WO2022208662A1 - 光接続構造、パッケージ構造および光モジュール - Google Patents

光接続構造、パッケージ構造および光モジュール Download PDF

Info

Publication number
WO2022208662A1
WO2022208662A1 PCT/JP2021/013551 JP2021013551W WO2022208662A1 WO 2022208662 A1 WO2022208662 A1 WO 2022208662A1 JP 2021013551 W JP2021013551 W JP 2021013551W WO 2022208662 A1 WO2022208662 A1 WO 2022208662A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
grin lens
light
substrate
connection structure
Prior art date
Application number
PCT/JP2021/013551
Other languages
English (en)
French (fr)
Inventor
光太 鹿間
雄三 石井
賢哉 鈴木
啓 渡邉
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/013551 priority Critical patent/WO2022208662A1/ja
Priority to JP2023509967A priority patent/JPWO2022208662A1/ja
Publication of WO2022208662A1 publication Critical patent/WO2022208662A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present invention relates to an optical connection structure, a package structure, and an optical module for connecting optical fibers and optical elements.
  • optical transmission such as an optical waveguide or an optical fiber is performed between a light emitting element such as a laser diode (LD) and a light receiving element such as a photodiode (PD) arranged on a printed circuit board.
  • a light emitting element such as a laser diode (LD)
  • a light receiving element such as a photodiode (PD) arranged on a printed circuit board.
  • Signal processing is realized by transmission using a medium.
  • the optical light emitting element is integrated with an optical modulation element or the like, or connected discretely, and further connected to a driver or the like that performs electrical-to-optical conversion.
  • a configuration including these light emitting elements, light modulating elements, drivers, etc. is mounted as an optical transmitter on an electrical mounting board such as a printed circuit board (PCB).
  • PCB printed circuit board
  • the light-receiving element is appropriately integrated with an optical processor or the like, or connected discretely, and further connected with an electric amplifier circuit or the like for performing optical-electrical conversion.
  • a configuration including these photodetectors, optical processors, electrical amplifier circuits, etc. is mounted on a printed circuit board as an optical receiver.
  • An optical transmitter/receiver that integrates an optical transmitter and an optical receiver is mounted in a package or on a printed circuit board, and is optically connected to an optical transmission medium such as an optical fiber to form an optical interconnection. Realized. Also, depending on the topology, it is realized through a repeater such as an optical switch.
  • semiconductors such as silicon and germanium, indium phosphide (InP), gallium arsenide (GaAs), and indium gallium arsenide (InGaAs) are typical examples of light emitting devices, light receiving devices, and light modulation devices used for optical interconnection.
  • optical waveguide type optical transceivers have been developed in which a silicon optical circuit (silicon photonics) having a light propagation mechanism, an indium phosphorous optical circuit, or the like are integrated.
  • materials such as ferroelectrics such as lithium niobate and polymers may also be used as light modulation elements.
  • optical functional elements such as planar lightwave circuits made of silica glass are sometimes integrated together with the above light emitting elements, light receiving elements, and light modulating elements.
  • Optical functional devices include splitters, wavelength multiplexers/demultiplexers, optical switches, polarization control devices, optical filters, and the like.
  • an optical waveguide device a device in which a light emitting device, a light receiving device, an optical modulation device, an optical functional device, a light amplifying device, etc. having the above light propagation and waveguiding mechanisms are integrated will be referred to as an optical waveguide device.
  • Non-Patent Document 1 In optical waveguide devices, silicon photonics chips are highly integrated, mass-producible, and compatible with electrical components, and are attracting attention as key devices for realizing next-generation optical interconnection (Non-Patent Document 1). .
  • Wire bonding, flip chip connection, Ball-grid array (BGA), Land-grid array (LGA ), a method of connecting using a pin-grid array (PGA), a copper pillar, or the like is used.
  • BGA Ball-grid array
  • LGA Land-grid array
  • PGA pin-grid array
  • PGA copper pillar
  • one of the methods of connecting a silicon photonics chip and an optical fiber is a structure that connects with an optical fiber array integrated with glass or the like in which a V-groove is formed.
  • each core of the optical fiber and each waveguide core of the optical waveguide device are required to be connected with low loss.
  • alignment it is necessary to position (hereinafter referred to as alignment) and fix the optical waveguide device and the optical fiber in submicron units.
  • alignment In a conventional optical waveguide device, alignment (optical alignment) is performed by actually inputting and outputting light and monitoring the power, and it is mounted in a package or on a board in a state integrated with an optical fiber array.
  • the Rukoto is performed by actually inputting and outputting light and monitoring the power, and it is mounted in a package or on a board in a state integrated with an optical fiber array.
  • the side surface of the chip is the adhesive surface, the adhesive area is limited, and there was a concern that it would be difficult to obtain sufficient adhesive strength.
  • optical fiber is connected as a pigtail, in the next process such as board mounting, it is necessary to maintain (stabilize) the fixed connection state of the optical fiber, such as routing the optical fiber.
  • the mass productivity of the process was declining.
  • an optical connection structure in a package structure that is connected to an optical fiber and has a substrate, comprising: an optical element arranged on the substrate; and an optical path changing portion disposed on a substrate, one end face of the optical path changing portion facing the end face of the optical element.
  • an optical connection structure a package structure, and an optical module that can improve mass productivity without directly bonding an optical fiber to an optical element.
  • FIG. 1 is a schematic side view showing the configuration of an optical module according to the first embodiment of the invention.
  • FIG. 2 is a schematic side view showing an example of the configuration of the optical module according to the first embodiment of the invention.
  • FIG. 3 is a schematic side view showing an example of the configuration of the optical module according to the first embodiment of the invention.
  • FIG. 4 is a schematic top view showing the configuration of the optical module according to the first embodiment of the invention.
  • FIG. 5 is a schematic top view showing an example of the configuration of the optical module according to the first embodiment of the invention.
  • FIG. 6 is a schematic side view showing an example of the configuration of the optical module according to the first embodiment of the invention.
  • FIG. 7 is a schematic side view showing the configuration of an optical module according to the second embodiment of the invention.
  • FIG. 8 is a schematic side view showing an example of the configuration of the optical module according to the second embodiment of the invention.
  • FIG. 9 is a schematic side view showing an example of the configuration of the optical module according to the second embodiment of the invention.
  • FIG. 10 is a schematic top view for explaining the operation of the optical connection structure according to the embodiment of the invention.
  • FIG. 1 An optical connection structure, a package structure and an optical module according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 An optical connection structure, a package structure and an optical module according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 An optical connection structure, a package structure and an optical module according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 is a schematic side view showing the configuration of an optical module 1 according to this embodiment.
  • the surface on the Z+ side in the drawing is referred to as "upper surface”
  • the surface on the Z- side is referred to as "lower surface”.
  • the optical module 1 includes a package structure 11, a ferrule 108, and an optical fiber 109. Also, the package structure 11 and the ferrule 108 are fixed by a clip 110 .
  • the silicon photonics chip 101 , the GRIN lens 102 and the IC 103 are mounted on the substrate 1041 and covered with the molding resin 105 .
  • the substrate 1041 is a thin-layer wiring substrate having a thickness of approximately 10 ⁇ m to 30 ⁇ m.
  • a BGA or LGA is formed as an electrical connection portion 106 on the surface (bottom surface) opposite to the component mounting surface (top surface) of the substrate 1041, and an electrical mounting substrate (not shown) such as a PCB on which an optical package is mounted. It is an electrical interface between
  • the silicon photonics chip 101 is a chip with an optical circuit and an electric circuit formed on its surface, and has a thickness of 625 ⁇ m, which is the thickness of a standard silicon wafer.
  • the silicon photonics chip 101 is flip-chip mounted on the substrate 1041 via solder balls or copper pillars, with the surface (circuit surface) on which the optical circuit is formed facing downward, that is, the so-called facedown. Since the silicon photonics chip 101 is mounted face down, the position (height) of input/output light from the silicon photonics chip 101 is low, approximately several tens of ⁇ m to 100 ⁇ m above the upper surface of the substrate 1041 .
