JP2010084954A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2010084954A
JP2010084954A JP2008251179A JP2008251179A JP2010084954A JP 2010084954 A JP2010084954 A JP 2010084954A JP 2008251179 A JP2008251179 A JP 2008251179A JP 2008251179 A JP2008251179 A JP 2008251179A JP 2010084954 A JP2010084954 A JP 2010084954A
Authority
JP
Japan
Prior art keywords
compressor
oil
storage container
lubricating oil
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008251179A
Other languages
Japanese (ja)
Other versions
JP4722173B2 (en
Inventor
Makoto Saito
信 齊藤
Shinya Higashiinoue
真哉 東井上
Masanobu Baba
正信 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008251179A priority Critical patent/JP4722173B2/en
Publication of JP2010084954A publication Critical patent/JP2010084954A/en
Application granted granted Critical
Publication of JP4722173B2 publication Critical patent/JP4722173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an increase of a high pressure-side pressure loss caused by the existence of an oil separator, and to quickly supply an excess lubricant to a compressor shell according to necessity. <P>SOLUTION: This refrigerating cycle device includes a closed circuit constituted by successively connecting a sealed compressor 5 including a compressing mechanism 54 and a driving mechanism in the same shell 51, a condenser, a pressure reducing means 8, and an evaporator by refrigerant piping, and the lubricant is circulated in the closed circuit with a refrigerant. The refrigerating cycle device further includes an oil storage container 10 capable of storing the lubricant. The oil storage container has connecting ports 10a, 10b at its top and bottom in the vertical direction, the connecting port 10a of the top is connected with low-pressure piping between the evaporator and the compressor, and the connecting port 10b of the bottom is connected with high-pressure piping of the compressor through an opening/closing means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、蒸気圧縮式の冷凍サイクル装置、特に、圧縮機構、駆動機構が同じ容器内に密閉された圧縮機を備え、さらにその容器内に潤滑油を貯留して摺動部の潤滑を行う冷凍サイクル装置に関するものである。   The present invention includes a vapor compression refrigeration cycle apparatus, in particular, a compressor in which a compression mechanism and a drive mechanism are sealed in the same container, and further stores lubricating oil in the container to lubricate the sliding portion. The present invention relates to a refrigeration cycle apparatus.

一般に、この種の冷凍サイクル装置では、圧縮機内に貯留する潤滑油の一部が常に冷媒とともに圧縮機外に吐出され、冷凍サイクル内を循環している。このとき、冷凍サイクル内に潤滑油が滞留して圧縮機に戻りにくくなると、圧縮機内の潤滑油面が低下して故障の原因となる場合がある。これを予防するため、比較的多量の潤滑油が冷凍サイクル装置内に封入されている。   In general, in this type of refrigeration cycle apparatus, part of the lubricating oil stored in the compressor is always discharged out of the compressor together with the refrigerant, and circulates in the refrigeration cycle. At this time, if the lubricating oil stays in the refrigeration cycle and it becomes difficult to return to the compressor, the lubricating oil surface in the compressor may be lowered and cause a failure. In order to prevent this, a relatively large amount of lubricating oil is enclosed in the refrigeration cycle apparatus.

圧縮機構と駆動機構が同じ容器(以降、「シェル」という)内にある密閉型圧縮機では、そのシェル底に潤滑油面が形成され、それを圧縮機構に供給する給油機構を備えることで潤滑を行っているが、あまりにも多量の潤滑油がシェル内に存在すると、駆動機構の回転部分に潤滑油が接触し、回転抵抗を増加させ、また、潤滑油攪拌によって油吐出量が増大してしまうことがあった。   In a hermetic compressor in which the compression mechanism and the drive mechanism are in the same container (hereinafter referred to as “shell”), a lubricating oil surface is formed on the bottom of the shell, and lubrication is provided by providing an oil supply mechanism that supplies the lubricant to the compression mechanism. However, if too much lubricating oil is present in the shell, it will come into contact with the rotating part of the drive mechanism, increasing the rotational resistance, and the oil discharge rate will increase due to the stirring of the lubricating oil. There was a case.

このような不具合を回避するため、圧縮機シェルの所定高さの位置に油流出穴を設けて回転部分に油面が接触しないようにするとともに、吐出冷媒に合流した余剰油を、油分離器を介して圧縮機吸入側に戻すようにしたものが知られている(例えば、特許文献1参照)。   In order to avoid such a problem, an oil outflow hole is provided at a predetermined height position of the compressor shell so that the oil surface does not come into contact with the rotating portion, and excess oil merged with the discharged refrigerant is removed from the oil separator. There is known one that is returned to the compressor suction side via (see, for example, Patent Document 1).

特開2005−282946号公報(第1図)Japanese Patent Laying-Open No. 2005-282946 (FIG. 1)

このように、密閉型の圧縮機ではシェル外に排出された多量の潤滑油を冷凍サイクル側に循環させないようにするための油分離器が必要となる。そして、従来はこの油分離器を圧縮機の高圧配管に接続し、吐出冷媒に混じった油を重力や遠心力を利用して分離するようにしていた。このため、少なからぬ圧力損失を生じ、圧縮機の負担を増大させるという難点があった。   Thus, the hermetic compressor requires an oil separator for preventing a large amount of lubricating oil discharged outside the shell from being circulated to the refrigeration cycle side. Conventionally, this oil separator is connected to a high-pressure pipe of a compressor, and oil mixed in the discharged refrigerant is separated using gravity or centrifugal force. For this reason, there was a problem that a considerable pressure loss was caused and the burden on the compressor was increased.

また、シェル内の潤滑油が最も少なくなる運転モードとなったとき、吐出配管(高圧配管)、油分離器、吸入配管(低圧配管)に広く分布して循環している余剰な潤滑油を必要に応じてシェルに早急に戻すことが容易でないという問題があった。   In addition, when the operation mode in which the lubricating oil in the shell is minimized, the excess lubricating oil that is widely distributed and circulated in the discharge pipe (high-pressure pipe), oil separator, and suction pipe (low-pressure pipe) is required. There is a problem that it is not easy to quickly return to the shell according to the situation.

本発明の技術的課題は、油分離器の存在による高圧側圧力損失の増大を回避でき、かつ必要に応じて余剰な潤滑油を圧縮機シェルに速やかに供給できるようにすることにある。   The technical problem of the present invention is to avoid an increase in high-pressure pressure loss due to the presence of an oil separator, and to allow surplus lubricating oil to be quickly supplied to the compressor shell as necessary.

本発明に係る冷凍サイクル装置は、下記の構成からなるものである。すなわち、同一シェルの内部に圧縮機構と駆動機構を備えた密閉型の圧縮機と、凝縮器と、減圧手段と、蒸発器と、を冷媒配管で順次接続して閉回路を形成し、この閉回路内を冷媒とともに潤滑油が循環する冷凍サイクル装置であって、前記潤滑油を貯留可能な油貯留容器を備え、この油貯留容器は、鉛直方向頂部と底部にそれぞれ接続ポートを有し、頂部の接続ポートは、蒸発器と圧縮機との間の低圧配管に接続され、底部の接続ポートは、開閉手段を介して圧縮機の高圧配管に接続されているものである。   The refrigeration cycle apparatus according to the present invention has the following configuration. That is, a closed type compressor provided with a compression mechanism and a drive mechanism in the same shell, a condenser, a decompression means, and an evaporator are connected in series by a refrigerant pipe to form a closed circuit. A refrigeration cycle apparatus in which lubricating oil circulates in a circuit together with a refrigerant, comprising an oil storage container capable of storing the lubricating oil, the oil storage container having a connection port at each of a vertical top part and a bottom part, and a top part The connection port is connected to a low-pressure pipe between the evaporator and the compressor, and the connection port at the bottom is connected to the high-pressure pipe of the compressor through an opening / closing means.

本発明の冷凍サイクル装置によれば、冷房あるいは暖房運転中に、圧縮機シェル内に滞留して運転効率を悪化させる余剰な潤滑油を、低圧側吸入配管に頂部の接続ポートが接続された油貯留容器に貯留するようにしたので、従来の油分離器を圧縮機の高圧配管に接続したときのような油分離に要する圧力損失や、油戻しとともに生じる冷媒バイパスなどの効率低下要因を発生させることなく、高効率な運転を行うことができる。   According to the refrigeration cycle apparatus of the present invention, during cooling or heating operation, surplus lubricating oil that stays in the compressor shell and deteriorates the operation efficiency is removed, and oil whose top connection port is connected to the low-pressure side intake pipe. Since it is stored in the storage container, it causes the efficiency loss such as the pressure loss required for oil separation when connecting a conventional oil separator to the high-pressure piping of the compressor and the refrigerant bypass that occurs with oil return. Therefore, highly efficient operation can be performed.

また、暖房起動など圧縮機シェル内の潤滑油が不足するようなモードにおいて、開閉手段を開けることで、底部の接続ポートより油貯留容器内に高圧を導入して、頂部の接続ポートより吸入配管(低圧配管)に油を放出することができる。このため、シェル内油量を速やかに回復させることができる。   Also, in modes where there is a shortage of lubricating oil in the compressor shell, such as when heating is started, high pressure is introduced into the oil storage container from the connection port at the bottom by opening the opening and closing means, and the suction pipe from the connection port at the top Oil can be discharged into (low pressure piping). For this reason, the amount of oil in the shell can be quickly recovered.

図1は本発明の一実施形態に係る冷凍サイクル装置を示す冷媒回路図、図2はその密閉型圧縮機の内部構造を示す縦断面図、図3はその油貯留容器接続部における油分離の原理の説明図、図4はその油貯留容器からの油放出の原理の説明図である。   FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing the internal structure of the hermetic compressor, and FIG. 3 is a diagram of oil separation at an oil storage container connecting portion. FIG. 4 is an explanatory diagram of the principle of oil discharge from the oil storage container.

本実施形態の冷凍サイクル装置は、室内の冷房もしくは暖房を行う空気調和装置に適用されたもので、図1のように基本的には圧縮機5、四方弁6、室外熱交換器7、液管4、電動膨張弁8、室内熱交換器9、及びガス管3を備えてなり、これらを冷媒配管で順次接続して閉回路に結合し、この閉回路内を冷媒とともに潤滑油が循環する冷媒回路を構成している。すなわち、室外ユニット1と室内ユニット2がガス管3と液管4で接続されて閉回路を形成し、冷媒としてR410Aが封入され、潤滑油としては冷媒(R410A)と相溶性のあるエーテル系の油が封入されている。また、潤滑油を貯留可能な油貯留容器10を備えている。   The refrigeration cycle apparatus of the present embodiment is applied to an air conditioner that performs indoor cooling or heating. Basically, as shown in FIG. 1, the compressor 5, the four-way valve 6, the outdoor heat exchanger 7, the liquid The pipe 4, the electric expansion valve 8, the indoor heat exchanger 9, and the gas pipe 3 are sequentially connected by a refrigerant pipe and coupled to a closed circuit, and lubricating oil circulates along with the refrigerant in the closed circuit. A refrigerant circuit is configured. That is, the outdoor unit 1 and the indoor unit 2 are connected by a gas pipe 3 and a liquid pipe 4 to form a closed circuit, R410A is sealed as a refrigerant, and ether-based ether compatible with the refrigerant (R410A) as a lubricating oil. Oil is enclosed. Moreover, the oil storage container 10 which can store lubricating oil is provided.

これを更に詳述すると、室外ユニット1には、回転数調節可能な密閉型の圧縮機5と、冷房と暖房で流路を切り替える(図1では冷房運転となっている)四方弁6と、室外熱交換器7と、油貯留容器10と、開閉手段すなわち電磁弁11と、圧力導入管12とが備えられている。   More specifically, the outdoor unit 1 includes a hermetic compressor 5 capable of adjusting the number of revolutions, a four-way valve 6 that switches the flow path between cooling and heating (in the cooling operation in FIG. 1), An outdoor heat exchanger 7, an oil storage container 10, opening / closing means, that is, an electromagnetic valve 11, and a pressure introducing pipe 12 are provided.

室内ユニット2には、電動膨張弁8、室内熱交換器9が備えられている。また、図示は省略しているが、室外熱交換器7と室内熱交換器9にはそれぞれ送風機が備えられ、それぞれ室内外の空気との熱交換を促進、調整している。   The indoor unit 2 includes an electric expansion valve 8 and an indoor heat exchanger 9. Although not shown, each of the outdoor heat exchanger 7 and the indoor heat exchanger 9 is provided with a blower, which promotes and adjusts heat exchange with the indoor and outdoor air, respectively.

圧縮機5は、ここではスクロール圧縮機を用いている。このスクロール圧縮機は、図2のように同一の密閉シェル51の内部に圧縮機構54と駆動機構となるステータ57及びロータ58とを備えている。圧縮機構54は、インボリュート曲線によって形成される板状渦巻歯54a,54bを有する固定スクロ−ル54c及び揺動スクロ−ル54dを、互いの板状渦巻歯54a,54b間に圧縮室が形成されるように噛み合わされて設置されている。また、揺動スクロ−ル54dは、密閉シェル51内にて、駆動機構の主軸56に偏心状態でかつ相対回動自在に取り付けられ、さらに固定スクロ−ル54cと揺動スクロ−ル54dの両方とすべり対偶をなす爪を有するオルダムリング(図示せず)によって自転は阻止されているが、主軸径方向への揺動(偏心に伴う円運動であり、以下これを「偏心旋回運動」という)は許容されて構成されている。そして、揺動スクロ−ル54dが偏心旋回運動するに従って、固定スクロ−ル54cと揺動スクロ−ル54dの間に吸込管52より冷媒ガスが吸い込まれ、中心へ向かうほど容積が小さくなり、冷媒ガスは高圧状態で吐出管53より押し出されるようになっている。つまり、1回の偏心旋回運動(360°の偏芯旋回運動)の中で冷媒の吸い込み→圧縮→吐き出しの3つの作業が周期的かつ連続的に行われるようになっている。   Here, a scroll compressor is used as the compressor 5. As shown in FIG. 2, the scroll compressor includes a compression mechanism 54 and a stator 57 and a rotor 58 serving as a drive mechanism in the same hermetic shell 51. The compression mechanism 54 includes a fixed scroll 54c and a swing scroll 54d having plate-like spiral teeth 54a and 54b formed by an involute curve, and a compression chamber is formed between the plate-like spiral teeth 54a and 54b. So that they are engaged with each other. Further, the swing scroll 54d is attached to the main shaft 56 of the drive mechanism in an eccentric state and is relatively rotatable in the hermetic shell 51. Further, both the fixed scroll 54c and the swing scroll 54d are provided. Rotation is prevented by an Oldham ring (not shown) having claws that make a slipping pair, but swinging in the radial direction of the main shaft (a circular motion accompanying eccentricity, hereinafter referred to as "eccentric turning motion") Is configured to be allowed. Then, as the swinging scroll 54d moves eccentrically, refrigerant gas is sucked from the suction pipe 52 between the fixed scroll 54c and the swinging scroll 54d, and the volume decreases toward the center. The gas is pushed out from the discharge pipe 53 in a high pressure state. That is, three operations of refrigerant suction → compression → discharge are periodically and continuously performed in one eccentric turning motion (360 ° eccentric turning motion).

油貯留容器10は、潤滑油を貯留可能なもので、図1及び図3のように鉛直方向頂部と底部にそれぞれ接続ポート10a,10bを有し、頂部の接続ポート10aは、蒸発器と圧縮機5との間の低圧配管に接続され、底部の接続ポート10bは、電磁弁11を介して圧縮機5の高圧配管に接続されている。図1の四方弁6の切替位置においては、室内熱交換器9が蒸発器、室外熱交換器7が凝縮器となっている。   The oil storage container 10 is capable of storing lubricating oil, and has connection ports 10a and 10b at the top and bottom in the vertical direction as shown in FIGS. 1 and 3, respectively. The bottom connection port 10 b is connected to the high-pressure pipe of the compressor 5 via the electromagnetic valve 11. In the switching position of the four-way valve 6 in FIG. 1, the indoor heat exchanger 9 is an evaporator and the outdoor heat exchanger 7 is a condenser.

本実施形態の冷凍サイクル装置において、冷房運転時に圧縮機5から吐出された高温高圧のガス冷媒は、図1のように四方弁6を経由して室外熱交換器7へ流入し、室外に放熱して凝縮する。この高圧液冷媒は液管4を通って室内ユニット2に流入し、電動膨張弁8によって低圧まで減圧される。そして、室内熱交換器9で室内を冷却しながら蒸発して低圧ガス冷媒となって、ガス管3、四方弁6を経由して再び圧縮機5に吸引される。このとき、電磁弁11は閉止されている。   In the refrigeration cycle apparatus of this embodiment, the high-temperature and high-pressure gas refrigerant discharged from the compressor 5 during the cooling operation flows into the outdoor heat exchanger 7 via the four-way valve 6 as shown in FIG. And condense. The high-pressure liquid refrigerant flows into the indoor unit 2 through the liquid pipe 4 and is decompressed to a low pressure by the electric expansion valve 8. And it evaporates, cooling a room | chamber interior with the indoor heat exchanger 9, turns into a low pressure gas refrigerant, and is again attracted | sucked by the compressor 5 via the gas pipe 3 and the four-way valve 6. FIG. At this time, the electromagnetic valve 11 is closed.

次に、圧縮機5内部の潤滑油の流れについて図2に基づき説明する。軸受部への給油は、圧縮部で発生する吸入圧力と吐出圧力との間の差圧を利用した差圧給油にて行っている。すなわち、密閉シェル51下部の油貯め内の潤滑油59を、主軸56に設けられた中空空間60へ前記差圧の作用により、つまり主軸56の中空空間60を圧縮部の吸入側と連通させるとともに、油貯め内の潤滑油59の液面上部空間を圧縮部の吐出側と連通させることにより発生する差圧の作用により吸い上げ、中空空間60から主軸56の外周へ連通する給油連通口を通し、図示しない軸受部に給油する。このとき、潤滑油59の一部が高圧ガス冷媒といっしょに吐出管53から冷凍サイクル側に流出する。   Next, the flow of the lubricating oil inside the compressor 5 will be described with reference to FIG. Lubrication to the bearing portion is performed by differential pressure lubrication using a differential pressure between the suction pressure and the discharge pressure generated in the compression portion. That is, the lubricating oil 59 in the oil reservoir below the sealed shell 51 is communicated with the hollow space 60 provided in the main shaft 56 by the differential pressure, that is, the hollow space 60 of the main shaft 56 communicates with the suction side of the compression portion. , The liquid level upper space of the lubricating oil 59 in the oil reservoir is sucked up by the action of the differential pressure generated by communicating with the discharge side of the compression unit, and through the oil supply communication port communicating from the hollow space 60 to the outer periphery of the main shaft 56, Lubricate the bearing (not shown). At this time, a part of the lubricating oil 59 flows out from the discharge pipe 53 to the refrigeration cycle side together with the high-pressure gas refrigerant.

この状況で、この冷凍サイクル装置内に多量の潤滑油が封入されていると、潤滑油59の油面がロータ58の下端以上となり、ロータ58が潤滑油を攪拌することで回転抵抗が増えてモータ入力が増大し、運転効率を悪化させることとなる。このため、潤滑油を密閉シェル外へ隔離する必要が生じる。本実施形態ではその潤滑油隔離機能を室外ユニット2に設けた油貯留容器10に与えている。   In this situation, if a large amount of lubricating oil is enclosed in the refrigeration cycle apparatus, the oil level of the lubricating oil 59 becomes higher than the lower end of the rotor 58, and the rotational resistance is increased by the rotor 58 stirring the lubricating oil. The motor input increases and the driving efficiency is deteriorated. For this reason, it is necessary to isolate the lubricating oil out of the hermetic shell. In this embodiment, the lubricating oil isolation function is given to the oil storage container 10 provided in the outdoor unit 2.

油貯留容器10は、図3のように鉛直方向上方から吸入冷媒が油貯留容器10に向かい、その直前でガス冷媒が圧縮機5の吸入側に連なる分岐配管に吸入されて進行方向を変化させられ、ガス冷媒流101(図3中に実線で示す)となり、圧縮機5に吸入される。しかし、ガス冷媒より重く、粘度が大きい潤滑油流102(図3中に波線で示す)は、液滴あるいは管壁に沿った液膜の形態で流れており、慣性力および重力によって油貯留容器10内に流入する(図3の左図の状態)。   As shown in FIG. 3, in the oil storage container 10, the suction refrigerant is directed from the top in the vertical direction toward the oil storage container 10, and immediately before that, the gas refrigerant is sucked into the branch pipe connected to the suction side of the compressor 5 to change the traveling direction. As a result, the gas refrigerant flow 101 (shown by a solid line in FIG. 3) is drawn into the compressor 5. However, the lubricating oil stream 102 (shown by a wavy line in FIG. 3) that is heavier than the gas refrigerant and has a high viscosity flows in the form of a liquid film along the droplet or the tube wall. 10 (the state shown in the left diagram of FIG. 3).

ただし、この潤滑油貯留モードは過渡的なもので、通常時、油貯留容器10は潤滑油で満液状態である。この状態では、ガス冷媒流101も潤滑油流102も圧縮機5の吸入側に向かって流れる(図3の右図の状態)。また、これらのモード、すなわち潤滑油を圧縮機すなわち密閉シェル外に隔離したい状況では電磁弁11は常に閉止され、油貯留容器10は入口のみとなる言わば盲腸管である。   However, this lubricating oil storage mode is transitional, and normally, the oil storage container 10 is full of lubricating oil. In this state, both the gas refrigerant flow 101 and the lubricating oil flow 102 flow toward the suction side of the compressor 5 (the state shown in the right diagram of FIG. 3). Further, in these modes, that is, in a situation where it is desired to isolate the lubricating oil outside the compressor, that is, the sealed shell, the solenoid valve 11 is always closed, and the oil storage container 10 is a cecal tube which is only the inlet.

このような油貯留容器10の配置によれば、高圧側に油分離器を配置する必要がなく、油分離時に生じる圧力損失によって本冷凍サイクル装置の運転効率を低下させることがなくなる。また、従来の高圧側配置の油分離器では、分離した油を吸入側に戻す際にわずかに冷媒もバイパスしてしまっていたが、本実施形態によれば、この冷媒バイパスによる損失も回避できる。   According to such an arrangement of the oil storage container 10, it is not necessary to arrange an oil separator on the high pressure side, and the operating efficiency of the present refrigeration cycle apparatus is not reduced due to a pressure loss that occurs during oil separation. Further, in the conventional oil separator arranged on the high pressure side, the refrigerant is slightly bypassed when returning the separated oil to the suction side, but according to this embodiment, loss due to this refrigerant bypass can also be avoided. .

次に、油貯留容器10ら潤滑油を供給する場合の動作について図4に基づき図2を参照しながら説明する。密閉シェル51の底部の潤滑油59が不足すると圧縮機構54に潤滑油を送ることができなくなり、異常磨耗や焼付きなどの不具合が生じる。このような密閉シェル内潤滑油が少なくなる運転モードでは、油貯留容器10の余剰油を圧縮機5に戻してやることが必要となる。   Next, the operation when lubricating oil is supplied from the oil storage container 10 will be described based on FIG. 4 with reference to FIG. If the lubricating oil 59 at the bottom of the hermetic shell 51 is insufficient, the lubricating oil cannot be sent to the compression mechanism 54, causing problems such as abnormal wear and seizure. In such an operation mode in which the lubricating oil in the sealed shell is reduced, it is necessary to return the excess oil in the oil storage container 10 to the compressor 5.

特に、低外気での暖房モードにおいては、蒸発器となる室外熱交換器7に液冷媒が溜りこんだ状態からの起動となるため、運転開始時に多量の液冷媒が圧縮機5に流入し、密閉シェル内潤滑油59を希釈する一方、一時的に密閉シェル内の潤滑油59の液面が上昇するため、吐出ガスにも多量の液冷媒が混じることとなり、潤滑油59も一緒に密閉シェル外に排出されてしまい、潤滑油が密閉シェル内にほとんど存在しなくなる。   In particular, in the heating mode with low outside air, since it starts from the state where the liquid refrigerant has accumulated in the outdoor heat exchanger 7 serving as an evaporator, a large amount of liquid refrigerant flows into the compressor 5 at the start of operation, While the lubricating oil 59 in the sealed shell is diluted, the liquid level of the lubricating oil 59 in the sealed shell temporarily rises, so that a large amount of liquid refrigerant is mixed with the discharge gas, and the lubricating oil 59 is also sealed together. The oil is discharged to the outside, and the lubricating oil hardly exists in the sealed shell.

このようなとき、本実施形態では電磁弁11を開放する。これにより、図4のように油貯留容器10の底部の接続ポート10bから高圧の吐出ガス冷媒103が流入し、それまで貯留されていた潤滑油は油貯留容器10を溢れて圧縮機5の吸入管側に放出される。吸入管に放出された潤滑油は、速やかに圧縮機5に向かう流れ102を形成し、圧縮機5の密閉シェル内油面を上昇させる。   In such a case, the electromagnetic valve 11 is opened in this embodiment. As a result, as shown in FIG. 4, the high-pressure discharge gas refrigerant 103 flows from the connection port 10 b at the bottom of the oil storage container 10, and the lubricating oil that has been stored so far overflows the oil storage container 10 and is sucked into the compressor 5. Released to the tube side. The lubricating oil released to the suction pipe quickly forms a flow 102 toward the compressor 5 and raises the oil level in the hermetic shell of the compressor 5.

本実施形態では、圧縮機5のロータ58の下端に油面が接触するほど多量に潤滑油が封入された状態であることが前提であり、また油貯留容器10が満液となっても必要最低油量が密閉シェル内に確保されている必要があるので、必然的にこの油貯留容器10の容量は必要最低油量とロータ下端に油面が接触する油量との油量差より小さいことになる。   In the present embodiment, it is a premise that the lubricating oil is filled in such a large amount that the oil level comes into contact with the lower end of the rotor 58 of the compressor 5 and is necessary even when the oil storage container 10 is full. Since the minimum amount of oil needs to be secured in the sealed shell, the capacity of the oil storage container 10 is necessarily smaller than the difference between the required minimum amount of oil and the amount of oil whose oil level contacts the lower end of the rotor. It will be.

また、本実施形態においては、潤滑油を冷媒R410Aと相溶性のあるエーテル油を用いるものとしたが、この場合、冷凍サイクル装置の圧縮機吸入側で冷媒が二相状態となる、いわゆる液バック運転となったときに低圧側を流通する潤滑油が希釈状態となり、十分な油分離・貯留機能を発揮できないことが考えられる。したがって、アルキルベンゼン油のような弱相溶性の潤滑油を用いた方が望ましく、これによって油分離の高効率化の効果が得られやすくなる。   In this embodiment, the lubricating oil is ether oil that is compatible with the refrigerant R410A. In this case, the so-called liquid back in which the refrigerant is in a two-phase state on the compressor suction side of the refrigeration cycle apparatus. It is conceivable that the lubricating oil that circulates on the low-pressure side becomes diluted when in operation, and the oil separation / storage function cannot be exhibited sufficiently. Therefore, it is desirable to use a weakly compatible lubricating oil such as an alkylbenzene oil, which makes it easier to obtain the effect of improving the efficiency of oil separation.

以上のように、本実施形態によれば、冷房あるいは暖房運転中に、密閉シェル内に滞留して運転効率を悪化させる余剰な潤滑油59を、低圧側吸入配管に頂部の接続ポート10aが接続された油貯留容器10に貯留するようにしたので、油分離に要する圧力損失や、油戻しとともに生じる冷媒バイパスなどの効率低下要因を発生させることなく、高効率な運転を行うことができる。   As described above, according to the present embodiment, during the cooling or heating operation, the surplus lubricating oil 59 that stays in the sealed shell and deteriorates the operation efficiency is connected to the top connection port 10a to the low-pressure side intake pipe. Since the oil is stored in the oil storage container 10, high-efficiency operation can be performed without generating a factor of efficiency reduction such as pressure loss required for oil separation and refrigerant bypass that occurs along with oil return.

また、暖房起動など密閉シェル内の潤滑油が不足するようなモードにおいて、油貯留容器10の底部の接続ポート10bから高圧の吐出ガス冷媒103を導入して、それまで貯留されていた潤滑油を吸入管に放出することにより、密閉シェル内油量を速やかに回復させることができる。   Further, in a mode where the lubricating oil in the hermetic shell is insufficient, such as when heating is started, the high-pressure discharge gas refrigerant 103 is introduced from the connection port 10b at the bottom of the oil storage container 10, and the lubricating oil that has been stored up to that time is introduced. By discharging to the suction pipe, the amount of oil in the sealed shell can be quickly recovered.

なお、ここでは圧縮機としてスクロール圧縮機を例に挙げて説明したが、これに限るものでなく、ロータリ型圧縮機やピストン型圧縮機の採用も可能である。   Here, the scroll compressor has been described as an example of the compressor. However, the present invention is not limited to this, and a rotary compressor or a piston compressor may be employed.

本発明の一実施形態に係る冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit figure showing the refrigerating cycle device concerning one embodiment of the present invention. 本発明の一実施形態に係る冷凍サイクル装置の密閉型圧縮機の内部構造を示す縦断面図である。It is a longitudinal section showing the internal structure of the closed type compressor of the refrigerating cycle device concerning one embodiment of the present invention. 本発明の一実施形態に係る冷凍サイクル装置の油貯留容器接続部における油分離の原理の説明図である。It is explanatory drawing of the principle of the oil separation in the oil storage container connection part of the refrigerating-cycle apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る冷凍サイクル装置の油貯留容器からの油放出の原理の説明図である。It is explanatory drawing of the principle of the oil discharge | release from the oil storage container of the refrigeration cycle apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

5 圧縮機、7 室外熱交換器、8 電動膨張弁(減圧手段)、9 室内熱交換器、10 油貯留容器、10a 頂部の接続ポート、10b 底部の接続ポート、11 電磁弁(開閉手段)、51 密閉シェル(シェル)、54 圧縮機構、57 ステータ(駆動機構)、58 ロータ(駆動機構)。   DESCRIPTION OF SYMBOLS 5 Compressor, 7 Outdoor heat exchanger, 8 Electric expansion valve (pressure reduction means), 9 Indoor heat exchanger, 10 Oil storage container, 10a Top connection port, 10b Bottom connection port, 11 Solenoid valve (opening / closing means), 51 Sealed shell (shell), 54 compression mechanism, 57 stator (drive mechanism), 58 rotor (drive mechanism).

Claims (3)

同一シェルの内部に圧縮機構と駆動機構を備えた密閉型の圧縮機と、凝縮器と、減圧手段と、蒸発器と、を冷媒配管で順次接続して閉回路を形成し、この閉回路内を冷媒とともに潤滑油が循環する冷凍サイクル装置であって、
前記潤滑油を貯留可能な油貯留容器を備え、
前記油貯留容器は、鉛直方向頂部と底部にそれぞれ接続ポートを有し、
前記頂部の接続ポートは、前記蒸発器と前記圧縮機との間の低圧配管に接続され、
前記底部の接続ポートは、開閉手段を介して前記圧縮機の高圧配管に接続されていることを特徴とする冷凍サイクル装置。
A closed circuit having a compression mechanism and a drive mechanism in the same shell, a condenser, a pressure reducing means, and an evaporator are connected in order by a refrigerant pipe to form a closed circuit. A refrigeration cycle device in which lubricating oil circulates with refrigerant,
An oil storage container capable of storing the lubricating oil;
The oil storage container has a connection port at the top and bottom in the vertical direction,
The top connection port is connected to a low pressure line between the evaporator and the compressor;
The refrigeration cycle apparatus, wherein the bottom connection port is connected to a high-pressure pipe of the compressor through an opening / closing means.
前記油貯留容器の頂部の接続ポートと接続される前記低圧配管は、該油貯留容器への流れ方向が鉛直下方に向くように設置されているとともに、該油貯留容器との接続部の直前で前記圧縮機の吸入側に分岐されていることを特徴とする請求項1記載の冷凍サイクル装置。   The low-pressure pipe connected to the connection port at the top of the oil storage container is installed so that the flow direction to the oil storage container is vertically downward, and immediately before the connection portion with the oil storage container. 2. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is branched to the suction side of the compressor. 前記閉回路内を循環する冷媒と潤滑油は、弱相溶の関係にあることを特徴とする請求項1又は請求項2記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1 or 2, wherein the refrigerant circulating in the closed circuit and the lubricating oil are in a weakly compatible relationship.
JP2008251179A 2008-09-29 2008-09-29 Refrigeration cycle equipment Active JP4722173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251179A JP4722173B2 (en) 2008-09-29 2008-09-29 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251179A JP4722173B2 (en) 2008-09-29 2008-09-29 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2010084954A true JP2010084954A (en) 2010-04-15
JP4722173B2 JP4722173B2 (en) 2011-07-13

Family

ID=42249096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251179A Active JP4722173B2 (en) 2008-09-29 2008-09-29 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4722173B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538325A (en) * 2012-02-03 2012-07-04 中国科学院理化技术研究所 Condensing gathering separator for separating lubricating oil from refrigerant
WO2018233257A1 (en) * 2017-06-21 2018-12-27 格力电器(武汉)有限公司 Oil separator, compressor and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367864A (en) * 1989-04-08 1991-03-22 W Reiners Verwalt Gmbh Automatic winder for rewinding from cup to cross winding bobbin
JPH1054627A (en) * 1996-06-10 1998-02-24 Samsung Electron Co Ltd Oil separator for evaporator
JP2001272117A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Refrigerating and air-conditioning cycle device
JP2002162120A (en) * 2000-11-20 2002-06-07 Fujitsu General Ltd Refrigerating machine of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086204Y2 (en) * 1989-10-25 1996-02-21 三菱電機株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367864A (en) * 1989-04-08 1991-03-22 W Reiners Verwalt Gmbh Automatic winder for rewinding from cup to cross winding bobbin
JPH1054627A (en) * 1996-06-10 1998-02-24 Samsung Electron Co Ltd Oil separator for evaporator
JP2001272117A (en) * 2000-03-29 2001-10-05 Mitsubishi Electric Corp Refrigerating and air-conditioning cycle device
JP2002162120A (en) * 2000-11-20 2002-06-07 Fujitsu General Ltd Refrigerating machine of air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538325A (en) * 2012-02-03 2012-07-04 中国科学院理化技术研究所 Condensing gathering separator for separating lubricating oil from refrigerant
WO2018233257A1 (en) * 2017-06-21 2018-12-27 格力电器(武汉)有限公司 Oil separator, compressor and air conditioner
US11131488B2 (en) 2017-06-21 2021-09-28 Gree Electric Appliances (Wuhan) Co., Ltd Oil separator, compressor and air conditioner

Also Published As

Publication number Publication date
JP4722173B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US8408024B2 (en) Fluid machine and refrigeration cycle apparatus
JP2008163894A (en) Multiple stage compressor
EP3382205B1 (en) Compressor
JP4969646B2 (en) Fluid machine and refrigeration cycle apparatus including the same
JP2012097638A (en) Compressor and refrigerating apparatus
JP6349417B2 (en) Two-stage rotary compressor and cooling cycle equipment
WO2013005568A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
WO2008023694A1 (en) Expander-integrated compressor and refrigeration cycle device with the same
JP4114337B2 (en) Refrigeration equipment
US9435337B2 (en) Scroll compressor
JP4696530B2 (en) Fluid machinery
JP2008286151A (en) Fluid machine and refrigerating cycle device equipped therewith
JP4722173B2 (en) Refrigeration cycle equipment
JP6998531B2 (en) Scroll compressor
WO2017015456A1 (en) Compressor bearing housing drain
JP6137166B2 (en) Scroll compressor and refrigeration equipment
JP2012036862A (en) Hermetically-sealed compressor, and refrigerating cycle apparatus
JP2016161211A (en) Refrigeration device
JP2013238191A (en) Compressor
JP2008008263A (en) Electric compressor
JP2013108453A (en) Screw compressor
JP2009052497A (en) Refrigerant compressor
JPWO2010122812A1 (en) Refrigeration cycle equipment
JP2014101804A (en) Scroll type compressor
JP6471525B2 (en) Refrigerant compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4722173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250