施例)
 図14は、第4実施例の光学系の概略構成を説明する模式図である。
 本実施例の光学系1は、物体側から順に、前側レンズ群GR1と、分岐面BFを有する光路分岐部材OBと、前側レンズ群GR1および光路分岐部材OBに入射し分岐面BFで透過される光が入射する第1後側レンズ群GR2Lと、を備える第1光学系OS1を有する。また、本実施例の光学系1は、物体側から順に、前側レンズ群GR1と、光路分岐部材OBと、前側レンズ群GR1および光路分岐部材OBに入射し分岐面BFで反射される光が入射する第2後側レンズ群GR2Sと、を備える第2光学系OS2を有する。第1光学系OS1の光学全長は、第2光学系OS2の光学全長よりも長い。
 図14では、第1光学系OS1の第1光軸X1および第2光学系OS2の第2光軸X2は、分岐面BFよりも物体側において、説明のため互いに重ならないように記載されている。
 本実施例の光学系1において、光路分岐部材OBは、近赤外光を透過し、可視光を反射する分岐面BFを有するダイクロイックプリズムである。
 本実施例の第1光学系OS1は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFおよび全反射面TRFで透過された光(近赤外光)を、像面I1に結像する。本実施例の第2光学系OS2は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFで反射された光(可視光)を、像面I2に結像する。
 本実施例の光学系1は、入射した光のうち分岐面BFで透過される光および分岐面BFで反射される光のそれぞれを、第1光学系OS1および第2光学系OS2によってそれぞれ適切に結像させることができる。
 図15は、第4実施例の光学系1が有する第1光学系OS1の断面図である。
 本実施例の第1光学系OS1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凸面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、両凸形状の正レンズL11と、開口絞りST1と、両凸形状の正レンズL12と、物体側に凸面を向けたメニスカス形状の正レンズL13と、両凸形状の正レンズL14とを有している。
 像面I1上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I1側に配置される正レンズL14と像面I1との間には、フィルタFL1が配置される。
 本実施例の第1光学系OS1において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL11と、開口絞りST1と、正レンズL12と、正レンズL13と、正レンズL14とは、第1後側レンズ群GR2Lに含まれる。
 以下の表4-1に、本実施例の第1光学系OS1の諸元の値を掲げる。
 (表4-1)
[レンズ諸元]
 m    r     d  n(d)  νd  ns
 1)  31.56470  1.190 1.640 60.20 1.631
 2)   8.14860  5.800
 3)  -75.53150  1.190 1.618 63.34 1.610
 4)   9.75210  1.550
 5)  23.57220  5.500 1.755 27.57 1.735
 6)  23.35310  1.000
 7)   ∞    11.000 1.517 63.88 1.510  (光路分岐部材OB)
 8)   ∞    0.870
 9)  505.32550  5.500 1.487 70.31 1.481
 10)  -42.66070  8.800
 11>   ∞    0.000            (開口絞りST1)
 12)  21.15710  3.000 1.755 27.57 1.735
 13) -193.50380  0.400
 14)   9.59100  4.950 1.755 27.57 1.735
 15)  13.32120  2.000
*16)  10.35130  5.500 1.541 46.97 1.531
*17)  -58.16010  0.550
 18)   ∞    0.300 1.517 63.88 1.510  (フィルタFL1)
 19)   ∞    2.715

[非球面データ]
 m   K    A4     A6     A8    A10
16) -7.0241  3.20E-04 -2.94E-05  5.31E-07 -2.57E-09
17) -9.0000 -1.88E-04 -1.08E-06  8.31E-07 -5.15E-09

[全体諸元]
Fno  1.24
f   2.81
TL  61.71
Y   2.29
2ω  92.00
 図16は、第4実施例の光学系1が有する第1光学系OS1の諸収差図である。各収差図は、s線の値を示す。
 各収差図より、本実施例の第1光学系OS1は、諸収差を適切に補正し、s線について高い光学性能を有していることがわかる。
 図17は、第4実施例の光学系1が有する第2光学系OS2の断面図である。
 本実施例の第2光学系OS2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、両凹形状の負レンズL2と、物体側に凸面を向けたメニスカス形状の正レンズL3と、光路分岐部材OBと、両凸形状の正レンズL21と、開口絞りST2と、物体側に凸面を向けたメニスカス形状の正レンズL22と、両凸形状の正レンズL7と両凹形状の負レンズL8との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL25と、物体側に凸面を向けたメニスカス形状の正レンズL26とを有している。
 像面I2上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I2側に配置される正レンズL26と像面I2との間には、フィルタFL2が配置される。
 本実施例の第2光学系OS2において、負レンズL1と、負レンズL2と、正レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL21と、開口絞りST2と、正レンズL22と、正レンズL23と負レンズL24との接合負レンズと、正レンズL25と、正レンズL26とは、第2後側レンズ群GR2Sに含まれる。
 以下の表4-2に、本実施例の第2光学系OS2の諸元の値を掲げる。
 (表4-2)
[レンズ諸元]
 m    r     d   n(d)   νd
 1)  31.56470  1.190  1.640  60.19
 2)   8.14860  5.800
 3)  -75.53150  1.190  1.618  63.34
 4)   9.75210  1.550
 5)  23.57220  5.500  1.755  27.57
 6)  23.35310  1.000
 7)   ∞    11.000  1.517  63.88   (光路分岐部材OB)
 8)   ∞    0.770
 9)  20.16450  3.000  1.700  48.10
 10)  -37.07530  6.760
 11>   ∞    0.100            (開口絞りST2)
 12)   9.12160  1.650  1.651  56.24
 13)  23.81970  1.050
 14)  14.35620  2.100  1.519  69.89
 15)  -22.90500  0.350  1.755  27.57
 16)   7.95000  0.100
 17)   7.86080  1.510  1.620  60.24
 18)  12.41850  0.710
*19)   9.06350  5.500  1.620  60.24
*20)  256.56200  1.000
 21)   ∞    0.300  1.517  63.88   (フィルタFL2)
 22)   ∞    4.275

[非球面データ]
 m   K    A4     A6     A8    A10
19) -1.2102 -1.11E-04 -3.56E-06 -1.97E-07  1.67E-09
20) -9.0000  5.03E-05 -4.33E-06 -2.03E-08  3.18E-10

[全体諸元]
Fno  1.91
f   4.02
TL  56.30
Y   3.96
2ω  116.00
 図18は、第4実施例の光学系1が有する第2光学系OS2の諸収差図である。各収差図は、d線およびg線の値をそれぞれ示す。
 各収差図より、本実施例の第2光学系OS2は、諸収差を適切に補正し、d線およびg線について高い光学性能を有していることがわかる。
 (第5実施例)
 図19は、第5実施例の光学系の概略構成を説明する模式図である。
 本実施例の光学系1は、物体側から順に、前側レンズ群GR1と、分岐面BFを有する光路分岐部材OBと、前側レンズ群GR1および光路分岐部材OBに入射し分岐面BFで反射される光が入射する第1後側レンズ群GR2Lと、を備える第1光学系OS1を有する。また、本実施例の光学系1は、物体側から順に、前側レンズ群GR1と、光路分岐部材OBと、前側レンズ群GR1および光路分岐部材OBに入射し分岐面BFで透過される光が入射する第2後側レンズ群GR2Sと、を備える第2光学系OS2を有する。第1光学系OS1の光学全長は、第2光学系OS2の光学全長よりも長い。
 図19では、第1光学系OS1の第1光軸X1および第2光学系OS2の第2光軸X2は、分岐面BFよりも物体側において、説明のため互いに重ならないように記載されている。
 本実施例の光学系1において、光路分岐部材OBは、近赤外光を透過し、可視光を反射する分岐面BFを有するダイクロイックミラーである。
 本実施例の第1光学系OS1は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFおよび全反射面TRFで反射された光(可視光)を、像面I1に結像する。本実施例の第2光学系OS2は、前側レンズ群GR1から出射され、光路分岐部材OBの分岐面BFで透過された光(近赤外光)を、像面I2に結像する。
 本実施例の光学系1は、入射した光のうち分岐面BFで反射される光および分岐面BFで透過される光のそれぞれを、第1光学系OS1および第2光学系OS2によってそれぞれ適切に結像させることができる。
 図20は、第5実施例の光学系1が有する第1光学系OS1の断面図である。
 本実施例の第1光学系OS1は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、物体側に凸面を向けたメニスカス形状の負レンズL2と、物体側に凹面を向けたメニスカス形状の負レンズL3と、両凸形状の正レンズL11と、開口絞りST1と、物体側に凸面を向けたメニスカス形状の正レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14との接合負レンズと、物体側に凸面を向けたメニスカス形状の正レンズL15と、両凸形状の正レンズL16とを有している。
 像面I1上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 最も像面I1側に配置される正レンズL16と像面I1との間には、フィルタFL1が配置される。
 本実施例の第1光学系OS1において、負レンズL1と、負レンズL2と、負レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL11と、開口絞りST1と、正レンズL12と、正レンズL13と負レンズL14との接合負レンズと、正レンズL15と、正レンズL16とは、第1後側レンズ群GR2Lに含まれる。
 以下の表5-1に、本実施例の第1光学系OS1の諸元の値を掲げる。
 (表5-1)
[レンズ諸元]
 m    r     d   n(d)   νd
 1)  29.39415  1.200  1.700  48.10
 2)   7.87468  3.100
 3)  31.19550  1.200  1.487  70.32
 4)   8.16096  4.050
 5)  -10.84631  4.650  1.744  44.80
 6)  -13.43511  7.000
 7)   ∞    7.300             (分岐面BF)
 8)  15.01135  3.000  1.700  48.10
 9)  -73.65866  4.550
 10>   ∞    0.100             (開口絞りST1)
 11)  23.57922  1.000  1.487  70.32
 12)  23.57922  1.480
 13)  18.35557  2.600  1.487  70.32
 14)  -9.05030  1.000  1.795  28.69
 15)  22.40141  0.100
 16)  13.35807  3.730  1.487  70.32
 17)  149.95808  1.000
*18)  15.09709  5.500  1.497  81.56
*19)  -26.56453  3.000
 20)   ∞    0.300  1.517  63.88    (フィルタFL1)
 21)   ∞    4.789

[非球面データ]
 m   K    A4     A6     A8    A10
18)  1.7852 -3.47E-04 -3.83E-06  8.53E-08 -1.80E-09
19)  1.7594 -1.61E-04 -1.61E-06  4.22E-09  5.09E-10

[全体諸元]
Fno  2.05
f   5.10
TL  60.55
Y   4.00
2ω  92.00
 図21は、第5実施例の光学系1が有する第1光学系OS1の諸収差図である。各収差図は、d線およびg線の値をそれぞれ示す。
 各収差図より、本実施例の第1光学系OS1は、諸収差を適切に補正し、d線およびg線について高い光学性能を有していることがわかる。
 図22は、第5実施例の光学系1が有する第2光学系OS2の断面図である。
 本実施例の第2光学系OS2は、物体側から順に、物体側に凸面を向けたメニスカス形状の負レンズL1と、物体側に凸面を向けたメニスカス形状の負レンズL2と、物体側に凹面を向けたメニスカス形状の負レンズL3と、光路分岐部材OBと、両凸形状の正レンズL21と、開口絞りST2と、物体側に凸面を向けたメニスカス形状の正レンズL22と、物体側に凸面を向けたメニスカス形状の正レンズL23と、両凸形状の正レンズL24とを有している。
 像面I2上には、CCDまたはCMOS等から構成された撮像素子が配置される。
 本実施例の第2光学系OS2において、負レンズL1と、負レンズL2と、負レンズL3とは、前側レンズ群GR1に含まれる。また、正レンズL21と、開口絞りST2と、正レンズL22と、正レンズL23と、正レンズL24とは、第2後側レンズ群GR2Sに含まれる。
 以下の表5-2に、本実施例の第2光学系OS2の諸元の値を掲げる。
 (表5-2)
[レンズ諸元]
 m    r     d  n(d)  νd  ns
 1)  29.39415  1.200 1.700 48.10 1.631
 2)   7.87468  3.100
 3)  31.19550  1.200 1.487 70.32 1.610
 4)   8.16096  4.050
 5)  -10.84631  4.650 1.744 44.80 1.735
 6)  -13.43511  7.000
 7)   ∞    0.300 1.517 63.88 1.510  (分岐面BF)
 8)   ∞    7.000
 9)  56.18678  2.900 1.519 69.89 1.512
 10)  -76.02105  2.500
 11>   ∞    1.000            (開口絞りST2)
 12)  15.05046  2.000 1.762 40.11 1.747
 13)  47.09491  3.640
 14)   9.36251  2.750 1.755 27.57 1.735
 15)  12.22463  2.475
*16)  11.58211  5.500 1.689 31.16 1.672
*17) -224.86865  3.000
 18)   ∞    0.300 1.517 63.88 1.510  (フィルタFL2)
 19)   ∞    0.455

[非球面データ]
 m   K    A4     A6     A8    A10
16) -6.9904  1.97E-04 -1.78E-05  2.75E-07 -8.03E-10
17) -9.0000 -2.93E-04  6.27E-07  4.02E-07 -2.73E-09

[全体諸元]
Fno  1.27
f   2.82
TL  54.92
Y   2.29
2ω  92.00
 図23は、第5実施例の光学系1が有する第2光学系OS2の諸収差図である。各収差図は、s線の値を示す。
 各収差図より、本実施例の第2光学系OS2は、諸収差を適切に補正し、s線について高い光学性能を有していることがわかる。
 上記各実施例によれば、入射した光のうち分岐面で透過される光および分岐面で反射される光のそれぞれを適切に結像させる光学系を実現することができる。
 以下に、各実施例の条件式対応値を示す。
 f(L)は第1光学系OS1の焦点距離であり、f(S)は第2光学系OS2の焦点距離である。TL(L)は第1光学系OS1の光学全長であり、TL(S)は第2光学系OS2の光学全長である。
 f(fL)は、第1光学系OS1の焦点距離および第2光学系OS2の焦点距離のうち長い方であり、f(fS)は、第1光学系OS1の焦点距離および第2光学系OS2の焦点距離のうち短い方である。
 f(gr1)は、前側レンズ群GR1の合成焦点距離である。f(gr1n)は、前側レンズ群GR1に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離である。f(gr1p)は、前側レンズ群GR1に含まれる正レンズのうち最も物体側に配置される正レンズから像面側に連続して配置される正レンズの合成焦点距離である。T(gr1)は、前側レンズ群GR1の最も物体側のレンズ面から前側レンズ群GR1の最も像面側のレンズ面までの光軸上の距離である。
 T(pL)は第1光学系OS1におけるプリズムの光軸上の長さであり、T(pS)は第2光学系OS2におけるプリズムの光軸上の長さである。T(pfL)は、第1光学系OS1および第2光学系OS2のうち焦点距離が長い方の光学系におけるプリズムの光軸上の長さであり、T(pfS)は、第1光学系OS1および第2光学系OS2のうち焦点距離が短い方の光学系におけるプリズムの光軸上の長さである。
 f(gr2L)は第1後側レンズ群GR2Lにおける開口絞りST1よりも像面側のレンズの合成焦点距離であり、f(gr2S)は第2後側レンズ群GR2Sにおける開口絞りST2よりも像面側のレンズの合成焦点距離である。
 f(lL)は第1後側レンズ群GR2Lの最も像面側のレンズの焦点距離であり、f(lS)は第2後側レンズ群GR2Sの最も像面側のレンズの焦点距離である。
 Nave(s)は、前側レンズ群GR1に含まれる負レンズのs線についての屈折率の平均である。2ωLは第1光学系OS1の全画角であり、2ωSは第2光学系OS2の全画角である。
 なお、[条件式対応値]に記載される値は、s線についての値である条件式(16)の値を除き、d線についての値である。
[条件式対応値]
                    実施例
   条件式      第1   第2   第3   第4   第5
(1) -f(gr1n)/f(L)   2.771  1.786  2.871  2.855  1.857
(2) T(pL)/T(pS)    2.955  2.708  2.765  1.000   -
(3) -f(gr1n)/f(S)   1.562  3.249  1.708  1.608  3.353
(26) TL(L)/TL(S)    1.202  1.188  1.507  1.096  1.103
(5) -f(gr1n)/f(gr1p) 0.109  0.089  0.068  0.019   -
(6) f(gr2S)/-f(gr1)  1.368  0.999  1.809  2.415  1.158
(7) f(gr2L)/-f(gr1)  1.496  3.164  1.750  1.620  2.598
(8) f(lS)/-f(gr1n)  3.943  1.764  4.191  2.320  1.705
(9) f(lL)/-f(gr1n)  3.597  2.774  3.864  2.583  2.140
(10) f(gr2S)/f(S)   2.870  3.631  3.565  3.628  3.883
(11) f(gr2L)/f(L)   5.567  6.318  5.798  4.320  4.824
(12) T(pS)/f(S)    2.206  4.338  3.449  2.733   -
(13) T(pL)/f(L)    11.559  6.456  16.030  4.851   -
(14) T(gr1)/f(S)    3.657  3.958  2.876  3.784  5.031
(15) T(gr1)/f(L)    6.487  2.175  4.835  6.717  2.786
(16) Nave(s)      1.610  1.620  1.553  1.620  1.658
(17) f(lS)/f(lL)    1.096  0.636  1.085  0.898  0.797
(18) T(gr1)/-f(gr1)  1.743  1.089  1.459  2.519  1.500
(19) T(gr1)/-f(gr1n)  2.341  1.218  1.684  2.353  1.500
(20) T(gr1)/f(fL)   3.657  2.175  2.876  3.784  2.786
(21) T(pfL)/f(fL)   2.206  6.456  3.449  2.733   -
(22) T(gr1)/f(fS)   6.487  3.958  4.835  6.717  5.031
(23) T(pfS)/f(fS)   11.559  4.338  16.030  4.851   -
(24) 2ωL       92.00  92.00  92.00  92.00  92.00
(25) 2ωS       92.00  92.00  92.00  116.00  92.00
 上記各実施例は、本発明の一具体例を示しているものであり、本発明はこれらに限定されない。
 次に、本実施形態の光学系1を備えた光学機器を、図24に基づいて説明する。図24は、本実施形態の光学系1を備えた光学機器10の模式図である。
 光学機器10は、上記第1実施例に係る光学系1と、情報処理装置2と、第1撮像部IS1と、第2撮像部IS2とを備える。
 第1撮像部IS1および第2撮像部IS2は、CCDまたはCMOS等から構成された撮像素子をそれぞれ備える。光学機器10において、光学系1は、入射した光のうち分岐面BFで反射される光および分岐面BFで透過される光のそれぞれを、第1光学系OS1および第2光学系OS2によってそれぞれ適切に結像させる。第1撮像部IS1および第2撮像部IS2は、第1光学系OS1の像面I1および第2光学系OS2の像面I2にそれぞれ配置され、入射した光に対応するデータを出力する。情報処理装置2は、第1撮像部IS1および第2撮像部IS2のそれぞれが出力するデータを用いた処理を実行する。
 例えば、光学機器10が有する光学系1は、対象物から光学系1に入射する光のうち可視光を透過し、近赤外光を反射する分岐面BFを有する。光学系1が有する第1光学系OS1は近赤外光を結像し、第2光学系OS2は可視光を結像する。光学機器10が有する情報処理装置2は、第1光学系OS1による像から、対象物までの距離を検出する。また、光学機器10が有する情報処理装置2は、第2光学系OS2による像から画像データを生成することで対象物の外観を検出する。
 このように、光学機器10は、入射した光のうち分岐面BFで透過される光および分岐面BFで反射される光のそれぞれを適切に結像させ、それぞれの像を用いた処理を実行することができる。
 なお、光学機器10は、第2実施例の光学系1のように、第1光学系OS1が可視光を結像し、第2光学系OS2が近赤外光を結像する光学系を備えてもよい。この場合、情報処理装置2は、第1光学系OS1による像から画像データを生成することで対象物の外観を検出し、第2光学系OS2による像から対象物までの距離を検出する。
 最後に、本実施形態の光学系1の製造方法の概略を、図25に基づいて説明する。図25は本実施形態の光学系1の製造方法の概略を示すフローチャートである。
 図25に示す本実施形態の光学系1の製造方法は、以下のステップS1、S2およびS3を含む。
 ステップS1:前側レンズ群GR1と、分岐面BFを有する光路分岐部材OBと、第1後側レンズ群GR2Lと、第2後側レンズ群GR2Sとを準備する。
 ステップS2:第1光学系OS1の光学全長が、第2光学系OS2の光学全長と等しいか、第2光学系OS2の光学全長よりも長くなるようにする。
 ステップS3:以下の条件式を満足するように各レンズ群および光路分岐部材OBを配置する。
(18) 0.50 < T(gr1)/(-f(gr1)) < 4.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(gr1) : 前側レンズ群の合成焦点距離
 変形例では、図25に示す本実施形態の光学系1の製造方法におけるステップS1およびステップS3に代えて、以下に示すステップS1AおよびステップS3Aをそれぞれ実行してもよい。
 ステップS1A:前側レンズ群GR1と、分岐面BFを有するプリズムと、第1後側レンズ群GR2Lと、第2後側レンズ群GR2Sとを準備する。
 ステップS3A:以下の条件式を満足するように各レンズ群およびプリズムを配置する。
(20) 1.10 < T(gr1)/f(fL) < 5.20
(21) 1.00 < T(pfL)/f(fL) < 11.50
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fL)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち長い方
 T(pfL) : 第1光学系および第2光学系のうち焦点距離が長い方の光学系におけるプリズムの光軸上の長さ
 他の変形例では、上述の変形例の製造方法におけるステップS3Aに代えて、以下に示すステップS3Bを実行してもよい。
 ステップS3B:以下の条件式を満足するように各レンズ群およびプリズムを配置する。
(22) 2.50 < T(gr1)/f(fS) < 9.50
(23) 3.00 < T(pfS)/f(fS) < 20.00
但し、
 T(gr1) : 前側レンズ群の最も物体側のレンズ面から前側レンズ群の最も像面側のレンズ面までの光軸上の距離
 f(fS)  : 第1光学系の焦点距離および第2光学系の焦点距離のうち短い方
 T(pfS) : 第1光学系および第2光学系のうち焦点距離が短い方の光学系におけるプリズムの光軸上の長さ
 本実施形態の光学系の製造方法によれば、入射した光のうち分岐面で透過される光および分岐面で反射される光のそれぞれを適切に結像させる光学系を製造することができる。
 本実施形態の光学系において、レンズ面は、球面または平面で形成されていてもよく、非球面で形成されていてもよい。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易となり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、レンズ面が球面または平面の場合、像面がずれたときの描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合において、非球面は、ガラスの研削加工または非球面形状を有する型を用いたガラスモールドにより形成されてもよく、ガラスの表面に接合された樹脂の表面に形成されてもよい。また、本実施形態の光学系において、レンズ面は回折面としてもよく、レンズは屈折率分布型レンズ(GRINレンズ)またはプラスチックレンズとしてもよい。
 また、本実施形態の光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、コントラストの高い光学性能を達成することができる。
 本実施形態の光学系において、開口絞りとして独立した部材を設けずに、レンズの枠等によりその役割を代用してもよい。
 当業者は、本開示の精神および範囲から外れることなく、種々の変更、置換および修正をこれに加えることが可能であることを理解されたい。
 1  光学系
 OS1  第1光学系
 OS2  第2光学系
 OB  光路分岐部材
 BF  分岐面
 GR1  前側レンズ群
 GR2L  第1後側レンズ群
 GR2S  第2後側レンズ群
 ST1、ST2  開口絞り
 I1、I2  像面
 10  光学機器

Claims (28)

  1.  物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに前記入射した光の前記一部と異なる少なくとも他の一部を反射する分岐面を有する光路分岐部材と、前記透過される光および前記反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、
     物体側から順に、前記前側レンズ群と、前記光路分岐部材と、前記透過される光および前記反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、
     以下の条件式を満足する光学系。
     0.50 < T(gr1)/(-f(gr1)) < 4.50
    但し、
     T(gr1) : 前記前側レンズ群の最も物体側のレンズ面から前記前側レンズ群の最も像面側のレンズ面までの光軸上の距離
     f(gr1) : 前記前側レンズ群の合成焦点距離
  2.  以下の条件式を満足する請求項1に記載の光学系。
     0.80 < T(gr1)/(-f(gr1n)) < 4.60
    但し、
     f(gr1n) : 前記前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
  3.  以下の条件式を満足する請求項1または2に記載の光学系。
      1.00 < TL(L)/TL(S) < 3.50 
     TL(L)  : 前記第1光学系の光学全長
     TL(S)  : 前記第2光学系の光学全長
  4.  物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに前記入射した光の前記一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、前記透過される光および前記反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、
     物体側から順に、前記前側レンズ群と、前記プリズムと、前記透過される光および前記反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、
     前記第1光学系の光学全長は前記第2光学系の光学全長よりも長く、
     以下の条件式をともに満足する光学系。
     1.10 < T(gr1)/f(fL) < 5.20
     1.00 < T(pfL)/f(fL) < 11.50
    但し、
     T(gr1) : 前記前側レンズ群の最も物体側のレンズ面から前記前側レンズ群の最も像面側のレンズ面までの光軸上の距離
     f(fL)  : 前記第1光学系の焦点距離および前記第2光学系の焦点距離のうち長い方
     T(pfL) : 前記第1光学系および前記第2光学系のうち焦点距離が長い方の光学系における前記プリズムの光軸上の長さ
  5.  物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに前記入射した光の前記一部と異なる少なくとも他の一部を反射する分岐面を有するプリズムと、前記透過される光および前記反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、
     物体側から順に、前記前側レンズ群と、前記プリズムと、前記透過される光および前記反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、を備え、
     前記第1光学系の光学全長は前記第2光学系の光学全長よりも長く、
     以下の条件式をともに満足する光学系。
     2.50 < T(gr1)/f(fS) < 9.50
     3.00 < T(pfS)/f(fS) < 20.00
    但し、
     T(gr1) : 前記前側レンズ群の最も物体側のレンズ面から前記前側レンズ群の最も像面側のレンズ面までの光軸上の距離
     f(fS)  : 前記第1光学系の焦点距離および前記第2光学系の焦点距離のうち短い方
     T(pfS) : 前記第1光学系および前記第2光学系のうち焦点距離が短い方の光学系における前記プリズムの光軸上の長さ
  6.  以下の条件式を満足する請求項4または5に記載の光学系。
     1.10 < T(pL)/T(pS) < 5.50
    但し、
     T(pL) : 前記第1光学系における前記プリズムの光軸上の長さ
     T(pS) : 前記第2光学系における前記プリズムの光軸上の長さ
  7.  以下の条件式を満足する請求項4-6のいずれか一項に記載の光学系。
     1.20 < T(pS)/f(S) < 6.40
    但し、
     T(pS) : 前記第2光学系における前記プリズムの光軸上の長さ
     f(S)  : 前記第2光学系の焦点距離
  8.  以下の条件式を満足する請求項4-7のいずれか一項に記載の光学系。
     2.40 < T(pL)/f(L) < 20.50
     T(pL) : 前記第1光学系における前記プリズムの光軸上の長さ
     f(L)  : 前記第1光学系の焦点距離
  9.  以下の条件式を満足する請求項3-8のいずれか一項に記載の光学系。
     1.40 < T(gr1)/f(S)< 6.90
    但し、
     f(S)   : 前記第2光学系の焦点距離
  10.  以下の条件式を満足する請求項3-9のいずれか一項に記載の光学系。
     1.00 < T(gr1)/f(L) < 9.80
    但し、
     f(L)   : 前記第1光学系の焦点距離
  11.  以下の条件式を満足する請求項3-10のいずれか一項に記載の光学系。
     0.80 < -f(gr1n)/f(L) < 4.30
     f(gr1n) : 前記前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
     f(L)    : 前記第1光学系の焦点距離
  12.  以下の条件式を満足する請求項3-11のいずれか一項に記載の光学系。
     0.50 < -f(gr1n)/f(S) < 4.40
    但し、
     f(gr1n) : 前記前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
     f(S)    : 前記第2光学系の焦点距離
  13.  前記第2後側レンズ群は開口絞りを有し、以下の条件式を満足する請求項3-12のいずれか一項に記載の光学系。
     0.50 < f(gr2S)/(-f(gr1)) < 3.40
    但し、
     f(gr2S) : 前記第2後側レンズ群における前記開口絞りよりも像面側のレンズの合成焦点距離
     f(gr1)  : 前記前側レンズ群の合成焦点距離
  14.  前記第1後側レンズ群は開口絞りを有し以下の条件式を満足する請求項3-13のいずれか一項に記載の光学系。
     0.40 < f(gr2L)/(-f(gr1)) < 4.20
    但し、
     f(gr2L) : 前記第1後側レンズ群における前記開口絞りよりも像面側のレンズの合成焦点距離
     f(gr1)  : 前記前側レンズ群の合成焦点距離
  15.  以下の条件式を満足する請求項3-14のいずれか一項に記載の光学系。
     0.70 < f(lS)/(-f(gr1n)) < 5.90
    但し、
     f(lS)   : 前記第2後側レンズ群の最も像面側のレンズの焦点距離
     f(gr1n) : 前記前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
  16.  以下の条件式を満足する請求項3-15のいずれか一項に記載の光学系。
     1.50 < f(lL)/(-f(gr1n)) < 7.70
    但し、
     f(lL)   : 前記第1後側レンズ群の最も像面側のレンズの焦点距離
     f(gr1n) : 前記前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
  17.  前記第2後側レンズ群は開口絞りを有し、以下の条件式を満足する請求項3-16のいずれか一項に記載の光学系。
     1.60 < f(gr2S)/f(S) < 5.60
    但し、
     f(gr2S) : 前記第2後側レンズ群における前記開口絞りよりも像面側のレンズの合成焦点距離
     f(S)    : 前記第2光学系の焦点距離
  18.  前記第1後側レンズ群は開口絞りを有し、以下の条件式を満足する請求項3-17のいずれか一項に記載の光学系。
     2.30 < f(gr2L)/f(L) < 8.80
    但し、
     f(gr2L) : 前記第1後側レンズ群における前記開口絞りよりも像面側のレンズの合成焦点距離
     f(L)    : 前記第1光学系の焦点距離
  19.  以下の条件式を満足する請求項3-18のいずれか一項に記載の光学系。
     0.23 < f(lS)/f(lL) < 1.50
    但し、
     f(lS) : 前記第2後側レンズ群の最も像面側のレンズの焦点距離
     f(lL) : 前記第1後側レンズ群の最も像面側のレンズの焦点距離
  20.  以下の条件式を満足する請求項1-19のいずれか一項に記載の光学系。
     0.01 < -f(gr1n)/f(gr1p) < 0.21
    但し、
     f(gr1n) : 前記前側レンズ群に含まれる負レンズのうち最も物体側に配置される負レンズから像面側に連続して配置される負レンズの合成焦点距離
     f(gr1p) : 前記前側レンズ群に含まれる正レンズのうち最も物体側に配置される正レンズから像面側に連続して配置される正レンズの合成焦点距離
  21.  以下の条件式を満足する請求項1-20のいずれか一項に記載の光学系。
     1.50 < Nave(s) < 1.90
    但し、
     Nave(s) : 前記前側レンズ群に含まれる負レンズのs線についての屈折率の平均
  22.  前記前側レンズ群は負の屈折力を有する請求項1-21のいずれか一項に記載の光学系。
  23.  前記前側レンズ群は、正レンズおよび負レンズをそれぞれ1枚以上有する請求項1-22のいずれか一項に記載の光学系。
  24.  前記第1光学系および前記第2光学系は、それぞれ最も像面側に正レンズを有する請求項1-23のいずれか一項に記載の光学系。
  25.  以下の条件式をともに満足する請求項1-24のいずれか一項に記載の光学系。
     80.0° < 2ωL
     80.0° < 2ωS
    但し、
     2ωL : 前記第1光学系の全画角
     2ωS : 前記第2光学系の全画角
  26.  前記透過される光および前記反射される光のうち、一方は可視光であり、他方は近赤外光であり、前記第1光学系および前記第2光学系のうち、前記分岐面から像面側で前記可視光を用いる光学系は接合レンズを有し、前記分岐面から像面側で前記近赤外光を用いる光学系は単レンズのみからなる請求項1-25のいずれか一項に記載の光学系。
  27.  請求項1-26のいずれか一項に記載の光学系を有する光学機器。
  28.  物体側から順に、前側レンズ群と、入射した光の一部を透過するとともに前記入射した光の前記一部と異なる少なくとも他の一部を反射する分岐面を有する光路分岐部材と、前記透過される光および前記反射される光のうち一方の光が入射する第1後側レンズ群と、を有する第1光学系と、
     物体側から順に、前記前側レンズ群と、前記光路分岐部材と、前記透過される光および前記反射される光のうち他方の光が入射する第2後側レンズ群と、を有する第2光学系と、
     を備え、前記第1光学系の光学全長は前記第2光学系の光学全長と等しいか、前記第2光学系の光学全長よりも長い光学系の製造方法であって、
     以下の条件式を満足するように各レンズ群および光路分岐部材を配置する光学系の製造方法。
     0.50 < T(gr1)/(-f(gr1)) < 4.50
    但し、
     T(gr1) : 前記前側レンズ群の最も物体側のレンズ面から前記前側レンズ群の最も像面側のレンズ面までの光軸上の距離
     f(gr1) : 前記前側レンズ群の合成焦点距離
PCT/JP2023/025109 2022-07-07 2023-07-06 光学系、光学装置、および光学系の製造方法 WO2024010062A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109886 2022-07-07
JP2022109886 2022-07-07

Publications (1)

Publication Number Publication Date
WO2024010062A1 true WO2024010062A1 (ja) 2024-01-11

Family

ID=89453572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025109 WO2024010062A1 (ja) 2022-07-07 2023-07-06 光学系、光学装置、および光学系の製造方法

Country Status (1)

Country Link
WO (1) WO2024010062A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080976A (ja) * 2009-10-07 2011-04-21 Topins Co Ltd 熱画像カメラ用の一軸型レンズモジュール
WO2014162991A1 (ja) * 2013-04-02 2014-10-09 株式会社ニコン・トリンブル 測距装置
US11143847B1 (en) * 2017-09-28 2021-10-12 Apple Inc. Optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080976A (ja) * 2009-10-07 2011-04-21 Topins Co Ltd 熱画像カメラ用の一軸型レンズモジュール
WO2014162991A1 (ja) * 2013-04-02 2014-10-09 株式会社ニコン・トリンブル 測距装置
US11143847B1 (en) * 2017-09-28 2021-10-12 Apple Inc. Optical system

Similar Documents

Publication Publication Date Title
US8867147B2 (en) Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
CN101644822B (zh) 光学系统和具有所述光学系统的图像拾取装置
JP5751084B2 (ja) 超広角レンズ系
US8498065B2 (en) Lens system and optical apparatus
US8699143B2 (en) Wide-angle lens, imaging apparatus, and method for manufacturing wide-angle lens
JP3559623B2 (ja) 結像レンズ
JPH04267212A (ja) 超広角レンズ
JP2019032462A (ja) 撮像レンズ
CN113640960B (zh) 摄像镜头
JP2013536467A (ja) 高開口広角レンズ
JP7149095B2 (ja) 撮像レンズ
JP7396788B2 (ja) 撮像レンズ
JP2007322844A (ja) 撮像レンズ
CN115128770B (zh) 光学镜头
JP7269801B2 (ja) 広角レンズ
JP2019040117A (ja) 広角レンズ
CN113640945B (zh) 摄像镜头
JP2011017918A (ja) 対物レンズ
JP2007097631A (ja) 虹彩撮影用レンズ
WO2024010062A1 (ja) 光学系、光学装置、および光学系の製造方法
WO2024010090A1 (ja) 光学系、光学装置、および光学系の製造方法
JP6554759B2 (ja) 撮影レンズ、該撮影レンズを備えた光学機器、撮影レンズの製造方法
JP6331362B2 (ja) クローズアップレンズ
JP7029974B2 (ja) 広角レンズ
WO2024010089A1 (ja) 光学モジュール、光学装置、および光学モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835593

Country of ref document: EP

Kind code of ref document: A1