  • the GRIN lens 102 is a cylindrical optical component, and is a gradient index lens in which the refractive index is changed parabolically from the central axis of the cylinder toward the outer periphery.
  • a GRIN lens changes its focal length by changing its length, and its lens characteristics are expressed by the following relational expression.
  • Z is the length of the GRIN lens
  • ⁇ A is the refractive index distribution constant determined by the material and manufacturing method
  • P is the pitch representing the meandering period of light rays passing through the lens.
  • a GRIN lens with a pitch of about 0.5 (P ⁇ 0.5) is used, and in the case of a general GRIN lens with a diameter of 1.8 mm, the length Z is about 9.6 mm.
  • Light emitted from the silicon photonics chip 101 enters a low position on one end face of the GRIN lens 102 (the left end face in FIG. 1), and then travels in the direction of travel inside the GRIN lens 102 as indicated by a curve 12 in the figure. It propagates while changing the state of divergence and convergence, and forms an image at a high position on the other end face of the GRIN lens 102 (the right end face in FIG. 1).
  • the "low" position of the GRIN lens 102 refers to a position below the center axis of the GRIN lens 102, and particularly in FIG.
  • the "high" position of the GRIN lens 102 refers to a position above the central axis of the GRIN lens 102, and particularly in FIG. .
  • the incident position of light on one end surface and the imaging (output) position on the other end surface are symmetrical with respect to the central axis of the GRIN lens 102 .
  • FIG. 2 shows an example in which the silicon photonics chip 101 is mounted face-up, with the surface on which the optical circuit is formed (circuit surface) facing upward.
  • light is incident from a position near the central axis of one end surface (the left end surface in FIG. 2) of the GRIN lens 102 .
  • a light ray inside the GRIN lens 102 propagates through a path different from that in the case of face-down mounting (FIG. 1) and forms an image on the other end surface (the right end surface in FIG. 2).
  • the light incident position on one end surface and the imaging (exiting) position on the other end surface are the center of the GRIN lens 102, as in the case of face-down mounting (FIG. 1). It is symmetrical about the axis.
  • the electrical connection between the silicon photonics chip 101 and the substrate 1041 is realized by wire bonding or TSV (Through Silicon Via).
  • the substrate 1041 is a multilayer wiring layer in which copper foil layers and insulating resin layers are alternately laminated. It is generally called a redistribution layer (RDL: Re-Distribution Layer).
  • RDL Re-Distribution Layer
  • the fan-out package first forms an electrical wiring layer (RDL) on a support substrate (wafer or panel), performs chip mounting and resin molding, and finally peels off the support substrate. It can be manufactured by adopting the "RDL First Construction Method".
  • RDL electrical wiring layer
  • the substrate 1041 is not limited to RDL, and may be a general wiring substrate (organic buildup substrate or ceramic substrate).
  • the substrate can be partially thinned or provided with a notch.
  • the height of the silicon photonics chip 101 and the GRIN lens 102 can be arbitrarily set by making only the portion where the GRIN lens 102 is mounted on the substrate 1042 thinner than the portion where the silicon photonics chip 101 is mounted.
  • the substrate 1042 is a substrate (thickness: about 1000 ⁇ m) made of ceramic or the like.
  • the IC 103 is not limited to face-down mounting, and may be face-up mounting. Also, the IC 103 is not limited to a bare chip, and may be a package component. Various optical chips (optical elements) may be mounted as described above in addition to a plurality of ICs, package components, and silicon photonics chips.
  • the other end surface of the GRIN lens 102 (the right end surface in FIGS. 1 to 3) is exposed from the mold resin 105 and is adhesively fixed to the adapter 107 .
  • a short optical fiber or optical waveguide component is built inside the adapter 107 to guide the light imaged on the other end surface of the GRIN lens 102 .
  • the end face of the adapter 107 opposite to the face facing the GRIN lens 102 is in contact with the ferrule 108 and further guides the light to the optical fiber 109 built inside the ferrule 108 .
  • the optical fiber 109 is a single-mode optical fiber, these light guides need to be aligned between parts with submicron precision. Therefore, the adapter 107 is actively centered with respect to the GRIN lens 102 and adhesively fixed at the optimum position.
  • connection structure between the adapter 107 and the ferrule 108 will be described below with reference to the top views shown in FIGS.
  • the adapter 107 is a rectangular component, and has two round holes for guide pins in the horizontal direction (top and bottom in the figure).
  • the rectangular ferrule 108 is also provided with a round hole for a guide pin.
  • the adapter 107 and the ferrule 108 are connected with high accuracy by inserting guide pins 111 (dotted lines in the figure) into these round holes.
  • a clip 110 is used to maintain contact between the two.
  • the dashed line portion in the drawing indicates the optical fiber 109 .
  • the ferrule 108 and the adapter 107 can be detached by removing the clip 110, and the same fitting mechanism as a known MT connector can be used.
  • any mechanism other than the clip can be applied as long as it applies a pressing force between the ferrules.
  • a plate spring component, a coil spring component, or a magnetic force other than mechanical fastening may be used.
  • the GRIN lens 102 has a refractive index distribution that is rotationally symmetrical about the central axis, so that the same light-condensing characteristics as in the vertical direction can be obtained in the horizontal direction.
  • the light incident on one end surface (the left end surface in FIG. 4) of the GRIN lens 102 from the arrayed light input/output units in the silicon photonics chip 101 passes through the other end surface (the left end surface in FIG. 4). , right end face) are arrayed and imaged.
  • an MT ferrule which is a general multi-core ferrule
  • the ferrule material filler-containing resin used in MT ferrules may be used, or other resin materials, glass members, ceramic members, metal members, Si, or the like may be used.
  • the guide pin 111 may be integrated with the adapter 107 or the ferrule 108 in advance.
  • first ferrules 107_1 and 107_2, which are single-core ferrules having a coaxial structure, are provided.
  • the first ferrules 107_1, 107_2 and the second ferrules 108_1, 108_2 can be connected with high accuracy by the split sleeves 112_1, 112_2.
  • This embodiment is designed so that no large optical reflection occurs between the GRIN lens and the silicon photonics chip. For example, by matching the refractive index of the material of the mold resin and the material of the chip end surface and the lens end surface, it is possible to suppress large Fresnel reflection caused by the difference in refractive index.
  • the reflected return light is not recombined by slanting the end faces.
  • a known anti-reflection film or the like may be formed on the end face of the silicon photonics chip or the end face of the GRIN lens. Similarly, there is no anti-reflection between the GRIN lens 102 and the optical fiber or waveguide in the adapter.
  • the GRIN lens can be positioned and mounted on the silicon photonics chip by any method, and can be passively mounted using active alignment, in-plane mechanical accuracy standards of package materials, electrical contacts, and positioning structures. You may
  • the package structure according to the present embodiment it is not necessary to directly bond and fix the optical fiber to the silicon photonics chip.
  • the package can be implemented.
  • Optical fiber connection is performed by engaging the adapter 107 or the first ferrules 107_1 and 107_2 with the ferrule 108 or the second ferrules 108_1 and 108_2, respectively, and performing active alignment with respect to the exposed GRIN lens. It is realized by bonding and fixing each interface.
  • the ferrule 108 or the second ferrules 108_1 and 108_2 may be removed, and since they are connectors, they can be re-fitted. Therefore, it is possible to proceed to the next process such as PCB mounting without the optical fiber, and the conventional problem of difficulty in handling the pigtail optical fiber can be resolved.
  • the package structure according to the present embodiment uses the GRIN lens in the molded package form, so that the silicon photonics chip can be freely arranged in the molded package. It also has the effect of
  • the GRIN lens by providing the GRIN lens, it becomes possible to provide the silicon photonics chip in the center of the length of the GRIN lens. can be enhanced.
  • the length of the GRIN lens can be flexibly changed by changing the shape of the refractive index distribution.
  • the electrical contacts of the silicon photonics chip are provided on the waveguide layer on the silicon substrate, so the distance between the silicon core and the thickness of the substrate is several tens of ⁇ m or less.
  • the thickness of the V-groove substrate used in conventional fiber arrays is required to be approximately several 100 ⁇ m.
  • the GRIN lens can be used to dispose the light input/output portion higher than the conventional position in the board thickness direction, that is, at a position away from the electric mounting board. , it is possible to eliminate the restrictions on the mounting position described above, and it is possible to realize a mounting form with a high degree of freedom.
  • the ferrule 108 and the adapter 107 similarly interfere with an electrical mounting board (not shown) connected downward via the electrical connection portion 106 (BGA, etc.).
  • the lens optical system may be disposed upward, similarly to the rays in the lens in FIG.
  • a bulk GRIN lens as the optical path conversion unit
  • any lens that exhibits the same optical function can be used.
  • a known GI (Graded Index) fiber may be used. Since the GI fiber is characterized by its small diameter and high accuracy of outline, it is easy to form even more, and the GI fiber array may be formed according to the number of channels of the chip.
  • a Fresnel lens, a metasurface lens, or the like may also be used. It is sufficient if it has a function of emitting light incident from one end face from the other end face with the central axis of the optical path changing portion as an axis of symmetry.
  • 113 may be directly adhesively fixed.
  • FIG. 7 An optical connection structure, a package structure and an optical module according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 9.
  • FIG. 7 An optical connection structure, a package structure and an optical module according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 9.
  • FIG. 7 An optical connection structure, a package structure and an optical module according to a second embodiment of the present invention will be described with reference to FIGS. 7 to 9.
  • the optical module 2 differs from that of the first embodiment in that the GRIN lens is divided into a first GRIN lens 2021 and a second GRIN lens 2022 .
  • Other configurations are substantially the same as those of the first embodiment.
  • FIG. 7 shows an example using a face-down type silicon photonics chip 101 .
  • the second GRIN lens 2022 is built into the adapter 2071.
  • FIG. 8 shows a case where a face-up type silicon photonics chip 101 is used. Since the light can be propagated in the vicinity of the central axes of the GRIN lenses 2021 and 2022, the size of the adapter 2072 can be reduced.
  • the package structure shown in FIG. 9 is an example using a substrate 1042 such as an organic buildup substrate or a ceramic substrate. It is made thinner than the portion where the silicon photonics chip 101 is mounted.
  • the first GRIN lens 2021 and the second GRIN lens 2022 may be GRIN lenses with different characteristics. For example, by using the second GRIN lens 2022 whose refractive index distribution constant ( ⁇ A) is larger than that of the first GRIN lens 2021, the total length can be shortened, and the other end face of the second GRIN lens 2022 (in FIG. 7, The spot size at the right edge) can be varied.
  • ⁇ A refractive index distribution constant
  • an optical waveguide component (not shown).
  • NA spot size
  • TEC fiber NA expansion fiber
  • polymer waveguide glass waveguide
  • the interface between the first GRIN lens 2021 and the second GRIN lens 2022 serves as an alignment surface and an adhesive fixing surface.
  • the coupling is with thick collimated light, it is not always necessary to perform active alignment if the dimensional accuracy of the optical components is sufficient.
  • a multi-core ferrule or a single-core ferrule can be used in the same manner as the configurations shown in FIGS.
  • connection of the optical fiber is achieved by aligning the adapters 2071 and 2072 with the ferrule 108 and fixing them by bonding to the exposed first GRIN lens 2021 .
  • the ferrule 108 or the second ferrules 108_1 and 108_2 may be removed, and since it is a connector type, it can be reconnected. Therefore, it is possible to proceed to the next process such as PCB mounting without the optical fiber, and the conventional problem of difficulty in handling the pigtail optical fiber can be resolved.
  • the package structure of this embodiment as in the first embodiment, it is not necessary to directly adhere and fix the optical fiber to the silicon photonics chip. It is possible to package the silicon photonics chip while avoiding the influence of
  • the GRIN lens can be used to position the light input/output section above the conventional position in the board thickness direction, that is, at a position away from the electric mounting board.
  • the restrictions on the mounting position described above can be eliminated, and a mounting form with a high degree of freedom can be realized.
  • image is not always formed on the output end face of the GRIN lens.
  • An image may be formed on the end surface of the adapter, or a structure in which light is propagated within a range in which the package structure can operate even if the image is not formed completely (even if the light is not focused) may be used.
  • the length of the GRIN lens determines the condensing state such as the focal diameter of the output light, so that the optical system can be easily designed. Also, when light is input with an offset with respect to the central axis, an image is formed at a position symmetrical to the central axis and output.
  • FIG. 10 is a schematic top view of the optical connection structure 10 for explaining the propagation path of light.
  • a dotted line 112_1 and a dashed line 12_2 in the figure indicate paths of light propagating inside the GRIN lens 102.
  • FIG. 10 is a schematic top view of the optical connection structure 10 for explaining the propagation path of light.
  • a dotted line 112_1 and a dashed line 12_2 in the figure indicate paths of light propagating inside the GRIN lens 102.
  • the light propagated through the waveguides 1012 and 1013 is output from the silicon photonics chip 101, propagated (focused) through different paths 12_1 and 12_2 by the GRIN lens 102, and input to different optical fibers 109_2 and 109_4 via the adapter 107. be (combined)
  • the silicon photonics chip 101 includes an optical device 1011, a first waveguide 1012, and a second waveguide 1013, as an example.
  • a modulator is used as the optical device 1101 here, a mixer, a photodiode, or the like may also be used.
  • a modulator 1101 is connected to the first waveguide 1102 , modulates input light to generate an optical signal, and the optical signal propagates through the first waveguide 1102 .
  • the second waveguide 1103 is used for component position adjustment and alignment in the manufacturing process of the package structure 11 (described later).
  • the optical connection structure 10 uses the GRIN lens 102 to easily input light from different optical fibers into different waveguides of the silicon photonics chip 101, thereby allowing different Output light from the waveguide can be input to different optical fibers.
  • a ferrule 108 to which a multicore optical fiber 109 including optical fibers 109_3 and 109_4 is fixed to a silicon photonics chip 101 and a GRIN lens 102 fixed with a mold resin 105 is connected to an adapter 107 and fixed with a clip 110. .
  • the light for alignment is input to the optical fiber 109_3 and propagates to the silicon photonics chip 101 through the adapter 107 and the GRIN lens 208 in order.
  • the silicon photonics chip 101 has a loopback optical circuit (second waveguide) 1013 for alignment, as shown in FIG.
  • the alignment light input from the optical fiber 109_3 is incident on the other end surface (right side in FIG. 10) of the GRIN lens 102, propagates along the path 12_2, and passes through the silicon photonics chip 101 as described above. is input (coupled) to the second waveguide 1013 , propagates through the second waveguide 1013 and is output from the silicon photonics chip 101 .
  • the light output from the silicon photonics chip 101 is incident on one end face of the GRIN lens 102 (left side in FIG. 10), propagates along the path 12_2, and converges on the other end face of the GRIN lens 102 (right side in FIG. 10). It is imaged and input to the optical fiber 109_4 via the adapter 107.
  • FIG. 10 The light output from the silicon photonics chip 101 is incident on one end face of the GRIN lens 102 (left side in FIG. 10), propagates along the path 12_2, and converges on the other end face of the GRIN lens 102 (right side in FIG. 10). It is imaged and input to the optical fiber 109_4 via the adapter 107.
  • the intensity (light amount) of light output from the other end of the optical fiber 109_4 is measured, and the adapter 107 is positioned (aligned) so that the light intensity (light amount) is maximized.
  • the rigidity and productivity of the package can be improved by using mold resin.
  • optical components require high-precision alignment of about 0.1 ⁇ m and high reliability, so it was difficult to use a configuration using mold resin.
  • the durability and stability of the adhesive fixation in the process of fixing each part with a mold are insufficient. Since it cannot be adjusted, it has been difficult to adjust the position of the component and the optical axis with high accuracy.
  • the optical axis can be adjusted after each component is fixed with a mold. be able to.
  • FOWLP and FOPLP can be used for mounting optical components.
  • the GRIN lens end face of the package structure and the fiber array are directly connected without using the detachable structure using the adapter and ferrule described above. , may be adhesively fixed.
  • the present invention relates to an optical module as an optical component, and can be applied to devices and systems such as optical communication.
  • optical module 10 optical connection structure 11 package structure 101 silicon photonics chip (optical element) 102 GRIN lens (optical path conversion unit) 103 IC 1041 substrate 105 mold resin 106 electrical connection portion 107 adapter 108 ferrule 109 optical fiber

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明の光接続構造(10)は、光ファイバ(109)と接続し、基板(1041)を有するパッケージ構造(11)における光接続構造であって、基板(1041)「に配置される光素子(101)と、基板(1041)に配置される光路変換部(102)とを備え、光路変換部(102)の一方の端面が、光素子(101)の端面と対向する。 これにより、本発明は、光素子に光ファイバを直接接着することなく、量産性を向上できる光接続構造を提供することができる。

Description

光接続構造、パッケージ構造および光モジュール
 本発明は、光ファイバと光素子とを接続する光接続構造、パッケージ構造および光モジュールに関する。
 近年のインターネットトラフィックの急増に伴い、データセンタネットワークの通信容量の拡大が求められている。さらに、伝送容量の拡大および低消費電力化に対応するために、短中距離用途においても光で伝送する光インタコネクションの導入が進んでいる。
 光インタコネクションの代表的な方式においては、プリント基板上に配置されたレーザダイオード(LD)などの光発光素子とフォトダイオード(PD)などの光受光素子間を光導波路や光ファイバなどの光伝送媒体を用いて伝送することで信号処理が実現されている。
 伝送方式によっては、光発光素子には、光変調素子などが集積され、又はディスクリートに接続され、さらに電気-光変換を行うドライバなどが接続される。これらの光発光素子、光変調素子、ドライバなどを含む構成が光送信機としてプリント基板(PCB:Printed circuit board)などの電気実装基板上に搭載されている。
 同様に、光受光素子には、光処理機などが適宜集積され、又はディスクリートに接続され、さらに光-電気変換を行う電気増幅回路などが接続される。これらの光受光素子、光処理機、電気増幅回路などを含む構成が光受信機としてプリント基板上に実装されている。
 これらの光送信機と光受信機とを一体化した光送受信機などがパッケージ内やプリント基板上に搭載され、光ファイバなどの光伝送媒体と光学的に接続されることで、光インタコネクションが実現されている。また、トポロジーによっては、光スイッチなどの中継器などを介して実現されている。
 一方、光インタコネクションに用いる光発光素子や光受光素子、光変調素子としては、シリコンやゲルマニウムなどの半導体や、インジウムリン(InP)やガリウムヒ素(GaAs)、インジウムガリウムヒ素(InGaAs)等に代表されるIII-V族半導体などの材料を用いる素子が実用化されている。近年では、これらの素子と共に、光の伝播機構を有するシリコン光回路(シリコンフォトニクス)やインジウムリン光回路などを集積した光導波路型の光送受信機が発展している。また、光変調素子としては、半導体の他に、ニオブ酸リチウムなどの強誘電体系やポリマーなどの材料を用いる場合もある。
 更に、上記の光発光素子や光受光素子、光変調素子と共に、石英ガラスなどからなる平面光波回路(Planar Lightwave Circuit)などからなる光機能素子が集積されることがある。光機能素子としてはスプリッタ、波長合分波器、光スイッチ、偏波制御素子、光フィルタなどがある。以降、上記の光の伝播、導波機構を有する光発光素子、光受光素子、光変調素子、光機能素子、光増幅素子などを集積したデバイスを光導波路デバイスと呼ぶこととする。
 光導波路デバイスにおいて、シリコンフォトニクスチップは集積性、量産性、電気部品との親和性に優れ、次世代の光インタコネクションを実現する上でのキーデバイスとして関心がもたれている(非特許文献1)。
 シリコンフォトニクスチップやドライバ、電気増幅回路などが集積された光送受信機をボード上の電気配線に接続する方法としてワイヤボンディング、フリップチップ接続や、Ball-grid array(BGA)、 Land-grid array(LGA)、 Pin-grid array(PGA)や銅ピラーなどを用いて接続する方法が用いられる。前記接続の際は必要に応じて、インタポーザ部品などの別のパッケージ基板を介して電気実装基板に接続されることもある。
 また、シリコンフォトニクスチップと光ファイバを接続する方法の一つは、V溝を形成したガラスなどと一体化された光ファイバアレイと接続する構造である。この構造においては、光ファイバの各コアと、光導波路デバイスの各導波路のコアとが低損失で接続することが求められる。この低損失の接続のためには、サブミクロン単位で光導波路デバイスと光ファイバとを位置決め(以下、調心という)・固定することが必要である。
 従来の光導波路デバイスでは、光を実際に入出力させてパワーをモニタしながらの調心(光学調心)が行われ、光ファイバアレイと一体化された状態でパッケージ内やボード上に搭載されることとなる。
K. Shikama et al., "Multicore-Fiber Receptacle With Compact Fan-In/Fan-Out Device for SDM Transceiver Applications," in Journal of Lightwave Technology, vol. 36, no. 24, pp. 5815-5822, 15 Dec.15, 2018, doi: 10.1109/JLT.2018.2879100.
 しかしながら、従来のシリコンフォトニクスチップに光ファイバを接着剤等により接着接続する構造では、以下の問題があった。
 シリコンフォトニクスチップにファイバアレイを直接接着させるためには、シリコンフォトニクスチップの端面を光学研磨する必要があった。
 また、チップの側面が接着面であるために、接着面積が限られてしまい、十分な接着力を得ることが難しくなる懸念があった。
 また、光ファイバがピッグテールとして接続されているために、ボード実装等の次工程においては、光ファイバの取り回しなど光ファイバの固定接続状態の維持(安定化)するための工程等が必要となり、組立工程の量産性(スループット向上や安定化)が低下していた。
 上述したような課題を解決するために、本発明に係る光接続構造は、光ファイバと接続し、基板を有するパッケージ構造における光接続構造であって、前記基板に配置される光素子と、前記基板に配置される光路変換部とを備え、前記光路変換部の一方の端面が、前記光素子の端面と対向することを特徴とする。
 本発明によれば、光素子に光ファイバを直接接着することなく、量産性を向上できる光接続構造、パッケージ構造および光モジュールを提供できる。
図1は、本発明の第1の実施の形態に係る光モジュールの構成を示す概略側面図である。 図2は、本発明の第1の実施の形態に係る光モジュールの構成の一例を示す概略側面図である。 図3は、本発明の第1の実施の形態に係る光モジュールの構成の一例を示す概略側面図である。 図4は、本発明の第1の実施の形態に係る光モジュールの構成を示す概略上面図である。 図5は、本発明の第1の実施の形態に係る光モジュールの構成の一例を示す概略上面図である。 図6は、本発明の第1の実施の形態に係る光モジュールの構成の一例を示す概略側面図である。 図7は、本発明の第2の実施の形態に係る光モジュールの構成を示す概略側面図である。 図8は、本発明の第2の実施の形態に係る光モジュールの構成の一例を示す概略側面図である。 図9は、本発明の第2の実施の形態に係る光モジュールの構成の一例を示す概略側面図である。 図10は、本発明の実施の形態に係る光接続構造の動作を説明するための概略上面図である。
<第1の実施の形態>
 本発明の第1の実施の形態に係る光接続構造、パッケージ構造および光モジュールについて、図1~図5を参照して説明する。
<パッケージ構造および光モジュールの構成>
 図1は、本実施の形態に係る光モジュール1の構成を示す概略側面図である。以下、図1に示すように光モジュール1を構成したときの、図中Z+側にある面を「上面」、Z-側にある面を「下面」とする。
 本実施の形態に係る光モジュール1は、パッケージ構造11と、フェルール108と、光ファイバ109とを備える。また、パッケージ構造11とフェルール108とがクリップ110によって固定される。
 パッケージ構造11において、シリコンフォトニクスチップ101と、GRINレンズ102と、IC103とが、基板1041の上に実装され、モールド樹脂105によって覆われている。ここで、基板1041は、厚さが10μm~30μm程度の薄層配線基板である。
 基板1041の部品搭載面(上面)と反対側の面(底面)には、電気接続部106としてBGAまたはLGAが形成され、光パッケージが実装されるPCBなどの電気実装基板(図示せず)との間の電気インタフェースとなっている。
 シリコンフォトニクスチップ101は、光回路と電気回路をその表面に形成したチップであり、厚さは標準的なシリコンウェハ厚さである625μmとしている。
 シリコンフォトニクスチップ101は、光回路が形成される面(回路面)を下向き、いわゆるフェースダウンにして、基板1041上に半田ボール又は銅ピラーなどを介してフリップチップ実装されている。フェースダウンで実装されることから、シリコンフォトニクスチップ101からの入出力光の位置(高さ)は低く、基板1041の上面から上方に数十μm~100数十μm程度である。
 GRINレンズ102は、円柱状の光部品であり、円柱の中心軸から外周部に向かって放物線状に屈折率を変化させた屈折率分布型レンズである。GRINレンズは、その長さを変更することによって焦点距離が変化し、そのレンズ特性は次式の関係式で表現される。
 Z=2πP/√A
 ここで、ZはGRINレンズ長、√Aは材料や製法によって決定される屈折率分布定数であり、Pはレンズ内を通る光線の蛇行周期を表すピッチである。
 本実施の形態では、0.5ピッチ(P≒0.5)程度のGRINレンズを用い、直径1.8mmの一般的なGRINレンズの場合、その長さZは9.6mm程度である。
 シリコンフォトニクスチップ101から出射した光が、GRINレンズ102の一方の端面(図1中、左側の端面)の低い位置に入射したのち、図中に曲線12で示すようにGRINレンズ102内部で進行方向や発散・集光の状態を変えて伝搬し、GRINレンズ102の他方の端面(図1中、右側の端面)の高い位置に結像する。
 ここで、GRINレンズ102の「低い」位置はGRINレンズ102の中心軸より下方をいい、とくに図1中では、GRINレンズ102の底面(基板1041と接する面)近傍の場合を示す。
 また、GRINレンズ102の「高い」位置はGRINレンズ102の中心軸より上方をいい、とくに図1中では、GRINレンズ102の上面(基板1041と接する面と反対側の面)近傍の場合を示す。
 GRINレンズ102において、光の一方の端面での入射位置と、他方の端面での結像(出射)位置は、GRINレンズ102の中心軸に対して対称である。
 また、図2に、シリコンフォトニクスチップ101が、光回路が形成される面(回路面)を上向き、いわゆるフェースアップで実装される例を示す。この場合は、GRINレンズ102の一方の端面(図2中、左側の端面)の中心軸近傍の位置から光が入射している。GRINレンズ102内部における光線は、フェースダウン実装の場合(図1)と異なる経路で伝搬し、他方の端面(図2中、右側の端面)で結像する。
 ここで、GRINレンズ102において、光の一方の端面での入射位置と、他方の端面での結像(出射)位置は、フェースダウン実装の場合(図1)と同様に、GRINレンズ102の中心軸に対して対称である。
 シリコンフォトニクスチップ101と基板1041との電気的な接続は、ワイヤボンドもしくは、TSV(Through Silicon Via)によって実現される。
 基板1041は、銅箔層と絶縁樹脂層が交互に積層された多層配線層であり、ファンアウトウェハレベルパッケージ(FOWLP)技術、もしくはファンアウトパネルレベルパッケージ(FOPLP)技術によって製造される場合には一般的に再配線層(RDL:Re-Distribution Layer)と呼ばれている。
 本実施の形態において、ファンアウトパッケージは、一例として、初めに支持基板(ウェハやパネル)上に電気配線層(RDL)を形成した後、チップ実装と樹脂モールドを行い、最後に支持基板を剥離する「RDLファースト工法」を採用することで作製できる。
 ただし、基板1041はRDLに限らず、一般的な配線基板(有機ビルドアップ基板やセラミック基板)でもよい。
 さらに、基板では、部分的に基板を薄くすること、又は切り欠きを設けることが可能である。例えば、図3に示すように、基板1042は、GRINレンズ102搭載部分だけをシリコンフォトニクスチップ101搭載部分より薄くすることにより、シリコンフォトニクスチップ101とGRINレンズ102の高さを任意に設定することができる。ここで、基板1042は、セラミック等により構成される基板(厚さ:1000μm程度)である。
 シリコンフォトニクスチップと同様に、IC103もフェースダウン実装に限らず、フェースアップ実装であっても構わない。また、IC103はベアチップに限らず、パッケージ部品であっても良い。また、複数のICまたはパッケージ部品やシリコンフォトニクスチップ以外にも上述のように各種光チップ(光素子)が搭載されていてもよい。
 本実施の形態では、GRINレンズ102の他方の端面(図1~3中、右側の端面)は、モールド樹脂105から露出しており、アダプタ107と接着固定されている。
 アダプタ107内部には短尺の光ファイバもしくは光導波路部品が内蔵されており、GRINレンズ102の他方の端面に結像した光を導光する。
 アダプタ107におけるGRINレンズ102と対向する面と反対側の端面は、フェルール108と接触しており、フェルール108内部に内蔵された光ファイバ109へとさらに導光する。
 光ファイバ109がシングルモード光ファイバの場合、これらの導光はサブミクロン精度で部品間を位置合わせする必要がある。したがって、アダプタ107は、GRINレンズ102に対してアクティブ調心を行い、最適な位置において接着固定される。
 アダプタ107とフェルール108の接続構造を、図4、5に示す上面図を参照して、以下に説明する。
 図4に示すように、アダプタ107は角型の部品であり、水平方向(図中上下)の2箇所にガイドピン用の丸穴が設けられている。同様に、角型のフェルール108にもガイドピン用の丸穴が設けられている。これらの丸穴にガイドピン111(図中、点線部)を挿入することによって、アダプタ107とフェルール108は高精度に連結される。両者の接触を保持するために、クリップ110で固定されている。ここで、図中破線部は光ファイバ109を示す。
 フェルール108とアダプタ107はクリップ110を外すことで脱着することが可能であり、公知のMTコネクタと同じ嵌合メカニズムを用いることができる。なおクリップ以外でもフェルール間に押圧力を加える機構であればいずれでも適用できる。例えば板バネ部品やコイルバネ部品、機械的な締結以外の磁力などを用いてもよい。
 上述の通り、GRINレンズ102は中心軸回りに回転対称な屈折率分布を有しているため、水平面内方向に対しても垂直方向と同様の集光特性が得られる。図4に示すように、シリコンフォトニクスチップ101においてアレイ配列された光入出力部からGRINレンズ102の一方の端面(図4中、左側の端面)に入射する光は、他方の端面(図4中、右側の端面)でアレイ配列して結像する。
 したがって、角型のフェルール108として、一般的な多芯フェルールであるMTフェルールを使用することができる。なお、フェルールの材料としてはMTフェルールで用いられるフィラー入り樹脂を用いてもよいし、ほかの樹脂材料やガラス部材、セラミック部材、金属部材、Siなどを用いてもよい。またガイドピン111を予めアダプタ107あるいはフェルール108と一体化させておいてもよい。
 または、図5に示すように、GRINレンズと単芯フェルールをそれぞれ複数用いて、一芯ごとに光インタフェースを形成することも可能である。この構成では、複数のGRINレンズ102_1、102_2と、複数の第2のフェルール108_1、108_2とを備える。また、アダプタとして、同軸構造を有する単芯フェルールである第1のフェルール107_1、107_2を備える。第1のフェルール107_1、107_2と第2のフェルール108_1、108_2とは、割りスリーブ112_1、112_2によって高精度に連結させることができる。
 本実施の形態では、GRINレンズとシリコンフォトニクスチップ間において、光学的な大きな反射が生じないよう設計されている。例えば、モールド樹脂の材料と前記チップ端面及びレンズ端面を構成する材料の屈折率を整合させることで屈折率差に起因する大きなフレネル反射を抑制することができる。
 または、端面間を斜めにすることで反射戻り光が再結合しないよう設計してもよい。また、公知の反射防止膜などをシリコンフォトニクスチップ端面やGRINレンズ端面に形成してもよい。また、GRINレンズ102とアダプタ内の光ファイバ又は光導波路間においても同様に反射防止がないよう設計されている。
 なお、GRINレンズはシリコンフォトニクスチップに対して任意の方法で位置決めして搭載することができ、アクティブ調心あるいはパッケージ部材の面内機械精度基準や、電気接点、位置決め構造を利用してパッシブに搭載してもよい。
 本実施の形態に係るパッケージ構造によれば、シリコンフォトニクスチップに対して光ファイバを直接、接着固定する必要がなくなり、パッケージ構造の製造工程における光ファイバ接続への影響を回避して、シリコンフォトニクスチップをパッケージ実装することができる。
 光ファイバの接続は、アダプタ107又は第1のフェルール107_1、107_2を、それぞれフェルール108もしくは第2のフェルール108_1、108_2と嵌合させた状態で、露出したGRINレンズに対してアクティブ調心を行い、それぞれの界面を接着固定して実現する。
 接着後は、フェルール108もしくは第2のフェルール108_1、108_2は外しても構わず、コネクタ方式であることから再度嵌合させることができる。そのため、PCB実装等の次工程へ光ファイバがない状態で進めることができ、従来の課題であるピッグテール光ファイバの扱いの困難性を解消できる。
 また、本実施の形態に係るパッケージ構造は、図1~図3に示すように、モールドされたパッケージ形態においてGRINレンズを用いることで、シリコンフォトニクスチップをモールドパッケージ内で自由に配置することができるという効果も奏する。
 すなわち、従来のモールドパッケージ形態においてシリコンフォトニクスチップと光ファイバアレイを直接接続する場合、シリコンフォトニクスチップの端面をパッケージの端面と同一面、又はパッケージ端面のごく近傍に設ける必要があり、電気配線やパッケージ設計の観点で大きな制約があった。
 一方、GRINレンズを設けることで、シリコンフォトニクスチップをGRINレンズの長さ分中央に設けることが可能となり、同チップへの電気配線のアクセスや前記BGA/LGAとの電気配線の自由度を大幅に高めることができる。なお、GRINレンズの長さは屈折率分布形状を変化させることで柔軟に変更することができる。
 また、図1に示すように、シリコンフォトニクスチップの電気接点はシリコン基板上の導波路層上に設けられるため、シリコン・コアと基板厚さ方向の距離は数10μm以下に配置される。一方、従来のファイバアレイに用いられるV溝基板の厚さは、数100μm程度が必要となる。
 そのため、フリップチップ接続などを用いた光パッケージに対して、従来の方法で直接ファイバアレイを接着・固定する場合は、V溝基板と電気実装基板が機械的に干渉する。とくに薄いRDL層を用いたパッケージ形態ではその問題が顕著になる。そのため、電気実装基板側に切り欠きを設けるか、電気実装基板上でのパッケージ搭載位置をエッジにする必要があるなどの制約があった。
 一方、本実施の形態に係るパッケージ構造では、GRINレンズを用いて、基板厚さ方向において光の入出力部を従来位置より上方に、すなわち電気実装基板から離れた位置に配置することができるため、上述の実装位置の制約を排除することができ、自由度の高い実装形態を実現することができる。
 なお、図2、3に示すフェースアップ形態においても同様に、フェルール108やアダプタ107が、電気接続部106(BGA等)を介して下方に接続される電気実装基板(図示せず)と干渉する場合は、適宜図1のレンズ内の光線と同様に、レンズ光学系を上方に配置するように構成してもよい。
 本実施の形態では、光路変換部として、バルクのGRINレンズを用いる例を示したが、同様の光学的機能を発現するものであれば用いることができる。例えば、公知のGI(Graded Index)ファイバを用いてもよい。GIファイバは細径であり外形精度が高いという特徴からあれ以上に形成することも容易であり、チップのch数に合わせてGIファイバアレイとすればよい。また、フレネルレンズやメタサーフェスレンズなどを用いてもよい。一方の端面から入射する光を、光路変換部の中心軸を対称軸として、他方の端面から出射する機能を有するものであればよい。
 また、着脱可能な接続構造が必要とされない用途においては、図6に示すように、上述のアダプタ及びフェルールを用いた着脱可能な構造を用いずに、パッケージ構造のGRINレンズ端面とファイバアレイ(ファイバブロック)113とを直接、接着固定する形態としてもよい。
<第2実施の形態>
 本発明の第2の実施の形態に係る光接続構造、パッケージ構造および光モジュールについて、図7~図9を参照して説明する。
<光接続構造、パッケージ構造および光モジュールの構成>
 本実施の形態に係る光モジュール2は、GRINレンズが、第1のGRINレンズ2021と第2のGRINレンズ2022に分割されている点で、第1の実施の形態と異なる。その他の構成は、第1の実施の形態と略同様ある。
 図7に示す構成では、フェースダウン型のシリコンフォトニクスチップ101を用いる例を示す。
 パッケージ構造21において、第1のGRINレンズ2021と第2のGRINレンズ2022それぞれのピッチは0.25(P=0.25程度であり、長さは4.6mm程度である。
 シリコンフォトニクスチップ101からの光は、第1のGRINレンズ2021の一方の端面(図7中、左側の端面)に入射して、第1のGRINレンズ2021の他方の端面(図7中、右側の端面)と第2のGRINレンズ2022の一方の端面(図7中、左側の端面)を介して、第2のGRINレンズ2022の他方の端面(図7中、右側の端面)に結像する。
 第1のGRINレンズ2021のみがモールド樹脂105で覆われ、第1のGRINレンズ2021の他方の端面(図7中、右側の端面)はモールド樹脂105から露出している。
 第2のGRINレンズ2022は、アダプタ2071に内蔵されている。
 図8に、フェースアップ型のシリコンフォトニクスチップ101を用いる場合を示す。GRINレンズ2021、2022の中心軸近傍を伝搬させることができるため、アダプタ2072のサイズを小さくすることができる。
 図9に示すパッケージ構造は、図3に示すパッケージ構造と同様に、有機ビルドアップ基板やセラミック基板等の基板1042を用いた例であり、基板1042において第1のGRINレンズ2021の搭載部分だけをシリコンフォトニクスチップ101搭載部分より薄くしている。
 第1のGRINレンズ2021と第2のGRINレンズ2022は、異なる特性のGRINレンズであってもよい。例えば、屈折率分布定数(√A)が第1のGRINレンズ2021よりも大きい第2のGRINレンズ2022を用いることで全長を短くでき、第2のGRINレンズ2022の他方の端面(図7中、右側の端面)におけるスポットサイズを変えることができる。
 また、アダプタ2071、2072の内部には、第2のGRINレンズ2022の他に、光導波路部品(図示せず)を内蔵させることも可能である。光導波路部品としては、スポットサイズ変換回路や光学系、又はNA拡大ファイバ(TECファイバ)、ポリマー導波路、ガラス導波路等を用いることで、入射側と出射側のNA(スポットサイズ)を変えることができ、より低損失に光ファイバ109へ導光することも可能となる。
 本実施の形態では、第1のGRINレンズ2021と第2のGRINレンズ2022との界面が、アライメント面及び接着固定面となる。第1の実施の形態と異なり、太いコリメート光での結合であるため、光部品の寸法精度が十分であれば、必ずしもアクティブ調心を行う必要はない。
 本実施の形態では、図4及び図5に示す構成と同様に、多芯フェルールもしくは単芯フェルールを用いることができる。
 光ファイバの接続は、アダプタ2071、2072をフェルール108と嵌合させた状態で、露出した第1のGRINレンズ2021に対して位置合わせを行い接着固定して実現する。
 接着後は、フェルール108又は第2のフェルール108_1、108_2(図示せず)は外しても構わず、コネクタ方式であることから再度嵌合させることができる。そのため、PCB実装等の次工程へ光ファイバがない状態で進めることができ、従来の課題であるピッグテール光ファイバの扱いの困難性を解消できる。
 本実施の形態に係るパッケージ構造によれば、第1の実施の形態と同様に、シリコンフォトニクスチップに対して光ファイバを直接、接着固定する必要がなくなり、パッケージ構造の製造工程における光ファイバ接続への影響を回避して、シリコンフォトニクスチップをパッケージ実装することができる。
 また、第1の実施例と同様に、シリコンフォトニクスチップのモールドパッケージ内の搭載位置を自由に配置することができるという効果も奏する。
 また、第1の実施例と同様に、GRINレンズを用いて、基板厚さ方向において光の入出力部を従来位置より上方に、すなわち電気実装基板から離れた位置に配置することができるため、上述の実装位置の制約を排除することができ、自由度の高い実装形態を実現することができる。
 本発明の実施の形態では、光をシリコンフォトニクスチップから出射させる例を示したが、光をシリコンフォトニクスチップに入射させることもできる。この場合、フェルールに固着した光ファイバから入射する光は、上述と逆の経路で、アダプタを介して、GRINレンズの他方の端面(図1中、右側の端面)の高い位置に入射して、GRINレンズの一方の端面(図1中、左側の端面)の低い位置に結像(入射)する。
 本発明の実施の形態では、説明を容易にするために、GRINレンズの出射端面上に結像する場合を示したが、アダプタ内部を伝搬する光路長を考慮する必要があるため、必ずしもGRINレンズの出射端面上に結像するとは限らない。アダプタの端面上に結像してもよいし、完全に結像しなくても(焦点が合わなくても)パッケージ構造として動作できる範囲で光が伝搬する構成であればよい。
 このように、本発明の実施の形態に係るパッケージ構造において、GRINレンズは、その長さで出力光の焦点径などの集光状態が決まるので、光学系を容易に設計できる。また、中心軸に対してオフセットをもって光が入力する場合、中心軸と対称の位置に結像して出力する。
 本発明の実施の形態における光の伝搬について、光接続構造10を例として、図10を参照して説明する。図10は、光の伝搬経路を説明するための光接続構造10の概略上面図である。ここで、図中の点線112_1、破線12_2は、GRINレンズ102内を伝搬する光の経路を示す。
 光接続構造10での光の伝搬を上面から見ると、図10に示すように、異なる光ファイバ109_1、109_3から入力される光が、GRINレンズ102により異なる経路12_1、12_2で伝搬(集光)して、シリコンフォトニクスチップ101の異なる導波路1012、1013に入力(結合)される。
 導波路1012、1013を伝搬した光はシリコンフォトニクスチップ101から出力され、GRINレンズ102により異なる経路12_1、12_2で伝搬(集光)して、アダプタ107を介して、異なる光ファイバ109_2、109_4に入力(結合)される。
 ここで、シリコンフォトニクスチップ101は、一例として、光デバイス1011と、第1の導波路1012と、第2の導波路1013とを備える。ここでは、光デバイス1101として変調器を用いるが、ミキサ、フォトダイオード等でもよい。第1の導波路1102に変調器1101が接続され、入力光を変調して光信号を生成して、光信号が第1の導波路1102を伝搬する。第2の導波路1103は、パッケージ構造11の製造工程における部品位置の調整、調心に用いられる(後述)。
 このように、本発明の実施の形態に係る光接続構造10は、GRINレンズ102を用いることにより、容易に、異なる光ファイバからの入力光をシリコンフォトニクスチップ101の異なる導波路に入力させ、異なる導波路からの出力光を異なる光ファイバに入力させることができる。
 本発明の実施の形態に係るパッケージ構造の製造におけるアクティブ調心について、以下に説明する。
 モールド樹脂105で固定されたシリコンフォトニクスチップ101とGRINレンズ102に対して、光ファイバ109_3、109_4を含む多芯光ファイバ109が固着されたフェルール108を、アダプタ107に連結し、クリップ110で固定する。
 次に、調芯用の光を、光ファイバ109_3に入力して、順に、アダプタ107、GRINレンズ208を介して、シリコンフォトニクスチップ101に伝搬する。
 ここで、シリコンフォトニクスチップ101は、図10に示すように、調芯用のループバック光回路(第2の導波路)1013を有する。
 この構成において、光ファイバ109_3から入力される調芯用の光は、上述の通り、GRINレンズ102の他方の端面(図10中、右側)に入射し、経路12_2で伝搬し、シリコンフォトニクスチップ101の第2の導波路1013に入力(結合)し、第2の導波路1013を伝搬してシリコンフォトニクスチップ101から出力する。
 シリコンフォトニクスチップ101から出力した光は、GRINレンズ102の一方の端面(図10中、左側)に入射し、経路12_2で伝搬し、GRINレンズ102の他方の端面(図10中、右側)で結像して、アダプタ107を介して光ファイバ109_4に入力する。
 光ファイバ109_4の他端から出力する光の強度(光量)を測定して、光の強度(光量)が最大となるようにアダプタ107を位置合わせする(調心する)。
 本発明の実施の形態では、モールド樹脂を用いることにより、パッケージの剛性や量産性を向上できる。
 従来、モールド樹脂を用いた構成は、部品の位置精度が10μm程度である電気・電子部品に用いられてきた。
 一方、光学部品では0.1μm程度の高精度の位置合わせや高い信頼性が要求されるため、モールド樹脂を用いた構成を用いることは困難であった。また、シリコンフォトニクスと光ファイバとが接着固定される場合には、各部品をモールドで固着する工程における接着固定の耐久性、安定性が不足し、各部品をモールドで固着する工程後に光軸を調整できないため、部品の位置や光軸を高精度で調整することは困難であった。
 本発明の実施の形態では、シリコンフォトニクスチップと光ファイバとを直接、接着固定する必要がなく、各部品をモールドで固着した後に、光軸を調整できるので、光部品の実装にモールド樹脂を用いることができる。
 同様に、シリコンフォトニクスチップと光ファイバとを直接、接着固定する必要がないので、光部品の実装にFOWLPやFOPLPを用いることができる。
 本発明の実施の形態で、着脱可能な接続構造が必要とされない用途においては、上述のアダプタ及びフェルールを用いた着脱可能な構造を用いずに、パッケージ構造のGRINレンズ端面とファイバアレイとを直接、接着固定する形態としてもよい。
 本発明の実施の形態では、パッケージ構造の構成、製造方法などにおいて、各構成部の構造、寸法、材料等の一例を示したが、これに限らない。パッケージ構造の機能を発揮し効果を奏するものであればよい。
 本発明は、光部品の光モジュールに関するものであり、光通信等の機器・システムに適用することができる。
1 光モジュール
10 光接続構造
11 パッケージ構造
101 シリコンフォトニクスチップ(光素子)
102 GRINレンズ(光路変換部)
103 IC
1041 基板
105 モールド樹脂
106 電気接続部
107 アダプタ
108 フェルール
109 光ファイバ

Claims (8)

  1.  光ファイバと接続し、基板を有するパッケージ構造における光接続構造であって、
     前記基板に配置される光素子と、
     前記基板に配置される光路変換部と
     を備え、
     前記光路変換部の一方の端面が、前記光素子の端面と対向する
     ことを特徴とする光接続構造。
  2.  前記光路変換部における入出力光が、前記一方の端面と他方の端面との間で、前記光路変換部の中心軸に対称に伝搬される
     ことを特徴とする請求項1に記載の光接続構造。
  3.  前記光ファイバと脱着可能で接続されるアダプタを備え、
     前記光路変換部と前記アダプタとの間で光が入出力する
     ことを特徴とする請求項1又は請求項2に記載の光接続構造。
  4.  複数の前記光路変換部がそれぞれ、複数の第1のフェルールに接続され、
     前記複数の第1のフェルールがそれぞれ、複数の第2のフェルールに接続され、
     前記第2のフェルールに前記光ファイバが固着される
     ことを特徴とする請求項1又は請求項2に記載の光接続構造。
  5.  前記光路変換部と前記光ファイバとの間に、他の光路変換部を備える
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の光接続構造。
  6.  請求項1から請求項5のいずれか一項に記載の光接続構造と、
     前記基板と、
     前記光素子と前記光路変換部とを覆うモールド樹脂と
     を備えるパッケージ構造。
  7.  前記基板において、前記光路変換部が配置される部分が、前記光素子が配置される部分より薄い
     ことを特徴とする請求項6に記載のパッケージ構造。
  8.  請求項6又は請求項7に記載のパッケージ構造と、
     光ファイバと、
     フェルールと
     を備える光モジュール。
PCT/JP2021/013551 2021-03-30 2021-03-30 光接続構造、パッケージ構造および光モジュール WO2022208662A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/013551 WO2022208662A1 (ja) 2021-03-30 2021-03-30 光接続構造、パッケージ構造および光モジュール
JP2023509967A JPWO2022208662A1 (ja) 2021-03-30 2021-03-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013551 WO2022208662A1 (ja) 2021-03-30 2021-03-30 光接続構造、パッケージ構造および光モジュール

Publications (1)

Publication Number Publication Date
WO2022208662A1 true WO2022208662A1 (ja) 2022-10-06

Family

ID=83455806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013551 WO2022208662A1 (ja) 2021-03-30 2021-03-30 光接続構造、パッケージ構造および光モジュール

Country Status (2)

Country Link
JP (1) JPWO2022208662A1 (ja)
WO (1) WO2022208662A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304665A (ja) * 1996-05-14 1997-11-28 Nec Corp 発光素子と光導波路の光結合構造
JPH10160982A (ja) * 1996-12-03 1998-06-19 Toyo Commun Equip Co Ltd 光導波路モジュール
JPH11119064A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 光伝送端末装置
JPH11167040A (ja) * 1997-07-18 1999-06-22 Jds Fitel Inc 光学装置
WO2003005106A1 (fr) * 2001-07-02 2003-01-16 Furukawa Electric Co., Ltd Module de laser semi-conducteur et amplificateur optique
JP2003107293A (ja) * 2001-09-27 2003-04-09 Fujitsu Ltd レセプタクル型光モジュール及びその生産方法
JP2013024937A (ja) * 2011-07-15 2013-02-04 Kita Nippon Electric Cable Co Ltd フォトモジュール
US20160202427A1 (en) * 2013-09-16 2016-07-14 3M Innovative Properties Company Optical coupler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09304665A (ja) * 1996-05-14 1997-11-28 Nec Corp 発光素子と光導波路の光結合構造
JPH10160982A (ja) * 1996-12-03 1998-06-19 Toyo Commun Equip Co Ltd 光導波路モジュール
JPH11167040A (ja) * 1997-07-18 1999-06-22 Jds Fitel Inc 光学装置
JPH11119064A (ja) * 1997-10-17 1999-04-30 Fujitsu Ltd 光伝送端末装置
WO2003005106A1 (fr) * 2001-07-02 2003-01-16 Furukawa Electric Co., Ltd Module de laser semi-conducteur et amplificateur optique
JP2003107293A (ja) * 2001-09-27 2003-04-09 Fujitsu Ltd レセプタクル型光モジュール及びその生産方法
JP2013024937A (ja) * 2011-07-15 2013-02-04 Kita Nippon Electric Cable Co Ltd フォトモジュール
US20160202427A1 (en) * 2013-09-16 2016-07-14 3M Innovative Properties Company Optical coupler

Also Published As

Publication number Publication date
JPWO2022208662A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US10466433B2 (en) Optical module including silicon photonics chip and coupler chip
US11424837B2 (en) Method and system for large silicon photonic interposers by stitching
US10365447B2 (en) Method and system for a chip-on-wafer-on-substrate assembly
CN112969946A (zh) 网络交换机asic与光收发器的组装
US9417410B2 (en) Method and system for grating couplers incorporating perturbed waveguides
KR101584923B1 (ko) 멀티채널 송수신기
US20130094864A1 (en) Optical interface for bidirectional communications
US20240118506A1 (en) Photonic optoelectronic module packaging
Bernabé et al. On-board silicon photonics-based transceivers with 1-Tb/s capacity
CN115144983A (zh) 用于光学互联的设备
WO2022208662A1 (ja) 光接続構造、パッケージ構造および光モジュール
JP2013012548A (ja) 光モジュールおよび光電気混載ボード
US20230314740A1 (en) Optical semiconductor module and manufacturing method of the same
JP7548413B2 (ja) 光接続構造、パッケージ構造、光モジュールおよびパッケージ構造の製造方法
WO2020003973A1 (ja) 光部品およびその製造方法
WO2022259518A1 (ja) 光導波路デバイスの実装構造
WO2022264321A1 (ja) 光回路デバイスのパッケージ構造およびその製造方法
Bernabé et al. Packaging and test of photonic integrated circuits (PICs)
US20240192439A1 (en) Heterogeneous package structures with photonic devices
WO2022264322A1 (ja) 光回路デバイス
Lau Co-Packaged Optics-Heterogeneous Integration of Photonic IC and Electronic IC
Lau Co-packaged Optics
Nieweglowski et al. Optical link for high-speed board-level parallel interconnections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509967

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934833

Country of ref document: EP

Kind code of ref document: A1