WO2014162767A1 - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
WO2014162767A1
WO2014162767A1 PCT/JP2014/052095 JP2014052095W WO2014162767A1 WO 2014162767 A1 WO2014162767 A1 WO 2014162767A1 JP 2014052095 W JP2014052095 W JP 2014052095W WO 2014162767 A1 WO2014162767 A1 WO 2014162767A1
Authority
WO
WIPO (PCT)
Prior art keywords
swirl
breaker
swirl flow
casing
flow
Prior art date
Application number
PCT/JP2014/052095
Other languages
French (fr)
Japanese (ja)
Inventor
松本 和幸
貝漕 高明
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/780,111 priority Critical patent/US10247025B2/en
Priority to CN201480017939.7A priority patent/CN105074134B/en
Priority to EP14779746.8A priority patent/EP2982832B1/en
Priority to JP2015509933A priority patent/JP5951890B2/en
Priority to KR1020157022298A priority patent/KR101660204B1/en
Publication of WO2014162767A1 publication Critical patent/WO2014162767A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer

Definitions

  • the present invention relates to a rotating machine, and more particularly to a rotating machine provided with a seal mechanism that reduces leakage loss.
  • a sealing mechanism is used to prevent leakage of working fluid such as steam from the gap formed between the stationary side (casing) and the rotating side (blade). It has been.
  • working fluid such as steam from the gap formed between the stationary side (casing) and the rotating side (blade).
  • a seal fin extending toward the blade on the inner periphery of the casing
  • a technique for forming a sealing member is known.
  • a structure for reducing and attenuating a swirl component is desired for a sealing mechanism of a rotary machine.
  • a technique of installing a baffle plate in a rotor blade tip cavity is known, as in the device described in Patent Document 2.
  • the seal member used in this apparatus has a honeycomb structure including seal fins and baffle plates.
  • this honeycomb structure has a structure in which seal fins are divided by a baffle plate extending in the axial direction, and the working fluid cannot enter the structure by the continuous baffle plate. , Swirl reduction effect is low.
  • An object of the present invention is to provide a rotating machine provided with a seal mechanism that can further enhance the effect of reducing swirling flow.
  • a rotary machine includes a rotor having a rotor body that rotates about an axis, and a moving blade that is arranged to extend radially outward from the rotor body.
  • a casing which is disposed so as to surround from the outer peripheral side and has a cavity into which the tip of the moving blade enters, and extends from an inner peripheral surface of the cavity of the casing toward the tip of the moving blade, and the casing and the moving
  • a plurality of seal fins that seal a space between the blades and a swirl that extends inward in the radial direction from the inner peripheral surface of the cavity of the casing and collides with a swirl flow between the plurality of seal fins
  • a swirl breaker having a flow collision surface and a swirl flow passage portion formed in at least a part of the swirl flow collision surface for passing the swirl flow in the circumferential direction.
  • the swirl breaker since the swirl breaker is disposed between the seal fins and the swirl flow collides with the swirl breaker, the swirl flow dynamic pressure is attenuated by the swirl breaker and the swirl flow is generated. Can be reduced.
  • the swirl flow passage portion is formed on the swirl flow collision surface, the swirl flow passes through the swirl flow passage portion and flows in the circumferential direction at the radial position where the swirl flow collision surface exists. The reduction effect can be strengthened.
  • the swirl flow passage portion is a gap formed between the swirl flow collision surface and at least one of the seal fin on one axial side and the seal fin on the other axial side. It's okay.
  • the swirl flow passage portion can be formed with a simpler configuration.
  • the swirl flow collision surface may be formed to be inclined with respect to the axial direction so as to be orthogonal to the flow direction of the swirl flow.
  • the swirling flow can be reduced more effectively.
  • the swirl breaker may be formed of a plate-like body, and the swirl flow collision surface may be formed so that the angle with respect to the axial direction is different between the proximal end side and the distal end side. .
  • the swirl breaker may be formed of a plate-like body having at least one hole, and the swirl flow passage portion may be the at least one hole.
  • the swirl breaker can be more optimal for the behavior of the swirling flow by adjusting the diameter, shape, quantity, arrangement, etc. of the holes.
  • dimple processing may be performed on at least one of the swirl flow collision surface of the swirl breaker and the surface of the seal fin.
  • the swirl breaker may have a configuration in which a cross-sectional shape is a waveform.
  • the swirl breaker may be configured to have a width that decreases toward the radially inner periphery. According to the said structure, it becomes easy to guide the leak jet which passed the seal fin in the space enclosed with the seal fin which has installed the swirl breaker, and the effect of a swirl breaker can be strengthened more.
  • the swirl breaker since the swirl breaker is disposed between the seal fins and the swirl flow collides with the swirl breaker, the swirl flow dynamic pressure is attenuated by the swirl breaker and the swirl flow is reduced. Can be reduced. Further, since the swirl flow passage portion is formed on the swirl collision surface, the swirl flow easily passes through the swirl flow passage portion, and the effect of reducing the swirl flow can be enhanced.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4.
  • FIG. 5 is a cross-sectional view taken along line BB in FIG. 4. It is a figure explaining the effect
  • FIG. 7 of the swirl breaker of the modification of 3rd embodiment It is a figure corresponding to FIG. 7 of the swirl breaker of the modification of 3rd embodiment. It is a figure corresponding to FIG. 3 of the swirl breaker of 4th embodiment. It is a front view of the swirl breaker of 4th embodiment, Comprising: It is a figure which shows a turning flow collision surface. It is a perspective view of the swirl breaker of 5th embodiment. It is a perspective view of the modification of the swirl breaker of 5th embodiment. It is the figure which looked at the swirl breaker of 5th embodiment from the radial direction outer side. It is a figure corresponding to FIG. 7 of the swirl breaker of 6th embodiment. It is a figure corresponding to FIG. 7 of the modification of the swirl breaker of 6th embodiment. It is a figure corresponding to FIG. 7 of the modification of the swirl breaker of 6th embodiment. It is a figure corresponding to FIG. 7 of the modification of the swirl breaker of 6th embodiment. It is a figure
  • the steam turbine 1 of the present embodiment is rotatably provided inside a casing 10, a regulating valve 20 that adjusts the amount and pressure of steam S flowing into the casing 10, and the inside of the casing 10.
  • the rotor 30 for transmitting power to a machine such as a generator (not shown), the stationary blade 40 held by the casing 10, the moving blade 50 provided in the rotor 30, and the rotor 30 are rotatably supported around the axis.
  • the bearing part 60 is provided.
  • Casing 10 has an internal space hermetically sealed and a flow path for steam S.
  • a ring-shaped partition plate outer ring (stationary annular body) 11 into which the rotor 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
  • a plurality of regulating valves 20 are attached to the inside of the casing 10.
  • the plurality of regulating valves 20 include a regulating valve chamber 21 into which steam S flows from a boiler (not shown), a valve body 22, and a valve seat 23. When the valve body 22 moves away from the valve seat 23, a steam flow path is formed. The steam S is opened and flows into the internal space of the casing 10 through the steam chamber 24.
  • the rotor 30 includes a rotor body 31 and a plurality of disks 32 extending from the outer periphery of the rotor body 31 in the radial direction of the rotor 30 (hereinafter simply referred to as the radial direction).
  • the rotor 30 transmits rotational energy to a machine such as a generator (not shown).
  • the bearing unit 60 includes a journal bearing device 61 and a thrust bearing device 62, and rotatably supports the rotor 30.
  • the stationary blades 40 extend from the casing 10 toward the inner peripheral side and constitute a group of annular stationary blades arranged radially so as to surround the rotor 30, and are held by the partition plate outer ring 11 described above. .
  • the inner sides of the stationary blades 40 in the radial direction are connected by a ring-shaped partition plate inner ring 14 through which the rotor 30 is inserted.
  • the annular stator blade group composed of the plurality of stator blades 40 is formed at six intervals in the axial direction of the rotor 30 (hereinafter simply referred to as the axial direction), and converts the pressure energy of the steam S into velocity energy. Then, it flows into the moving blade 50 adjacent to the downstream side.
  • the rotor blades 50 are firmly attached to the outer peripheral portion of the disk 32 included in the rotor 30, and a large number of the rotor blades 50 are radially arranged on the downstream side of each annular stator blade group to constitute an annular rotor blade group.
  • These annular stator blade groups and annular rotor blade groups are grouped into one stage. That is, the steam turbine 1 is configured in six stages. Among these, the tip of the moving blade 50 in the final stage is connected to the tips of the moving blades adjacent to each other in the circumferential direction of the rotor 30 (hereinafter simply referred to as “circumferential direction”) and is called a shroud 51.
  • annular groove 12 (cavity) whose diameter is increased from the inner peripheral part of the partition plate outer ring 11 and whose inner peripheral surface of the casing 10 is the bottom 13 is formed.
  • the shroud 51 is accommodated in the annular groove 12, and the bottom portion 13 is opposed to the outer peripheral surface 52 of the shroud 51 in the radial direction via the gap Gd.
  • the bottom portion 13 is provided with three seal fins 17 (17A to 17C) extending in the radial direction toward the shroud 51.
  • the seal fins 17 (17A to 17C) extend from the bottom 13 toward the inner peripheral side toward the outer peripheral surface 52 of the shroud 51, and extend in the circumferential direction. These seal fins 17 (17A to 17C) form a minute gap m with the outer peripheral surface 52 of the shroud 51 in the radial direction.
  • the dimensions of these minute gaps m may be such that the seal fins 17 (17A to 17C) and the moving blade 50 come into contact with each other in consideration of the thermal elongation amount of the casing 10 and the moving blade 50, the centrifugal extension amount of the moving blade 50 and the like. There is no setting.
  • a plurality of swirl breakers 2 are arranged at predetermined intervals in the circumferential direction between seal fins 17 adjacent in the axial direction.
  • the swirl breakers 2 are arranged at equal intervals in the circumferential direction.
  • the swirl breaker 2 extends between the seal fins 17A and the seal fins 17B so as to protrude radially inward from the inner peripheral surface (bottom portion 13) of the annular groove 12 of the casing 10. It is a plate-like body.
  • one surface of the swirl breaker 2 is a swirl flow collision surface 3 on which a swirl flow collides.
  • the swirl flow collision surface 3 is arranged along the axial direction and faces one side in the circumferential direction (indicated by reference numeral C).
  • the swirl breaker 2 the seal fin disposed on the first side (upstream side) in the axial direction of the swirl breaker 2 and the second side (downstream side) in the axial direction opposite to the first side.
  • a gap n functioning as a swirl flow passage portion is formed between 17. That is, the swirl breaker 2 and the seal fin 17 are not connected in the axial direction. The dimension of the gap n will be described later.
  • the steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage.
  • the steam S increases in the circumferential velocity component while passing through the stationary blade 40 in the annular stationary blade group of each stage.
  • Most of the steam SM out of the steam S flows between the rotor blades 50, and the energy of the steam SM is converted into rotational energy, so that the rotor 30 is rotated.
  • a part of the steam S (for example, about several percent) of the steam SL flows out from the stationary blade 40 and then flows into the annular groove 12 in a state where the circumferential component is increased, that is, in a swirl flow.
  • the behavior of the leaked steam SL flowing into the annular groove 12 when the swirl breaker 2 is not disposed will be described.
  • a part of the leaking steam SL leaks having an axial velocity calculated as a function of the magnitude of the differential pressure between the upstream side and the downstream side of the seal fin 17A when it exceeds the seal fin 17A.
  • the jet LJ flows toward the axially adjacent seal fins 17B.
  • the leaking steam SL flows as a swirling flow having a circumferential component Vc into the fin space F surrounded by the front and rear seal fins 17A and 17B. That is, the swirling flow has a strong circumferential component Vc at the exit of the stationary blade 40, and the velocity of the circumferential component Vc is higher than the velocity component Vx in the axial direction.
  • the swirling flow is swirled in the circumferential direction along the circumferential direction by the viscosity of the leak jet LJ passing through the seal fins 17 (see FIGS. 4 and 5). Further, the flow in the vicinity of the leak jet LJ has a flow pattern as shown in FIG.
  • the swirl flow that is the leaked steam SL flows in a spiral between two seal fins 17 adjacent in the axial direction while passing over the seal fins 17A on the upstream side in the axial direction (reference S1).
  • the seal fins 17B on the downstream side in the axial direction are hit, they are returned (indicated by reference numeral S2).
  • the revolving swirl flow S2 collides with the swirl flow collision surface 3 of the swirl breaker 2 after rebounding by hitting the seal fin 17A on the upstream side in the axial direction. Thereby, the swirl flow S2 is reduced.
  • the swirl flow S2 passes through the gap n between the swirl breaker 2 and the seal fin 17. That is, the swirl flow S2 flows out to the other side in the circumferential direction without being completely blocked by the swirl breaker 2.
  • the clearance n between the swirl breaker 2 and the seal fin 17 is allowed to pass through the clearance n and the area of the swirl breaker 2 necessary for reducing the swirl flow S2 by colliding with the swirl flow S2. The amount is appropriately adjusted according to the amount of the desired swirl flow S2.
  • the swirl flow collides with the swirl breaker 2 by arranging the swirl breaker 2 between the seal fin 17 and the seal fin 17.
  • the dynamic pressure of the swirl flow can be attenuated by the swirl breaker 2, and the swirl component contained in the steam SL can be reduced.
  • the gap n is formed between the swirl breaker 2 and the seal fin 17, the swirl flow easily passes through the gap n, and the effect of reducing the swirl flow is strengthened.
  • the swirl flow collision surface 3 of the swirl breaker 2 is installed so as to be orthogonal to the flow direction of the swirl flow, the swirl flow can be reduced more effectively.
  • the clearance n between the swirl breaker 2 and the seal fin 17 is the swirl flow passage portion, the swirl flow passage portion can be formed with a simpler configuration.
  • the swirl breaker 2 may be different in angle and position with respect to the axial direction of the swirl breaker 2 from the above-described embodiment as long as the swirl flow flowing from one circumferential direction can escape to the other circumferential direction. . That is, the configuration of the swirl breaker 2 and the gap n can be appropriately adjusted according to the behavior of the swirling flow.
  • the swirl flow collision surface 3 of the swirl breaker 2 may be arranged so as to be inclined with respect to the axial direction (indicated by the symbol X).
  • the angle of the swirling flow collision surface 3 with respect to the axial direction is appropriately adjusted according to the behavior of the swirling flow S2.
  • the swirl flow collision surface 3 is adjusted to be orthogonal to the flow direction of the swirl flow S2.
  • the individual swirl breakers 2 need not be formed continuously.
  • a slit 54 along the radial direction may be provided in the center of the extending direction along the axial direction of the swirl breaker 2.
  • the swirl breaker 2a on the first axial side and the swirl breaker 2b on the second axial side may be alternately arranged in the circumferential direction.
  • the clearance n is provided between the swirl breaker 2 and the downstream seal fin (seal fin 17B in FIG. 7) after the swirl flow S2 passes in the circumferential direction and reaches the vicinity of the casing 10, and then the swirl direction. Since it can collide with the downstream swirl breaker 2, it is preferable.
  • the swirl breaker 2 whose one side in the axial direction is connected to the seal fin 17 and the swirl breaker 2 whose second side in the axial direction is connected to the seal fin 17 are alternately arranged in the circumferential direction. It is good also as a structure which arrange
  • the rotary machine of 2nd embodiment of this invention is demonstrated based on drawing.
  • the swirl breaker 2 ⁇ / b> B of the rotating machine according to the present embodiment has the inclination of the swirl flow collision surface 3 such that the base end side (radially outer circumferential side) and the distal end side (radial direction) of the swirl breaker 2 ⁇ / b> B.
  • the inner circumference side The inner circumference side).
  • the swirl breaker 2B includes a proximal end portion 5 and a distal end portion 6, and the proximal end portion 5 and the distal end portion 6 are connected so as to be twisted.
  • the base end portion 5 is inclined with respect to the axial direction so that the principal surface thereof is orthogonal to the flow direction of the swirling flow S2 rebounded by the downstream seal fin 17B.
  • the angle of the tip portion 6 is adjusted so as to cancel the swirling component of the swirling flow S2 rebounded by hitting the upstream seal fin 17A.
  • a more optimal swirl breaker can be provided for the behavior of the swirl flow S2 that repeatedly rebounds between the upstream-side seal fin 17A and the downstream-side seal fin 17B.
  • the rotary machine of 3rd embodiment of this invention is demonstrated based on drawing.
  • the swirl breaker 2 ⁇ / b> C of the present embodiment is formed of a porous plate-like body in which a plurality of holes 9 are formed, and both axial ends thereof are connected to the seal fins 17. That is, the plurality of holes 9 function as a swirl flow passage portion.
  • the rigidity of the seal device can be increased by connecting the swirl breaker 2C and the seal fin 17 to each other.
  • the diameter, shape, quantity, arrangement, etc. of the holes 9 can be changed as appropriate.
  • a single hole 9A may be arranged at the approximate center of the swirl breaker 2C.
  • the rotary machine of 4th embodiment of this invention is demonstrated based on drawing.
  • the swirl flow collision surface 3 of the swirl breaker 2 ⁇ / b> D of the present embodiment and the surface of the seal fin 17 are subjected to dimple processing (unevenness processing like the surface of a golf ball).
  • dimple processing unevenness processing like the surface of a golf ball.
  • the concave portion 55 may be a hemispherical concave portion or a conical concave portion.
  • a concave portion having a pyramid shape such as a hexagonal pyramid shape may be used.
  • the dimple processing need not be formed on both the turning collision surface 3 and the surface of the seal fin 17, and may be formed on either the turning collision surface 3 or the seal fin 17.
  • energy loss due to friction between the swirl flow and the swirl breaker 2D and the seal fin 17 is increased as compared with the case where the swivel collision surface 3 and the seal fin 17 are smooth surfaces.
  • the effect of reducing the included swirl component is increased.
  • the swirl breaker 2 ⁇ / b> E of the present embodiment has a corrugated cross-sectional shape as viewed from the direction along the connection side 56 with the bottom surface 13 (see FIG. 2).
  • the swirl breaker 2E of the present embodiment has one direction orthogonal to the main surface from the base end side (radial outer peripheral side indicated by reference sign R) to the distal end side (radial R inner peripheral side) and vice versa. It is formed into a waveform that curves continuously in the direction.
  • the waveform may be a rectangular waveform or a sine waveform.
  • the depth of the groove 57 (concave shape) parallel to the connection side 56 formed on the turning collision surface 3 is increased toward the downstream (arrow S2E). Is preferred.
  • the axial direction X and the circumferential direction C A plurality of small vortices SV having vorticity are generated. Thereby, the disturbance of the flow in the space between the seal fins 17 (see FIG. 2) is amplified, and the effect of reducing the swirling component contained in the steam SL is increased.
  • the swirl breaker 2E has a shape viewed from the base end side (radial direction R outer peripheral side) to the distal end side (radial direction R inner peripheral side) toward the swirl flow S2. It is good also as the circular arc shape which becomes convex or concave. That is, the swirl flow collision surface 3 may be curved.
  • the swirl breaker 2E has an arc shape in which the proximal end portion 5 (radially outer peripheral side, connection side 56) is concave toward the swirl flow S2, and the distal end portion 6 (radial direction). It is good also as circular arc shape which becomes convex toward the swirl
  • the proximal end portion 5 and the distal end portion 6 are smoothly connected and are three-dimensionally twisted.
  • the swirl breaker 2F of the present embodiment has a shape with a narrower width from the proximal end portion 5 (radially outer peripheral side) toward the distal end portion 6 (radial inner peripheral side). .
  • the swirl flow collision surface 3 of the swirl breaker 2F has a trapezoidal shape in which the longer bottom of the pair of bottoms is connected to the casing and the shorter bottom is disposed on the shroud 51 side.
  • the leak jet LJ that has passed through the seal fin 17 can be easily guided into the space surrounded by the seal fin 17 where the swirl breaker 2F is installed, and the effect of the swirl breaker 2F is further enhanced. Can do.
  • the swirl breaker 2F of this embodiment is not restricted to a shape as shown in FIG.
  • the half on the side of the base end 5 is made the same width as the swirl breaker 2 of the first embodiment, and the half on the side of the tip 6 is made wider than the half on the base end. It is good also as a stepped shape which makes it narrow.
  • the side 58 on the upstream seal fin 17 side may have a trapezoidal shape along the seal fin 17.
  • the swirl breaker is not limited to a planar shape, and may be a curved plate shape.
  • the outer peripheral surface 52 of the shroud 51 of each said embodiment is a planar shape, the swirl breaker of this invention is applicable also to the shroud in which the step was formed in the outer peripheral surface 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

A rotating machine equipped with: a casing (10) in which is formed a cavity (12) in which the tips of rotor blades (50) intrude; multiple sealing fins (17) which extend from the inner circumferential surface of the cavity (12) of the casing (10) toward the tips of the rotor blades (50), thereby sealing the space between the casing (10) and the rotor blades (50); and swirl breakers (2), which have swirl flow collision surfaces (3) in between the multiple sealing fins and extending radially inward from the inner circumferential surface of the cavity (12) of the casing (10), and against which a swirling flow collides, with swirl flow transmission parts (n) that transmit the swirl flow in the circumferential direction being formed in at least a portion of the swirl flow collision surfaces.

Description

回転機械Rotating machine
 本発明は、回転機械に係り、特に漏洩損失を低減させるシール機構を備えた回転機械に関する。
 本願は、2013年4月3日に出願された特願2013-078029号について優先権を主張し、その内容をここに援用する。
The present invention relates to a rotating machine, and more particularly to a rotating machine provided with a seal mechanism that reduces leakage loss.
This application claims priority on Japanese Patent Application No. 2013-0778029 filed on April 3, 2013, the contents of which are incorporated herein by reference.
 蒸気タービン、ガスタービンなどの回転機械においては、静止側(ケーシング)と回転側(動翼)との間にできる隙間から蒸気などの作動流体が漏洩するのを防止するために、シール機構が用いられている。(例えば特許文献1参照)。
 例えば、静翼を通過した後の作動流体が動翼とケーシング間の隙間(動翼チップキャビティ)を通過するのを低減するため、例えば、ケーシングの内周に動翼に向かって伸びるシールフィン等のシール部材を形成する技術が知られている。
In rotating machines such as steam turbines and gas turbines, a sealing mechanism is used to prevent leakage of working fluid such as steam from the gap formed between the stationary side (casing) and the rotating side (blade). It has been. (For example, refer to Patent Document 1).
For example, in order to reduce the passage of the working fluid after passing through the stationary blade through the gap between the blade and the casing (the blade tip cavity), for example, a seal fin extending toward the blade on the inner periphery of the casing A technique for forming a sealing member is known.
特開2006-104952号公報JP 2006-104952 A 米国特許第7004475号明細書US Patent No. 7,004475
 ところで、近年、回転機械においては、低周波振動などの自励振動が発生する事例がある。この自励振動の原因は、静翼を通過して強い周方向速度成分(スワール成分、旋回成分)をもった流れ(旋回流)が、シールフィンを通過する際に、シールフィン間のキャビティ内に周方向に不均一な圧力分布を形成する事である。 Incidentally, in recent years, there are cases in which self-excited vibrations such as low-frequency vibrations occur in rotating machines. The cause of this self-excited vibration is that a flow (swirl flow) having a strong circumferential velocity component (swirl component, swirl component) that passes through the stationary blades passes through the seal fins and enters the cavity between the seal fins. In other words, an uneven pressure distribution is formed in the circumferential direction.
 このような背景から、回転機械のシール機構には、スワール成分を低減・減衰させるための構造が望まれている。このような構造としては、特許文献2に記載の装置の様に、動翼チップキャビティ内に邪魔板を設置する技術が知られている。
 しかしながら、この装置に用いられているシール部材は、シールフィンと邪魔版とで構成されるハニカム構造となっている。具体的には、このハニカム構造は、軸方向に延在する邪魔板によってシールフィンが分断されている構造となっており、連続している邪魔板によって構造の内部まで作動流体が入り込めない為、スワール低減効果が低い。
From such a background, a structure for reducing and attenuating a swirl component is desired for a sealing mechanism of a rotary machine. As such a structure, a technique of installing a baffle plate in a rotor blade tip cavity is known, as in the device described in Patent Document 2.
However, the seal member used in this apparatus has a honeycomb structure including seal fins and baffle plates. Specifically, this honeycomb structure has a structure in which seal fins are divided by a baffle plate extending in the axial direction, and the working fluid cannot enter the structure by the continuous baffle plate. , Swirl reduction effect is low.
 本発明は、旋回流の低減効果をより強めることができるシール機構を備えた回転機械を提供することを目的とする。 An object of the present invention is to provide a rotating machine provided with a seal mechanism that can further enhance the effect of reducing swirling flow.
 本発明の第一の態様によれば、回転機械は、軸線回りに回転するロータ本体と、該ロータ本体から径方向外側に延びるように配置された動翼と、を有するロータと、該ロータを外周側から囲うように配置され、前記動翼の先端が入り込むキャビティが形成されたケーシングと、前記ケーシングの前記キャビティの内周面から前記動翼の先端に向かって延びて、前記ケーシングと前記動翼との間の空間をシールする複数のシールフィンと、前記複数のシールフィンの間において、前記ケーシングの前記キャビティの内周面から径方向内側に向かって延在し、旋回流が衝突する旋回流衝突面を有するとともに、前記旋回流衝突面の少なくとも一部に前記旋回流を周方向に通過させる旋回流通過部が形成されたスワールブレーカと、を備えることを特徴とする。 According to the first aspect of the present invention, a rotary machine includes a rotor having a rotor body that rotates about an axis, and a moving blade that is arranged to extend radially outward from the rotor body. A casing which is disposed so as to surround from the outer peripheral side and has a cavity into which the tip of the moving blade enters, and extends from an inner peripheral surface of the cavity of the casing toward the tip of the moving blade, and the casing and the moving A plurality of seal fins that seal a space between the blades and a swirl that extends inward in the radial direction from the inner peripheral surface of the cavity of the casing and collides with a swirl flow between the plurality of seal fins A swirl breaker having a flow collision surface and a swirl flow passage portion formed in at least a part of the swirl flow collision surface for passing the swirl flow in the circumferential direction. And features.
 上記構成によれば、シールフィンとシールフィンとの間に、スワールブレーカを配置したことによって、旋回流がスワールブレーカに衝突することで、旋回流の動圧をスワールブレーカによって減衰させて旋回流を低減させることができる。
 また、旋回流衝突面に旋回流通過部が形成されていることによって、旋回流衝突面が存在する径方向位置で旋回流がこの旋回流通過部を通過し周方向に流れるので、旋回流の低減効果を強めることができる。
According to the above configuration, since the swirl breaker is disposed between the seal fins and the swirl flow collides with the swirl breaker, the swirl flow dynamic pressure is attenuated by the swirl breaker and the swirl flow is generated. Can be reduced.
In addition, since the swirl flow passage portion is formed on the swirl flow collision surface, the swirl flow passes through the swirl flow passage portion and flows in the circumferential direction at the radial position where the swirl flow collision surface exists. The reduction effect can be strengthened.
 上記回転機械において、前記旋回流通過部は、前記旋回流衝突面と、軸線方向一方側の前記シールフィン及び軸線方向他方側の前記シールフィンの少なくとも一方と、の間に形成された隙間であってよい。 In the rotating machine, the swirl flow passage portion is a gap formed between the swirl flow collision surface and at least one of the seal fin on one axial side and the seal fin on the other axial side. It's okay.
 上記構成によれば、より簡素な構成で旋回流通過部を形成することができる。 According to the above configuration, the swirl flow passage portion can be formed with a simpler configuration.
 上記回転機械において、前記旋回流衝突面は、前記旋回流の流れ方向に直交するように前記軸線方向に対して傾斜して形成されている構成としてもよい。 In the rotating machine, the swirl flow collision surface may be formed to be inclined with respect to the axial direction so as to be orthogonal to the flow direction of the swirl flow.
 上記構成によれば、旋回流をより効果的に低減することができる。 According to the above configuration, the swirling flow can be reduced more effectively.
 上記回転機械において、前記スワールブレーカは、板状体により形成され、前記旋回流衝突面は、その基端側と先端側とで前記軸線方向に対する角度が異なるように形成されている構成としてもよい。 In the rotating machine, the swirl breaker may be formed of a plate-like body, and the swirl flow collision surface may be formed so that the angle with respect to the axial direction is different between the proximal end side and the distal end side. .
 上記構成によれば、上流側のシールフィンと下流側のシールフィンとの間ではね返りを繰り返す旋回流の挙動に対して、より最適なスワールブレーカとすることができる。 According to the above configuration, it is possible to provide a more optimal swirl breaker with respect to the behavior of the swirling flow that repeatedly rebounds between the upstream-side seal fin and the downstream-side seal fin.
 上記回転機械において、スワールブレーカは、少なくとも一つの孔が形成された板状体により形成され、前記旋回流通過部は、前記少なくとも一つの孔である構成としてもよい。 In the rotating machine, the swirl breaker may be formed of a plate-like body having at least one hole, and the swirl flow passage portion may be the at least one hole.
 上記構成によれば、孔の径、形状、数量、配置などを調整することによって、旋回流の挙動に対して、より最適なスワールブレーカとすることができる。 According to the above configuration, the swirl breaker can be more optimal for the behavior of the swirling flow by adjusting the diameter, shape, quantity, arrangement, etc. of the holes.
 上記回転機械において、前記スワールブレーカの前記旋回流衝突面と前記シールフィンの表面の少なくとも一方にディンプル加工が施されている構成としてもよい。 In the rotating machine, dimple processing may be performed on at least one of the swirl flow collision surface of the swirl breaker and the surface of the seal fin.
 上記構成によれば、旋回衝突面及びシールフィンを平滑面とする場合と比較して、旋回流とスワールブレーカ及びシールフィンとの摩擦によるエネルギーロスが増加するため、蒸気に含まれる旋回成分の低減効果が大きくなる。 According to the above configuration, energy loss due to friction between the swirl flow, the swirl breaker, and the seal fin is increased as compared with the case where the swirl collision surface and the seal fin are smooth surfaces. The effect is increased.
 上記回転機械において、前記スワールブレーカは、断面形状が波形とされている構成としてもよい。 In the rotating machine, the swirl breaker may have a configuration in which a cross-sectional shape is a waveform.
 上記構成によれば、径方向の渦度を持った剥離流に加えて、軸方向・周方向の渦度を持ったスケールの小さな複数の渦が発生する。これにより、シールフィン間の空間内の流れの乱れが増幅され、蒸気に含まれる旋回成分の低減効果が大きくなる。 According to the above configuration, in addition to the separated flow having the vorticity in the radial direction, a plurality of small-scale vortices having the vorticity in the axial direction and the circumferential direction are generated. Thereby, the disturbance of the flow in the space between the seal fins is amplified, and the effect of reducing the swirling component contained in the steam is increased.
 上記回転機械において、前記スワールブレーカは、径方向内周側に向かうに従って幅が狭くなるように形成されている構成としてもよい。
 上記構成によれば、シールフィンを通過したリークジェットを、スワールブレーカを設置しているシールフィンで囲まれた空間内に導きやすくなり、スワールブレーカの効果をより強くすることができる。
In the rotating machine, the swirl breaker may be configured to have a width that decreases toward the radially inner periphery.
According to the said structure, it becomes easy to guide the leak jet which passed the seal fin in the space enclosed with the seal fin which has installed the swirl breaker, and the effect of a swirl breaker can be strengthened more.
 本発明によれば、シールフィンとシールフィンとの間に、スワールブレーカを配置したことによって、旋回流がスワールブレーカに衝突することで、旋回流の動圧をスワールブレーカによって減衰させて旋回流を低減させることができる。また、旋回衝突面に旋回流通過部が形成されていることによって、この旋回流通過部を旋回流が通過し易くなり、旋回流の低減効果を強めることができる。 According to the present invention, since the swirl breaker is disposed between the seal fins and the swirl flow collides with the swirl breaker, the swirl flow dynamic pressure is attenuated by the swirl breaker and the swirl flow is reduced. Can be reduced. Further, since the swirl flow passage portion is formed on the swirl collision surface, the swirl flow easily passes through the swirl flow passage portion, and the effect of reducing the swirl flow can be enhanced.
本発明の第一実施形態に係る蒸気タービンの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the steam turbine which concerns on 1st embodiment of this invention. 第一実施形態に係る蒸気タービンのシールフィンの要部拡大断面図であり、図1のIの拡大断面図である。It is a principal part expanded sectional view of the seal fin of the steam turbine which concerns on 1st embodiment, and is an expanded sectional view of I of FIG. 第一実施形態に係る蒸気タービンのシールフィンを径方向外側から見た図である。It is the figure which looked at the seal fin of the steam turbine concerning a first embodiment from the diameter direction outside. スワールブレーカを配置しない場合における、環状溝に流入する漏れ蒸気の挙動について説明する図2に対応する図である。It is a figure corresponding to FIG. 2 explaining the behavior of the leaking steam flowing into the annular groove when the swirl breaker is not arranged. 図4のA-A矢視断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. 図4のB-B矢視断面図である。FIG. 5 is a cross-sectional view taken along line BB in FIG. 4. 第一実施形態のスワールブレーカの作用を説明する図である。It is a figure explaining the effect | action of the swirl breaker of 1st embodiment. 第一実施形態のスワールブレーカの変形例を説明する図3に対応する図である。It is a figure corresponding to Drawing 3 explaining the modification of the swirl breaker of a first embodiment. 第一実施形態のスワールブレーカの変形例を説明する図3に対応する図である。It is a figure corresponding to Drawing 3 explaining the modification of the swirl breaker of a first embodiment. 第一実施形態のスワールブレーカの変形例を説明する図3に対応する図である。It is a figure corresponding to Drawing 3 explaining the modification of the swirl breaker of a first embodiment. 第一実施形態のスワールブレーカの変形例を説明する図3に対応する図である。It is a figure corresponding to Drawing 3 explaining the modification of the swirl breaker of a first embodiment. 第一実施形態のスワールブレーカの変形例を説明する図3に対応する図である。It is a figure corresponding to Drawing 3 explaining the modification of the swirl breaker of a first embodiment. 第二実施形態のスワールブレーカの図7に対応する図である。It is a figure corresponding to FIG. 7 of the swirl breaker of 2nd embodiment. 第二実施形態のスワールブレーカを径方向外側から見た図である。It is the figure which looked at the swirl breaker of 2nd embodiment from the radial direction outer side. 第三実施形態のスワールブレーカの図7に対応する図である。It is a figure corresponding to FIG. 7 of the swirl breaker of 3rd embodiment. 第三実施形態の変形例のスワールブレーカの図7に対応する図である。It is a figure corresponding to FIG. 7 of the swirl breaker of the modification of 3rd embodiment. 第三実施形態の変形例のスワールブレーカの図7に対応する図である。It is a figure corresponding to FIG. 7 of the swirl breaker of the modification of 3rd embodiment. 第四実施形態のスワールブレーカの図3に対応する図である。It is a figure corresponding to FIG. 3 of the swirl breaker of 4th embodiment. 第四実施形態のスワールブレーカの正面図であって旋回流衝突面を示す図である。It is a front view of the swirl breaker of 4th embodiment, Comprising: It is a figure which shows a turning flow collision surface. 第五実施形態のスワールブレーカの斜視図である。It is a perspective view of the swirl breaker of 5th embodiment. 第五実施形態のスワールブレーカの変形例の斜視図である。It is a perspective view of the modification of the swirl breaker of 5th embodiment. 第五実施形態のスワールブレーカを径方向外側から見た図である。It is the figure which looked at the swirl breaker of 5th embodiment from the radial direction outer side. 第六実施形態のスワールブレーカの図7に対応する図である。It is a figure corresponding to FIG. 7 of the swirl breaker of 6th embodiment. 第六実施形態のスワールブレーカの変形例の図7に対応する図である。It is a figure corresponding to FIG. 7 of the modification of the swirl breaker of 6th embodiment. 第六実施形態のスワールブレーカの変形例の図7に対応する図である。It is a figure corresponding to FIG. 7 of the modification of the swirl breaker of 6th embodiment.
(第一実施形態)
 以下、本発明の第一実施形態の回転機械である蒸気タービンについて図面に基づき説明する。
 図1に示すように、本実施形態の蒸気タービン1は、ケーシング10と、ケーシング10に流入する蒸気Sの量と圧力を調整する調整弁20と、ケーシング10の内方に回転自在に設けられ、動力を図示しない発電機等の機械に伝達するロータ30と、ケーシング10に保持された静翼40と、ロータ30に設けられた動翼50と、ロータ30を軸回りに回転可能に支持する軸受部60とを備えている。
(First embodiment)
Hereinafter, a steam turbine which is a rotating machine according to a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the steam turbine 1 of the present embodiment is rotatably provided inside a casing 10, a regulating valve 20 that adjusts the amount and pressure of steam S flowing into the casing 10, and the inside of the casing 10. The rotor 30 for transmitting power to a machine such as a generator (not shown), the stationary blade 40 held by the casing 10, the moving blade 50 provided in the rotor 30, and the rotor 30 are rotatably supported around the axis. The bearing part 60 is provided.
 ケーシング10は、内部空間が気密に封止されていると共に、蒸気Sの流路とされている。このケーシング10の内壁面には、ロータ30が挿通されるリング状の仕切板外輪(静止環状体)11が強固に固定されている。 Casing 10 has an internal space hermetically sealed and a flow path for steam S. A ring-shaped partition plate outer ring (stationary annular body) 11 into which the rotor 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
 調整弁20は、ケーシング10の内部に複数個取り付けられている。複数の調整弁20は、図示しないボイラから蒸気Sが流入する調整弁室21と、弁体22と、弁座23とを備えており、弁体22が弁座23から離れると蒸気流路が開いて、蒸気室24を介して蒸気Sがケーシング10の内部空間に流入するようになっている。 A plurality of regulating valves 20 are attached to the inside of the casing 10. The plurality of regulating valves 20 include a regulating valve chamber 21 into which steam S flows from a boiler (not shown), a valve body 22, and a valve seat 23. When the valve body 22 moves away from the valve seat 23, a steam flow path is formed. The steam S is opened and flows into the internal space of the casing 10 through the steam chamber 24.
 ロータ30は、ロータ本体31と、このロータ本体31の外周からロータ30の径方向(以下、単に径方向と呼ぶ)に延出した複数のディスク32とを備えている。このロータ30は、回転エネルギーを図示しない発電機等の機械に伝達するようになっている。
 軸受部60は、ジャーナル軸受装置61及びスラスト軸受装置62を備えており、ロータ30を回転自在に支持している。
The rotor 30 includes a rotor body 31 and a plurality of disks 32 extending from the outer periphery of the rotor body 31 in the radial direction of the rotor 30 (hereinafter simply referred to as the radial direction). The rotor 30 transmits rotational energy to a machine such as a generator (not shown).
The bearing unit 60 includes a journal bearing device 61 and a thrust bearing device 62, and rotatably supports the rotor 30.
 静翼40は、ケーシング10から内周側に向かって伸び、ロータ30を囲うように放射状に多数配置される環状静翼群を構成しており、それぞれ上述した仕切板外輪11に保持されている。これら静翼40の径方向における内方側は、ロータ30が挿通されたリング状の仕切板内輪14等で連結されている。 The stationary blades 40 extend from the casing 10 toward the inner peripheral side and constitute a group of annular stationary blades arranged radially so as to surround the rotor 30, and are held by the partition plate outer ring 11 described above. . The inner sides of the stationary blades 40 in the radial direction are connected by a ring-shaped partition plate inner ring 14 through which the rotor 30 is inserted.
 これら複数の静翼40からなる環状静翼群は、ロータ30の軸方向(以下、単に軸方向と呼ぶ)に間隔を空けて六つ形成されており、蒸気Sの圧力エネルギーを速度エネルギーに変換して、下流側に隣接する動翼50に流入させる。 The annular stator blade group composed of the plurality of stator blades 40 is formed at six intervals in the axial direction of the rotor 30 (hereinafter simply referred to as the axial direction), and converts the pressure energy of the steam S into velocity energy. Then, it flows into the moving blade 50 adjacent to the downstream side.
 動翼50は、ロータ30が有するディスク32の外周部に強固に取り付けられ、各環状静翼群の下流側において、放射状に多数配置されて環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組一段とされている。すなわち、蒸気タービン1は、六段に構成されている。このうち、最終段における動翼50の先端部は、ロータ30の周方向(以下、単に周方向と呼ぶ)に隣接する動翼の先端部同士と連結されておりシュラウド51と呼ばれている。
The rotor blades 50 are firmly attached to the outer peripheral portion of the disk 32 included in the rotor 30, and a large number of the rotor blades 50 are radially arranged on the downstream side of each annular stator blade group to constitute an annular rotor blade group.
These annular stator blade groups and annular rotor blade groups are grouped into one stage. That is, the steam turbine 1 is configured in six stages. Among these, the tip of the moving blade 50 in the final stage is connected to the tips of the moving blades adjacent to each other in the circumferential direction of the rotor 30 (hereinafter simply referred to as “circumferential direction”) and is called a shroud 51.
 図2に示すように、仕切板外輪11の軸方向下流側には、仕切板外輪11の内周部から拡径されケーシング10の内周面を底部13とする環状溝12(キャビティ)が形成されている。環状溝12には、シュラウド51が収容され、底部13は、シュラウド51の外周面52と隙間Gdを介して径方向に対向している。 As shown in FIG. 2, on the downstream side in the axial direction of the partition plate outer ring 11, an annular groove 12 (cavity) whose diameter is increased from the inner peripheral part of the partition plate outer ring 11 and whose inner peripheral surface of the casing 10 is the bottom 13 is formed. Has been. The shroud 51 is accommodated in the annular groove 12, and the bottom portion 13 is opposed to the outer peripheral surface 52 of the shroud 51 in the radial direction via the gap Gd.
 この底部13には、シュラウド51に向けて径方向に延出する三つのシールフィン17(17A~17C)が設けられている。シールフィン17(17A~17C)は、シュラウド51の外周面52に向けて底部13から内周側に延出しており、周方向に延びている。これらシールフィン17(17A~17C)は、シュラウド51の外周面52と微小隙間mを径方向に形成している。 The bottom portion 13 is provided with three seal fins 17 (17A to 17C) extending in the radial direction toward the shroud 51. The seal fins 17 (17A to 17C) extend from the bottom 13 toward the inner peripheral side toward the outer peripheral surface 52 of the shroud 51, and extend in the circumferential direction. These seal fins 17 (17A to 17C) form a minute gap m with the outer peripheral surface 52 of the shroud 51 in the radial direction.
 これら微小隙間mの寸法は、ケーシング10や動翼50の熱伸び量や動翼50の遠心伸び量等を考慮して、シールフィン17(17A~17C)と動翼50とが接触することがない範囲で設定されている。 The dimensions of these minute gaps m may be such that the seal fins 17 (17A to 17C) and the moving blade 50 come into contact with each other in consideration of the thermal elongation amount of the casing 10 and the moving blade 50, the centrifugal extension amount of the moving blade 50 and the like. There is no setting.
 軸方向に隣り合うシールフィン17同士の間には、周方向に所定の間隔をあけて複数のスワールブレーカ2が配置されている。スワールブレーカ2は、周方向に等間隔で配置されている。具体的には、スワールブレーカ2は、シールフィン17Aとシールフィン17Bとの間において、ケーシング10の環状溝12の内周面(底部13)から径方向内側に向かって突出するように延在する板状体である。 A plurality of swirl breakers 2 are arranged at predetermined intervals in the circumferential direction between seal fins 17 adjacent in the axial direction. The swirl breakers 2 are arranged at equal intervals in the circumferential direction. Specifically, the swirl breaker 2 extends between the seal fins 17A and the seal fins 17B so as to protrude radially inward from the inner peripheral surface (bottom portion 13) of the annular groove 12 of the casing 10. It is a plate-like body.
 図3に示すように、スワールブレーカ2の一面は、旋回流が衝突する旋回流衝突面3とされている。旋回流衝突面3は、軸方向に沿うように配置されており、周方向(符号Cで示す)の一方側に向いている。 As shown in FIG. 3, one surface of the swirl breaker 2 is a swirl flow collision surface 3 on which a swirl flow collides. The swirl flow collision surface 3 is arranged along the axial direction and faces one side in the circumferential direction (indicated by reference numeral C).
 また、スワールブレーカ2と、スワールブレーカ2の軸方向の第一の側(上流側)及び第一の側とは反対側の軸方向の第二の側(下流側)に配置されているシールフィン17の間には、旋回流通過部として機能する隙間nが形成されている。即ち、スワールブレーカ2とシールフィン17とは軸方向に接続されていない。この隙間nの寸法に関しては後述する。 Further, the swirl breaker 2, the seal fin disposed on the first side (upstream side) in the axial direction of the swirl breaker 2 and the second side (downstream side) in the axial direction opposite to the first side. A gap n functioning as a swirl flow passage portion is formed between 17. That is, the swirl breaker 2 and the seal fin 17 are not connected in the axial direction. The dimension of the gap n will be described later.
 ここで、上記の構成からなる蒸気タービン1の動作について説明する。
 まず、調整弁20(図1参照)を開状態とすると、図示しないボイラから蒸気Sがケーシング10の内部空間に流入する。
Here, operation | movement of the steam turbine 1 which consists of said structure is demonstrated.
First, when the regulating valve 20 (see FIG. 1) is opened, the steam S flows into the internal space of the casing 10 from a boiler (not shown).
 ケーシング10の内部空間に流入した蒸気Sは、各段における環状静翼群と環状動翼群とを順次通過する。
 各段の環状静翼群において蒸気Sは、静翼40を通過しながらその周方向速度成分が増大する。この蒸気Sのうち大部分の蒸気SMは、動翼50間に流入し、蒸気SMのエネルギーが回転エネルギーに変換されてロータ30に回転が付与される。
The steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage.
The steam S increases in the circumferential velocity component while passing through the stationary blade 40 in the annular stationary blade group of each stage. Most of the steam SM out of the steam S flows between the rotor blades 50, and the energy of the steam SM is converted into rotational energy, so that the rotor 30 is rotated.
 一方、蒸気Sのうち一部(例えば、約数%)の蒸気SLは、静翼40から流出した後、周方向成分が増大した状態、即ち旋回流となって環状溝12に流入する。
 ここで、スワールブレーカ2を配置しない場合における、環状溝12に流入する漏れ蒸気SLの挙動について説明する。
On the other hand, a part of the steam S (for example, about several percent) of the steam SL flows out from the stationary blade 40 and then flows into the annular groove 12 in a state where the circumferential component is increased, that is, in a swirl flow.
Here, the behavior of the leaked steam SL flowing into the annular groove 12 when the swirl breaker 2 is not disposed will be described.
 図4に示すように、漏れ蒸気SLの一部は、シールフィン17Aを越える際に、シールフィン17Aの上流側と下流側の差圧の大きさの関数で算出される軸方向速度を持つリークジェットLJとなって軸方向に隣り合うシールフィン17Bに向かって流れる。
 一方、図5に示すように、漏れ蒸気SLは、前後のシールフィン17Aとシールフィン17Bとで囲まれるフィン空間Fに周方向成分Vcを持った旋回流として流入する。即ち、旋回流は、静翼40出口にて強い周方向成分Vcを持っており、軸方向の速度成分Vxよりも、周方向成分Vcの速度の方が速くなっている。
As shown in FIG. 4, a part of the leaking steam SL leaks having an axial velocity calculated as a function of the magnitude of the differential pressure between the upstream side and the downstream side of the seal fin 17A when it exceeds the seal fin 17A. The jet LJ flows toward the axially adjacent seal fins 17B.
On the other hand, as shown in FIG. 5, the leaking steam SL flows as a swirling flow having a circumferential component Vc into the fin space F surrounded by the front and rear seal fins 17A and 17B. That is, the swirling flow has a strong circumferential component Vc at the exit of the stationary blade 40, and the velocity of the circumferential component Vc is higher than the velocity component Vx in the axial direction.
 そして、旋回流は、シールフィン17を通過するリークジェットLJの粘性によって、その回転中心軸が周方向に沿う渦状(図4及び図5参照)にされる。また、リークジェットLJ付近の流れは、図6に示すようなフローパターンとなる。 The swirling flow is swirled in the circumferential direction along the circumferential direction by the viscosity of the leak jet LJ passing through the seal fins 17 (see FIGS. 4 and 5). Further, the flow in the vicinity of the leak jet LJ has a flow pattern as shown in FIG.
 次に、スワールブレーカ2を設置した場合の漏れ蒸気SLの挙動について説明する。
 図7に示すように、漏れ蒸気SLである旋回流は、軸方向上流側のシールフィン17Aを越えながら軸方向に隣り合う二つのシールフィン17の間に渦状となって流入する(符号S1で示す)と、軸方向下流側のシールフィン17Bに当たってはね返される(符号S2で示す)。はね返された旋回流S2は、軸方向上流側のシールフィン17Aに当たってはね返された後、スワールブレーカ2の旋回流衝突面3に衝突する。これによって、旋回流S2が低減される。
Next, the behavior of the leaked steam SL when the swirl breaker 2 is installed will be described.
As shown in FIG. 7, the swirl flow that is the leaked steam SL flows in a spiral between two seal fins 17 adjacent in the axial direction while passing over the seal fins 17A on the upstream side in the axial direction (reference S1). When the seal fins 17B on the downstream side in the axial direction are hit, they are returned (indicated by reference numeral S2). The revolving swirl flow S2 collides with the swirl flow collision surface 3 of the swirl breaker 2 after rebounding by hitting the seal fin 17A on the upstream side in the axial direction. Thereby, the swirl flow S2 is reduced.
 一方、旋回流S2は、スワールブレーカ2とシールフィン17との間の隙間nを通過する。即ち、旋回流S2は、スワールブレーカ2によってその流れが完全に遮断されることなく、周方向他方側に抜ける。ここで、スワールブレーカ2とシールフィン17との間の隙間nは、旋回流S2と衝突することによって旋回流S2を低減するのに必要なスワールブレーカ2の面積と、隙間nを介して通過させたい旋回流S2の量に応じて適宜調整される。 On the other hand, the swirl flow S2 passes through the gap n between the swirl breaker 2 and the seal fin 17. That is, the swirl flow S2 flows out to the other side in the circumferential direction without being completely blocked by the swirl breaker 2. Here, the clearance n between the swirl breaker 2 and the seal fin 17 is allowed to pass through the clearance n and the area of the swirl breaker 2 necessary for reducing the swirl flow S2 by colliding with the swirl flow S2. The amount is appropriately adjusted according to the amount of the desired swirl flow S2.
 上記実施形態によれば、シールフィン17とシールフィン17との間に、スワールブレーカ2を配置したことによって、旋回流がスワールブレーカ2に衝突する。これにより、旋回流の動圧をスワールブレーカ2によって減衰させて、蒸気SLに含まれる旋回成分を低減させることができる。 According to the above embodiment, the swirl flow collides with the swirl breaker 2 by arranging the swirl breaker 2 between the seal fin 17 and the seal fin 17. Thereby, the dynamic pressure of the swirl flow can be attenuated by the swirl breaker 2, and the swirl component contained in the steam SL can be reduced.
 また、スワールブレーカ2とシールフィン17との間に隙間nが形成されていることによって、この隙間nを旋回流が通過し易くなり、旋回流の低減効果が強くなる。 Further, since the gap n is formed between the swirl breaker 2 and the seal fin 17, the swirl flow easily passes through the gap n, and the effect of reducing the swirl flow is strengthened.
 また、スワールブレーカ2の旋回流衝突面3が、旋回流の流れ方向に直交するように設置されていることによって、旋回流をより効果的に低減することができる。
 また、スワールブレーカ2とシールフィン17との間の隙間nを旋回流通過部としたことによって、より簡素な構成で旋回流通過部を形成することができる。
Moreover, since the swirl flow collision surface 3 of the swirl breaker 2 is installed so as to be orthogonal to the flow direction of the swirl flow, the swirl flow can be reduced more effectively.
In addition, since the clearance n between the swirl breaker 2 and the seal fin 17 is the swirl flow passage portion, the swirl flow passage portion can be formed with a simpler configuration.
 なお、スワールブレーカ2は、周方向一方側から流入する旋回流を周方向他方側に逃がすことができれば、スワールブレーカ2の軸方向に対する角度、及び位置は、上述した実施形態と異なっていてもよい。即ち、スワールブレーカ2及び隙間nの構成は、旋回流の挙動に応じて適宜調整することができる。
 例えば、図8に示すように、スワールブレーカ2の旋回流衝突面3は、軸方向(符号Xで示す)に対して傾斜するように配置してもよい。旋回流衝突面3の軸方向に対する角度は、旋回流S2の挙動に応じて適宜調整される。具体的には、旋回流衝突面3は、旋回流S2の流れ方向に対して直交するように調整されている。
Note that the swirl breaker 2 may be different in angle and position with respect to the axial direction of the swirl breaker 2 from the above-described embodiment as long as the swirl flow flowing from one circumferential direction can escape to the other circumferential direction. . That is, the configuration of the swirl breaker 2 and the gap n can be appropriately adjusted according to the behavior of the swirling flow.
For example, as shown in FIG. 8, the swirl flow collision surface 3 of the swirl breaker 2 may be arranged so as to be inclined with respect to the axial direction (indicated by the symbol X). The angle of the swirling flow collision surface 3 with respect to the axial direction is appropriately adjusted according to the behavior of the swirling flow S2. Specifically, the swirl flow collision surface 3 is adjusted to be orthogonal to the flow direction of the swirl flow S2.
 なお、個々のスワールブレーカ2は連続して形成されている必要はない。例えば、図9に示すように、スワールブレーカ2の軸方向に沿う延在方向の中央に、径方向に沿うスリット54を設けてもよい。
 また、図10に示すように、軸方向の第一の側のスワールブレーカ2aと軸方向の第二の側のスワールブレーカ2bとを周方向に交互に配置するような構成としてもよい。
Note that the individual swirl breakers 2 need not be formed continuously. For example, as shown in FIG. 9, a slit 54 along the radial direction may be provided in the center of the extending direction along the axial direction of the swirl breaker 2.
Further, as shown in FIG. 10, the swirl breaker 2a on the first axial side and the swirl breaker 2b on the second axial side may be alternately arranged in the circumferential direction.
 また、隙間nは、スワールブレーカ2と下流側のシールフィン(図7におけるシールフィン17B)との間に設ける方が、旋回流S2が周方向に通り抜けてケーシング10付近まで至った後に、旋回方向下流側のスワールブレーカ2と衝突させることができるため好ましい。 In addition, the clearance n is provided between the swirl breaker 2 and the downstream seal fin (seal fin 17B in FIG. 7) after the swirl flow S2 passes in the circumferential direction and reaches the vicinity of the casing 10, and then the swirl direction. Since it can collide with the downstream swirl breaker 2, it is preferable.
 例えば、図11に示すように、スワールブレーカ2の軸方向の一方の側のみがシールフィン17と接続されている構成としてもよい。即ち、スワールブレーカ2の軸方向の第二の側のみに隙間nが形成される構成としてもよい。
 さらに、図12に示すように、軸方向の一方の側がシールフィン17と接続されたスワールブレーカ2と軸方向の第二の側がシールフィン17と接続されたスワールブレーカ2とを、周方向に交互に配置するような構成としてもよい。
For example, as shown in FIG. 11, only one side in the axial direction of the swirl breaker 2 may be connected to the seal fin 17. That is, the gap n may be formed only on the second side of the swirl breaker 2 in the axial direction.
Furthermore, as shown in FIG. 12, the swirl breaker 2 whose one side in the axial direction is connected to the seal fin 17 and the swirl breaker 2 whose second side in the axial direction is connected to the seal fin 17 are alternately arranged in the circumferential direction. It is good also as a structure which arrange | positions.
(第二実施形態)
 以下、本発明の第二実施形態の回転機械を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図13及び図14に示すように、本実施形態の回転機械のスワールブレーカ2Bは、旋回流衝突面3の傾斜が、スワールブレーカ2Bの基端側(径方向外周側)と先端側(径方向内周側)とで異なっている。
(Second embodiment)
Hereinafter, the rotary machine of 2nd embodiment of this invention is demonstrated based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIGS. 13 and 14, the swirl breaker 2 </ b> B of the rotating machine according to the present embodiment has the inclination of the swirl flow collision surface 3 such that the base end side (radially outer circumferential side) and the distal end side (radial direction) of the swirl breaker 2 </ b> B. The inner circumference side).
 具体的には、スワールブレーカ2Bは、基端部5と先端部6とから構成されており、基端部5と先端部6との間は、ねじれるようにして接続されている。基端部5は、その主面が、下流側のシールフィン17B当たってはね返された旋回流S2の流れ方向に直交するように軸方向に対して傾斜している。先端部6は、上流側のシールフィン17Aに当たってはね返された旋回流S2の旋回成分を打ち消すように角度が調整されている。 Specifically, the swirl breaker 2B includes a proximal end portion 5 and a distal end portion 6, and the proximal end portion 5 and the distal end portion 6 are connected so as to be twisted. The base end portion 5 is inclined with respect to the axial direction so that the principal surface thereof is orthogonal to the flow direction of the swirling flow S2 rebounded by the downstream seal fin 17B. The angle of the tip portion 6 is adjusted so as to cancel the swirling component of the swirling flow S2 rebounded by hitting the upstream seal fin 17A.
 上記実施形態によれば、上流側のシールフィン17Aと下流側のシールフィン17Bとの間ではね返りを繰り返す旋回流S2の挙動に対して、より最適なスワールブレーカとすることができる。 According to the above embodiment, a more optimal swirl breaker can be provided for the behavior of the swirl flow S2 that repeatedly rebounds between the upstream-side seal fin 17A and the downstream-side seal fin 17B.
(第三実施形態)
 以下、本発明の第三実施形態の回転機械を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図15に示すように、本実施形態のスワールブレーカ2Cは、複数の孔9が形成された多孔板状体により形成され、その軸方向両端がシールフィン17と接続されている。即ち、複数の孔9が旋回流通過部として機能する。
(Third embodiment)
Hereinafter, the rotary machine of 3rd embodiment of this invention is demonstrated based on drawing. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIG. 15, the swirl breaker 2 </ b> C of the present embodiment is formed of a porous plate-like body in which a plurality of holes 9 are formed, and both axial ends thereof are connected to the seal fins 17. That is, the plurality of holes 9 function as a swirl flow passage portion.
 上記実施形態によれば、スワールブレーカ2Cとシールフィン17とが接続されていることによって、シール装置の剛性を高めることができる。
 なお、孔9の径、形状、数量、配置などは適宜変更することができる。例えば、図16に示すように、単一の孔9Aをスワールブレーカ2Cの略中央に配置してもよい。また、図17に示すように、単一の矩形孔9Bをスワールブレーカ2Cの略中央に配置してもよい。このように、孔の構成を変更することにより、旋回流の挙動に対して、より最適なスワールブレーカとすることができる。
According to the above embodiment, the rigidity of the seal device can be increased by connecting the swirl breaker 2C and the seal fin 17 to each other.
The diameter, shape, quantity, arrangement, etc. of the holes 9 can be changed as appropriate. For example, as shown in FIG. 16, a single hole 9A may be arranged at the approximate center of the swirl breaker 2C. Moreover, as shown in FIG. 17, you may arrange | position the single rectangular hole 9B in the approximate center of the swirl breaker 2C. In this way, by changing the configuration of the holes, it is possible to obtain a more optimal swirl breaker with respect to the behavior of the swirling flow.
(第四実施形態)
 以下、本発明の第四実施形態の回転機械を図面に基づいて説明する。
 図18、及び図19に示すように、本実施形態のスワールブレーカ2Dの旋回流衝突面3、及びシールフィン17の表面には、ディンプル加工(ゴルフボールの表面のような凸凹加工)が施されている。即ち、旋回流衝突面3及びシールフィン17の表面には、規則的に配列された複数の凹部55が形成されている。
 凹部55は、半球状の凹部でもよいし、円錐形状の凹部でもよい。または、六角錐形状などの角錐形状の凹部としてもよい。また、ディンプル加工は、旋回衝突面3とシールフィン17の表面の両方に形成する必要はなく、旋回衝突面3とシールフィン17のいずれか一方に形成してもよい。
(Fourth embodiment)
Hereinafter, the rotary machine of 4th embodiment of this invention is demonstrated based on drawing.
As shown in FIGS. 18 and 19, the swirl flow collision surface 3 of the swirl breaker 2 </ b> D of the present embodiment and the surface of the seal fin 17 are subjected to dimple processing (unevenness processing like the surface of a golf ball). ing. That is, a plurality of concave portions 55 regularly arranged are formed on the swirl flow collision surface 3 and the surfaces of the seal fins 17.
The concave portion 55 may be a hemispherical concave portion or a conical concave portion. Alternatively, a concave portion having a pyramid shape such as a hexagonal pyramid shape may be used. Further, the dimple processing need not be formed on both the turning collision surface 3 and the surface of the seal fin 17, and may be formed on either the turning collision surface 3 or the seal fin 17.
 上記実施形態によれば、旋回衝突面3及びシールフィン17を平滑面とする場合と比較して、旋回流とスワールブレーカ2D及びシールフィン17との摩擦によるエネルギーロスが増加するため、蒸気SLに含まれる旋回成分の低減効果が大きくなる。 According to the embodiment, energy loss due to friction between the swirl flow and the swirl breaker 2D and the seal fin 17 is increased as compared with the case where the swivel collision surface 3 and the seal fin 17 are smooth surfaces. The effect of reducing the included swirl component is increased.
(第五実施形態)
 以下、本発明の第五実施形態の回転機械を図面に基づいて説明する。
 図20に示すように、本実施形態のスワールブレーカ2Eは、底面13(図2参照)との接続辺56に沿う方向から見た断面形状が波形とされている。換言すれば、本実施形態のスワールブレーカ2Eは、基端側(符号Rで示す径方向外周側)から先端側(径方向R内周側)に向かって主面に直交する一方向及びその反対方向に連続して湾曲する波形に形成されている。波形としては、矩形波形でもよいし、正弦波形でもよい。
(Fifth embodiment)
Hereinafter, the rotary machine of 5th embodiment of this invention is demonstrated based on drawing.
As shown in FIG. 20, the swirl breaker 2 </ b> E of the present embodiment has a corrugated cross-sectional shape as viewed from the direction along the connection side 56 with the bottom surface 13 (see FIG. 2). In other words, the swirl breaker 2E of the present embodiment has one direction orthogonal to the main surface from the base end side (radial outer peripheral side indicated by reference sign R) to the distal end side (radial R inner peripheral side) and vice versa. It is formed into a waveform that curves continuously in the direction. The waveform may be a rectangular waveform or a sine waveform.
 また、スワールブレーカ2Eを波形とすることによって旋回衝突面3に形成される接続辺56と平行な溝条57(凹形状の筋)の深さは、下流(矢印S2E)に向かうに従って深くすることが好ましい。 Further, by making the swirl breaker 2E corrugated, the depth of the groove 57 (concave shape) parallel to the connection side 56 formed on the turning collision surface 3 is increased toward the downstream (arrow S2E). Is preferred.
 上記実施形態によれば、第一実施形態から第四実施形態のスワールブレーカ2によって形成される径方向Rの渦度を持った剥離流MV1,MV2に加えて、軸方向X・周方向Cの渦度を持ったスケールの小さな複数の渦SVが発生する。これにより、シールフィン17(図2参照)間の空間内の流れの乱れが増幅され、蒸気SLに含まれる旋回成分の低減効果が大きくなる。 According to the above embodiment, in addition to the separated flows MV1 and MV2 having the vorticity in the radial direction R formed by the swirl breaker 2 of the first to fourth embodiments, the axial direction X and the circumferential direction C A plurality of small vortices SV having vorticity are generated. Thereby, the disturbance of the flow in the space between the seal fins 17 (see FIG. 2) is amplified, and the effect of reducing the swirling component contained in the steam SL is increased.
 なお、スワールブレーカ2Eは、図21に示すように、基端側(径方向R外周側)から先端側(径方向R内周側)に向かう方向から見た形状を、旋回流S2に向かって凸又は凹となる円弧状としてもよい。即ち、旋回流衝突面3を湾曲形状としてもよい。 In addition, as shown in FIG. 21, the swirl breaker 2E has a shape viewed from the base end side (radial direction R outer peripheral side) to the distal end side (radial direction R inner peripheral side) toward the swirl flow S2. It is good also as the circular arc shape which becomes convex or concave. That is, the swirl flow collision surface 3 may be curved.
 また、スワールブレーカ2Eは、図22に示すように、基端部5(径方向外周側、接続辺56)を旋回流S2に向かって凹となるような円弧状とし、先端部6(径方向内周側)を旋回流S2に向かって凸となるような円弧状としてもよい。基端部5と先端部6との間は滑らかに繋がれ、三次元的に捩じった形状とされている。 Further, as shown in FIG. 22, the swirl breaker 2E has an arc shape in which the proximal end portion 5 (radially outer peripheral side, connection side 56) is concave toward the swirl flow S2, and the distal end portion 6 (radial direction). It is good also as circular arc shape which becomes convex toward the swirl | vortex flow S2. The proximal end portion 5 and the distal end portion 6 are smoothly connected and are three-dimensionally twisted.
(第六実施形態)
 以下、本発明の第六実施形態の回転機械を図面に基づいて説明する。
 図23に示すように、本実施形態のスワールブレーカ2Fは、基端部5(径方向外周側)から先端部6(径方向内周側)に向かうに従って、幅を狭くした形状とされている。具体的には、スワールブレーカ2Fの旋回流衝突面3は、一対の底辺のうち長い方の底辺がケーシングに接続され、短い方の底辺がシュラウド51側に配置される台形形状をなしている。
(Sixth embodiment)
Hereinafter, the rotary machine of 6th embodiment of this invention is demonstrated based on drawing.
As shown in FIG. 23, the swirl breaker 2F of the present embodiment has a shape with a narrower width from the proximal end portion 5 (radially outer peripheral side) toward the distal end portion 6 (radial inner peripheral side). . Specifically, the swirl flow collision surface 3 of the swirl breaker 2F has a trapezoidal shape in which the longer bottom of the pair of bottoms is connected to the casing and the shorter bottom is disposed on the shroud 51 side.
 上記実施形態によれば、シールフィン17を通過したリークジェットLJを、スワールブレーカ2Fを設置しているシールフィン17で囲まれた空間内に導きやすくなり、スワールブレーカ2Fの効果をより強くすることができる。 According to the embodiment, the leak jet LJ that has passed through the seal fin 17 can be easily guided into the space surrounded by the seal fin 17 where the swirl breaker 2F is installed, and the effect of the swirl breaker 2F is further enhanced. Can do.
 なお、本実施形態のスワールブレーカ2Fは、図23に示したような形状に限ることはない。例えば図24の変形例に示すように、基端部5の側の半分を第一実施形態のスワールブレーカ2と同じ幅とし、先端部6の側の半分を基端側の半分よりも幅を狭くするような、段付き形状としてもよい。
 また、図25の変形例に示すように、上流側のシールフィン17の側の辺58をシールフィン17に沿うような台形形状としてもよい。
In addition, the swirl breaker 2F of this embodiment is not restricted to a shape as shown in FIG. For example, as shown in the modification of FIG. 24, the half on the side of the base end 5 is made the same width as the swirl breaker 2 of the first embodiment, and the half on the side of the tip 6 is made wider than the half on the base end. It is good also as a stepped shape which makes it narrow.
Further, as shown in the modification of FIG. 25, the side 58 on the upstream seal fin 17 side may have a trapezoidal shape along the seal fin 17.
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。また、上記複数の実施形態で説明した特徴を任意に組み合わせた構成であってもよい。
 例えば、スワールブレーカは平面形状に限ることはなく、湾曲した板形状とすることもできる。
 また、上記各実施形態のシュラウド51の外周面52は平面形状であるが、外周面52にステップが形成されたシュラウドにも、本発明のスワールブレーカを適用することができる。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. Moreover, the structure which combined the characteristic demonstrated by said several embodiment arbitrarily may be sufficient.
For example, the swirl breaker is not limited to a planar shape, and may be a curved plate shape.
Moreover, although the outer peripheral surface 52 of the shroud 51 of each said embodiment is a planar shape, the swirl breaker of this invention is applicable also to the shroud in which the step was formed in the outer peripheral surface 52. FIG.
 1 蒸気タービン
 2 スワールブレーカ
 3 旋回流衝突面
 5 基端部
 6 先端部
 9,9A,9B 孔(旋回流通過部)
 10 ケーシング
 11 仕切板外輪
 12 環状溝(キャビティ)
 13 底部
 14 仕切板内輪
 17,17A,17B,17C シールフィン
 20 調整弁
 21 調整弁室
 22 弁体
 23 弁座
 30 ロータ
 31 ロータ本体
 32 ディスク
 40 静翼
 50 動翼
 51 シュラウド
 52 外周面
 54 スリット
 55 凹部
 60 軸受部
 61 ジャーナル軸受装置
 62 スラスト軸受装置
 m 微小隙間
 n 隙間(旋回流通過部)
 F フィン空間
 Gd 隙間
 LJ リークジェット
 S1,S2 旋回流
 S,SL,SM 蒸気
DESCRIPTION OF SYMBOLS 1 Steam turbine 2 Swirl breaker 3 Swirling flow collision surface 5 Base end part 6 Tip part 9, 9A, 9B Hole (swirl flow passage part)
10 Casing 11 Partition outer ring 12 Annular groove (cavity)
13 bottom 14 partition inner ring 17, 17A, 17B, 17C seal fin 20 regulating valve 21 regulating valve chamber 22 valve body 23 valve seat 30 rotor 31 rotor body 32 disk 40 stationary blade 50 moving blade 51 shroud 52 outer peripheral surface 54 slit 55 recess 60 Bearing portion 61 Journal bearing device 62 Thrust bearing device m Minute clearance n Clearance (swirling flow passage)
F Fin space Gd Gap LJ Leak jet S1, S2 Swirl S, SL, SM Steam

Claims (8)

  1.  軸線回りに回転するロータ本体と、該ロータ本体から径方向外側に延びるように配置された動翼と、を有するロータと、
     該ロータを外周側から囲うように配置され、前記動翼の先端が入り込むキャビティが形成されたケーシングと、
     前記ケーシングの前記キャビティの内周面から前記動翼の先端に向かって延びて、前記ケーシングと前記動翼との間の空間をシールする複数のシールフィンと、
     前記複数のシールフィンの間において、前記ケーシングの前記キャビティの内周面から径方向内側に向かって延在し、旋回流が衝突する旋回流衝突面を有するとともに、前記旋回流衝突面の少なくとも一部に前記旋回流を周方向に通過させる旋回流通過部が形成されたスワールブレーカと、を備えることを特徴とする回転機械。
    A rotor having a rotor body that rotates around an axis, and a rotor blade that is arranged to extend radially outward from the rotor body;
    A casing which is disposed so as to surround the rotor from the outer peripheral side and in which a cavity into which a tip of the moving blade enters is formed;
    A plurality of seal fins extending from an inner peripheral surface of the cavity of the casing toward a tip of the moving blade, and sealing a space between the casing and the moving blade;
    Between the plurality of seal fins, the casing has a swirling flow collision surface extending radially inward from an inner peripheral surface of the cavity of the casing and colliding with a swirling flow, and at least one of the swirling flow collision surfaces. A swirl breaker in which a swirl flow passage portion is formed to pass the swirl flow in the circumferential direction.
  2.  前記旋回流通過部は、前記旋回流衝突面と、軸線方向一方側の前記シールフィン及び軸線方向他方側の前記シールフィンの少なくとも一方と、の間に形成された隙間であることを特徴とする請求項1に記載の回転機械。 The swirl flow passage portion is a gap formed between the swirl flow collision surface and at least one of the seal fin on one side in the axial direction and the seal fin on the other side in the axial direction. The rotating machine according to claim 1.
  3.  前記旋回流衝突面は、前記旋回流の流れ方向に直交するように前記軸線方向に対して傾斜して形成されていることを特徴とする請求項1又は請求項2に記載の回転機械。 3. The rotating machine according to claim 1, wherein the swirl flow collision surface is formed to be inclined with respect to the axial direction so as to be orthogonal to the flow direction of the swirl flow.
  4.  前記スワールブレーカは、板状体により形成され、
     前記旋回流衝突面は、その基端側と先端側とで前記軸線方向に対する角度が異なるように形成されていることを特徴とする請求項1又は請求項2に記載の回転機械。
    The swirl breaker is formed of a plate-like body,
    3. The rotating machine according to claim 1, wherein the swirl flow collision surface is formed such that an angle with respect to the axial direction is different between a proximal end side and a distal end side thereof.
  5.  前記スワールブレーカは、少なくとも一つの孔が形成された板状体により形成され、前記旋回流通過部は、前記少なくとも一つの孔であることを特徴とする請求項1に記載の回転機械。 The rotating machine according to claim 1, wherein the swirl breaker is formed of a plate-like body having at least one hole, and the swirl flow passage portion is the at least one hole.
  6.  前記スワールブレーカの前記旋回流衝突面と前記シールフィンの表面の少なくとも一方にディンプル加工が施されていることを特徴とする請求項1から請求項5のいずれか一項に記載の回転機械。 6. The rotating machine according to claim 1, wherein at least one of the swirl flow collision surface of the swirl breaker and the surface of the seal fin is dimpled.
  7.  前記スワールブレーカは、断面形状が波形とされていることを特徴とする請求項1から請求項6のいずれか一項に記載の回転機械。 The rotary machine according to any one of claims 1 to 6, wherein the swirl breaker has a corrugated cross-sectional shape.
  8.  前記スワールブレーカは、径方向内周側に向かうに従って幅が狭くなるように形成されていることを特徴とする請求項1から請求項7のいずれか一項に記載の回転機械。 The rotating machine according to any one of claims 1 to 7, wherein the swirl breaker is formed so that a width thereof becomes narrower toward a radially inner peripheral side.
PCT/JP2014/052095 2013-04-03 2014-01-30 Rotating machine WO2014162767A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/780,111 US10247025B2 (en) 2013-04-03 2014-01-30 Rotating machine
CN201480017939.7A CN105074134B (en) 2013-04-03 2014-01-30 Rotating machinery
EP14779746.8A EP2982832B1 (en) 2013-04-03 2014-01-30 Rotating machine
JP2015509933A JP5951890B2 (en) 2013-04-03 2014-01-30 Rotating machine
KR1020157022298A KR101660204B1 (en) 2013-04-03 2014-01-30 Rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-078029 2013-04-03
JP2013078029 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014162767A1 true WO2014162767A1 (en) 2014-10-09

Family

ID=51658072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052095 WO2014162767A1 (en) 2013-04-03 2014-01-30 Rotating machine

Country Status (6)

Country Link
US (1) US10247025B2 (en)
EP (1) EP2982832B1 (en)
JP (1) JP5951890B2 (en)
KR (1) KR101660204B1 (en)
CN (1) CN105074134B (en)
WO (1) WO2014162767A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155626A (en) * 2016-02-29 2017-09-07 三菱日立パワーシステムズ株式会社 Seal structure and turbomachine
JP2019132183A (en) * 2018-01-31 2019-08-08 三菱重工業株式会社 Axial flow rotary machine
JP2019157662A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Rotor blade side seal device, stator blade side seal device and rotary machine
US10876421B2 (en) 2018-03-09 2020-12-29 Mitsubishi Heavy Industries, Ltd. Rotary machine
JP2021080880A (en) * 2019-11-19 2021-05-27 三菱重工業株式会社 Steam turbine
US11066948B2 (en) 2018-03-09 2021-07-20 Mitsubishi Heavy Industries, Ltd. Rotary machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201519869D0 (en) * 2015-11-11 2015-12-23 Rolls Royce Plc Shrouded turbine blade
JP6712873B2 (en) * 2016-02-29 2020-06-24 三菱日立パワーシステムズ株式会社 Seal structure and turbo machine
EP3312388B1 (en) * 2016-10-24 2019-06-05 MTU Aero Engines GmbH Rotor part, corresponding compressor, turbine and manufacturing method
FR3082879B1 (en) * 2018-06-20 2020-07-03 Safran Aircraft Engines LABYRINTH SEAL FOR AN AIRCRAFT TURBOMACHINE
JP7267022B2 (en) * 2019-01-31 2023-05-01 三菱重工業株式会社 rotating machinery
JP7145774B2 (en) * 2019-01-31 2022-10-03 三菱重工業株式会社 rotating machinery
CN114320487B (en) * 2022-01-07 2024-07-05 中国航发贵阳发动机设计研究所 Caster tooth sealing structure and method suitable for same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103910A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Seal structure for tips of moving vanes of axial-flow machine
JPS58165201U (en) * 1982-04-30 1983-11-02 三菱重工業株式会社 Turbine blade seal structure
US7004475B2 (en) 2003-09-26 2006-02-28 Siemens Westinghouse Power Corporation Flow dam design for labyrinth seals to promote rotor stability
JP2006104952A (en) 2004-09-30 2006-04-20 Toshiba Corp Swirling flow preventive device of fluid machine
JP2011052645A (en) * 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd Turbine

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092393A (en) * 1958-01-20 1963-06-04 Rolls Royce Labyrinth seals
US3572728A (en) * 1968-06-17 1971-03-30 Gen Eelctric Co Rotary seal
US3694882A (en) * 1970-09-24 1972-10-03 Westinghouse Electric Corp Method for providing a corrugated seal in an elastic fluid machine
DE2413655C3 (en) 1974-03-21 1978-05-03 Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Device for dynamic stabilization of the rotor of a gas or steam turbine
US4370094A (en) * 1974-03-21 1983-01-25 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
US4273510A (en) * 1974-03-21 1981-06-16 Maschinenfabrik Augsburg-Nunberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
GB1519590A (en) * 1974-11-11 1978-08-02 Rolls Royce Gas turbine engine
IT1063035B (en) * 1975-05-09 1985-02-11 Maschf Augsburg Nuernberg Ag APPARATUS FOR REALIZING THE PROCEDURE TO ELEVATE THE DYNAMIC POWER LIMIT OF STEAM OR GAS TURBINES OR COMPRESSORS
JPS5923601B2 (en) 1982-03-26 1984-06-04 松下電器産業株式会社 decorative lighting stands
US4420161A (en) * 1982-05-10 1983-12-13 General Electric Company Rotor stabilizing labyrinth seals for steam turbines
JPS6052306A (en) 1983-08-31 1985-03-25 松下電工株式会社 Manufacture of aggregate veneer
JPS6052306U (en) * 1983-09-05 1985-04-12 三菱重工業株式会社 Labyrinth seal for turbo machinery
DE3505491A1 (en) * 1985-02-16 1986-08-21 MTU Motoren- und Turbinen-Union München GmbH, 8000 München GASKET FOR A FLUID MACHINE
JPS62116101A (en) 1985-11-15 1987-05-27 日本製紙株式会社 Method of treating woody material
JPS62116101U (en) * 1986-01-17 1987-07-23
US4876505A (en) * 1988-05-27 1989-10-24 Westinghouse Electric Corp. Apparatus and method for monitoring steam turbine shroud clearance
US5707064A (en) * 1993-01-08 1998-01-13 The Texas A&M University System Modulated pressure damper seal
EP0689650A1 (en) * 1993-01-08 1996-01-03 THE TEXAS A&amp;M UNIVERSITY SYSTEM Pressure damper seals
JPH081264A (en) 1994-06-10 1996-01-09 Hitachi Ltd Production of rotary heat transfer fin
US5439347A (en) * 1994-08-31 1995-08-08 Brandon; Ronald E. Turbine tip seal damage protection means
US5632598A (en) * 1995-01-17 1997-05-27 Dresser-Rand Shrouded axial flow turbo machine utilizing multiple labrinth seals
US6155778A (en) * 1998-12-30 2000-12-05 General Electric Company Recessed turbine shroud
US6368054B1 (en) * 1999-12-14 2002-04-09 Pratt & Whitney Canada Corp. Split ring for tip clearance control
US6402464B1 (en) * 2000-08-29 2002-06-11 General Electric Company Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer
US6632069B1 (en) * 2001-10-02 2003-10-14 Oleg Naljotov Step of pressure of the steam and gas turbine with universal belt
WO2004113770A2 (en) * 2003-06-20 2004-12-29 Elliott Company Swirl-reversal abradable labyrinth seal
EP1515000B1 (en) * 2003-09-09 2016-03-09 Alstom Technology Ltd Blading of a turbomachine with contoured shrouds
US20070009349A1 (en) * 2005-07-11 2007-01-11 General Electric Company Impingement box for gas turbine shroud
JP2007120476A (en) 2005-10-31 2007-05-17 Toshiba Corp Swirl flow prevention device for fluid machine
US7686568B2 (en) 2006-09-22 2010-03-30 General Electric Company Methods and apparatus for fabricating turbine engines
JP2008184974A (en) 2007-01-30 2008-08-14 Toshiba Corp Seal device for fluid machine and steam turbine
US7988410B1 (en) * 2007-11-19 2011-08-02 Florida Turbine Technologies, Inc. Blade tip shroud with circular grooves
JP2010077882A (en) 2008-09-25 2010-04-08 Toyota Motor Corp Labyrinth seal structure for multistage turbine
JP2012007594A (en) * 2010-06-28 2012-01-12 Mitsubishi Heavy Ind Ltd Seal device, and fluid machine provided with the same
US20130017072A1 (en) * 2011-07-14 2013-01-17 General Electric Company Pattern-abradable/abrasive coatings for steam turbine stationary component surfaces
US20130230379A1 (en) * 2012-03-01 2013-09-05 General Electric Company Rotating turbomachine component having a tip leakage flow guide
JP5567077B2 (en) * 2012-08-23 2014-08-06 三菱重工業株式会社 Rotating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103910A (en) * 1978-02-01 1979-08-15 Hitachi Ltd Seal structure for tips of moving vanes of axial-flow machine
JPS58165201U (en) * 1982-04-30 1983-11-02 三菱重工業株式会社 Turbine blade seal structure
US7004475B2 (en) 2003-09-26 2006-02-28 Siemens Westinghouse Power Corporation Flow dam design for labyrinth seals to promote rotor stability
JP2006104952A (en) 2004-09-30 2006-04-20 Toshiba Corp Swirling flow preventive device of fluid machine
JP2011052645A (en) * 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd Turbine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155626A (en) * 2016-02-29 2017-09-07 三菱日立パワーシステムズ株式会社 Seal structure and turbomachine
JP2019132183A (en) * 2018-01-31 2019-08-08 三菱重工業株式会社 Axial flow rotary machine
WO2019151221A1 (en) * 2018-01-31 2019-08-08 三菱重工業株式会社 Axial flow rotary machine
US11078803B2 (en) 2018-01-31 2021-08-03 Mitsubishi Heavy Industries, Ltd. Axial flow rotating machinery
JP2019157662A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 Rotor blade side seal device, stator blade side seal device and rotary machine
US10876421B2 (en) 2018-03-09 2020-12-29 Mitsubishi Heavy Industries, Ltd. Rotary machine
US11066948B2 (en) 2018-03-09 2021-07-20 Mitsubishi Heavy Industries, Ltd. Rotary machine
JP2021080880A (en) * 2019-11-19 2021-05-27 三菱重工業株式会社 Steam turbine
US11306603B2 (en) 2019-11-19 2022-04-19 Mitsubishi Heavy Industries, Ltd. Steam turbine
JP7370226B2 (en) 2019-11-19 2023-10-27 三菱重工業株式会社 steam turbine

Also Published As

Publication number Publication date
EP2982832A4 (en) 2016-12-21
KR20150114964A (en) 2015-10-13
US10247025B2 (en) 2019-04-02
EP2982832A1 (en) 2016-02-10
EP2982832B1 (en) 2018-12-26
US20160047265A1 (en) 2016-02-18
JP5951890B2 (en) 2016-07-13
CN105074134A (en) 2015-11-18
JPWO2014162767A1 (en) 2017-02-16
KR101660204B1 (en) 2016-09-26
CN105074134B (en) 2017-06-20

Similar Documents

Publication Publication Date Title
JP5951890B2 (en) Rotating machine
JP6344735B2 (en) Seal structure and rotating machine
JP6131177B2 (en) Seal structure and rotating machine
US20120121411A1 (en) Labyrinth Seals for Turbomachinery
US20130272855A1 (en) Turbine
JP2010159667A (en) Axial flow turbine
JP6726986B2 (en) Sealing device, rotary machine
JP5517530B2 (en) Turbine
US20190360350A1 (en) Axial flow rotating machine, and rotor blade member
JP2014141912A (en) Rotary machine
WO2017098944A1 (en) Seal fin, seal structure, and turbomachine
KR102526821B1 (en) spinning machine
WO2014115706A1 (en) Seal mechanism and rotating machine provided with seal mechanism
JP2018040282A (en) Axial flow turbine and diaphragm outer ring thereof
JP2017155705A (en) Acoustic device and gas turbine
JP2014141955A (en) Rotary machine
KR101946184B1 (en) Rotary machine
JP2021080880A (en) Steam turbine
JP2013113222A (en) Steam turbine
JP6930896B2 (en) Turbines and blades
JP2024127003A (en) Seal devices and rotating machines
JP2010275957A (en) Turbine
JP2024127079A (en) Seal devices and rotating machines
JP2023084574A (en) Rotary machine
JP2010242695A (en) Fluid machine and seal mechanism therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480017939.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015509933

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157022298

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14780111

Country of ref document: US

Ref document number: 2014779746

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE