JP2018040282A - Axial flow turbine and diaphragm outer ring thereof - Google Patents

Axial flow turbine and diaphragm outer ring thereof Download PDF

Info

Publication number
JP2018040282A
JP2018040282A JP2016174274A JP2016174274A JP2018040282A JP 2018040282 A JP2018040282 A JP 2018040282A JP 2016174274 A JP2016174274 A JP 2016174274A JP 2016174274 A JP2016174274 A JP 2016174274A JP 2018040282 A JP2018040282 A JP 2018040282A
Authority
JP
Japan
Prior art keywords
turbine
inlet opening
outer ring
peripheral surface
outlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016174274A
Other languages
Japanese (ja)
Inventor
冲非 段
Chuhi Dan
冲非 段
久剛 福島
Hisataka Fukushima
久剛 福島
清 瀬川
Kiyoshi Segawa
瀬川  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2016174274A priority Critical patent/JP2018040282A/en
Publication of JP2018040282A publication Critical patent/JP2018040282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an axial flow turbine and its diaphragm outer ring capable of improving the reduction effect of the mixture loss.SOLUTION: An axial flow turbine comprises: a moving blade shroud 6 attached on the outer peripheral side of a moving blade 5; multiple steps of seal fins 14A to 14E that are provided on an inner peripheral surface of a diaphragm outer ring 1 opposite the outer peripheral surface of the moving blade shroud 6 and that protrude in a turbine radial direction; an inlet opening 16 and an outlet opening 17 formed in a pair on one side of the diaphragm outer ring 1 opposite the downstream side end surface of the moving blade shroud 6; and a bypass flow passage 18 formed in the interior of the diaphragm outer ring 1 so as to communicate the inlet opening 16 with the outlet opening 17 for flowing out the fluid flowing from the inlet opening 16 in a turbine axial direction from the outlet opening 17. The inlet opening 16 opens on the downstream side of the outer peripheral surface of the moving blade shroud 6 in the turbine axial direction; and the outlet opening 17 is located radially inward from the turbine from the inlet opening 16.SELECTED DRAWING: Figure 2

Description

本発明は、発電プラントの蒸気タービンやガスタービンなどに用いられる軸流タービン、及びそのダイヤフラム外輪に関する。   The present invention relates to an axial turbine used for a steam turbine, a gas turbine, or the like of a power plant, and a diaphragm outer ring thereof.

資源節約や環境負荷低減の観点から、発電プラントの発電効率向上が求められている。軸流タービンは、中・大容量の発電プラントに適し、蒸気タービンやガスタービンなどに広く採用されている。従って、タービンの性能向上は、発電効率向上に大きく貢献できる。   From the viewpoint of resource saving and environmental load reduction, improvement in power generation efficiency of power plants is required. Axial turbines are suitable for medium- and large-capacity power plants, and are widely used in steam turbines and gas turbines. Therefore, improvement in turbine performance can greatly contribute to improvement in power generation efficiency.

タービン性能を支配する要因として、段落損失、排気損失、機械損失などが挙げられる。タービンは、静翼列と動翼列を組み合わせた段落を複数有するため、段落損失の低減が性能向上に対し最も効果的であると考えられている。段落損失の内訳として、(1)翼形状そのものに起因する翼型損失、(2)翼間を横断する流れに起因する二次流れ損失、(3)作動流体(蒸気やガスなど)が主流路外へ漏洩することにより生じる漏れ損失などがある。   Factors that govern turbine performance include paragraph loss, exhaust loss, and mechanical loss. Since the turbine has a plurality of paragraphs in which the stationary blade row and the moving blade row are combined, it is considered that the reduction of the paragraph loss is most effective for improving the performance. The breakdown of the paragraph loss is as follows: (1) Airfoil loss due to the blade shape itself, (2) Secondary flow loss due to the flow crossing between the blades, and (3) Working fluid (steam, gas, etc.) is the main flow path There is leakage loss caused by leaking outside.

漏れ損失は、(a)作動流体の一部(漏れ流体)が主流路から漏れ流路へ流出することにより、漏れ流体の持つエネルギーが有効利用されないことで生ずるバイパス損失、(b)漏れ流体が漏れ流路から主流路に再流入する際に生ずる混合損失、(c)主流路に再流入した漏れ流体が下流側の翼列に干渉して生ずる干渉損失、などからなる。この漏れ損失を低減するためには、漏れ流体の流量を低減するとともに、混合損失を低減することが重要である。   Leakage loss is (a) bypass loss caused when part of the working fluid (leakage fluid) flows out from the main flow path to the leak flow path, and the energy of the leaking fluid is not effectively used. (B) This is composed of mixing loss that occurs when reflowing from the leakage flow path into the main flow path, (c) interference loss that occurs when leakage fluid reflowing into the main flow path interferes with the downstream blade row, and the like. In order to reduce this leakage loss, it is important to reduce the flow rate of the leakage fluid and the mixing loss.

特許文献1に記載の従来技術では、動翼シュラウドの外周面に対向するダイヤフラム外輪の溝部の内周面に、タービン半径方向に突出する複数段のシールフィンを設けている。また、動翼シュラウドの下流側端面に対向するダイヤフラム外輪の溝部の下流側側面に、タービン軸方向に突出する突起部を設けている。これにより、動翼シュラウドとダイヤフラム外輪の溝部の間で形成された漏れ流路において、漏れ流体の流量を低減するようになっている。   In the prior art described in Patent Document 1, a plurality of stages of seal fins protruding in the turbine radial direction are provided on the inner peripheral surface of the groove portion of the diaphragm outer ring facing the outer peripheral surface of the rotor blade shroud. In addition, a protrusion projecting in the turbine axial direction is provided on the downstream side surface of the groove portion of the diaphragm outer ring facing the downstream end surface of the blade shroud. As a result, the flow rate of the leakage fluid is reduced in the leakage flow path formed between the rotor blade shroud and the groove portion of the diaphragm outer ring.

また、上述した突起部の外周側に循環流生成室を形成し、この循環流生成室内に、タービン軸方向及びタービン半径方向に延在する複数の遮蔽板を設けている。主流路(静翼列の下流側)から漏れ流路に流入した漏れ流体は、大きな周方向速度成分を有するものの、その一部が循環流生成室に流入して遮蔽板に衝突することにより、周方向速度成分を抑えた循環流を生成する。そして、この循環流の干渉により、漏れ流路から主流路(動翼列の下流側)に流出する漏れ流体の流れに対して、周方向速度成分を効果的に減少させる。したがって、漏れ流体の流れ方向を、主流路の作動流体の流れ方向に合わせて、混合損失を低減するようになっている。   In addition, a circulation flow generation chamber is formed on the outer peripheral side of the above-described protrusion, and a plurality of shielding plates extending in the turbine axial direction and the turbine radial direction are provided in the circulation flow generation chamber. Although the leakage fluid that has flowed into the leakage flow path from the main flow path (downstream side of the stationary blade row) has a large circumferential velocity component, a part of it flows into the circulation flow generation chamber and collides with the shielding plate, Generates a circulating flow with reduced circumferential velocity component. Then, due to the interference of the circulating flow, the circumferential velocity component is effectively reduced with respect to the flow of the leaked fluid flowing out from the leak channel to the main channel (downstream side of the rotor blade row). Accordingly, the mixing loss is reduced by matching the flow direction of the leakage fluid with the flow direction of the working fluid in the main flow path.

特開2011−106474号公報JP 2011-106474 A

しかしながら、特許文献1に記載の従来技術では、動翼シュラウドから循環流生成室までのタービン軸方向の間隔が大きな場合に、循環流生成室に流入する漏れ流体の割合が小さくなるため、その漏れ流体の周方向速度成分を低減させる効果が小さくなる。また、循環流生成室で生成される循環流が弱まるため、循環流生成室に流入しなかった漏れ流体に対して周方向速度成分を十分に低減させることができない。   However, in the conventional technique described in Patent Document 1, when the interval in the turbine axial direction from the blade shroud to the circulating flow generation chamber is large, the ratio of the leaked fluid flowing into the circulating flow generation chamber is small. The effect of reducing the circumferential velocity component of the fluid is reduced. Further, since the circulation flow generated in the circulation flow generation chamber is weakened, the circumferential velocity component cannot be sufficiently reduced with respect to the leaked fluid that has not flowed into the circulation flow generation chamber.

本発明の目的は、混合損失の低減効果を高めることができる軸流タービン及びそのダイヤフラム外輪を提供することにある。   An object of the present invention is to provide an axial turbine and a diaphragm outer ring that can enhance the effect of reducing mixing loss.

上記目的を達成するために、本発明の軸流タービンは、ダイヤフラム外輪の内周側に周方向に複数取付けられた静翼と、ロータの外周側に周方向に複数取付けられ、前記静翼の下流側に配置された動翼と、前記動翼の外周側に取付けられた動翼シュラウドと、前記動翼シュラウドの外周面に対向する前記ダイヤフラム外輪の内周面に設けられ、タービン半径方向に突出する複数段のシールフィンと、前記動翼シュラウドの下流側端面に対向する前記ダイヤフラム外輪の一面に対で形成された入口開口及び出口開口と、前記ダイヤフラム外輪の内部に前記入口開口と前記出口開口を連通するように形成され、前記入口開口から流入した流体を前記出口開口からタービン軸方向に流出させるバイパス流路とを有し、前記入口開口は、前記動翼シュラウドの外周面の下流側端部のタービン軸方向下流側に開口し、前記出口開口は、前記入口開口よりタービン半径方向の内側にある。   In order to achieve the above object, an axial turbine according to the present invention includes a plurality of stator blades attached in the circumferential direction to the inner peripheral side of the diaphragm outer ring, and a plurality of stator blades attached in the circumferential direction to the outer peripheral side of the rotor. A moving blade disposed on the downstream side, a moving blade shroud attached to the outer peripheral side of the moving blade, and an inner peripheral surface of the diaphragm outer ring facing the outer peripheral surface of the moving blade shroud, A plurality of protruding seal fins, an inlet opening and an outlet opening formed in pairs on one surface of the diaphragm outer ring facing the downstream end face of the blade shroud, and the inlet opening and the outlet inside the diaphragm outer ring A bypass passage that is formed so as to communicate with the opening and flows out of the fluid flowing in from the inlet opening in the turbine axial direction from the outlet opening. Open to the outer peripheral surface turbine axial direction downstream side of the downstream end of the Udo, the outlet opening is from the inlet opening to the inside of the turbine radial direction.

本発明において、最終段のシールフィンの先端と動翼シュラウドの外周面との間隙を通過した漏れ流体は、大きな周方向速度成分を有するものの、その一部がバイパス流路に流入して流出することにより、タービン軸方向の流れを生成する。言い換えれば、バイパス流路に流入した漏れ流体の周方向速度成分を低減させる。このとき、動翼シュラウドからバイパス流路までのタービン軸方向の間隔が大きな場合でも、バイパス流路に流入する漏れ流体の割合が大きいため、その漏れ流体の周方向速度成分を低減させる効果が大きくなる。また、バイパス流路で生成されるタービン軸方向の流れが強まるため、このタービン軸方向の流れの干渉により、バイパス流路に流入しなかった漏れ流体に対して周方向速度成分を十分に低減させることができる。したがって、漏れ流体の流れ方向を、主流路の作動流体の流れ方向に合わせて、混合損失の低減効果を高めることができる。   In the present invention, the leakage fluid that has passed through the gap between the tip of the final-stage seal fin and the outer peripheral surface of the blade shroud has a large circumferential velocity component, but a part of the leakage fluid flows into the bypass channel and flows out. Thus, a turbine axial flow is generated. In other words, the circumferential velocity component of the leaked fluid that has flowed into the bypass channel is reduced. At this time, even if the interval in the turbine axial direction from the blade shroud to the bypass passage is large, the ratio of the leaking fluid flowing into the bypass passage is large, so the effect of reducing the circumferential velocity component of the leaking fluid is large. Become. Further, since the turbine axial flow generated in the bypass flow path is strengthened, the circumferential velocity component is sufficiently reduced with respect to the leaked fluid that has not flowed into the bypass flow path due to the interference of the turbine axial flow. be able to. Therefore, the effect of reducing the mixing loss can be enhanced by matching the flow direction of the leakage fluid with the flow direction of the working fluid in the main flow path.

本発明の一実施形態における蒸気タービンの部分構造を模式的に表すタービン軸方向の断面図である。It is sectional drawing of the turbine axial direction which represents typically the partial structure of the steam turbine in one Embodiment of this invention. 図1中II部の部分拡大断面図であり、漏れ流路及びバイパス流路の構造を表す。FIG. 2 is a partial enlarged cross-sectional view of a portion II in FIG. 1 and shows a structure of a leakage channel and a bypass channel. 図2中断面矢視III−IIIによる矢視図であり、バイパス流路の構造を表す。FIG. 3 is an arrow view taken along section III-III in FIG. 2 and represents a structure of a bypass channel. 本発明の第1の変形例における漏れ流路及びバイパス流路の構造を表す部分拡大断面図である。It is a partial expanded sectional view showing the structure of the leak flow path and the bypass flow path in the 1st modification of this invention. 本発明の第2の変形例における漏れ流路及びバイパス流路の構造を表す部分拡大断面図である。It is a partial expanded sectional view showing the structure of the leak flow path and the bypass flow path in the 2nd modification of this invention.

以下、本発明を蒸気タービンに適用した場合の一実施形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment when the present invention is applied to a steam turbine will be described with reference to the drawings.

図1は、本実施形態における蒸気タービンの部分構造を模式的に表すタービン軸方向の断面図である。図2は、図1中II部の部分拡大断面図であり、漏れ流路及びバイパス流路の構造を表す。図3は、図2中断面矢視III−IIIによる矢視図であり、バイパス流路の構造を表す。   FIG. 1 is a cross-sectional view in the turbine axial direction schematically showing a partial structure of a steam turbine in the present embodiment. FIG. 2 is a partial enlarged cross-sectional view taken along the line II in FIG. 1 and shows the structure of the leakage flow path and the bypass flow path. 3 is an arrow view taken along section III-III in FIG. 2 and represents the structure of the bypass channel.

図1〜図3で示すように、蒸気タービンは、ケーシング(図示せず)の内周側に取付けられた複数のダイヤフラム外輪1(静止体)と、複数のダイヤフラム外輪1の内周側にそれぞれ取付けられた複数列の静翼2と、複数列の静翼2の内周側にそれぞれ取付けられた複数のダイヤフラム内輪3とを備えている。なお、各列の静翼2は、ダイヤフラム外輪1とダイヤフラム内輪3との間に、周方向に所定の間隔で配列された複数の静翼2で構成されている。   As shown in FIGS. 1 to 3, the steam turbine has a plurality of diaphragm outer rings 1 (stationary bodies) attached to the inner peripheral side of a casing (not shown) and an inner peripheral side of the plurality of diaphragm outer rings 1, respectively. A plurality of rows of stationary blades 2 attached to each other and a plurality of diaphragm inner rings 3 attached to the inner peripheral side of the plurality of rows of stationary blades 2 are provided. Each row of the stationary blades 2 includes a plurality of stationary blades 2 arranged at a predetermined interval in the circumferential direction between the diaphragm outer ring 1 and the diaphragm inner ring 3.

また、蒸気タービンは、回転軸Oを中心として回転するロータ4(回転体)と、このロータ4の外周側に取付けられた複数列の動翼5と、複数列の動翼5の外周側(言い換えれば、先端側)にそれぞれ取付けられた複数の動翼シュラウド6とを備えている。各列の動翼5は、ロータ4と動翼シュラウド6との間に、周方向に所定の間隔で配列された複数の動翼5で構成されている。   In addition, the steam turbine includes a rotor 4 (rotary body) that rotates about the rotation axis O, a plurality of rows of moving blades 5 attached to the outer periphery of the rotor 4, and an outer periphery of the plurality of rows of moving blades 5 ( In other words, it includes a plurality of blade shrouds 6 attached to the tip side). The moving blades 5 in each row are composed of a plurality of moving blades 5 arranged at predetermined intervals in the circumferential direction between the rotor 4 and the moving blade shroud 6.

蒸気(作動流体)の主流路7は、ダイヤフラム外輪1の内周面8とダイヤフラム内輪3の外周面9との間に形成された流路や、動翼シュラウド6の内周面10とロータ4の外周面11との間に形成された流路等で構成されている。主流路7には、複数列の静翼2が配置されるとともに、複数列の動翼5が複数列の静翼2の下流側にそれぞれ配置されている。すなわち、1列の静翼2と1列の動翼5の組合せが1つの段落を構成し、複数の段落を有している。なお、図1では、便宜上、2つの段落しか示されていないが、2つ以上の段落が設けられている。   The main flow path 7 for steam (working fluid) is a flow path formed between the inner peripheral surface 8 of the diaphragm outer ring 1 and the outer peripheral surface 9 of the diaphragm inner ring 3, or the inner peripheral surface 10 of the rotor blade shroud 6 and the rotor 4. It is comprised by the flow path etc. which were formed between the outer peripheral surfaces 11 of this. A plurality of rows of stationary blades 2 are disposed in the main flow path 7, and a plurality of rows of moving blades 5 are disposed on the downstream side of the plurality of rows of stationary blades 2. That is, the combination of one row of stationary blades 2 and one row of moving blades 5 constitutes one paragraph and has a plurality of paragraphs. In FIG. 1, only two paragraphs are shown for convenience, but two or more paragraphs are provided.

主流路7内の蒸気(主流蒸気)は、図1中白抜き矢印で示すように流れている。そして、各列の静翼2にて蒸気の内部エネルギー(言い換えれば、圧力エネルギー等)が運動エネルギー(言い換えれば、速度エネルギー)に変換され、各列の動翼5にて蒸気の運動エネルギーがロータ4の回転エネルギーに変換される。また、ロータ4の端部には発電機(図示せず)が接続されており、この発電機によってロータ4の回転エネルギーが電気エネルギーに変換されるようになっている。   The steam (mainstream steam) in the main flow path 7 is flowing as indicated by white arrows in FIG. Then, the internal energy (in other words, pressure energy) of the steam is converted into kinetic energy (in other words, velocity energy) by the stationary blades 2 in each row, and the kinetic energy of the steam is converted into the rotor by the moving blades 5 in each row. Is converted into a rotational energy of 4. In addition, a generator (not shown) is connected to the end of the rotor 4, and the rotational energy of the rotor 4 is converted into electric energy by this generator.

主流路7内の蒸気の流れ(主流)について、詳しく説明する。静翼2の翼間に流入する蒸気は、周方向速度成分をほぼ持たない。そして、静翼2の翼間を通過する際に増速、転向されて、大きな周方向速度成分を持つ流れとなる。静翼2の翼間から流出した蒸気の大部分は、動翼5に衝突してロータ4を回転させる。このとき、蒸気は、減速、転向されて、周方向速度成分をほぼ持たないタービン軸方向の流れとなる。   The flow of steam (main flow) in the main flow path 7 will be described in detail. The steam flowing between the vanes of the stationary vane 2 has almost no circumferential velocity component. Then, when passing between the blades of the stationary blade 2, the velocity is increased and turned to become a flow having a large circumferential velocity component. Most of the steam flowing out between the blades of the stationary blade 2 collides with the moving blade 5 to rotate the rotor 4. At this time, the steam is decelerated and turned into a turbine axial flow having almost no circumferential velocity component.

ところで、各ダイヤフラム外輪1には溝部(切欠き)12が形成されており、この溝部12と動翼シュラウド6の間に漏れ流路13が形成されている。そして、主流路7の静翼2の下流側(言い換えれば、動翼5の上流側)から漏れ流路13に蒸気の一部(漏れ蒸気)が流入し、漏れ蒸気が漏れ流路13を経由して主流路7の動翼5の下流側に流出する(漏れ流れ)。そのため、漏れ蒸気の内部エネルギーが有効利用されず、バイパス損失が発生する。このバイパス損失を低減するため、すなわち、主流路7から漏れ流路13への漏れ蒸気の流量を減らすため、漏れ流路13にはラビリンスシールが設けられている。   By the way, a groove (notch) 12 is formed in each diaphragm outer ring 1, and a leakage flow path 13 is formed between the groove 12 and the blade shroud 6. Then, a part of the steam (leakage steam) flows into the leakage passage 13 from the downstream side of the stationary blade 2 of the main passage 7 (in other words, the upstream side of the moving blade 5), and the leakage steam passes through the leakage passage 13. Then, it flows out downstream of the rotor blade 5 in the main flow path 7 (leakage flow). Therefore, the internal energy of the leaked steam is not effectively used, and a bypass loss occurs. In order to reduce this bypass loss, that is, in order to reduce the flow rate of the leaked steam from the main flow path 7 to the leak flow path 13, the leak flow path 13 is provided with a labyrinth seal.

本実施形態のラビリンスシールでは、各動翼シュラウド6の外周面に対向する各ダイヤフラム外輪1の溝部12の内周面に、タービン半径方向に突出する複数段のシールフィン14A〜14Eが設けられている。シールフィン14A〜14Eの先端部は、それらの断面が鋭角な楔形状となっている。動翼シュラウド6の外周面には、第2段のシールフィン14B及び第4段のシールフィン14Dにそれぞれ対向するように、段差部(隆起部)15A,15Bが形成されている。各シールフィンの先端とこれに対向する動翼シュラウド6の外周面との間隙寸法は、静止体側と回転体側の接触を防止しつつ漏れ蒸気の流量が極力小さくなるように設定されている。   In the labyrinth seal of this embodiment, a plurality of stages of seal fins 14A to 14E projecting in the turbine radial direction are provided on the inner peripheral surface of the groove portion 12 of each diaphragm outer ring 1 facing the outer peripheral surface of each blade shroud 6. Yes. The tip portions of the seal fins 14A to 14E have a wedge shape with a sharp cross section. Step portions (protrusions) 15A and 15B are formed on the outer peripheral surface of the moving blade shroud 6 so as to face the second-stage seal fin 14B and the fourth-stage seal fin 14D, respectively. The gap dimension between the tip of each seal fin and the outer peripheral surface of the moving blade shroud 6 facing the seal fin is set so that the flow rate of the leaked steam is minimized while preventing contact between the stationary body side and the rotating body side.

主流路7の静翼2の下流側における主流蒸気は、上述したように大きな周方向速度成分を持つ流れとなっており、漏れ流路13に流入する漏れ蒸気も、大きな周方向速度成分を持つ流れとなっている。そして、漏れ流路13に流入した漏れ蒸気は、第1段のシールフィン14Aの先端と動翼シュラウド6の外周面との間隙(絞り)、第2段のシールフィン14Bの先端と動翼シュラウド6の外周面との間隙(絞り)、第3段のシールフィン14Cの先端と動翼シュラウド6の外周面との間隙(絞り)、第4段のシールフィン14Dの先端と動翼シュラウド6の外周面との間隙(絞り)、及び第5段のシールフィン14Eの先端と動翼シュラウド6の外周面との間隙(絞り)を順次通過する。このとき、絞り損失により、漏れ蒸気の全圧が低下する。また、漏れ蒸気の軸方向速度が増加するものの、周方向速度がほぼ変動しない。すなわち、最終段のシールフィン14Eの先端と動翼シュラウド6の外周面との間隙を通過した漏れ蒸気は、依然として、大きな周方向速度成分を持つ流れとなっている。   The mainstream steam on the downstream side of the stationary blade 2 of the main flow path 7 has a large circumferential speed component as described above, and the leaked steam flowing into the leak flow path 13 also has a large circumferential speed component. It has become a flow. The leaked steam that has flowed into the leakage flow path 13 is a gap (throttle) between the tip of the first-stage seal fin 14A and the outer peripheral surface of the blade shroud 6, and the tip of the second-stage seal fin 14B and the blade shroud. 6, the gap (throttle) between the outer peripheral surface of the sixth stage, the gap (throttle) between the tip of the third stage seal fin 14 </ b> C and the outer peripheral surface of the blade shroud 6, the tip of the fourth stage seal fin 14 </ b> D and the blade shroud 6. The gap (throttle) between the outer peripheral surface and the gap (throttle) between the tip of the fifth-stage seal fin 14E and the outer peripheral surface of the rotor blade shroud 6 are sequentially passed. At this time, the total pressure of the leaked steam is reduced due to the throttle loss. Further, although the axial velocity of the leaking steam increases, the circumferential velocity does not vary substantially. That is, the leaked steam that has passed through the gap between the tip of the final-stage seal fin 14E and the outer peripheral surface of the blade shroud 6 still has a flow having a large circumferential velocity component.

一方、主流路7にて動翼5を通過した主流蒸気は、上述したように周方向速度成分をほぼ持たない流れとなっている。そのため、仮に、最終段のシールフィン14Eの先端と動翼シュラウド6の外周面との間隙を通過した漏れ蒸気が、大きな周方向速度成分を持つ流れのまま、主流路7の動翼5の下流側に流出すると、混合損失が大きくなる。   On the other hand, the mainstream steam that has passed through the moving blade 5 in the main flow path 7 is a flow that has almost no circumferential velocity component as described above. Therefore, temporarily, the leaked steam that has passed through the gap between the tip of the final-stage seal fin 14E and the outer peripheral surface of the moving blade shroud 6 remains downstream of the moving blade 5 in the main flow path 7 while maintaining a flow having a large circumferential velocity component. When it flows out to the side, the mixing loss increases.

そこで、本実施形態の特徴として、各動翼シュラウド6の下流側端面に対向する各ダイヤフラム外輪1の上流側端面には、対の入口開口16と出口開口17が形成されている。また、各ダイヤフラム外輪1の内部には、入口開口16と出口開口17を連通するバイパス流路18が形成されている。特に、本実施形態では、ダイヤフラム外輪1毎に、入口開口16、出口開口17、及びバイパス流路18の組合せが複数形成されており、周方向に所定の間隔(詳細には、例えば動翼5の周方向間隔(角度換算)とほぼ同じ)で配置されている。   Therefore, as a feature of the present embodiment, a pair of inlet openings 16 and outlet openings 17 are formed on the upstream end face of each diaphragm outer ring 1 facing the downstream end face of each blade shroud 6. Further, a bypass channel 18 that communicates the inlet opening 16 and the outlet opening 17 is formed inside each diaphragm outer ring 1. In particular, in the present embodiment, a plurality of combinations of the inlet opening 16, the outlet opening 17, and the bypass flow path 18 are formed for each diaphragm outer ring 1, and a predetermined interval in the circumferential direction (specifically, for example, the moving blade 5 Are arranged at substantially the same interval in the circumferential direction (angle conversion).

入口開口16は、最終段のシールフィン14Eが対向する動翼シュラウド6の外周面(言い換えれば、動翼シュラウド6の下流側端部の外周面)とタービン半径方向の位置が同じである。これにより、最終段のシールフィン14Eの先端と動翼シュラウド6の外周面との間隙を通過した漏れ蒸気が入口開口16に流入しやすくなっている。なお、図2では、入口開口16の中心が、動翼シュラウド6の下流側端部の外周面とタービン半径方向の位置が同じである場合を例にとって示しているが、これに限られず、入口開口16の中心以外の部分が、動翼シュラウド6の下流側端部の外周面とタービン半径方向の位置が同じであってもよい。すなわち、入口開口16は、動翼シュラウド6の外周面の下流側端部のタービン軸方向下流側に開口していればよく、動翼シュラウド6の外周面の下流側端部のタービン半径方向の位置が、入口開口16の内周側壁面より外周側で、外周側壁面より内周側であればよい。   The inlet opening 16 has the same position in the turbine radial direction as the outer peripheral surface of the moving blade shroud 6 (in other words, the outer peripheral surface of the downstream end portion of the moving blade shroud 6) facing the final-stage seal fin 14E. This makes it easy for leaked steam that has passed through the gap between the tip of the last-stage seal fin 14 </ b> E and the outer peripheral surface of the rotor blade shroud 6 to flow into the inlet opening 16. 2 shows an example in which the center of the inlet opening 16 is located at the same position in the turbine radial direction as the outer peripheral surface of the downstream end of the rotor blade shroud 6, but the present invention is not limited to this. A portion other than the center of the opening 16 may have the same position in the turbine radial direction as the outer peripheral surface of the downstream end portion of the blade shroud 6. That is, the inlet opening 16 only needs to open to the downstream side in the turbine axial direction of the downstream end portion of the outer peripheral surface of the rotor blade shroud 6, and in the turbine radial direction of the downstream end portion of the outer peripheral surface of the rotor blade shroud 6. The position should just be an outer peripheral side from the inner peripheral side wall surface of the inlet opening 16, and an inner peripheral side from the outer peripheral side wall surface.

出口開口17は、入口開口16よりタービン半径方向の内側にある。なお、入口開口16及び出口開口17の縁部は、例えば円弧状に面取りされている。   The outlet opening 17 is located on the inner side in the turbine radial direction than the inlet opening 16. In addition, the edge part of the inlet opening 16 and the outlet opening 17 is chamfered, for example in circular arc shape.

バイパス流路18は、例えば、入口開口16からタービン軸方向に延在する第1の流路部分と、第1の流路部分から曲げられてタービン半径方向に延在する第2の流路部分と、第2の流路部分から曲げられてタービン軸方向に延在して出口開口に到達する第3の流路部分で構成されており、全ての流路部分の断面積がほぼ同じである。そして、入口開口16から流入した漏れ蒸気を出口開口17からタービン軸方向に流出させるようになっている(図2中矢印A参照)。   The bypass flow path 18 includes, for example, a first flow path portion extending from the inlet opening 16 in the turbine axial direction and a second flow path portion bent from the first flow path portion and extending in the turbine radial direction. And a third flow path portion that is bent from the second flow path portion and extends in the turbine axial direction to reach the outlet opening, and the cross-sectional areas of all the flow path portions are substantially the same. . And the leaked steam which flowed in from the inlet opening 16 is made to flow out in the turbine axial direction from the outlet opening 17 (refer arrow A in FIG. 2).

以上のように構成された本実施形態において、最終段のシールフィン14Eの先端と動翼シュラウド6の外周面との間隙を通過した漏れ蒸気は、大きな周方向速度成分を有するものの、その一部がバイパス流路18に流入して流出することにより、タービン軸方向の流れを生成する。言い換えれば、バイパス流路18に流入した漏れ流体の周方向速度成分を低減させる。このとき、動翼シュラウド6からバイパス流路18までのタービン軸方向の間隔dが大きな場合でも、バイパス流路18に流入する漏れ蒸気の割合が大きいため、その漏れ蒸気の周方向速度成分を低減させる効果が大きくなる。また、バイパス流路18で生成されるタービン軸方向の流れが強まるため、このタービン軸方向の流れの干渉により、バイパス流路18に流入しなかった漏れ蒸気に対して周方向速度成分を十分に低減させることができる。したがって、図2中矢印Bで示す漏れ蒸気の流れ方向を、主流蒸気の流れ方向に合わせて、混合損失の低減効果を高めることができる。   In the present embodiment configured as described above, the leaked steam that has passed through the gap between the tip of the last-stage seal fin 14E and the outer peripheral surface of the rotor blade shroud 6 has a large circumferential velocity component, but part of it. Flows into and out of the bypass flow path 18 to generate a turbine axial flow. In other words, the circumferential velocity component of the leaked fluid that has flowed into the bypass channel 18 is reduced. At this time, even if the turbine axial distance d from the blade shroud 6 to the bypass flow path 18 is large, the ratio of the leaked steam flowing into the bypass flow path 18 is large, so the circumferential speed component of the leaked steam is reduced. The effect to make becomes large. Further, since the flow in the turbine axial direction generated in the bypass flow path 18 is strengthened, the circumferential speed component is sufficiently increased with respect to the leaked steam that has not flowed into the bypass flow path 18 due to interference of the flow in the turbine axial direction. Can be reduced. Therefore, the flow direction of the leaked steam indicated by the arrow B in FIG. 2 can be matched with the flow direction of the mainstream steam, and the effect of reducing the mixing loss can be enhanced.

なお、上記第1の実施形態において、バイパス流路18は、全ての流路部分の断面積がほぼ同じである場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。具体的には、例えば図4で示す第1の変形例のように、上述した第2の流路部分の断面積を、上述した第1及び第3の流路部分の断面積より拡大してもよい。すなわち、バイパス流路18Aは、流路断面が拡大したバッファ部19を有してもよい。これにより、例えば主流路7から漏れ流路13に流入する漏れ蒸気の流量が比較的多い場合に(言い換えれば、バイパス流路18Aに流入する漏れ蒸気の流量が比較的多い場合に)、バイパス流路18Aに流入した漏れ蒸気を停滞させて、その漏れ蒸気の周方向速度成分を低減させる効果を高めてもよい。   In the first embodiment, the bypass channel 18 has been described by taking the case where the cross-sectional areas of all the channel portions are substantially the same as an example. However, the present invention is not limited to this, and the gist and technical idea of the present invention are not limited thereto. Modifications can be made without departing from the scope. Specifically, for example, as in the first modification shown in FIG. 4, the cross-sectional area of the second flow path portion described above is enlarged from the cross-sectional area of the first and third flow path portions described above. Also good. That is, the bypass channel 18A may include the buffer unit 19 having an enlarged channel cross section. Thereby, for example, when the flow rate of the leakage steam flowing from the main flow path 7 into the leakage flow path 13 is relatively large (in other words, when the flow rate of the leakage vapor flowing into the bypass flow path 18A is relatively large), the bypass flow The effect of reducing the circumferential velocity component of the leaked steam by stagnating the leaked steam flowing into the path 18A may be enhanced.

また、例えば図5で示す第2の変形例のように、出口開口17の面積を、入口開口16の面積より小さくしてもよい。そして、上述した第3の流路部分の断面積を、出口開口17に向かうに従って徐々に縮小してもよい。すなわち、バイパス流路18Bは、出口開口17に向かうに従って流路断面が徐々に縮小するノズル部20を有してもよい。これにより、例えば主流路7から漏れ流路13に流入する漏れ蒸気の流量が比較的少ない場合に(言い換えれば、バイパス流路18Bに流入する漏れ蒸気の流量が比較的少ない場合に)、バイパス流路18Bから流出する漏れ蒸気の軸方向速度成分を増加させて、バイパス流路18Bに流入しなかった漏れ蒸気の周方向速度成分を低減させる効果を高めてもよい。   Further, for example, the area of the outlet opening 17 may be smaller than the area of the inlet opening 16 as in the second modification shown in FIG. Then, the cross-sectional area of the third flow path portion described above may be gradually reduced toward the outlet opening 17. That is, the bypass flow path 18B may have the nozzle portion 20 whose flow path cross-section gradually decreases toward the outlet opening 17. Thereby, for example, when the flow rate of the leaked steam flowing from the main flow path 7 into the leak flow path 13 is relatively small (in other words, when the flow rate of the leaking steam flowing into the bypass flow path 18B is relatively small), the bypass flow The effect of reducing the circumferential speed component of the leaked steam that has not flowed into the bypass flow path 18B may be increased by increasing the axial speed component of the leaked steam flowing out of the path 18B.

また、上記一実施形態及び変形例においては、バイパス流路の周方向間隔(角度換算)が動翼5の周方向間隔(角度換算)とほぼ同じである場合(言い換えれば、バイパス流路の数が動翼5の数と同じである場合)を例にとったが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、主流路7から漏れ流路13に流入する漏れ蒸気の周方向速度によっては、バイパス流路の数を動翼5の数より減らしても、同様の効果を発揮しうる。このような場合には、バイパス流路の数を動翼5の数より減らしてもよい。   Moreover, in the said one Embodiment and modification, when the circumferential direction space | interval (angle conversion) of a bypass flow path is substantially the same as the circumferential direction space | interval (angle conversion) of the moving blade 5 (in other words, the number of bypass flow paths) Is the same as the number of moving blades 5), but is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, depending on the circumferential speed of the leaked steam flowing from the main flow path 7 into the leak flow path 13, the same effect can be achieved even if the number of bypass flow paths is reduced from the number of the moving blades 5. In such a case, the number of bypass flow paths may be reduced from the number of moving blades 5.

また、上記一実施形態及び変形例においては、5段のシールフィン14A〜14Eと2つの段差部15A,15Bを有するラビリンスシールを例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形可能である。すなわち、シールフィンの段数は、5つに限られず、2つ、3つ、4つ、又は6つ以上でもよい。また、段差部を有しなくともよいし、1つ又は3つ以上の段差部を有してもよい。これらの場合も上記同様の効果を得ることができる。   In the above-described embodiment and modification, the labyrinth seal having the five-stage seal fins 14A to 14E and the two step portions 15A and 15B has been described as an example. Modifications can be made without departing from the concept. That is, the number of stages of the seal fins is not limited to five, and may be two, three, four, or six or more. Moreover, it does not need to have a level | step-difference part, and may have 1 or 3 or more level | step-difference parts. In these cases, the same effect as described above can be obtained.

なお、以上においては、本発明の適用対象として、軸流タービンの一つである蒸気タービンを例にとって説明したが、これに限られず、ガスタービン等に適用してもよい。この場合も、上記同様の効果を得ることができる。   In the above description, the steam turbine, which is one of the axial flow turbines, has been described as an application target of the present invention. However, the present invention is not limited to this, and may be applied to a gas turbine or the like. In this case, the same effect as described above can be obtained.

1 ダイヤフラム外輪
2 静翼
4 ロータ
5 動翼
6 動翼シュラウド
14A〜14E シールフィン
16 入口開口
17 出口開口
18,18A,18B バイパス流路
19 バッファ部
20 ノズル部
DESCRIPTION OF SYMBOLS 1 Diaphragm outer ring 2 Stator blade 4 Rotor 5 Rotor blade 6 Rotor blade shroud 14A-14E Seal fin 16 Inlet opening 17 Outlet opening 18, 18A, 18B Bypass flow path 19 Buffer part 20 Nozzle part

Claims (4)

ダイヤフラム外輪の内周側に周方向に複数取付けられた静翼と、
ロータの外周側に周方向に複数取付けられ、前記静翼の下流側に配置された動翼と、
前記動翼の外周側に取付けられた動翼シュラウドと、
前記動翼シュラウドの外周面に対向する前記ダイヤフラム外輪の内周面に設けられ、タービン半径方向に突出する複数段のシールフィンと、
前記動翼シュラウドの下流側端面に対向する前記ダイヤフラム外輪の一面に対で形成された入口開口及び出口開口と、
前記ダイヤフラム外輪の内部に前記入口開口と前記出口開口を連通するように形成され、前記入口開口から流入した流体を前記出口開口からタービン軸方向に流出させるバイパス流路とを有し、
前記入口開口は、前記動翼シュラウドの外周面の下流側端部のタービン軸方向下流側に開口し、前記出口開口は、前記入口開口よりタービン半径方向の内側にあることを特徴とする軸流タービン。
A plurality of stator vanes attached in the circumferential direction on the inner peripheral side of the diaphragm outer ring;
A plurality of circumferentially attached rotor blades disposed on the outer circumferential side of the rotor, and disposed on the downstream side of the stationary blade;
A blade shroud attached to the outer peripheral side of the blade;
A plurality of seal fins provided on the inner peripheral surface of the diaphragm outer ring facing the outer peripheral surface of the blade shroud, and projecting in the turbine radial direction;
An inlet opening and an outlet opening formed in pairs on one surface of the diaphragm outer ring facing the downstream end surface of the blade shroud;
The diaphragm outer ring is formed so as to communicate the inlet opening and the outlet opening, and has a bypass flow path for allowing the fluid flowing in from the inlet opening to flow out from the outlet opening in the turbine axial direction,
The inlet opening opens to the downstream side in the turbine axial direction of the downstream end of the outer peripheral surface of the blade shroud, and the outlet opening is located on the inner side in the turbine radial direction from the inlet opening. Turbine.
請求項1に記載の軸流タービンにおいて、
前記バイパス流路は、流路断面が拡大したバッファ部を有することを特徴とする軸流タービン。
The axial turbine according to claim 1,
The bypass turbine has an axial flow turbine having a buffer section having an enlarged passage section.
請求項1に記載の軸流タービンにおいて、
前記出口開口は、前記入口開口より面積が小さく、
前記バイパス流路は、前記出口開口に向かうに従って流路断面が徐々に縮小するノズル部を有することを特徴とする軸流タービン。
The axial turbine according to claim 1,
The outlet opening has a smaller area than the inlet opening,
The bypass flow path has an axial flow turbine having a nozzle portion in which the flow path cross-section gradually decreases toward the outlet opening.
一列の静翼の外周側に取付けられる、軸流タービンのダイヤフラム外輪であって、
動翼シュラウドの外周面に対向する内周面と、
前記内周面に設けられ、タービン半径方向に突出する複数段のシールフィンと、
動翼シュラウドの下流側端面に対向する上流側端面と、
前記上流側端面に対で形成された入口開口及び出口開口と、
前記ダイヤフラム外輪の内部に前記入口開口と前記出口開口を連通するように形成され、前記入口開口から流入した流体を前記出口開口からタービン軸方向に流出するバイパス流路とを有し、
前記入口開口は、前記動翼シュラウドの外周面の下流側端部のタービン軸方向下流側に開口し、前記出口開口は、前記入口開口よりタービン半径方向の内側となるように構成されたことを特徴とする軸流タービンのダイヤフラム外輪。
A diaphragm outer ring of an axial turbine that is attached to the outer peripheral side of a row of stationary blades,
An inner peripheral surface facing the outer peripheral surface of the blade shroud;
A plurality of seal fins provided on the inner peripheral surface and projecting in the turbine radial direction;
An upstream end face facing the downstream end face of the blade shroud;
An inlet opening and an outlet opening formed in pairs on the upstream end face;
The diaphragm outer ring is formed so as to communicate the inlet opening and the outlet opening, and has a bypass flow path for flowing the fluid flowing in from the inlet opening in the turbine axial direction from the outlet opening,
The inlet opening is configured to open to the downstream side in the turbine axial direction of the downstream end portion of the outer peripheral surface of the blade shroud, and the outlet opening is configured to be inside in the turbine radial direction from the inlet opening. Diaphragm outer ring of axial flow turbine featuring.
JP2016174274A 2016-09-07 2016-09-07 Axial flow turbine and diaphragm outer ring thereof Pending JP2018040282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016174274A JP2018040282A (en) 2016-09-07 2016-09-07 Axial flow turbine and diaphragm outer ring thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016174274A JP2018040282A (en) 2016-09-07 2016-09-07 Axial flow turbine and diaphragm outer ring thereof

Publications (1)

Publication Number Publication Date
JP2018040282A true JP2018040282A (en) 2018-03-15

Family

ID=61625530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174274A Pending JP2018040282A (en) 2016-09-07 2016-09-07 Axial flow turbine and diaphragm outer ring thereof

Country Status (1)

Country Link
JP (1) JP2018040282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108457711A (en) * 2018-04-28 2018-08-28 黎明职业大学 A kind of new and effective welded type partition board
JPWO2021199718A1 (en) * 2020-03-30 2021-10-07
CN114127389A (en) * 2019-07-31 2022-03-01 三菱动力株式会社 Axial flow turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108457711A (en) * 2018-04-28 2018-08-28 黎明职业大学 A kind of new and effective welded type partition board
CN114127389A (en) * 2019-07-31 2022-03-01 三菱动力株式会社 Axial flow turbine
CN114127389B (en) * 2019-07-31 2023-11-03 三菱重工业株式会社 Axial turbine
US11898461B2 (en) 2019-07-31 2024-02-13 Mitsubish Heavy Industries, Ltd. Axial flow turbine
JPWO2021199718A1 (en) * 2020-03-30 2021-10-07
US11808156B2 (en) 2020-03-30 2023-11-07 Ihi Corporation Secondary flow suppression structure

Similar Documents

Publication Publication Date Title
US9476315B2 (en) Axial flow turbine
US20120121411A1 (en) Labyrinth Seals for Turbomachinery
WO2014010052A1 (en) Axial flow fluid machine
US10227885B2 (en) Turbine
JP6153650B2 (en) Steam turbine stationary body and steam turbine provided with the same
JP2018040282A (en) Axial flow turbine and diaphragm outer ring thereof
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
US9896952B2 (en) Rotating machine
JP2015129512A (en) Steam turbine and methods of assembling the same
JP6518526B2 (en) Axial flow turbine
US11136897B2 (en) Seal device and turbomachine
WO2017098944A1 (en) Seal fin, seal structure, and turbomachine
CN110431286B (en) Tip balancing slit for a turbomachine
JP5852191B2 (en) End wall member and gas turbine
JP2010169047A (en) Axial flow turbine
JP5404187B2 (en) End wall member and gas turbine
JP7122274B2 (en) axial turbine
JP2019015273A (en) Turbo machine
JP7130575B2 (en) axial turbine
WO2021020518A1 (en) Axial flow turbine
JP7190370B2 (en) axial turbine
JP5852190B2 (en) End wall member and gas turbine
JP5591986B2 (en) End wall member and gas turbine
JP6638938B2 (en) Rotating machinery
JP2020037904A (en) Axial flow turbine