WO2014162520A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2014162520A1
WO2014162520A1 PCT/JP2013/060102 JP2013060102W WO2014162520A1 WO 2014162520 A1 WO2014162520 A1 WO 2014162520A1 JP 2013060102 W JP2013060102 W JP 2013060102W WO 2014162520 A1 WO2014162520 A1 WO 2014162520A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
liquid
refrigeration cycle
ejector
Prior art date
Application number
PCT/JP2013/060102
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/060102 priority Critical patent/WO2014162520A1/en
Priority to PCT/JP2014/051947 priority patent/WO2014162764A1/en
Priority to JP2015509932A priority patent/JP6072899B2/en
Priority to CN201420155967.2U priority patent/CN203824183U/en
Publication of WO2014162520A1 publication Critical patent/WO2014162520A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a refrigeration cycle apparatus having an ejector.
  • the refrigeration cycle apparatus described in Patent Document 1 includes a compressor, a condenser, bubble generating means, an ejector, and an evaporator, and bypasses part of the gas refrigerant discharged from the compressor to the bubble generating means. Then, the bubble generating means causes the gas refrigerant discharged from the compressor to flow into the liquid refrigerant flowing out of the condenser to generate bubbles. Thereby, mixing of the driving fluid and the suction fluid in the ejector is promoted, and the efficiency of the ejector is improved.
  • the present invention has been made to solve the above problems, and an object thereof is to obtain a refrigeration cycle apparatus capable of improving the efficiency of an ejector. Another object of the present invention is to obtain a refrigeration cycle apparatus capable of improving the refrigeration capacity and energy efficiency.
  • a refrigeration cycle apparatus includes a compressor, a condenser, a first expansion valve, a first evaporator, and a first refrigerant flow path in which refrigerant suction ports of an ejector are connected by a refrigerant pipe; the condenser; A second refrigerant flow path branching between the first expansion valve, a refrigerant inlet of the ejector, a refrigerant outlet of the ejector, a second evaporator, and the compressor connected by a refrigerant pipe; And the second expansion valve and the bubbles contained in the refrigerant flowing out of the second expansion valve are refined between the condenser and the refrigerant inlet of the ejector in the second refrigerant flow path.
  • the bubble refinement means is connected sequentially.
  • the second expansion valve and the bubble refining means are sequentially connected between the condenser and the refrigerant inlet of the ejector in the second refrigerant flow path. For this reason, this invention can improve the efficiency of an ejector. Moreover, this invention can improve refrigerating capacity and energy efficiency.
  • FIG. 2 is a refrigerant circuit diagram of the refrigeration cycle apparatus in Embodiment 1.
  • FIG. It is a figure which shows the structure and internal pressure distribution of the ejector 107 of the refrigerating-cycle apparatus in Embodiment 1.
  • FIG. 3 is a diagram showing an outline of the configuration of a first evaporator 104 and a second evaporator 108 of the refrigeration cycle apparatus in Embodiment 1.
  • FIG. 2 is a diagram showing an outline of the configuration of a condenser 102 of the refrigeration cycle apparatus in Embodiment 1.
  • FIG. FIG. 3 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus in the first embodiment.
  • FIG. 6 is a diagram schematically showing a configuration of a bubble refining means 106 of a refrigeration cycle apparatus in a third embodiment. It is a figure which shows typically the structure of the bubble refinement
  • FIG. It is a figure which shows typically the structure of the mixer 805 of the refrigerating-cycle apparatus in Embodiment 4.
  • FIG. (Refrigerant circuit) 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. The refrigeration cycle apparatus shown in FIG. 1 includes a compressor 101, a condenser 102, a first expansion valve 103, a first evaporator 104, a second expansion valve 105, a bubble refining means 106, an ejector 107, and a second evaporator. 108.
  • These element parts and the refrigerant pipe for connecting the element parts are housed in the casing of the outdoor unit 100.
  • the compressor 101, the condenser 102, the first expansion valve 103, the first evaporator 104, and the refrigerant suction port of the ejector 107 are sequentially connected by a refrigerant pipe to form a first refrigerant flow path.
  • the condenser 102 and the first expansion valve 103 are branched, the second expansion valve 105, the bubble refining means 106, the refrigerant inlet of the ejector 107, the refrigerant outlet of the ejector 107, the second evaporator 108, And the compressor 101 are sequentially connected by a refrigerant pipe to form a second refrigerant flow path.
  • the second expansion valve 105, the bubble refining means 106, and the ejector 107 are connected in series to the second refrigerant flow path.
  • the second expansion valve 105 decompresses the refrigerant branched from between the condenser 102 and the first expansion valve 103 into a gas-liquid two-phase refrigerant.
  • the bubble refiner 106 refines bubbles contained in the gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 105.
  • Pipes are connected to the first evaporator 104 and the second evaporator 108 so that the flow directions of the refrigerant and the heat medium (for example, water) face each other.
  • the first evaporator 104 and the second evaporator 108 are connected to the indoor heat exchanger 111 of the indoor unit 110 on the heat load side, and a water feeder 109 for conveying the heat medium is connected.
  • FIG. 2 is a diagram showing the configuration of the ejector 107 and the internal pressure distribution of the refrigeration cycle apparatus in the first embodiment.
  • the ejector 107 has a refrigerant inlet 204, a refrigerant suction port 205, and a refrigerant outlet 206.
  • the refrigerant inlet 204 is connected to the bubble refining means 106 by a refrigerant pipe.
  • the driving refrigerant flows into the refrigerant inlet 204.
  • the refrigerant suction port 205 is connected to the first evaporator 104 by a refrigerant pipe.
  • the refrigerant sucked by the driving refrigerant flows into the refrigerant suction port 205.
  • the refrigerant outlet 206 is connected to the second evaporator 108 by a refrigerant pipe.
  • the refrigerant outlet 206 flows out the mixed refrigerant in which the driving refrigerant and the suction refrigerant
  • the ejector 107 includes a nozzle unit 201, a mixing unit 202, and a diffuser unit 203.
  • the nozzle part 201 includes a pressure reducing part 201a, a nozzle throat part 201b, and a divergent part 201c.
  • alphabets such as “d, e, f, g, h” represent points of the Mollier diagram described later.
  • the high-pressure refrigerant (driving refrigerant) that has flowed out of the bubble refining means 106 flows in from the refrigerant inlet 204, and expands under reduced pressure as the flow path area decreases in the pressure reducing portion 201a.
  • the speed increases due to the decompression, and the sound speed is reached at the nozzle throat 201b.
  • the driving refrigerant that has reached the speed of sound is depressurized while further increasing its speed at the divergent portion 201c. As a result, the gas-liquid two-phase refrigerant flows out of the nozzle unit 201 at an ultra high speed.
  • the refrigerant sucked from the refrigerant suction port 205 of the ejector 107 is drawn into the super-high-speed refrigerant (suction refrigerant) due to a pressure difference ( ⁇ Psuc) between the refrigerant suction port 205 and the outlet of the nozzle unit 201.
  • the ultra-high speed driving refrigerant and the low-speed suction refrigerant begin to mix from the outlet of the nozzle unit 201, that is, the inlet of the mixing unit 202 (mixed refrigerant).
  • the pressure is recovered (increased) by exchanging momentum between the driving refrigerant and the suction refrigerant.
  • the dynamic pressure is converted into a static pressure by the deceleration due to the expansion of the flow path, and the pressure increases ( ⁇ P).
  • the mixed refrigerant flows out from the diffuser portion 203 (refrigerant outlet 206).
  • FIG. 3 is a diagram showing an outline of the configuration of the first evaporator 104 and the second evaporator 108 of the refrigeration cycle apparatus in the first embodiment.
  • FIG. 3A shows a side view
  • FIG. 3B shows a front view (viewed from the stacking direction).
  • the 1st evaporator 104 and the 2nd evaporator 108 are comprised by the plate-type heat exchanger, for example.
  • the first evaporator 104 and the second evaporator 108 exchange heat between the refrigerant and the heat medium (for example, water).
  • the heat transfer plates 302 and the heat transfer plates 303 are alternately stacked.
  • the plate-type heat exchanger has a reinforcing side plate 301 stacked on the foremost surface and a reinforcing side plate 304 stacked on the backmost surface.
  • the reinforcing side plate 301 is formed in a substantially rectangular plate shape.
  • the reinforcing side plate 301 is provided with a first inflow pipe 305, a first outflow pipe 306, a second inflow pipe 307, and a second outflow pipe 308 at four corners of a substantially rectangular shape.
  • Each of the heat transfer plates 302 and 303 is formed in a substantially rectangular plate shape, like the reinforcing side plate 301, and a first inlet, a first outlet, a second inlet, and a second outlet are provided at four corners. It is done.
  • the reinforcing side plate 304 is formed in a substantially rectangular plate shape like the reinforcing side plate 301 and the like. The reinforcing side plate 304 is not provided with the first inflow pipe 305, the first outflow pipe 306, the second inflow pipe 307, and the second outflow pipe 308.
  • the first flow path through which the heat medium (for example, water) flowing in from the first inflow pipe 305 flows out from the first outflow pipe 306 is between the back surface of the heat transfer plate 303 and the front surface of the heat transfer plate 302. Formed.
  • a second flow path for allowing the refrigerant flowing in from the second inflow pipe 307 to flow out from the second outflow pipe 308 is formed between the back surface of the heat transfer plate 302 and the front surface of the heat transfer plate 303.
  • a flow path through which the heat medium flows and a flow path through which the refrigerant flows are alternately formed. And the flow direction of a heat medium and the flow direction of a refrigerant
  • the first evaporator 104 and the second evaporator 108 are not limited to plate-type heat exchangers that exchange heat between the refrigerant and the heat medium.
  • a fin and tube heat exchanger that exchanges heat between refrigerant and air may be used.
  • air flows from the second evaporator 108 toward the first evaporator 104.
  • the indoor heat exchanger 111 and the water feeder 109 are omitted, and at least one of the first evaporator 104 and the second evaporator 108 is disposed in the indoor unit 110 to exchange heat with indoor air that becomes a heat load. May be.
  • FIG. 4 is a diagram showing an outline of the configuration of the condenser 102 of the refrigeration cycle apparatus in the first embodiment.
  • the condenser 102 is disposed in a blower chamber 415 provided in the outdoor unit 100.
  • the condenser 102 is a fin-and-tube heat exchanger that exchanges heat between refrigerant and air.
  • a blower 406 and a condenser 102 adjacent to the blower 406 are incorporated in the blower chamber 415.
  • the blower chamber 415 has a large space for securing an air passage.
  • the blower 406 is a combination of three blade-type propellers and a motor that rotationally drives the propellers, and the motor and the propellers are rotated at a predetermined number of revolutions by electric power supplied from the outside. .
  • the condenser 102 for example, a long refrigerant pipe in which a large number of aluminum thin fins are closely attached is bent into an approximately L-shaped plate shape, and heat exchange is performed between the refrigerant in the refrigerant pipe and the air around the fins.
  • the condenser 102 adjusts the amount of heat exchange by adjusting the air volume of the air that flows between the fins by the blower 406.
  • the condenser 102 is not limited to a fin-and-tube heat exchanger that exchanges heat between refrigerant and air.
  • a plate-type heat exchanger that exchanges heat between a refrigerant and a heat medium for example, water may be used.
  • An indoor heat exchanger 111 is provided in the indoor unit 110.
  • the indoor heat exchanger 111 is constituted by, for example, a fin-and-tube heat exchanger that exchanges heat between a heat medium and air.
  • the indoor heat exchanger 111, the second evaporator 108, the first evaporator 104, and the water feeder 109 are sequentially connected to form a flow path through which the heat medium circulates.
  • the indoor heat exchanger 111 is not limited to a fin-and-tube heat exchanger.
  • a plate-type heat exchanger that exchanges heat between the heat medium circulating through the second evaporator 108 and the first evaporator 104 and a heat medium (for example, water) serving as a heat load may be used.
  • FIG. 5 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus in the first embodiment.
  • the horizontal axis of the Mollier diagram in FIG. 5 indicates the specific enthalpy of the refrigerant, and the vertical axis indicates the pressure. Further, points a to i in the Mollier diagram indicate refrigerant states at the positions shown in FIGS.
  • the gas refrigerant that has flowed into the condenser 102 is condensed by heat exchange with the air by the condenser 102 and becomes a high-temperature and high-pressure liquid refrigerant (state b).
  • the liquid refrigerant that has flowed out of the condenser 102 is divided into a liquid refrigerant that flows to the first expansion valve 103 and a liquid refrigerant that flows to the second expansion valve 105.
  • the liquid refrigerant (state b) that is diverted from the outlet of the condenser 102 and flows into the first expansion valve 103 is expanded in an equal enthalpy state by the first expansion valve 103 to become a gas-liquid two-phase refrigerant (state c). It flows into the evaporator 104.
  • the refrigerant that has flowed into the first evaporator 104 is heated by heat exchange with the heat medium by the first evaporator 104 to become a gas refrigerant (state d).
  • the gas refrigerant (state d) flowing out from the first evaporator 104 is sucked into the refrigerant suction port 205 of the ejector 107.
  • the liquid refrigerant (state b) which is diverted from the outlet of the condenser 102 and flows into the second expansion valve 105 is expanded in an equal enthalpy state by the second expansion valve 105 to become a gas-liquid two-phase refrigerant (state e) It flows into the bubble miniaturization means 106. That is, the dryness of the refrigerant flowing into the bubble refining means 106 is greater than zero. For example, the dryness of the refrigerant flowing into the bubble refining means 106 is larger than 0 and smaller than 0.1.
  • the opening degree of the second expansion valve 105 may be controlled such that the dryness of the refrigerant flowing into the bubble refining means 106 is greater than zero.
  • temperature sensors that measure the temperature of the refrigerant are attached to the inlet side and the outlet side of the second expansion valve 105. Then, the opening degree of the second expansion valve 105 is adjusted so that the refrigerant temperature on the outlet side is lower than the refrigerant temperature on the inlet side. Thereby, the dryness of the refrigerant flowing into the bubble refining means 106 can be made larger than zero.
  • this invention is not limited to the structure which controls the opening degree of the 2nd expansion valve 105.
  • FIG. The present invention only needs to be configured so that a gas-liquid two-phase refrigerant flows into the bubble refining means 106.
  • the opening degree of the second expansion valve 105 may be fixed.
  • the bubble refinement means 106 refines the bubbles contained in the gas-liquid two-phase refrigerant flowing from the second expansion valve 105. As a result, the liquid refrigerant and the gas refrigerant contained in the gas-liquid two-phase refrigerant are uniformly mixed.
  • the gas-liquid two-phase refrigerant (state e) flowing out from the bubble refining means 106 flows into the refrigerant inlet 204 of the ejector 107.
  • the gas-liquid two-phase refrigerant (state e) that has flowed into the refrigerant inlet 204 of the ejector 107 is adiabatically expanded (isentropic expansion) by the nozzle portion 201 of the ejector 107 and becomes a gas-liquid two-phase refrigerant at an ultra-high speed.
  • State f The super-high-speed gas-liquid two-phase refrigerant sucks the refrigerant vaporized in the first evaporator 104 (state d), and the mixing unit 202 uses the super-high-speed refrigerant (state f) and the low-speed refrigerant (state d).
  • the mixed refrigerant increases in pressure at the diffuser section 203 (state h) and flows out from the refrigerant outlet 206 of the ejector 107.
  • the gas refrigerant flowing into the second evaporator 108 is heated by heat exchange with the heat medium by the second evaporator 108 to become a gas refrigerant (state i). This gas refrigerant is sucked into the compressor 101.
  • the second expansion valve 105 and the second expansion valve 105 flow out between the condenser 102 and the refrigerant inlet 204 of the ejector 107 in the second refrigerant flow path.
  • the bubble refining means 106 for refining bubbles contained in the refrigerant was sequentially connected. For this reason, the bubble contained in the refrigerant
  • the power recovery rate (efficiency ⁇ ) of the ejector 107 can be expressed by the following equation.
  • V is the refrigerant velocity at the refrigerant outlet 206 of the ejector 107.
  • G is the refrigerant circulation amount.
  • ⁇ h is a difference (adiabatic heat drop) between the specific enthalpy of the refrigerant (state e) at the refrigerant inlet 204 of the ejector 107 and the specific enthalpy of the refrigerant (state f) after adiabatic expansion at the nozzle portion 201.
  • the power recovery rate (efficiency ⁇ ) of the ejector 107 is improved by increasing the refrigerant speed V.
  • Embodiment 1 since bubbles contained in the refrigerant flowing into the refrigerant inlet 204 of the ejector 107 are miniaturized, the contact area between the liquid refrigerant and the gas refrigerant increases in the ejector 107, and the pressure of the liquid refrigerant is reduced. Boiling is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
  • Embodiment 2 an example of the configuration of the bubble miniaturization means 106 will be described.
  • FIG. 6 is a diagram schematically showing the configuration of the bubble refining means 106 of the refrigeration cycle apparatus in the second embodiment.
  • FIG. 6A shows a case where the refrigerant flow direction of the refrigerant pipe is a horizontal direction
  • FIG. 6B shows a case where the refrigerant flow direction of the refrigerant pipe is a vertical direction.
  • the bubble refining means 106 in the second embodiment is constituted by a porous body 601 through which a refrigerant passes.
  • the porous body 601 is provided in the flow path in the refrigerant pipe.
  • the porous body 601 is entirely formed of a porous permeable material, the average diameter of the air holes (the surface of the porous body through which fluid can permeate and the internal pores) is about 500 ⁇ m, and the porosity is 92 ⁇ 6%. is there.
  • the porous body 601 is formed, for example, by applying metal powder to urethane foam, then heat-treating the urethane foam to burn it, and forming the metal into a three-dimensional lattice shape.
  • the material of the porous body 601 is, for example, Ni (nickel).
  • bubbles of bubbles are contained in the liquid refrigerant. It becomes the aspect that included.
  • bubble slugs 602 and 603 pass through the porous body 601, they are refined in the porous body 601 and flow out as fine bubbles 604.
  • the gas-liquid two-phase refrigerant in which the fine bubbles and the liquid refrigerant are homogenized can flow into the refrigerant inlet 204 of the ejector 107. Therefore, the contact area between the liquid refrigerant and the gas refrigerant is increased in the ejector 107, and the reduced-pressure boiling of the liquid refrigerant is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
  • Embodiment 3 FIG. In the third embodiment, an example of the configuration of the bubble miniaturization means 106 will be described.
  • FIG. 7 is a diagram schematically showing the configuration of the bubble refining means 106 of the refrigeration cycle apparatus in the third embodiment.
  • Fig.7 (a) shows sectional drawing of the direction orthogonal to a turning axis
  • FIG.7 (b) shows sectional drawing of a turning axis direction.
  • the bubble refining means 106 includes an introduction pipe 701, branch pipes 702a and 702b, swirl chambers 703a and 703b, and an outflow pipe 704. I have.
  • the bubble miniaturization means 106 in the third embodiment is configured by a two-stage swirling mechanism that turns the refrigerant flowing in from the introduction pipe 701 into a swirling flow and outflows from the outflow pipe 704.
  • the swirl chambers 703 a and 703 b have a shape in which the refrigerant passage area decreases toward the outflow pipe 704.
  • the swirl chambers 703a and 703b have a conical shape.
  • the swirl chambers 703a and 703b are provided adjacent to each other, and the refrigerant that has flowed out of the swirl chamber 703a flows into the adjacent swirl chamber 703b.
  • the number of swirl chambers is not limited to two.
  • the connecting portion between the swirl chamber 703a and the branch pipe 702a corresponds to the “inlet” of the present invention.
  • the connecting portion between the swirl chamber 703b and the branch pipe 702b corresponds to the “inlet” of the present invention.
  • the opening through which the refrigerant flows from the swirl chamber 703a to the swirl chamber 703b corresponds to the “outlet” of the present invention.
  • the connecting portion between the swirl chamber 703b and the outflow pipe 704 corresponds to the “outlet” of the present invention.
  • the gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 105 passes through the introduction pipe 701, is branched into the branch pipe 702a and the branch pipe 702b, and flows into the swirl chamber 703a and the swirl chamber 703b, respectively.
  • the branch pipes 702a and 702b are connected to the swirl chambers 703a and 703b having a conical shape toward the tangential direction of the circular cross section.
  • the refrigerant that has flowed into the swirl chambers 703a and 703b flows along the inner wall surfaces of the swirl chambers 703a and 703b to form a swirl flow.
  • the gas-liquid two-phase refrigerant that has flowed into the swirl chamber 703a from the branch pipe 702a becomes a swirl flow. Separated into the center. Further, since the flow passage cross-sectional area (refrigerant passage area) of the swirl chamber 703a decreases toward the outflow pipe 704, the swirl chamber 703a flows into the swirl chamber 703b while increasing the flow velocity.
  • the gas-liquid two-phase refrigerant flowing into the swirl chamber 703b from the branch pipe 702b becomes a swirl flow while mixing with the swirl flow flowing out of the swirl chamber 703a.
  • the swirl flow formed in the swirl chamber 703a promotes the formation of the swirl flow.
  • the refrigerant in the gas-liquid two-phase state in the swirl chamber 703b becomes a swirl flow, so that the liquid refrigerant having a high density is separated to the outside of the swirl chamber 703b by centrifugal force, and the gas refrigerant having a low density is separated to the center by centripetal force.
  • the flow passage cross-sectional area (refrigerant passage area) of the swirl chamber 703b decreases toward the outflow pipe 704, the outflow pipe 704 flows out while increasing the flow velocity.
  • the gas-liquid two-phase refrigerant that has flowed out of the swirl chamber 703b into the outflow pipe 704 starts to weaken the swirl component after the outflow starts.
  • a difference in swirl speed occurs along the flow direction of the outflow pipe 704. This speed difference generates a shearing force between the liquid refrigerant and the gas refrigerant, and the gas refrigerant is divided, so that the bubbles are refined.
  • the gas-liquid two-phase refrigerant in which the fine bubbles and the liquid refrigerant are homogenized can flow into the refrigerant inlet 204 of the ejector 107. Therefore, the contact area between the liquid refrigerant and the gas refrigerant is increased in the ejector 107, and the reduced-pressure boiling of the liquid refrigerant is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
  • a flow rate adjusting means for adjusting the flow rate is attached to at least one of the branch pipe 702a and the branch pipe 702b, and the amount of refrigerant flowing into the swirl chamber 703a and the swirl chamber 703b is adjusted to an inflow amount suitable for bubble miniaturization. You may do it.
  • the shapes of the swirl chamber 703a and the swirl chamber 703b are not limited to a conical shape. Any shape that reduces the cross-sectional area along the exit direction of the swirl chambers 703a and 703b may be used. For example, a U-shaped cross section may be used.
  • Embodiment 4 FIG. In the fourth embodiment, an example of the configuration of the bubble miniaturization means 106 will be described.
  • FIG. 8 is a diagram schematically showing the configuration of the bubble refining means 106 of the refrigeration cycle apparatus in the fourth embodiment.
  • the bubble refining means 106 in the fourth embodiment includes a gas-liquid separator 802 that separates the refrigerant into a gas phase (gas refrigerant) and a liquid phase (liquid refrigerant), and a gas-liquid separator.
  • a mixer 805 for mixing the liquid-phase refrigerant and the gas-phase refrigerant separated by 802.
  • the gas-liquid separator 802 is, for example, a gravity drop type gas-liquid separator that separates liquid refrigerant and gas refrigerant by the action of gravity.
  • the gas-liquid separator 802 includes an inflow pipe 801, a gas refrigerant outlet 803, and a liquid refrigerant outlet 804.
  • the inflow pipe 801 allows the refrigerant to flow from above the tank that forms the outer shell.
  • the liquid refrigerant outlet 804 allows the liquid refrigerant to flow out from below the tank.
  • the end of the pipe is inserted above the liquid refrigerant outlet 804, and the gas refrigerant in the tank flows out.
  • a plurality of gas refrigerant outlets 803 are attached to the outer peripheral side of the liquid refrigerant outlet 804.
  • the gas-liquid two-phase refrigerant flowing out from the second expansion valve 105 flows into the gas-liquid separator 802 through the inflow pipe 801. Inside the gas-liquid separator 802, the liquid refrigerant having a high density is separated downward, and the gas refrigerant having a low density is separated upward.
  • the gas refrigerant flowing out from the gas refrigerant outlet 803 and the liquid refrigerant flowing out from the liquid refrigerant outlet 804 flow into the mixer 805, respectively.
  • FIG. 9 is a diagram schematically showing the configuration of the mixer 805 of the refrigeration cycle apparatus in the fourth embodiment.
  • the mixer 805 converts the liquid-phase refrigerant flow channel 901 through which the liquid-phase refrigerant from the liquid refrigerant outlet 804 flows and the gas-phase refrigerant from the gas refrigerant outlet 803 into the liquid-phase refrigerant.
  • a gas-phase refrigerant channel 902 that is ejected into the channel 901.
  • the mixer 805 mixes the liquid-phase refrigerant and the gas-phase refrigerant and causes the refrigerant to flow out to the outflow pipe 806.
  • a speed difference is generated at the interface between the gas refrigerant flowing from the gas refrigerant outlet 803 into the gas-phase refrigerant channel 902 and the liquid refrigerant flowing into the liquid-phase refrigerant channel 901 from the liquid refrigerant outlet 804. .
  • This speed difference generates a shearing force between the liquid refrigerant and the gas refrigerant, and the gas refrigerant is divided, so that the bubbles are refined.
  • the speed of the gas refrigerant flowing out from the gas refrigerant outlet 803 and the speed of the liquid refrigerant flowing out from the liquid refrigerant outlet 804 are determined by the cross-sectional area of the outlet pipe 806 and the mass flow rates of the gas refrigerant and liquid refrigerant. Is done.
  • the degree of dryness is relatively small, the ratio of the liquid refrigerant is larger than that of the gas refrigerant. Therefore, the liquid refrigerant can be obtained by reducing the channel area of the liquid refrigerant outlet 804 and reducing the cross-sectional area of the gas refrigerant outlet 803. And the speed difference between the gas refrigerant becomes larger.
  • the channel cross-sectional area is the total channel cross-sectional area of each phase.
  • the gas-liquid two-phase refrigerant obtained by homogenizing the fine bubbles and the liquid refrigerant can flow into the refrigerant inlet 204 of the ejector 107. Therefore, the contact area between the liquid refrigerant and the gas refrigerant is increased in the ejector 107, and the reduced-pressure boiling of the liquid refrigerant is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
  • gas refrigerant outlet 803 may be provided at the center, and the liquid refrigerant outlet 804 may be attached to the outer peripheral side.

Abstract

A refrigeration cycle device comprising: a first refrigerant channel in which a compressor (101), a condenser (102), a first expansion valve (103), a first evaporator (104), and a refrigerant intake port (205) of an ejector (107) are connected by refrigerant tubes; and a second refrigerant channel branching between the condenser (102) and the first expansion valve (103), in which a refrigerant inflow port (204) of the ejector (107), a refrigerant outflow port (206) of the ejector (107), a second evaporator (108), and the compressor (101) are connected by refrigerant tubes; a second expansion valve (105) and an air bubble miniaturizing means (106) for miniaturizing air bubbles in the refrigerant flowing out of the second expansion valve (105) being sequentially connected between the condenser (102) and the refrigerant inflow port (204) of the ejector (107) in the second refrigerant channel.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、エジェクタを有する冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus having an ejector.
 特許文献1に記載の冷凍サイクル装置は、圧縮機、凝縮器、気泡発生手段、エジェクタ、及び蒸発器を備え、圧縮機から吐出したガス冷媒の一部を気泡発生手段にバイパスする。そして、気泡発生手段によって、凝縮器から流出した液冷媒に圧縮機から吐出したガス冷媒を流入させて気泡を発生させている。これによって、エジェクタ内での駆動流体と吸引流体との混合が促進されエジェクタの効率が向上する、とされている。 The refrigeration cycle apparatus described in Patent Document 1 includes a compressor, a condenser, bubble generating means, an ejector, and an evaporator, and bypasses part of the gas refrigerant discharged from the compressor to the bubble generating means. Then, the bubble generating means causes the gas refrigerant discharged from the compressor to flow into the liquid refrigerant flowing out of the condenser to generate bubbles. Thereby, mixing of the driving fluid and the suction fluid in the ejector is promoted, and the efficiency of the ejector is improved.
特開2008-202812号公報(要約)JP 2008-202812 (Abstract)
 しかしながら、上記特許文献1の技術では、圧縮機から吐出されたガス冷媒を分岐して、気泡発生手段に流入させている。このため、蒸発器での冷凍能力が低下するとともに、冷凍効果も減少する。この結果、冷凍サイクル装置の冷凍能力及びエネルギー効率が低下する、という課題があった。
 さらに、蒸発器における冷凍能力の低下を補うため、圧縮機の駆動周波数を上昇させ冷媒の循環量を増やす必要があり、冷凍サイクル装置のエネルギー効率が低下する、という課題があった。
However, in the technique of Patent Document 1, the gas refrigerant discharged from the compressor is branched and flows into the bubble generating means. For this reason, while the refrigerating capacity in an evaporator falls, the freezing effect also reduces. As a result, there existed a subject that the refrigerating capacity and energy efficiency of a refrigerating cycle device fell.
Furthermore, in order to compensate for the decrease in the refrigerating capacity in the evaporator, it is necessary to increase the circulating frequency of the refrigerant by increasing the drive frequency of the compressor, and there is a problem that the energy efficiency of the refrigerating cycle apparatus decreases.
 本発明は、上記のような課題を解決するためになされたもので、エジェクタの効率を向上することができる冷凍サイクル装置を得ることを目的とする。
 また本発明は、冷凍能力及びエネルギー効率を向上することができる冷凍サイクル装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a refrigeration cycle apparatus capable of improving the efficiency of an ejector.
Another object of the present invention is to obtain a refrigeration cycle apparatus capable of improving the refrigeration capacity and energy efficiency.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、第1膨張弁、第1蒸発器、及びエジェクタの冷媒吸引口が、冷媒配管で接続された第1冷媒流路と、前記凝縮器と前記第1膨張弁との間を分岐し、前記エジェクタの冷媒流入口、前記エジェクタの冷媒流出口、第2蒸発器、及び前記圧縮機が、冷媒配管で接続された第2冷媒流路と、を備え、前記第2冷媒流路の、前記凝縮器と前記エジェクタの冷媒流入口との間に、第2膨張弁、及び、前記第2膨張弁から流出した冷媒に含まれる気泡を微細化する気泡微細化手段を、順次接続したことを特徴とする。 A refrigeration cycle apparatus according to the present invention includes a compressor, a condenser, a first expansion valve, a first evaporator, and a first refrigerant flow path in which refrigerant suction ports of an ejector are connected by a refrigerant pipe; the condenser; A second refrigerant flow path branching between the first expansion valve, a refrigerant inlet of the ejector, a refrigerant outlet of the ejector, a second evaporator, and the compressor connected by a refrigerant pipe; And the second expansion valve and the bubbles contained in the refrigerant flowing out of the second expansion valve are refined between the condenser and the refrigerant inlet of the ejector in the second refrigerant flow path. The bubble refinement means is connected sequentially.
 本発明は、第2冷媒流路の、凝縮器とエジェクタの冷媒流入口との間に、第2膨張弁、及び気泡微細化手段を順次接続した。
 このため、本発明は、エジェクタの効率を向上することができる。また本発明は、冷凍能力及びエネルギー効率を向上することができる。
In the present invention, the second expansion valve and the bubble refining means are sequentially connected between the condenser and the refrigerant inlet of the ejector in the second refrigerant flow path.
For this reason, this invention can improve the efficiency of an ejector. Moreover, this invention can improve refrigerating capacity and energy efficiency.
実施の形態1における冷凍サイクル装置の冷媒回路図である。2 is a refrigerant circuit diagram of the refrigeration cycle apparatus in Embodiment 1. FIG. 実施の形態1における冷凍サイクル装置のエジェクタ107の構成と内部の圧力分布とを示す図である。It is a figure which shows the structure and internal pressure distribution of the ejector 107 of the refrigerating-cycle apparatus in Embodiment 1. FIG. 実施の形態1における冷凍サイクル装置の第1蒸発器104及び第2蒸発器108の構成の概要を示す図である。3 is a diagram showing an outline of the configuration of a first evaporator 104 and a second evaporator 108 of the refrigeration cycle apparatus in Embodiment 1. FIG. 実施の形態1における冷凍サイクル装置の凝縮器102の構成の概要を示す図である。2 is a diagram showing an outline of the configuration of a condenser 102 of the refrigeration cycle apparatus in Embodiment 1. FIG. 実施の形態1における冷凍サイクル装置の動作状態を示すモリエル線図である。FIG. 3 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus in the first embodiment. 実施の形態2における冷凍サイクル装置の気泡微細化手段106の構成を模式的に示す図である。It is a figure which shows typically the structure of the bubble refinement | miniaturization means 106 of the refrigeration cycle apparatus in Embodiment 2. FIG. 実施の形態3における冷凍サイクル装置の気泡微細化手段106の構成を模式的に示す図である。FIG. 6 is a diagram schematically showing a configuration of a bubble refining means 106 of a refrigeration cycle apparatus in a third embodiment. 実施の形態4における冷凍サイクル装置の気泡微細化手段106の構成を模式的に示す図である。It is a figure which shows typically the structure of the bubble refinement | miniaturization means 106 of the refrigeration cycle apparatus in Embodiment 4. FIG. 実施の形態4における冷凍サイクル装置の混合器805の構成を模式的に示す図である。It is a figure which shows typically the structure of the mixer 805 of the refrigerating-cycle apparatus in Embodiment 4. FIG.
実施の形態1.
(冷媒回路)
 図1は、実施の形態1における冷凍サイクル装置の冷媒回路図である。
 図1に示す冷凍サイクル装置は、圧縮機101、凝縮器102、第1膨張弁103、第1蒸発器104、第2膨張弁105、気泡微細化手段106、エジェクタ107、及び、第2蒸発器108を備える。
 これらの要素部品、及び要素部品を接続するための冷媒配管は、室外ユニット100の筐体内に収納されている。
Embodiment 1 FIG.
(Refrigerant circuit)
1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG.
The refrigeration cycle apparatus shown in FIG. 1 includes a compressor 101, a condenser 102, a first expansion valve 103, a first evaporator 104, a second expansion valve 105, a bubble refining means 106, an ejector 107, and a second evaporator. 108.
These element parts and the refrigerant pipe for connecting the element parts are housed in the casing of the outdoor unit 100.
 圧縮機101、凝縮器102、第1膨張弁103、第1蒸発器104、及びエジェクタ107の冷媒吸引口が、冷媒配管で順次接続され、第1冷媒流路を構成している。
 また、凝縮器102と第1膨張弁103との間を分岐し、第2膨張弁105、気泡微細化手段106、エジェクタ107の冷媒流入口、エジェクタ107の冷媒流出口、第2蒸発器108、及び圧縮機101が、冷媒配管で順次接続され、第2冷媒流路を構成している。
 つまり、第2冷媒流路には、第2膨張弁105、気泡微細化手段106、及びエジェクタ107が直列に接続されている。
 第2膨張弁105は、凝縮器102と第1膨張弁103との間から分岐した冷媒を、減圧して気液二相状態の冷媒にする。
 気泡微細化手段106は、第2膨張弁105から流出した気液二相状態の冷媒に含まれる気泡を微細化する。
The compressor 101, the condenser 102, the first expansion valve 103, the first evaporator 104, and the refrigerant suction port of the ejector 107 are sequentially connected by a refrigerant pipe to form a first refrigerant flow path.
Further, the condenser 102 and the first expansion valve 103 are branched, the second expansion valve 105, the bubble refining means 106, the refrigerant inlet of the ejector 107, the refrigerant outlet of the ejector 107, the second evaporator 108, And the compressor 101 are sequentially connected by a refrigerant pipe to form a second refrigerant flow path.
That is, the second expansion valve 105, the bubble refining means 106, and the ejector 107 are connected in series to the second refrigerant flow path.
The second expansion valve 105 decompresses the refrigerant branched from between the condenser 102 and the first expansion valve 103 into a gas-liquid two-phase refrigerant.
The bubble refiner 106 refines bubbles contained in the gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 105.
 第1蒸発器104と第2蒸発器108は、冷媒と熱媒体(例えば水)との流れ方向が対向するように配管が接続されている。第1蒸発器104と第2蒸発器108は、熱負荷側となる室内ユニット110の室内熱交換器111と接続され、熱媒体を搬送するための送水機109が接続されている。 Pipes are connected to the first evaporator 104 and the second evaporator 108 so that the flow directions of the refrigerant and the heat medium (for example, water) face each other. The first evaporator 104 and the second evaporator 108 are connected to the indoor heat exchanger 111 of the indoor unit 110 on the heat load side, and a water feeder 109 for conveying the heat medium is connected.
 図1の構成をさらに詳しく説明する。 1 will be described in more detail.
(エジェクタ107)
 図2は、実施の形態1における冷凍サイクル装置のエジェクタ107の構成と内部の圧力分布とを示す図である。
 エジェクタ107は、冷媒流入口204、冷媒吸引口205、及び冷媒流出口206を有する。
 冷媒流入口204は、気泡微細化手段106と冷媒配管で接続されている。冷媒流入口204には、駆動冷媒が流入する。
 冷媒吸引口205は、第1蒸発器104と冷媒配管で接続されている。冷媒吸引口205には、駆動冷媒によって吸引される吸引冷媒が流入する。
 冷媒流出口206は、第2蒸発器108と冷媒配管で接続されている。冷媒流出口206は、駆動冷媒と吸引冷媒との混合された混合冷媒を流出する。
(Ejector 107)
FIG. 2 is a diagram showing the configuration of the ejector 107 and the internal pressure distribution of the refrigeration cycle apparatus in the first embodiment.
The ejector 107 has a refrigerant inlet 204, a refrigerant suction port 205, and a refrigerant outlet 206.
The refrigerant inlet 204 is connected to the bubble refining means 106 by a refrigerant pipe. The driving refrigerant flows into the refrigerant inlet 204.
The refrigerant suction port 205 is connected to the first evaporator 104 by a refrigerant pipe. The refrigerant sucked by the driving refrigerant flows into the refrigerant suction port 205.
The refrigerant outlet 206 is connected to the second evaporator 108 by a refrigerant pipe. The refrigerant outlet 206 flows out the mixed refrigerant in which the driving refrigerant and the suction refrigerant are mixed.
 エジェクタ107は、ノズル部201、混合部202、ディフューザー部203で構成される。ノズル部201は、減圧部201a、ノズル喉部201b、末広部201cで構成される。図2における、「d、e、f、g、h」等のアルファベットは、後述するモリエル線図の各点を表している。 The ejector 107 includes a nozzle unit 201, a mixing unit 202, and a diffuser unit 203. The nozzle part 201 includes a pressure reducing part 201a, a nozzle throat part 201b, and a divergent part 201c. In FIG. 2, alphabets such as “d, e, f, g, h” represent points of the Mollier diagram described later.
 気泡微細化手段106を流出した高圧の冷媒(駆動冷媒)は、冷媒流入口204から流入し、減圧部201aで流路面積の低下に伴い減圧膨張する。減圧により速度が上昇し、ノズル喉部201bで音速となる。音速となった駆動冷媒は、末広部201cで更に速度を上昇させながら減圧する。これにより、超高速で気液二相の冷媒がノズル部201から流出する。 The high-pressure refrigerant (driving refrigerant) that has flowed out of the bubble refining means 106 flows in from the refrigerant inlet 204, and expands under reduced pressure as the flow path area decreases in the pressure reducing portion 201a. The speed increases due to the decompression, and the sound speed is reached at the nozzle throat 201b. The driving refrigerant that has reached the speed of sound is depressurized while further increasing its speed at the divergent portion 201c. As a result, the gas-liquid two-phase refrigerant flows out of the nozzle unit 201 at an ultra high speed.
 一方、エジェクタ107の冷媒吸引口205から吸引される冷媒は、冷媒吸引口205とノズル部201の出口との圧力差(ΔPsuc)により、超高速の冷媒に引き込まれる(吸引冷媒)。ノズル部201の出口、つまり、混合部202の入口から超高速の駆動冷媒と低速の吸引冷媒とが混合し始める(混合冷媒)。混合冷媒では、駆動冷媒と吸引冷媒との運動量交換により、圧力が回復(上昇)する。さらに、ディフューザー部203においても流路拡大による減速により、動圧が静圧に変換されて圧力が上昇する(ΔP)。混合冷媒は、ディフューザー部203(冷媒流出口206)から流出する。 On the other hand, the refrigerant sucked from the refrigerant suction port 205 of the ejector 107 is drawn into the super-high-speed refrigerant (suction refrigerant) due to a pressure difference (ΔPsuc) between the refrigerant suction port 205 and the outlet of the nozzle unit 201. The ultra-high speed driving refrigerant and the low-speed suction refrigerant begin to mix from the outlet of the nozzle unit 201, that is, the inlet of the mixing unit 202 (mixed refrigerant). In the mixed refrigerant, the pressure is recovered (increased) by exchanging momentum between the driving refrigerant and the suction refrigerant. Furthermore, also in the diffuser part 203, the dynamic pressure is converted into a static pressure by the deceleration due to the expansion of the flow path, and the pressure increases (ΔP). The mixed refrigerant flows out from the diffuser portion 203 (refrigerant outlet 206).
(第1蒸発器104、第2蒸発器108)
 図3は、実施の形態1における冷凍サイクル装置の第1蒸発器104及び第2蒸発器108の構成の概要を示す図である。
 図3(a)は側面図を示し、図3(b)は正面図(積層方向から見た図)を示す。
 第1蒸発器104及び第2蒸発器108は、例えばプレート式の熱交換器によって構成される。第1蒸発器104及び第2蒸発器108は、冷媒と熱媒体(例えば水)とを熱交換する。
 図3(a)に示すように、プレート式の熱交換器は、伝熱プレート302と伝熱プレート303とが交互に積層される。また、プレート式の熱交換器は、最前面に補強用サイドプレート301が積層され、最背面に補強用サイドプレート304が積層される。
(First evaporator 104, second evaporator 108)
FIG. 3 is a diagram showing an outline of the configuration of the first evaporator 104 and the second evaporator 108 of the refrigeration cycle apparatus in the first embodiment.
FIG. 3A shows a side view, and FIG. 3B shows a front view (viewed from the stacking direction).
The 1st evaporator 104 and the 2nd evaporator 108 are comprised by the plate-type heat exchanger, for example. The first evaporator 104 and the second evaporator 108 exchange heat between the refrigerant and the heat medium (for example, water).
As shown in FIG. 3A, in the plate heat exchanger, the heat transfer plates 302 and the heat transfer plates 303 are alternately stacked. The plate-type heat exchanger has a reinforcing side plate 301 stacked on the foremost surface and a reinforcing side plate 304 stacked on the backmost surface.
 図3(b)に示すように、補強用サイドプレート301は、略矩形の板状に形成される。補強用サイドプレート301は、略矩形の四隅に、第1流入管305、第1流出管306、第2流入管307、第2流出管308が設けられる。
 各伝熱プレート302、303は、補強用サイドプレート301と同様に、略矩形の板状に形成され、四隅に第1流入口、第1流出口、第2流入口、第2流出口が設けられる。
 補強用サイドプレート304は、補強用サイドプレート301等と同様に、略矩形の板状に形成される。なお、補強用サイドプレート304には、第1流入管305、第1流出管306、第2流入管307、第2流出管308が設けられない。
As shown in FIG. 3B, the reinforcing side plate 301 is formed in a substantially rectangular plate shape. The reinforcing side plate 301 is provided with a first inflow pipe 305, a first outflow pipe 306, a second inflow pipe 307, and a second outflow pipe 308 at four corners of a substantially rectangular shape.
Each of the heat transfer plates 302 and 303 is formed in a substantially rectangular plate shape, like the reinforcing side plate 301, and a first inlet, a first outlet, a second inlet, and a second outlet are provided at four corners. It is done.
The reinforcing side plate 304 is formed in a substantially rectangular plate shape like the reinforcing side plate 301 and the like. The reinforcing side plate 304 is not provided with the first inflow pipe 305, the first outflow pipe 306, the second inflow pipe 307, and the second outflow pipe 308.
 これにより、第1流入管305から流入した熱媒体(例えば、水)を、第1流出管306から流出する第1流路が、伝熱プレート303の背面と伝熱プレート302の前面との間に形成される。
 同様に、第2流入管307から流入した冷媒を、第2流出管308から流出する第2流路が、伝熱プレート302の背面と伝熱プレート303の前面との間に形成される。
 伝熱プレート302と伝熱プレート303との間に、熱媒体が流れる流路と冷媒が流れる流路とが交互に形成される。そして、熱媒体の流れ方向と冷媒の流れ方向とが対向する(対抗流)。
Accordingly, the first flow path through which the heat medium (for example, water) flowing in from the first inflow pipe 305 flows out from the first outflow pipe 306 is between the back surface of the heat transfer plate 303 and the front surface of the heat transfer plate 302. Formed.
Similarly, a second flow path for allowing the refrigerant flowing in from the second inflow pipe 307 to flow out from the second outflow pipe 308 is formed between the back surface of the heat transfer plate 302 and the front surface of the heat transfer plate 303.
Between the heat transfer plate 302 and the heat transfer plate 303, a flow path through which the heat medium flows and a flow path through which the refrigerant flows are alternately formed. And the flow direction of a heat medium and the flow direction of a refrigerant | coolant oppose (counter flow).
 なお、第1蒸発器104及び第2蒸発器108は、冷媒と熱媒体とを熱交換するプレート式の熱交換器に限定されない。例えば、冷媒と空気とを熱交換するフィンアンドチューブ熱交換器でも良い。この場合、第2蒸発器108から第1蒸発器104に向かうように空気を流す。また、室内熱交換器111及び送水機109を省略して、第1蒸発器104及び第2蒸発器108の少なくとも一方を、室内ユニット110に配置して、熱負荷となる室内空気と熱交換しても良い。 The first evaporator 104 and the second evaporator 108 are not limited to plate-type heat exchangers that exchange heat between the refrigerant and the heat medium. For example, a fin and tube heat exchanger that exchanges heat between refrigerant and air may be used. In this case, air flows from the second evaporator 108 toward the first evaporator 104. Also, the indoor heat exchanger 111 and the water feeder 109 are omitted, and at least one of the first evaporator 104 and the second evaporator 108 is disposed in the indoor unit 110 to exchange heat with indoor air that becomes a heat load. May be.
(凝縮器102)
 図4は、実施の形態1における冷凍サイクル装置の凝縮器102の構成の概要を示す図である。
 図4に示すように、凝縮器102は、室外ユニット100に設けた送風機室415に配置されている。凝縮器102は、冷媒と空気とを熱交換するフィンアンドチューブ型の熱交換器で構成する。
 送風機室415内には、送風機406と、これに隣接する凝縮器102とが組み込まれている。送風機室415内は、風路確保のため大きな空間を有している。送風機406は、3枚の翼型のプロペラと、このプロペラを回転駆動させるモータとが組み合わされており、外部から供給される電力によりモータとプロペラが所定の回転数で回転するようになっている。
 凝縮器102は、例えば、アルミ薄板のフィンが多数密着した長い冷媒配管が略L字平板状に曲げ成形されており、冷媒配管内の冷媒とフィン周辺の空気とで熱交換が行われる。凝縮器102は、送風機406によって各フィン間を流れて通過する空気の風量が調節され、熱交換の量が調節される。
(Condenser 102)
FIG. 4 is a diagram showing an outline of the configuration of the condenser 102 of the refrigeration cycle apparatus in the first embodiment.
As shown in FIG. 4, the condenser 102 is disposed in a blower chamber 415 provided in the outdoor unit 100. The condenser 102 is a fin-and-tube heat exchanger that exchanges heat between refrigerant and air.
A blower 406 and a condenser 102 adjacent to the blower 406 are incorporated in the blower chamber 415. The blower chamber 415 has a large space for securing an air passage. The blower 406 is a combination of three blade-type propellers and a motor that rotationally drives the propellers, and the motor and the propellers are rotated at a predetermined number of revolutions by electric power supplied from the outside. .
In the condenser 102, for example, a long refrigerant pipe in which a large number of aluminum thin fins are closely attached is bent into an approximately L-shaped plate shape, and heat exchange is performed between the refrigerant in the refrigerant pipe and the air around the fins. The condenser 102 adjusts the amount of heat exchange by adjusting the air volume of the air that flows between the fins by the blower 406.
 なお、凝縮器102は、冷媒と空気とを熱交換するフィンアンドチューブ型の熱交換器に限定されない。例えば、冷媒と熱媒体(例えば水)とを熱交換するプレート式の熱交換器でも良い。 The condenser 102 is not limited to a fin-and-tube heat exchanger that exchanges heat between refrigerant and air. For example, a plate-type heat exchanger that exchanges heat between a refrigerant and a heat medium (for example, water) may be used.
(室内ユニット110)
 室内ユニット110内には、室内熱交換器111が設けられている。
 室内熱交換器111は、例えば、熱媒体と空気とを熱交換するフィンアンドチューブ型の熱交換器で構成する。室内熱交換器111、第2蒸発器108、第1蒸発器104、及び送水機109は、順次接続され、熱媒体が循環する流路を形成する。
(Indoor unit 110)
An indoor heat exchanger 111 is provided in the indoor unit 110.
The indoor heat exchanger 111 is constituted by, for example, a fin-and-tube heat exchanger that exchanges heat between a heat medium and air. The indoor heat exchanger 111, the second evaporator 108, the first evaporator 104, and the water feeder 109 are sequentially connected to form a flow path through which the heat medium circulates.
 なお、室内熱交換器111は、フィンアンドチューブ型の熱交換器に限定されない。例えば、第2蒸発器108及び第1蒸発器104を循環する熱媒体と、熱負荷となる熱媒体(例えば水)とを熱交換するプレート式の熱交換器でも良い。 Note that the indoor heat exchanger 111 is not limited to a fin-and-tube heat exchanger. For example, a plate-type heat exchanger that exchanges heat between the heat medium circulating through the second evaporator 108 and the first evaporator 104 and a heat medium (for example, water) serving as a heat load may be used.
(冷凍サイクルの動作)
 次に、冷凍サイクル装置の動作を説明する。
 図5は、実施の形態1における冷凍サイクル装置の動作状態を示すモリエル線図である。
 図5のモリエル線図の横軸は冷媒の比エンタルピを示し、縦軸は圧力を示す。また、モリエル線図内の点a~点iは、図1及び図2に示す位置における冷媒状態を示す。
(Refrigeration cycle operation)
Next, the operation of the refrigeration cycle apparatus will be described.
FIG. 5 is a Mollier diagram showing the operating state of the refrigeration cycle apparatus in the first embodiment.
The horizontal axis of the Mollier diagram in FIG. 5 indicates the specific enthalpy of the refrigerant, and the vertical axis indicates the pressure. Further, points a to i in the Mollier diagram indicate refrigerant states at the positions shown in FIGS.
 圧縮機101から吐出された高温高圧のガス冷媒(状態a)は、凝縮器102へ流入する。凝縮器102へ流入したガス冷媒は、凝縮器102による空気との熱交換により凝縮され高温高圧の液冷媒となる(状態b)。凝縮器102から流出した液冷媒は、第1膨張弁103へ流れる液冷媒と、第2膨張弁105へ流れる液冷媒とに分流される。 The high-temperature and high-pressure gas refrigerant (state a) discharged from the compressor 101 flows into the condenser 102. The gas refrigerant that has flowed into the condenser 102 is condensed by heat exchange with the air by the condenser 102 and becomes a high-temperature and high-pressure liquid refrigerant (state b). The liquid refrigerant that has flowed out of the condenser 102 is divided into a liquid refrigerant that flows to the first expansion valve 103 and a liquid refrigerant that flows to the second expansion valve 105.
 凝縮器102の出口から分流され第1膨張弁103へ流入した液冷媒(状態b)は、第1膨張弁103で等エンタルピ膨張されて気液二相状態の冷媒となり(状態c)、第1蒸発器104へ流入する。第1蒸発器104へ流入した冷媒は、第1蒸発器104による熱媒体との熱交換により加熱されガス冷媒となる(状態d)。第1蒸発器104から流出したガス冷媒(状態d)は、エジェクタ107の冷媒吸引口205へ吸引される。 The liquid refrigerant (state b) that is diverted from the outlet of the condenser 102 and flows into the first expansion valve 103 is expanded in an equal enthalpy state by the first expansion valve 103 to become a gas-liquid two-phase refrigerant (state c). It flows into the evaporator 104. The refrigerant that has flowed into the first evaporator 104 is heated by heat exchange with the heat medium by the first evaporator 104 to become a gas refrigerant (state d). The gas refrigerant (state d) flowing out from the first evaporator 104 is sucked into the refrigerant suction port 205 of the ejector 107.
 一方、凝縮器102の出口から分流され第2膨張弁105へ流入した液冷媒(状態b)は、第2膨張弁105で等エンタルピ膨張されて気液二相状態の冷媒となり(状態e)、気泡微細化手段106へ流入する。つまり、気泡微細化手段106に流入する冷媒の乾き度は0より大きい。例えば、気泡微細化手段106に流入する冷媒の乾き度は、0より大きく、0.1より小さい。 On the other hand, the liquid refrigerant (state b) which is diverted from the outlet of the condenser 102 and flows into the second expansion valve 105 is expanded in an equal enthalpy state by the second expansion valve 105 to become a gas-liquid two-phase refrigerant (state e) It flows into the bubble miniaturization means 106. That is, the dryness of the refrigerant flowing into the bubble refining means 106 is greater than zero. For example, the dryness of the refrigerant flowing into the bubble refining means 106 is larger than 0 and smaller than 0.1.
 ここで、気泡微細化手段106に流入する冷媒の乾き度が、0より大きくなるように、第2膨張弁105の開度を制御しても良い。
 例えば、第2膨張弁105の入口側及び出口側に、冷媒の温度を計測する温度センサーを取り付ける。そして、出口側の冷媒温度が入口側の冷媒温度よりも低くなるように第2膨張弁105の開度を調整する。これにより、気泡微細化手段106に流入する冷媒の乾き度を、0より大きくすることができる。
 なお、本発明は、第2膨張弁105の開度を制御する構成に限定されない。本発明は、気泡微細化手段106に気液二相状態の冷媒が流入する構成であれば良い。例えば、第2膨張弁105の開度が固定でも良い。
Here, the opening degree of the second expansion valve 105 may be controlled such that the dryness of the refrigerant flowing into the bubble refining means 106 is greater than zero.
For example, temperature sensors that measure the temperature of the refrigerant are attached to the inlet side and the outlet side of the second expansion valve 105. Then, the opening degree of the second expansion valve 105 is adjusted so that the refrigerant temperature on the outlet side is lower than the refrigerant temperature on the inlet side. Thereby, the dryness of the refrigerant flowing into the bubble refining means 106 can be made larger than zero.
In addition, this invention is not limited to the structure which controls the opening degree of the 2nd expansion valve 105. FIG. The present invention only needs to be configured so that a gas-liquid two-phase refrigerant flows into the bubble refining means 106. For example, the opening degree of the second expansion valve 105 may be fixed.
 気泡微細化手段106は、第2膨張弁105から流入した気液二相状態の冷媒に含まれる気泡を微細化する。これにより、気液二相状態の冷媒に含まれる液冷媒とガス冷媒とが均質に混合される。気泡微細化手段106から流出した気液二相状態の冷媒(状態e)は、エジェクタ107の冷媒流入口204へ流入する。 The bubble refinement means 106 refines the bubbles contained in the gas-liquid two-phase refrigerant flowing from the second expansion valve 105. As a result, the liquid refrigerant and the gas refrigerant contained in the gas-liquid two-phase refrigerant are uniformly mixed. The gas-liquid two-phase refrigerant (state e) flowing out from the bubble refining means 106 flows into the refrigerant inlet 204 of the ejector 107.
 エジェクタ107の冷媒流入口204へ流入した気液二相状態の冷媒(状態e)は、エジェクタ107のノズル部201で断熱膨張(等エントロピ膨張)され、超高速で気液二相の冷媒となる(状態f)。超高速で気液二相状態の冷媒は、第1蒸発器104で気化された冷媒(状態d)を吸引し、混合部202で超高速の冷媒(状態f)と低速の冷媒(状態d)とが混合して混合冷媒となる(状態g)。この混合冷媒は、ディフューザー部203で圧力が上昇し(状態h)、エジェクタ107の冷媒流出口206から流出する。 The gas-liquid two-phase refrigerant (state e) that has flowed into the refrigerant inlet 204 of the ejector 107 is adiabatically expanded (isentropic expansion) by the nozzle portion 201 of the ejector 107 and becomes a gas-liquid two-phase refrigerant at an ultra-high speed. (State f). The super-high-speed gas-liquid two-phase refrigerant sucks the refrigerant vaporized in the first evaporator 104 (state d), and the mixing unit 202 uses the super-high-speed refrigerant (state f) and the low-speed refrigerant (state d). Are mixed to form a mixed refrigerant (state g). The mixed refrigerant increases in pressure at the diffuser section 203 (state h) and flows out from the refrigerant outlet 206 of the ejector 107.
 エジェクタ107の冷媒流出口206を流出した冷媒(状態h)は、第2蒸発器108へ流入する。第2蒸発器108へ流入したガス冷媒は、第2蒸発器108による熱媒体との熱交換により加熱されガス冷媒となる(状態i)。このガス冷媒は、圧縮機101に吸入される。 The refrigerant (state h) that has flowed out of the refrigerant outlet 206 of the ejector 107 flows into the second evaporator 108. The gas refrigerant flowing into the second evaporator 108 is heated by heat exchange with the heat medium by the second evaporator 108 to become a gas refrigerant (state i). This gas refrigerant is sucked into the compressor 101.
 以上のように本実施の形態1においては、第2冷媒流路の、凝縮器102とエジェクタ107の冷媒流入口204との間に、第2膨張弁105、及び、第2膨張弁105から流出した冷媒に含まれる気泡を微細化する気泡微細化手段106を、順次接続した。
 このため、第1蒸発器104及び第2蒸発器108での冷凍能力の低下を抑制し、冷凍効果を低下させることなく、エジェクタ107の冷媒流入口204に流入する冷媒に含まれる気泡を微細化することができる。この結果、エジェクタ107の、圧力エネルギーを速度エネルギーへ変換する動力回収率(効率)を向上することができ、冷凍サイクル装置の冷凍能力及びエネルギー効率(COP:Coefficient Of Performance)を向上することができる。
As described above, in the first embodiment, the second expansion valve 105 and the second expansion valve 105 flow out between the condenser 102 and the refrigerant inlet 204 of the ejector 107 in the second refrigerant flow path. The bubble refining means 106 for refining bubbles contained in the refrigerant was sequentially connected.
For this reason, the bubble contained in the refrigerant | coolant which flows into the refrigerant | coolant inflow port 204 of the ejector 107 is refined | miniaturized, suppressing the fall of the refrigerating capacity in the 1st evaporator 104 and the 2nd evaporator 108, and reducing a freezing effect. can do. As a result, the power recovery rate (efficiency) of the ejector 107 that converts pressure energy into velocity energy can be improved, and the refrigeration capacity and energy efficiency (COP: Coefficient Of Performance) of the refrigeration cycle apparatus can be improved. .
 ここで、エジェクタ107の動力回収率(効率η)は、次式で表せる。 Here, the power recovery rate (efficiency η) of the ejector 107 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Vは、エジェクタ107の冷媒流出口206での冷媒速度である。
 Gは、冷媒循環量である。
 Δhは、エジェクタ107の冷媒流入口204の冷媒(状態e)の比エンタルピと、ノズル部201で断熱膨張したあとの冷媒(状態f)の比エンタルピとの差(断熱熱落差)である。
V is the refrigerant velocity at the refrigerant outlet 206 of the ejector 107.
G is the refrigerant circulation amount.
Δh is a difference (adiabatic heat drop) between the specific enthalpy of the refrigerant (state e) at the refrigerant inlet 204 of the ejector 107 and the specific enthalpy of the refrigerant (state f) after adiabatic expansion at the nozzle portion 201.
 上記式の関係から、冷媒速度Vが上昇することで、エジェクタ107の動力回収率(効率η)が向上する。
 本実施の形態1においては、エジェクタ107の冷媒流入口204に流入する冷媒に含まれる気泡を微細化するので、エジェクタ107内で、液冷媒とガス冷媒との接触面積が増え、液冷媒の減圧沸騰が促進される。この結果、エジェクタ107から流出する冷媒の速度が上昇する。つまり、圧力エネルギーを速度エネルギーへ変換する動力回収率が上昇する。よって、冷凍サイクル装置のエネルギー効率を向上することができる。
From the relationship of the above formula, the power recovery rate (efficiency η) of the ejector 107 is improved by increasing the refrigerant speed V.
In Embodiment 1, since bubbles contained in the refrigerant flowing into the refrigerant inlet 204 of the ejector 107 are miniaturized, the contact area between the liquid refrigerant and the gas refrigerant increases in the ejector 107, and the pressure of the liquid refrigerant is reduced. Boiling is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
実施の形態2.
 本実施の形態2では、気泡微細化手段106の構成の一例を説明する。
Embodiment 2. FIG.
In the second embodiment, an example of the configuration of the bubble miniaturization means 106 will be described.
 図6は、実施の形態2における冷凍サイクル装置の気泡微細化手段106の構成を模式的に示す図である。
 図6(a)は、冷媒配管の冷媒流れ方向が水平方向である場合を示し、図6(b)は、冷媒配管の冷媒流れ方向が垂直方向である場合を示している。
 図6(a)、図6(b)に示すように、本実施の形態2における気泡微細化手段106は、冷媒が通過する多孔質体601によって構成されている。
 多孔質体601は、冷媒配管内の流路に設けられている。多孔質体601は、例えば、全体が多孔質透過材で形成され、通気孔(流体が透過できる多孔体表面及び内部の気孔)の平均直径が約500μmであり、空隙率が92±6%である。この多孔質体601は、例えば、ウレタンフォームに金属粉末を塗布後、熱処理してウレタンフォームを焼失させ、金属を3次元の格子状に成形したものである。多孔質体601の材料は、例えばNi(ニッケル)である。
FIG. 6 is a diagram schematically showing the configuration of the bubble refining means 106 of the refrigeration cycle apparatus in the second embodiment.
FIG. 6A shows a case where the refrigerant flow direction of the refrigerant pipe is a horizontal direction, and FIG. 6B shows a case where the refrigerant flow direction of the refrigerant pipe is a vertical direction.
As shown in FIGS. 6 (a) and 6 (b), the bubble refining means 106 in the second embodiment is constituted by a porous body 601 through which a refrigerant passes.
The porous body 601 is provided in the flow path in the refrigerant pipe. For example, the porous body 601 is entirely formed of a porous permeable material, the average diameter of the air holes (the surface of the porous body through which fluid can permeate and the internal pores) is about 500 μm, and the porosity is 92 ± 6%. is there. The porous body 601 is formed, for example, by applying metal powder to urethane foam, then heat-treating the urethane foam to burn it, and forming the metal into a three-dimensional lattice shape. The material of the porous body 601 is, for example, Ni (nickel).
 多孔質体601を通過する前の気液二相状態の冷媒、即ち第2膨張弁105から流出した冷媒は、乾き度が低いため、液冷媒内に気泡の塊(気泡スラグ602、603)を含んだ様相となる。この気泡スラグ602、603が、多孔質体601を通過すると、多孔質体601内で微細化され、微細気泡604として流出する。 Since the refrigerant in the gas-liquid two-phase state before passing through the porous body 601, that is, the refrigerant flowing out from the second expansion valve 105 has a low dryness, bubbles of bubbles (bubble slags 602 and 603) are contained in the liquid refrigerant. It becomes the aspect that included. When the bubble slugs 602 and 603 pass through the porous body 601, they are refined in the porous body 601 and flow out as fine bubbles 604.
 このため、微細化した気泡と液冷媒とを均質化した気液二相状態の冷媒を、エジェクタ107の冷媒流入口204へ流入させることができる。
 よって、エジェクタ107内で、液冷媒とガス冷媒との接触面積が増え、液冷媒の減圧沸騰が促進される。この結果、エジェクタ107から流出する冷媒の速度が上昇する。つまり、圧力エネルギーを速度エネルギーへ変換する動力回収率が上昇する。よって、冷凍サイクル装置のエネルギー効率を向上することができる。
For this reason, the gas-liquid two-phase refrigerant in which the fine bubbles and the liquid refrigerant are homogenized can flow into the refrigerant inlet 204 of the ejector 107.
Therefore, the contact area between the liquid refrigerant and the gas refrigerant is increased in the ejector 107, and the reduced-pressure boiling of the liquid refrigerant is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
実施の形態3.
 本実施の形態3では、気泡微細化手段106の構成の一例を説明する。
Embodiment 3 FIG.
In the third embodiment, an example of the configuration of the bubble miniaturization means 106 will be described.
 図7は、実施の形態3における冷凍サイクル装置の気泡微細化手段106の構成を模式的に示す図である。
 図7(a)は、旋回軸に直交する方向の断面図を示し、図7(b)は旋回軸方向の断面図を示す。
 図7(a)、図7(b)に示すように、気泡微細化手段106は、気泡微細化手段106は、導入管701、分岐管702a、702b、旋回室703a、703b、流出管704を備えている。
 本実施の形態3における気泡微細化手段106は、導入管701から流入した冷媒を、旋回流にして、流出管704から流出させる、二段階旋回機構によって構成されている。
FIG. 7 is a diagram schematically showing the configuration of the bubble refining means 106 of the refrigeration cycle apparatus in the third embodiment.
Fig.7 (a) shows sectional drawing of the direction orthogonal to a turning axis, FIG.7 (b) shows sectional drawing of a turning axis direction.
As shown in FIGS. 7A and 7B, the bubble refining means 106 includes an introduction pipe 701, branch pipes 702a and 702b, swirl chambers 703a and 703b, and an outflow pipe 704. I have.
The bubble miniaturization means 106 in the third embodiment is configured by a two-stage swirling mechanism that turns the refrigerant flowing in from the introduction pipe 701 into a swirling flow and outflows from the outflow pipe 704.
 旋回室703a、703bは、流出管704に向かって冷媒通路面積が減少する形状を有している。例えば旋回室703a、703bは、円錐形状を有している。
 また、旋回室703a、703bは、隣接して設けられ、旋回室703aから流出した冷媒が、隣接する旋回室703bに流入する。なお、旋回室の数は2つに限定されない。
The swirl chambers 703 a and 703 b have a shape in which the refrigerant passage area decreases toward the outflow pipe 704. For example, the swirl chambers 703a and 703b have a conical shape.
The swirl chambers 703a and 703b are provided adjacent to each other, and the refrigerant that has flowed out of the swirl chamber 703a flows into the adjacent swirl chamber 703b. The number of swirl chambers is not limited to two.
 なお、旋回室703aと分岐管702aとの接続部分が、本発明の「流入口」に相当する。また、旋回室703bと分岐管702bとの接続部分が、本発明の「流入口」に相当する。また、旋回室703aから旋回室703bへ冷媒が流出する開口が、本発明の「流出口」に相当する。また、旋回室703bと流出管704との接続部分が、本発明の「流出口」に相当する。 Note that the connecting portion between the swirl chamber 703a and the branch pipe 702a corresponds to the “inlet” of the present invention. The connecting portion between the swirl chamber 703b and the branch pipe 702b corresponds to the “inlet” of the present invention. The opening through which the refrigerant flows from the swirl chamber 703a to the swirl chamber 703b corresponds to the “outlet” of the present invention. The connecting portion between the swirl chamber 703b and the outflow pipe 704 corresponds to the “outlet” of the present invention.
 第2膨張弁105から流出した気液二相状態の冷媒は、導入管701を通って、分岐管702aと分岐管702bとに二分岐され、それぞれ旋回室703aと旋回室703bとに流入する。
 図7(a)に示すように、分岐管702a、702bは、円錐形状を有する旋回室703a、703bに、円形断面の接線方向に向かって接続されている。これにより、旋回室703a、703bに流入した冷媒は、旋回室703a、703bの内壁面に沿って流れ、旋回流となる。
The gas-liquid two-phase refrigerant that has flowed out of the second expansion valve 105 passes through the introduction pipe 701, is branched into the branch pipe 702a and the branch pipe 702b, and flows into the swirl chamber 703a and the swirl chamber 703b, respectively.
As shown in FIG. 7A, the branch pipes 702a and 702b are connected to the swirl chambers 703a and 703b having a conical shape toward the tangential direction of the circular cross section. Thereby, the refrigerant that has flowed into the swirl chambers 703a and 703b flows along the inner wall surfaces of the swirl chambers 703a and 703b to form a swirl flow.
 分岐管702aから旋回室703aへ流入した気液二相状態の冷媒は、旋回流となることで、密度の大きい液冷媒が遠心力により旋回室703aの外側に、密度の小さいガス冷媒が向心力により中心部に分離される。
 さらに、流出管704に向かって、旋回室703aの流路断面積(冷媒通路面積)が小さくなるため、流速が増しながら旋回室703aから旋回室703bへ流入する。
The gas-liquid two-phase refrigerant that has flowed into the swirl chamber 703a from the branch pipe 702a becomes a swirl flow. Separated into the center.
Further, since the flow passage cross-sectional area (refrigerant passage area) of the swirl chamber 703a decreases toward the outflow pipe 704, the swirl chamber 703a flows into the swirl chamber 703b while increasing the flow velocity.
 一方、分岐管702bから旋回室703bへ流入した気液二相状態の冷媒は、旋回室703aから流出した旋回流と混合しながら、旋回流となる。旋回室703bでは、旋回室703aで形成された旋回流により、旋回流の形成が促進される。
 旋回室703b内の気液二相状態の冷媒は、旋回流となることで、密度の大きい液冷媒が遠心力により旋回室703bの外側に、密度の小さいガス冷媒が向心力により中心部に分離される。
 さらに、流出管704に向かって、旋回室703bの流路断面積(冷媒通路面積)が小さくなるため、流速が増しながら流出管704から流出する。
On the other hand, the gas-liquid two-phase refrigerant flowing into the swirl chamber 703b from the branch pipe 702b becomes a swirl flow while mixing with the swirl flow flowing out of the swirl chamber 703a. In the swirl chamber 703b, the swirl flow formed in the swirl chamber 703a promotes the formation of the swirl flow.
The refrigerant in the gas-liquid two-phase state in the swirl chamber 703b becomes a swirl flow, so that the liquid refrigerant having a high density is separated to the outside of the swirl chamber 703b by centrifugal force, and the gas refrigerant having a low density is separated to the center by centripetal force. The
Furthermore, since the flow passage cross-sectional area (refrigerant passage area) of the swirl chamber 703b decreases toward the outflow pipe 704, the outflow pipe 704 flows out while increasing the flow velocity.
 旋回室703bから流出管704へ流出した気液二相状態の冷媒は、流出開始後、旋回成分が弱まり始める。この結果、流出管704の流れ方向に沿って旋回速度の速度差が生じる。
 この速度差が、液冷媒とガス冷媒とにせん断力を発生させ、ガス冷媒が分断されることで、気泡が微細化される。
The gas-liquid two-phase refrigerant that has flowed out of the swirl chamber 703b into the outflow pipe 704 starts to weaken the swirl component after the outflow starts. As a result, a difference in swirl speed occurs along the flow direction of the outflow pipe 704.
This speed difference generates a shearing force between the liquid refrigerant and the gas refrigerant, and the gas refrigerant is divided, so that the bubbles are refined.
 このため、微細化した気泡と液冷媒とを均質化した気液二相状態の冷媒を、エジェクタ107の冷媒流入口204へ流入させることができる。
 よって、エジェクタ107内で、液冷媒とガス冷媒との接触面積が増え、液冷媒の減圧沸騰が促進される。この結果、エジェクタ107から流出する冷媒の速度が上昇する。つまり、圧力エネルギーを速度エネルギーへ変換する動力回収率が上昇する。よって、冷凍サイクル装置のエネルギー効率を向上することができる。
For this reason, the gas-liquid two-phase refrigerant in which the fine bubbles and the liquid refrigerant are homogenized can flow into the refrigerant inlet 204 of the ejector 107.
Therefore, the contact area between the liquid refrigerant and the gas refrigerant is increased in the ejector 107, and the reduced-pressure boiling of the liquid refrigerant is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
 なお、分岐管702a及び分岐管702bの少なくとも一方に、流量を調節する流量調手段を取り付け、旋回室703aと旋回室703bへ流入する冷媒量を、気泡の微細化に適した流入量に調整するようにしても良い。
 また、旋回室703a及び旋回室703bの形状は円錐状に限定されない。旋回室703a、703bの出口方向に沿って断面積が減少する形状であればよい。例えば、断面U字形状でも良い。
A flow rate adjusting means for adjusting the flow rate is attached to at least one of the branch pipe 702a and the branch pipe 702b, and the amount of refrigerant flowing into the swirl chamber 703a and the swirl chamber 703b is adjusted to an inflow amount suitable for bubble miniaturization. You may do it.
Further, the shapes of the swirl chamber 703a and the swirl chamber 703b are not limited to a conical shape. Any shape that reduces the cross-sectional area along the exit direction of the swirl chambers 703a and 703b may be used. For example, a U-shaped cross section may be used.
実施の形態4.
 本実施の形態4では、気泡微細化手段106の構成の一例を説明する。
Embodiment 4 FIG.
In the fourth embodiment, an example of the configuration of the bubble miniaturization means 106 will be described.
 図8は、実施の形態4における冷凍サイクル装置の気泡微細化手段106の構成を模式的に示す図である。
 図8に示すように、本実施の形態4における気泡微細化手段106は、冷媒を気相(ガス冷媒)と液相(液冷媒)とに分離する気液分離器802と、気液分離器802によって分離された液相の冷媒と気相の冷媒とを混合する混合器805と、によって構成されている。
FIG. 8 is a diagram schematically showing the configuration of the bubble refining means 106 of the refrigeration cycle apparatus in the fourth embodiment.
As shown in FIG. 8, the bubble refining means 106 in the fourth embodiment includes a gas-liquid separator 802 that separates the refrigerant into a gas phase (gas refrigerant) and a liquid phase (liquid refrigerant), and a gas-liquid separator. And a mixer 805 for mixing the liquid-phase refrigerant and the gas-phase refrigerant separated by 802.
 気液分離器802は、例えば、重力の作用によって液冷媒とガス冷媒とを分離する重力落下式の気液分離器である。気液分離器802は、流入管801、ガス冷媒流出口803、液冷媒流出口804を備えている。
 流入管801は、外殻を形成するタンクの上方から冷媒を流入させる。
 液冷媒流出口804は、タンクの下方から液冷媒を流出させる。
 ガス冷媒流出口803は、配管の端部が液冷媒流出口804より上方に挿入され、タンク内のガス冷媒を流出させる。ガス冷媒流出口803は、例えば、液冷媒流出口804より外周側に複数取り付けられている。
The gas-liquid separator 802 is, for example, a gravity drop type gas-liquid separator that separates liquid refrigerant and gas refrigerant by the action of gravity. The gas-liquid separator 802 includes an inflow pipe 801, a gas refrigerant outlet 803, and a liquid refrigerant outlet 804.
The inflow pipe 801 allows the refrigerant to flow from above the tank that forms the outer shell.
The liquid refrigerant outlet 804 allows the liquid refrigerant to flow out from below the tank.
In the gas refrigerant outlet 803, the end of the pipe is inserted above the liquid refrigerant outlet 804, and the gas refrigerant in the tank flows out. For example, a plurality of gas refrigerant outlets 803 are attached to the outer peripheral side of the liquid refrigerant outlet 804.
 第2膨張弁105から流出した気液二相状態の冷媒は、流入管801を通って気液分離器802の内部へ流入する。気液分離器802の内部では、密度の大きい液冷媒が下側へ、密度の小さいガス冷媒が上側に分離する。
 ガス冷媒流出口803から流出したガス冷媒、及び、液冷媒流出口804から流出した液冷媒は、それぞれ混合器805へ流入する。
The gas-liquid two-phase refrigerant flowing out from the second expansion valve 105 flows into the gas-liquid separator 802 through the inflow pipe 801. Inside the gas-liquid separator 802, the liquid refrigerant having a high density is separated downward, and the gas refrigerant having a low density is separated upward.
The gas refrigerant flowing out from the gas refrigerant outlet 803 and the liquid refrigerant flowing out from the liquid refrigerant outlet 804 flow into the mixer 805, respectively.
 図9は、実施の形態4における冷凍サイクル装置の混合器805の構成を模式的に示す図である。
 図9に示すように、混合器805は、液冷媒流出口804からの液相の冷媒が流通する液相冷媒流路901と、ガス冷媒流出口803からの気相の冷媒を、液相冷媒流路901に噴出させる気相冷媒流路902と、を備えている。混合器805は、液相の冷媒と気相の冷媒とを混合して、流出管806へ流出させる。
FIG. 9 is a diagram schematically showing the configuration of the mixer 805 of the refrigeration cycle apparatus in the fourth embodiment.
As shown in FIG. 9, the mixer 805 converts the liquid-phase refrigerant flow channel 901 through which the liquid-phase refrigerant from the liquid refrigerant outlet 804 flows and the gas-phase refrigerant from the gas refrigerant outlet 803 into the liquid-phase refrigerant. A gas-phase refrigerant channel 902 that is ejected into the channel 901. The mixer 805 mixes the liquid-phase refrigerant and the gas-phase refrigerant and causes the refrigerant to flow out to the outflow pipe 806.
 混合器805においては、ガス冷媒流出口803から気相冷媒流路902へ流入したガス冷媒と、液冷媒流出口804から液相冷媒流路901へ流入した液冷媒との界面に速度差が生じる。この速度差が、液冷媒とガス冷媒とにせん断力を発生させ、ガス冷媒が分断されることで、気泡が微細化される。 In the mixer 805, a speed difference is generated at the interface between the gas refrigerant flowing from the gas refrigerant outlet 803 into the gas-phase refrigerant channel 902 and the liquid refrigerant flowing into the liquid-phase refrigerant channel 901 from the liquid refrigerant outlet 804. . This speed difference generates a shearing force between the liquid refrigerant and the gas refrigerant, and the gas refrigerant is divided, so that the bubbles are refined.
 ガス冷媒流出口803から流出するガス冷媒の速度、及び、液冷媒流出口804から流出する液冷媒の速度は、流出管806の流路断面積と、ガス冷媒及び液冷媒の各質量流量で決定される。
 乾き度が比較的小さい場合、液冷媒の占める割合がガス冷媒より多いため、液冷媒流出口804の流路面積を小さく、ガス冷媒流出口803の流路断面積を小さくすることで、液冷媒とガス冷媒との速度差がより大きくなる。なお、ここでの流路断面積とは、各相の総流路断面積である。
The speed of the gas refrigerant flowing out from the gas refrigerant outlet 803 and the speed of the liquid refrigerant flowing out from the liquid refrigerant outlet 804 are determined by the cross-sectional area of the outlet pipe 806 and the mass flow rates of the gas refrigerant and liquid refrigerant. Is done.
When the degree of dryness is relatively small, the ratio of the liquid refrigerant is larger than that of the gas refrigerant. Therefore, the liquid refrigerant can be obtained by reducing the channel area of the liquid refrigerant outlet 804 and reducing the cross-sectional area of the gas refrigerant outlet 803. And the speed difference between the gas refrigerant becomes larger. Here, the channel cross-sectional area is the total channel cross-sectional area of each phase.
 以上のような構成によって、微細化した気泡と液冷媒とを均質化した気液二相状態の冷媒を、エジェクタ107の冷媒流入口204へ流入させることができる。
 よって、エジェクタ107内で、液冷媒とガス冷媒との接触面積が増え、液冷媒の減圧沸騰が促進される。この結果、エジェクタ107から流出する冷媒の速度が上昇する。つまり、圧力エネルギーを速度エネルギーへ変換する動力回収率が上昇する。よって、冷凍サイクル装置のエネルギー効率を向上することができる。
With the above-described configuration, the gas-liquid two-phase refrigerant obtained by homogenizing the fine bubbles and the liquid refrigerant can flow into the refrigerant inlet 204 of the ejector 107.
Therefore, the contact area between the liquid refrigerant and the gas refrigerant is increased in the ejector 107, and the reduced-pressure boiling of the liquid refrigerant is promoted. As a result, the speed of the refrigerant flowing out from the ejector 107 increases. That is, the power recovery rate that converts pressure energy into velocity energy increases. Therefore, the energy efficiency of the refrigeration cycle apparatus can be improved.
 なお、図8及び図9の例では、ガス冷媒流出口803を、液冷媒流出口804の外周側に複数取り付けた場合を説明したが、本発明はこれに限定されない。例えば、ガス冷媒流出口803を中心部に設け、液冷媒流出口804を外周側に取り付けてもよい。 8 and 9, the case where a plurality of gas refrigerant outlets 803 are attached to the outer peripheral side of the liquid refrigerant outlet 804 has been described, but the present invention is not limited to this. For example, the gas refrigerant outlet 803 may be provided at the center, and the liquid refrigerant outlet 804 may be attached to the outer peripheral side.
 100 室外ユニット、101 圧縮機、102 凝縮器、103 第1膨張弁、104 第1蒸発器、105 第2膨張弁、106 気泡微細化手段、107 エジェクタ、108 第2蒸発器、109 送水機、110 室内ユニット、111 室内熱交換器、201 ノズル部、201a 減圧部、201b ノズル喉部、201c 末広部、202 混合部、203 ディフューザー部、204 冷媒流入口、205 冷媒吸引口、206 冷媒流出口、301 補強用サイドプレート、302 伝熱プレート、303 伝熱プレート、304 補強用サイドプレート、305 第1流入管、306 第1流出管、307 第2流入管、308 第2流出管、406 送風機、415 送風機室、601 多孔質体、602 気泡スラグ、603 気泡スラグ、604 微細気泡、701 導入管、702a 分岐管、702b 分岐管、703a 旋回室、703b 旋回室、704 流出管、801 流入管、802 気液分離器、803 ガス冷媒流出口、804 液冷媒流出口、805 混合器、806 流出管、901 液相冷媒流路、902 気相冷媒流路。 100 outdoor unit, 101 compressor, 102 condenser, 103 first expansion valve, 104 first evaporator, 105 second expansion valve, 106 bubble refining means, 107 ejector, 108 second evaporator, 109 water feeder, 110 Indoor unit, 111 indoor heat exchanger, 201 nozzle section, 201a pressure reducing section, 201b nozzle throat section, 201c nozzle wide section, 202 mixing section, 203 diffuser section, 204 refrigerant inlet, 205 refrigerant inlet, 206 refrigerant outlet, 301 Reinforcing side plate, 302 heat transfer plate, 303 heat transfer plate, 304 reinforcing side plate, 305 first inflow pipe, 306 first outflow pipe, 307 second inflow pipe, 308 second outflow pipe, 406 blower, 415 blower Chamber, 601 porous body, 602 bubbles Lag, 603 bubble slag, 604 fine bubble, 701 introduction tube, 702a branch tube, 702b branch tube, 703a swirl chamber, 703b swirl chamber, 704 outflow tube, 801 inflow tube, 802 gas-liquid separator, 803 gas refrigerant outlet, 804 liquid refrigerant outlet, 805 mixer, 806 outflow pipe, 901 liquid phase refrigerant flow path, 902 gas phase refrigerant flow path.

Claims (8)

  1.  圧縮機、凝縮器、第1膨張弁、第1蒸発器、及びエジェクタの冷媒吸引口が、冷媒配管で接続された第1冷媒流路と、
     前記凝縮器と前記第1膨張弁との間を分岐し、前記エジェクタの冷媒流入口、前記エジェクタの冷媒流出口、第2蒸発器、及び前記圧縮機が、冷媒配管で接続された第2冷媒流路と、
    を備え、
     前記第2冷媒流路の、前記凝縮器と前記エジェクタの冷媒流入口との間に、
     第2膨張弁、及び、前記第2膨張弁から流出した冷媒に含まれる気泡を微細化する気泡微細化手段を、順次接続した
    ことを特徴とする冷凍サイクル装置。
    A first refrigerant flow path in which a refrigerant suction port of a compressor, a condenser, a first expansion valve, a first evaporator, and an ejector is connected by a refrigerant pipe;
    A second refrigerant branching between the condenser and the first expansion valve, wherein a refrigerant inlet of the ejector, a refrigerant outlet of the ejector, a second evaporator, and the compressor are connected by a refrigerant pipe A flow path;
    With
    In the second refrigerant flow path, between the condenser and the refrigerant inlet of the ejector,
    A refrigeration cycle apparatus, wherein a second expansion valve and bubble refining means for refining bubbles included in the refrigerant flowing out of the second expansion valve are sequentially connected.
  2.  前記気泡微細化手段に流入する冷媒の乾き度が、0より大きい
    ことを特徴とする請求項1に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to claim 1, wherein the dryness of the refrigerant flowing into the bubble refining means is greater than zero.
  3.  前記気泡微細化手段に流入する冷媒の乾き度が、0より大きくなるように、前記第2膨張弁の開度を制御する
    ことを特徴とする請求項1又は2に記載の冷凍サイクル装置。
    3. The refrigeration cycle apparatus according to claim 1, wherein an opening degree of the second expansion valve is controlled so that a dryness of the refrigerant flowing into the bubble refining unit is greater than zero.
  4.  前記気泡微細化手段は、
     前記冷媒を気相と液相とに分離する気液分離器と、
     前記気液分離器によって分離された、液相の前記冷媒と気相の前記冷媒とを混合する混合器と、
     によって構成された
    ことを特徴とする請求項1~3の何れか一項に記載の冷凍サイクル装置。
    The bubble refinement means includes
    A gas-liquid separator that separates the refrigerant into a gas phase and a liquid phase;
    A mixer for mixing the liquid-phase refrigerant and the gas-phase refrigerant separated by the gas-liquid separator;
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigeration cycle apparatus is configured by.
  5.  前記混合器は、
     液相の前記冷媒が流通する液相冷媒流路と、
     気相の前記冷媒を、前記液相冷媒流路に噴出させる気相冷媒流路と、
    を備えた
    ことを特徴とする請求項4に記載の冷凍サイクル装置。
    The mixer is
    A liquid-phase refrigerant flow path through which the liquid-phase refrigerant flows;
    A gas-phase refrigerant flow path for ejecting the gas-phase refrigerant into the liquid-phase refrigerant flow path;
    The refrigeration cycle apparatus according to claim 4, further comprising:
  6.  前記気泡微細化手段は、
     流入口及び流出口が形成され、前記流出口に向かって冷媒通路面積が減少する旋回室によって構成され、
     前記流入口から流入した前記冷媒を、旋回流にして、前記流出口から流出させる
    ことを特徴とする請求項1~3の何れか一項に記載の冷凍サイクル装置。
    The bubble refinement means includes
    An inflow port and an outflow port are formed, and is constituted by a swirl chamber in which a refrigerant passage area decreases toward the outflow port,
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the refrigerant that has flowed from the inflow port is turned into a swirl flow and then flows out from the outflow port.
  7.  複数の前記旋回室が隣接して設けられ、
     前記旋回室の前記流出口から流出した前記冷媒が、隣接する前記旋回室に流入する
    ことを特徴とする請求項6に記載の冷凍サイクル装置。
    A plurality of swirl chambers are provided adjacent to each other;
    The refrigeration cycle apparatus according to claim 6, wherein the refrigerant that has flowed out of the outlet of the swirl chamber flows into the adjacent swirl chamber.
  8.  前記気泡微細化手段は、前記冷媒が通過する多孔質体によって構成された
    ことを特徴とする請求項1~3の何れか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the bubble refining means is constituted by a porous body through which the refrigerant passes.
PCT/JP2013/060102 2013-04-02 2013-04-02 Refrigeration cycle device WO2014162520A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2013/060102 WO2014162520A1 (en) 2013-04-02 2013-04-02 Refrigeration cycle device
PCT/JP2014/051947 WO2014162764A1 (en) 2013-04-02 2014-01-29 Refrigeration cycle device
JP2015509932A JP6072899B2 (en) 2013-04-02 2014-01-29 Refrigeration cycle equipment
CN201420155967.2U CN203824183U (en) 2013-04-02 2014-04-02 Refrigerationcycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060102 WO2014162520A1 (en) 2013-04-02 2013-04-02 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2014162520A1 true WO2014162520A1 (en) 2014-10-09

Family

ID=51657853

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/060102 WO2014162520A1 (en) 2013-04-02 2013-04-02 Refrigeration cycle device
PCT/JP2014/051947 WO2014162764A1 (en) 2013-04-02 2014-01-29 Refrigeration cycle device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051947 WO2014162764A1 (en) 2013-04-02 2014-01-29 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6072899B2 (en)
WO (2) WO2014162520A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319042B2 (en) * 2014-10-24 2018-05-09 株式会社デンソー Ejector refrigeration cycle
JP7135450B2 (en) * 2018-05-31 2022-09-13 株式会社デンソー refrigeration cycle equipment
JP7262261B2 (en) * 2019-03-22 2023-04-21 株式会社鷺宮製作所 THERMAL EXPANSION VALVE AND REFRIGERATION CYCLE SYSTEM USING THERMAL EXPANSION VALVE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024746A (en) * 2001-07-19 2003-01-28 Mitsubishi Electric Corp Exhaust gas treatment method
JP2007178025A (en) * 2005-12-27 2007-07-12 Aisin Seiki Co Ltd Air conditioner
JP2009221883A (en) * 2008-03-13 2009-10-01 Denso Corp Ejector device and vapor compression refrigeration cycle using ejector device
JP2012202653A (en) * 2011-03-28 2012-10-22 Denso Corp Pressure reducing device and refrigeration cycle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604909B2 (en) * 2005-08-08 2011-01-05 株式会社デンソー Ejector type cycle
JP5446694B2 (en) * 2008-12-15 2014-03-19 株式会社デンソー Ejector refrigeration cycle
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
JP5413393B2 (en) * 2011-03-28 2014-02-12 株式会社デンソー Refrigerant distributor and refrigeration cycle
JP5609845B2 (en) * 2011-10-27 2014-10-22 株式会社デンソー Centrifugal distributor and refrigeration cycle for refrigerant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024746A (en) * 2001-07-19 2003-01-28 Mitsubishi Electric Corp Exhaust gas treatment method
JP2007178025A (en) * 2005-12-27 2007-07-12 Aisin Seiki Co Ltd Air conditioner
JP2009221883A (en) * 2008-03-13 2009-10-01 Denso Corp Ejector device and vapor compression refrigeration cycle using ejector device
JP2012202653A (en) * 2011-03-28 2012-10-22 Denso Corp Pressure reducing device and refrigeration cycle

Also Published As

Publication number Publication date
JP6072899B2 (en) 2017-02-01
WO2014162764A1 (en) 2014-10-09
JPWO2014162764A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP4306739B2 (en) Refrigeration cycle equipment
CN103477160B (en) Decompressor and refrigerating circulatory device
JP6150140B2 (en) Heat exchange device and heat pump device
WO2014103436A1 (en) Refrigeration cycle device
EP2853843A1 (en) Coolant distributor, and heat exchanger equipped with coolant distributor
JP6031684B2 (en) Ejector and heat pump device using the same
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
WO2015015752A1 (en) Ejector
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
EP2932162B1 (en) Low pressure chiller
JP6072899B2 (en) Refrigeration cycle equipment
JP2008196721A (en) Gas-liquid separator
JP5316465B2 (en) Evaporator unit
WO2016021141A1 (en) Evaporator
JP2015218982A (en) Gas-liquid separator
JP5609845B2 (en) Centrifugal distributor and refrigeration cycle for refrigerant
JP2015108498A (en) Refrigeration cycle device
JP2008309343A (en) Expansion mechanism and refrigerating apparatus having the same
JP2007078317A (en) Heat exchanger for cooling equipment, and cooling equipment
JP4333556B2 (en) Gas-liquid separator for ejector cycle
JP2009127920A (en) Refrigerating apparatus
CN203824183U (en) Refrigerationcycle device
JP2016166549A (en) Ejector and ejector-type refrigeration cycle
WO2024029028A1 (en) Oil separator and refrigeration cycle device
WO2013084418A1 (en) Ejector-type refrigeration cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP