WO2014156609A1 - Vane compressor - Google Patents

Vane compressor Download PDF

Info

Publication number
WO2014156609A1
WO2014156609A1 PCT/JP2014/056300 JP2014056300W WO2014156609A1 WO 2014156609 A1 WO2014156609 A1 WO 2014156609A1 JP 2014056300 W JP2014056300 W JP 2014056300W WO 2014156609 A1 WO2014156609 A1 WO 2014156609A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
recess
pressure
rotor
discharge
Prior art date
Application number
PCT/JP2014/056300
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 知靖
孝則 寺屋
大沢 仁
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Publication of WO2014156609A1 publication Critical patent/WO2014156609A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0872Vane tracking; control therefor by fluid means the fluid being other than the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/13Noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves

Definitions

  • the present invention relates to a vane type compressor, and more particularly, to a vane type compressor having a structure useful for reducing noise (chattering noise) associated with vane vibration that occurs during startup.
  • a vane compressor has a cylinder in which both ends are closed and a cam surface is formed on an inner peripheral surface, a rotor that is rotatably supported in the cylinder, and an outer surface of the rotor that is directed inward.
  • the vane groove is configured to have a vane groove accommodated in the vane groove so as to be able to appear and retract.
  • the vane acts from the centrifugal force generated by the rotation of the rotor and the back pressure chamber provided at the bottom of the vane groove. The back pressure is such that it is supported in contact with the inner peripheral surface of the cylinder.
  • the discharge port 16 usually has a counterbore (counterbore) extending in the circumferential direction at the opening end with the inner peripheral surface of the cylinder in order to ensure a smooth flow of compressed gas. 16a. For this reason, when the tip of the vane 4 approaches the counterbore 16a (for example, in a vane type compressor having two vanes, the rotor rotation angle is 0 when the tip of the vane 4 is positioned at the radial seal portion.
  • a concave portion is formed on the surface of the side block facing the rotor so as to communicate with the back pressure chamber formed at the bottom of the vane groove.
  • a configuration has been proposed in which a communication path for supplying oil pressed by the discharge pressure is connected to the recess, and a gas flow path for supplying discharge gas is connected to the discharge chamber. According to such a configuration, the discharge gas compressed in the compression chamber at the initial stage of rotation of the rotor is directly supplied from the gas flow path to the back pressure chamber through the recess, and the vane is reliably urged to the inner peripheral surface of the cylinder. It can be expected to prevent chattering at startup.
  • the recess is a through hole that supports the drive shaft. It is formed in a wide range in the circumferential direction around the support hole. For this reason, in the above-described configuration, the path volume until the discharge gas is guided to the back pressure chamber is increased, a delay occurs until the pressure in the back pressure chamber increases, and a sufficient back pressure cannot be obtained immediately. Concerned. Further, in the above-described configuration, there is a concern that the edge of the recess becomes long, and oil or discharged gas leaks from the edge, so that a sufficient back pressure cannot be obtained immediately. Thus, in order to prevent the occurrence of chattering that occurs in the initial stage of startup, it is an important issue to increase the immediate effect of the pressure increase in the back pressure chamber.
  • the present invention has been made in view of such circumstances, and enhances the immediate effect of the pressure increase in the back pressure chamber so that the vane is brought into contact with the inner peripheral surface of the cylinder at the initial stage of startup or during low rotation.
  • the main object is to provide a vane type compressor that prevents the occurrence of chattering of vanes.
  • a vane type compressor includes a housing, a cylinder forming portion that forms a cam surface, and that forms part of the housing, and both ends of the cylinder forming portion in the axial direction.
  • a pair of side block forming portions that are closed and constitute a part of the housing, a drive shaft that is rotatably supported by the pair of side block forming portions, and a cylinder that is fixed to the drive shaft and is mounted in the cylinder forming portion.
  • a rotor that is rotatably accommodated, a radial seal portion in which a part of an outer peripheral surface of the rotor and a part of an inner peripheral surface of the cylinder forming portion are in sliding contact, a plurality of vane grooves formed in the rotor, A plurality of vanes that are slidably inserted into the vane grooves, the tip portions of which protrude from the vane grooves and slide on the cam surface, are closed by the cylinder forming portion and the pair of side block forming portions.
  • a compression chamber formed by the rotor and the vane, a suction port for sucking fluid into the compression chamber, a discharge port for discharging the fluid compressed in the compression chamber, and a discharge port.
  • a vane compressor comprising: a discharge fluid storage chamber that stores a discharged fluid; and an oil reservoir chamber that stores oil having a pressure corresponding to the pressure of the discharged fluid.
  • a first concave portion communicating with a bottom portion of the vane groove in a stroke in which a tip end portion of the vane is located in front of the discharge port from the radial seal portion on the compression chamber side end surface of at least one of the side block forming portions;
  • a first communication passage that communicates the first recess and the oil reservoir chamber, and further, in a stroke in which the tip of the vane is in a range from the discharge port to the radial seal portion,
  • a second recess communicating with the bottom of the vane groove; a second communication path communicating the second recess with the discharge fluid storage chamber; It is characterized by providing.
  • the second recess is provided independently of the first recess, and a discharge fluid storage chamber that stores the fluid discharged from the discharge port via the second communication path communicates with the second recess. Therefore, when the tip of the vane is positioned near the discharge port where vane chattering is likely to occur, the bottom of the vane groove is communicated with the second recess, so that the discharge fluid can be quickly transferred to the back pressure chamber of the vane. (The pressure in the discharge fluid storage chamber can be quickly transmitted), and the back pressure of the vane can be set to the discharge pressure or a pressure close thereto. For this reason, since sufficient back pressure can be secured immediately, it is possible to support the pressure applied to the tip of the vane when the tip of the vane reaches the discharge port, and contact the vane cam surface. It becomes possible to maintain the state.
  • the second communication passage opens in the second communication passage when the pressure difference between the pressure in the discharge fluid storage chamber and the pressure in the second recess is less than a predetermined value, and closes when the pressure exceeds the predetermined value.
  • An on-off valve may be provided. By providing such an on-off valve, the discharge pressure increases, and the on-off valve closes when the pressure difference between the pressure in the discharge fluid storage chamber and the pressure in the second recess exceeds a predetermined value. In this case, since the back pressure supplied through the first recess is sufficiently high, the back pressure can be maintained even if the supply of the discharge fluid from the second recess is stopped, and the vane It is possible to maintain the state in contact with the cam surface.
  • a ball valve provided in the discharge fluid storage chamber side opening of the second communication path may be used.
  • space can be saved (there is no need to secure a large installation space), and it can be formed at low cost.
  • a throttle may be provided in the second communication path. By providing such a throttle in the second communication path, it is possible to adjust the amount of discharged fluid supplied to the second recess even when there is no on-off valve.
  • the communication between the bottom of the vane groove and the second recess is preferably a stroke in which the tip of the vane is in the range from the start end of the discharge port to the radial seal in the rotational direction of the rotor,
  • the tip of the vane may be performed in a stroke in a range from the middle of the discharge port to the radial seal portion.
  • the second communication path is provided with an opening / closing valve that opens when the pressure difference between the pressure of the discharge fluid storage chamber and the pressure of the second recess is less than a predetermined value and closes when the pressure exceeds the predetermined value. Therefore, after sufficient back pressure is obtained, the sealing performance between the axial end surface of the rotor and the side block forming portion is impaired by stopping the supply of the discharge fluid to the bottom of the vane groove. It is possible to avoid this and prevent the compression efficiency from being lowered more than necessary.
