WO2014156962A1 - 光電気混載デバイス及びその製造方法 - Google Patents

光電気混載デバイス及びその製造方法 Download PDF

Info

Publication number
WO2014156962A1
WO2014156962A1 PCT/JP2014/057783 JP2014057783W WO2014156962A1 WO 2014156962 A1 WO2014156962 A1 WO 2014156962A1 JP 2014057783 W JP2014057783 W JP 2014057783W WO 2014156962 A1 WO2014156962 A1 WO 2014156962A1
Authority
WO
WIPO (PCT)
Prior art keywords
opto
optical
electric hybrid
optical waveguide
hybrid device
Prior art date
Application number
PCT/JP2014/057783
Other languages
English (en)
French (fr)
Inventor
小倉 一郎
浩一 竹村
充 栗原
寿憲 上村
明生 浮田
蔵田 和彦
Original Assignee
技術研究組合光電子融合基盤技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合光電子融合基盤技術研究所 filed Critical 技術研究組合光電子融合基盤技術研究所
Priority to US14/781,249 priority Critical patent/US9541718B2/en
Priority to JP2015508417A priority patent/JP6461786B2/ja
Priority to EP14775978.1A priority patent/EP2980619A4/en
Publication of WO2014156962A1 publication Critical patent/WO2014156962A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4251Sealed packages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4248Feed-through connections for the hermetical passage of fibres through a package wall
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4279Radio frequency signal propagation aspects of the electrical connection, high frequency adaptations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/428Electrical aspects containing printed circuit boards [PCB]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • G02B6/425Optical features

Definitions

  • the present invention converts an electrical signal into an optical signal and an optical signal into an electrical signal suitable for use as a signal conversion element incorporated in a data transmission module such as an interposer or an AOC (Active Optical Cable) substrate.
  • the present invention relates to an opto-electric hybrid device and a manufacturing method thereof.
  • Non-Patent Documents 1 to 3 silicon photonicsto means optical element technology that uses silicon as a material, and optical interconnection refers to converting electrical signals from external devices into optical signals, and converting optical signals into electrical signals. This means a technique for transmitting the converted optical signal or electrical signal to another external device and exchanging signals.
  • This optical interconnection is an epoch-making technology that eliminates signal delay due to parasitic capacitance as in the case of electrical wiring, signal degradation due to ground instability, and EMI radiation radiated from wiring.
  • Many of the configurations for input / output of signals and electrical signals have their own specifications and are not standardized.
  • a Luxtera silicon photochip mounted on a printed circuit board (PCB) of Molex.
  • This silicon photochip is an optical transceiver (see Non-Patent Document 3; page 11), and is configured to input and output electrical signals and optical signals from the top surface of the chip.
  • the Luxtera silicon photochip and the Molex PCB are electrically connected by wire bonding, and the optical fiber is bonded directly to the top of the silicon CMOS chip with epoxy resin to transmit and receive optical signals. (See Non-Patent Document 2).
  • FIG. 32 shows an example of the configuration of an opto-electric hybrid device 29400 created by such a conventional self-forming optical waveguide technology.
  • a light receiving element 29450 is mounted with its light receiving surface facing upward.
  • An optical waveguide core 29420 made of a photocurable resin is formed above the light receiving element 29450 perpendicular to the substrate 29410 upward from the light receiving surface of the light receiving element 29450.
  • the periphery of the optical waveguide core 29420 is covered with a resin as the cladding layer 29430.
  • a 45-degree mirror 29460 is installed above the upper end face of the optical waveguide core 29420, and an optical fiber 29470 is installed above the cladding layer 29430 and to the side of the 45-degree mirror 29460.
  • the optical signal transmitted through the optical fiber 29470 is incident on the optical waveguide core 29420 after the optical path is bent in the vertical direction of the substrate 29410 by the 45 degree mirror 29460, and passes through the optical waveguide core 29420.
  • 29450 receives light.
  • FIG. 33A to 33B are diagrams showing an example of a manufacturing method of the optical waveguide core 29420 made of the photocurable resin (see FIG. 2 of Patent Document 2).
  • a photocurable resin 29422 is supplied onto a substrate (a light receiving element is not shown) 29410, and a mask 29510 for forming an optical waveguide core is disposed thereon.
  • the mask 29510 is obtained by forming a chromium film 29516 on one surface of the glass plate 29514 except for the opening 29512.
  • light (for example, UV light) 29520 of the photosensitive wavelength is irradiated to the photocurable resin 29422 through the mask 29510 (FIG. 33A).
  • the portion of the photocurable resin through which the light that has passed through the opening 29512 passes is cured to form the optical waveguide core 29420 (FIG. 33B).
  • the uncured photocurable resin 29422 is removed by washing with a developing solution, and a resin 29430 for the cladding layer is filled around the optical waveguide core 29420.
  • Non-Patent Document 2 discloses that a chip-type optical transceiver created using silicon photonics technology is mounted on a PCB and used as an AOC substrate.
  • the optical fiber is directly bonded to the top of the silicon CMOS chip with epoxy resin in order to transmit and receive optical signals, and cannot be applied as it is to another input / output type PCB.
  • the configuration for optical connection of the opto-electric hybrid device is simplified. It is necessary to be able to perform the optical connection accurately and easily.
  • the entire electronic components on the substrate are covered and sealed with a glass cover. It is possible. However, when the entire electronic component on the substrate is covered with a glass cover, there is a problem that the heat dissipation of the electronic component is deteriorated, and an opto-electric hybrid device with excellent heat dissipation can be manufactured by a simple method. It becomes a problem.
  • an optical waveguide core is formed obliquely with respect to the substrate (tilted with respect to the substrate) using self-forming optical waveguide technology, as shown in FIG.
  • the light 29620 having the photosensitive wavelength propagating obliquely in the photo-curable resin 29422 is reflected by the surface of the substrate 29410, and the reflected light 29622 is a portion of the photo-curable resin that should not originally form the optical waveguide core.
  • the problem will be unintentionally cured. Therefore, when the optical waveguide core made of the photocurable resin is formed on the substrate, it is necessary to prevent the photocurable resin from being cured at an unnecessary portion other than the optical waveguide core due to the reflection of the substrate.
  • the opto-electric hybrid device of the present invention has a configuration suitable for use as a signal conversion element incorporated in a data transmission module.
  • the opto-electric hybrid device includes three types of optical transmission type, optical reception type, and optical transmission / reception type.
  • the first basic configuration of the opto-electric hybrid device includes a sealing structure and an optical flat surface that are provided on the opto-electric hybrid substrate and cover a specific portion that is responsible for input / output of optical signals of the opto-electric hybrid substrate. And a vertical optical waveguide that forms an optical path in a specific portion that is responsible for input / output of an optical signal of the opto-electric hybrid board, and an optical waveguide that transmits an optical signal to and from the vertical optical waveguide is provided.
  • the optical connector can be accurately and simply placed on the optical flat surface of the vertical optical waveguide.
  • the second basic configuration of the opto-electric hybrid device is a sealing structure that is provided on the opto-electric hybrid substrate and covers a specific structure that covers the input / output of optical signals of the opto-electric hybrid substrate, and covers the specific portion.
  • a translucent member installed so as to have an optical flat surface and having a translucent part, and a vertical optical waveguide that forms an optical path between the translucent part of the translucent member and the optical waveguide of the opto-electric hybrid board
  • an optical connector provided with an optical waveguide that transmits an optical signal to and from the vertical optical waveguide can be accurately and simply placed on the optical flat surface of the translucent member.
  • one aspect of the opto-electric hybrid device according to the present invention is such that the translucent member does not cover the entire top surface of the electronic circuit. It is what is installed.
  • another aspect of the opto-electric hybrid device is that a resin layer constituting a clad of the vertical optical waveguide is opened on the electronic circuit. And covering at least a part of the opto-electric hybrid board.
  • One aspect of the opto-electric hybrid device of the present invention is that a support member that supports the translucent member is installed on the opto-electric hybrid substrate in order to stabilize the position of the translucent member,
  • the support member can be made of the same material as the core of the vertical optical waveguide.
  • the translucent member in order to stabilize the position of the translucent member, protrudes from a spacer installed on the opto-electric hybrid substrate. It is what is installed.
  • a marker hole for alignment is provided in the translucent member of the opto-electric hybrid device, and the marker hole and the data
  • the edge part of the translucent member of an opto-electric hybrid device may be used as alignment for mounting the opto-electric hybrid device on the module for data transmission, and the opto-electric hybrid device and the data It is also possible to align with the module for transmission.
  • the first and second basic configurations as described above one or a plurality of conductive members (conductive pins) that pass through the sealing structure and are connected to an electric signal path of the opto-electric hybrid board, the first Alternatively, a configuration relating to an electrical connection portion (solder ball, bump, or the like) provided on the top of one or more conductive members is added so that the position of the optical flat surface does not fall below the top of the electrical connection portion. According to this configuration, when the optical connector is placed on the optical flat surface, it is possible to avoid a collision between the optical connector and the top of the electrical connection portion.
  • an electrical connection portion solder ball, bump, or the like
  • Such an opto-electric hybrid device can be applied as a signal conversion element as described below.
  • the position of the flat surface is one or more provided on the top of one or more of the conductive members connected to the electrical signal path
  • an optical connector provided with an optical waveguide for transmitting an optical signal to and from the vertical optical waveguide (plurality of optical waveguides) as a configuration that does not fall below the top of the electrical connection portion
  • the optical connector avoids a collision between the upper surface of the bridge board that is connected to the one or more electrical connection portions and inputs / outputs an electrical signal to / from the outside.
  • a data transmission module in which an optical signal and an electric signal are input / output on the same surface by a data transmission module for example, an opto-electric interposer / printed board in which an optical circuit and an electric circuit are formed on the same substrate
  • the position of the optical flat surface is configured to coincide with the height of the top of one or a plurality of electrical connection portions provided on the top of the one or more conductive members connected to the electrical signal path.
  • a cylindrical shape or an oblique cylindrical shape can be adopted.
  • an oblique cylindrical shape when adopted, the degree of freedom of arrangement of optical elements is increased. Can do.
  • a taper shape whose diameter is reduced toward the optical waveguide of the opto-electric hybrid board, or a reverse taper shape whose diameter is reduced toward the optical flat surface can be adopted.
  • the shape is suitable for condensing light on the light receiving element, and the latter is the shape suitable for condensing light on the optical fiber of the optical connector placed on the optical flat surface.
  • the taper (or reverse taper) axis can be inclined to increase the degree of freedom of arrangement of the optical elements, and more efficient light guide can be performed.
  • one aspect of the opto-electric hybrid device of the present invention is as follows.
  • An antireflection layer for light having a photosensitive wavelength of the photocurable resin which is formed in contact with an end portion of the optical waveguide core on the optical waveguide side, is provided.
  • the antireflection layer may be a light absorbing layer containing as a component a light absorbing material that absorbs light having a photosensitive wavelength of the photocurable resin, and the light absorbing layer includes the photocurable resin. It can further be contained as a component.
  • the antireflection layer can be transparent to the light emission wavelength of the light source or the sensitivity wavelength of the light receiver.
  • An aspect of the method for manufacturing the opto-electric hybrid device is roughly as follows.
  • a base opto-electric hybrid board and a photomask are prepared, and the photomask is aligned and installed on the opto-electric hybrid board.
  • a photocurable resin that is cured by light irradiation is supplied to a space formed between the opto-electric hybrid board and the photomask, and the photocurable resin is exposed to form a vertical optical waveguide. To do.
  • the uncured photocurable resin is removed. Finally, remove the photomask.
  • an opto-electric hybrid board as a base and a translucent member having a translucent part and an optical flat surface are prepared, the translucent member is aligned with respect to the opto-electric hybrid board, and the translucent member is installed.
  • a photocurable resin that is cured by light irradiation is supplied to a space formed between the opto-electric hybrid board and the translucent member, and the photocurable resin is exposed to form the translucent portion.
  • a vertical optical waveguide is formed between the optical waveguide.
  • the uncured photocurable resin is removed.
  • the translucent member is used as an exposure mask for forming the vertical optical waveguide, and is left unexfoliated after exposure, so that the optical connector can be placed accurately and simply on the optical flat surface.
  • the optical flat surface is the electrical connection
  • the optical connector provided with an optical waveguide for transmitting an optical signal to and from the vertical optical waveguide is placed on the optical flat surface so as not to fall below the height of the top of the portion, the 1 or Collision between the optical connector and the bridge substrate that is connected to a plurality of electrical connection portions and that inputs and outputs electrical signals to the outside is avoided.
  • the vertical optical waveguide can be configured to include a plurality of optical waveguides, and in the step of forming the plurality of optical waveguides, the shape of the optical waveguides can be a cylindrical shape or an oblique cylinder. It can also be formed into a tapered shape whose diameter is reduced toward the optical waveguide of the opto-electric hybrid board, or a reverse tapered shape whose diameter is reduced toward the optical flat surface. A reverse taper shape can also be formed by inclining the optical axis.
  • an alignment marker hole for aligning the opto-electric hybrid device and the data transmission module can be created.
  • one aspect of the method for manufacturing an opto-electric hybrid device includes: a space formed between the opto-electric hybrid substrate and the translucent member; A photocurable resin that is cured by light irradiation is supplied onto the opto-electric hybrid board, light is irradiated from above the light transmissive member, and the light curable resin is exposed to light that has passed through the light transmissive portion. A vertical optical waveguide is formed between the light transmitting portion and the optical waveguide, and the photocurable resin corresponding to the peripheral portion of the electronic circuit is exposed to remove the uncured photocurable resin. It is.
  • another aspect of the manufacturing method of the opto-electric hybrid device is a photo-curing property for the core for forming the core portion of the vertical optical waveguide.
  • Resin is supplied, the photocurable resin for the core is exposed to form a core portion of the vertical optical waveguide between the light transmitting portion and the optical waveguide, and the photocuring for the uncured core
  • a photo-curing resin is supplied, and the photo-curing resin for the clad corresponding to the periphery of the clad portion and the electronic circuit is exposed to remove the uncured photo-curing resin for the clad.
  • another aspect of the method for manufacturing an opto-electric hybrid device is a space formed between the opto-electric hybrid substrate and the translucent member.
  • a photo-curing resin for the core for forming the core portion of the vertical optical waveguide on the opto-electric hybrid board, and the core portion corresponding to a part of the periphery of the core portion and the electronic circuit
  • the photo-curing resin is exposed and the uncured photo-curing resin for the core is removed, and then the space formed between the opto-electric hybrid board and the translucent member and the opto-electric hybrid board
  • supplying a photocurable resin for cladding for forming a cladding portion of the vertical optical waveguide and exposing the photocurable resin for cladding corresponding to the remaining portion of the periphery of the cladding portion and the electronic circuit.
  • light curing for the uncured cladding It is to remove the sexual resin.
  • exposure can be performed using a mask configured to transmit light through the vertical optical waveguide and shield the light through the opening on the electronic circuit.
  • the cured photo-curing resin around the opening may cover the side surface of the electronic circuit and seal the bottom surface of the electronic circuit.
  • the shape of the optical waveguide included in the vertical optical waveguide is a cylindrical shape, an oblique cylindrical shape, or a tapered shape whose diameter is reduced toward the optical waveguide of the opto-electric hybrid board Alternatively, it can be formed in a reverse tapered shape whose diameter is reduced toward the optical flat surface, or a tapered shape or a reverse tapered shape can be formed by inclining the optical axis.
  • one aspect of the method for manufacturing an opto-electric hybrid device is that a spacer is disposed on the opto-electric hybrid substrate, and the translucent member protrudes from the spacer. It is arranged in the form. Then, by exposing the photocurable resin so that the projecting end portion of the translucent member is irradiated with light, a support member that supports the end portion of the translucent member is provided simultaneously with the vertical optical waveguide. The portion of the translucent member that is in contact with the spacer is irradiated with light to cure the photocurable resin that has entered the portion, thereby simultaneously forming the vertical optical waveguide.
  • the optical member and the spacer can be fixed by the photocurable resin.
  • another aspect of the manufacturing method of the opto-electric hybrid device is that the translucent member is in contact with the photo-curable resin and placed on the opto-electric hybrid substrate.
  • the translucent member is exposed on the opto-electric hybrid board by exposing the photocurable resin so that a portion other than the vertical optical waveguide of the translucent member is irradiated with light while being held at a predetermined height.
  • a supporting member to be supported is formed simultaneously with the vertical optical waveguide.
  • a sealing structure is provided on the opto-electric hybrid substrate that covers a base except for a specific portion that performs input / output of an optical signal of the opto-electric hybrid substrate.
  • the glass wafer is prepared, the photomask is prepared, the photocurable resin is supplied to the space formed between the glass wafer and the photomask, and the photocurable resin is used as the photomask.
  • the obtained glass wafer is diced to form individual vertical optical waveguide units, and the vertical optical waveguide unit is formed such that the back surface of the surface on which the vertical optical waveguide is formed is an optical flat surface. And is configured to incorporate the specific portion in a state such that the upper surface charge of input and output of the optical signal of the opto-electric hybrid board.
  • an optical connector provided with an optical waveguide that transmits an optical signal to and from a vertical optical waveguide (a plurality of optical waveguides) is provided. It can be placed accurately and simply on the optical flat surface.
  • the opto-electric hybrid device of the present invention can exhibit excellent effects in improving heat dissipation and stabilizing the position of the translucent member.
  • one or a plurality of conductive members penetrating the sealing structure and connected to an electric signal path of the opto-electric hybrid substrate
  • a configuration relating to an electrical connection portion (solder ball, bump, etc.) provided on the top of the one or more conductive members is added, and the position of the optical flat surface is the top of the electrical connection portion
  • the optical connector is placed on the optical flat surface, it is possible to avoid a collision between the optical connector and the top of the electrical connection portion.
  • the opto-electric hybrid device can be incorporated in common without modifying each substrate.
  • the optical interposer in which the optical circuit and the electric circuit are formed in the same substrate by configuring the position of the optical flat surface to coincide with the height of the top of the electrical connecting portion provided on the top of the conductive member.
  • the opto-electric hybrid device and the data transmission module are used by using an end portion of the translucent member of the opto-electric hybrid device as an alignment for mounting the opto-electric hybrid device on the data transmission module. Can be accurately and simply aligned.
  • the shape of the optical waveguide of the opto-electric hybrid device As the shape of the optical waveguide of the opto-electric hybrid device, a taper shape whose diameter is narrowed toward the optical waveguide of the opto-electric hybrid board or a reverse taper shape whose diameter is narrowed toward the optical flat surface is adopted. By doing so, it is possible to efficiently collect light on the light receiving element and to collect light on the optical fiber of the optical connector. Further, if the axis of the taper (or reverse taper) is inclined, it is possible to increase the degree of freedom of arrangement of the optical elements and perform more efficient light guide.
  • an optical waveguide is formed by a self-forming waveguide forming method, accurate positional alignment with the optical waveguide can be easily achieved.
  • the shape and inclination can be set as appropriate, and the translucent member left without being peeled can be used as an optical flat when the optical connector is placed, so that the manufacturing process can be simplified.
  • an alignment marker for aligning the opto-electric hybrid device and the data transmission module in the step of preparing a translucent member Since a hole can also be created, the manufacturing process can be simplified.
  • an opto-electric hybrid device that exhibits an excellent effect in improving heat dissipation and stabilizing the position of the translucent member is manufactured by a simple method. be able to.
  • the present invention is typically used for data transmission of an interposer, an AOC (Active Optical Cable) substrate, an optical interposer / printed circuit board, etc., in which an optical circuit and an electrical circuit expected to be developed in the future are formed on the same substrate.
  • the structure of the opto-electric hybrid device suitable for use as a signal conversion element to be incorporated in the module and the manufacturing method thereof are characterized by using a vertical optical waveguide for inputting / outputting optical signals.
  • the vertical optical waveguide is created by using self-forming optical waveguide technology, and further, by using an optical flat surface, etc., the incorporation into the interposer etc. is simplified and standardization can be easily performed. Is.
  • FIG. 1A is a schematic perspective view of an optical transceiver device 100 of an optical transmission / reception type, and actually has a scale of about 5 ⁇ 5 mm.
  • An optical waveguide (not shown), a light receiver, an optical modulator, and the like are formed in the silicon substrate 102 by using silicon photonics technology.
  • On the silicon substrate 102 optical modulation control and laser diode 112 control are performed.
  • An IC circuit 104 including a driver IC to be performed and a receiver IC for amplifying a received light signal, an electric wiring (not shown), and the like are provided, and the silicon substrate (optical circuit board) 102, the IC circuit 104, the electric wiring, etc.
  • a mixed substrate is formed.
  • the sealing structure 106 is made of, for example, a glass material, and covers the silicon substrate 102 except for a specific portion responsible for input / output of optical signals of the silicon substrate 102.
  • the sealing structure 106 includes a plurality of holes penetrating the front and back of the member, and conductive pins 108 are fitted into the holes, and solder bumps 110 are formed on the top surfaces of the conductive pins 108. ing.
  • a translucent member 116 having a surface forming an optical flat surface and having a translucent portion 118 is provided on the sealing structure 106 so as to cover the specific portion, and the silicon substrate 100, the sealing structure 106, and the translucent member A gap 114 surrounded by 116 is formed.
  • a photocurable resin and irradiating light for example, ultraviolet light
  • the light passage portion of the resin is cured to form a self-forming waveguide (vertical optical waveguide).
  • a plurality of optical waveguides 122 are formed between the light transmitting portion and the optical waveguide, and if the uncured resin is removed, the plurality of optical waveguides 122 are left in the gap 114. (Details of the optical waveguide manufacturing method will be described later). Thereafter, a clad member (not shown) is formed so as to cover the periphery of the optical waveguide.
  • the translucent member 116 is, for example, a surface of a glass substrate coated with a light shielding chromium film, and an opening having a predetermined shape is formed at a predetermined portion of the chromium film by an etching process or the like. Thus, the translucent part 118 is formed.
  • the alignment marker hole 120 of the translucent member 116 is formed by etching the glass substrate when the opening is formed by etching as described above. Therefore, the opto-electric hybrid device 100 can be mechanically aligned with respect to a substrate such as an interposer using an alignment jig using the alignment marker hole 120.
  • the configuration shown in FIG. 1B is different from the configuration shown in FIG. 1A, in which a silicon substrate 100, a sealing structure 106, and a gap 114 surrounded by a photomask (not shown) are formed.
  • the gap 114 is filled with a photocurable resin and irradiated with light (for example, ultraviolet light) from above the photomask, so that the light passing portion of the photocurable resin is irradiated with the light that has passed through the photomask.
  • a plurality of optical waveguides 122 are formed between the photomask and the optical waveguide or light receiver, and a plurality of optical waveguides 122 are left in the gaps 114 by removing the uncured resin. (Details of the optical waveguide manufacturing method will be described later). Thereafter, a clad member (not shown) is formed so as to cover the periphery of the optical waveguide, and the photomask is removed to complete the opto-electric hybrid device.
  • the photomask is, for example, a glass substrate whose surface is coated with a light-shielding chromium film, and an opening having a predetermined shape is formed at a predetermined position of the chromium film by an etching process or the like. is there.
  • FIG. 2A is a plan view of a state in which the opto-electric hybrid device 220 is mounted on the substrate 200 and the alignment is completed.
  • FIGS. 2B and 2C are mechanical views using the alignment jig 240.
  • a part of the surface of the hemispherical protrusion 244 of the alignment jig 240 becomes the edge of the marker hole 226 for alignment of the opto-electric hybrid device 220.
  • a part of the part As the insertion of the leg 242 into the fitting hole 202 proceeds, the edge of the alignment marker hole 226 of the opto-electric hybrid device 220 is pushed by the hemispherical protrusion 244 of the alignment jig 240. Finally, the position of the marker hole 226 is determined by the protrusion 244 (see FIG. 2C), and the positions of the substrate 200 and the opto-electric hybrid device 220 are aligned.
  • the opto-electric hybrid device 220 is fixed to the substrate 200.
  • alignment by the mechanical means as described above alignment by an optical method using an optical index or the like provided on the opto-electric hybrid device is also possible. In that case, the alignment jig 240, the substrate The 200 fitting holes 202 and the marker hole 226 for alignment of the opto-electric hybrid device 220 are unnecessary.
  • FIG. 3 and 4 are schematic diagrams for explaining the cross-sectional structure inside the opto-electric hybrid device.
  • FIG. 3 shows the cross-sectional structure of the optical transmission portion
  • FIG. 4 shows the cross-sectional structure of the optical reception portion. It is shown.
  • Output light from the semiconductor laser 326 is input to an optical modulator 314 via a spot size converter (not shown) and an optical waveguide 312, and an optical signal modulated by the optical modulator 314 is output.
  • the modulated optical signal reaches the grating coupler 316 through the optical waveguide 312, the optical axis is converted by diffraction by the grating coupler 316, and is output to the outside through the optical waveguide 318.
  • An electric signal given from the outside via the conductive pin 320 and the electric wiring 322 is input to the driver IC 324 that controls the optical modulator 314 and the semiconductor laser 326, and the electric wiring 322 is used as a modulation control signal (electric signal).
  • the optical modulator 314. The optical waveguide 312, the optical modulator 314, the grating coupler 316, and the like are created in the silicon substrate 310 by silicon photonics technology.
  • the optical signal given from the outside is directly received by the surface incident type photodiode 414 through the optical waveguide 412, converted into an electric signal, and inputted to the receiver IC 418 through the electric wiring 416.
  • the receiver IC 418 performs various processes such as signal amplification of the input electric signal and amplitude limitation / waveform processing, and outputs the processed electric signal to the outside via the electric wiring 416 and the conductive pin 420.
  • the surface incident type photodiode 414 can be formed, for example, by directly growing germanium (Ge) on Si, and, instead of receiving light directly by the surface incident type photodiode with respect to reception of an optical signal.
  • the photodiodes 414 and the like are formed in the silicon substrate 410 by silicon photonics technology. It should be noted that the position of the receiver IC 418 in the optical receiving portion is arranged closer to the optical waveguide 412 side than the position of the driver 324 in the optical transmitting portion in order to propose attenuation of the input optical signal.
  • FIG. 5 shows that a carrier plasma effect (an effect of changing the refractive index of Si depending on the carrier concentration) is generated by an electric bias applied to the pn junction of Si, and the phase modulation of light caused thereby is a Mach-Zehnder interferometer (Mach -Zehnder Interferometer (abbreviated as “MZI”) is an example of the structure of an MZI type optical modulator 500 that converts intensity modulation.
  • MZI Mach-Zehnder Interferometer
  • the optical waveguide is, for example, a Si waveguide having a length of about several hundreds of nanometers formed in the SiO 2 layer.
  • the optical waveguide of the opto-electric hybrid device has a cylindrical shape as shown in FIG. 7A, but the deformed shape as shown in FIGS. 7B to 7F is used. It is also possible to employ an optical waveguide having the same.
  • the deformation shape of the optical waveguide 700 of the opto-electric hybrid device will be described with reference to FIGS. 7B to 7F (details of a method for manufacturing such an optical waveguide will be described later), and an oblique cylindrical shape (FIG. 7B). ), Or a tapered shape in which the diameter is reduced toward the optical waveguide of the opto-electric hybrid board (FIG. 7C), or a reverse tapered shape in which the diameter is reduced toward the optical flat surface (see FIG.
  • the taper shape is particularly suitable for condensing light on the light receiving element and used for the light receiving portion, and the reverse taper shape is formed on the optical flat surface. Since it has a shape suitable for condensing light on the optical fiber of the optical connector to be mounted, it is used for the optical transmission portion. Furthermore, if the shape in which the axis of the taper is inclined (FIG. 7 (e)) or the shape in which the axis of the reverse taper is inclined (FIG. 7 (f)) is adopted, the degree of freedom of arrangement of the optical elements is increased. It is also possible to perform more efficient light guide.
  • the optical transmission / reception type opto-electric hybrid device has been described above. However, the optical transmission type and the optical reception type opto-electric hybrid device each have a scale of about 5 ⁇ 5 mm similar to the optical transmission / reception type.
  • the transmission type opto-electric hybrid device is obtained by omitting the configuration corresponding to the optical receiving unit (see FIG. 4) from the optical transmission / reception type opto-electric hybrid device.
  • the configuration corresponding to the optical transmitter (see FIG. 3) is omitted from the opto-electric hybrid device.
  • the opto-electric hybrid device is a component suitable for use as a signal conversion element by being incorporated in a data transmission module such as an interposer or an AOC (Active Optical Cable) substrate.
  • a data transmission module such as an interposer or an AOC (Active Optical Cable) substrate.
  • an opto-electric hybrid device provided with a translucent member provided with an optical flat surface is illustrated, but the optical flat surface is applied to the vertical optical waveguide without providing the translucent member. It should be noted that an opto-electric hybrid device provided with can be applied as well.
  • FIGS. 8A to 8C show a mode in which the opto-electric hybrid device is incorporated into the interposer.
  • the interposer means, for example, a repeater (relay board) for inputting an optical signal from the upper surface and outputting an electric signal from the lower surface, or inputting an electric signal from the lower surface and outputting an optical signal from the upper surface. And has a scale of about 10 mm square.
  • a plurality of electrical wirings 802 extending from the upper surface to the lower surface are provided inside the interposer 800, and terminals 804 and 806 are provided at both ends of each electrical wiring 802. .
  • Conductive pins 822, solder bumps 824, semiconductor lasers 826, driver ICs 828, optical waveguides 830, glass masks (translucent members) 832, optical circuits (optical waveguides, optical modulators, etc.) 834 constituting the opto-electric hybrid device 820 are as follows: The operation is the same as described above including the operation mode.
  • the opto-electric hybrid device 820 When the opto-electric hybrid device 820 is incorporated into the interposer 800, the opto-electric hybrid device 820 is fitted to the interposer 800 so that the upper surface of the opto-electric hybrid device 820 is on the upper surface of the interposer 800, and the opto-electric hybrid device 820 is fitted. After the mechanical alignment using the alignment jig 23 as shown in FIGS. 2B and 2C, for example, the two are fixed to the interposer 800. Next, the solder bump 824 of the opto-electric hybrid device 820 and the upper surface side terminal 804 of the interposer 800 are electrically connected by a flexible bridge circuit (not shown). Thereafter, as shown in FIG.
  • the optical connector 840 and the opto-electric hybrid device 820 are aligned by fitting the fitting pins 842 of the optical connector 840 into the fitting holes 810 of the interposer 800.
  • the positions of the optical fiber 846 provided in the optical waveguide 830 and the optical connector 840 are aligned, and light emitted from the optical waveguide can be incident on the optical fiber 846 via the 45-degree mirror 844.
  • the marker hole 226 for alignment of the opto-electric hybrid device 220 in FIG. 2 is placed on the optical flat surface of the translucent member 116. It can also be used as a positioning member.
  • the optical connector 840 is placed on the flat surface of the glass mask 832 provided in the opto-electric hybrid device 820, and the thickness of the glass mask 832 is set so as not to fall below the top of the solder bump 824.
  • the connector 840 does not come into contact with the top of the solder bump 824 (the bridge substrate provided on the top), and the collision between the two is avoided.
  • the electrical connection between the opto-electric hybrid device 820 and the interposer 800 is performed by using wire bonding (WB) or through-silicon via (TSV) in addition to using a flexible bridge circuit as described above. It may be done.
  • WB wire bonding
  • TSV through-silicon via
  • FIG. 9 shows a mode in which the opto-electric hybrid device 920 is incorporated into an AOC (Active Optical Optical Cable) substrate 900.
  • the opto-electric hybrid device 920 has the same configuration as that of the opto-electric hybrid device 820 of FIG. 8, and the AOC substrate 900 is structurally different from the interposer 800 in that input / output electrical terminals are provided on the end faces. Although there is a difference, the electrical connection mode between the opto-electric hybrid device 920 and the AOC substrate 900 is not particularly different from the connection between the opto-electric hybrid device 820 and the interposer 800 in FIG. There is no.
  • FIG. 10 differs from FIGS. 8 and 9 in that an electric wiring 1002 and an optical wiring (optical waveguide) 1004 are formed in the same substrate, and an optical interposer / printed circuit board that inputs and outputs optical signals and electrical signals on the upper surface of the substrate.
  • 1000 represents an aspect in which the input / output surface of the opto-electric hybrid device 1020 is assembled to face the input / output surface of the opto-electric interposer / printed circuit board 1000.
  • the conductive pins 1022, the solder bumps 1024, the semiconductor laser 1026, the optical waveguide 1028, the driver IC 1030, the optical modulator 1032, the grating coupler 1034, the optical waveguide 1036, and the glass mask (translucent member) 1038 constituting the opto-electric hybrid device 1020 are:
  • the operation mode is the same as described above.
  • the position of the optical flat surface of the glass mask (translucent member) 1038 is configured to coincide with the height of the top of the solder bump 1024 provided on the top of the conductive pin 1022.
  • the electric hybrid device 1020 is incorporated in the opto-electric interposer / printed circuit board 1000, the positions of the two are aligned.
  • FIG. 11 exemplifies the mounting structure of the optoelectric interposer / printed circuit board 1100 that is expected to be realized in the near future.
  • the position of the optical flat surface of the glass mask (translucent member) 1178 is shown in FIG. It is configured to match the height of the top of the solder bump 1164 provided on the top (see FIG. 11B), and when the opto-electric hybrid device 1160 is incorporated in the opto-electric interposer / printed circuit board 1100, It is the same as that of the case of FIG. 10 that it is comprised so that both position may match.
  • an optical signal is input from the outside via an optical fiber 1102, and the optical signal passes through an optical waveguide 1104 provided in a substrate of the photoelectric interposer 1100.
  • the signals are input to the opto-electric hybrid devices 1120 and 1140, converted into electric signals, and input to the host LSI 1190 through the electric wiring 1106 provided in the substrate of the opto-electric interposer 1100.
  • the host LSI 1190 is composed of a CPU, a switch, and the like, performs various arithmetic processing based on the input electrical signal, and the processing result passes through an electrical wiring 1108 provided in the substrate of the photoelectric interposer 1100 as an electrical signal.
  • FIG. 11A shows an opto-electric interposer / printed circuit board 1100 on which four opto-electric hybrid devices 1120, 1140, 1160, and 1180 are mounted. Is not limited to four, and may be an appropriate number.
  • FIG. 12A is a flowchart showing an outline of one aspect of a method for manufacturing an opto-electric hybrid device.
  • each step of 1210A to 1280A will be described in detail.
  • (1) Opto-electric hybrid board preparation step 1210A This step is a step of preparing an opto-electric hybrid board provided with an optical waveguide for transmitting an optical signal, an electric signal path for transmitting an electric signal, an electronic circuit, an optical modulator, a light receiver, and / or a light source.
  • the present invention includes (a) an integration method in which both an optical circuit and an electronic circuit are formed on a Si substrate on the front end side as in (a) Front-end integration, and (b) a front end side in the manner of Back-end integration.
  • An integration method in which an electronic circuit is formed on the substrate and an optical circuit is formed on the back-end substrate with the wiring layer sandwiched is also applicable, but from the viewpoint of ease of production, an electronic circuit formation substrate (C) Flip-chip bonding integration method is excellent, in which an optical circuit forming substrate is prepared separately and an opto-electric hybrid substrate is prepared by bonding them together.
  • the substrate on which the optical circuit is formed uses a silicon photonics technology to form a light source (LD), optical waveguide, An optical modulator and a light receiver (PD) are integrated on a silicon substrate in one chip, and a substrate for forming an electronic circuit is formed by using a normal semiconductor circuit technology.
  • LD light source
  • PD light receiver
  • Sealing structure preparation step 1220A The sealing structure used is made of, for example, a glass material, and when placed on the silicon substrate, a shape that covers the silicon substrate except for a specific portion responsible for optical signal input / output of the silicon substrate It is what has.
  • Translucent member preparation step 1230A A translucent member suitable for a photomask transfer method, which will be described later, is formed, for example, by coating a light-shielding chromium film on the surface of a glass substrate and forming an opening having a predetermined shape at a predetermined portion of the chromium film by an etching process or the like.
  • a light transmitting portion 9 is formed, and as will be described later, an optical waveguide is formed by a self-forming waveguide forming method by light incidence through the light transmitting portion.
  • the marker hole for alignment of a translucent member is formed by etching a glass substrate.
  • 14A to 14E show the cross-sectional shape of the opening of the glass substrate, and the shape (cylindrical shape, taper shape, etc.) of the optical waveguide is determined according to the cross-sectional shape of the opening. become. 14A shows a shape for creating a cylindrical optical waveguide, FIG. 14B shows a shape for creating an oblique cylindrical optical waveguide, and FIG. 14C shows a downward direction.
  • FIG. 14A shows a shape for creating a cylindrical optical waveguide
  • FIG. 14B shows a shape for creating an oblique cylindrical optical waveguide
  • FIG. 14C shows a downward direction.
  • FIG. 14D shows a shape for creating a tapered optical waveguide whose diameter is reduced
  • FIG. 14D shows a shape for creating an inverted tapered optical waveguide whose diameter is expanded downward
  • FIG. 14E shows a shape for creating a tapered optical waveguide with an inclined optical axis
  • FIG. 14F shows a shape for creating an inverted tapered optical waveguide with an inclined optical axis.
  • a method for forming the optical waveguide having the above-described shapes will be described later.
  • it can also expose using a photomask not shown instead of exposing using the said translucent member.
  • Optical waveguide production process 1250A to 1280A The photocurable resin filling step 1250A, the self-forming optical waveguide forming step 1260A, the uncured photocurable resin removing step 1270A, and the cladding material filling / curing step 1280A correspond to the optical waveguide forming step.
  • the self-forming optical waveguide manufacturing method of the present invention employs a so-called photomask transfer method (refer to, for example, Japanese Patent Application Laid-Open No. 2007-71951 regarding the photomask transfer method), a translucent member, or an unillustrated
  • the photomask corresponds to a “type” in forming a self-formed optical waveguide.
  • the procedure for forming a self-formed optical waveguide by the photomask transfer method when the light-transmitting member is also used as a photomask is as follows. ), The light passes through a plurality of openings provided in the translucent member and is irradiated to the photocurable resin.
  • the irradiated light is transmitted through the photocurable resin, and is cured at the same time as the refractive index of the photocurable resin in the transmitted portion is increased. Thereafter, the self-forming optical waveguide can be formed by removing the uncured photocurable resin. Further, a clad material is filled and cured so as to cover the periphery of the formed optical waveguide.
  • a clad material is filled and cured so as to cover the periphery of the formed optical waveguide.
  • thermosetting is used for curing the clad material.
  • the clad material is made of a material having a refractive index different from that of the optical waveguide.
  • FIG. 12B is a flowchart showing an outline of a method of manufacturing an opto-electric hybrid device that does not have a light-transmitting member.
  • steps different from those in FIG. 12A will be described in particular.
  • the opto-electric hybrid board preparation step 1210B and the sealing structure preparation step 1220B are substantially the same as the opto-electric hybrid board preparation step 1210A and the sealing structure preparation step 1220A in FIG. 12A.
  • the photomask preparation step 1230B is roughly as follows.
  • the photomask is formed, for example, by coating a light-shielding chromium film on the surface of a glass substrate and forming an opening having a predetermined shape at a predetermined portion of the chromium film by an etching process or the like. Then, by using a photomask provided with a prism, a lens, etc., a cylindrical optical waveguide as shown in FIG. 7A, an oblique cylindrical optical waveguide as shown in FIG. c) a tapered optical waveguide whose diameter is reduced downward as shown in FIG. 7, a reverse tapered optical waveguide whose diameter is enlarged downward as shown in FIG. 7D, A shape for creating a tapered optical waveguide with an inclined optical axis as shown in FIG. 7E, and an inverted tapered optical waveguide with an inclined optical axis as shown in FIG. 7F are formed. can do.
  • Photomask alignment / installation step 1240B, photocuring resin filling step 1250B, self-forming waveguide formation step 1250B, uncured photocuring resin removal step 1270B, and cladding material filling / curing step 1280B are described above.
  • Steps 1240A to 1280A the translucent member is replaced with a photomask.
  • the photomask removal step 1290B is a step of removing the photomask and completing the opto-electric hybrid device after the clad material is cured.
  • the surface from which the photomask of the opto-electric hybrid device is removed is optically flat.
  • a configuration comprising a glass thin plate and a photomask provided on the glass thin plate can also be used.
  • a glass thin plate is placed at a predetermined interval from the opto-electric hybrid board, and then a photomask is placed on the glass thin plate for alignment,
  • a mode in which the glass thin plate and the photomask are temporarily fixed, and the temporarily fixed structure is aligned with the opto-electric hybrid board at a predetermined interval can be employed.
  • a step of removing only the photomask is added before the cladding material filling / curing step 1280B, and in the cladding material filling / curing step 1280B It is also possible to form a clad member by using a photocurable resin as a clad material and curing the photocurable resin by exposing the entire surface of the photocurable resin through a glass thin film.
  • a release agent is applied in advance to the surface of the photomask or glass thin plate that is in contact with the photocurable resin, so that the photomask or glass thin plate can be easily removed.
  • FIG. 15 is a flowchart illustrating an example of a method for manufacturing an opto-electric hybrid device. This manufacturing method includes the first to thirteenth steps. 16 to 28 are diagrams showing the state of the device in each step.
  • an IC (electronic component) 1612 is mounted on the substrate 1610 (FIG. 16).
  • the substrate 1610 is, for example, an SOI substrate, and an optical circuit 1614 is formed on the surface thereof in advance.
  • An example of the optical path 1614 is a photodiode or a grating coupler.
  • the optical circuit 1614 is a photodiode, the photodiode is arranged so that its light receiving surface faces upward, and an electrical wiring (not shown) for transmitting a light reception signal to the IC 1612 is further provided on the substrate 1610.
  • the optical circuit 1614 is a grating coupler, a light source, an optical modulator that modulates light from the light source, and a plane that guides an optical signal (transmission light) modulated by the optical modulator to the grating coupler on the substrate 1610.
  • An optical waveguide is further provided (both not shown).
  • the grating coupler is configured to have a function of jumping upward the optical signal that has propagated through the planar optical waveguide.
  • an antireflection film 1616 for preventing reflection of exposure light from the substrate 1610 during an exposure process described later is further formed in advance.
  • the IC 1612 is a driver IC for electrically driving the above-described optical modulator, or a transimpedance amplifier (TIA) for IV-converting a light reception signal (current) from the above-described photodiode.
  • the IC 1612 is connected so that each terminal on the IC 1612 side is connected to electrical wiring on the substrate 1610 side (wiring that is electrically connected to the light modulator or the photodiode) via connection electrodes 1618 such as a ball grid array (BGA).
  • BGA ball grid array
  • a glass substrate (spacer) 1620 is mounted on the substrate 1610 (FIG. 17).
  • the glass substrate 1620 is provided with a continuous large opening 1622 so that an IC 1612 and a vertical optical waveguide formation region (a portion of the antireflection film 1616) to be described later are accommodated in the opening 1622.
  • a glass substrate 1620 is mounted.
  • the glass substrate 1620 has a thickness larger than the mounting height of the IC 1612 (the height from the surface of the substrate 1610 to the upper surface of the IC 1612), and the upper surface of the IC 1612 is recessed from the upper end of the opening 1622.
  • the glass substrate 1620 further includes a through wiring (TGV) 1624, and the through wiring 1624 is connected to the IC 1612 through the electric wiring (not shown) provided on the substrate 1610 and the connection electrode 1618 described above.
  • TSV through wiring
  • photocurable resin 1626 for forming an optical waveguide core is supplied onto the vertical optical waveguide forming region in the opening 1622 of the mounted glass substrate 1620 (FIG. 18).
  • the vertical optical waveguide forming region is an antireflection film 1616 portion between the IC 1612 and the wall surface of the opening 1622.
  • the core resin 1626 is filled in a space between the side surface of the IC 1612 and the wall surface of the opening 1622 to such a height that the liquid level protrudes slightly from the upper end of the opening 1622.
  • a thin glass (transparent plate material) 1628 is mounted on the glass substrate 1620 in such a manner that a part thereof protrudes onto the vertical optical waveguide forming region (FIG. 19).
  • the portion of the thin glass 1628 that protrudes from the glass substrate 1620 has a shape that covers (overlaps) the entire vertical optical waveguide formation region as viewed from above.
  • the entire space between the protruding portion of the mounted thin glass 1628 and the vertical optical waveguide forming region is filled with the core resin 1626.
  • the excessive core resin 1626 spreads to the upper surface of the IC 1612, and also in the gap between the contact surfaces of the thin glass 1628 and the glass substrate 1620. A part of the resin 1626 enters.
  • the thin glass 1628 is temporarily fixed to the glass substrate 1620 by the core resin 1626 that has entered the gap.
  • a core forming mask 1630 is disposed (FIG. 20).
  • the core forming mask 1630 has a vertical optical waveguide core forming transparent portion 1632, a thin glass supporting portion forming transparent portion 1634, a thin glass bonding portion transparent portion 1636, and a position on one surface of the glass plate. Except for the alignment hole forming translucent portion 1638, a metal film for light shielding at the time of exposure is formed.
  • the translucent part 1632 for forming the vertical optical waveguide core is provided corresponding to the position and number of the optical circuits 1614 on the substrate 1610.
  • the thin glass supporting portion forming transparent portion 1634 is provided at a position corresponding to an end portion of the thin glass 1628 that protrudes from the glass substrate 1620.
  • the light transmitting portion 1636 for the thin glass bonding portion is provided at a position corresponding to the contact surface between the thin glass 1628 and the glass substrate 1620.
  • the alignment hole forming translucent portion 1638 is for forming an alignment hole when the optical fiber connector is connected after the opto-electric hybrid device is completed.
  • the exposure light is light (for example, UV light) having a wavelength at which the core resin 1626 is exposed and cured.
  • the core resin 1626 existing under the light transmitting portions 1632, 1634, 1636, and 1638 is cured.
  • a columnar (vertical type) that is erected vertically with respect to the substrate 1610 between the thin glass 1628 and the optical circuit 1614 on the substrate 1610 is provided below the light transmitting portion 1632 for forming the vertical optical waveguide core.
  • Optical waveguide core 1640 is formed.
  • the end portion is supported on the substrate 1610 by being interposed between the end portion of the thin glass plate 1628 protruding from the glass substrate 1620 and the surface of the substrate 1610.
  • a thin glass support 1642 is formed. Since the thin glass 1628 is firmly supported by the thin glass support portion 1642, the load of the protruding portion of the thin glass 1628 is not concentrated only on the optical waveguide core 1640 (after the uncured resin is removed later). Since the thin glass support 1642 is dispersed and applied, it is possible to prevent the optical waveguide core 1640 from falling down due to the load of the thin glass 1628.
  • the core resin 1626 enters the gap between the contact surfaces of the thin glass 1628 and the glass substrate 1620 at the lower portion of the light transmitting portion 1636 for the thin glass bonding portion. Is exposed and cured, whereby the thin glass plate 1628 is fixed (mainly fixed) to the glass substrate 1620.
  • the core forming mask 1630 is removed (FIG. 22).
  • the formation of the vertical optical waveguide core 1640, the formation of the thin glass support portion 1642, and the fixation of the thin glass 1628 to the glass substrate 1620 can be performed collectively by the same exposure process.
  • the thin glass support 1642 is formed so as to be in contact with one side surface of the IC 1612 and forms a part of an opening on the IC 1612 described later. That is, a part of the opening on the IC 1612 is also formed at a time in this exposure process.
  • the core resin 1626 remaining uncured after exposure is washed away with a solvent and removed (FIG. 23).
  • a photocurable resin 1644 for forming an optical waveguide cladding is supplied so as to fill the entire opening 1622 of the glass substrate 1620 (FIG. 24).
  • the clad resin 1644 is filled to such a height that the liquid level slightly protrudes from the upper end of the opening 1622, and the entire upper surface of the IC 1612 is completely covered with the clad resin 1644. It has become.
  • a cladding forming mask 1646 is disposed (FIG. 25).
  • the cladding forming mask 1646 is configured by forming a light-shielding metal film at the time of exposure on the outer peripheral side of the opening 1622 of the glass substrate 1620 and the IC opening-forming light-shielding portion 1648 on one surface of the glass plate. Yes.
  • This IC opening forming light-shielding portion 1648 is for forming an opening on the upper surface of the IC 1612 to be described later. A shape and size so as to cover.
  • the exposure light is light (for example, UV light) having a wavelength at which the cladding resin 1644 is exposed to light and cured in the same manner as in the exposure of the core resin 1626.
  • the clad resin 1644 filled in the opening 1622 of the glass substrate 1620 is cured except for a portion on the lower portion of the IC opening forming light shielding portion 1648, that is, on the upper surface of the IC 1612.
  • a vertical optical waveguide cladding 1650 is formed around the vertical optical waveguide core 1640.
  • connection electrode 1618 electrically connecting the IC 1612 and the substrate 1610 is sealed by the clad resin 1644a cured around the gap between the bottom surface of the IC 1612 and the substrate 1610 (the gap where the connection electrode 1618 is provided). Stopped.
  • the cladding resin 1644b at the peripheral portion of the IC 1612 is hardened to form a wall surface so as to surround the peripheral edge, and due to the presence of the IC opening forming light shielding portion 1648 of the cladding forming mask 1646, The clad resin 1644 remains uncured. That is, the opening 52 is formed on the upper surface of the IC 1612 by the wall surface made of the cured clad resin 1644 b surrounding the periphery of the IC 1612.
  • the formation of the vertical optical waveguide clad 1650, the formation of the opening 1652 on the upper surface of the IC 1612, and the sealing of the connection electrode 1618 can be performed collectively by the same exposure process.
  • the resin for cladding in the opening 1652 remaining uncured after exposure is washed away with a solvent and removed (FIG. 28).
  • the cladding resin present in the connection electrode portion under the IC 1612 is also uncured because it is shielded from light by the IC 1612 during exposure.
  • this uncured cladding resin is separately cured by a heating process. Note that underfilling may be performed around the bottom surface of the IC 1612 in advance so that the cladding resin does not enter the gap between the bottom surfaces of the IC 1612.
  • FIG. 28 shows a completed form of the opto-electric hybrid device.
  • the opening 1652 is formed at the same time as the vertical optical waveguide in the vertical optical waveguide formation (exposure) process, so that it is not necessary to add a new process and the manufacturing process can be simplified.
  • the opto-electric hybrid device according to the present embodiment it is possible to effectively radiate heat from the IC 1612 by connecting a heat sink to the upper surface of the IC 1612 through a resin having good thermal conductivity through the opening 1652. is there.
  • the vertical optical waveguide core 1640 does not fall down even without the thin glass support portion 1642. In some cases, standing can be maintained. In such a case, the thin glass support portion 1642 can be omitted, and the opening 1652 on the upper surface of the IC 1612 has a shape in which all of the wall surface is made of the clad resin 1644.
  • the opto-electric hybrid device without using the glass substrate 1620. That is, when exposing the core resin 1626, the height of the core forming mask 1630 is adjusted by holding the core forming mask 1630 with the exposure apparatus in a state where the thin glass 1628 is attached (temporarily fixed) to the core forming mask 1630. Then, by exposing the core resin 1626, in addition to the vertical optical waveguide core 1640, a portion serving as a support portion for supporting the thin glass 1628 is cured. If the supporting portion is formed with a sufficiently large size, the thin glass 1628 can be supported instead of the glass substrate 1620. For temporary fixing between the thin glass plate 1628 and the core forming mask 1630, a detachable adhesive or vacuum suction may be used.
  • the above-mentioned photomask transfer method forms self-forming optical waveguides of various shapes by changing the planar shape and cross-sectional shape of the opening of the transparent member and by using a photomask having the same function. can do.
  • a method for forming self-formed optical waveguides of various shapes by changing the planar shape and the cross-sectional shape of the opening of the translucent member will be mainly described.
  • the opening 1410 is a member on a flat plate, and all parts other than the opening 1410 are masked by metal vapor deposition such as chromium to prevent light transmission. Accordingly, light passes through the opening 1410 and is irradiated onto the photocurable resin.
  • the lower surface of the opening 1410 is flat, and a cylindrical optical waveguide as shown in FIG. 7 (a) is formed.
  • a cross section is formed in a slanted shape in the opening 1410, or a convex or concave microlens is provided.
  • the shape of the self-forming optical waveguide to be formed can be changed as appropriate by changing the focal length of the microlens and the inclination of the optical axis.
  • the optical axis can be tilted by using the inclined surface shape as shown in FIG. 14B, and an oblique cylindrical optical waveguide is formed as shown in FIG. 7B. Is done. Further, by using a convex microlens as shown in FIG. 14 (c), the light can be converged, and the diameter is narrowed downward as shown in FIG. 7 (c). A tapered optical waveguide is formed. Furthermore, by using a concave microlens as shown in FIG. 14 (d), light can be diffused, and the diameter is narrowed upward as shown in FIG. 7 (d). An inversely tapered optical waveguide is formed. Then, by tilting the optical axis of the microlens (see FIGS. 14 (e) and (f)), a tapered optical waveguide having an inclined optical axis (see FIG. 7 (e)) or the reverse of the optical axis being inclined. A tapered optical waveguide (see FIG. 7F) is formed.
  • the normal photomask transfer method includes a peeling step of the translucent member
  • the translucent member left without being peeled is optically removed without removing the translucent member.
  • the self-forming optical waveguide forming method described above is based on the photomask transfer method, but the end of the optical fiber is placed close to the light transmitting member, and the incident light is transmitted through the photocurable resin.
  • the self-formed optical waveguide may be formed by curing the portion irradiated with, and removing the uncured photo-curing resin (see, for example, Japanese Patent Application Laid-Open No. 2003-131064). Even in such a case, optical waveguides of various shapes can be formed by adjusting the optical axis direction of the optical fiber or arranging various lenses at the end of the optical fiber.
  • the translucent member in this case can be comprised with a transparent glass plate.
  • the translucent member is used as a mask for the photomask transfer method.
  • a separate mask can be prepared to perform the same operation.
  • the photo-curing resin may be cured at an unnecessary portion due to the reflection of the substrate, and at such an unnecessary portion. It is necessary to prevent curing of the photocurable resin.
  • the embodiment described below is a technique suitable for preventing the curing of the photocurable resin in the unnecessary portions as described above, and will be described in detail with reference to the drawings.
  • FIG. 29 is a cross-sectional configuration diagram of the opto-electric hybrid device 29100 according to the first embodiment.
  • an optical waveguide core 29120 made of a photo-curing resin is erected obliquely with respect to the substrate 29110 (along a direction inclined several degrees from the normal line n of the substrate 29110). Extended) is formed.
  • An end portion 291202 of the optical waveguide core 29120 on the substrate 29110 side is optically coupled to an optical element (not shown) (such as an optical circuit) formed or mounted on the substrate 29110.
  • an optical waveguide, a light emitting element, or a light receiving element can be exemplified.
  • the periphery of the optical waveguide core 29120 is covered with a resin as the cladding layer 29130.
  • An end 291204 on the upper side (opposite side of the substrate 29110) of the optical waveguide core 29120 is optically coupled to an optical element (not shown) (an optical fiber or the like) installed on the cladding layer 29130.
  • an antireflection layer 29140 for light having a photosensitive wavelength of a photocurable resin constituting the optical waveguide core 29120 is formed on the surface of the substrate 29110.
  • the upper surface of the antireflection layer 29140 is in contact with the end portion 291202 of the optical waveguide core 29120 on the substrate 29110 side. Therefore, the end portion 291202 of the optical waveguide core 29120 on the substrate 29110 side is optically connected to an optical element (such as an optical waveguide, a light emitting element, or a light receiving element) formed or mounted on the substrate 29110 via the antireflection layer 29140.
  • the antireflection layer 29140 is transparent to the wavelength of light transmitted or received by the optical element formed or mounted on the substrate 29110 (light propagating through the optical waveguide, light emitted from the light emitting element, or light received by the light receiving element). is there.
  • the photosensitive wavelength of the photocurable resin is the wavelength of light that cures the photocurable resin by light irradiation.
  • a photocurable resin having sensitivity to UV (ultraviolet) light can be used.
  • the antireflection layer 29140 sufficiently prevents or reduces reflection of UV light from the surface of the substrate 29110.
  • the antireflection layer 29140 a UV absorption layer having an appropriate absorption coefficient and film thickness can be used.
  • a dielectric multilayer film in which each layer is set to an appropriate film thickness and refractive index may be used.
  • an antireflection layer 29140 is formed over the substrate 29110 (FIG. 2A).
  • the UV absorption layer is applied to the antireflection layer 29140.
  • a resin obtained by mixing a photocurable resin (UV curable resin) used for forming the optical waveguide core 29120 and a material having a property of absorbing UV light is supplied to the entire surface of the substrate 29110. Then, the entire surface is irradiated with UV light to cure the resin to form a UV absorbing layer (antireflection layer 29140).
  • the absorption coefficient of the UV absorbing material, the composition ratio between the photocurable resin and the UV absorbing material, the film thickness of the UV absorbing layer, and the like have a sufficiently high absorption rate for UV light (the reflection of UV light on the surface of the substrate 29110 is Can be effectively prevented or reduced).
  • the antireflection layer 29140 may be formed not only on the entire surface of the substrate 29110 but only in the vicinity of the portion where the optical waveguide core 29120 is to be formed.
  • a photocurable resin 29122 is supplied onto the antireflection layer 29140, and a mask 29210 for forming an optical waveguide core is disposed thereon (FIG. 2B).
  • the mask 29210 is obtained by forming a thin film such as a chromium film 29216 opaque to UV light on one surface of a glass plate 29214.
  • the chromium film 29216 has a core shape of the optical waveguide core 29120 to be manufactured.
  • An opening 29212 having a shape corresponding to the above is provided.
  • the opening diameter of the opening 29212 is about 30 to 40 ⁇ m, and in this case, a multimode optical waveguide core 29120 can be manufactured.
  • a plurality of openings 29212 are provided in the mask 29210, a plurality of optical waveguide cores 29120 can be formed simultaneously.
  • a spacer (not shown) is provided on the substrate 29110 (antireflection layer 29140).
  • UV light 29220 is applied to the photocurable resin 29122 from an oblique direction with respect to the substrate 29110 through the mask 29210 (FIG. 30C).
  • the UV light that has passed through the opening 29212 of the mask 29210 propagates in the photocurable resin 29122 in an oblique direction with respect to the substrate 29110, and cures the portion of the photocurable resin that has passed therethrough.
  • the UV absorption layer (antireflection film 29140) is formed on the substrate 29110, the UV light that has propagated through the photocurable resin 29122 and entered the UV absorption layer is absorbed by the UV absorption layer. If the light absorption rate of the UV absorbing layer is sufficiently high, the reflection of the UV light from the substrate 29110 hardly occurs or even if it occurs, the intensity of the reflected light is necessary to cure the photocurable resin 29122. Less than the light intensity. Accordingly, it is possible to prevent an unintended portion (a portion other than the optical waveguide core 29120) of the photocurable resin 29122 from being cured by the reflected light from the substrate 29110. As described above, according to the present embodiment, the optical waveguide core standing upright with respect to the substrate 29110 is formed into the intended shape (only the photocurable resin in the portion where the optical waveguide core is to be produced is cured). Shape).
  • the mask 29210 is removed, and the uncured photocurable resin 29122 is removed by washing with a predetermined developer (solvent) 29230 (FIG. 30D).
  • a predetermined developer (solvent) 29230 FIG. 30D
  • the UV absorbing layer (antireflection film 29140) with which the end portion 291202 of the substrate side 29110 of the optical waveguide core 29120 is in contact is made of a photocurable resin that is a constituent component of the optical waveguide core 29120. It contains as.
  • the optical waveguide core 29120 containing the same component is in contact with the UV absorbing layer. Therefore, the adhesion strength between the end portion 291202 of the substrate side 29110 of the optical waveguide core 29120 and the UV absorption layer (antireflection film 29140) is larger than the adhesion strength between the conventional optical waveguide core and the substrate (silicon substrate or the like) Therefore, it is difficult to cause a problem that the cured optical waveguide core 29120 is washed away with the developer. Also, when removing the mask 29210 prior to development, the cured optical waveguide core 29120 is prevented from peeling off from the antireflection film 29140 for the same reason.
  • a photocurable or thermosetting resin is filled around the optical waveguide core 29120, and the resin is cured by light irradiation or heating to form a clad layer 29130 (FIG. 29).
  • the opto-electric hybrid device 29100 is completed.
  • FIG. 31 is a cross-sectional configuration diagram of an opto-electric hybrid device 29300 according to the second embodiment.
  • This opto-electric hybrid device 29300 specifically represents an optical element (not shown) in the first embodiment, and the same components as those of the opto-electric hybrid device 29100 of the first embodiment have the same reference numerals. Is attached.
  • a light emitting element 29310 is mounted on a substrate 29110.
  • the light emitting element 29310 is, for example, a semiconductor laser, and the antireflection film 29140 is transparent at the emission wavelength.
  • An optical waveguide 29320 including a lower clad layer 29322, a core layer 29324, and an upper clad layer 29326 is formed on the substrate 29110.
  • An antireflection layer 29140 is formed on the optical waveguide 29320.
  • An optical waveguide core 29120 is formed on the antireflection layer 29140 so as to be inclined with respect to the substrate 29110 and is in contact with the antireflection layer 29140.
  • the semiconductor laser is aligned so that the optical axis of the active layer 29312 coincides with the optical axis of the core layer 29324 of the optical waveguide 29320, and the laser light emitted from the active layer 29312 is the core layer 29324 of the optical waveguide 29320.
  • the laser light transmitted through the core layer 29324 of the optical waveguide 29320 is jumped up obliquely upward with respect to the substrate 29110 in the vicinity of the end portion 291202 of the optical waveguide core 29120 on the substrate 29110 side.
  • a grating coupler 29330 for bending the laser light optical path is formed.
  • the laser light diffracted by the grating coupler 29330 is coupled to an optical waveguide core 29120 that stands upright with respect to the substrate 29110.
  • the laser light from the semiconductor laser (light emitting element 29310) jumps obliquely upward with respect to the substrate 29110 in this manner, so that the reflected return light from the optical interface existing in the optical path at the subsequent stage is directed again to the semiconductor laser. Therefore, it is possible to suppress the phenomenon that the semiconductor laser becomes unstable and the operation of the semiconductor laser becomes unstable.
  • the optical waveguide core 29120 formed to stand obliquely with respect to the substrate 29110 is particularly effective in the configuration of such an opto-electric hybrid device.
  • an optical fiber connector 29340 with a reflection mirror in which a reflection mirror 29344 is built in a connector 29342 is installed.
  • the laser light transmitted through the optical waveguide core 29120 is reflected by the reflection mirror 29344 and coupled to the optical fiber 29346.
  • a vertical optical waveguide unit is prepared by forming a vertical optical waveguide on a glass wafer and unitizing it.
  • an opto-electric hybrid device can be produced by incorporating the vertical optical waveguide unit.
  • FIG. 35 shows a vertical optical waveguide unit 3510 in which a vertical optical waveguide composed of a plurality of optical waveguides 3514 and a clad member 3516 is formed on a glass wafer 3512, and an opto-electric hybrid device 3500 so that the glass wafer 3512 faces upward.
  • the upper surface of the glass wafer 3512 constitutes an optical flat surface.
  • the optical connector can be accurately and simply placed on the optical flat surface, and the optical flat surface does not fall below the upper surface 3504 of the opto-electric hybrid device 3500.
  • collision between the optical connector and the top of the electrical connection portion (conductive pin) 3506 for inputting and outputting electrical signals of the opto-electric hybrid device 3500 is avoided. be able to.
  • the alignment of the vertical optical waveguide unit 3510 the position of the optical waveguide 3514 and the position of the light receiver (in the reception mode) or the grating coupler (in the transmission mode) may be aligned using a known image recognition method. It is possible to obtain desired alignment accuracy by adopting such a method.
  • FIG. 36 is a flowchart for explaining an aspect of a method for producing the vertical optical waveguide unit 3510.
  • Glass wafer preparation step 3610 This step is a step of preparing a glass wafer having a size capable of simultaneously producing a large number of vertical optical waveguides thereon.
  • the glass wafer is formed by dicing a glass block with a blade, for example, and the surface thereof has a high degree of flatness and functions as an optical flat surface.
  • Process 3620 for simultaneously creating a large number of vertical optical waveguide units using lithography In this step, a photomask is prepared and a large number of vertical optical waveguides are simultaneously formed on a glass wafer by lithography.
  • the plurality of optical waveguides constituting the vertical optical waveguide are exposed to the optical waveguide forming photocurable resin filled between the glass wafer and the optical waveguide forming photomask through the optical waveguide forming photomask. It is formed by doing. Thereafter, the uncured resin is removed using a solvent or the like, and the optical waveguide forming photomask is removed. A release agent is applied in advance to the surface of the photomask for forming an optical waveguide that is in contact with the photocurable resin for forming an optical waveguide, so that the photomask for forming an optical waveguide can be easily removed. Has been. Thereafter, a clad material is filled and cured to form a clad member, and a vertical optical waveguide is completed.
  • the clad member may be formed by using a clad photocurable resin as the clad material, and exposing the clad photocurable resin through the entire surface exposure or a photomask for forming the clad member.
  • a large number of vertical optical waveguides are simultaneously formed on the glass wafer.
  • self-forming optical waveguides having various shapes can be formed as a plurality of optical waveguides constituting the vertical optical waveguide by devising the shape of the photomask and the like.
  • Glass wafer dicing process 3630 In this step, a glass wafer on which a plurality of vertical optical waveguides are formed is divided into glass wafers on which individual vertical optical waveguides are formed by dicing, and individual vertical optical waveguide units are created.
  • an opto-electric hybrid device can be created (completed) as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 光電気混載デバイスにおいて、光信号の入出力用の縦型光導波路の一端が設けられた光学フラット面に光コネクタを載置し、光電気混載デバイスのインターポーザ等への組み込みを簡便に行えるようにするとともに組み込みの標準化を図る。 光電気混載デバイスは、光電気混載基板の電気信号経路に接続される導電ピン108、光学フラット面を有するとともに透光部118を有する透光部材116、透光部118と光電気混載基板の光導波路との間に光路を形成する複数の自己形成光導波路122を備えている。前記光学フラット面の位置が、導電ピン108の電気接続部110の頂部を下回らないように構成したことにより、光導波路122との間で光信号を伝達する光導波路が設けられた光コネクタを前記光学フラット面に載置した際に、該光コネクタと前記電気接続部の頂部との衝突を回避できる。

Description

光電気混載デバイス及びその製造方法
 本発明は、インターポーザ、AOC(Active Optical Cable)基板等のデータ伝送用のモジュールに組み込まれる信号変換素子として使用されるのに好適な、電気信号を光信号に、光信号を電気信号に変換する光電気混載デバイス及びその製造方法に関する。
 近年、ボード間、コンピュータ間、周辺機器間などの電子機器の接続において、電気配線による信号遅延、発熱、EMI(電磁放射ノイズ)の発生などの問題が表面化しており、電気配線で発生するこのような問題を解決するために、シリコンフォトニクス技術を用いた光インターコネクションが開発されつつある(非特許文献1~3参照)。因みに、シリコンフォトニクストとは、シリコンを材料とする光素子技術を意味しており、光インターコネクションとは、外部機器などからの電気信号を光信号に、また、光信号を電気信号に変換して、変換された光信号又は電気信号を別の外部機器などに伝送し、信号のやり取りを行う技術を意味している。この光インターコネクションは、電気配線の場合のような寄生容量による信号遅延、グランドの不安定性からくる信号劣化、配線から放射されるEMIの放射などを解消する画期的な技術であるが、光信号及び電気信号の入出力のための構成等は、それぞれ独自仕様のものが多く標準化されてはいない。
 光インターコネクションを実現するために、基板上に光回路と電子部品を混載した光電気混載デバイスについて従来から各種の提案がなされている(例えば、特許文献1の「背景技術」の欄、特許文献2の図13等参照)。
 例えば、シリコンフォトニクス技術を用いたチップ型光トランシーバに関連するものとして、Molex社の印刷回路板(PCB)に搭載されているLuxtera社のシリコン・フォトチップがある。このシリコン・フォトチップは、光送受信機であり(非特許文献3;11頁参照)、電気信号及び光信号をチップの上面から入出力するように構成されている。そして、Luxtera社のシリコン・フォトチップとMolex社のPCBとの電気的接続はワイヤボンディングでなされ、また、光信号を送受信するために光ファイバはエポキシ樹脂でシリコンCMOSチップの頂部に直接接着されている(非特許文献2参照)。
 また、光電気混載デバイスを製造するための要素技術として、従来、光硬化性樹脂内に当該樹脂の感光波長の光を伝搬させることによって光が通った部分の樹脂を硬化させ、その部分を光導波路コアとする自己形成光導波路技術が知られている(例えば、特許文献2参照)。このような従来の自己形成光導波路技術により作成された光電気混載デバイス29400の一構成例を図32に示す。基板29410上には、受光素子29450がその受光面を上に向けて実装されている。受光素子29450の上部には、光硬化性樹脂製の光導波路コア29420が、受光素子29450の受光面から上方に向かって基板29410に対して垂直に形成されている。光導波路コア29420の周囲は、クラッド層29430としての樹脂によって覆われている。光導波路コア29420の上側端面の上方には、45度ミラー29460が設置され、クラッド層29430の上部且つ45度ミラー29460の側方には、光ファイバ29470が設置されている。このような構成において、光ファイバ29470を伝送されてきた光信号は、45度ミラー29460によって光路を基板29410垂直方向に折り曲げられて光導波路コア29420に入射され、光導波路コア29420を通って受光素子29450に受光される。
 図33A~図33Bは、上記光硬化性樹脂製光導波路コア29420の製造方法の例を示す図である(特許文献2の図2を参照)。まず、基板(受光素子は不図示)29410上に光硬化性樹脂29422を供給し、その上に光導波路コア形成用のマスク29510を配置する。マスク29510は、ガラス板29514の一方の面に開口部29512を除いてクロム膜29516を形成したものである。次に、マスク29510を介して光硬化性樹脂29422にその感光波長の光(例えばUV光)29520を照射する(図33A)。これにより、開口部29512を通過した光が通った部分の光硬化性樹脂が硬化して、光導波路コア29420が形成される(図33B)。次に、未硬化の光硬化性樹脂29422を現像液で洗い流して除去し、更に光導波路コア29420の周囲にクラッド層用の樹脂29430を充填する。
特表2009-536362号公報 特開2008-299180号公報
"Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate", OPTICS EXPRESS Vol. 20, No, 26 (2012/12/10) B256-B263 "The Luxtera CMOS Integrated Photonic Chip in a Molex Cable",URL:http://www.chipworks.com/blog/technologyblog/2012/12/03/the-luxtera-cmos-integrated-photonic-chip-in-a-molex-cable/ "Blazar 40 GbpsOptical Active Cable", URL:http://www.datcominc.com/picture_library/upload/Luxtera/Blazar%2040Gbps%20Optical%20Active%20Cable.pdf
 上記のように、非特許文献2には、シリコンフォトニクス技術を用いて作成したチップ型光トランシーバをPCBに搭載し、AOC基板として用いることが開示されている。しかしながら、このチップ型光トランシーバは、光信号を送受信するために光ファイバがエポキシ樹脂でシリコンCMOSチップの頂部に直接接着されており、別の入出力形式のPCBにはそのまま適用することはできない。そのため、別の形式のPCBに搭載する場合には、搭載するPCBに適合した入出力構造を採用する必要がある。そこで、信号変換素子として機能するチップ型光トランシーバの入出力構造の仕様を標準化することが考えられるが、入出力構造の標準化にあたっては、光電気混載デバイスの光学接続のための構成を簡素化して、光学接続を正確且つ簡便に行うことができるようにする必要がある。
 また、光電気混載デバイスに関しては、基板上に搭載された電子部品の湿度や水分に対する信頼性を確保するために、例えば、ガラス製のカバーで基板上の電子部品の全体を覆って封止することが考えられる。しかしながら、ガラス製のカバーで基板上の電子部品の全体を覆った場合、電子部品の放熱性が悪くなるという問題があり、放熱性に優れた光電気混載デバイスを簡便な方法で製造することが課題となる。
 また、光電気混載デバイスの製造において、自己形成光導波路技術を用いて光導波路コアを基板に対して斜めに(基板に対して傾けて)形成しようとした場合には、図34に示すように、光硬化性樹脂29422内を斜めに伝搬させた感光波長の光29620が基板29410の表面で反射されて、この反射光29622によって、本来光導波路コアが形成されるべきでない部分の光硬化性樹脂までもが意図せず硬化してしまう、という問題が発生する可能性がある。そこで、基板上部に光硬化性樹脂からなる光導波路コアを形成するに際し、光硬化性樹脂が基板反射によって光導波路コア以外の不必要な箇所で硬化してしまうのを防止する必要がある。
 上述した課題を解決するために、本発明の光電気混載デバイスは、データ伝送用のモジュールに組み込まれる信号変換素子として使用されるのに好適な構成を有している。なお、該光電気混載デバイスは、光送信タイプ、光受信タイプ、光送受信タイプの3種を包含するものである。
 光電気混載デバイスの第1の基本構成は、前記光電気混載基板の上に設けられ前記光電気混載基板の光信号の入出力を担う特定部分を除いて覆う封止構造、光学フラット面を有し前記光電気混載基板の光信号の入出力を担う特定部分に光路を形成する縦型光導波路を備えるものであり、前記縦型光導波路との間で光信号を伝達する光導波路が設けられた光コネクタを前記縦型光導波路の前記光学フラット面に正確且つ簡便に載置し得るものである。
 そして、光電気混載デバイスの第2の基本構成は、光電気混載基板の上に設けられ前記光電気混載基板の光信号の入出力を担う特定部分を除いて覆う封止構造、前記特定部分を覆うように設置され光学フラット面を有するとともに透光部を有する透光部材、前記透光部材の前記透光部と前記光電気混載基板の光導波路との間に光路を形成する縦型光導波路を備えるものであり、前記縦型光導波路との間で光信号を伝達する光導波路が設けられた光コネクタを前記透光部材の前記光学フラット面に正確且つ簡便に載置し得るものである。
 光電気混載デバイスにおける放熱性の改善という上述の課題を解決するために、本発明の光電気混載デバイスに関する一態様は、前記透光部材が前記電子回路の上面の全てを覆うことがないように設置されているものである。
 また、放熱性の改善という上述の課題を解決するために、本発明の光電気混載デバイスに関する他の一態様は、前記縦型光導波路のクラッドを構成する樹脂層が、前記電子回路上に開口を有して前記光電気混載基板上の少なくとも一部分を覆うものである。
 本発明の光電気混載デバイスに関する一態様は、前記透光部材の位置を安定化するために、前記透光部材を支持する支持部材が前記光電気混載基板上に設置されているものであり、前記支持部材は、前記縦型光導波路のコアと同じ材料で構成することができる。
 本発明の光電気混載デバイスに関する他の一態様は、前記透光部材の位置を安定化するために、前記透光部材が、前記光電気混載基板上に設置されているスペーサから張り出す形で設置されているものである。
 光電気混載デバイスをデータ伝送用のモジュールに載置する際のアライメントを容易に行うための一構成として、光電気混載デバイスの透光部材にアライメント用のマーカー穴を設け、前記マーカー穴と前記データ伝送用のモジュールに設けられた嵌合穴とを治具を用いて機械的に位置合わせすることで前記光電気混載デバイスと前記データ伝送用のモジュールとの正確なアライメントができる。なお、光電気混載デバイスの透光部材の端部が前記光電気混載デバイスを前記データ伝送用のモジュールに載置するためのアライメントとして使用されるよう構成することで前記光電気混載デバイスと前記データ伝送用のモジュールとのアライメントを行うことも可能である。
 また、上記のような第1及び第2の基本構成に、前記封止構造を貫通して前記光電気混載基板の電気信号経路に接続される1又は複数の導電部材(導電ピン)、前記1又は複数の1又は複数の導電部材の頂部に設けられた電気接続部(半田ボールやバンプ等)に係る構成を付加し、前記光学フラット面の位置が、前記電気接続部の頂部を下回らないように構成すれば、光コネクタを前記光学フラット面に載置した際に、該光コネクタと前記電気接続部の頂部との衝突を回避するようにできる。
 そして、このような光電気混載デバイスについて、以下のような信号変換素子としての適用形態が可能である。
(A)データ伝送用のモジュールがインターポーザ又はAOC基板の場合に、前記フラット面の位置が、前記電気信号経路に接続される1又は複数の前記導電部材の頂部にそれぞれ設けられた1又は複数の電気接続部の頂部を下回らない構成として、前記縦型光導波路(複数の光導波路)との間で光信号を伝達する光導波路が設けられた光コネクタを前記光学フラット面に載置する際に、前記1又は複数の電気接続部に一括接続され電気信号を外部に入出力するブリッジ基板の上面と前記光コネクタとの衝突を回避する。
(B)データ伝送用のモジュールが光信号及び電気信号の入出力を同一面で行うデータ伝送用のモジュール、例えば、光回路と電気回路とを同一基板内に形成した光電気インターポーザ/プリント基板の場合に、光学フラット面の位置を、前記電気信号経路に接続される1又は複数の前記導電部材の頂部にそれぞれ設けられた1又は複数の電気接続部の頂部の高さに一致するように構成して、光信号及び電気信号の入出力を同一面で行う。
 光電気混載デバイスの前記縦型光導波路に含まれる光導波路の形状として、円筒形状や斜円筒形状を採用できるが、斜円筒形状を採用した場合には、光素子の配置の自由度を高めることができる。また、光電気混載基板の光導波路に向かって直径が絞られていくテーパ形状、又は、前記光学フラット面に向かって直径が絞られていく逆テーパ形状を採用することができ、前者は、特に、受光素子に光を集光するのに適した形状であり、後者は、光学フラット面に載置される光コネクタの光ファイバに光を集光するのに適した形状となっている。更に、テーパ(又は、逆テーパ)の軸を傾斜させて、光素子の配置の自由度を高め、より効率的な導光を行うことも可能である。
 また、光硬化性樹脂が基板反射によって光導波路コア以外の不必要な箇所で硬化してしまう可能性があるという上述の課題を解決するために、本発明の光電気混載デバイスに関する一態様は、前記光導波路コアの前記光導波路側の端部と接して形成された、前記光硬化性樹脂の感光波長の光に対する反射防止層を備えているものである。そして、前記反射防止層は、前記光硬化性樹脂の感光波長の光を吸収する光吸収材料を成分として含有する光吸収層とすることができ、前記光吸収層は、前記光硬化性樹脂を成分として更に含有することができる。なお、前記反射防止層は、前記光源の発光波長又は前記受光器の感度波長に対して透明とすることができる。
 上記光電気混載デバイスの製造方法の一態様は、概略、以下のとおりである。
 まず、ベースとなる光電気混載基板とフォトマスクとを準備し、前記フォトマスクを前記光電気混載基板に対しアライメントを行い設置する。次に、前記光電気混載基板と前記フォトマスクとの間に形成される空間に光の照射によって硬化する光硬化性樹脂を供給し、前記光硬化性樹脂を露光して縦型光導波路を形成する。次に、未硬化の光硬化性樹脂を除去する。最後に、フォトマスクを取り外す。
 また、上記光電気混載デバイスの製造方法の他の一態様は、概略、以下のとおりである。
 まず、ベースとなる光電気混載基板と透光部及び光学フラット面を有する透光部材とを準備し、前記光電気混載基板に対し前記透光部材のアライメントを行い、前記透光部材を設置する。次に、前記光電気混載基板と前記透光部材との間に形成される空間に光の照射によって硬化する光硬化性樹脂を供給し、前記光硬化性樹脂を露光して前記透光部と前記光導波路との間に縦型光導波路を形成する。最後に、未硬化の光硬化性樹脂を除去する。なお、前記透光部材を、前記縦型光導波路を形成するための露光用マスクとして用い、露光後に剥離せずに残し、その光学フラット面に光コネクタを正確且つ簡便に載置することができる。
 また、前記電気信号経路に接続される1又は複数の導電部材及び前記導電部材の頂部にそれぞれ設けられた1又は複数の電気接続部を備える構成とし、前記光学フラット面の位置が、前記電気接続部の頂部の高さを下回らないようにして、前記縦型光導波路との間で光信号を伝達する光導波路が設けられた光コネクタを前記光学フラット面に載置する際に、前記1又は複数の電気接続部に一括接続され電気信号を外部に入出力するブリッジ基板と前記光コネクタとの衝突を回避している。
 上記光電気混載デバイスの製造方法に関し、前記縦型光導波路を複数の光導波路を含む構成とすることができ、複数の光導波路を形成する工程において、光導波路の形状を、円筒形状や斜円筒形状、光電気混載基板の光導波路に向かって直径が絞られていくテーパ形状、又は、光学フラット面に向かって直径が絞られていく逆テーパ形状に形成することもでき、また、テーパ形状又は逆テーパ形状をその光軸を傾斜させて形成することもできる。
 また、透光部材を準備する工程で、光電気混載デバイスとデータ伝送用のモジュールとの位置合わせを行うためのアライメント用のマーカー穴を作成することもできる。
 放熱性等の改善という上述の課題を解決するために、本発明の光電気混載デバイスの製造方法に関する一態様は、前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に光の照射によって硬化する光硬化性樹脂を供給し、前記透光部材の上部から光を照射し、前記透光部を通過した光により前記光硬化性樹脂を露光して前記透光部と前記光導波路との間に縦型光導波路を形成するとともに、前記電子回路の周縁部分に相当する前記光硬化性樹脂を露光し、未硬化の光硬化性樹脂を除去するものである。
 放熱性等の改善という上述の課題を解決するために、本発明の光電気混載デバイスの製造方法に関する他の一態様は、縦型光導波路のコア部分を形成するためのコア用の光硬化性樹脂を供給し、前記コア用の光硬化性樹脂を露光して前記透光部と前記光導波路との間に前記縦型光導波路のコア部分を形成し、未硬化の前記コア用の光硬化性樹脂を除去した後、前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に、前記縦型光導波路のクラッド部分を形成するためのクラッド用の光硬化性樹脂を供給し、前記クラッド部分と前記電子回路の周縁に相当する前記クラッド用の光硬化性樹脂を露光し、未硬化の前記クラッド用の光硬化性樹脂を除去するものである。
 放熱性等の改善という上述の課題を解決するために、本発明の光電気混載デバイスの製造方法に関する他の一態様は、前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に、縦型光導波路のコア部分を形成するためのコア用の光硬化性樹脂を供給し、前記コア部分と前記電子回路の周縁の一部に相当する前記コア用の光硬化性樹脂を露光し、未硬化の前記コア用の光硬化性樹脂を除去した後、前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に、前記縦型光導波路のクラッド部分を形成するためのクラッド用の光硬化性樹脂を供給し、前記クラッド部分と前記電子回路の周縁の残部に相当する前記クラッド用の光硬化性樹脂を露光し、未硬化の前記クラッド用の光硬化性樹脂を除去するものである。また、前記縦型光導波路の部分は光を透過し前記電子回路上の前記開口となる部分は光を遮蔽するように構成されたマスクを用いて露光を行うことができ、前記電子回路上の前記開口の周囲の硬化後の光硬化性樹脂が、前記電子回路の側面を覆って前記電子回路の底面を封止するようにできる。
 そして、マスクの形状を工夫すること等により、縦型光導波路に含まれる光導波路の形状を、円筒形状や斜円筒形状、光電気混載基板の光導波路に向かって直径が絞られていくテーパ形状、又は、光学フラット面に向かって直径が絞られていく逆テーパ形状に形成することもでき、また、テーパ形状又は逆テーパ形状をその光軸を傾斜させて形成することもできる。
 前記透光部材の位置を安定化するために、本発明の光電気混載デバイスの製造方法に関する一態様は、前記光電気混載基板上にスペーサを配置し、前記透光部材は前記スペーサから張り出す形で配置されるようにされている。そして、前記透光部材の張り出した端部が光照射されるように前記光硬化性樹脂を露光することによって、前記透光部材の前記端部を支持する支持部材を前記縦型光導波路と同時に形成することができ、前記透光部材の前記スペーサと接している部分を光照射して当該部分に入り込んだ前記光硬化性樹脂を硬化させることによって、前記縦型光導波路の形成と同時に前記透光部材と前記スペーサを前記光硬化性樹脂により固着することもできる。
 前記透光部材の位置を安定化するために、本発明の光電気混載デバイスの製造方法に関する他の一態様は、前記透光部材が前記光硬化性樹脂に接して前記光電気混載基板上に所定高さで保持され、前記透光部材の前記縦型光導波路以外の部分が光照射されるように前記光硬化型樹脂を露光することによって、前記透光部材を前記光電気混載基板上に支持する支持部材を前記縦型光導波路と同時に形成するように構成されている。
 また、上記光電気混載デバイスの製造方法の他の一態様は、ベースとなる光電気混載基板の上に、前記光電気混載基板の光信号の入出力を担う特定部分を除いて覆う封止構造を設置し、ガラスウェハーを準備し、フォトマスクを準備し、前記ガラスウェハーと前記フォトマスクとの間に形成される空間に光硬化性樹脂を供給して前記光硬化性樹脂を前記フォトマスクを介して露光することにより前記ガラスウェハー上に光導波路を複数同時に形成し、クラッド部材を充填・硬化して、前記ガラスウェハー上に縦型光導波路を複数形成し、前記縦型光導波路が複数形成されたガラスウェハーをダイシングし、個々の縦型光導波路ユニットを形成し、前記縦型光導波路ユニットを、前記縦型光導波路が形成された面の裏面が光学フラット面として上面になるような状態で前記光電気混載基板の光信号の入出力を担う前記特定部分に組み込むように構成されている。
 本発明の光電気混載デバイスの前記第1及び第2の基本的構成によれば、縦型光導波路(複数の光導波路)との間で光信号を伝達する光導波路が設けられた光コネクタを、光学フラット面に正確且つ簡便に載置し得る。
 また、本発明の光電気混載デバイスは、放熱性の改善や透光部材の位置の安定化に優れた効果を発揮することができる。
 本発明の光電気混載デバイスの前記第1及び第2の基本的構成に、前記封止構造を貫通して前記光電気混載基板の電気信号経路に接続される1又は複数の導電部材(導電ピン)、前記1又は複数の1又は複数の導電部材の頂部に設けられた電気接続部(半田ボールやバンプ等)に係る構成を付加し、前記光学フラット面の位置が、前記電気接続部の頂部を下回らない構成とすれば、光コネクタを前記光学フラット面に載置した際に、該光コネクタと前記電気接続部の頂部との衝突を回避するようにできる。
 また、光電気混載デバイスが組み込まれるデータ伝送用のモジュールが如何なる形式のインターポーザ又はAOC基板であっても、光学的接続部及び電気的接続部を共通の仕様として標準化することにより、光電気混載デバイスを基板毎に改変することなく共通に組み込むことができる。
 さらに、光学フラット面の位置を、導電部材の頂部に設けられる電気接続部の頂部の高さに一致するように構成することにより、光回路と電気回路とを同一基板内に形成した光電気インターポーザ/プリント基板に、前記光電気混載デバイスを、その入出力面が前記光電気インターポーザ/プリント基板の入出力面に対向するように組み込んだ場合に、前記光電気混載デバイスと前記データ伝送用のモジュールを整合させることができる。
 光電気混載デバイスの透光部材にアライメント用のマーカー穴を設け、前記マーカー穴と前記データ伝送用のモジュールに設けられた嵌合穴とを治具を用いて機械的に位置合わせすることで、光電気混載デバイスをデータ伝送用のモジュールに載置する際のアライメントを正確且つ簡便に行うことができる。
 また、光電気混載デバイスの透光部材の端部を前記光電気混載デバイスを前記データ伝送用のモジュールに載置するためのアライメントとして使用することで前記光電気混載デバイスと前記データ伝送用のモジュールとのアライメントを正確且つ簡便に行うことができる。
 光電気混載デバイスの光導波路の形状として、光電気混載基板の光導波路に向かって直径が絞られていくテーパ形状、又は、前記光学フラット面に向かって直径が絞られていく逆テーパ形状を採用すれば、受光素子に光を集光することや、光コネクタの光ファイバに光を集光することを効率的に行うことができる。また、テーパ(又は、逆テーパ)の軸を傾斜させれば、光素子の配置の自由度を高め、より効率的な導光を行うことも可能である。
 また、軸が傾斜した導波路を有する光電気混載デバイスに反射防止層を設けることにより、本来光導波路コアが形成されるべきでない部分の光硬化性樹脂までもが意図せず硬化してしまうという問題を解消し得る。
 また、本発明の光電気混載デバイスの製造方法の一態様によれば、自己形成導波路形成法により光導波路を作成することから、光導波路との正確な位置な整合を容易にとることができるとともに、その形状・傾きも適宜設定でき、また、剥離せずに残した透光部材を、光コネクタを載置する場合の光学フラットとして利用することができることから、製造工程を簡素化できる。
 また、本発明の光電気混載デバイスの製造方法の一態様によれば、透光部材を準備する工程で、光電気混載デバイスとデータ伝送用のモジュールとの位置合わせを行うためのアライメント用のマーカー穴を作成することもできるから、製造工程を簡素化できる。
 また、本発明の光電気混載デバイスの製造方法の一態様によれば、放熱性の改善や透光部材の位置の安定化に優れた効果を発揮する光電気混載デバイスを簡便な方法で製造することができる。
光電気混載デバイスの一態様の透視模式図である。 光電気混載デバイスの他の一態様の透視模式図である。 インターポーザ等の基板と光電気混載デバイスとをアライメント治具を用いて機械的に位置合わせするための構造を説明するための説明図である。 光電気混載デバイスの光送信側の断面構造を説明するための模式図である。 光電気混載デバイスの光受信側の断面構造を説明するための模式図である。 MZIタイプの光変調器の構造の例示図である。 導波路結合型のMSM Ge PDの構造の例示図である。 光導波路の変形形状の説明図である。 光電気混載デバイスをインターポーザに組み込む態様の説明図である。 光電気混載デバイスをインターポーザに組み込む態様の説明図である。 光電気混載デバイスをインターポーザに組み込む態様の説明図である。 光電気混載デバイスをAOC基板に組み込む態様の説明図である。 光電気混載デバイスを光電気インターポーザ/プリント基板に組み込む態様の説明図である。 光電気インターポーザ/プリント基板の実装構造の例示図である。 光電気混載デバイスの製造工程の一態様の概略を示すフローチャートである。 光電気混載デバイスの製造工程の他の一態様の概略を示すフローチャートである。 光回路と電子回路の集積化方法の概略を説明する説明図である。 光電気混載デバイスの透光部材の透光部の断面形状を説明するための模式図である。 光電気混載デバイスの一態様の製造方法を示すフローチャートである。 光電気混載デバイスの一態様の製造方法の第1工程を示す図である。 光電気混載デバイスの一態様の製造方法の第2工程を示す図である。 光電気混載デバイスの一態様の製造方法の第3工程を示す図である。 光電気混載デバイスの一態様の製造方法の第4工程を示す図である。 光電気混載デバイスの一態様の製造方法の第5工程を示す図である。 光電気混載デバイスの一態様の製造方法の第6工程を示す図である。 光電気混載デバイスの一態様の製造方法の第7工程を示す図である。 光電気混載デバイスの一態様の製造方法の第8工程を示す図である。 光電気混載デバイスの一態様の製造方法の第9工程を示す図である。 光電気混載デバイスの一態様の製造方法の第10工程を示す図である。 光電気混載デバイスの一態様の製造方法の第11工程を示す図である。 光電気混載デバイスの一態様の製造方法の第12工程を示す図である。 光電気混載デバイスの一態様の製造方法の第13工程を示す図である。 第1実施形態に係る光電気混載デバイス29100の断面構成図である。 第1実施形態に係る光電気混載デバイス29100の製造方法を説明する図である。 第1実施形態に係る光電気混載デバイス29100の製造方法を説明する図である。 第1実施形態に係る光電気混載デバイス29100の製造方法を説明する図である。 第1実施形態に係る光電気混載デバイス29100の製造方法を説明する図である。 第2実施形態に係る光電気混載デバイス29300の断面構成図である。 従来の光電気混載デバイス29400の断面構成図である。 従来の光電気混載デバイス29400の製造方法を説明する図である。 従来の光電気混載デバイス29400の製造方法を説明する図である。 従来の光電気混載デバイスの断面構成図である。 縦型光導波路ユニットを組み込んで光電気混載デバイス3500を完成させる態様の概略を示す模式図である。 縦型光導波路ユニットの作成方法の一態様を説明するためのフローチャートである
 本発明は、典型的には、インターポーザ、AOC(Active Optical Cable)基板、今後の開発が期待される光回路と電気回路とを同一基板内に形成した光電気インターポーザ/プリント基板等のデータ伝送用のモジュールに組み込まれる信号変換素子として使用されるのに好適な光電気混載デバイスの構造、及びその製造方法に特徴を有するものであり、光信号を入出力するために縦型光導波路を利用し、また、該縦型光導波路を自己形成光導波路技術を用いて作成し、さらに、光学フラット面を利用すること等により、上記インターポーザ等への組み込みを簡便化し、標準化を容易に行えるようにしたものである。
 以下、光電気混載デバイスの構造、適用事例、及び製造方法等について説明する。
〔光電気混載デバイスの構造〕
 信号変換素子として使用されるのに好適な光電気混載デバイスには、光送信タイプ、光受信タイプ、光送受信タイプの3種が存在する。
 図1Aは、光送受信タイプの光電気混載デバイス100の透視模式図であり、実際は5×5mm程度のスケールを有するものである。シリコン基板102内には、不図示の光導波路、受光器、光変調器等がシリコンフォトニクス技術を用いて形成されており、シリコン基板102上には、光変調の制御やレーザダイオード112の制御を行うドライバICや受光信号の増幅等を行うレシーバICを含むIC回路104や不図示の電気配線等が設けられており、シリコン基板(光回路基板)102、IC回路104、電気配線等により光電気混載基板を形成している。封止構造106は、例えば、ガラス材料で作成されており、シリコン基板102の光信号の入出力を担う特定部分を除き、シリコン基板102を覆っている。また、封止構造106は、部材の表裏を貫通する複数の孔を備え、該孔内に導電ピン108が嵌合されているとともに、該導電ピン108の表面頂部には半田バンプ110が形成されている。
 表面が光学フラット面を形成するとともに透光部118を有する透光部材116が、前記特定部分を覆うように前記封止構造106上に設けられ、シリコン基板100、封止構造106、透光部材116で囲まれる空隙114が形成されている。この空隙114に光硬化性樹脂を充填し、透光部材116の上方から光(例えば、紫外光)を照射することにより、透光部材116の透光部118を通過した光により前記光硬化性樹脂の光通過部分を硬化させて自己形成導波路(縦型光導波路)を形成する。このようにして、前記透光部と前記光導波路との間に複数の光導波路122が形成され、未硬化の樹脂を除去すれば、空隙114内に複数の光導波路122が残されることになる(光導波路の製造方法の詳細は後述)。その後、光導波路の周囲を覆うようにクラッド部材(不図示)が形成される。なお、透光部材116は、例えば、ガラス基板の表面に光遮蔽性のクロム膜がコーティングされたものであり、該クロム膜の所定個所に所定形状を有する開口部をエッチングプロセス等で形成することにより、透光部118を形成するものである。
 透光部材116のアライメント用のマーカー穴120は、上記のように開口部をエッチングで形成する際に、ガラス基板をエッチングして形成されたものであり、透光部118との位置の整合が取られていることから、アライメント用のマーカー穴120を用いて、インターポーザ等の基板に対してアライメント治具を用いて光電気混載デバイス100を機械的に位置合わせすることができる。
 図1Bに示される構成は、図1Aの構成とは異なり、シリコン基板100、封止構造106、不図示のフォトマスクで囲まれる空隙114が形成されている。そして、この空隙114に光硬化性樹脂を充填し、フォトマスクの上方から光(例えば、紫外光)を照射することにより、前記フォトマスクを通過した光により前記光硬化性樹脂の光通過部分を硬化させて自己形成導波路(縦型光導波路)を形成する。このようにして、前記フォトマスクと前記光導波路又は受光器との間に複数の光導波路122が形成され、未硬化の樹脂を除去すれば、空隙114内に複数の光導波路122が残されることになる(光導波路の製造方法の詳細は後述)。その後、光導波路の周囲を覆うようにクラッド部材(不図示)が形成され、フォトマスクが取り外されて光電気混載デバイスが完成する。なお、フォトマスクは、例えば、ガラス基板の表面に光遮蔽性のクロム膜がコーティングされたものであり、該クロム膜の所定個所に所定形状を有する開口部をエッチングプロセス等で形成されたものである。
 図2を用いて、光電気混載デバイスを搭載するインターポーザ等の基板200と光電気混載デバイス220とをアライメント治具240を用いて機械的に位置合わせするための構造を説明する。図2(a)は、光電気混載デバイス220を基板200に搭載し位置合わせが完了した状態の平面図であり、図2(b)、(c)は、アライメント治具240を用いた機械的な位置合わせを説明するための説明図である。まず、光電気混載デバイス220を基板200に仮置きし、アライメント治具240の脚部242を、基板200に設けた嵌合穴202に挿入する。脚部242の嵌合穴202への挿入が進行していくと、アライメント治具240の半球状の突部244の表面の一部が、光電気混載デバイス220のアライメント用のマーカー穴226の縁部の一部に当接する。更に、脚部242の嵌合穴202への挿入が進行していくと、アライメント治具240の半球状の突部244により、光電気混載デバイス220のアライメント用のマーカー穴226の縁部が押されていき、最終的に突部244によりマーカー穴226の位置が決定されて(図2(c)参照)、基板200と光電気混載デバイス220との位置が整合する。その後、基板200に光電気混載デバイス220が固着される。なお、上記のような機械的手段によるアライメントに代えて、光電気混載デバイスに設けた光学指標等を用いた光学的な手法によるアライメントも可能であり、その場合には、アライメント治具240、基板200の嵌合穴202、光電気混載デバイス220のアライメント用のマーカー穴226は不要である。
 光電気混載デバイス内部の断面構造や、その作動態様等につき説明する。
 図3及び図4は、光電気混載デバイス内部の断面構造を説明するための模式図であり、図3は、光送信部分の断面構造を示すもの、図4は、光受信部分の断面構造を示すものである。
 光送信部分の断面構造を示す図3に基づき、光信号送信の際の作動態様を説明する。半導体レーザ326からの出力光は、不図示のスポットサイズ変換器、光導波路312を介して光変調器314に入力され、光変調器314により変調された光信号が出力される。該変調された光信号は、光導波路312を介してグレーティングカプラ316に到達し、該グレーティングカプラ316で回折により光軸が変換されて、光導波路318を介して外部に出力される。なお、導電ピン320及び電気配線322を介して外部より与えられる電気信号は、光変調器314及び半導体レーザ326を制御するドライバIC324に入力され、変調制御信号(電気信号)として、電気配線322を介して光変調器314に供給されるものである。なお、光導波路312、光変調器314、グレーティングカプラ316等は、シリコン基板310内に、シリコンフォトニクスト技術により作成されるものである。
 次に、光受信部分の断面構造を示す図4に基づき、光信号受信の際の作動態様を説明する。外部より与えられる光信号は、光導波路412を介して面入射型のフォトダイオード414で直接受光され、電気信号に変換されて電気配線416を介してレシーバIC418に入力される。レシーバIC418は、入力電気信号の信号増幅や、振幅制限/波形処理等の各種処理を行い、処理後の電気信号を電気配線416、導電ピン420を介して外部に出力する。なお、面入射型のフォトダイオード414は、例えば、ゲルマニウム(Ge)をSi上に直接エピタキシャル成長させて作成することができ、また、光信号の受信に関して、面入射型のフォトダイオードで直接受光する代わりに、グレーティングカプラを用いて回折により光軸を変換した後、光導波路を介して面入射型のフォトダイオードで受光したり、面入射型のフォトダイオードに代えて、光導波路から信号を取り込むタイプのフォトダイオード(導波路結合型PD:後述)を用いて受光してもよい。なお、フォトダイオード414等は、シリコン基板410内に、シリコンフォトニクスト技術により作成されるものである。なお、光受信部分のレシーバIC418の位置は、入力された光信号の減衰を提言するため、光送信部分のドライバ324の位置に比べ、光導波路412側へ近づけて配置される。
 ここで、上述した光変調器314や導波路結合型PDについて、その具体例を、非特許文献1に開示された図5及び図6を用いて簡単に説明しておく。図5は、Siのpn接合への電気的なバイアスによりキャリアプラズマ効果(キャリア濃度によってSiの屈折率が変化する効果)を発生させ、これによる光の位相変調をマッハ-ツェンダー型干渉計(Mach-Zehnder Interferometer:「MZI」と略称)で強度変調に変換する、MZI型光変調器500の構造例を示すものである。また、図6は、通信波長帯の光を吸収するゲルマニウム(Ge)を用いた、導波路結合型の金属-半導体-金属・ゲルマニウム・フォトダイオード(MSM Ge PD)600の構造例を示すものである。なお、光導波路は、例えば、SiO2層内に形成された縦横数百nm程度のSi導波路である。
 これまで、光電気混載デバイスの光導波路は、図7(a)に示されるような円筒状の形状を有するものとしてきたが、図7(b)~(f)に示されるような変形形状を有する光導波路を採用することもできる。図7(b)~(f)により、光電気混載デバイスの光導波路700の変形形状を説明する(このような光導波路の製造方法の詳細は後述)と、斜円筒形状(図7(b))、若しくは、光電気混載基板の光導波路に向かって直径が絞られていくテーパ形状(図7(c))、又は、前記光学フラット面に向かって直径が絞られていく逆テーパ形状(図7(d))を採用することができ、テーパ形状は、特に、受光素子に光を集光するのに適した形状であって光受信部分に用いられ、逆テーパ形状は、光学フラット面に載置される光コネクタの光ファイバに光を集光するのに適した形状となっていることから、光送信部分に用いられる。更に、テーパの軸を傾斜させた形状(図7(e))や、逆テーパの軸を傾斜させた形状(図7(f))を採用すれば、光素子の配置の自由度を高め、より効率的な導光を行うことも可能である。
 以上、光送受信タイプの光電気混載デバイスを説明したが、光送信タイプ、光受信タイプの光電気混載デバイスは、それぞれ、光送受信タイプと同様の5×5mm程度のスケールを有するものであり、光送信タイプの光電気混載デバイスは、光送受信タイプの光電気混載デバイスから光受信部に相当する構成(図4参照)を省いたもの、また、光受信タイプの光電気混載デバイスは、光送受信タイプの光電気混載デバイスから光送信部に相当する構成(図3参照)を省いたものである。
〔光電気混載デバイスの適用事例〕
 光電気混載デバイスは、インターポーザ、AOC(Active Optical Cable)基板等のデータ伝送用のモジュールに組み込まれて信号変換素子として使用されるのに好適な部品であり、以下、光電気混載デバイスが組み込まれたデータ伝送用のモジュールを数例説明する。
 なお、以下の説明においては、光学フラット面を設けた透光部材を備えた光電気混載デバイスを適用した態様が例示されているが、透光部材を設けることなく縦型光導波路に光学フラット面を設けた光電気混載デバイスも、同様に、適用することができることに留意されたい。
 図8(a)~(c)は、光電気混載デバイスをインターポーザに組み込む態様を表すものである。ここで、インターポーザとは、例えば、上面から光信号を入力し下面から電気信号を出力したり、下面から電気信号を入力し上面から光信号を出力するための中継器(中継基板)を意味しており、略10mm角程度のスケールを有するものである。図8(b)からも明らかなように、インターポーザ800の内部には、上面から下面に延びる電気配線802が複数配設され、それぞれの電気配線802の両端に端子804、806が設けられている。光電気混載デバイス820を構成する導電ピン822、半田バンプ824、半導体レーザ826、ドライバIC828、光導波路830、ガラスマスク(透光部材)832、光回路(光導波路、光変調器等)834は、その作動態様も含め上述したところと同様のものである。
 光電気混載デバイス820をインターポーザ800に組み込む際には、光電気混載デバイス820の上面がインターポーザ800の上面側となるように、光電気混載デバイス820をインターポーザ800に嵌合し、光電気混載デバイス820とインターポーザ800とに対し、例えば、図2(b)、(c)に示されるような、アライメント治具23を用いた機械的な位置合わせを行った上で、両者を固着する。次に、光電気混載デバイス820の半田バンプ824とインターポーザ800の上面側端子804とを不図示のフレキシブルなブリッジ回路で電気的に接続する。その後、図8(c)に示されるように、光コネクタ840の嵌合ピン842をインターポーザ800の嵌合穴810に嵌合することにより、光コネクタ840と光電気混載デバイス820との位置合わせが完了し、光導波路830と光コネクタ840に設けられた光ファイバ846の位置が整合して、光導波路からの射出光を45度ミラー844を介して光ファイバ846に入射させることが可能となる。なお、嵌合ピン842と嵌合穴810を用いる構成に代えて、図2における光電気混載デバイス220のアライメント用のマーカー穴226を、光コネクタを透光部材116の光学フラット面に載置する際の位置決め部材として利用することもできる。
 光コネクタ840は、光電気混載デバイス820に設けられたガラスマスク832のフラット面に載置され、ガラスマスク832の厚さが半田バンプ824の頂部を下回らないように設定されていることから、光コネクタ840が半田バンプ824の頂部(頂部に設けたブリッジ基板)に接触することはなく、両者の衝突が回避される構成となっている。
 なお、光電気混載デバイス820とインターポーザ800との電気的接続は、上記のようにフレキシブルなブリッジ回路を用いる外、ワイヤ・ボンディング(WB)やシリコン貫通ビア(Through-silicon Via:TSV)を用いて行われてもよい。
 図9は、光電気混載デバイス920をAOC(Active Optical Cable)基板900に組み込んだ態様を表すものである。光電気混載デバイス920は、図8の光電気混載デバイス820と同様の構成を有するものであり、AOC基板900は、端面に入出力電気端子が設けられている点で、インターポーザ800と構成上の相違はあるものの、光電気混載デバイス920とAOC基板900との電気的接続態様は、図8の光電気混載デバイス820とインターポーザ800との接続と特に変わるところはなく、基本的な接続態様に変更はない。
 図10は、図8、図9と異なり、電気配線1002と光配線(光導波路)1004とを同一基板内に形成し光信号及び電気信号の入出力を基板上面で行う光電気インターポーザ/プリント基板1000に、光電気混載デバイス1020の入出力面を前記光電気インターポーザ/プリント基板1000の入出力面に対向させて組み込んだ態様を表すものである。光電気混載デバイス1020を構成する導電ピン1022、半田バンプ1024、半導体レーザ1026、光導波路1028、ドライバIC1030、光変調器1032、グレーティングカプラ1034、光導波路1036、ガラスマスク(透光部材)1038は、その作動態様も含め上述したところと同様のものである。
 図10のケースでは、ガラスマスク(透光部材)1038の光学フラット面の位置を、導電ピン1022の頂部に設けられた半田バンプ1024の頂部の高さに一致するように構成しており、光電気混載デバイス1020を光電気インターポーザ/プリント基板1000に組み込んだ場合に、両者の位置が整合するように構成されている。
 図11は、近い将来に実現が予想される、光電気インターポーザ/プリント基板1100の実装構造を例示するものであり、ガラスマスク(透光部材)1178の光学フラット面の位置を、導電ピン1162の頂部に設けられた半田バンプ1164の頂部の高さに一致するように構成しており(図11(b)参照)、光電気混載デバイス1160を光電気インターポーザ/プリント基板1100に組み込んだ場合に、両者の位置が整合するように構成されていることは図10のケースと同様である。
 図11に示される構成をその作動態様も含め説明する。図11(a)に示されるように、外部より光ファイバ1102を介して光信号が入力され、該光信号は、光電気インターポーザ1100の基板内に設けられた光導波路1104を通って受信タイプの光電気混載デバイス1120、1140に入力され、電気信号に変換されて、光電気インターポーザ1100の基板内に設けられた電気配線1106を通ってホストLSI1190に入力される。ホストLSI1190は、CPUやスイッチ等で構成され、入力された電気信号に基づいて各種の演算処理等を行い、処理結果が電気信号として光電気インターポーザ1100の基板内に設けられた電気配線1108を通って送信タイプの光電気混載デバイス1160、1180に入力され、光信号に変換されて、光電気インターポーザ1100の基板内に設けられた光導波路1110を通って外部に出力される。図11(b)に示される、送信タイプの光電気混載デバイス1160を構成する導電ピン1162、半田バンプ1164、半導体レーザ1166、光導波路1168、ドライバIC1170、光変調器1172、グレーティングカプラ1174、光導波路1176、ガラスマスク(透光部材)1178は、その作動態様も含め上述したところと同様のものである。なお、図11(a)には、4つの光電気混載デバイス1120、1140、1160、1180が搭載された光電気インターポーザ/プリント基板1100が記載されているが、搭載される光電気混載デバイスの個数は4つに限定されるものではなく適宜の個数であってもよい。
〔光電気混載デバイスの製造方法の一態様〕
 光電気混載デバイスの製造方法の一態様を、特に、光導波路の作成方法を中心に説明する。図12Aは、光電気混載デバイスの製造方法の一態様の概略を表すフローチャートであり、以下、1210A~1280Aの各工程について詳細に説明する。
(1)光電気混載基板の準備工程1210A
 この工程は、光信号を伝達する光導波路、電気信号を伝達する電気信号経路、電子回路、光変調器、受光器及び/又は光源が設けられた光電気混載基板を準備する工程である。光回路と電子回路の集積化方法には、基本的に、図13に示されるような(a)Front-end integration, (b)Back-end integration, (c)Flip-chip bondingの3つの集積化手法が存在し、それぞれ、特徴を有している。本発明は、(a)Front-end integrationのようにフロントエンド側のSi基板に光学回路と電子回路の両者を形成する集積化手法や、(b)Back-end integrationのようにフロントエンド側の基板に電子回路を形成し、配線層を挟んだバックエンド側の基板に光学回路を形成するような集積化手法も適用可能であるが、作成の容易性の観点からは、電子回路の形成基板と光回路の形成基板とを別々に作成しておき、両者を貼り合わせて光電気混載基板を作成する(c)Flip-chip bonding集積化手法が優れている。光送受信タイプの光電気混載デバイスの作成に(c)Flip-chip bonding集積化手法を採用した場合には、光回路の形成基板は、シリコンフォトニクス技術を用いて、光源(LD)、光導波路、光変調器、受光器(PD)をシリコン基板上にワンチップ集積するものであり、また、電子回路の形成基板は、通常の半導体回路技術を用いて作成するものである。
(2)封止構造の準備工程1220A
 使用される封止構造は、例えば、ガラス材料で作成されており、シリコン基板上に載置された場合に、シリコン基板の光信号の入出力を担う特定部分を除きシリコン基板を覆うような形状を有するものである。また、封止構造には、部材の表裏を貫通する複数の孔を形成し、該孔内に導電ピンが嵌合し、該導電ピンの表面頂部には半田バンプを予め形成しておく。そして、このような封止構造を光電気混載基板へ接着等により固着するものである。
(3)透光部材の準備工程1230A
 後述するフォトマスク転写法に適した透光部材は、例えば、ガラス基板の表面に光遮蔽性のクロム膜をコーティングし、該クロム膜の所定個所に所定形状を有する開口部をエッチングプロセス等で形成することにより、透光部9が形成されるものであり、後述するように、この透光部を介した光入射によって自己形成導波路形成法により光導波路が形成される。また、透光部材のアライメント用のマーカー穴は、ガラス基板をエッチングして形成されたものである。図14(a)~(e)は、ガラス基板の開口の断面形状を示すものであり、開口の断面形状に応じて、上記光導波路の形状(円筒形状、テーパ形状等)が決定されることになる。図14(a)は、円筒形状の光導波路を作成するための形状、図14(b)は、斜円筒形状の光導波路を作成するための形状、図14(c)は、下方に向かって直径が絞られていくテーパ形状の光導波路を作成するための形状、図14(d)は、下方に向かって直径が拡大されていく逆テーパ形状の光導波路を作成するための形状、図14(e)は、光軸が傾いたテーパ形状の光導波路を作成するための形状、図14(f)は、光軸が傾いた逆テーパ形状の光導波路を作成するための形状を、それぞれ表すものであるが、上記各形状を有する光導波路の形成法については後述する。なお、上記光導波路を形成するために、前記透光部材を用いて露光する代わりに不図示のフォトマスクを用いて露光することもできる。
(4)透光部材のアライメント、設置工程1240A
 透光部材のシリコン基板に対するアライメントは、透光部材に設けたアライメントマークとシリコン基板の基準位置とを光学的にアライメントする等適宜の手法を用いて位置合わせすることにより行われる。そして、透光部材のシリコン基板に対するアライメントが完了すると、光導波路とシリコン基板に設けた光導波路との位置合わせがなされることになり、透光部材の設置が完了する。
(5)光導波路の作成工程1250A~1280A
 光硬化性樹脂の充填工程1250A、自己形成光導波路の形成工程1260A、未硬化光硬化性樹脂の除去工程1270A、クラッド材の充填・硬化工程1280Aが光導波路の作成工程に相当する。以下、光導波路の作成工程を纏めて説明する。本発明の自己形成光導波路製造法は、所謂フォトマスク転写法を採用するものであり(フォトマスク転写法に関して、例えば、特開2007-71951号公報参照)、透光部材、又は、不図示のフォトマスクが、自己形成光導波路形成における「型」に相当するものになっている。透光部材をフォトマスクとして兼用した場合のフォトマスク転写法による自己形成光導波路の形成手順は、まず透光部材の下部に光硬化性樹脂を充填し、透光部材の上部から光(紫外光)を照射することにより、光は透光部材に複数設けられた開口部を通過して光硬化性樹脂に照射される。照射された光は光硬化性樹脂内を透過し、透過した部分の光硬化性樹脂の屈折率が上がると同時に硬化する。その後、未硬化の光硬化性樹脂を除去することによって自己形成光導波路を形成することができる。更に、形成された光導波路の周囲を覆うようにクラッド材を充填し硬化させる。クラッド材の硬化には、例えば、熱硬化を用いる。因みに、クラッド材は、光導波路とは異なる屈折率を有する材料で構成されている。
〔透光部材を持たない光電気混載デバイスの製造方法の一態様〕
 透光部材を持たない光電気混載デバイスの製造方法の一態様を説明する。図12Bは、透光部材を持たない光電気混載デバイスの製造方法の概略を表すフローチャートであり、以下、特に、図12Aと異なる工程について説明する。
 光電気混載基板の準備工程1210B及び封止構造の準備工程1220Bは、図12Aの光電気混載基板の準備工程1210A及び封止構造の準備工程1220Aと略同様である。
 フォトマスクの準備工程1230Bについては、概略以下のとおりである。
 フォトマスクは、例えば、ガラス基板の表面に光遮蔽性のクロム膜をコーティングし、該クロム膜の所定個所に所定形状を有する開口部をエッチングプロセス等で形成したものである。そして、プリズムやレンズ等を設けたフォトマスクを用いることにより、図7(a)に示されるような円筒形状の光導波路、図7(b)に示される斜円筒形状の光導波路、図7(c)に示されるような下方に向かって直径が絞られていくテーパ形状の光導波路、図7(d)に示されるような下方に向かって直径が拡大されていく逆テーパ形状の光導波路、図7(e)に示されるような光軸が傾いたテーパ形状の光導波路を作成するための形状、図7(f)に示されるような光軸が傾いた逆テーパ形状の光導波路を形成することができる。
 フォトマスクのアライメント・設置工程1240B、光硬化樹脂の充填工程1250B、自己形成導波路の形成工程1250B、未硬化光硬化樹脂の除去工程1270B、クラッド材の充填・硬化工程1280Bについては、先に説明した工程1240A~1280Aにおいて、透光部材をフォトマスクと読み替えたものに略相応する。
 また、フォトマスクの除去工程1290Bは、クラッド材が硬化した後、フォトマスクを取り外し、光電気混載デバイスを完成させる工程である。なお、光電気混載デバイスのフォトマスクを取り外した表面は、光学フラットとなっている。
 上記工程において、フォトマスク単独の構成に代えて、ガラス薄板とガラス薄板上に設けたフォトマスクからなる構成を用いることもできる。この場合には、フォトマスクのアライメント・設置工程1240Bにおいて、まず、ガラス薄板を光電気混載基板と所定の間隔をおいて設置した後ガラス薄板上にフォトマスクを載置しアライメントを行う態様や、ガラス薄板とフォトマスクとを仮固着しておき、仮固着された構成を光電気混載基板と所定の間隔をおきアライメントする態様などを採用することができる。
 ガラス薄板とガラス薄板上に設けたフォトマスクからなる構成を用いる場合には、クラッド材の充填・硬化工程1280Bの前にフォトマスクのみを取り外す工程を付加し、クラッド材の充填・硬化工程1280Bにおいて、クラッド材として光硬化性樹脂を用い、該光硬化性樹脂をガラス薄膜を介して全面露光することにより硬化させてクラッド部材を形成することも可能である。
 なお、前記フォトマスクやガラス薄板の光硬化性樹脂と接する面には、予め離型剤が塗布されており、前記フォトマスクやガラス薄板の取り外しを容易に行うことができるようにされている。
〔放熱性の改善及び透光部材の位置の安定化のための態様〕
 次に、放熱性の改善や透光部材の位置の安定化を図るための、光電気混載デバイスの製造方法について、図面を参照しながら詳しく説明する。図15は、光電気混載デバイスの製造方法の一例を示すフローチャートである。この製造方法は、第1~13工程からなる。図16~28は、各工程におけるデバイスの状態をそれぞれ示す図である。
 まず、第1工程において、基板1610上にIC(電子部品)1612を実装する(図16)。基板1610は、例えばSOI基板であり、その表面には予め光回路1614が形成されている。光路1614の一例は、フォトダイオードやグレーティングカプラである。光回路1614がフォトダイオードである場合、フォトダイオードはその受光面が上方を向くように配置され、基板1610上には受光信号をIC1612へ伝送するための電気配線(不図示)が更に設けられる。光回路1614がグレーティングカプラである場合、基板1610上には、光源と、光源からの光を変調する光変調器と、光変調器によって変調された光信号(送信光)をグレーティングカプラまで導く平面光導波路が更に設けられる(何れも不図示)。そして、グレーティングカプラは、平面光導波路を伝搬してきた光信号を上方へ跳ね上げる機能を有するように構成される。光回路1614の上面には、更に、後述する露光工程の際に露光光の基板1610からの反射を防止するための反射防止膜1616が、予め形成されている。
 IC1612は、上述の光変調器を電気的に駆動するためのドライバIC、又は上述のフォトダイオードからの受光信号(電流)をIV変換するためのトランスインピーダンスアンプ(TIA)である。IC1612は、例えばボールグリッドアレイ(BGA)等の接続電極1618を介してIC1612側の各端子が基板1610側の電気配線(光変調器又はフォトダイオードと電気接続する配線)と接続されるように、基板1610上に実装される。
 次に、第2工程において、基板1610上にガラス基板(スペーサ)1620を搭載する(図17)。ガラス基板1620には一続きの大きな開口1622が設けられており、この開口1622の中にIC1612と後述する縦型光導波路の形成領域(反射防止膜1616の部分)とが収容されるようにして、ガラス基板1620が搭載される。ガラス基板1620はIC1612の搭載高さ(基板1610の表面からIC1612の上面までの高さ)よりも大きい厚さを持ち、IC1612の上面は開口1622の上端よりも凹んだ位置にある。ガラス基板1620は、更に貫通配線(TGV)1624を有し、この貫通配線1624は、基板1610上に設けられた電気配線(不図示)と上述の接続電極1618を介してIC1612と接続される。
 次に、第3工程において、搭載されたガラス基板1620の開口1622内の縦型光導波路形成領域上に、光導波路コア形成用の光硬化性樹脂1626を供給する(図18)。縦型光導波路形成領域は、IC1612と開口1622の壁面との間の反射防止膜1616部分である。コア用樹脂1626は、IC1612の側面と開口1622の壁面との間の空間に、その液面が開口1622の上端よりも少し飛び出た状態となるような高さまで充填される。
 次に、第4工程において、ガラス基板1620上に薄板ガラス(透明板材)1628をその一部分が縦型光導波路形成領域上に張り出す形で搭載する(図19)。この時、薄板ガラス1628のガラス基板1620から張り出した部分が、上から見て縦型光導波路形成領域の全体を覆う(重なる)形となるようにする。これにより、搭載された薄板ガラス1628の当該張り出した部分と縦型光導波路形成領域との間の空間全体が、コア用樹脂1626によって満たされた状態となる。なお、薄板ガラス1628をガラス基板1620上に搭載する際に、余剰のコア用樹脂1626はIC1612の上面へと拡がり、また、薄板ガラス1628とガラス基板1620との接触面の間隙にも、コア用樹脂1626の一部が入り込んでいく。この間隙に入り込んだコア用樹脂1626によって、薄板ガラス1628はガラス基板1620と仮固定された状態となっている。
 次に、第5工程において、コア形成用マスク1630を配置する(図20)。コア形成用マスク1630は、ガラス板の一方の面に、縦型光導波路コア形成用透光部1632、薄板ガラス支持部形成用透光部1634、薄板ガラス接着部用透光部1636、及び位置合わせ穴形成用透光部1638を除いて、露光時の遮光用の金属膜が形成されて構成されている。縦型光導波路コア形成用透光部1632は、基板1610上の光回路1614の位置及び数に対応して設けられている。薄板ガラス支持部形成用透光部1634は、薄板ガラス1628のガラス基板1620から張り出した端部に対応した位置に設けられている。薄板ガラス接着部用透光部1636は、薄板ガラス1628とガラス基板1620との接触面に対応した位置に設けられている。位置合わせ穴形成用透光部1638は、光電気混載デバイスが完成した後に光ファイバコネクタを接続する際の位置合わせ用の穴を形成するためのものである。
 次に、第6工程において、コア形成用マスク1630を介して露光を行う(図21)。露光光は、コア用樹脂1626が感光して硬化する波長の光(例えばUV光)である。露光により、各透光部1632、1634、1636、及び1638の下部に存在するコア用樹脂1626が硬化する。その結果、縦型光導波路コア形成用透光部1632の下部には、薄板ガラス1628と基板1610上の光回路1614との間に基板1610に対して垂直に立設した、柱状の(縦型の)光導波路コア1640が形成される。また、薄板ガラス支持部形成用透光部1634の下部には、薄板ガラス1628のガラス基板1620から張り出した端部と基板1610の表面との間に介在して当該端部を基板1610上に支持する、薄板ガラス支持部1642が形成される。この薄板ガラス支持部1642により薄板ガラス1628が強固に支持されることによって、(後述する未硬化樹脂除去後に)薄板ガラス1628の張り出した部分の荷重が光導波路コア1640だけに集中してかからず、薄板ガラス支持部1642にも分散してかかるようになるので、光導波路コア1640が薄板ガラス1628の荷重で倒れてしまうようなことを防止することができる。更に、薄板ガラス接着部用透光部1636の下部において、前述したように薄板ガラス1628とガラス基板1620との接触面の間隙にコア用樹脂1626が入り込んでいるが、この部分のコア用樹脂1626が露光されて硬化することによって、薄板ガラス1628がガラス基板1620に対して固着(本固定)される。
 次に、第7工程において、コア形成用マスク1630を取り外す(図22)。
 このように、縦型光導波路コア1640の形成と、薄板ガラス支持部1642の形成と、薄板ガラス1628のガラス基板1620への固着を、同じ露光工程により一括して行うことができる。なお、図示されるように、薄板ガラス支持部1642は、IC1612の一側面と接触するようにして形成されており、後述するIC1612上の開口の一部を形作っている。即ち、IC1612上の開口の一部も、この露光工程で一括して形成されている。
 次に、第8工程において、露光後に未硬化のまま残ったコア用樹脂1626を溶剤で洗い流して除去する(図23)。
 次に、第9工程において、ガラス基板1620の開口1622内全体を満たすように、光導波路クラッド形成用の光硬化性樹脂1644を供給する(図24)。この時、クラッド用樹脂1644は、その液面が開口1622の上端よりも少し飛び出た状態となるような高さまで充填されて、IC1612の上面全体が、クラッド用樹脂1644で完全に覆われた形となっている。
 次に、第10工程において、クラッド形成用マスク1646を配置する(図25)。クラッド形成用マスク1646は、ガラス板の一方の面においてIC開口形成用遮光部1648とガラス基板1620の開口1622より外周側の部分に、露光時の遮光用の金属膜が形成されて構成されている。このIC開口形成用遮光部1648は、後述するIC1612上面の開口を形成するためのものであり、IC1612の上面に対応した位置に、IC1612の上面の略全面(IC1612の上面全体よりも若干小さい広さ)を覆うような形状と大きさで設けられている。
 次に、第11工程において、クラッド形成用マスク1646を介して露光を行う(図26)。露光光は、コア用樹脂1626の露光時と同様、クラッド用樹脂1644が感光して硬化する波長の光(例えばUV光)である。露光により、ガラス基板1620の開口1622内に充填されているクラッド用樹脂1644が、IC開口形成用遮光部1648の下部、即ちIC1612の上面に載っている部分を除いて硬化する。その結果、縦型光導波路コア1640の周囲に縦型光導波路クラッド1650が形成される。また、IC1612の底面と基板1610との間の間隙(接続電極1618が設置されている間隙)の周囲において硬化したクラッド用樹脂1644aによって、IC1612と基板1610を電気接続している接続電極1618が封止される。一方、IC1612の上面部分では、IC1612の周縁部分のクラッド用樹脂1644bが硬化して当該周縁を取り囲むように壁面を形成すると共に、クラッド形成用マスク1646のIC開口形成用遮光部1648の存在により、クラッド用樹脂1644が未硬化のまま残っている。即ち、IC1612の周縁を取り囲んだ硬化したクラッド用樹脂1644bからなる壁面によって、IC1612の上面には開口52が形成される。
 次に、第12工程において、クラッド形成用マスク1646を取り外す(図27)。
 このように、縦型光導波路クラッド1650の形成と、IC1612上面の開口1652の形成と、接続電極1618の封止を、同じ露光工程により一括して行うことができる。
 次に、第13工程において、露光後に未硬化のまま残っている開口1652内のクラッド用樹脂を溶剤で洗い流して除去する(図28)。なお、IC1612下部の接続電極部分に存在するクラッド用樹脂も、露光時にIC1612で遮光されるため未硬化のままである。しかしながら、上述したようにIC1612は周囲が既に硬化したクラッド用樹脂1644aで囲まれているため、接続電極周囲の未硬化のクラッド用樹脂は、洗浄工程によって除去することができない。そこで、この部分の未硬化のクラッド用樹脂は、別途、加熱工程により硬化させる。なお、予めIC1612の底面周囲にアンダーフィリングを施しておき、クラッド用樹脂がIC1612の底面の間隙に入り込まないようにしてもよい。
 以上の工程により、IC1612の上面に開口1652を有した光電気混載デバイスが完成する。図28は光電気混載デバイスの完成形態を示している。上述したとおり、開口1652は縦型光導波路の形成(露光)工程において縦型光導波路と同時に形成されるので、あらたな工程を追加する必要がなく、製造工程を簡略化することができる。本実施形態による光電気混載デバイスを使用する際には、開口1652を通して、IC1612上面に熱伝導性の良い樹脂を介してヒートシンクを接続することにより、IC1612から効果的に放熱を行うことが可能である。
 以上、本発明の放熱性の改善や透光部材の位置の安定化に好適な光電気混載デバイスに関する一実施形態を説明したが、本発明はこれに限定されず、その要旨を逸脱しない範囲内において様々な変更が可能である。変形例のいくつかを以下に述べる。
 薄板ガラス1628がガラス基板1620から張り出している部分の大きさや、縦型光導波路コア1640の形状・寸法等によっては、薄板ガラス支持部1642がなくても、縦型光導波路コア1640が倒れずに立設状態を維持できることもある。そのような場合、薄板ガラス支持部1642は省略可能であり、IC1612上面の開口1652は、壁面の全てがクラッド用樹脂1644で構成された形となる。
 ガラス基板1620を用いることなく本実施形態による光電気混載デバイスを製造することも可能である。即ち、コア用樹脂1626を露光する際には、薄板ガラス1628をコア形成用マスク1630に貼り付けた(仮固定した)状態でコア形成用マスク1630を露光装置で保持してその高さを調整し、次いでコア用樹脂1626を露光することによって、縦型光導波路コア1640に加えて、薄板ガラス1628を支持するための支持部となる部分を硬化させる。この支持部を十分に大きな寸法で形成すれば、ガラス基板1620の代わりとして薄板ガラス1628を支持することができる。なお、薄板ガラス1628とコア形成用マスク1630との仮固定には、着脱可能な接着性を有した粘着剤や、真空吸着等を利用すればよい。
〔変形形状を有する光導波路の製造方法〕
 前述したフォトマスク転写法は、透光部材の開口部の平面形状や断面形状を変化させることにより、また、同様の作用を有するフォトマスクを用いることにより、様々な形状の自己形成光導波路を形成することができる。以下の説明においては、透光部材の開口部の平面形状や断面形状を変化させることにより、様々な形状の自己形成光導波路を形成する方法を主として説明する。
 図14の透光部材1400は、平板上の部材であり、開口部1410以外の部分はすべてクロム等の金属蒸着によりマスクされ、光の透過を阻止するようになっている。したがって、光は開口部1410を通過して光硬化性樹脂に照射される。図14(a)の態様においては、開口部1410の下面は平坦であり、図7(a)に示されるような円筒状の光導波路が形成されることになるが、図14(b)~(f)の開口部1410の態様においては、開口部1410内に断面を斜面状に形成したり、凸状又は凹状のマイクロレンズが設けられている。そして、マイクロレンズの焦点距離や光軸の傾きを変更することで形成すべき自己形成光導波路の形状を適宜変更することができる。
 すなわち、図14(b)に示されるように斜面状の形状を使用することにより、光軸を傾斜させることができ、図7(b)に示されるように、斜円筒形状の光導波路が形成される。また、図14(c)に示されるように凸マイクロレンズを使用することにより、光を収束させることができ、図7(c)に示されるように、下方に向かって直径が絞られていくテーパ形状の光導波路が形成される。さらに、図14(d)に示されるように凹マイクロレンズを使用することにより、光を発散させることができ、図7(d)に示されるように、上方に向かって直径が絞られていく逆テーパ形状の光導波路が形成される。そして、マイクロレンズの光軸を傾ける(図14(e)、(f)参照)ことにより、光軸が傾斜したテーパ状の光導波路(図7(e)参照)や、光軸が傾斜した逆テーパ状の光導波路(図7(f)参照)が形成される。
 なお、通常のフォトマスク転写法においては、透光部材の剥離工程を含むものであるが、上述の態様においては、透光部材を剥離・除去することなく、剥離せずに残した透光部材を光学フラットとして利用し得る。このような形態を採用すると、光コネクタを光電気混載デバイスに載置する場合や、光電気インターポーザ/プリント基板に光電気混載デバイスを当接させる場合に、両者の位置を正確に整合させることができるものである。
 また、前述の自己形成光導波路形成法は、フォトマスク転写法によるものであるが、光ファイバの端部を透光部材に近接配置して、入射した光を光硬化性樹脂内を透過させ光が照射された部分を硬化させ、未硬化の光硬化性樹脂を除去することにより自己形成光導波路を形成するようにしてもよい(例えば、特開2003-131064号公報等参照)。その場合であっても、光ファイバの光軸方向を調整したり、光ファイバの端部に各種レンズを配置すること等により、各種形状の光導波路を形成でき、また、透光部材を光学フラットとして利用できる。なお、この場合の透光部材は透明ガラス板で構成できる。
 なお、上述の態様においては透光部材をフォトマスク転写法のマスクとして用いているが、透光部材をマスクに兼用する代わりに、別途マスクを用意して同様の作用を行わせることもできる。
〔基板反射による光硬化性樹脂の不必要な箇所での硬化を防止するための態様〕
 光軸が傾斜した光導波路を形成する場合には、前述したように、光硬化性樹脂が基板反射によって不必要な箇所で硬化してしまう可能性があり、このような不必要な箇所での光硬化性樹脂の硬化を防止する必要がある。以下に述べる実施形態は、上述のような不必要な箇所での光硬化性樹脂の硬化を防止するのに好適な技術であり、図面を参照しながら詳しく説明する。
<第1実施形態>
 図29は、第1実施形態に係る光電気混載デバイス29100の断面構成図である。同図において、基板29110の上部には、光硬化性樹脂からなる光導波路コア29120が、基板29110に対して斜めに立設して(基板29110の法線nから数度傾いた方向に沿って延在して)形成されている。光導波路コア29120の基板29110側の端部291202は、基板29110上に形成又は実装された不図示の光素子(光回路等)と光学的に結合される。この光素子としては、光導波路、発光素子、又は受光素子を例示することができる。光導波路コア29120の周囲は、クラッド層29130としての樹脂によって覆われている。光導波路コア29120の上側(基板29110と反対側)の端部291204は、クラッド層29130上に設置された不図示の光素子(光ファイバ等)と光学的に結合される。
 基板29110の表面には、光導波路コア29120を構成している光硬化性樹脂の感光波長の光に対する反射防止層29140が形成されている。反射防止層29140の上表面は、光導波路コア29120の基板29110側の端部291202と接している。したがって、光導波路コア29120の基板29110側の端部291202は、反射防止層29140を介して、基板29110上に形成又は実装された光素子(光導波路、発光素子、又は受光素子等)と光学的に結合される。反射防止層29140は、基板29110上に形成又は実装された当該光素子が送受信する光(光導波路を伝搬する光、発光素子が発する光、受光素子が受光する光)の波長に対して透明である。光硬化性樹脂の感光波長とは、光照射によって光硬化性樹脂を硬化させる光の波長のことである。例えば、光硬化性樹脂として、UV(紫外)光に感度を持つものを採用可能であり、この場合、反射防止層29140は、UV光の基板29110表面からの反射を十分に防止又は低減することができる光学特性を有するように構成される。例えば、反射防止層29140として、適切な吸収係数と膜厚を有するUV吸収層を用いることが可能である。あるいは、各層が適切な膜厚と屈折率に設定された誘電体多層膜を用いてもよい。
 次に、図30A~図30Eを参照して、上記した光電気混載デバイス29100の製造方法を説明する。
 まず、基板29110上に反射防止層29140を形成する(図2A)。ここでは、UV吸収層を反射防止層29140に適用することとする。具体的には、光導波路コア29120を形成するのに用いる光硬化性樹脂(UV硬化性樹脂)とUV光を吸収する特性を持つ材料とを混ぜ合わせた樹脂を、基板29110の表面全面に供給し、その全面にUV光を照射して樹脂を硬化させて、UV吸収層(反射防止層29140)とする。UV吸収材料の吸収係数、光硬化性樹脂とUV吸収材料との組成比、及びUV吸収層の膜厚等は、UV光に対する吸収率が十分に大きくなる(基板29110表面におけるUV光の反射が効果的に防止又は低減できる)ように調整される。なお、光硬化性樹脂とUV吸収材料の混合樹脂に、必要に応じて更に別の材料を添加してもよい。また、反射防止層29140は、基板29110の全面ではなく、光導波路コア29120を形成すべき箇所の近傍にのみ形成することとしてもよい。
 次に、反射防止層29140上に光硬化性樹脂29122を供給し、その上に光導波路コア形成用のマスク29210を配置する(図2B)。マスク29210は、ガラス板29214の一方の面にUV光に対して不透明なクロム膜29216等の薄膜を形成したものであり、このクロム膜29216には、作製しようとする光導波路コア29120のコア形状に応じた形状の開口部29212が設けられている。例えば、開口部29212の開口径は30~40μm程度であり、この場合、マルチモードの光導波路コア29120を作製可能である。また、開口部29212をマスク29210に複数設ければ、複数の光導波路コア29120を同時に形成可能である。なお、光硬化性樹脂29122の膜厚を制御するために、例えば、基板29110(反射防止層29140)上には不図示のスペーサが設置される。
 次に、マスク29210を介して基板29110に対して斜め方向からUV光29220を光硬化性樹脂29122に照射する(図30C)。マスク29210の開口部29212を通り抜けたUV光は、光硬化性樹脂29122内を基板29110に対して斜め方向に伝搬していきながら、通過した部分の光硬化性樹脂を硬化させる。これにより、基板29110に対して斜めに立設した、硬化した光硬化性樹脂からなる光導波路コア29120が形成される。
 ここで、基板29110上にはUV吸収層(反射防止膜29140)が形成されているため、光硬化性樹脂29122内を伝搬してUV吸収層へと入ったUV光はUV吸収層により吸収され、UV吸収層の光吸収率が十分に高ければ、基板29110からのUV光の反射はほとんど生じないか、又は、生じたとしてもその反射光強度は光硬化性樹脂29122を硬化させるのに必要な光強度よりも小さい。したがって、基板29110からの反射光によって光硬化性樹脂29122の意図しない部分(光導波路コア29120以外の部分)が硬化してしまうということが防止される。このように、本実施形態によれば、基板29110に対して斜めに立設した光導波路コアを、意図した通りの形状(光導波路コアが作製されるべき部分の光硬化性樹脂のみが硬化した形状)に形成することができる。
 次に、マスク29210を取り外して、未硬化の光硬化性樹脂29122を、所定の現像液(溶剤)29230で洗い流すことにより除去する(図30D)。従来、この現像工程では、光導波路コアの径が細く基板と光導波路コアとの接触面積が小さいために、両者の密着強度が十分に得られず、硬化した光導波路コアも一緒に現像液で洗い流されてしまう不具合も起こり得た。しかしながら、本実施形態では、光導波路コア29120の基板側29110の端部291202が接しているUV吸収層(反射防止膜29140)は、光導波路コア29120の構成成分である光硬化性樹脂をその成分として含有している。即ち、同じ構成成分(光硬化性樹脂)を含んだ光導波路コア29120とUV吸収層とが接触している。したがって、光導波路コア29120の基板側29110の端部291202とUV吸収層(反射防止膜29140)との密着強度は、従来の光導波路コアと基板(シリコン基板等)との密着強度よりも大きく、そのため、硬化した光導波路コア29120が現像液で洗い流されてしまうという不具合の発生が起こりにくい。また、現像に先立ってマスク29210を取り外す際においても、同じ理由により、硬化した光導波路コア29120が反射防止膜29140から剥離してしまうことが防止される。
 次に、光導波路コア29120の周囲に光硬化性又は熱硬化性の樹脂を充填し、当該樹脂を光照射又は加熱により硬化させてクラッド層29130を形成する(図29)。以上の工程により、光電気混載デバイス29100が完成する。
<第2実施形態>
 図31は、第2実施形態に係る光電気混載デバイス29300の断面構成図である。この光電気混載デバイス29300は、第1実施形態において不図示であった光素子を具体的に表したものであり、第1実施形態の光電気混載デバイス29100と同一の構成要素には同一の符号を付す。
 同図において、基板29110上には、発光素子29310が実装されている。発光素子29310は例えば半導体レーザであり、その発光波長において反射防止膜29140は透明である。また、基板29110上には、下部クラッド層29322、コア層29324、及び上部クラッド層29326からなる光導波路29320が形成されている。光導波路29320の上部には、反射防止層29140が形成されている。反射防止層29140の上には、基板29110に対して斜めに立設し光導波路コア29120が、反射防止層29140と接して形成されている。半導体レーザは、その活性層29312の光軸が光導波路29320のコア層29324の光軸と一致するように位置合わせされており、活性層29312から放射されたレーザ光が光導波路29320のコア層29324へ最適な光結合効率で結合されるようになっている。
 基板29110上には、更に、光導波路コア29120の基板29110側の端部291202近傍に、光導波路29320のコア層29324を伝送されてきたレーザ光を基板29110に対して斜め上方に向けて跳ね上げる(レーザ光の光路を折り曲げる)ためのグレーティングカプラ29330が形成されている。グレーティングカプラ29330によって回折されたレーザ光は、基板29110に対して斜めに立設した光導波路コア29120へと結合される。
 半導体レーザ(発光素子29310)からのレーザ光をこのように基板29110に対して斜め上方に跳ね上げることにより、それより後段の光路中に存在する光学界面からの反射戻り光が再び半導体レーザへ向かって伝送され半導体レーザ内へ注入されてしまい、それにより半導体レーザの動作が不安定になってしまう、という現象を抑制することができる。基板29110に対して斜めに立設して形成された光導波路コア29120は、このような光電気混載デバイスの構成において特に有効となる。
 クラッド層29130上には、コネクタ29342内部に反射ミラー29344を内蔵した反射ミラー付き光ファイバコネクタ29340が設置されている。光導波路コア29120を伝送されたレーザ光は、反射ミラー29344によって反射されて、光ファイバ29346へと結合される。
 上述の実施形態により、光硬化性樹脂が基板反射によって不必要な箇所で硬化してしまうことを防止することができる。
〔光電気混載デバイスの製造方法の他の一態様〕
 透光部材を設置した後、縦型光導波路を自己形成光導波路技術を用いて形成する態様の外に、縦型光導波路をガラスウエハー上に形成してユニット化した縦型光導波路ユニットを準備し、該縦型光導波路ユニットを組み込んで光電気混載デバイスを作成することができる。以下、このような縦型光導波路ユニットを用いた光電気混載デバイスの作成手法の一態様について詳述する。
 図35は、ガラスウェハー3512上に複数の光導波路3514とクラッド部材3516からなる縦型光導波路が形成された縦型光導波路ユニット3510を、ガラスウェハー3512が上となるように光電気混載デバイス3500の開口部3502に設置してアライメントを行い、アライメント完了後に前記ガラスウェハー3512を光電気混載デバイス3500の上面3504に固着して光電気混載デバイス3500を完成させる態様の概略を示す模式図である。前記光電気混載デバイス3500の完成された態様において、前記ガラスウェハー3512の上部表面が光学フラット面を構成する。このような光電気混載デバイス3500の構成により、光コネクタを前記光学フラット面に正確且つ簡便に載置し得るとともに、前記光学フラット面が、光電気混載デバイス3500の上面3504を下回ることがないことから、光コネクタを前記光学フラット面に載置した際に、光コネクタと光電気混載デバイス3500の電気信号の入出力を行うための電気接続部(導電ピン)3506の頂部との衝突を回避することができる。なお、前記縦型光導波路ユニット3510のアライメントに関しては、光導波路3514の位置と受光器(受信態様時)又はグレーティングカプラ(送信態様時)の位置を周知の画像認識手法を用いて整合することが可能であり、このような手法を採用することにより所望の整合精度を得ることができる。
 図36は、前記縦型光導波路ユニット3510の作成方法の一態様を説明するためのフローチャートである。以下、3610~3630の各工程について説明する。
(1)ガラスウェハーの準備工程3610
 この工程は、縦型光導波路をその上に多数同時に作成し得るサイズのガラスウェハーを準備する工程である。ガラスウェハーは、例えば、ガラスブロックをブレードでダイシングして形成されたものであり、その表面が高度の平坦性を備え、光学フラット面として機能するものである。
(2)リソグラフィーを用いた縦型光導波路ユニットの多数同時作成工程3620
 この工程は、フォトマスクを準備し、リソグラフィーにより、縦型光導波路をガラスウェハー上に多数同時に作成する工程である。縦型光導波路を構成する複数の光導波路は、ガラスウェハーと光導波路形成用フォトマスクとの間に充填された光導波路形成用光硬化性樹脂を、前記光導波路形成用フォトマスクを介して露光することにより形成される。その後、未硬化の樹脂を溶剤等を用いて除去し、前記光導波路形成用フォトマスクを取り外す。なお、前記光導波路形成用フォトマスクの光導波路形成用光硬化性樹脂と接する面には、予め離型剤が塗布されており、前記光導波路形成用フォトマスクの取り外しを容易に行うことができるようにされている。その後、クラッド材料を充填・硬化してクラッド部材を形成し、縦型光導波路が完成する。なお、クラッド材料としてクラッド用光硬化性樹脂を用い、該クラッド用光硬化性樹脂を、全面露光又はクラッド部材形成用フォトマスクを介して露光することにより、クラッド部材を形成してもよい。これにより、縦型光導波路が、ガラスウェハー上に多数同時に作成されることになる。
 なお、前述したように、フォトマスクの形状等を工夫することにより、縦型光導波路を構成する複数の光導波路として様々な形状の自己形成光導波路を形成することができる。
(3)ガラスウェハーのダイシング工程3630
 この工程は、縦型光導波路が複数形成されたガラスウェハーを、ダイシングにより個々の縦型光導波路が形成されたガラスウェハーに分割し、個々の縦型光導波路ユニットを作成する工程である。
 このようにして得られた縦型光導波路ユニットを用いて、上述したように、光電気混載デバイスを作成(完成)することができる。
〔留意事項〕
 以上、本発明の実施の形態を図面を参照しつつ説明してきたが、当業者であれば、他の類似する実施形態を使用することができること、また、本発明から逸脱することなく適宜形態の変更又は追加を行うことができることに留意すべきである。
 本発明は、上記の実施形態に限定されるべきではなく、特許請求の範囲の記載に基き解釈されるべきである。
100、220、820、920、1020、1120,1140、1160、1180、3500、29100、29300: 光電気混載デバイス
102、310、410: シリコン基板
104、324、418、828、1030、1170: IC
106: 封止構造
108、320、420、822、1022、1162、3506: 導電ピン
110、824、1024、1164: 半田バンプ
112、326、826、1026、1166: レーザ素子(LD)
116、222、832、1038、1178: 透光部材(ガラスマスク)
118: 透光部
120、226: アライメント用マーカー穴
122、318、412、700、830、1036、1176、3514: 光導波路
202、810: 嵌合穴
842: 嵌合ピン
240: アライメント治具
242: アライメント治具の脚部
244: アライメント治具の半球状の突部
312、1028,1168: 光導波路
314、500、1032、1172: 光変調器
316、1034、1174: グレーティングカプラ
414、600: 受光器(PD)
200、800: インターポーザ
840: 光コネクタ
900: AOC基板
1000、1100: 光電気インターポーザ/プリント基板
1190: ホストLSI
1610: 基板
1612: IC(電子部品)
1614: 光回路
1616: 反射防止膜
1618: 接続電極
1620: ガラス基板(スペーサ)
1622: ガラス基板の開口
1624: 貫通配線
1626: コア用樹脂
1628: 薄板ガラス(透明板材)
1630: コア形成用マスク
1632: 縦型光導波路コア形成用透光部
1634: 薄板ガラス支持部形成用透光部
1636: 薄板ガラス接着部用透光部
1638: 位置合わせ穴形成用透光部
1640: 縦型光導波路コア
1642: 薄板ガラス支持部
1644: クラッド用樹脂
1646: クラッド形成用マスク
1648: IC開口形成用遮光部
1650: 縦型光導波路クラッド
1652: IC上面の開口
29110: 基板
29120: 光導波路コア
29122: 光硬化性樹脂
29130: クラッド層
29140: 反射防止層
29210: マスク
29212: 開口部
29214: ガラス板
29216: クロム膜
29220: UV光
29230: 現像液
29310: 発光素子
29320: 光導波路
29330: グレーティングカプラ
29340: 反射ミラー付き光ファイバコネクタ
3502: 開口部
3510: 縦型光導波路ユニット
3512: ガラスウェハー
3516: クラッド部材

Claims (43)

  1.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、及び電子回路が設けられるとともに、光変調器及び光源、及び/又は受光器が設けられた光電気混載基板と、
     前記光電気混載基板の上に設けられ、前記光電気混載基板の光信号の入出力を担う特定部分を除いて覆う封止構造と、
     光学フラット面を有し前記光電気混載基板の光信号の入出力を担う特定部分に光路を形成する縦型光導波路と、
     を備え、前記光電気混載基板の電気信号の入力又は出力を行い、前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用される光電気混載デバイス。
  2.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、及び電子回路が設けられるとともに、光変調器及び光源、及び/又は受光器が設けられた光電気混載基板と、
     前記光電気混載基板の上に設けられ、前記光電気混載基板の光信号の入出力を担う特定部分を除いて覆う封止構造と、
     前記特定部分を覆うように設置され、光学フラット面を有するとともに透光部を有する透光部材と、
     前記透光部材の前記透光部と前記光導波路との間に光路を形成する縦型光導波路と、
     を備え、前記光電気混載基板の電気信号の入力又は出力を行い、前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用される光電気混載デバイス。
  3.  請求項2に記載の光電気混載デバイスにおいて、前記透光部材は、前記電子回路の上面の全てを覆うことがないように設置されていることを特徴とする光電気混載デバイス。
  4.  請求項1~3の何れか1項に記載の光電気混載デバイスにおいて、前記縦型光導波路のクラッドを構成する樹脂層が、前記電子回路上に開口を有して前記光電気混載基板上の少なくとも一部分を覆うことを特徴とする光電気混載デバイス。
  5.  請求項2~4の何れか1項に記載の光電気混載デバイスにおいて、前記透光部材を支持する支持部材が前記光電気混載基板上に設置されていることを特徴とする光電気混載デバイス。
  6.  請求項5に記載の光電気混載デバイスにおいて、前記支持部材は、前記縦型光導波路のコアと同じ材料で構成されていることを特徴とする光電気混載デバイス。
  7.  請求項2~5のいずれか1項に記載の光電気混載デバイスにおいて、前記光電気混載基板上にスペーサが設置され、前記透光部材は前記スペーサから張り出す形で設置されていることを特徴とする光電気混載デバイス。
  8.  請求項2~7の何れか1項に記載の光電気混載デバイスにおいて、前記透光部材に、前記光電気混載デバイスを前記データ伝送用のモジュールに載置するためのアライメント用のマーカー穴が設けられ、前記マーカー穴と前記データ伝送用のモジュールに設けられた嵌合穴とを治具を用いて機械的に位置合わせすることで前記光電気混載デバイスと前記データ伝送用のモジュールとのアライメントが行われることを特徴とする光電気混載デバイス。
  9.  請求項2~7の何れか1項に記載の光電気混載デバイスにおいて、前記透光部材の端部が前記光電気混載デバイスを前記データ伝送用のモジュールに載置するためのアライメントとして使用されるよう構成されていることを特徴とする光電気混載デバイス。
  10.  請求項1~9の何れか1項に記載の光電気混載デバイスにおいて、
     前記封止構造は、該封止構造を貫通して前記電気信号経路に接続される1又は複数の導電部材、及び前記導電部材の頂部にそれぞれ設けられた1又は複数の電気接続部を備え、
     前記1又は複数の導電部材を介して電気信号の入力又は出力を行い、前記光学フラット面の位置が、前記電気接続部の頂部を下回らないように構成したことを特徴とする光電気混載デバイス。
  11.  請求項10に記載の光電気混載デバイスにおいて、前記データ伝送用のモジュールが、インターポーザ又はAOC(Active Optical Cable)基板であり、前記縦型光導波路との間で光信号を伝達する光導波路が設けられた光コネクタを前記光学フラット面に載置する際に、前記1又は複数の電気接続部に一括接続され電気信号を外部に入出力するブリッジ基板と前記光コネクタとの衝突が回避されるように前記光学フラット面の位置が設定されていることを特徴とする光電気混載デバイス。
  12.  請求項10に記載の光電気混載デバイスにおいて、前記光学フラット面の位置が、前記導電部材の頂部に設けられる電気接続部の頂部の高さに一致するように構成され、これにより、前記光電気混載デバイスを、光信号及び電気信号の入出力を基板上面で行うデータ伝送用のモジュールに、前記光電気混載デバイスの入出力面を前記光電気インターポーザ/プリント基板の入出力面に対向させて組み込んだ場合に、光信号及び電気信号の入出力が同一面で行われることを特徴とする光電気混載デバイス。
  13.  請求項12に記載の光電気混載デバイスにおいて、前記データ伝送用のモジュールが、光回路と電気回路とを同一基板内に形成した光電気インターポーザ/プリント基板であることを特徴とする光電気混載デバイス。
  14.  請求項1~13の何れか1項に記載の光電気混載デバイスにおいて、前記縦型光導波路が複数の光導波路で構成されていることを特徴とする光電気混載デバイス。
  15.  請求項14に記載の光電気混載デバイスにおいて、前記複数の光導波路は、円筒形状であることを特徴とする光電気混載デバイス。
  16.  請求項14に記載の光電気混載デバイスにおいて、前記複数の光導波路は、前記光導波路に向かって直径が絞られていくテーパ形状、又は、前記光学フラット面に向かって直径が絞られていく逆テーパ形状であることを特徴とする光電気混載デバイス。
  17.  請求項14に記載の光電気混載デバイスにおいて、前記複数の光導波路は、軸が傾斜していることを特徴とする光電気混載デバイス。
  18.  請求項14に記載の光電気混載デバイスにおいて、前記複数の光導波路は、斜円筒形状、若しくは、軸が傾斜したテーパ形状又は逆テーパ形状であることを特徴とする光電気混載デバイス。
  19.  請求項17又は18に記載の光電気混載デバイスにおいて、前記光導波路は光硬化性樹脂からなり、前記光導波路コアの前記光導波路側の端部と接して形成された、前記光硬化性樹脂の感光波長の光に対する反射防止層を備えていることを特徴とする光電気混載デバイス。
  20.  請求項19に記載の光電気混載デバイスにおいて、前記反射防止層は、前記光硬化性樹脂の感光波長の光を吸収する光吸収材料を成分として含有する光吸収層であることを特徴とする光電気混載デバイス。
  21.  請求項20に記載の光電気混載デバイスにおいて、前記光吸収層は、前記光硬化性樹脂を成分として更に含有することを特徴とする光電気混載デバイス。
  22.  請求項19~21の何れか1項に記載の光電気混載デバイスにおいて、前記反射防止層は、前記光源の発光波長又は前記受光器の感度波長に対して透明であることを特徴とする光電気混載デバイス。
  23.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、電子回路、光変調器、受光器及び/又は光源が設けられた光電気混載基板を準備する工程と、
     透光部及び光学フラット面を有する透光部材を準備する工程と、
     前記光電気混載基板に対し前記透光部材のアライメントを行い、該透光部材を設置する工程と、
     前記光電気混載基板と前記透光部材との間に形成される空間に光の照射によって硬化する光硬化性樹脂を供給する工程と、
     前記光硬化性樹脂を露光して前記透光部と前記光導波路との間に縦型光導波路を形成する工程と、
     未硬化の光硬化性樹脂を除去する工程と、
     を含む、電気信号の入力又は出力を行うとともに前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用されることを特徴とする光電気混載デバイスの製造方法。
  24.  請求項23に記載の製造方法において、前記透光部材を、前記縦型光導波路を形成するための露光用マスクとして用い、露光後に剥離せずに残すことを特徴とする製造方法。
  25.  請求項23又は24に記載の製造方法において、前記透光部材を準備する工程で、前記光電気混載デバイスと前記データ伝送用のモジュールとの位置合わせを行うためのアライメント用のマーカー穴を作成することを特徴とする製造方法。
  26.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、電子回路、光変調器、受光器及び/又は光源が設けられた光電気混載基板を準備する工程と、
     透光部及び光学フラット面を有する透光部材を準備する工程と、
     前記光電気混載基板に対し前記透光部材のアライメントを行い、該透光部材を設置する工程と、
     前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に光の照射によって硬化する光硬化性樹脂を供給する工程と、
     前記光硬化性樹脂を露光して前記透光部と前記光導波路との間に縦型光導波路を形成するとともに、前記電子回路の周縁部分に相当する前記光硬化性樹脂を露光する工程と、
     未硬化の光硬化性樹脂を除去する工程と、
     を含む、電気信号の入力又は出力を行うとともに前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用されることを特徴とする光電気混載デバイスの製造方法。
  27.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、電子回路、光変調器、受光器及び/又は光源が設けられた光電気混載基板を準備する工程と、
     透光部及び光学フラット面を有する透光部材を準備する工程と、
     前記光電気混載基板に対し前記透光部材のアライメントを行い、該透光部材を設置する工程と、
     縦型光導波路のコア部分を形成するためのコア用の光硬化性樹脂を供給する工程と、
     前記コア用の光硬化性樹脂を露光して前記透光部と前記光導波路との間に前記縦型光導波路のコア部分を形成する工程と、
     未硬化の前記コア用の光硬化性樹脂を除去する工程と、
     前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に、前記縦型光導波路のクラッド部分を形成するためのクラッド用の光硬化性樹脂を供給する工程と、
     前記クラッド部分と前記電子回路の周縁に相当する前記クラッド用の光硬化性樹脂を露光する工程と、
     未硬化の前記クラッド用の光硬化性樹脂を除去する工程と、
     を含む、電気信号の入力又は出力を行うとともに前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用されることを特徴とする光電気混載デバイスの製造方法。
  28.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、電子回路、光変調器、受光器及び/又は光源が設けられた光電気混載基板を準備する工程と、
     透光部及び光学フラット面を有する透光部材を準備する工程と、
     前記光電気混載基板に対し前記透光部材のアライメントを行い、該透光部材を設置する工程と、
     前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に、縦型光導波路のコア部分を形成するためのコア用の光硬化性樹脂を供給する工程と、
     前記コア部分と前記電子回路の周縁の一部に相当する前記コア用の光硬化性樹脂を露光する工程と、
     未硬化の前記コア用の光硬化性樹脂を除去する工程と、
     前記光電気混載基板と前記透光部材との間に形成される空間及び前記光電気混載基板上に、前記縦型光導波路のクラッド部分を形成するためのクラッド用の光硬化性樹脂を供給する工程と、
     前記クラッド部分と前記電子回路の周縁の残部に相当する前記クラッド用の光硬化性樹脂を露光する工程と、
     未硬化の前記クラッド用の光硬化性樹脂を除去する工程と、
     を含む、電気信号の入力又は出力を行うとともに前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用されることを特徴とする光電気混載デバイスの製造方法。
  29.  請求項25~28の何れか1項に記載の製造方法において、前記光硬化性樹脂を露光することによって、前記縦型光導波路と、前記電子回路上の前記光硬化性樹脂で覆われていない開口とを同時に形成することを特徴とする製造方法。
  30.  請求項29に記載の製造方法において、前記縦型光導波路の部分は光を透過し前記電子回路上の前記開口となる部分は光を遮蔽するように構成されたマスクを用いて露光を行うことを特徴とする製造方法。
  31.  請求項29又は30に記載の製造方法において、前記電子回路上の前記開口の周囲の硬化後の光硬化性樹脂が、前記電子回路の側面を覆って前記電子回路の底面を封止していることを特徴とする製造方法。
  32.  請求項23~31の何れか1項に記載の製造方法であって、前記光電気混載基板上にスペーサを配置する工程を更に含み、前記透光部材は前記スペーサから張り出す形で配置されることを特徴とする製造方法。
  33.  請求項32に記載の製造方法において、前記透光部材の張り出した端部が光照射されるように前記光硬化性樹脂を露光することによって、前記透光部材の前記端部を支持する支持部材を前記縦型光導波路と同時に形成することを特徴とする製造方法。
  34.  請求項32又は33に記載の製造方法において、前記透光部材の前記スペーサと接している部分を光照射して当該部分に入り込んだ前記光硬化性樹脂を硬化させることによって、前記縦型光導波路の形成と同時に前記透光部材と前記スペーサを前記光硬化性樹脂により固着することを特徴とする製造方法。
  35.  請求項23~34の何れか1項に記載の製造方法において、前記透光部材は、前記光硬化性樹脂に接して前記光電気混載基板上に所定高さで保持され、前記透光部材の前記縦型光導波路以外の部分が光照射されるように前記光硬化型樹脂を露光することによって、前記透光部材を前記光電気混載基板上に支持する支持部材を前記縦型光導波路と同時に形成することを特徴とする製造方法。
  36.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、電子回路、光変調器、受光器及び/又は光源が設けられた光電気混載基板を準備する工程と、
     フォトマスクを前記光電気混載基板に対しアライメントし設置する工程と、
     前記光電気混載基板と前記フォトマスクとの間に形成される空間に光の照射によって硬化する光硬化性樹脂を供給する工程と、
     前記光硬化性樹脂を前記フォトマスクを介して露光し、光信号の入出力経路となる縦型光導波路を形成する工程と、
     未硬化の光硬化性樹脂を除去する工程と、
     前記フォトマスクを取り外す工程と、
     を含む、電気信号の入力又は出力を行うとともに前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用されることを特徴とする光電気混載デバイスの製造方法。
  37.  光信号を伝達する光導波路、電気信号を伝達する電気信号経路、及び電子回路が設けられるとともに、光変調器及び光源、及び/又は受光器が設けられた光電気混載基板の上に、前記光電気混載基板の光信号の入出力を担う特定部分を除いて覆う封止構造を設置する工程と、
     ガラスウェハーを準備する工程と、
     フォトマスクを準備し、前記ガラスウェハーと前記フォトマスクとの間に形成される空間に光硬化性樹脂を供給し、前記光硬化性樹脂を前記フォトマスクを介して露光することにより、前記ガラスウェハー上に光導波路を複数同時に形成し、クラッド部材を充填・硬化して、前記ガラスウェハー上に縦型光導波路を複数形成する工程と、
     前記縦型光導波路が複数形成されたガラスウェハーをダイシングし、個々の縦型光導波路ユニットを形成する工程と、
     前記縦型光導波路ユニットを、前記縦型光導波路が形成された面の裏面が光学フラット面として上面になるような状態で前記光電気混載基板の光信号の入出力を担う前記特定部分に組み込む工程と、
     を含む、電気信号の入力又は出力を行うとともに前記縦型光導波路を介して光信号の入力又は出力を行うようにした、データ伝送用のモジュールに組み込まれて信号変換素子として使用されることを特徴とする光電気混載デバイスの製造方法。
  38.  請求項23~37の何れか1項に記載の製造方法において、
     前記電気信号経路に接続される1又は複数の導電部材及び前記導電部材の頂部にそれぞれ設けられた1又は複数の電気接続部を備え、 
     前記光学フラット面の位置が前記電気接続部の頂部を下回らない構成とされ、これにより、前記縦型光導波路との間で光信号を伝達する光導波路が設けられた光コネクタを前記光学フラット面に載置する際に、前記1又は複数の電気接続部に一括接続され電気信号を外部に入出力するブリッジ基板と前記光コネクタとの衝突が回避されることを特徴とする光電気混載デバイスの製造方法。
  39.  請求項23~38の何れか1項に記載の製造方法において、前記縦型光導波路が複数の光導波路で構成されていることを特徴とする製造方法。
  40.  請求項39に記載の製造方法において、前記複数の光導波路は、円筒形状であることを特徴とする製造方法。
  41.  請求項39に記載の製造方法において、前記複数の光導波路は、前記光導波路に向かって直径が絞られていくテーパ形状、又は、前記光学フラット面に向かって直径が絞られていく逆テーパ形状であることを特徴とする製造方法。
  42.  請求項39に記載の製造方法において、前記複数の光導波路は、軸が傾斜していることを特徴とする製造方法。
  43.  請求項42に記載の製造方法において、前記複数の光導波路は、斜円筒形状、若しくは、軸が傾斜したテーパ形状又は逆テーパ形状であることを特徴とする製造方法。
PCT/JP2014/057783 2013-03-29 2014-03-20 光電気混載デバイス及びその製造方法 WO2014156962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/781,249 US9541718B2 (en) 2013-03-29 2014-03-20 Photoelectric hybrid device and method for manufacturing same
JP2015508417A JP6461786B2 (ja) 2013-03-29 2014-03-20 光電気混載デバイス及びその製造方法
EP14775978.1A EP2980619A4 (en) 2013-03-29 2014-03-20 PHOTOELECTRIC HYBRID DEVICE AND METHOD FOR THE PRODUCTION THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013071843 2013-03-29
JP2013-071843 2013-03-29
JP2013173031 2013-08-23
JP2013-173031 2013-08-23
JP2013218315 2013-10-21
JP2013-218315 2013-10-21

Publications (1)

Publication Number Publication Date
WO2014156962A1 true WO2014156962A1 (ja) 2014-10-02

Family

ID=51623941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057783 WO2014156962A1 (ja) 2013-03-29 2014-03-20 光電気混載デバイス及びその製造方法

Country Status (4)

Country Link
US (1) US9541718B2 (ja)
EP (1) EP2980619A4 (ja)
JP (1) JP6461786B2 (ja)
WO (1) WO2014156962A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017151146A (ja) * 2016-02-22 2017-08-31 技術研究組合光電子融合基盤技術研究所 光電気混載デバイス
JP2018530158A (ja) * 2015-10-01 2018-10-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 発光デバイス
JP2018200924A (ja) * 2017-05-25 2018-12-20 富士通株式会社 光モジュール
US10386586B2 (en) 2016-12-22 2019-08-20 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
JP2019174610A (ja) * 2018-03-28 2019-10-10 技術研究組合光電子融合基盤技術研究所 光コネクタ、光コネクタの製造方法、及び光コネクタを備える光電気混載デバイス
US10818650B2 (en) 2018-11-21 2020-10-27 Renesas Electronics Corporation Semiconductor module and method of manufacturing the same, and method of communication using the same
US11137560B2 (en) 2018-05-31 2021-10-05 Renesas Electronics Corporation Semiconductor module, manufacturing method thereof, and communication method using the same
US11424837B2 (en) * 2015-06-02 2022-08-23 Cisco Technology, Inc Method and system for large silicon photonic interposers by stitching

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM532101U (zh) * 2016-02-24 2016-11-11 英屬開曼群島商鴻騰精密科技股份有限公司 一種電連接器組合及其支撐件
US9933577B2 (en) * 2016-03-11 2018-04-03 Globalfoundries Inc. Photonics chip
US10466515B2 (en) 2016-03-15 2019-11-05 Intel Corporation On-chip optical isolator
US10012809B2 (en) * 2016-06-20 2018-07-03 Mellanox Technologies, Ltd. Printed circuit board assembly with a photonic integrated circuit for an electro-optical interface
US20180059446A1 (en) * 2016-08-29 2018-03-01 Woosung Kim Optical iso-modulator
US9978890B1 (en) * 2017-02-23 2018-05-22 Cisco Technology, Inc. Germanium multi-directional detector
US10355805B2 (en) 2017-08-10 2019-07-16 Luxtera, Inc. Method and system for a free space CWDM MUX/DEMUX for integration with a grating coupler based silicon photonics platform
CN109638638B (zh) * 2017-10-05 2023-06-13 住友电工光电子器件创新株式会社 光学模块
JP7246948B2 (ja) * 2018-06-15 2023-03-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
US11002915B2 (en) * 2018-06-29 2021-05-11 Taiwan Semiconductor Manufacturing Co., Ltd. Fiber-to-chip grating coupler for photonic circuits
JP7135871B2 (ja) * 2019-01-10 2022-09-13 日本電信電話株式会社 光モジュール
US11199671B2 (en) * 2020-04-21 2021-12-14 Hewlett Packard Enterprise Development Lp Glass-as-a-platform (GaaP)-based photonic assemblies comprising shaped glass plates
US11490177B1 (en) 2020-06-05 2022-11-01 Luminous Computing, Inc. Optical link system and method for computation
US11726260B2 (en) * 2020-09-29 2023-08-15 Google Llc Substrate coupled grating couplers in photonic integrated circuits
US11686906B1 (en) * 2020-10-12 2023-06-27 Poet Technologies, Inc. Self-aligned structure and method on interposer-based PIC
JP2022080627A (ja) * 2020-11-18 2022-05-30 アイオーコア株式会社 光モジュール
JP2022115723A (ja) * 2021-01-28 2022-08-09 アイオーコア株式会社 光電気モジュール
JP2022124177A (ja) * 2021-02-15 2022-08-25 株式会社日本マイクロニクス 接続装置及び集光基板
US11609375B2 (en) * 2021-02-22 2023-03-21 Luminous Computing, Inc. Photonic integrated circuit system and method of fabrication
CN115308850A (zh) * 2021-05-08 2022-11-08 鹏鼎控股(深圳)股份有限公司 光电复合电路板以及光电复合电路板的制作方法
WO2023018569A1 (en) * 2021-08-10 2023-02-16 Corning Research & Development Corporation Co-packaged optics assemblies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131064A (ja) 2001-10-29 2003-05-08 Ibiden Co Ltd 光導波路の製造方法
JP2006227042A (ja) * 2005-02-15 2006-08-31 Tokai Univ 光接続装置の製造方法及び光接続装置
JP2008299180A (ja) 2007-06-01 2008-12-11 Tokai Univ 自己形成光導波路の製造方法及びそれを備えた光デバイス
JP2009175475A (ja) * 2008-01-25 2009-08-06 Furukawa Electric Co Ltd:The 光結合器の製造方法および光結合器
JP2009536362A (ja) 2006-05-05 2009-10-08 リフレックス フォトニックス インコーポレイテッド 光学有効集積回路パッケージ
WO2012073441A1 (ja) * 2010-11-29 2012-06-07 株式会社日立製作所 光モジュールおよびその実装構造

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP390098A0 (en) 1998-06-04 1998-07-02 University Of Sydney, The An absorbing layer for minimising substrate exposure during the uv writing of a waveguide grating in addition to birefringent control system
US6924510B2 (en) 2002-05-06 2005-08-02 Intel Corporation Silicon and silicon/germanium light-emitting device, methods and systems
US7058247B2 (en) * 2003-12-17 2006-06-06 International Business Machines Corporation Silicon carrier for optical interconnect modules
JP2006201313A (ja) 2005-01-18 2006-08-03 Fuji Xerox Co Ltd 光伝送装置及び光モジュール
AT503585B1 (de) * 2006-05-08 2007-11-15 Austria Tech & System Tech Leiterplattenelement sowie verfahren zu dessen herstellung
US9116319B2 (en) * 2010-12-17 2015-08-25 Stmicroelectronics, Inc. Photonic integrated circuit having a plurality of lenses
JP2013003177A (ja) 2011-06-13 2013-01-07 Sumitomo Electric Ind Ltd 光電気変換モジュール及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131064A (ja) 2001-10-29 2003-05-08 Ibiden Co Ltd 光導波路の製造方法
JP2006227042A (ja) * 2005-02-15 2006-08-31 Tokai Univ 光接続装置の製造方法及び光接続装置
JP2009536362A (ja) 2006-05-05 2009-10-08 リフレックス フォトニックス インコーポレイテッド 光学有効集積回路パッケージ
JP2008299180A (ja) 2007-06-01 2008-12-11 Tokai Univ 自己形成光導波路の製造方法及びそれを備えた光デバイス
JP2009175475A (ja) * 2008-01-25 2009-08-06 Furukawa Electric Co Ltd:The 光結合器の製造方法および光結合器
WO2012073441A1 (ja) * 2010-11-29 2012-06-07 株式会社日立製作所 光モジュールおよびその実装構造

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate", OPTICS EXPRESS, vol. 20, no. 26, 12 December 2012 (2012-12-12), pages B256 - B263
BLAZAR 40 GBPSOPTICAL ACTIVE CABLE, Retrieved from the Internet <URL:http://www.datcominc.com/picture_library/upload/Luxtera/Blazar o2040Gbpso200pticalo20Activeo20Cable.pdf>
DURAN, PAUL: "Blazar 40 Gbps Optical Active Cable", July 2008 (2008-07-01), XP008183370, Retrieved from the Internet <URL:HTTP://WWW.DATCOMINC.COM/PICTURE_LIBRARY/UPLOAD/LUXTERA/BLAZAR%2040GBPS%200PTICAL%20ACTIVE%20CABLE.PDF> [retrieved on 20140617] *
GUCKENBERGER, DREW ET AL.: "Advantages of CMOS Photonics for Future Transceiver Applications", ECOC 2010, September 2010 (2010-09-01), pages 1 - 6, XP031789974 *
NARASIMHA, ADITHYARAM ET AL.: "An Ultra Power CMOS Photonics Technology Platform for H/S Optoelectronics Transceivers at less than $1 per Gbps", OPTICAL FIBER COMMUNICATION, 20 March 2010 (2010-03-20), pages 1 - 3, XP031676818 *
PINGUET, THIERRY ET AL.: "Silicon Photonics Multicore Transceivers", 2012 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, July 2012 (2012-07-01), pages 238 - 239, XP032224954 *
See also references of EP2980619A4
THE LUXTERA CMOS INTEGRATED PHOTONIC CHIP IN A MOLEX CABLE, Retrieved from the Internet <URL:http://www.chipworks.com/blog/technologyblog/2012/12/03/the-luxtera-cmos-integrated-photonic-chip-in-a-molex-cable>

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424837B2 (en) * 2015-06-02 2022-08-23 Cisco Technology, Inc Method and system for large silicon photonic interposers by stitching
JP2018530158A (ja) * 2015-10-01 2018-10-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 発光デバイス
JP2017151146A (ja) * 2016-02-22 2017-08-31 技術研究組合光電子融合基盤技術研究所 光電気混載デバイス
US10386586B2 (en) 2016-12-22 2019-08-20 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
JP2018200924A (ja) * 2017-05-25 2018-12-20 富士通株式会社 光モジュール
JP2019174610A (ja) * 2018-03-28 2019-10-10 技術研究組合光電子融合基盤技術研究所 光コネクタ、光コネクタの製造方法、及び光コネクタを備える光電気混載デバイス
US11137560B2 (en) 2018-05-31 2021-10-05 Renesas Electronics Corporation Semiconductor module, manufacturing method thereof, and communication method using the same
US10818650B2 (en) 2018-11-21 2020-10-27 Renesas Electronics Corporation Semiconductor module and method of manufacturing the same, and method of communication using the same

Also Published As

Publication number Publication date
US9541718B2 (en) 2017-01-10
EP2980619A1 (en) 2016-02-03
JP6461786B2 (ja) 2019-01-30
US20160062063A1 (en) 2016-03-03
JPWO2014156962A1 (ja) 2017-02-16
EP2980619A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6461786B2 (ja) 光電気混載デバイス及びその製造方法
JP6029115B2 (ja) 光デバイス、光コネクタ・アセンブリおよび光接続方法
JP6445138B2 (ja) 光伝送モジュール、内視鏡、および前記光伝送モジュールの製造方法
JP7117133B2 (ja) 光サブアセンブリ及びその製造方法並びに光モジュール
KR20070085080A (ko) 전자-광 모듈 제조 시스템 및 방법
JP2010190994A (ja) 光電気混載モジュールおよびその製造方法
US7453058B2 (en) Optical bumps for low-loss interconnection between a device and its supported substrate and related methods
JP4845333B2 (ja) 光電変換素子パッケージ、その作製方法及び光コネクタ
JP2003218447A (ja) パラレル光学系接続装置用の位置決め方法
Ito et al. Demonstration of high-bandwidth data transmission above 240 Gbps for optoelectronic module with low-loss and low-crosstalk polynorbornene waveguides
JP5395042B2 (ja) 光路変換デバイスの製造方法
US11448838B2 (en) Optical component and method for manufacturing same
JP4607063B2 (ja) 光路変換コネクタの製造方法
JP2013057718A (ja) 光モジュール
US20210141170A1 (en) Optical Module, Optical Wiring Substrate, and Method for Manufacturing Optical Module
WO2022190351A1 (ja) 光接続構造、パッケージ構造、光モジュールおよびパッケージ構造の製造方法
JP2005317658A (ja) 光・電気一括接続基板
JP2009223340A (ja) 光学部品、およびそれに用いられる光路変換デバイス
WO2022264329A1 (ja) 光接続構造およびその製造方法
WO2022264321A1 (ja) 光回路デバイスのパッケージ構造およびその製造方法
WO2022208662A1 (ja) 光接続構造、パッケージ構造および光モジュール
WO2022254657A1 (ja) 集積型光デバイスおよびその製造方法
JP4800409B2 (ja) 光路変換コネクタの製造方法
WO2022003794A1 (ja) 集積型光デバイス
JP6542668B2 (ja) 光電気混載基板に設けた光送信機または光送受信機の送信部

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14781249

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014775978

Country of ref document: EP