WO2014156743A1 - Scroll compressor and refrigeration cycle device comprising same - Google Patents

Scroll compressor and refrigeration cycle device comprising same Download PDF

Info

Publication number
WO2014156743A1
WO2014156743A1 PCT/JP2014/057035 JP2014057035W WO2014156743A1 WO 2014156743 A1 WO2014156743 A1 WO 2014156743A1 JP 2014057035 W JP2014057035 W JP 2014057035W WO 2014156743 A1 WO2014156743 A1 WO 2014156743A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
scroll
scroll compressor
compression chamber
expansion valve
Prior art date
Application number
PCT/JP2014/057035
Other languages
French (fr)
Japanese (ja)
Inventor
角田 昌之
昌晃 須川
石園 文彦
政則 伊藤
修平 小山
浩平 達脇
哲仁 ▲高▼井
増本 浩二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480018124.0A priority Critical patent/CN105121855B/en
Priority to JP2015508311A priority patent/JP6038287B2/en
Publication of WO2014156743A1 publication Critical patent/WO2014156743A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the present invention relates to a scroll compressor and a refrigeration cycle apparatus including the scroll compressor.
  • the discharge gas temperature of the compressor is, for example, about 20 deg higher than that when the conventional R22, R410A or the like is used. Become.
  • the refrigerant having a low global warming potential GWP other than R32 includes a mixed refrigerant of HFO-1123 and R32 or a mixed refrigerant of HFO-1123 and HFO-1234yf.
  • HFO-1123 has properties such as a low environmental load, but may cause a rapid decomposition reaction under high temperature and high pressure (disproportionation reaction). For this reason, when using the mixed refrigerant mentioned above, it is necessary to suppress the discharge gas temperature of a compressor.
  • the R32 refrigerant is flammable, it is necessary to suppress the amount of refrigerant charged in the circuit constituting the refrigeration cycle in order to prevent leakage and ignition, and the pressure in the sealed container during operation of the compressor is reduced. It is desirable to use a low-pressure shell type compressor that has a low pressure.
  • a refrigeration apparatus having a refrigeration cycle having a compressor, a condenser, a main decompression unit, and an evaporator, which are connected by refrigerant piping, provided between the condenser and the main decompression unit
  • the subcooling heat exchanger, the supercooling pressure reducing means provided on the upstream side of the supercooling heat exchanger, and the refrigerant cooled by the supercooling heat exchanger is supplied to the compressor bypassing the evaporator
  • the thing which has bypass piping to do is proposed (for example, refer to patent documents 1).
  • JP 2001-227823 A (see, for example, FIG. 1)
  • a method of joining (injecting) the bypass refrigerant after the refrigerant has been taken into the compression mechanism section is conceivable so that the refrigerant is not diluted before being supplied to the compression mechanism section. That is, a bypass pipe (injection pipe) for supplying a bypass refrigerant is connected to the compression mechanism section, and the bypass refrigerant is merged with the refrigerant after passing the sliding section.
  • a bypass pipe injection pipe
  • the present invention has been made to solve the above-described problems, and provides a scroll compressor and a refrigeration cycle apparatus including the scroll compressor that suppress the refrigerant temperature discharged from the compressor from becoming difficult to decrease. It is an object.
  • a scroll compressor includes a hermetic container, a swinging scroll accommodated in the hermetic container, in which a first spiral body is formed, and fixed to the inner peripheral surface of the hermetic container.
  • a second scroll body to be compressed is formed, a fixed scroll that forms a compression chamber with the swing scroll, and an injection pipe that is provided across the inside and outside of the sealed container and is used to supply a refrigerant to the compression chamber
  • a rotating shaft for swinging the swing scroll one end of which is connected to the side of the swing scroll opposite to the side on which the fixed scroll is provided, and the sealed container.
  • the other end of the rotating shaft is connected, and a power mechanism for rotating the rotating shaft, and the injection pipe has a power mechanism with a portion in the hermetic container at the boundary of the swing scroll and the fixed scroll.
  • a power mechanism for rotating the rotating shaft and the injection pipe has a power mechanism with a portion in the hermetic container at the boundary of the swing scroll and the fixed scroll.
  • Provided to the provided side located opposite the fixed scroll is one in which one is through injection pipe and communicating, with the injection port and the other communicates with the compression chamber.
  • the scroll compressor according to the present invention has the above-described configuration, it is possible to suppress the temperature of the refrigerant discharged from the compressor from being easily lowered.
  • FIG. 1 It is a schematic longitudinal cross-sectional view of the scroll compressor which concerns on Embodiment 1 of this invention. It is explanatory drawing of a fixed spiral body and a rocking
  • FIG.7 (c) It is a schematic diagram explaining the operation
  • the Mollier diagram of FIG.7 (c) is simplified for description of a compression process.
  • FIG. 1 is a schematic longitudinal sectional view of a scroll compressor 1 according to the first embodiment.
  • FIG. 2 is an explanatory diagram of the fixed spiral body 11b and the swinging spiral body 12b, the discharge port 11c, and the injection port 11e shown in FIG.
  • the configuration of the scroll compressor 1 will be described with reference to FIGS. 1 and 2.
  • the scroll compressor 1 according to Embodiment 1 is provided with an improvement for suppressing the temperature of the refrigerant discharged from the scroll compressor 1 from becoming difficult to decrease.
  • the scroll compressor 1 supplies an airtight container 21 constituting an outer shell, a suction pipe 23 that guides the refrigerant to the airtight container 21, a discharge pipe 24 that discharges the compressed refrigerant, and a cooled refrigerant in the airtight container 21.
  • the injection pipe 27 used for the above, the subframe 110 that partitions the space in the sealed container 21, the bottom oil reservoir 22 that stores the refrigerating machine oil, and the fixed spiral body 11b that compresses the refrigerant are formed.
  • the scroll 11 has a discharge pipe connecting portion 50 provided on the upper end surface of the fixed scroll 11 and connected to the discharge pipe 24.
  • the scroll compressor 1 rotates the orbiting scroll 12 formed with the orbiting spiral body 12b used to compress the refrigerant, the frame 14 that accommodates the orbiting scroll 12, and the orbiting scroll 12.
  • the shaft 15 includes an oil pump 91 that pulls up the refrigerating machine oil, an electric motor 139 that rotates the shaft 15, and an Oldham ring 13 that swings the swing scroll 12.
  • the scroll compressor 1 includes a compression chamber A formed by the fixed spiral body 11 b of the fixed scroll 11 and the swing spiral body 12 b of the swing scroll 12, the inner surface of the frame 14, the fixed scroll 11 and the swing scroll 12. And a suction chamber B that communicates with the compression chamber A.
  • the hermetic container 21 constitutes an outline of the scroll compressor 1.
  • a fixed scroll 11, a swing scroll 12, a frame 14, a shaft 15, an electric motor 139, an Oldham ring 13, and the like are provided in the sealed container 21.
  • a suction pipe 23 communicating with the inside of the sealed container 21 is connected to the side surface of the sealed container 21.
  • a discharge pipe 24 communicating with the innermost compression chamber A and an injection pipe 27 used for supplying the refrigerant to the compression chamber A are connected to the upper portion of the sealed container 21.
  • the suction pipe 23 is a pipe for guiding the refrigerant flowing into the scroll compressor 1 into the sealed container 21.
  • the suction pipe 23 is provided on the side surface of the sealed container 21 so as to communicate with the inside of the sealed container 21.
  • the discharge pipe 24 is a pipe for discharging the refrigerant compressed by the scroll compressor 1.
  • the discharge pipe 24 penetrates the sealed container 21 and is connected to the discharge pipe connecting portion 50 at one end side. That is, the discharge pipe 24 is provided over the inside and outside of the sealed container 21, and one end side is connected to the discharge pipe connecting portion 50 and communicates with the compression chamber A.
  • the portion of the discharge pipe 24 provided in the sealed container 21 is provided so as to extend in the vertical direction in the same manner as the injection pipe 27.
  • the injection pipe 27 is a pipe used to supply a refrigerant to the compression chamber A in the middle of the compression process formed between the fixed scroll 11 and the swing scroll 12 provided in the sealed container 21.
  • the injection pipe 27 penetrates the sealed container 21 and is connected to the discharge pipe connection part 50 at one end side. That is, the injection pipe 27 is provided across the inside and outside of the sealed container 21, and one end side is connected to the discharge pipe connecting part 50 and communicates with the compression chamber A.
  • the portion of the injection pipe 27 provided in the sealed container 21 is provided so as to extend in parallel in the vertical direction, as shown in FIG. That is, the injection pipe 27 is provided so that the portion in the sealed container 21 is located on the opposite side to the side where the electric motor 139 as a power mechanism is provided, with the swing scroll 12 and the fixed scroll 11 as a boundary. It has been. For this reason, the frictional heat generated on the sliding surface between the orbiting scroll 12 and the frame 14 and the heat generated by the current supplied to the electric motor 139 are not easily transmitted to the injection pipe 27, and flow through the injection pipe 27. It is possible to suppress the refrigerant from being heated.
  • the sub frame 110 is provided so as to partition the space in the sealed container 21, and is provided with a sub bearing 20 that rotatably supports the lower end side of the shaft 15.
  • a bottom oil reservoir 22 is provided below the subframe 110, and an electric motor 139 is provided above the subframe 110.
  • the bottom oil reservoir 22 stores refrigerating machine oil.
  • the bottom oil reservoir 22 is provided below the subframe 110.
  • the refrigerating machine oil stored in the bottom oil reservoir 22 is swung through a refrigerating machine oil passage (not shown) formed in the shaft 15 by an oil pump 91 provided at the lower end of the shaft 15. It can be pulled up to 12 side.
  • the fixed scroll 11 compresses the refrigerant together with the swing scroll 12.
  • the fixed scroll 11 is disposed opposite to the swing scroll 12.
  • the fixed scroll 11 includes a base plate 11a that is substantially parallel to the horizontal plane, and a fixed spiral body 11b that protrudes downward from the lower surface of the base plate 11a.
  • the base plate 11 a constitutes the compression chamber A and the suction chamber B together with the fixed spiral body 11 b, the swing scroll 12 and the frame 14.
  • the base plate 11 a is substantially parallel to the horizontal plane, and the outer peripheral surface thereof faces the inner peripheral surface of the sealed container 21, and the outer side of the lower end surface of the base plate 11 a faces the upper portion of the frame 14. Further, it is fixed in the sealed container 21.
  • the base plate 11a is a flat plate-like member, and at the center thereof, a discharge port 11c from which the refrigerant compressed in the compression chamber A is discharged, a concave portion 11d communicating with the discharge port 11c, and the compression chamber A An injection port 11e for supplying a refrigerant is formed.
  • the central portion of the base plate 11a corresponds to the central portion in the radial direction when the base plate 11a is viewed in a horizontal cross section.
  • the discharge port 11c is formed to extend in the vertical direction of the base plate 11a so that one communicates with the compression chamber A and the other communicates with the concave portion 11d.
  • the diameter of the discharge port 11c is smaller than the diameter of the concave portion 11d, and the other of the discharge ports 11c is closed by a discharge valve 11f that opens the discharge port 11c when the pressure is higher than a preset pressure.
  • the concave portion 11d is formed to be concave from the upper side to the lower side, and a discharge valve 11f is provided at a connection position with the discharge port 11c.
  • the concave portion 11d is formed on the base plate 11a so that one communicates with the discharge port 11c and the other communicates with a concave portion 50a of the discharge pipe connecting portion 50 described later.
  • the discharge valve 11f closes the discharge port 11c when the pressure is lower than a preset pressure, and restricts the flow of refrigerant from the compression chamber A side to the discharge pipe 24 side. However, when the pressure becomes equal to or higher than the preset pressure, the discharge port 11c. Is to release.
  • the injection port 11e is used to supply a refrigerant having a low specific enthalpy into the compression chamber A via the injection pipe 27 so that the temperature of the refrigerant in the compression chamber A can be lowered. is there.
  • the injection port 11e is formed outside the discharge port 11c and the recessed portion 11d in the radial direction when the base plate 11a is viewed in a horizontal section.
  • the injection port 11e is formed on the base plate 11a so that one communicates with the compression chamber A and the other communicates with a concave portion 50b of a discharge pipe connecting portion 50 described later.
  • two injection ports 11e are formed with the discharge port 11c as a boundary.
  • the formation position of one injection port 11e is a first compression chamber Aa described later, and the formation position of the other injection port 11e is a second compression chamber Ab described later.
  • the injection port 11 e is provided so as to extend in parallel with the top and bottom of the fixed scroll 11. If the injection port 11e is formed on the frame 14, the injection port 11e and the sliding surface are formed on the same member in addition to being closer to the sliding surface between the orbiting scroll 12 and the frame 14. The Rukoto. However, since the injection port 11e is formed on the fixed scroll 11 in the first embodiment, the injection port 11e is far from the sliding surface and is a separate member from the frame 14 on which the sliding surface is formed. Thus, the frictional heat generated on the sliding surface is difficult to be transmitted to the refrigerant flowing through the injection port 11e.
  • the injection port 11e is provided so as to be located on the side opposite to the side on which the electric motor 139 as a power mechanism is provided with the swing scroll 12 as a boundary. For this reason, the heat etc. which arise with the electric current supplied to the electric motor 139 become difficult to be transmitted to the injection port 11e, and it can suppress that the refrigerant
  • the discharge port 11c, the concave portion 11d, and the injection port 11e are described as being formed in parallel in the vertical direction.
  • the discharge port 11c, the concave portion 11d, and the injection port 11e are not necessarily formed in parallel. It may be formed slightly deviated from the direction.
  • the horizontal cross-sectional shapes of the discharge port 11c, the concave portion 11d, and the injection port 11e are described as being circular, but are not limited thereto, and may be elliptical. However, it may be a polygon.
  • two injection ports 11e are formed. However, the number is not limited to two, and may be one or three or more.
  • the temperatures of both the refrigerant in the first compression chamber Aa and the refrigerant in the second compression chamber Ab are set.
  • the temperature of the refrigerant discharged from the scroll compressor 1 can be efficiently reduced.
  • the fixed spiral body 11 b and the swing scroll body 12 b of the swing scroll 12 form a compression chamber A whose volume changes as the swing scroll 12 swings.
  • the fixed spiral body 11 b constitutes the suction chamber B together with the frame 14 and the swing scroll 12.
  • the fixed spiral body 11b has a horizontal cross section having a spiral shape, that is, an involute curve shape (see FIG. 2).
  • the discharge pipe connecting portion 50 is provided in contact with the upper end surface of the fixed scroll 11, and the discharge pipe 24 and the injection pipe 27 are connected to the discharge pipe connecting portion 50.
  • the discharge pipe connecting part 50 is formed with a concave part 50a on the center side in the radial direction when viewed in a horizontal section, and a concave part 50b is formed outside the position where the concave part 50a is formed.
  • the concave portion 50a and the concave portion 50b are formed so as to be concave from the lower side toward the upper side.
  • the upper end side of the concave portion 50 a is open, and the discharge pipe 24 is connected to communicate with the discharge pipe 24.
  • the concave portion 50b is a concave portion having a horizontal cross-sectional shape, for example, a donut shape. And the upper end side of the recessed part 50b is opened, and the injection piping 27 is connected and is connected with the injection piping 27.
  • the compression chamber A and the discharge pipe 24 communicate with each other through the discharge port 11c, the concave portion 11d, and the concave portion 50a. Further, the injection pipe 27 and the compression chamber A communicate with each other via the concave portion 50b and the injection port 11e.
  • the orbiting scroll 12 compresses the refrigerant together with the fixed scroll 11.
  • the orbiting scroll 12 is disposed to face the fixed scroll 11.
  • the swing scroll 12 includes a base plate 12a parallel to the horizontal plane, a swing spiral body 12b formed to protrude upward from the upper surface of the base plate 12a, and a boss portion 12c formed below the base plate 12a. And have.
  • the base plate 12 a constitutes the compression chamber A and the suction chamber B together with the swinging spiral body 12 b, the fixed scroll 11, and the frame 14.
  • the base plate 12 a is a disk-shaped member, and swings within the frame 14 by the rotation of the shaft 15.
  • the base plate 12 a is provided to be supported by the frame 14 so as to swing on the frame 14.
  • the base plate 12a swings on the frame 14 as the shaft 15 rotates.
  • the oscillating spiral body 12 b compresses the refrigerant together with the fixed spiral body 11 b of the fixed scroll 11. Further, the swinging spiral body 12 b constitutes the compression chamber A together with the base plate 12 a and the fixed scroll 11, and constitutes the suction chamber B together with the frame 14 and the fixed scroll 11.
  • the oscillating spiral body 12b has a horizontal cross section having a spiral shape, that is, an involute curve shape so as to correspond to the fixed spiral body 11b (see FIG. 2).
  • the boss portion 12c is a hollow cylindrical member formed on the lower side of the base plate 12a. The upper end side of the shaft 15 is connected to the boss portion 12c. That is, the rocking scroll 12 is rotated by the rotation of the shaft 15 connected to the boss portion 12c.
  • the frame 14 accommodates the orbiting scroll 12 so that the orbiting scroll 12 can slide. That is, a sliding surface is formed by the upper surface of the frame 14 and the lower surface of the base plate 12 a of the swing scroll 12.
  • the frame 14 has a shape in which an upper part and a lower part are opened.
  • the frame 14 is closed by providing a base plate 11 a of the fixed scroll 11 at the upper part of the frame 14, and a shaft 15 is inserted at the lower part of the frame 14.
  • the frame 14 has an outer peripheral surface facing the inner peripheral surface of the sealed container 21, and an inside of the sealed container 21 so that an outer upper portion thereof faces an outer side of the lower end surface of the base plate 11 a of the fixed scroll 11. It is fixed with.
  • the shaft 15 is provided with an eccentric portion 15 a connected to the boss portion 12 c of the swing scroll 12 and a first balancer 15 b that balances the swing motion of the swing scroll 12 at the upper end portion of the shaft 15.
  • a refrigerating machine oil passage (not shown) for guiding refrigerating machine oil from the bottom oil reservoir 22 to the swing scroll 12 side is formed inside the shaft 15.
  • the eccentric portion 15 a is a portion formed by shifting a dimension set in advance in the horizontal direction with respect to the central axis of the shaft 15.
  • the first balancer 15 b is provided above the electric motor 139 of the shaft 15 and below the frame 14. The first balancer 15 b is used to suppress unbalance associated with the movement of the orbiting scroll 12 and the Oldham ring 13.
  • the oil pump 91 pulls the refrigerating machine oil from the bottom oil reservoir 22.
  • the oil pump 91 is provided at the lower end of the shaft 15.
  • the oil pump 91 may be a pump that generates a pump action (use of differential pressure) by the rotation of the shaft 15 such as a centrifugal pump or a positive displacement pump.
  • the electric motor 139 rotates the shaft 15.
  • the electric motor 139 includes a stator 19 that is fixedly supported by the sealed container 21 and a rotor 18 that generates torque by being combined with the stator 19.
  • the electric motor 139 is provided so as to partition an upper space in which the swing scroll 12 and the fixed scroll 11 are provided and a lower space in which the bottom oil reservoir 22 is provided.
  • the stator 19 is configured, for example, by mounting a multiphase winding on a laminated iron core.
  • the rotor 18 has, for example, a permanent magnet (not shown) inside and is supported by the shaft 15 so that a preset gap is formed between the rotor 18 and the inner peripheral surface of the stator 19.
  • the rotor 18 is rotationally driven when the stator 19 is energized to rotate the shaft 15.
  • the rotor 18 is provided with a second balancer 18a that is used to suppress an imbalance associated with the movement of the orbiting scroll 12 and the Oldham ring 13.
  • the Oldham ring 13 is disposed below the lower surface of the base plate 12a of the orbiting scroll 12, and is used to prevent the rotation movement of the orbiting scroll 12 during the orbiting movement. That is, the Oldham ring 13 functions to prevent the swinging scroll 12 from rotating and to swing the swinging scroll 12.
  • the compression chamber A is formed by the lower surface of the base plate 11a and the fixed spiral body 11b, and the upper surface of the base plate 12a and the swinging spiral body 12b.
  • the compression chamber A communicates with the suction chamber B.
  • the compression chamber A includes a first compression chamber Aa and a second compression chamber Ab. More specifically, the first compression chamber Aa is formed by the fixed spiral body side surface 11A, the swinging spiral body outer surface 12A, the lower surface of the base plate 11a, and the upper surface of the base plate 12a. In the first compression chamber Aa, one of the injection ports 11e is formed.
  • the discharge port 11c side of the first compression chamber Aa is defined as the innermost chamber
  • the suction chamber B side of the first compression chamber Aa is defined as the first outermost chamber
  • the innermost chamber and the first chamber The space between the first outermost chamber is defined as the first intermediate chamber. That is, in the state shown in FIG. 2, the first compression chamber Aa has a first outermost chamber, a first intermediate chamber, and an innermost chamber from the outside. At this time, in the state shown in FIG. 2, it turns out that one injection port 11e is located in a 1st outermost chamber. That is, one injection port 11e is provided at a position about one turn along the inward surface side from the end of winding of the involute of the fixed scroll 11.
  • the second compression chamber Ab is formed by the fixed spiral body outer surface 11B, the swing spiral body side surface 12B, the lower surface of the base plate 11a, and the upper surface of the base plate 12a.
  • the other of the injection ports 11e is formed in the second compression chamber Ab.
  • the discharge port 11c side of the second compression chamber Ab is defined as the innermost chamber common to the first compression chamber Aa
  • the suction chamber B side of the second compression chamber Ab is defined as the second outermost chamber.
  • a space between the innermost chamber and the second outermost chamber is defined as a second intermediate chamber. That is, in the state shown in FIG. 2, the second compression chamber Ab has a second outermost chamber, a second intermediate chamber, and an innermost chamber from the outside. At this time, in the state shown in FIG. 2, it can be seen that the other injection port 11e is located in the second outermost chamber. In other words, the other injection port 11e is provided at a position about one round along the inward surface side from the end of the involute winding of the rocking scroll
  • the formation position of the injection port 11e is not limited to the first outermost chamber of the first compression chamber Aa and the second outermost chamber of the second compression chamber Ab. You may set according to the winding number etc. of the spiral body 12b.
  • the suction chamber B is formed by the inner surface of the frame 14, the outer periphery of the base plate 12a, the fixed spiral body outer surface 11B, and the swing spiral body outer surface 12A.
  • the suction chamber B communicates with the compression chamber A. Therefore, the refrigerant supplied to the frame 14 flows into the suction chamber B from the space below the frame 14 in the sealed container 21, and further, the refrigerant that flows into the suction chamber B flows into the compression chamber A. Become.
  • the sucked gas refrigerant is supplied to the compression chamber A through the suction chamber B, compressed, and sent to the discharge port 11 c provided in the fixed scroll 11.
  • the pressure of the refrigerant sent to the discharge port 11c exceeds a preset pressure, the refrigerant in the discharge port 11c pushes the discharge valve 11f upward to pass through the discharge valve 11f and is sent to the discharge pipe 24. It is.
  • FIG. 3 is a configuration example diagram of the refrigeration cycle apparatuses 100 and 101 including the scroll compressor 1 shown in FIG. 1 and a Mollier diagram of the refrigeration cycle apparatuses 100 and 101.
  • FIG. 3A1 is an example of the refrigeration cycle apparatus 100 in the case of injecting the bypass refrigerant whose pressure has been reduced to the intermediate pressure into the scroll compressor 1.
  • 3 (b1) shows that the bypass refrigerant decompressed to the intermediate pressure is heat-exchanged with the remaining mainstream refrigerant to increase the degree of supercooling of the mainstream refrigerant before the expansion valve, and then the scroll compressor 1
  • It is an example of the refrigeration cycle apparatus 101 in the case of performing injection.
  • 3 (a2) is a Mollier diagram of the refrigeration cycle apparatus 100 in FIG. 3 (a1)
  • FIG. 3 (b2) is a Mollier diagram of the refrigeration cycle apparatus 101 in FIG. 3 (b1).
  • the refrigeration cycle apparatus 100 is connected to the refrigerant discharge side of the scroll compressor 1, and condenses the refrigerant flowing out from the scroll compressor 1, and one is the condenser 2.
  • a first expansion valve 3 connected to depressurize the refrigerant flowing out of the condenser 2; one connected to the first expansion valve 3; the other connected to the refrigerant suction side of the scroll compressor 1;
  • the evaporator 4 which evaporates the refrigerant
  • the injection pipe 27 is connected between the condenser 2 and the first expansion valve 3 on the side opposite to the side to which the scroll compressor 1 is connected, and a part of the refrigerant flowing out of the condenser 2 2. Supply to the compression chamber A through the expansion valve 28.
  • the refrigeration cycle apparatus 100 of FIG. 3 (a1) at the outlet of the condenser 2, it is divided into a refrigerant that flows into the injection pipe 27 and a refrigerant that does not.
  • the refrigerant flowing into the injection pipe 27 is reduced to an intermediate pressure by the second expansion valve 28.
  • the refrigerant reduced to the intermediate pressure is supplied into the compression chamber A.
  • the mainstream refrigerant that does not flow into the injection pipe 27 is decompressed to a low pressure by the first expansion valve 3.
  • the mainstream refrigerant is sucked from the suction pipe 23 into the scroll compressor 1 through the evaporator 4 and merges in the compression chamber A.
  • the refrigeration cycle apparatus 100 will be described using a Mollier diagram in which the vertical axis represents pressure and the horizontal axis represents specific enthalpy.
  • the refrigerant that has flowed out of the condenser 2 having the high pressure Pd corresponds to the point exp, but the refrigerant that has flowed out of the condenser 2 flows into the injection portion Yinj flowing into the injection pipe 27 and into the first expansion valve 3.
  • the main stream (1-Yinj) is divided.
  • the main flow component (1-Yinj) is reduced to the low pressure Ps by the first expansion valve 3, and the injection component Yinj is reduced to the intermediate pressure Pm by the second expansion valve 28.
  • the intermediate pressure Pm is determined according to the position of the injection port 11e. That is, the volume of the compression chamber A in which the injection port 11e is open changes during one revolution of the orbiting scroll 12, but the intermediate pressure Pm is an average value during the one revolution.
  • the intermediate pressure Pm is determined by the compression ratio from when the suction into the compression chamber A is completed.
  • the main stream (1-Yinj) is heated by the evaporator 4 to increase the specific enthalpy. This corresponds to the point s. Then, the refrigerant sucked into the scroll compressor 1 from the evaporator 4 is compressed by the fixed scroll 11 and the swing scroll 12, but when compressed to a certain pressure, that is, from the point s to the point d1. When compressed, Yinj refrigerant for injection is injected from the injection port 11e. At this time, the refrigerant having the specific enthalpy corresponding to the point d1 (main stream component (1-Yinj)) and the refrigerant having the specific enthalpy corresponding to Yinj (injection component Yinj) are mixed to the point s2.
  • the corresponding specific enthalpy refrigerant The “specific enthalpy refrigerant corresponding to the point s2” is compressed in the compression chamber A and discharged from the discharge port 11c. This corresponds to the point d2.
  • a refrigerant coolant is compressed and it transfers to the point d from the point s. That is, it can be seen that the specific enthalpy can be lowered and the temperature of the refrigerant discharged from the scroll compressor 1 can be lowered when the injection is performed than when the injection is not performed.
  • the refrigeration cycle apparatus 101 is different from the refrigeration cycle apparatus 100 in that an internal heat exchanger 29 having two refrigerant channels is provided.
  • the internal heat exchanger 29 has a first flow path connected between the condenser 2 and the first expansion valve 3, and a second flow path connected downstream of the second expansion valve 28 in the injection pipe 27.
  • the heat exchanger has a flow path and can exchange heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path.
  • the refrigeration cycle apparatus 101 is provided with an internal heat exchanger 29 that exchanges heat between the refrigerant that has passed through the second expansion valve 28 and the mainstream refrigerant before flowing into the first expansion valve 3.
  • the degree of cooling can be increased.
  • the injection amount Yinj is depressurized by the second expansion valve 28 from the point exp of the high pressure Pd to become a refrigerant having the intermediate pressure Pm.
  • the mainstream refrigerant is supercooled by exchanging heat with the reduced injection pressure Yinj of the intermediate pressure Pm by the internal heat exchanger 29 and moves from the point exp of the high pressure Pd to the point exp2 of the high pressure Pd.
  • the mainstream refrigerant flows into the evaporator 4 and the specific enthalpy increases, it is sucked into the scroll compressor 1 and compressed by the fixed scroll 11 and the orbiting scroll 12, but is compressed to a certain pressure.
  • the refrigerant corresponding to the injection amount Yinj is injected from the injection port 11e.
  • the refrigerant having the specific enthalpy corresponding to the point d1 (main stream component (1-Yinj)) and the refrigerant having the specific enthalpy corresponding to Yinj (injection component Yinj) are mixed to the point s2.
  • the corresponding specific enthalpy refrigerant is mixed to the point s2.
  • the refrigeration cycle apparatus 101 can also lower the specific enthalpy when injection is performed and lower the temperature of the refrigerant discharged from the scroll compressor 1 than when it is not performed.
  • the specific enthalpy at the point s2 when compression is started after injection is determined by the following equation (1).
  • the specific enthalpy at each point in FIGS. 3 (a2) and 3 (b2) is h.
  • the specific enthalpy at the point s2 is expressed as h s2 .
  • h s2 (1 ⁇ Yinj) ⁇ h d1 + Yinj ⁇ h inj (1)
  • the following relationship (2) is established.
  • h inj h exp (2)
  • the following relationship (3) is established.
  • h inj h exp + (1 ⁇ Yinj) / Yinj ⁇ (h exp ⁇ h exp2 ) (3) Therefore, the intermediate pressure Pm (point d1) is given at the position of the injection port 11e from the operating conditions Pd (point exp) and Ps (point s), and the point d2 ⁇ point s2 is known from the allowable discharge temperature.
  • Yinj is uniquely determined from h s2 in FIG. 3A2 and in FIG. 3B2 according to he xp2 .
  • the size of the injection component Yinj and the main flow component (1-Yinj) is changed, that is, the scroll compression ratio is changed.
  • the temperature of the refrigerant discharged from the machine 1 can be adjusted.
  • an injection port 11 e is provided in the fixed scroll 11, and a portion of the injection pipe 27 in the sealed container 21 is a boundary between the swing scroll 12 and the fixed scroll 11.
  • it is provided so as to be located on the side opposite to the side where the electric motor 139 which is a power mechanism is provided.
  • produces on the sliding surface of the rocking scroll 12 and the flame
  • the scroll compressor 1 has an injection port 11e connected in the middle of the compression chamber A, and is used as a sliding member such as the frame 14, the fixed scroll 11, and the swinging scroll 12.
  • the refrigerant is configured not to merge at a stage before the refrigerant is supplied. For this reason, it is possible to prevent the refrigerant before being supplied to the sliding member from being diluted, so that the refrigerating machine oil contained in the refrigerant is prevented from being diluted. Damage can be suppressed.
  • the refrigeration cycle apparatuses 100 and 101 including the scroll compressor 1 according to the first embodiment include the scroll compressor 1, it is difficult to reduce the temperature of the refrigerant discharged from the scroll compressor 1. Can be suppressed. And even when R32 refrigerant is employed in the refrigeration cycle apparatuses 100 and 101, it is possible to prevent the temperature of the refrigerant discharged from the scroll compressor 1 from becoming difficult to decrease, and to increase the reliability of the apparatus. be able to.
  • the refrigeration cycle apparatuses 100 and 101 can suppress the temperature of the refrigerant discharged from the scroll compressor 1 from being difficult to decrease as described above, a mixed refrigerant of HFO-1123 and R32, Alternatively, even when a mixed refrigerant of HFO-1123 and HFO-1234yf is employed, the occurrence of disproportionation reaction can be suppressed. That is, the refrigeration cycle apparatuses 100 and 101 not only can suppress the disproportionation reaction by reducing the proportion of HFO-1123 by using HFO-1123 mixed with R32 or HFO-1234yf, Since it can suppress that it becomes difficult to reduce the temperature of the refrigerant
  • FIG. FIG. 4 is a schematic longitudinal sectional view of a scroll compressor 1A according to the second embodiment.
  • FIG. 5 is an explanatory diagram of the fixed spiral body 11b and the swinging spiral body 12b, the discharge port 11c, the injection port 11e, and the sub discharge port 11g shown in FIG.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • (Intermediate cooling pipe 9 and sub discharge port 11g, etc.) 1 A of scroll compressors are provided over the inside and outside of the airtight container 21, and have the intermediate
  • the intermediate cooling pipe 9 is connected to a side surface of the sealed container 21 so as to communicate with a flow path (a first passage 11k and a second passage 11l described later) in the fixed scroll 11 in the sealed container 21.
  • 1 A of scroll compressors have the following structure in addition to the discharge port 11c in which the fixed scroll 11 is formed in the center part of the fixed scroll 11, and discharges the refrigerant
  • the first opening 11 i that opens into the compression chamber A is formed between the discharge port 11 c and the injection port 11 e in the radial direction of the fixed scroll 11 and communicates with the intermediate cooling pipe 9. It has a port 11g.
  • the sub discharge port 11g is formed so as to extend in the vertical direction of the fixed scroll 11, and the second opening 11j that opens to the first opening 11i and the concave portion 50a having the discharge side space of the discharge port 11c.
  • the first passage 11k communicates with the first passage 11k.
  • Two sub discharge ports 11g are provided in the same manner as the injection port 11e.
  • One sub discharge port 11g is provided in the first intermediate chamber of the first compression chamber Aa.
  • the other sub discharge port 11g is provided in the second intermediate chamber of the second compression chamber Ab.
  • one injection port 11 e is provided at a position about one and a half halves along the inward surface side from the end of winding of the involute of the fixed scroll 11.
  • the other injection port 11e is provided at a position about one and a half times along the inward surface side from the end of winding of the involute of the orbiting scroll 12.
  • the sub discharge port 11g is formed so as to extend in the radial direction of the fixed scroll 11, and has a second passage 11l in which one communicates with the first passage 11k and the other communicates with the intermediate cooling pipe 9.
  • the sub discharge port 11g is provided with a check valve 11h provided to close the first passage 11k.
  • the check valve 11h is provided in the second opening 11j, and when the refrigerant in the first passage 11k becomes larger than a preset pressure, a concave portion that is a space on the discharge side of the discharge port 11c from the first passage 11k side. It has a function of flowing a refrigerant to the 50a side.
  • the scroll compressor 1A is provided with the sub discharge port 11g at a position higher than the injection port 11e, and a part of the refrigerant in the compression chamber A is transferred to the intermediate cooling pipe 9 under an operation condition of a high compression ratio. It is comprised so that it can extract out of the airtight container 21 via. That is, under the high compression ratio operating conditions, the temperature of the refrigerant discharged from the scroll compressor 1A rises, so the extracted refrigerant is cooled and the injection port 27e passes through the injection port 11e into the compression chamber A. The specific enthalpy of the refrigerant in the compression chamber A is lowered. Thereby, the temperature of the refrigerant discharged from the scroll compressor 1 can be suppressed.
  • the sub discharge port 11g communicates with the high pressure side after the discharge valve 11f via the check valve 11h. That is, the sub discharge port 11g communicates with the concave portion 50a. For this reason, under low compression ratio operating conditions in which the temperature of the refrigerant discharged from the scroll compressor 1 does not increase, the overcompression loss can be reduced by bypass discharge to the high pressure side via the check valve 11h. it can.
  • FIG. 6 is a schematic diagram for explaining the operation during the intermediate cooling operation of the scroll compressor 1A according to the second embodiment.
  • FIG. 7 is a configuration example diagram of the refrigeration cycle apparatuses 102 and 103 including the scroll compressor 1A shown in FIG. 4 and a Mollier diagram of the refrigeration cycle apparatuses 102 and 103. It should be noted that both the refrigeration cycle apparatus 102 shown in FIG. 7A and the refrigeration cycle apparatus 103 shown in FIG. 7B are the same in terms of cycle, resulting in the Mollier diagram shown in FIG. 7C.
  • FIG. 6A shows a state in which the sub discharge port 11g is opened to the second intermediate chamber and the injection port 11e is opened to the second outermost chamber.
  • FIG. 6B shows a state in which the upper end side of the swinging spiral body 12b that seals between the second innermost chamber and the second intermediate chamber is at a position facing the sub discharge port 11g. ing.
  • FIG. 6C shows a state in which the sub discharge port 11g and the injection port 11e are both opened to the second intermediate chamber.
  • the second innermost chamber and the second intermediate chamber communicate with each other between FIG. 6A and FIG. 6B to become the innermost chamber. Further, what has been the second outermost chamber until then becomes the second intermediate chamber.
  • FIG.6 (c) and before Fig.6 (a) the winding end of the rocking
  • one of the refrigeration cycle apparatuses 102 is connected to the refrigerant discharge side of the scroll compressor 1, and condenses the refrigerant flowing out from the scroll compressor 1A.
  • One is connected to the condenser 2 and the first expansion valve 3 for reducing the pressure of the refrigerant flowing out of the condenser 2 is connected to the first expansion valve 3 and the other is connected to the refrigerant suction side of the scroll compressor 1.
  • the evaporator 4 is connected and evaporates the refrigerant flowing out from the first expansion valve 3, and the intermediate cooling flow rate adjusting valve 7 is connected to the intermediate cooling pipe 9 of the scroll compressor 1.
  • the evaporator 4 includes a third flow path connected between the first expansion valve 3 and the refrigerant suction side of the scroll compressor 1, one of which is intermediate cooled. Heat having a fourth flow path and a fifth flow path connected to the pipe 9 and the other connected to the injection pipe 27, and heat exchange between the refrigerant flowing through the third flow path and the refrigerant flowing through the fourth flow path. It is an exchanger.
  • the evaporator 4 is not provided with the 5th flow path.
  • the injection pipe 27 can supply the refrigerant supplied through the intermediate cooling pipe 9 and the fourth flow path to the compression chamber A.
  • the evaporator 4 includes the refrigerant flowing through the third flow path connected to the first expansion valve 3 and the fourth flow path (or fourth flow path) connected to the intermediate cooling pipe 9 of the scroll compressor 1.
  • the refrigerant flowing through the fifth flow path have a function of cooling the refrigerant flowing through the fourth flow path (or the fourth flow path and the fifth flow path) by exchanging heat.
  • the configuration corresponding to the fourth flow path (or the fourth flow path and the fifth flow path) is also referred to as an intercooler 10 in the following description.
  • the intermediate cooling flow rate adjustment valve 7 maintains a differential pressure between the sub discharge port 11g and the injection port 11e, and is injected from the refrigerant extracted from the intermediate cooling pipe 9, the refrigerant cooled by the evaporator 4, and the injection pipe 27. It is used to adjust the amount of refrigerant.
  • the intermediate cooling flow rate adjusting valve 7 is provided one by one in the injection pipe 27 in FIG. 7A, and is connected to a portion of the injection pipe 27 before branching in FIG. 7B.
  • the refrigerant flowing out from both intermediate cooling pipes 9 is supplied to the injection pipe 27 via the evaporator 4 without being merged, and in FIG.
  • the refrigerant that has flowed out of the cooling pipe 9 is joined and supplied to the injection pipe 27 via the evaporator 4, and is divided by the injection pipe 27.
  • the sub discharge port 11g opens into the compression chamber A having a higher pressure than the injection port 11e. For this reason, the refrigerant in the compression chamber A in which the sub discharge port 11g is opened can be extracted and mixed with the refrigerant in the compression chamber A in which the injection port 11e is opened.
  • the intermediate cooler 10 provided in the middle of the injection port 11e from the sub discharge port 11g, the specific enthalpy of the compression chamber A in which the injection port 11e is open can be lowered.
  • the sub discharge port 11g and the injection port 11e open to the same compression chamber A, so that intermediate cooling is not performed between the two ports in a pressure-equalized state.
  • the operations of “extraction of refrigerant from intermediate cooling pipe 9”, “cooling of refrigerant in intermediate cooler 10” and “injection into compression chamber A by injection pipe 27” are intermittent.
  • the “temporal ratio between the differential pressure state and the pressure equalized state” and “the magnitude of the differential pressure” between the sub discharge port 11g and the injection port 11e depend on the formation positions of the sub discharge port 11g and the injection port 11e. To do. Therefore, by setting the port formation position and opening degree control of the intermediate cooling flow rate adjustment valve 7, the intermediate cooling amount can be increased and decreased, and the temperature of the refrigerant discharged from the scroll compressor 1 can be adjusted.
  • the refrigerant discharged from the scroll compressor 1 is heat-exchanged by the condenser 2 when viewed from the Mollier diagram of FIG. 7C.
  • the pressure is reduced by the first expansion valve 3 and heat is exchanged by the evaporator 4 to absorb heat.
  • a part of the heat exchange amount in the evaporator 4 absorbs heat from the intermediate cooler 10.
  • the refrigerant extracted from the compression chamber A via the intermediate cooling pipe 9 is supplied to the intermediate cooler 10 and is cooled by the refrigerant passing through the evaporator 4 (point md1).
  • the cooled refrigerant is returned to the compression chamber A through the injection pipe 27 and mixed, whereby the specific enthalpy is reduced (point s2). Therefore, the specific enthalpy is lower than when the intermediate cooling is not performed (point d), that is, the refrigerant discharged from the scroll compressor 1 can be discharged at a low temperature (point d2).
  • FIG. 8 is a simplified version of the Mollier diagram of FIG. 7C for explaining the compression process.
  • the specific enthalpy h s of the high pressure Pd, the low pressure Ps, and the suction (point s) is given from the operating conditions, and the intermediate pressure depends on the port position.
  • the intermediate pressure Pms is determined by the pressure increase amount due to compression up to the average volume during one rotation of the compression chamber A opened at the injection port 11e (IJP) and the intermediate pressure Pmd at the sub discharge port 11g (SP).
  • the state quantity after injection (point s2) at the intermediate pressure Pms is uniquely determined so that the temperature of the refrigerant (point d2) discharged from the scroll compressor 1 becomes a preset value.
  • the extraction amount from SP at the intermediate pressure Pmd during the compression process from the point s2 to the point d2 is the diversion ratio Ybp with respect to the circulation amount 1 of the entire cycle, and the refrigerant at the outlet of the intermediate cooler (point md1) for the diversion ratio Ybp.
  • the enthalpy difference ⁇ h Q corresponding to the refrigeration capacity in the evaporator 4 (see also the point exp in FIG.
  • the specific enthalpy h md1 affects only the numerator, whereas when the diversion ratio Ybp increases, both the denominator and the numerator affect C.I. O. P. Therefore, from the viewpoint of efficiency, it is desirable to increase the enthalpy difference in the intercooler 10 to keep the diversion ratio Ybp low.
  • the refrigerant When the refrigerant enters and exits the scroll compressor 1 such as extraction from the compression chamber A and injection into the compression chamber A, the refrigerant is heated by heat transfer in the middle of entering and exiting. This will reduce the cooling effect. That is, in order to suppress the discharge temperature to be set in advance, it is necessary to increase the diversion ratio Ybp commensurate with the influence of heating, leading to a decrease in performance.

Abstract

A scroll compressor has an injection pipe (27) that is provided across the interior and exterior of a sealed container (21) and is used to supply a refrigerant to a compression chamber (A), and a power mechanism (139) that is accommodated in the sealed container and oscillates an orbiting scroll (12). The portion of the injection pipe inside the sealed container is provided on the side opposite, with the orbiting scroll and a fixed scroll (11) as the boundary, to the side where the power mechanism is provided, and one end of the fixed scroll communicates with the injection pipe, and the other end has an injection port (11e) that communicates with the compression chamber.

Description

スクロール圧縮機及びそれを備えた冷凍サイクル装置Scroll compressor and refrigeration cycle apparatus including the same
 本発明は、スクロール圧縮機及びそれを備えた冷凍サイクル装置に関するものである。 The present invention relates to a scroll compressor and a refrigeration cycle apparatus including the scroll compressor.
 冷媒として地球温暖化係数GWPの低いR32を冷凍サイクル装置の冷媒回路に封入した場合には、従来のR22、R410Aなどを用いた場合と比較すると、圧縮機の吐出ガス温度が、たとえば20deg前後高くなる。これにより、密閉型圧縮機に用いられている電動機の絶縁材及び冷凍機油などの劣化を招くという問題が生じる場合がある。ここで、R32以外の地球温暖化係数GWPが低い冷媒としては、HFO-1123とR32との混合冷媒、又はHFO-1123とHFO-1234yfとの混合冷媒などがある。しかし、HFO-1123は、環境負荷が小さいなどの性質を有するが、高温及び高圧下で急速分解反応を起こす可能性がある(不均化反応)。このため、上述した混合冷媒を用いる場合には、圧縮機の吐出ガス温度を抑制する必要がある。 When R32 having a low global warming potential GWP as the refrigerant is enclosed in the refrigerant circuit of the refrigeration cycle apparatus, the discharge gas temperature of the compressor is, for example, about 20 deg higher than that when the conventional R22, R410A or the like is used. Become. As a result, there may be a problem that the insulating material of the electric motor used in the hermetic compressor, the refrigeration oil, and the like are deteriorated. Here, the refrigerant having a low global warming potential GWP other than R32 includes a mixed refrigerant of HFO-1123 and R32 or a mixed refrigerant of HFO-1123 and HFO-1234yf. However, HFO-1123 has properties such as a low environmental load, but may cause a rapid decomposition reaction under high temperature and high pressure (disproportionation reaction). For this reason, when using the mixed refrigerant mentioned above, it is necessary to suppress the discharge gas temperature of a compressor.
 また、R32冷媒は可燃性があるため、漏洩して引火することを防止するため冷凍サイクルを構成する回路への冷媒充填量を抑える必要があり、圧縮機の運転中の密閉容器内の圧力が低圧となる低圧シェル方式の圧縮機を用いる方が望ましい。 In addition, since the R32 refrigerant is flammable, it is necessary to suppress the amount of refrigerant charged in the circuit constituting the refrigeration cycle in order to prevent leakage and ignition, and the pressure in the sealed container during operation of the compressor is reduced. It is desirable to use a low-pressure shell type compressor that has a low pressure.
 ここで、圧縮機、凝縮器、主減圧手段及び蒸発器を有し、これらが冷媒配管で接続されて構成した冷凍サイクルを有する冷凍装置であって、凝縮器と主減圧手段との間に設けられた過冷却熱交換器と、過冷却熱交換器の上流側に設けられた過冷却用の減圧手段と、過冷却熱交換器で冷却された冷媒を蒸発器をバイパスして圧縮機に供給するバイパス配管とを有するものが提案されている(たとえば、特許文献1参照)。
 特許文献1に記載の技術は、R32冷媒を含む冷媒を用いながら圧縮機から吐出されるガス冷媒温度を抑制するため、凝縮器で凝縮した後に主減圧手段で減圧されて蒸発器を通過したガス冷媒と、過冷却熱交換器で冷却した冷媒とをバイパス配管を介して合流させてから圧縮機の吸入側に供給するように構成したものである。
Here, a refrigeration apparatus having a refrigeration cycle having a compressor, a condenser, a main decompression unit, and an evaporator, which are connected by refrigerant piping, provided between the condenser and the main decompression unit The subcooling heat exchanger, the supercooling pressure reducing means provided on the upstream side of the supercooling heat exchanger, and the refrigerant cooled by the supercooling heat exchanger is supplied to the compressor bypassing the evaporator The thing which has bypass piping to do is proposed (for example, refer to patent documents 1).
In the technique described in Patent Document 1, in order to suppress the temperature of the gas refrigerant discharged from the compressor while using the refrigerant containing the R32 refrigerant, the gas that has been condensed by the condenser and then decompressed by the main decompression means and passed through the evaporator The refrigerant and the refrigerant cooled by the supercooling heat exchanger are combined via a bypass pipe and then supplied to the suction side of the compressor.
特開2001-227823号公報(たとえば、図1参照)JP 2001-227823 A (see, for example, FIG. 1)
 特許文献1に記載の技術が、R32冷媒の可燃性の観点から低圧シェル方式の圧縮機を用いているとしたとき、バイパス配管から供給されるバイパス冷媒は蒸発器から流出した冷媒と合流することにより、二相状態まで冷媒の比エンタルピを低下させている。そして、比エンタルピの低下した冷媒は、圧縮機の密閉容器内に吸入された後に、冷媒を圧縮する圧縮機構部に取り込まれ、冷媒の圧縮が行なわれる。 When the technique described in Patent Document 1 uses a low-pressure shell type compressor from the viewpoint of the flammability of the R32 refrigerant, the bypass refrigerant supplied from the bypass pipe merges with the refrigerant flowing out of the evaporator. Thus, the specific enthalpy of the refrigerant is reduced to the two-phase state. And the refrigerant | coolant with which specific enthalpy fell is suck | inhaled in the airtight container of a compressor, Then, it is taken in into the compression mechanism part which compresses a refrigerant | coolant, and compression of a refrigerant | coolant is performed.
 すなわち、特許文献1に記載の技術では、圧縮機から吐出されるガス冷媒の温度を抑制することができるが、バイパス配管を流れてきて合流したバイパス冷媒が圧縮機構部に流れ込むため、圧縮機構部に冷媒が供給される前の段階で冷媒が希釈化されてしまうという課題があった。なお、圧縮機構部に冷媒が供給される前の段階で冷媒が希釈されてしまうと、冷媒中の冷凍機油も希釈化してしまう。これにより、たとえば、揺動スクロールとこれを摺動自在に支持するフレームとの摺動部などの摩擦を低減しにくくなり、圧縮機の破損などにつながる可能性がある。 That is, in the technique described in Patent Document 1, the temperature of the gas refrigerant discharged from the compressor can be suppressed. However, since the bypass refrigerant that has flowed through the bypass pipe and joined flows into the compression mechanism part, the compression mechanism part There is a problem that the refrigerant is diluted at a stage before the refrigerant is supplied. In addition, if a refrigerant | coolant is diluted in the step before a refrigerant | coolant is supplied to a compression mechanism part, the refrigeration oil in a refrigerant | coolant will also be diluted. As a result, for example, it becomes difficult to reduce the friction of the sliding portion between the orbiting scroll and the frame that slidably supports it, which may lead to damage to the compressor.
 そこで、冷媒が圧縮機構部に供給される前の段階で希釈化されないように、圧縮機構部に冷媒が取り込まれた後にバイパス冷媒を合流(インジェクション)する方法が考えられる。すなわち、バイパス冷媒を供給するバイパス配管(インジェクション配管)を圧縮機構部に接続し、上述の摺動部を過ぎた後の冷媒にバイパス冷媒を合流させるということである。
 しかし、この方法であっても、密閉容器外から圧縮室に至る間に、密閉容器内に設けられている電動機及び上述の摺動部などの発熱要素から、インジェクション配管に熱が伝達されてしまい、バイパス冷媒の冷却効果が低減し、圧縮機から吐出されるガス冷媒の温度を下げにくくなってしまうという課題がある。
 また、冷媒としてHFO-1123とR32との混合冷媒、又はHFO-1123とHFO-1234yfとの混合冷媒などを採用した場合には、圧縮機から吐出されるガス冷媒の温度が下げにくいと、その分、不均化反応が起こってしまう可能性が高くなってしまう。
In view of this, a method of joining (injecting) the bypass refrigerant after the refrigerant has been taken into the compression mechanism section is conceivable so that the refrigerant is not diluted before being supplied to the compression mechanism section. That is, a bypass pipe (injection pipe) for supplying a bypass refrigerant is connected to the compression mechanism section, and the bypass refrigerant is merged with the refrigerant after passing the sliding section.
However, even with this method, heat is transferred to the injection pipe from the heat generating element such as the electric motor and the sliding portion described above in the sealed container between the outside of the sealed container and the compression chamber. There is a problem that the cooling effect of the bypass refrigerant is reduced and it is difficult to lower the temperature of the gas refrigerant discharged from the compressor.
Further, when a mixed refrigerant of HFO-1123 and R32 or a mixed refrigerant of HFO-1123 and HFO-1234yf is adopted as the refrigerant, if the temperature of the gas refrigerant discharged from the compressor is difficult to lower, The possibility that a disproportionation reaction will occur becomes high.
 本発明は、以上のような課題を解決するためになされたもので、圧縮機から吐出される冷媒温度が下がりにくくなることを抑制するスクロール圧縮機及びそれを備えた冷凍サイクル装置を提供することを目的としている。 The present invention has been made to solve the above-described problems, and provides a scroll compressor and a refrigeration cycle apparatus including the scroll compressor that suppress the refrigerant temperature discharged from the compressor from becoming difficult to decrease. It is an object.
 本発明に係るスクロール圧縮機は、密閉容器と、密閉容器に収容され、第1渦巻体が形成されている揺動スクロールと、密閉容器の内周面に固定され、第1渦巻体とともに冷媒を圧縮する第2渦巻体が形成され、揺動スクロールとの間に圧縮室を形成する固定スクロールと、密閉容器の内外に渡って設けられ、圧縮室に冷媒を供給するのに利用されるインジェクション配管と、密閉容器に収容され、一方の端部が揺動スクロールのうちの固定スクロールが設けられている側とは反対側に接続され、揺動スクロールを揺動運動させる回転軸と、密閉容器に収容され、回転軸の他方が接続され、回転軸を回転させる動力機構と、を有し、インジェクション配管は、密閉容器内の部分が、揺動スクロール及び固定スクロールを境にして、動力機構が設けられている側とは反対側に位置するように設けられ、固定スクロールは、一方がインジェクション配管と連通し、他方が圧縮室と連通するインジェクションポートを有するものである。 A scroll compressor according to the present invention includes a hermetic container, a swinging scroll accommodated in the hermetic container, in which a first spiral body is formed, and fixed to the inner peripheral surface of the hermetic container. A second scroll body to be compressed is formed, a fixed scroll that forms a compression chamber with the swing scroll, and an injection pipe that is provided across the inside and outside of the sealed container and is used to supply a refrigerant to the compression chamber And a rotating shaft for swinging the swing scroll, one end of which is connected to the side of the swing scroll opposite to the side on which the fixed scroll is provided, and the sealed container. The other end of the rotating shaft is connected, and a power mechanism for rotating the rotating shaft, and the injection pipe has a power mechanism with a portion in the hermetic container at the boundary of the swing scroll and the fixed scroll. Provided to the provided side located opposite the fixed scroll is one in which one is through injection pipe and communicating, with the injection port and the other communicates with the compression chamber.
 本発明に係るスクロール圧縮機によれば、上記構成を有しているので、圧縮機から吐出される冷媒温度が下がりにくくなることを抑制することができる。 Since the scroll compressor according to the present invention has the above-described configuration, it is possible to suppress the temperature of the refrigerant discharged from the compressor from being easily lowered.
本発明の実施の形態1に係るスクロール圧縮機の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the scroll compressor which concerns on Embodiment 1 of this invention. 図1に示す固定渦巻体及び揺動渦巻体と、吐出ポート及びインジェクションポートの説明図である。It is explanatory drawing of a fixed spiral body and a rocking | swirling spiral body shown in FIG. 1, a discharge port, and an injection port. 図1に示すスクロール圧縮機を備えた冷凍サイクル装置の構成例図及びこの冷凍サイクル装置のモリエル線図である。It is the example of a structure of the refrigerating-cycle apparatus provided with the scroll compressor shown in FIG. 1, and the Mollier diagram of this refrigerating-cycle apparatus. 本発明の実施の形態2に係るスクロール圧縮機の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the scroll compressor which concerns on Embodiment 2 of this invention. 図1に示す固定渦巻体及び揺動渦巻体と、吐出ポート、インジェクションポート及びサブ吐出ポートの説明図である。It is explanatory drawing of a fixed spiral body and a rocking | swirling spiral body shown in FIG. 1, a discharge port, an injection port, and a sub discharge port. 本発明の実施の形態2に係るスクロール圧縮機の中間冷却運転時の動作を説明する模式図である。It is a schematic diagram explaining the operation | movement at the time of the intermediate | middle cooling operation of the scroll compressor which concerns on Embodiment 2 of this invention. 図4に示すスクロール圧縮機を備えた冷凍サイクル装置の構成例図及びこの冷凍サイクル装置のモリエル線図である。It is the example of a structure of the refrigerating-cycle apparatus provided with the scroll compressor shown in FIG. 4, and the Mollier diagram of this refrigerating-cycle apparatus. 図7(c)のモリエル線図を圧縮過程の説明のために簡略化したものである。The Mollier diagram of FIG.7 (c) is simplified for description of a compression process.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1. 
 図1は、実施の形態1に係るスクロール圧縮機1の概略縦断面図である。図2は、図1に示す固定渦巻体11b及び揺動渦巻体12bと、吐出ポート11c及びインジェクションポート11eの説明図である。図1及び図2を参照してスクロール圧縮機1の構成について説明する。
 本実施の形態1に係るスクロール圧縮機1は、スクロール圧縮機1から吐出される冷媒温度が下がりにくくなることを抑制する改良が加えられたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic longitudinal sectional view of a scroll compressor 1 according to the first embodiment. FIG. 2 is an explanatory diagram of the fixed spiral body 11b and the swinging spiral body 12b, the discharge port 11c, and the injection port 11e shown in FIG. The configuration of the scroll compressor 1 will be described with reference to FIGS. 1 and 2.
The scroll compressor 1 according to Embodiment 1 is provided with an improvement for suppressing the temperature of the refrigerant discharged from the scroll compressor 1 from becoming difficult to decrease.
[スクロール圧縮機1の構成]
 スクロール圧縮機1は、外郭を構成する密閉容器21と、密閉容器21に冷媒を導く吸入管23及び圧縮された冷媒を吐出する吐出管24と、密閉容器21内に冷却した冷媒を供給するのに利用されるインジェクション配管27と、密閉容器21内の空間を区画するサブフレーム110と、冷凍機油が貯留される底部油溜22と、冷媒を圧縮するための固定渦巻体11bが形成された固定スクロール11と、固定スクロール11の上端面に設けられ、吐出管24が接続される吐出管接続部50とを有している。
 また、スクロール圧縮機1は、冷媒を圧縮するのに利用される揺動渦巻体12bが形成された揺動スクロール12と、揺動スクロール12を収容するフレーム14と、揺動スクロール12を回転させる軸15と、冷凍機油を引き上げるオイルポンプ91と、軸15を回転させる電動機139と、揺動スクロール12を揺動運動させるオルダムリング13とを有している。
 さらに、スクロール圧縮機1は、固定スクロール11の固定渦巻体11b及び揺動スクロール12の揺動渦巻体12bによって形成される圧縮室Aと、フレーム14の内側面、固定スクロール11及び揺動スクロール12によって形成され、圧縮室Aに連通する吸入室Bとを有している。
[Configuration of scroll compressor 1]
The scroll compressor 1 supplies an airtight container 21 constituting an outer shell, a suction pipe 23 that guides the refrigerant to the airtight container 21, a discharge pipe 24 that discharges the compressed refrigerant, and a cooled refrigerant in the airtight container 21. The injection pipe 27 used for the above, the subframe 110 that partitions the space in the sealed container 21, the bottom oil reservoir 22 that stores the refrigerating machine oil, and the fixed spiral body 11b that compresses the refrigerant are formed. The scroll 11 has a discharge pipe connecting portion 50 provided on the upper end surface of the fixed scroll 11 and connected to the discharge pipe 24.
In addition, the scroll compressor 1 rotates the orbiting scroll 12 formed with the orbiting spiral body 12b used to compress the refrigerant, the frame 14 that accommodates the orbiting scroll 12, and the orbiting scroll 12. The shaft 15 includes an oil pump 91 that pulls up the refrigerating machine oil, an electric motor 139 that rotates the shaft 15, and an Oldham ring 13 that swings the swing scroll 12.
Further, the scroll compressor 1 includes a compression chamber A formed by the fixed spiral body 11 b of the fixed scroll 11 and the swing spiral body 12 b of the swing scroll 12, the inner surface of the frame 14, the fixed scroll 11 and the swing scroll 12. And a suction chamber B that communicates with the compression chamber A.
(密閉容器21)
 密閉容器21は、スクロール圧縮機1の外郭を構成するものである。密閉容器21内には、固定スクロール11、揺動スクロール12、フレーム14、軸15、電動機139、及びオルダムリング13などが設けられている。
 また、密閉容器21の側面には密閉容器21内と連通する吸入管23が接続されている。さらに、密閉容器21の上部には最内室の圧縮室Aと連通する吐出管24及び圧縮室Aに冷媒を供給するのに利用されるインジェクション配管27が接続されている。
(Sealed container 21)
The hermetic container 21 constitutes an outline of the scroll compressor 1. In the sealed container 21, a fixed scroll 11, a swing scroll 12, a frame 14, a shaft 15, an electric motor 139, an Oldham ring 13, and the like are provided.
A suction pipe 23 communicating with the inside of the sealed container 21 is connected to the side surface of the sealed container 21. Further, a discharge pipe 24 communicating with the innermost compression chamber A and an injection pipe 27 used for supplying the refrigerant to the compression chamber A are connected to the upper portion of the sealed container 21.
(吸入管23及び吐出管24)
 吸入管23は、スクロール圧縮機1に流入する冷媒を、密閉容器21内に導くための配管である。吸入管23は、密閉容器21内と連通するように、密閉容器21の側面に設けられている。
 吐出管24は、スクロール圧縮機1で圧縮された冷媒を吐出させるための配管である。吐出管24は、密閉容器21を貫通して、一方の端部側が吐出管接続部50に接続されているものである。すなわち、吐出管24は、密閉容器21の内外に渡って設けられ、一方の端部側が吐出管接続部50に接続されて圧縮室Aと連通しているものである。
 吐出管24のうちの密閉容器21内に設けられている部分は、図1に示すように、インジェクション配管27と同様に、上下方向に平行に延びるように設けられている。
(Suction pipe 23 and discharge pipe 24)
The suction pipe 23 is a pipe for guiding the refrigerant flowing into the scroll compressor 1 into the sealed container 21. The suction pipe 23 is provided on the side surface of the sealed container 21 so as to communicate with the inside of the sealed container 21.
The discharge pipe 24 is a pipe for discharging the refrigerant compressed by the scroll compressor 1. The discharge pipe 24 penetrates the sealed container 21 and is connected to the discharge pipe connecting portion 50 at one end side. That is, the discharge pipe 24 is provided over the inside and outside of the sealed container 21, and one end side is connected to the discharge pipe connecting portion 50 and communicates with the compression chamber A.
As shown in FIG. 1, the portion of the discharge pipe 24 provided in the sealed container 21 is provided so as to extend in the vertical direction in the same manner as the injection pipe 27.
(インジェクション配管27)
 インジェクション配管27は、密閉容器21内に設けられた固定スクロール11と揺動スクロール12との間に形成される圧縮過程の中間の圧縮室Aに冷媒を供給するのに利用される配管である。インジェクション配管27は、密閉容器21を貫通して、一方の端部側が吐出管接続部50に接続されているものである。すなわち、インジェクション配管27は、密閉容器21の内外に渡って設けられ、一方の端部側が吐出管接続部50に接続されて圧縮室Aと連通しているものである。
(Injection piping 27)
The injection pipe 27 is a pipe used to supply a refrigerant to the compression chamber A in the middle of the compression process formed between the fixed scroll 11 and the swing scroll 12 provided in the sealed container 21. The injection pipe 27 penetrates the sealed container 21 and is connected to the discharge pipe connection part 50 at one end side. That is, the injection pipe 27 is provided across the inside and outside of the sealed container 21, and one end side is connected to the discharge pipe connecting part 50 and communicates with the compression chamber A.
 インジェクション配管27のうちの密閉容器21内に設けられている部分は、図1に示すように、上下方向に平行に延びるように設けられている。すなわち、インジェクション配管27は、密閉容器21内の部分が、揺動スクロール12及び固定スクロール11を境にして、動力機構である電動機139が設けられている側とは反対側に位置するように設けられている。このため、揺動スクロール12とフレーム14との摺動面で発生する摩擦熱及び電動機139に供給される電流によって生じる熱などが、インジェクション配管27に伝達されにくくなっており、インジェクション配管27を流れる冷媒が加温されてしまうことを抑制することができるようになっている。 The portion of the injection pipe 27 provided in the sealed container 21 is provided so as to extend in parallel in the vertical direction, as shown in FIG. That is, the injection pipe 27 is provided so that the portion in the sealed container 21 is located on the opposite side to the side where the electric motor 139 as a power mechanism is provided, with the swing scroll 12 and the fixed scroll 11 as a boundary. It has been. For this reason, the frictional heat generated on the sliding surface between the orbiting scroll 12 and the frame 14 and the heat generated by the current supplied to the electric motor 139 are not easily transmitted to the injection pipe 27, and flow through the injection pipe 27. It is possible to suppress the refrigerant from being heated.
(サブフレーム110)
 サブフレーム110は、密閉容器21内の空間を区画するように設けられ、軸15の下端側を回転自在に支持する副軸受20が設けられているものである。サブフレーム110の下側には、底部油溜22が設けられており、サブフレーム110の上側には、電動機139が設けられている。
(Subframe 110)
The sub frame 110 is provided so as to partition the space in the sealed container 21, and is provided with a sub bearing 20 that rotatably supports the lower end side of the shaft 15. A bottom oil reservoir 22 is provided below the subframe 110, and an electric motor 139 is provided above the subframe 110.
(底部油溜22)
 底部油溜22は、冷凍機油を貯留するものである。この底部油溜22は、サブフレーム110の下側に設けられているものである。
 なお、底部油溜22に貯留されている冷凍機油は、軸15の下側端部に設けられたオイルポンプ91によって、軸15に形成される冷凍機油通路(図示省略)を通って揺動スクロール12側に引き上げられるようになっている。
(Bottom oil reservoir 22)
The bottom oil reservoir 22 stores refrigerating machine oil. The bottom oil reservoir 22 is provided below the subframe 110.
The refrigerating machine oil stored in the bottom oil reservoir 22 is swung through a refrigerating machine oil passage (not shown) formed in the shaft 15 by an oil pump 91 provided at the lower end of the shaft 15. It can be pulled up to 12 side.
(固定スクロール11)
 固定スクロール11は、揺動スクロール12とともに冷媒を圧縮するものである。固定スクロール11は、揺動スクロール12に対して対向配置されている。固定スクロール11は、水平面に対して略平行な台板11aと、台板11aの下面から下側に突出して形成された固定渦巻体11bとを有している。
(Fixed scroll 11)
The fixed scroll 11 compresses the refrigerant together with the swing scroll 12. The fixed scroll 11 is disposed opposite to the swing scroll 12. The fixed scroll 11 includes a base plate 11a that is substantially parallel to the horizontal plane, and a fixed spiral body 11b that protrudes downward from the lower surface of the base plate 11a.
 台板11aは、固定渦巻体11b、揺動スクロール12及びフレーム14とともに、圧縮室A及び吸入室Bを構成するものである。台板11aは、水平面に対して略平行であって、その外周面が密閉容器21の内周面に対向するとともに、台板11aの下端面のうちの外側がフレーム14の上部と対向するように、密閉容器21内で固定されているものである。 The base plate 11 a constitutes the compression chamber A and the suction chamber B together with the fixed spiral body 11 b, the swing scroll 12 and the frame 14. The base plate 11 a is substantially parallel to the horizontal plane, and the outer peripheral surface thereof faces the inner peripheral surface of the sealed container 21, and the outer side of the lower end surface of the base plate 11 a faces the upper portion of the frame 14. Further, it is fixed in the sealed container 21.
 台板11aは、平板形状の部材であり、その中央部に、圧縮室Aで圧縮された冷媒が吐出される吐出ポート11cと、この吐出ポート11cと連通する凹状部11dと、圧縮室Aに冷媒を供給するインジェクションポート11eが形成されている。なお、台板11aの中央部とは、台板11aを水平断面視したときにおける径方向の中央部に対応するものである。 The base plate 11a is a flat plate-like member, and at the center thereof, a discharge port 11c from which the refrigerant compressed in the compression chamber A is discharged, a concave portion 11d communicating with the discharge port 11c, and the compression chamber A An injection port 11e for supplying a refrigerant is formed. The central portion of the base plate 11a corresponds to the central portion in the radial direction when the base plate 11a is viewed in a horizontal cross section.
 吐出ポート11cは、一方が圧縮室Aと連通し、他方が凹状部11dと連通するように台板11aの上下方向に延びるように形成されているものである。なお、吐出ポート11cの径は凹状部11dの径よりも小さくなっており、吐出ポート11cの他方は、予め設定された圧力以上となると吐出ポート11cを開放する吐出弁11fによって閉塞されている。
 凹状部11dは、上側から下側に向かって凹状となるように形成されているものであり、吐出ポート11cとの接続位置に、吐出弁11fが設けられている。凹状部11dは、一方が吐出ポート11cと連通し、他方が後述する吐出管接続部50の凹状部50aと連通するように台板11aに形成されているものである。
 吐出弁11fは、予め設定された圧力より小さいと吐出ポート11cを閉塞し、圧縮室A側から吐出管24側に冷媒が流れることを規制するが、予め設定された圧力以上となると吐出ポート11cを開放するものである。
The discharge port 11c is formed to extend in the vertical direction of the base plate 11a so that one communicates with the compression chamber A and the other communicates with the concave portion 11d. The diameter of the discharge port 11c is smaller than the diameter of the concave portion 11d, and the other of the discharge ports 11c is closed by a discharge valve 11f that opens the discharge port 11c when the pressure is higher than a preset pressure.
The concave portion 11d is formed to be concave from the upper side to the lower side, and a discharge valve 11f is provided at a connection position with the discharge port 11c. The concave portion 11d is formed on the base plate 11a so that one communicates with the discharge port 11c and the other communicates with a concave portion 50a of the discharge pipe connecting portion 50 described later.
The discharge valve 11f closes the discharge port 11c when the pressure is lower than a preset pressure, and restricts the flow of refrigerant from the compression chamber A side to the discharge pipe 24 side. However, when the pressure becomes equal to or higher than the preset pressure, the discharge port 11c. Is to release.
 インジェクションポート11eは、圧縮室A内の冷媒の温度を低下させることができるように、比エンタルピを低くした冷媒を、インジェクション配管27を介して圧縮室A内に供給するのに利用されるものである。
 インジェクションポート11eは、台板11aを水平断面視したときにおける径方向において吐出ポート11c及び凹状部11dよりも外側に形成されている。
 インジェクションポート11eは、一方が圧縮室Aと連通し、他方が後述する吐出管接続部50の凹状部50bと連通するように台板11aに形成されているものである。
 インジェクションポート11eは、図2に示すように、吐出ポート11cを境にして、2つ形成されている。一方のインジェクションポート11eの形成位置は、後述する第1圧縮室Aaであり、他方のインジェクションポート11eの形成位置は、後述する第2圧縮室Abである。
The injection port 11e is used to supply a refrigerant having a low specific enthalpy into the compression chamber A via the injection pipe 27 so that the temperature of the refrigerant in the compression chamber A can be lowered. is there.
The injection port 11e is formed outside the discharge port 11c and the recessed portion 11d in the radial direction when the base plate 11a is viewed in a horizontal section.
The injection port 11e is formed on the base plate 11a so that one communicates with the compression chamber A and the other communicates with a concave portion 50b of a discharge pipe connecting portion 50 described later.
As shown in FIG. 2, two injection ports 11e are formed with the discharge port 11c as a boundary. The formation position of one injection port 11e is a first compression chamber Aa described later, and the formation position of the other injection port 11e is a second compression chamber Ab described later.
 インジェクションポート11eは、固定スクロール11の上下に平行に延びるように設けられている。仮に、インジェクションポート11eがフレーム14に形成されていると、その分、揺動スクロール12とフレーム14との摺動面に近くなる上に、インジェクションポート11eと摺動面とが同一部材に形成されることとなる。
 しかし、本実施の形態1においてインジェクションポート11eは、固定スクロール11に形成されているため、その分、この摺動面から遠くなるとともに、摺動面が形成されるフレーム14とは別部材である分、摺動面で発生する摩擦熱がインジェクションポート11eを流れる冷媒に伝達されにくくなっている。
 また、インジェクションポート11eは、揺動スクロール12を境にして、動力機構である電動機139が設けられている側とは反対側に位置するように設けられている。このため、電動機139に供給される電流によって生じる熱などが、インジェクションポート11eに伝達されにくくなっており、インジェクションポート11eを流れる冷媒が加温されてしまうことを抑制することができるようになっている。
The injection port 11 e is provided so as to extend in parallel with the top and bottom of the fixed scroll 11. If the injection port 11e is formed on the frame 14, the injection port 11e and the sliding surface are formed on the same member in addition to being closer to the sliding surface between the orbiting scroll 12 and the frame 14. The Rukoto.
However, since the injection port 11e is formed on the fixed scroll 11 in the first embodiment, the injection port 11e is far from the sliding surface and is a separate member from the frame 14 on which the sliding surface is formed. Thus, the frictional heat generated on the sliding surface is difficult to be transmitted to the refrigerant flowing through the injection port 11e.
The injection port 11e is provided so as to be located on the side opposite to the side on which the electric motor 139 as a power mechanism is provided with the swing scroll 12 as a boundary. For this reason, the heat etc. which arise with the electric current supplied to the electric motor 139 become difficult to be transmitted to the injection port 11e, and it can suppress that the refrigerant | coolant which flows through the injection port 11e is heated. Yes.
 なお、本実施の形態1では、吐出ポート11c、凹状部11d及びインジェクションポート11eは、上下方向に平行に形成されているものとして説明するが、完全に平行に形成されている必要はなく、上下方向から多少ずれて形成されていてもよい。
 また、本実施の形態1では、吐出ポート11c、凹状部11d及びインジェクションポート11eの水平断面形状は、円形であるものとして説明するが、それに限定されるものではなく、楕円形状であってもよいし、多角形であってもよい。
 さらに、本実施の形態1では、インジェクションポート11eが2つ形成されているものとして説明したが、2つに限定されるものではなく、1つでも、3つ以上でもよい。なお、後述する第1圧縮室Aaに形成する個数及び第2圧縮室Abに形成する個数が等しくなるようにすると、第1圧縮室Aaの冷媒及び第2圧縮室Abの冷媒の両方の温度を均一に低減することができ、スクロール圧縮機1から吐出される冷媒の温度を効率的に低減することができる。
In the first embodiment, the discharge port 11c, the concave portion 11d, and the injection port 11e are described as being formed in parallel in the vertical direction. However, the discharge port 11c, the concave portion 11d, and the injection port 11e are not necessarily formed in parallel. It may be formed slightly deviated from the direction.
In the first embodiment, the horizontal cross-sectional shapes of the discharge port 11c, the concave portion 11d, and the injection port 11e are described as being circular, but are not limited thereto, and may be elliptical. However, it may be a polygon.
Furthermore, in the first embodiment, it has been described that two injection ports 11e are formed. However, the number is not limited to two, and may be one or three or more. If the number formed in the first compression chamber Aa described later and the number formed in the second compression chamber Ab are equal, the temperatures of both the refrigerant in the first compression chamber Aa and the refrigerant in the second compression chamber Ab are set. The temperature of the refrigerant discharged from the scroll compressor 1 can be efficiently reduced.
 固定渦巻体11bは、揺動スクロール12の揺動渦巻体12bとともに、揺動スクロール12の揺動により容積が変化する圧縮室Aを形成するものである。また、固定渦巻体11bは、フレーム14及び揺動スクロール12とともに吸入室Bを構成するものである。この固定渦巻体11bは、水平断面が渦巻形状、すなわちインボリュート曲線形状をしているものである(図2参照)。 The fixed spiral body 11 b and the swing scroll body 12 b of the swing scroll 12 form a compression chamber A whose volume changes as the swing scroll 12 swings. The fixed spiral body 11 b constitutes the suction chamber B together with the frame 14 and the swing scroll 12. The fixed spiral body 11b has a horizontal cross section having a spiral shape, that is, an involute curve shape (see FIG. 2).
(吐出管接続部50)
 吐出管接続部50は、固定スクロール11の上端面に当接して設けられているものであり、吐出管24及びインジェクション配管27が接続されている。吐出管接続部50は、水平断面視したときの径方向の中央側に凹状部50aが形成され、凹状部50aの形成位置の外側に凹状部50bが形成されているものである。
 凹状部50a及び凹状部50bは、下側から上側に向かって凹状となるように形成されているものである。凹状部50aの上端側は開口しており、吐出管24が接続されて吐出管24と連通している。
 また、凹状部50bは、水平断面形状が、たとえばドーナツ状の凹部である。そして、凹状部50bの上端側は開口しており、インジェクション配管27が接続されてインジェクション配管27と連通している。すなわち、インジェクション配管27から供給された冷媒は、図1の紙面左側のインジェクションポート11eに流れるとともに、凹状部50bを回り込んで図1の紙面右側のインジェクションポート11eにも流れ込む。
 このように、圧縮室Aと吐出管24とは吐出ポート11c、凹状部11d及び凹状部50aを介して連通している。
 また、インジェクション配管27と圧縮室Aとは凹状部50b及びインジェクションポート11eを介して連通している。
(Discharge pipe connection 50)
The discharge pipe connecting portion 50 is provided in contact with the upper end surface of the fixed scroll 11, and the discharge pipe 24 and the injection pipe 27 are connected to the discharge pipe connecting portion 50. The discharge pipe connecting part 50 is formed with a concave part 50a on the center side in the radial direction when viewed in a horizontal section, and a concave part 50b is formed outside the position where the concave part 50a is formed.
The concave portion 50a and the concave portion 50b are formed so as to be concave from the lower side toward the upper side. The upper end side of the concave portion 50 a is open, and the discharge pipe 24 is connected to communicate with the discharge pipe 24.
The concave portion 50b is a concave portion having a horizontal cross-sectional shape, for example, a donut shape. And the upper end side of the recessed part 50b is opened, and the injection piping 27 is connected and is connected with the injection piping 27. FIG. That is, the refrigerant supplied from the injection pipe 27 flows into the injection port 11e on the left side of FIG. 1 and flows into the injection port 11e on the right side of FIG.
Thus, the compression chamber A and the discharge pipe 24 communicate with each other through the discharge port 11c, the concave portion 11d, and the concave portion 50a.
Further, the injection pipe 27 and the compression chamber A communicate with each other via the concave portion 50b and the injection port 11e.
(揺動スクロール12)
 揺動スクロール12は、固定スクロール11とともに冷媒を圧縮するものである。揺動スクロール12は、固定スクロール11に対して対向配置されている。揺動スクロール12は、水平面に対して平行な台板12aと、台板12aの上面から上側に突出して形成された揺動渦巻体12bと、台板12aの下側に形成されたボス部12cとを有している。
(Oscillating scroll 12)
The orbiting scroll 12 compresses the refrigerant together with the fixed scroll 11. The orbiting scroll 12 is disposed to face the fixed scroll 11. The swing scroll 12 includes a base plate 12a parallel to the horizontal plane, a swing spiral body 12b formed to protrude upward from the upper surface of the base plate 12a, and a boss portion 12c formed below the base plate 12a. And have.
 台板12aは、揺動渦巻体12b、固定スクロール11及びフレーム14とともに、圧縮室A及び吸入室Bを構成するものである。台板12aは、円板形状の部材であり、軸15の回転によってフレーム14内で揺動運動するものである。
 台板12aは、フレーム14上で揺動するようにフレーム14に支持されて設けられているものである。そして、台板12aは、軸15が回転することによってフレーム14上で揺動運動する。
The base plate 12 a constitutes the compression chamber A and the suction chamber B together with the swinging spiral body 12 b, the fixed scroll 11, and the frame 14. The base plate 12 a is a disk-shaped member, and swings within the frame 14 by the rotation of the shaft 15.
The base plate 12 a is provided to be supported by the frame 14 so as to swing on the frame 14. The base plate 12a swings on the frame 14 as the shaft 15 rotates.
 揺動渦巻体12bは、固定スクロール11の固定渦巻体11bとともに冷媒を圧縮するものである。また、揺動渦巻体12bは、台板12a及び固定スクロール11とともに圧縮室Aを構成し、フレーム14及び固定スクロール11とともに吸入室Bを構成するものである。この揺動渦巻体12bは、固定渦巻体11bと対応するように、水平断面が渦巻形状、すなわちインボリュート曲線形状をしているものである(図2参照)。
 ボス部12cは、台板12aの下側に形成された中空円筒形状の部材である。ボス部12cには、軸15の上端側が接続される。すなわち、ボス部12cに接続されている軸15が回転することで揺動スクロール12が回転するということである。
The oscillating spiral body 12 b compresses the refrigerant together with the fixed spiral body 11 b of the fixed scroll 11. Further, the swinging spiral body 12 b constitutes the compression chamber A together with the base plate 12 a and the fixed scroll 11, and constitutes the suction chamber B together with the frame 14 and the fixed scroll 11. The oscillating spiral body 12b has a horizontal cross section having a spiral shape, that is, an involute curve shape so as to correspond to the fixed spiral body 11b (see FIG. 2).
The boss portion 12c is a hollow cylindrical member formed on the lower side of the base plate 12a. The upper end side of the shaft 15 is connected to the boss portion 12c. That is, the rocking scroll 12 is rotated by the rotation of the shaft 15 connected to the boss portion 12c.
(フレーム14)
 フレーム14は、揺動スクロール12が摺動可能なように、揺動スクロール12を収容するものである。すなわち、フレーム14の上面と揺動スクロール12の台板12aの下面とによって、摺動面が形成されている。
 フレーム14は、上部及び下部が開放された形状をしている。そして、フレーム14は、フレーム14の上部は固定スクロール11の台板11aが設けられて閉塞されているとともに、フレーム14の下部には軸15が挿入されている。
 フレーム14は、その外周面が密閉容器21の内周面に対向するとともに、自身の外側上部と固定スクロール11の台板11aの下端面のうちの外側とが対向するように、密閉容器21内で固定されているものである。
(Frame 14)
The frame 14 accommodates the orbiting scroll 12 so that the orbiting scroll 12 can slide. That is, a sliding surface is formed by the upper surface of the frame 14 and the lower surface of the base plate 12 a of the swing scroll 12.
The frame 14 has a shape in which an upper part and a lower part are opened. The frame 14 is closed by providing a base plate 11 a of the fixed scroll 11 at the upper part of the frame 14, and a shaft 15 is inserted at the lower part of the frame 14.
The frame 14 has an outer peripheral surface facing the inner peripheral surface of the sealed container 21, and an inside of the sealed container 21 so that an outer upper portion thereof faces an outer side of the lower end surface of the base plate 11 a of the fixed scroll 11. It is fixed with.
(軸15)
 軸15は、軸15の上側端部に揺動スクロール12のボス部12cに接続される偏心部15aと、揺動スクロール12の揺動運動のバランスをとる第1バランサ15bが設けられている。また、軸15の内部には、底部油溜22から揺動スクロール12側に冷凍機油を導く冷凍機油通路(図示省略)が形成されている。
 偏心部15aは、軸15の中心軸に対して水平方向に予め設定された寸法をずらして形成されている部分である。
 第1バランサ15bは、軸15のうちの電動機139の上側であってフレーム14の下側に設けられているものである。第1バランサ15bは、揺動スクロール12及びオルダムリング13の運動に伴うアンバランスを抑制するのに利用される。
(Axis 15)
The shaft 15 is provided with an eccentric portion 15 a connected to the boss portion 12 c of the swing scroll 12 and a first balancer 15 b that balances the swing motion of the swing scroll 12 at the upper end portion of the shaft 15. A refrigerating machine oil passage (not shown) for guiding refrigerating machine oil from the bottom oil reservoir 22 to the swing scroll 12 side is formed inside the shaft 15.
The eccentric portion 15 a is a portion formed by shifting a dimension set in advance in the horizontal direction with respect to the central axis of the shaft 15.
The first balancer 15 b is provided above the electric motor 139 of the shaft 15 and below the frame 14. The first balancer 15 b is used to suppress unbalance associated with the movement of the orbiting scroll 12 and the Oldham ring 13.
(オイルポンプ91)
 オイルポンプ91は、底部油溜22から冷凍機油を引き上げるものである。オイルポンプ91は、軸15の下側端部に設けられている。このオイルポンプ91は、たとえば遠心ポンプあるいは容積型ポンプなどのように、軸15の回転によってポンプ作用(差圧の利用)が生じるものを採用するとよい。
(Oil pump 91)
The oil pump 91 pulls the refrigerating machine oil from the bottom oil reservoir 22. The oil pump 91 is provided at the lower end of the shaft 15. The oil pump 91 may be a pump that generates a pump action (use of differential pressure) by the rotation of the shaft 15 such as a centrifugal pump or a positive displacement pump.
(電動機139)
 電動機139は、軸15を回転させるものである。この電動機139は、密閉容器21に固着支持されたステータ19と、ステータ19と組み合わされることでトルクを発生するロータ18とから構成されている。
 電動機139は、揺動スクロール12、及び固定スクロール11などが設けられる上部空間と、底部油溜22が設けられる下部空間とを区画するように設けられている。
 ステータ19は、たとえば、積層鉄心に複数相の巻線を装着して構成されている。
 ロータ18は、たとえば、内部に図示省略の永久磁石を有し、ステータ19の内周面との間に、予め設定された空隙が形成されるように軸15に支持されているものである。そして、ロータ18は、ステータ19への通電がなされると回転駆動し、軸15を回転させるものである。なお、ロータ18には、揺動スクロール12とオルダムリング13の運動に伴うアンバランスを抑制するのに利用される第2バランサ18aが設けられている。
(Electric motor 139)
The electric motor 139 rotates the shaft 15. The electric motor 139 includes a stator 19 that is fixedly supported by the sealed container 21 and a rotor 18 that generates torque by being combined with the stator 19.
The electric motor 139 is provided so as to partition an upper space in which the swing scroll 12 and the fixed scroll 11 are provided and a lower space in which the bottom oil reservoir 22 is provided.
The stator 19 is configured, for example, by mounting a multiphase winding on a laminated iron core.
The rotor 18 has, for example, a permanent magnet (not shown) inside and is supported by the shaft 15 so that a preset gap is formed between the rotor 18 and the inner peripheral surface of the stator 19. The rotor 18 is rotationally driven when the stator 19 is energized to rotate the shaft 15. The rotor 18 is provided with a second balancer 18a that is used to suppress an imbalance associated with the movement of the orbiting scroll 12 and the Oldham ring 13.
(オルダムリング13)
 オルダムリング13は、揺動スクロール12の台板12aの下面の下側に配設され、揺動スクロール12の揺動運動中における自転運動を阻止するのに利用されるものである。 すなわち、オルダムリング13は、揺動スクロール12の自転運動を阻止し、揺動スクロール12を揺動させる機能を果たしているものである。
(Oldham Ring 13)
The Oldham ring 13 is disposed below the lower surface of the base plate 12a of the orbiting scroll 12, and is used to prevent the rotation movement of the orbiting scroll 12 during the orbiting movement. That is, the Oldham ring 13 functions to prevent the swinging scroll 12 from rotating and to swing the swinging scroll 12.
(圧縮室A)
 圧縮室Aは、台板11aの下面及び固定渦巻体11bと、台板12aの上面及び揺動渦巻体12bとによって形成されている。圧縮室Aは、吸入室Bと連通している。また、圧縮室Aは、第1圧縮室Aa及び第2圧縮室Abから構成されている。
 より詳細には、第1圧縮室Aaは、固定渦巻体内側面11A、揺動渦巻体外側面12A、台板11aの下面及び台板12aの上面によって形成されている。
 この第1圧縮室Aaには、インジェクションポート11eの一方が形成されている。ここで、第1圧縮室Aaのうちの吐出ポート11c側を最内室と定義し、第1圧縮室Aaのうちの吸入室B側を第1最外室と定義し、最内室と第1最外室との間を第1中間室と定義する。すなわち、図2に示す状態において、第1圧縮室Aaは、外側から第1最外室、第1中間室及び最内室を有しているということである。
 このとき、図2に示す状態においては、一方のインジェクションポート11eが、第1最外室に位置していることが分かる。つまり、固定スクロール11のインボリュートの巻き終わりから内向面側に沿って約1周した位置に、一方のインジェクションポート11eが設けられている。
(Compression chamber A)
The compression chamber A is formed by the lower surface of the base plate 11a and the fixed spiral body 11b, and the upper surface of the base plate 12a and the swinging spiral body 12b. The compression chamber A communicates with the suction chamber B. The compression chamber A includes a first compression chamber Aa and a second compression chamber Ab.
More specifically, the first compression chamber Aa is formed by the fixed spiral body side surface 11A, the swinging spiral body outer surface 12A, the lower surface of the base plate 11a, and the upper surface of the base plate 12a.
In the first compression chamber Aa, one of the injection ports 11e is formed. Here, the discharge port 11c side of the first compression chamber Aa is defined as the innermost chamber, the suction chamber B side of the first compression chamber Aa is defined as the first outermost chamber, and the innermost chamber and the first chamber The space between the first outermost chamber is defined as the first intermediate chamber. That is, in the state shown in FIG. 2, the first compression chamber Aa has a first outermost chamber, a first intermediate chamber, and an innermost chamber from the outside.
At this time, in the state shown in FIG. 2, it turns out that one injection port 11e is located in a 1st outermost chamber. That is, one injection port 11e is provided at a position about one turn along the inward surface side from the end of winding of the involute of the fixed scroll 11.
 また、第2圧縮室Abは、固定渦巻体外側面11B、揺動渦巻体内側面12B、台板11aの下面及び台板12aの上面によって形成されている。この第2圧縮室Abには、インジェクションポート11eの他方が形成されている。ここで、第2圧縮室Abのうちの吐出ポート11c側を第1圧縮室Aaと共通の最内室と定義し、第2圧縮室Abのうちの吸入室B側を第2最外室と定義し、最内室と第2最外室との間を第2中間室と定義する。すなわち、図2に示す状態において、第2圧縮室Abは、外側から第2最外室、第2中間室及び最内室を有しているということである。
 このとき、図2に示す状態においては、他方のインジェクションポート11eが、第2最外室に位置していることが分かる。つまり、揺動スクロール12のインボリュートの巻き終わりから内向面側に沿って約1周した位置に、他方のインジェクションポート11eが設けられている。
The second compression chamber Ab is formed by the fixed spiral body outer surface 11B, the swing spiral body side surface 12B, the lower surface of the base plate 11a, and the upper surface of the base plate 12a. In the second compression chamber Ab, the other of the injection ports 11e is formed. Here, the discharge port 11c side of the second compression chamber Ab is defined as the innermost chamber common to the first compression chamber Aa, and the suction chamber B side of the second compression chamber Ab is defined as the second outermost chamber. And a space between the innermost chamber and the second outermost chamber is defined as a second intermediate chamber. That is, in the state shown in FIG. 2, the second compression chamber Ab has a second outermost chamber, a second intermediate chamber, and an innermost chamber from the outside.
At this time, in the state shown in FIG. 2, it can be seen that the other injection port 11e is located in the second outermost chamber. In other words, the other injection port 11e is provided at a position about one round along the inward surface side from the end of the involute winding of the rocking scroll 12.
 なお、インジェクションポート11eの形成位置は、第1圧縮室Aaの第1最外室及び第2圧縮室Abの第2最外室に限定されるものではなく、たとえば、固定渦巻体11b及び揺動渦巻体12bの巻き数などに応じて設定してもよい。 The formation position of the injection port 11e is not limited to the first outermost chamber of the first compression chamber Aa and the second outermost chamber of the second compression chamber Ab. You may set according to the winding number etc. of the spiral body 12b.
(吸入室B)
 吸入室Bは、フレーム14の内側面、台板12aの外周部、固定渦巻体外側面11B、及び揺動渦巻体外側面12Aによって形成されている。吸入室Bは、圧縮室Aと連通している。このため、密閉容器21のうちのフレーム14の下側の空間から、フレーム14に供給された冷媒が吸入室Bに流れ込み、さらに、この吸入室Bに流れ込んだ冷媒が圧縮室Aに流れ込むこととなる。
(Suction chamber B)
The suction chamber B is formed by the inner surface of the frame 14, the outer periphery of the base plate 12a, the fixed spiral body outer surface 11B, and the swing spiral body outer surface 12A. The suction chamber B communicates with the compression chamber A. Therefore, the refrigerant supplied to the frame 14 flows into the suction chamber B from the space below the frame 14 in the sealed container 21, and further, the refrigerant that flows into the suction chamber B flows into the compression chamber A. Become.
[スクロール圧縮機1の動作説明]
 ここで、スクロール圧縮機1の動作について簡単に説明する。
 図1において、ステータ19に電力が供給されると、ロータ18がトルクを発生し、フレーム14の主軸受部と副軸受20とで支持された軸15が回転する。
 揺動スクロール12は、ボス部12cを介して軸15の偏心部15aに接続されているため、軸15が回転すると揺動スクロール12も回転することとなる。なお、揺動スクロール12の自転運転はオルダムリング13によって規制されるため、揺動スクロール12は揺動運動することとなる。
 このように、揺動スクロール12が揺動運転することで、圧縮室Aの容積が変化する。
 揺動スクロール12の揺動運動に伴い、吸入管23から密閉容器21内にガス冷媒が吸入される。そして、この吸入されたガス冷媒は、吸入室Bを介して圧縮室Aに供給されて圧縮され、固定スクロール11に設けられている吐出ポート11cに送り込まれる。そして、この吐出ポート11cに送り込まれた冷媒の圧力が予め設定された圧力を超えると、吐出ポート11cの冷媒が吐出弁11fを上側に押しやることで吐出弁11fを通過して吐出管24に送り込まれる。
[Description of Operation of Scroll Compressor 1]
Here, the operation of the scroll compressor 1 will be briefly described.
In FIG. 1, when electric power is supplied to the stator 19, the rotor 18 generates torque, and the shaft 15 supported by the main bearing portion of the frame 14 and the auxiliary bearing 20 rotates.
Since the orbiting scroll 12 is connected to the eccentric portion 15a of the shaft 15 via the boss portion 12c, when the shaft 15 rotates, the orbiting scroll 12 also rotates. Since the rotation operation of the swing scroll 12 is restricted by the Oldham ring 13, the swing scroll 12 swings.
Thus, the volume of the compression chamber A is changed by the swing operation of the swing scroll 12.
As the swing scroll 12 swings, the gas refrigerant is sucked into the sealed container 21 from the suction pipe 23. Then, the sucked gas refrigerant is supplied to the compression chamber A through the suction chamber B, compressed, and sent to the discharge port 11 c provided in the fixed scroll 11. When the pressure of the refrigerant sent to the discharge port 11c exceeds a preset pressure, the refrigerant in the discharge port 11c pushes the discharge valve 11f upward to pass through the discharge valve 11f and is sent to the discharge pipe 24. It is.
[冷凍サイクル装置100、101について]
 図3は、図1に示すスクロール圧縮機1を備えた冷凍サイクル装置100、101の構成例図及びこの冷凍サイクル装置100、101のモリエル線図である。
 なお、図3(a1)は、中間圧まで減圧したバイパス冷媒をスクロール圧縮機1にインジェクションする場合の冷凍サイクル装置100の一例である。また、図3(b1)は、中間圧まで減圧したバイパス冷媒を、残りの主流冷媒と熱交換させることにより、主流冷媒の膨張弁前での過冷却度を大きくしてから、スクロール圧縮機1にインジェクションする場合の冷凍サイクル装置101の一例である。また、図3(a2)は図3(a1)における冷凍サイクル装置100のモリエル線図であり、図3(b2)は図3(b1)における冷凍サイクル装置101のモリエル線図である。
[Refrigeration cycle apparatuses 100 and 101]
FIG. 3 is a configuration example diagram of the refrigeration cycle apparatuses 100 and 101 including the scroll compressor 1 shown in FIG. 1 and a Mollier diagram of the refrigeration cycle apparatuses 100 and 101.
FIG. 3A1 is an example of the refrigeration cycle apparatus 100 in the case of injecting the bypass refrigerant whose pressure has been reduced to the intermediate pressure into the scroll compressor 1. 3 (b1) shows that the bypass refrigerant decompressed to the intermediate pressure is heat-exchanged with the remaining mainstream refrigerant to increase the degree of supercooling of the mainstream refrigerant before the expansion valve, and then the scroll compressor 1 It is an example of the refrigeration cycle apparatus 101 in the case of performing injection. 3 (a2) is a Mollier diagram of the refrigeration cycle apparatus 100 in FIG. 3 (a1), and FIG. 3 (b2) is a Mollier diagram of the refrigeration cycle apparatus 101 in FIG. 3 (b1).
 図3(a1)に示すように、冷凍サイクル装置100は、スクロール圧縮機1の冷媒吐出側に接続され、スクロール圧縮機1から流出する冷媒を凝縮させる凝縮器2と、一方が凝縮器2に接続され、凝縮器2から流出する冷媒を減圧させる第1膨張弁3と、一方が第1膨張弁3に接続され、他方がスクロール圧縮機1の冷媒吸入側に接続され、第1膨張弁3から流出する冷媒を蒸発させる蒸発器4と、スクロール圧縮機1のインジェクション配管27に接続される第2膨張弁28とを有している。
 なお、インジェクション配管27は、スクロール圧縮機1が接続されている側とは反対側が、凝縮器2と第1膨張弁3との間に接続され、凝縮器2から流出する冷媒の一部を第2膨張弁28を介して圧縮室Aに供給する。
As shown in FIG. 3 (a1), the refrigeration cycle apparatus 100 is connected to the refrigerant discharge side of the scroll compressor 1, and condenses the refrigerant flowing out from the scroll compressor 1, and one is the condenser 2. A first expansion valve 3 connected to depressurize the refrigerant flowing out of the condenser 2; one connected to the first expansion valve 3; the other connected to the refrigerant suction side of the scroll compressor 1; The evaporator 4 which evaporates the refrigerant | coolant which flows out out of it, and the 2nd expansion valve 28 connected to the injection piping 27 of the scroll compressor 1 are provided.
The injection pipe 27 is connected between the condenser 2 and the first expansion valve 3 on the side opposite to the side to which the scroll compressor 1 is connected, and a part of the refrigerant flowing out of the condenser 2 2. Supply to the compression chamber A through the expansion valve 28.
 図3(a1)の冷凍サイクル装置100では、凝縮器2出口で、インジェクション配管27に流入する冷媒とそうでない冷媒に分かれる。インジェクション配管27に流入した冷媒は、第2膨張弁28で中間圧まで減圧される。そして、この中間圧まで減圧された冷媒は、圧縮室A内へ供給される。
 一方、インジェクション配管27に流入しない主流冷媒は、第1膨張弁3によって低圧まで減圧される。そして、主流冷媒は、蒸発器4を経てスクロール圧縮機1に吸入管23から吸入され、圧縮室A内で合流する。
In the refrigeration cycle apparatus 100 of FIG. 3 (a1), at the outlet of the condenser 2, it is divided into a refrigerant that flows into the injection pipe 27 and a refrigerant that does not. The refrigerant flowing into the injection pipe 27 is reduced to an intermediate pressure by the second expansion valve 28. Then, the refrigerant reduced to the intermediate pressure is supplied into the compression chamber A.
On the other hand, the mainstream refrigerant that does not flow into the injection pipe 27 is decompressed to a low pressure by the first expansion valve 3. Then, the mainstream refrigerant is sucked from the suction pipe 23 into the scroll compressor 1 through the evaporator 4 and merges in the compression chamber A.
 ここで、図3(a2)に示すように、縦軸を圧力、横軸を比エンタルピとしたモリエル線図で冷凍サイクル装置100について説明する。
 高圧Pdである凝縮器2から流出した冷媒は、点expに対応しているが、この凝縮器2から流出した冷媒は、インジェクション配管27に流入するインジェクション分Yinjと、第1膨張弁3に流入する主流分(1-Yinj)に分かれる。
 主流分(1-Yinj)は、第1膨張弁3によって低圧Psまで減圧され、インジェクション分Yinjは、第2膨張弁28で中間圧Pmまで減圧される。
 中間圧Pmは、インジェクションポート11eの位置に応じて決まるものである。すなわち、インジェクションポート11eが開口している圧縮室Aの容積は、揺動スクロール12が一回転する間に変化するが、この中間圧Pmはその一回転する間における平均値となっている。また、中間圧Pmは、圧縮室Aへの吸入が完了した時からの圧縮比で決まる。
Here, as shown in FIG. 3 (a2), the refrigeration cycle apparatus 100 will be described using a Mollier diagram in which the vertical axis represents pressure and the horizontal axis represents specific enthalpy.
The refrigerant that has flowed out of the condenser 2 having the high pressure Pd corresponds to the point exp, but the refrigerant that has flowed out of the condenser 2 flows into the injection portion Yinj flowing into the injection pipe 27 and into the first expansion valve 3. The main stream (1-Yinj) is divided.
The main flow component (1-Yinj) is reduced to the low pressure Ps by the first expansion valve 3, and the injection component Yinj is reduced to the intermediate pressure Pm by the second expansion valve 28.
The intermediate pressure Pm is determined according to the position of the injection port 11e. That is, the volume of the compression chamber A in which the injection port 11e is open changes during one revolution of the orbiting scroll 12, but the intermediate pressure Pm is an average value during the one revolution. The intermediate pressure Pm is determined by the compression ratio from when the suction into the compression chamber A is completed.
 主流分(1-Yinj)は、蒸発器4で加熱されて比エンタルピが増大する。これが、点sに対応する。そして、蒸発器4からスクロール圧縮機1に吸入された冷媒は、固定スクロール11及び揺動スクロール12によって圧縮されることとなるが、ある一定圧力まで圧縮されたところで、すなわち点sから点d1まで圧縮されたところで、インジェクションポート11eからインジェクション分Yinjの冷媒がインジェクションされる。
 このとき、「点d1に対応する比エンタルピの冷媒(主流分(1-Yinj))」と、「Yinjに対応する比エンタルピの冷媒(インジェクション分Yinj)」とが混合することにより「点s2に対応する比エンタルピの冷媒」となる。
 そして、「点s2に対応する比エンタルピの冷媒」は、圧縮室Aで圧縮されていき吐出ポート11cから吐出される。これが、点d2に対応している。
 なお、図3(b2)に示すように、仮にインジェクションがなされないと、冷媒が圧縮されて点sから点dに移行することが分かる。すなわち、インジェクションを行った場合には、行わない場合よりも、比エンタルピを低くでき、スクロール圧縮機1から吐出される冷媒の温度を低下させることができることが分かる。
The main stream (1-Yinj) is heated by the evaporator 4 to increase the specific enthalpy. This corresponds to the point s. Then, the refrigerant sucked into the scroll compressor 1 from the evaporator 4 is compressed by the fixed scroll 11 and the swing scroll 12, but when compressed to a certain pressure, that is, from the point s to the point d1. When compressed, Yinj refrigerant for injection is injected from the injection port 11e.
At this time, the refrigerant having the specific enthalpy corresponding to the point d1 (main stream component (1-Yinj)) and the refrigerant having the specific enthalpy corresponding to Yinj (injection component Yinj) are mixed to the point s2. The corresponding specific enthalpy refrigerant.
The “specific enthalpy refrigerant corresponding to the point s2” is compressed in the compression chamber A and discharged from the discharge port 11c. This corresponds to the point d2.
In addition, as shown in FIG. 3 (b2), if injection is not made, it turns out that a refrigerant | coolant is compressed and it transfers to the point d from the point s. That is, it can be seen that the specific enthalpy can be lowered and the temperature of the refrigerant discharged from the scroll compressor 1 can be lowered when the injection is performed than when the injection is not performed.
 また、図3(b1)に示すように、冷凍サイクル装置101は、冷凍サイクル装置100と異なる点として、2つの冷媒流路を有する内部熱交換器29が設けられている点である。内部熱交換器29は、凝縮器2と第1膨張弁3との間に接続される第1流路と、インジェクション配管27のうちの第2膨張弁28よりも下流側に接続される第2流路とを有し、第1流路を流れる冷媒と第2流路を流れる冷媒とを熱交換させることができる熱交換器である。 3 (b1), the refrigeration cycle apparatus 101 is different from the refrigeration cycle apparatus 100 in that an internal heat exchanger 29 having two refrigerant channels is provided. The internal heat exchanger 29 has a first flow path connected between the condenser 2 and the first expansion valve 3, and a second flow path connected downstream of the second expansion valve 28 in the injection pipe 27. The heat exchanger has a flow path and can exchange heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path.
 冷凍サイクル装置101は、第2膨張弁28を通過した冷媒と、第1膨張弁3に流入する前の主流冷媒とを熱交換させる内部熱交換器29が設けられているため、主流側の過冷却度を大きくすることができるようになっている。
 モリエル線図上では、図3(b2)に示すように、インジェクション分Yinjは、高圧Pdの点expから第2膨張弁28で減圧されて中間圧Pmの冷媒となる。
 一方、主流冷媒は、この減圧された中間圧Pmのインジェクション分Yinjと、内部熱交換器29で熱交換して過冷却がされ、高圧Pdの点expから高圧Pdの点exp2に移行する。
 主流冷媒は、蒸発器4に流入して比エンタルピが増大した後に、スクロール圧縮機1に吸入されて固定スクロール11及び揺動スクロール12によって圧縮されることとなるが、ある一定圧力まで圧縮されたところで、すなわち点sから点d1まで圧縮されたところで、インジェクションポート11eからインジェクション分Yinjの冷媒がインジェクションされる。
 このとき、「点d1に対応する比エンタルピの冷媒(主流分(1-Yinj))」と、「Yinjに対応する比エンタルピの冷媒(インジェクション分Yinj)」とが混合することにより「点s2に対応する比エンタルピの冷媒」となる。その後、「点s2に対応する比エンタルピの冷媒」は、圧縮室Aで圧縮され点d2に対応する冷媒となる。
 このように、冷凍サイクル装置101も、インジェクションを行った場合には、行わない場合よりも、比エンタルピを低くでき、スクロール圧縮機1から吐出される冷媒の温度を低下させることができることが分かる。
The refrigeration cycle apparatus 101 is provided with an internal heat exchanger 29 that exchanges heat between the refrigerant that has passed through the second expansion valve 28 and the mainstream refrigerant before flowing into the first expansion valve 3. The degree of cooling can be increased.
On the Mollier diagram, as shown in FIG. 3 (b2), the injection amount Yinj is depressurized by the second expansion valve 28 from the point exp of the high pressure Pd to become a refrigerant having the intermediate pressure Pm.
On the other hand, the mainstream refrigerant is supercooled by exchanging heat with the reduced injection pressure Yinj of the intermediate pressure Pm by the internal heat exchanger 29 and moves from the point exp of the high pressure Pd to the point exp2 of the high pressure Pd.
After the mainstream refrigerant flows into the evaporator 4 and the specific enthalpy increases, it is sucked into the scroll compressor 1 and compressed by the fixed scroll 11 and the orbiting scroll 12, but is compressed to a certain pressure. By the way, when compressed from the point s to the point d1, the refrigerant corresponding to the injection amount Yinj is injected from the injection port 11e.
At this time, the refrigerant having the specific enthalpy corresponding to the point d1 (main stream component (1-Yinj)) and the refrigerant having the specific enthalpy corresponding to Yinj (injection component Yinj) are mixed to the point s2. The corresponding specific enthalpy refrigerant. Thereafter, the “refrigerant having a specific enthalpy corresponding to the point s2” is compressed in the compression chamber A and becomes a refrigerant corresponding to the point d2.
Thus, it can be seen that the refrigeration cycle apparatus 101 can also lower the specific enthalpy when injection is performed and lower the temperature of the refrigerant discharged from the scroll compressor 1 than when it is not performed.
 ここで、図3(a2)及び図3(b2)共に、インジェクションがされた後に圧縮を開始するときの点s2における比エンタルピは、次の式(1)で定まる。ただし、図3(a2)及び図3(b2)における各点における比エンタルピをhとする。たとえば、点s2における比エンタルピはhs2と表記している。
 hs2 =(1-Yinj)・hd1+Yinj・hinj …(1)
 なお、図3(a2)の場合は、次の関係(2)が成立している。
 hinj =hexp  …(2)
 また、図3(b2)の場合は、次の関係(3)が成立している。
 hinj =hexp +(1-Yinj)/Yinj・(hexp -hexp2) …(3)
 したがって、運転条件Pd(点exp)及びPs(点s)からインジェクションポート11eの位置で中間圧Pm(点d1)が与えられ、許容できる吐出温度から点d2→点s2がわかる。こうして、hs2 から図3(a2)では一義に、図3(b2)ではhexp2 に応じてYinjが定まる。
 このように、第1膨張弁3及び第2膨張弁28の開度を制御して、インジェクション分Yinjと主流分(1-Yinj)との大小を変える、すなわち分流比を変えることにより、スクロール圧縮機1から吐出される冷媒の温度を調整することができる。
Here, in both FIG. 3 (a2) and FIG. 3 (b2), the specific enthalpy at the point s2 when compression is started after injection is determined by the following equation (1). However, the specific enthalpy at each point in FIGS. 3 (a2) and 3 (b2) is h. For example, the specific enthalpy at the point s2 is expressed as h s2 .
h s2 = (1−Yinj) · h d1 + Yinj · h inj (1)
In the case of FIG. 3 (a2), the following relationship (2) is established.
h inj = h exp (2)
In the case of FIG. 3 (b2), the following relationship (3) is established.
h inj = h exp + (1−Yinj) / Yinj · (h exp −h exp2 ) (3)
Therefore, the intermediate pressure Pm (point d1) is given at the position of the injection port 11e from the operating conditions Pd (point exp) and Ps (point s), and the point d2 → point s2 is known from the allowable discharge temperature. Thus, Yinj is uniquely determined from h s2 in FIG. 3A2 and in FIG. 3B2 according to he xp2 .
Thus, by controlling the opening degree of the first expansion valve 3 and the second expansion valve 28, the size of the injection component Yinj and the main flow component (1-Yinj) is changed, that is, the scroll compression ratio is changed. The temperature of the refrigerant discharged from the machine 1 can be adjusted.
[実施の形態1に係るスクロール圧縮機の有する効果]
 本実施の形態1に係るスクロール圧縮機1は、インジェクションポート11eが固定スクロール11に設けられ、また、インジェクション配管27のうちの密閉容器21内の部分が、揺動スクロール12及び固定スクロール11を境にして、動力機構である電動機139が設けられている側とは反対側に位置するように設けられている。
 このため、揺動スクロール12とフレーム14との摺動面で発生する摩擦熱及び電動機139に供給される電流によって生じる熱などによってインジェクション配管27を流れる冷媒が加温されてしまうことを抑制することができ、スクロール圧縮機1から吐出される冷媒の温度を低下させにくくなることを抑制することができる。
[Effects of the scroll compressor according to Embodiment 1]
In the scroll compressor 1 according to the first embodiment, an injection port 11 e is provided in the fixed scroll 11, and a portion of the injection pipe 27 in the sealed container 21 is a boundary between the swing scroll 12 and the fixed scroll 11. Thus, it is provided so as to be located on the side opposite to the side where the electric motor 139 which is a power mechanism is provided.
For this reason, it suppresses that the refrigerant | coolant which flows through the injection piping 27 by the friction heat which generate | occur | produces on the sliding surface of the rocking scroll 12 and the flame | frame 14, and the heat | fever which arises with the electric current supplied to the electric motor 139, etc. Therefore, it is possible to suppress the temperature of the refrigerant discharged from the scroll compressor 1 from being hardly lowered.
 本実施の形態1に係るスクロール圧縮機1は、圧縮室Aの途中に接続されているインジェクションポート11eを有しており、フレーム14、固定スクロール11及び揺動スクロール12などといった摺動する部材に冷媒が供給される前の段階で冷媒が合流しないように構成されている。このため、摺動する部材に供給される前の冷媒が希釈されてしまうことを抑制することができる分、この冷媒に含まれる冷凍機油が希釈されてしまうことを抑制し、スクロール圧縮機1の破損を抑制することができる。 The scroll compressor 1 according to the first embodiment has an injection port 11e connected in the middle of the compression chamber A, and is used as a sliding member such as the frame 14, the fixed scroll 11, and the swinging scroll 12. The refrigerant is configured not to merge at a stage before the refrigerant is supplied. For this reason, it is possible to prevent the refrigerant before being supplied to the sliding member from being diluted, so that the refrigerating machine oil contained in the refrigerant is prevented from being diluted. Damage can be suppressed.
 本実施の形態1に係るスクロール圧縮機1を備えた冷凍サイクル装置100、101は、スクロール圧縮機1を備えているため、スクロール圧縮機1から吐出される冷媒の温度を低下させにくくなることを抑制することができる。
 そして、冷凍サイクル装置100、101にR32冷媒が採用されている場合においても、スクロール圧縮機1から吐出される冷媒の温度を低下させにくくなることを抑制することができ、装置の信頼性を高めることができる。
 また、冷凍サイクル装置100、101は、上述のようにスクロール圧縮機1から吐出される冷媒の温度を、低下させにくくなることを抑制することができるため、HFO-1123とR32との混合冷媒、又はHFO-1123とHFO-1234yfとの混合冷媒が採用されている場合においても不均化反応が発生することを抑制することができる。すなわち、冷凍サイクル装置100、101は、HFO-1123をR32、或いはHFO-1234yfを混合して用いることで、HFO-1123の割合が減る分、不均化反応を抑制することができるだけでなく、スクロール圧縮機1から吐出される冷媒の温度を、低下させにくくなることを抑制できるため、より一層不均化反応を抑制することができる。
Since the refrigeration cycle apparatuses 100 and 101 including the scroll compressor 1 according to the first embodiment include the scroll compressor 1, it is difficult to reduce the temperature of the refrigerant discharged from the scroll compressor 1. Can be suppressed.
And even when R32 refrigerant is employed in the refrigeration cycle apparatuses 100 and 101, it is possible to prevent the temperature of the refrigerant discharged from the scroll compressor 1 from becoming difficult to decrease, and to increase the reliability of the apparatus. be able to.
Further, since the refrigeration cycle apparatuses 100 and 101 can suppress the temperature of the refrigerant discharged from the scroll compressor 1 from being difficult to decrease as described above, a mixed refrigerant of HFO-1123 and R32, Alternatively, even when a mixed refrigerant of HFO-1123 and HFO-1234yf is employed, the occurrence of disproportionation reaction can be suppressed. That is, the refrigeration cycle apparatuses 100 and 101 not only can suppress the disproportionation reaction by reducing the proportion of HFO-1123 by using HFO-1123 mixed with R32 or HFO-1234yf, Since it can suppress that it becomes difficult to reduce the temperature of the refrigerant | coolant discharged from the scroll compressor 1, disproportionation reaction can be suppressed further.
実施の形態2.
 図4は、実施の形態2に係るスクロール圧縮機1Aの概略縦断面図である。図5は、図1に示す固定渦巻体11b及び揺動渦巻体12bと、吐出ポート11c、インジェクションポート11e及びサブ吐出ポート11gの説明図である。なお、本実施の形態2では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。
Embodiment 2. FIG.
FIG. 4 is a schematic longitudinal sectional view of a scroll compressor 1A according to the second embodiment. FIG. 5 is an explanatory diagram of the fixed spiral body 11b and the swinging spiral body 12b, the discharge port 11c, the injection port 11e, and the sub discharge port 11g shown in FIG. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
(中間冷却管9及びサブ吐出ポート11gなど)
 スクロール圧縮機1Aは、密閉容器21の内外に渡って設けられ、一方が圧縮室A側に連通し、他方がインジェクション配管27側に連通する中間冷却管9を有している。この中間冷却管9は、密閉容器21内の固定スクロール11内の流路(後述の第1通路11k及び第2通路11l)と連通するように、密閉容器21の側面に接続されている。
 スクロール圧縮機1Aは、固定スクロール11が、固定スクロール11の中央部に形成され、圧縮室Aで圧縮された冷媒を吐出する吐出ポート11cに加えて、次の構成を有している。すなわち、固定スクロール11は、圧縮室Aに開口する第1開口部11iが、固定スクロール11の径方向における吐出ポート11cとインジェクションポート11eとの間に形成され、中間冷却管9と連通するサブ吐出ポート11gを有している。
(Intermediate cooling pipe 9 and sub discharge port 11g, etc.)
1 A of scroll compressors are provided over the inside and outside of the airtight container 21, and have the intermediate | middle cooling pipe 9 with which one communicates with the compression chamber A side and the other communicates with the injection piping 27 side. The intermediate cooling pipe 9 is connected to a side surface of the sealed container 21 so as to communicate with a flow path (a first passage 11k and a second passage 11l described later) in the fixed scroll 11 in the sealed container 21.
1 A of scroll compressors have the following structure in addition to the discharge port 11c in which the fixed scroll 11 is formed in the center part of the fixed scroll 11, and discharges the refrigerant | coolant compressed by the compression chamber A. As shown in FIG. That is, in the fixed scroll 11, the first opening 11 i that opens into the compression chamber A is formed between the discharge port 11 c and the injection port 11 e in the radial direction of the fixed scroll 11 and communicates with the intermediate cooling pipe 9. It has a port 11g.
 サブ吐出ポート11gは、固定スクロール11の上下方向に延びるように形成され、第1開口部11iと、吐出ポート11cの吐出側の空間を有している凹状部50aに開口する第2開口部11jとを連通する第1通路11kを有している。
 なお、サブ吐出ポート11gは、インジェクションポート11eと同様に2つ設けられている。一方のサブ吐出ポート11gは、第1圧縮室Aaの第1中間室に設けられている。他方のサブ吐出ポート11gは、第2圧縮室Abの第2中間室に設けられている。
 このとき、図5に示す状態においては、一方のインジェクションポート11eは、固定スクロール11のインボリュートの巻き終わりから内向面側に沿って約1周半した位置に設けられている。また、他方のインジェクションポート11eは、揺動スクロール12のインボリュートの巻き終わりから内向面側に沿って約1周半した位置に設けられている。
The sub discharge port 11g is formed so as to extend in the vertical direction of the fixed scroll 11, and the second opening 11j that opens to the first opening 11i and the concave portion 50a having the discharge side space of the discharge port 11c. The first passage 11k communicates with the first passage 11k.
Two sub discharge ports 11g are provided in the same manner as the injection port 11e. One sub discharge port 11g is provided in the first intermediate chamber of the first compression chamber Aa. The other sub discharge port 11g is provided in the second intermediate chamber of the second compression chamber Ab.
At this time, in the state shown in FIG. 5, one injection port 11 e is provided at a position about one and a half halves along the inward surface side from the end of winding of the involute of the fixed scroll 11. The other injection port 11e is provided at a position about one and a half times along the inward surface side from the end of winding of the involute of the orbiting scroll 12.
 サブ吐出ポート11gは、固定スクロール11の径方向に延びるように形成され、一方が第1通路11kに連通し、他方が中間冷却管9に連通する第2通路11lを有している。また、サブ吐出ポート11gには、第1通路11kを閉塞するように設けられた逆止弁11hが設けられている。
 逆止弁11hは、第2開口部11jに設けられ、第1通路11kの冷媒が予め設定された圧力よりも大きくなると、第1通路11k側から吐出ポート11cの吐出側の空間である凹状部50a側に冷媒を流す機能を有するものである。
The sub discharge port 11g is formed so as to extend in the radial direction of the fixed scroll 11, and has a second passage 11l in which one communicates with the first passage 11k and the other communicates with the intermediate cooling pipe 9. The sub discharge port 11g is provided with a check valve 11h provided to close the first passage 11k.
The check valve 11h is provided in the second opening 11j, and when the refrigerant in the first passage 11k becomes larger than a preset pressure, a concave portion that is a space on the discharge side of the discharge port 11c from the first passage 11k side. It has a function of flowing a refrigerant to the 50a side.
 このように、スクロール圧縮機1Aは、インジェクションポート11eよりも高圧側の位置にサブ吐出ポート11gが設けられており、高圧縮比の運転条件では圧縮室A内の一部冷媒を中間冷却管9を介して、密閉容器21外へ抽出できるように構成している。
 すなわち、高圧縮比の運転条件では、スクロール圧縮機1Aから吐出される冷媒の温度が上昇してしまうので、抽出された冷媒を冷却し、インジェクション配管27を介してインジェクションポート11eから圧縮室A内に戻し、圧縮室A内の冷媒の比エンタルピを下げる。これにより、スクロール圧縮機1から吐出される冷媒の温度を抑制することができる。
In this way, the scroll compressor 1A is provided with the sub discharge port 11g at a position higher than the injection port 11e, and a part of the refrigerant in the compression chamber A is transferred to the intermediate cooling pipe 9 under an operation condition of a high compression ratio. It is comprised so that it can extract out of the airtight container 21 via.
That is, under the high compression ratio operating conditions, the temperature of the refrigerant discharged from the scroll compressor 1A rises, so the extracted refrigerant is cooled and the injection port 27e passes through the injection port 11e into the compression chamber A. The specific enthalpy of the refrigerant in the compression chamber A is lowered. Thereby, the temperature of the refrigerant discharged from the scroll compressor 1 can be suppressed.
 また、サブ吐出ポート11gは、逆止弁11hを介して吐出弁11f後の高圧側にも通じている。すなわち、サブ吐出ポート11gは、凹状部50aに連通している。このため、スクロール圧縮機1から吐出される冷媒の温度が上昇しない低圧縮比の運転条件では、逆止弁11hを介して高圧側へバイパス吐出することにより、過圧縮損失の低減をすることができる。 Further, the sub discharge port 11g communicates with the high pressure side after the discharge valve 11f via the check valve 11h. That is, the sub discharge port 11g communicates with the concave portion 50a. For this reason, under low compression ratio operating conditions in which the temperature of the refrigerant discharged from the scroll compressor 1 does not increase, the overcompression loss can be reduced by bypass discharge to the high pressure side via the check valve 11h. it can.
(冷凍サイクル装置102、103について)
 図6は、実施の形態2に係るスクロール圧縮機1Aの中間冷却運転時の動作を説明する模式図である。図7は、図4に示すスクロール圧縮機1Aを備えた冷凍サイクル装置102、103の構成例図及びこの冷凍サイクル装置102、103のモリエル線図である。
 なお、図7(a)に示す冷凍サイクル装置102及び図7(b)に示す冷凍サイクル装置103は共に、サイクル的には同じことで図7(c)に示すモリエル線図となる。
(About refrigeration cycle devices 102 and 103)
FIG. 6 is a schematic diagram for explaining the operation during the intermediate cooling operation of the scroll compressor 1A according to the second embodiment. FIG. 7 is a configuration example diagram of the refrigeration cycle apparatuses 102 and 103 including the scroll compressor 1A shown in FIG. 4 and a Mollier diagram of the refrigeration cycle apparatuses 102 and 103.
It should be noted that both the refrigeration cycle apparatus 102 shown in FIG. 7A and the refrigeration cycle apparatus 103 shown in FIG. 7B are the same in terms of cycle, resulting in the Mollier diagram shown in FIG. 7C.
 ここで、図6(a)は、サブ吐出ポート11gが第2中間室、インジェクションポート11eが第2最外室に開口しているタイミングの状態を示している。また、図6(b)は、第2最内室と第2中間室との間をシールする揺動渦巻体12bの上端側が、サブ吐出ポート11gの対向位置にきているタイミングの状態を示している。さらに、図6(c)は、サブ吐出ポート11g及びインジェクションポート11eが共に第2中間室に開口しているタイミングの状態を示している。
 ここで、図6(a)と図6(b)との間で第2最内室と第2中間室が連通して、最内室となる。また、それまで第2最外室であったものが第2中間室となる。そして、図6(c)の後であって図6(a)の前では、揺動渦巻体12bの巻終わりがシール点となって、新たに第2最外室を形成する。
Here, FIG. 6A shows a state in which the sub discharge port 11g is opened to the second intermediate chamber and the injection port 11e is opened to the second outermost chamber. FIG. 6B shows a state in which the upper end side of the swinging spiral body 12b that seals between the second innermost chamber and the second intermediate chamber is at a position facing the sub discharge port 11g. ing. Further, FIG. 6C shows a state in which the sub discharge port 11g and the injection port 11e are both opened to the second intermediate chamber.
Here, the second innermost chamber and the second intermediate chamber communicate with each other between FIG. 6A and FIG. 6B to become the innermost chamber. Further, what has been the second outermost chamber until then becomes the second intermediate chamber. And after FIG.6 (c) and before Fig.6 (a), the winding end of the rocking | vortex spiral body 12b becomes a sealing point, and forms a 2nd outermost chamber newly.
 図7(a)及び図7(b)に示すように、冷凍サイクル装置102は、一方がスクロール圧縮機1の冷媒吐出側に接続され、スクロール圧縮機1Aから流出する冷媒を凝縮させる凝縮器2と、一方が凝縮器2に接続され、凝縮器2から流出する冷媒を減圧させる第1膨張弁3と、一方が第1膨張弁3に接続され、他方がスクロール圧縮機1の冷媒吸入側に接続され、第1膨張弁3から流出する冷媒を蒸発させる蒸発器4と、スクロール圧縮機1の中間冷却管9に接続される中間冷却流量調整弁7とを有している。
 そして、図7(a)の冷凍サイクル装置102では、蒸発器4は、第1膨張弁3とスクロール圧縮機1の冷媒吸入側との間に接続される第3流路と、一方が中間冷却管9に接続され、他方がインジェクション配管27に接続される第4流路及び第5流路とを有し、第3流路を流れる冷媒と第4流路を流れる冷媒とを熱交換させる熱交換器である。
 なお、図7(b)の冷凍サイクル装置103では、蒸発器4は、第5流路が設けられていない。
As shown in FIGS. 7A and 7B, one of the refrigeration cycle apparatuses 102 is connected to the refrigerant discharge side of the scroll compressor 1, and condenses the refrigerant flowing out from the scroll compressor 1A. One is connected to the condenser 2 and the first expansion valve 3 for reducing the pressure of the refrigerant flowing out of the condenser 2 is connected to the first expansion valve 3 and the other is connected to the refrigerant suction side of the scroll compressor 1. The evaporator 4 is connected and evaporates the refrigerant flowing out from the first expansion valve 3, and the intermediate cooling flow rate adjusting valve 7 is connected to the intermediate cooling pipe 9 of the scroll compressor 1.
In the refrigeration cycle apparatus 102 in FIG. 7A, the evaporator 4 includes a third flow path connected between the first expansion valve 3 and the refrigerant suction side of the scroll compressor 1, one of which is intermediate cooled. Heat having a fourth flow path and a fifth flow path connected to the pipe 9 and the other connected to the injection pipe 27, and heat exchange between the refrigerant flowing through the third flow path and the refrigerant flowing through the fourth flow path. It is an exchanger.
In addition, in the refrigeration cycle apparatus 103 of FIG.7 (b), the evaporator 4 is not provided with the 5th flow path.
 インジェクション配管27は、中間冷却管9及び第4流路を介して供給された冷媒を圧縮室Aに供給することができるようになっている。
 このように、蒸発器4は、第1膨張弁3に接続される第3流路を流れる冷媒と、スクロール圧縮機1の中間冷却管9に接続される第4流路(或いは第4流路及び第5流路)を流れる冷媒と、を熱交換させて第4流路(或いは第4流路及び第5流路)を流れる冷媒を冷却する機能を有するものである。
 ここで、第4流路(或いは第4流路及び第5流路)に対応する構成は、以下の説明において、中間冷却器10とも称するものとする。
The injection pipe 27 can supply the refrigerant supplied through the intermediate cooling pipe 9 and the fourth flow path to the compression chamber A.
Thus, the evaporator 4 includes the refrigerant flowing through the third flow path connected to the first expansion valve 3 and the fourth flow path (or fourth flow path) connected to the intermediate cooling pipe 9 of the scroll compressor 1. And the refrigerant flowing through the fifth flow path) have a function of cooling the refrigerant flowing through the fourth flow path (or the fourth flow path and the fifth flow path) by exchanging heat.
Here, the configuration corresponding to the fourth flow path (or the fourth flow path and the fifth flow path) is also referred to as an intercooler 10 in the following description.
 中間冷却流量調整弁7は、サブ吐出ポート11gとインジェクションポート11eとの差圧を保持し、中間冷却管9から抽出される冷媒、蒸発器4で冷却される冷媒、及びインジェクション配管27からインジェクションされる冷媒の冷媒量を調整するのに利用されるものである。中間冷却流量調整弁7は、図7(a)ではインジェクション配管27に1つずつ設けられ、図7(b)ではインジェクション配管27のうちの分岐する前の部分に接続されている。 The intermediate cooling flow rate adjustment valve 7 maintains a differential pressure between the sub discharge port 11g and the injection port 11e, and is injected from the refrigerant extracted from the intermediate cooling pipe 9, the refrigerant cooled by the evaporator 4, and the injection pipe 27. It is used to adjust the amount of refrigerant. The intermediate cooling flow rate adjusting valve 7 is provided one by one in the injection pipe 27 in FIG. 7A, and is connected to a portion of the injection pipe 27 before branching in FIG. 7B.
 なお、図7(a)では、双方の中間冷却管9から流出した冷媒を合流させないで蒸発器4を介してインジェクション配管27に供給するようにしており、図7(b)では、双方の中間冷却管9から流出した冷媒を合流させて蒸発器4を介してインジェクション配管27に供給し、インジェクション配管27で分流させるようにしている。 In FIG. 7A, the refrigerant flowing out from both intermediate cooling pipes 9 is supplied to the injection pipe 27 via the evaporator 4 without being merged, and in FIG. The refrigerant that has flowed out of the cooling pipe 9 is joined and supplied to the injection pipe 27 via the evaporator 4, and is divided by the injection pipe 27.
 図6(a)及び図6(b)において、サブ吐出ポート11gはインジェクションポート11eよりも圧力の高い圧縮室Aに開口している。このため、サブ吐出ポート11gが開口している圧縮室Aの冷媒を抽出し、インジェクションポート11eが開口している圧縮室Aの冷媒に混合させることができる。
 サブ吐出ポート11gからインジェクションポート11eの途中に設けた中間冷却器10で冷却することにより、インジェクションポート11eが開口している圧縮室Aの比エンタルピを下げることができる。
 図6(c)の状態では、サブ吐出ポート11gとインジェクションポート11eが同じ圧縮室Aに開口することになるので、両ポート間は均圧状態で中間冷却は行なわれない。
 すなわち、「中間冷却管9からの冷媒の抽出」、「中間冷却器10での冷媒の冷却」及び「インジェクション配管27により圧縮室Aへのインジェクション」の動作は間欠的となる。これにより、サブ吐出ポート11gからインジェクションポート11e間の「差圧状態と均圧状態との時間的比率」及び「差圧の大きさ」は、サブ吐出ポート11g及びインジェクションポート11eの形成位置に依存する。
 したがって、ポート形成位置の設定と、中間冷却流量調整弁7の開度制御により、中間冷却量を増減し、スクロール圧縮機1から吐出される冷媒の温度を調整することができるということである。
6 (a) and 6 (b), the sub discharge port 11g opens into the compression chamber A having a higher pressure than the injection port 11e. For this reason, the refrigerant in the compression chamber A in which the sub discharge port 11g is opened can be extracted and mixed with the refrigerant in the compression chamber A in which the injection port 11e is opened.
By cooling with the intermediate cooler 10 provided in the middle of the injection port 11e from the sub discharge port 11g, the specific enthalpy of the compression chamber A in which the injection port 11e is open can be lowered.
In the state shown in FIG. 6C, the sub discharge port 11g and the injection port 11e open to the same compression chamber A, so that intermediate cooling is not performed between the two ports in a pressure-equalized state.
That is, the operations of “extraction of refrigerant from intermediate cooling pipe 9”, “cooling of refrigerant in intermediate cooler 10” and “injection into compression chamber A by injection pipe 27” are intermittent. As a result, the “temporal ratio between the differential pressure state and the pressure equalized state” and “the magnitude of the differential pressure” between the sub discharge port 11g and the injection port 11e depend on the formation positions of the sub discharge port 11g and the injection port 11e. To do.
Therefore, by setting the port formation position and opening degree control of the intermediate cooling flow rate adjustment valve 7, the intermediate cooling amount can be increased and decreased, and the temperature of the refrigerant discharged from the scroll compressor 1 can be adjusted.
 図7(a)及び図7(b)のサイクルの動作を図7(c)のモリエル線図で見ていくと、スクロール圧縮機1から吐出された冷媒は、凝縮器2で熱交換して凝縮した後(点exp)、第1膨張弁3で減圧され蒸発器4で熱交換して吸熱する。なお、蒸発器4における熱交換量の一部は、中間冷却器10から吸熱している。
 蒸発器4を出てスクロール圧縮機1に吸入(点s)された冷媒は、インジェクションポート11eに対応する中間圧Pmsまで圧縮されると、サブ吐出ポート11gに対応する中間圧Pmdで圧縮室Aから抽出(点md2)される。
 そして、中間冷却管9を介して圧縮室Aから抽出された冷媒は、中間冷却器10に供給され、蒸発器4を通過する冷媒によって冷却される(点md1)。この冷却された冷媒がインジェクション配管27を介して圧縮室Aに戻されて混合することにより、比エンタルピが減少する(点s2)。
 このため、中間冷却しなかった場合(点d)よりも、比エンタルピが低い、すなわちスクロール圧縮機1から吐出される冷媒の温度が低い状態で吐出することができる(点d2)。
7A and 7B, the refrigerant discharged from the scroll compressor 1 is heat-exchanged by the condenser 2 when viewed from the Mollier diagram of FIG. 7C. After condensation (point exp), the pressure is reduced by the first expansion valve 3 and heat is exchanged by the evaporator 4 to absorb heat. A part of the heat exchange amount in the evaporator 4 absorbs heat from the intermediate cooler 10.
When the refrigerant exiting the evaporator 4 and sucked into the scroll compressor 1 (point s) is compressed to the intermediate pressure Pms corresponding to the injection port 11e, the refrigerant is compressed at the intermediate pressure Pmd corresponding to the sub discharge port 11g with the compression chamber A. (Point md2).
Then, the refrigerant extracted from the compression chamber A via the intermediate cooling pipe 9 is supplied to the intermediate cooler 10 and is cooled by the refrigerant passing through the evaporator 4 (point md1). The cooled refrigerant is returned to the compression chamber A through the injection pipe 27 and mixed, whereby the specific enthalpy is reduced (point s2).
Therefore, the specific enthalpy is lower than when the intermediate cooling is not performed (point d), that is, the refrigerant discharged from the scroll compressor 1 can be discharged at a low temperature (point d2).
 図8は、図7(c)のモリエル線図を圧縮過程の説明のために簡略化したものである。図8において、高圧Pdと低圧Ps、吸入(点s)の比エンタルピhs は、運転条件から与えられ、中間圧はポート位置に依存する。 FIG. 8 is a simplified version of the Mollier diagram of FIG. 7C for explaining the compression process. In FIG. 8, the specific enthalpy h s of the high pressure Pd, the low pressure Ps, and the suction (point s) is given from the operating conditions, and the intermediate pressure depends on the port position.
 中間圧Pmsはインジェクションポート11e(IJP)が、中間圧Pmdはサブ吐出ポート11g(SP)が、それぞれ開口している圧縮室Aの一回転中の平均容積までの圧縮による昇圧量で決まる。
 このとき、スクロール圧縮機1から吐出される冷媒(点d2)の温度が、予め設定された値となるような、中間圧Pmsにおけるインジェクション後(点s2)の状態量は一義に決まる。
 点s2から点d2への圧縮過程中の中間圧PmdでSPからの抽出量をサイクル全体の循環量1に対する分流比Ybpとし、分流比Ybp分の冷媒の中間冷却器出口(点md1)での比エンタルピをhmd1 とすると、IJPでのインジェクション後の状態量が、点d2で予め設定された吐出温度となるような点s2となるという制約条件に対して、比エンタルピhmd1 を与えれば分流比Ybpが決定される。
 比エンタルピhd1で1の冷媒と比エンタルピhmd1 で分流比Ybpの冷媒が混合して、比エンタルピhs2となることから、
 (1+Ybp)・hs2 = hd1 + Ybp・hmd1 …(4)
すなわち
 hd1 - hs2 = Ybp・(hs2 - hmd1 ) …(5)
を満たすために、与えられた比エンタルピhs2と比エンタルピhd1に対して比エンタルピhmd1 が大きい(中間冷却量が小さい)場合は分流比Ybpを大きく、比エンタルピhmd1 が小さい(中間冷却量が大きい)場合は分流比Ybpを小さく、することになる。
The intermediate pressure Pms is determined by the pressure increase amount due to compression up to the average volume during one rotation of the compression chamber A opened at the injection port 11e (IJP) and the intermediate pressure Pmd at the sub discharge port 11g (SP).
At this time, the state quantity after injection (point s2) at the intermediate pressure Pms is uniquely determined so that the temperature of the refrigerant (point d2) discharged from the scroll compressor 1 becomes a preset value.
The extraction amount from SP at the intermediate pressure Pmd during the compression process from the point s2 to the point d2 is the diversion ratio Ybp with respect to the circulation amount 1 of the entire cycle, and the refrigerant at the outlet of the intermediate cooler (point md1) for the diversion ratio Ybp. When the specific enthalpy and h md1, state quantity after injection in IJP is, with respect to that constraint becomes s2 a point such that the predetermined discharge temperature at point d2, be given a specific enthalpy h md1 shunt The ratio Ybp is determined.
Since the refrigerant having a specific enthalpy h d1 of 1 and the refrigerant having a diversion ratio Ybp of the specific enthalpy h md1 are mixed, the specific enthalpy h s2 is obtained.
(1 + Ybp) · h s2 = h d1 + Ybp · h md1 (4)
That is, h d1 −h s2 = Y bp · (h s2 −h md1 ) (5)
In order to satisfy the above, when the specific enthalpy h md1 is larger than the given specific enthalpy h s2 and specific enthalpy h d1 (intermediate cooling amount is small), the diversion ratio Ybp is increased and the specific enthalpy h md1 is decreased (intermediate cooling) If the amount is large), the diversion ratio Ybp is made small.
 このとき、圧縮機での圧縮仕事に対応するエンタルピ差△hは、
 △hW =1・(hd1 - hs )+(1 + Ybp)(hmd2 - hs2)+1・(hd2 -hmd2 
    =(hd1 - hs )+(hd2 - hs2)+Ybp・(hmd2  - hs2)…(6)
 蒸発器4での冷凍能力に対応するエンタルピ差△hQ は(図7(c)の点expも参照して)
 △h = 1・(hs  - hexp )- Ybp・(hmd2  - hmd1 )…(7)
となり、△hQ /△hW がサイクルC.O.P.に相当する。
At this time, the enthalpy difference Δh W corresponding to the compression work in the compressor is
Δh W = 1 · (h d1 −h s ) + (1 + Ybp) (h md2 −h s2 ) + 1 · (h d2 −h md2 )
= (H d1 −h s ) + (h d2 −h s2 ) + Ybp · (h md2 −h s2 ) (6)
The enthalpy difference Δh Q corresponding to the refrigeration capacity in the evaporator 4 (see also the point exp in FIG. 7C)
Δh Q = 1 · (h s −h exp ) − Ybp · (h md2 −h md1 ) (7)
Δh Q / Δh W becomes cycle C. O. P. It corresponds to.
 比エンタルピhmd1 は分子のみに影響するのに対して、分流比Ybpが大きくなると分母、分子ともに影響しC.O.P.が低下するので、効率面からは中間冷却器10でのエンタルピ差を大きくして分流比Ybpを低く抑える方が望ましい。 The specific enthalpy h md1 affects only the numerator, whereas when the diversion ratio Ybp increases, both the denominator and the numerator affect C.I. O. P. Therefore, from the viewpoint of efficiency, it is desirable to increase the enthalpy difference in the intercooler 10 to keep the diversion ratio Ybp low.
 圧縮過程中の比エンタルピを減ずる目的で、圧縮室Aからの抽出、圧縮室Aへのインジェクションといった、スクロール圧縮機1からの冷媒の出入りがある場合、出入りの途中で伝熱により冷媒が加熱されると冷却効果が目減りすることになる。すなわち、予め設定された吐出温度に抑えるためには、加熱による影響に見合う分流比Ybp増が必要となり、性能の低下につながる。 For the purpose of reducing the specific enthalpy during the compression process, when the refrigerant enters and exits the scroll compressor 1 such as extraction from the compression chamber A and injection into the compression chamber A, the refrigerant is heated by heat transfer in the middle of entering and exiting. This will reduce the cooling effect. That is, in order to suppress the discharge temperature to be set in advance, it is necessary to increase the diversion ratio Ybp commensurate with the influence of heating, leading to a decrease in performance.
[実施の形態2に係るスクロール圧縮機1A等の有する効果]
 本実施の形態2に係るスクロール圧縮機1A及びそれを備えた冷凍サイクル装置102、103は、本実施の形態1に係るスクロール圧縮機1及びそれを備えた冷凍サイクル装置100、101と同様の効果を奏する。
[Effects of scroll compressor 1A and the like according to Embodiment 2]
The scroll compressor 1A according to the second embodiment and the refrigeration cycle apparatuses 102 and 103 having the same are the same effects as the scroll compressor 1 according to the first embodiment and the refrigeration cycle apparatuses 100 and 101 having the same. Play.
 1、1A スクロール圧縮機、2 凝縮器、3 第1膨張弁、4 蒸発器、6 逆止弁、7 中間冷却流量調整弁、9 中間冷却管、10 中間冷却器、11 固定スクロール、11A 固定渦巻体内側面、11B 固定渦巻体外側面、11a 台板、11b 固定渦巻体、11c 吐出ポート、11d 凹状部、11e インジェクションポート、11f 吐出弁、11g サブ吐出ポート、11h 逆止弁、11i 第1開口部、11j 第2開口部、11k 第1通路、11l 第2通路、12 揺動スクロール、12A 揺動渦巻体外側面、12B 揺動渦巻体内側面、12a 台板、12b 揺動渦巻体、12c ボス部、13 オルダムリング、14 フレーム、15 軸、15a 偏心部、15b 第1バランサ、18 ロータ、18a 第2バランサ、19 ステータ、20 副軸受、21 密閉容器、22 底部油溜、23 吸入管、24 吐出管、25 吐出弁、27 インジェクション配管、28 第2膨張弁、29 内部熱交換器、50 吐出管接続部、50a 凹状部、50b 凹状部、91 オイルポンプ、100~103 冷凍サイクル装置、110 サブフレーム、139 電動機、A 圧縮室、Aa 第1圧縮室、Ab 第2圧縮室、B 吸入室。 1, 1A scroll compressor, 2 condenser, 1st expansion valve, 4 evaporator, 6 check valve, 7 intermediate cooling flow rate adjustment valve, 9 intermediate cooling pipe, 10 intermediate cooler, 11 fixed scroll, 11A fixed swirl Internal side surface, 11B fixed spiral body outer surface, 11a base plate, 11b fixed spiral body, 11c discharge port, 11d concave portion, 11e injection port, 11f discharge valve, 11g sub discharge port, 11h check valve, 11i first opening, 11j 2nd opening, 11k 1st passage, 11l 2nd passage, 12 rocking scroll, 12A rocking spiral outer surface, 12B rocking spiral side, 12a base plate, 12b rocking spiral, 12c boss, 13 Oldham ring, 14 frames, 15 shafts, 15a eccentric part, 15b 1st balancer, 18 b 18a, 2nd balancer, 19 stator, 20 sub bearing, 21 sealed container, 22 bottom oil reservoir, 23 suction pipe, 24 discharge pipe, 25 discharge valve, 27 injection pipe, 28 second expansion valve, 29 internal heat exchanger 50, discharge pipe connection, 50a concave part, 50b concave part, 91 oil pump, 100-103 refrigeration cycle apparatus, 110 subframe, 139 electric motor, A compression chamber, Aa first compression chamber, Ab second compression chamber, B Inhalation chamber.

Claims (8)

  1.  密閉容器と、
     前記密閉容器に収容され、第1渦巻体が形成されている揺動スクロールと、
     前記密閉容器の内周面に固定され、前記第1渦巻体とともに冷媒を圧縮する第2渦巻体が形成され、前記揺動スクロールとの間に圧縮室を形成する固定スクロールと、
     前記密閉容器の内外に渡って設けられ、前記圧縮室に冷媒を供給するのに利用されるインジェクション配管と、
     前記密閉容器に収容され、一方の端部が前記揺動スクロールのうちの前記固定スクロールが設けられている側とは反対側に接続され、前記揺動スクロールを揺動運動させる回転軸と、
     前記密閉容器に収容され、前記回転軸の他方が接続され、前記回転軸を回転させる動力機構と、
     を有し、
     前記インジェクション配管は、
     前記密閉容器内の部分が、前記揺動スクロール及び前記固定スクロールを境にして、前記動力機構が設けられている側とは反対側に位置するように設けられ、
     前記固定スクロールは、
     一方が前記インジェクション配管と連通し、他方が前記圧縮室と連通するインジェクションポートを有するスクロール圧縮機。
    A sealed container;
    An orbiting scroll housed in the sealed container and having a first spiral body formed thereon;
    A fixed scroll that is fixed to the inner peripheral surface of the hermetic container, forms a second spiral body that compresses the refrigerant together with the first spiral body, and forms a compression chamber with the orbiting scroll;
    An injection pipe provided over the inside and outside of the sealed container and used to supply a refrigerant to the compression chamber;
    A rotating shaft that is housed in the hermetic container and has one end connected to the side of the orbiting scroll opposite to the side on which the fixed scroll is provided, and that causes the orbiting scroll to oscillate;
    A power mechanism housed in the sealed container, connected to the other of the rotating shafts, and rotating the rotating shaft;
    Have
    The injection pipe is
    The portion in the sealed container is provided so as to be located on the side opposite to the side on which the power mechanism is provided, with the rocking scroll and the fixed scroll as a boundary,
    The fixed scroll is
    A scroll compressor having an injection port in which one communicates with the injection pipe and the other communicates with the compression chamber.
  2.  前記密閉容器の内外に渡って設けられ、一方が前記圧縮室側に連通し、他方が前記インジェクション配管側に連通する中間冷却管を有し、
     前記固定スクロールは、
     前記固定スクロールの中央部に形成され、前記圧縮室で圧縮された冷媒を吐出する吐出ポートと、
     前記圧縮室に開口する第1開口部が、前記固定スクロールの径方向における前記吐出ポートと前記インジェクションポートとの間に形成され、前記中間冷却管と連通するサブ吐出ポートとを有する請求項1に記載のスクロール圧縮機。
    An intermediate cooling pipe provided over the inside and outside of the sealed container, one communicating with the compression chamber side and the other communicating with the injection piping side;
    The fixed scroll is
    A discharge port that is formed at the center of the fixed scroll and discharges the refrigerant compressed in the compression chamber;
    The 1st opening part opened to the said compression chamber is formed between the said discharge port and the said injection port in the radial direction of the said fixed scroll, and has a sub discharge port connected with the said intermediate cooling pipe. The scroll compressor described.
  3.  前記サブ吐出ポートは、
     前記固定スクロールの上下方向に延びるように形成され、前記第1開口部と前記吐出ポートの吐出側の空間に開口する第2開口部とを連通する第1通路と、
     前記固定スクロールの径方向に延びるように形成され、一方が前記第1通路に連通し、他方が前記中間冷却管に連通する第2通路とを有する請求項2に記載のスクロール圧縮機。
    The sub-discharge port is
    A first passage formed so as to extend in a vertical direction of the fixed scroll and communicating the first opening and a second opening that opens to a discharge-side space of the discharge port;
    The scroll compressor according to claim 2, further comprising: a second passage formed so as to extend in a radial direction of the fixed scroll, one communicating with the first passage and the other communicating with the intermediate cooling pipe.
  4.  前記第2開口部に設けられ、前記第1通路の冷媒が予め設定された圧力よりも大きくなると、前記第1通路側から前記吐出ポートの吐出側の空間側に冷媒を流す逆止弁を有する請求項3に記載のスクロール圧縮機。 A check valve that is provided in the second opening and allows the refrigerant to flow from the first passage side to the discharge-side space side of the discharge port when the refrigerant in the first passage exceeds a preset pressure; The scroll compressor according to claim 3.
  5.  請求項1に記載のスクロール圧縮機と、
     前記スクロール圧縮機の冷媒吐出側に接続され、前記スクロール圧縮機から流出する冷媒を凝縮させる凝縮器と、
     一方が前記凝縮器に接続され、前記凝縮器から流出する冷媒を減圧させる第1膨張弁と、
     一方が前記第1膨張弁に接続され、他方が前記スクロール圧縮機の冷媒吸入側に接続され、前記第1膨張弁から流出する冷媒を蒸発させる蒸発器と、
     前記スクロール圧縮機の前記インジェクション配管に接続される第2膨張弁と、
     を有し、
     前記インジェクション配管は、
     前記スクロール圧縮機が接続されている側とは反対側が、前記凝縮器と前記第1膨張弁との間に接続され、前記凝縮器から流出する冷媒の一部を前記第2膨張弁を介して前記圧縮室に供給する冷凍サイクル装置。
    A scroll compressor according to claim 1;
    A condenser connected to a refrigerant discharge side of the scroll compressor and condensing refrigerant flowing out of the scroll compressor;
    A first expansion valve, one of which is connected to the condenser and depressurizes the refrigerant flowing out of the condenser;
    An evaporator, one of which is connected to the first expansion valve and the other is connected to a refrigerant suction side of the scroll compressor, and evaporates the refrigerant flowing out of the first expansion valve;
    A second expansion valve connected to the injection pipe of the scroll compressor;
    Have
    The injection pipe is
    The side opposite to the side to which the scroll compressor is connected is connected between the condenser and the first expansion valve, and a part of the refrigerant flowing out of the condenser passes through the second expansion valve. A refrigeration cycle apparatus that supplies the compression chamber.
  6.  前記凝縮器は、
     前記凝縮器と前記第1膨張弁との間に接続される第1流路と、
     前記インジェクション配管のうちの前記第2膨張弁よりも下流側に接続される第2流路とを有し、前記第1流路を流れる冷媒と前記第2流路を流れる冷媒とを熱交換させる熱交換器である請求項5に記載の冷凍サイクル装置。
    The condenser is
    A first flow path connected between the condenser and the first expansion valve;
    A second flow path connected to the downstream side of the second expansion valve in the injection pipe, and heat exchange is performed between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path. The refrigeration cycle apparatus according to claim 5, which is a heat exchanger.
  7.  請求項2~4のいずれか一項に記載のスクロール圧縮機と、
     一方が前記スクロール圧縮機の冷媒吐出側に接続され、前記スクロール圧縮機から流出する冷媒を凝縮させる凝縮器と、
     一方が前記凝縮器に接続され、前記凝縮器から流出する冷媒を減圧させる第1膨張弁と、
     一方が前記第1膨張弁に接続され、他方が前記スクロール圧縮機の冷媒吸入側に接続され、前記第1膨張弁から流出する冷媒を蒸発させる蒸発器と、
     前記スクロール圧縮機の前記中間冷却管に接続される第2膨張弁と、
     を有し、
     前記蒸発器は、
     前記第1膨張弁と前記スクロール圧縮機の冷媒吸入側との間に接続される第3流路と、
     一方が前記中間冷却管に接続され、他方が前記インジェクション配管に接続される第4流路とを有し、前記第3流路を流れる冷媒と前記第4流路を流れる冷媒とを熱交換させる熱交換器であり、
     前記インジェクション配管は、
     前記中間冷却管及び前記第4流路を介して供給された冷媒を前記圧縮室に供給する冷凍サイクル装置。
    A scroll compressor according to any one of claims 2 to 4,
    One side is connected to the refrigerant discharge side of the scroll compressor, and a condenser that condenses the refrigerant flowing out of the scroll compressor;
    A first expansion valve, one of which is connected to the condenser and depressurizes the refrigerant flowing out of the condenser;
    An evaporator, one of which is connected to the first expansion valve and the other is connected to a refrigerant suction side of the scroll compressor, and evaporates the refrigerant flowing out of the first expansion valve;
    A second expansion valve connected to the intermediate cooling pipe of the scroll compressor;
    Have
    The evaporator is
    A third flow path connected between the first expansion valve and the refrigerant suction side of the scroll compressor;
    One of which is connected to the intermediate cooling pipe and the other of which is connected to the injection pipe, and which exchanges heat between the refrigerant flowing through the third flow path and the refrigerant flowing through the fourth flow path. A heat exchanger,
    The injection pipe is
    A refrigeration cycle apparatus that supplies the refrigerant supplied through the intermediate cooling pipe and the fourth flow path to the compression chamber.
  8.  前記冷凍サイクル装置を循環する冷媒をR32冷媒、HFO-1123とR32との混合冷媒、又はHFO-1123とHFO-1234yfとの混合冷媒としている請求項5~7のいずれか一項に記載の冷凍サイクル装置。 The refrigeration according to any one of claims 5 to 7, wherein the refrigerant circulating in the refrigeration cycle apparatus is an R32 refrigerant, a mixed refrigerant of HFO-1123 and R32, or a mixed refrigerant of HFO-1123 and HFO-1234yf. Cycle equipment.
PCT/JP2014/057035 2013-03-28 2014-03-17 Scroll compressor and refrigeration cycle device comprising same WO2014156743A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480018124.0A CN105121855B (en) 2013-03-28 2014-03-17 Scroll compressor and the refrigerating circulatory device with scroll compressor
JP2015508311A JP6038287B2 (en) 2013-03-28 2014-03-17 Scroll compressor and refrigeration cycle apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069198 2013-03-28
JP2013069198 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156743A1 true WO2014156743A1 (en) 2014-10-02

Family

ID=51623724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057035 WO2014156743A1 (en) 2013-03-28 2014-03-17 Scroll compressor and refrigeration cycle device comprising same

Country Status (3)

Country Link
JP (1) JP6038287B2 (en)
CN (1) CN105121855B (en)
WO (1) WO2014156743A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056064A1 (en) * 2014-10-07 2016-04-14 三菱電機株式会社 Heat exchanger and air conditioning device
WO2016059698A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Refrigeration cycle device
WO2016059697A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Refrigeration cycle device
JPWO2016042673A1 (en) * 2014-09-19 2017-04-27 三菱電機株式会社 Scroll compressor
WO2017126058A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Refrigeration cycle device
WO2017145713A1 (en) * 2016-02-22 2017-08-31 旭硝子株式会社 Heat exchange unit
JP2018138867A (en) * 2018-04-03 2018-09-06 三菱電機株式会社 Refrigeration cycle device
EP3460244A4 (en) * 2016-05-18 2019-03-27 Mitsubishi Electric Corporation Compressor unit
WO2019163628A1 (en) * 2018-02-21 2019-08-29 三菱重工サーマルシステムズ株式会社 Scroll fluid machine
WO2021024380A1 (en) * 2019-08-06 2021-02-11 三菱電機株式会社 Refrigeration cycle device
WO2021205539A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Refrigeration cycle device
US20220268282A1 (en) * 2021-02-19 2022-08-25 Hanon Systems Scroll compressor
JP7462163B2 (en) 2020-06-24 2024-04-05 パナソニックIpマネジメント株式会社 Scroll Compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863307B (en) * 2016-10-28 2020-11-03 三菱电机株式会社 Scroll compressor, refrigeration cycle device, and casing
CN110475972B (en) * 2017-03-31 2021-03-02 阿耐思特岩田株式会社 Scroll fluid machine having a plurality of scroll members
JP6865861B2 (en) * 2018-01-30 2021-04-28 三菱電機株式会社 Scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342755A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Scroll compressor and refrigerating apparatus
JP2012505296A (en) * 2008-10-10 2012-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoropropyl acetate or (2-chloro- 2,3,3,3-tetrafluoropropoxy) composition comprising zinc chloride
JP2012127222A (en) * 2010-12-14 2012-07-05 Mitsubishi Electric Corp Scroll compressor and refrigerating cycle device with the same
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169691A (en) * 1985-01-23 1986-07-31 Hitachi Ltd Sealed type scroll compressor for refrigerator
JPH06147181A (en) * 1992-11-13 1994-05-27 Sanyo Electric Co Ltd Refrigerating device
JPH11159479A (en) * 1997-11-28 1999-06-15 Mitsubishi Electric Corp Scroll compressor
JP2006177183A (en) * 2004-12-21 2006-07-06 Mitsubishi Electric Corp Scroll compressor
JP2011047382A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Scroll compressor
CN102953992A (en) * 2012-11-27 2013-03-06 大连三洋压缩机有限公司 Scroll compressor with injection channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342755A (en) * 2005-06-10 2006-12-21 Hitachi Ltd Scroll compressor and refrigerating apparatus
JP2012505296A (en) * 2008-10-10 2012-03-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 2,3,3,3-tetrafluoropropene, 2-chloro-2,3,3,3-tetrafluoropropanol, 2-chloro-2,3,3,3-tetrafluoropropyl acetate or (2-chloro- 2,3,3,3-tetrafluoropropoxy) composition comprising zinc chloride
JP2012127222A (en) * 2010-12-14 2012-07-05 Mitsubishi Electric Corp Scroll compressor and refrigerating cycle device with the same
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016042673A1 (en) * 2014-09-19 2017-04-27 三菱電機株式会社 Scroll compressor
US10082322B2 (en) 2014-10-07 2018-09-25 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
JPWO2016056064A1 (en) * 2014-10-07 2017-04-27 三菱電機株式会社 Heat exchanger and air conditioner
WO2016056064A1 (en) * 2014-10-07 2016-04-14 三菱電機株式会社 Heat exchanger and air conditioning device
WO2016059698A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Refrigeration cycle device
WO2016059697A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Refrigeration cycle device
CN106796057A (en) * 2014-10-16 2017-05-31 三菱电机株式会社 Freezing cycle device
CN107076466A (en) * 2014-10-16 2017-08-18 三菱电机株式会社 Refrigerating circulatory device
CN106796057B (en) * 2014-10-16 2019-10-25 三菱电机株式会社 Freezing cycle device
AU2014408864B2 (en) * 2014-10-16 2018-01-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10393391B2 (en) 2014-10-16 2019-08-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US10302336B2 (en) 2014-10-16 2019-05-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2017126058A1 (en) * 2016-01-20 2017-07-27 三菱電機株式会社 Refrigeration cycle device
JPWO2017126058A1 (en) * 2016-01-20 2018-09-06 三菱電機株式会社 Refrigeration cycle equipment
US11293676B2 (en) 2016-01-20 2022-04-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2017145713A1 (en) * 2016-02-22 2017-08-31 旭硝子株式会社 Heat exchange unit
EP3460244A4 (en) * 2016-05-18 2019-03-27 Mitsubishi Electric Corporation Compressor unit
WO2019163628A1 (en) * 2018-02-21 2019-08-29 三菱重工サーマルシステムズ株式会社 Scroll fluid machine
JP2018138867A (en) * 2018-04-03 2018-09-06 三菱電機株式会社 Refrigeration cycle device
WO2021024380A1 (en) * 2019-08-06 2021-02-11 三菱電機株式会社 Refrigeration cycle device
WO2021205539A1 (en) * 2020-04-07 2021-10-14 三菱電機株式会社 Refrigeration cycle device
JP7309044B2 (en) 2020-04-07 2023-07-14 三菱電機株式会社 refrigeration cycle equipment
JP7462163B2 (en) 2020-06-24 2024-04-05 パナソニックIpマネジメント株式会社 Scroll Compressor
US20220268282A1 (en) * 2021-02-19 2022-08-25 Hanon Systems Scroll compressor
US11898558B2 (en) * 2021-02-19 2024-02-13 Hanon Systems Scroll compressor

Also Published As

Publication number Publication date
JP6038287B2 (en) 2016-12-07
CN105121855B (en) 2017-07-18
CN105121855A (en) 2015-12-02
JPWO2014156743A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6038287B2 (en) Scroll compressor and refrigeration cycle apparatus including the same
US9239053B2 (en) Hermetically sealed scroll compressor
EP2055956B1 (en) Multistage compressor
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
EP3309399B1 (en) Scroll compressor and refrigeration cycle device
WO2009098872A1 (en) Fluid machine
JP6253278B2 (en) Refrigeration cycle
JP6444540B2 (en) Scroll compressor and refrigeration cycle apparatus
CN104005953A (en) Scroll compressor
CN110741164B (en) Scroll compressor and air conditioner provided with same
JP2015113817A (en) Scroll type compressor
JP5709503B2 (en) Scroll compressor and refrigeration cycle apparatus equipped with the scroll compressor
JP2007154726A (en) Hermetic compressor and refrigeration cycle device
JP2012127565A (en) Refrigeration cycle device
JP2017194064A (en) Refrigeration cycle
JP5523629B2 (en) Scroll expander and refrigeration cycle apparatus
JP2019002611A (en) Refrigeration cycle device
WO2022157967A1 (en) Scroll compressor and refrigeration cycle device with scroll compressor
WO2023079667A1 (en) Scroll compressor and refrigeration cycle device provided with scroll compressor
WO2018003015A1 (en) Single screw compressor and refrigeration cycle device
WO2019022134A1 (en) Scroll compressor
JP5321055B2 (en) Refrigeration equipment
KR102191131B1 (en) Electric compression and expansion apparatus and air conditioning system include the same
JP2010084954A (en) Refrigerating cycle device
JP2010059944A (en) Multistage compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508311

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773420

Country of ref document: EP

Kind code of ref document: A1