  • FIG. 1A and 1B are views showing a vane type compressor according to the present invention, in which FIG. 1A is a side sectional view thereof, and FIG. 1B is a sectional view taken along line AA in FIG. 2A is a cross-sectional perspective view showing the first housing member and the second housing member of the vane compressor shown in FIG. 1, and FIG. 2B shows the second recess and the orifice passage.
  • FIG. 2C is an enlarged perspective view of the connecting portion between the first recess and the orifice passage.
  • FIG. 3 is a view for explaining the communication state between the back pressure chamber and the second recess
  • FIG. 3 (a) is a diagram showing a radial direction from the position where the tip of the vane approaches the start end of the discharge port.
  • FIG. 3B is a diagram showing an example in which the second concave portion is formed from the middle of the discharge port to the radial seal portion from the middle of the discharge port.
  • 4A and 4B are diagrams showing another example of the vane type compressor according to the present invention, in which FIG. 4A is a side sectional view thereof, and FIG. 4B is a sectional view taken along line AA in FIG. .
  • FIG. 5A is a cross-sectional perspective view showing the first housing member and the second housing member of the vane compressor shown in FIG. 4, and FIG. 5B shows the second recess and the communication path.
  • FIG. 5C is an enlarged perspective view of the connecting portion between the first recess and the orifice passage.
  • FIG. 6 is a cross-sectional view showing details of the on-off valve.
  • FIG. 7A is an explanatory view for explaining the force acting on the tip of the vane when the tip of the vane passes through the discharge port
  • FIG. 7B shows the conventional configuration of two vanes. It is a characteristic diagram which shows the pressure of the vane rotation direction front side with respect to a rotor rotation angle at the time of employ
  • the vane compressor 1 includes a drive shaft 2, a rotor 3 that is fixed to the drive shaft 2 and rotates as the drive shaft 2 rotates, a vane 4 attached to the rotor 3, and the drive shaft 2.
  • a housing 9 that supports the rotor 3 and the vanes 4 while supporting them freely is configured.
  • the left side is the front side and the right side is the rear side.
  • the housing 9 is configured by combining two members, a first housing member 10 and a second housing member 20.
  • the first housing member 10 houses the rotor 3 and closes the cylinder forming portion 12 having the cam surface 11 formed on the inner peripheral surface and one end side (rear side) in the axial direction of the cylinder forming portion 12.
  • the first side block forming portion 13 is formed integrally with the first side block forming portion 13.
  • the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 is formed in a perfect circle in cross section, and the axial length is substantially equal to the axial length of the rotor 3 described later.
  • the second housing member 20 includes a second side block forming portion 21 that is in contact with an end face on the other end side (front side) in the axial direction of the cylinder forming portion 12 and closes the other end side. And a shell forming portion 22 formed integrally with the side block forming portion 21.
  • the shell forming portion 22 extends in the axial direction of the drive shaft 2 and is formed so as to surround the outer peripheral surfaces of the cylinder forming portion 12 and the first side block forming portion 13.
  • the first housing member 10 and the second housing member 20 are fastened in the axial direction via a coupling tool such as a bolt (not shown). Further, a seal member 8 such as an O-ring is interposed between the first side block forming portion 13 of the first housing member 10 and the shell forming portion 22 of the second housing member 20 so as to be airtightly sealed. Yes.
  • the second housing member 20 is integrally formed with a boss portion 23 extending from the second side block forming portion 21 to the front side.
  • a pulley (not shown) that transmits rotational power to the drive shaft 2 is rotatably mounted on the boss portion 23 so that the rotational power is transmitted from the pulley to the drive shaft 2 via an electromagnetic clutch (not shown). It has become.
  • the drive shaft 2 is rotatably supported by the first side block forming portion 13 and the second side block forming portion 21 via bearings 14 and 24.
  • the drive shaft 2 has a tip projecting into the boss portion 23 of the second housing member 20, and the space between the drive shaft 2 and the boss portion 23 is hermetically sealed by a seal member 25 provided between the drive shaft 2 and the boss portion 23. ing.
  • the rotor 3 has a circular cross section, and the drive shaft 2 is inserted through an insertion hole 3a provided at the center of the rotor 3, and the rotor 3 is fixed to the drive shaft 2 in a state where the centers of the shafts coincide with each other. Yes.
  • the axial center O ′ of the cylinder forming portion 12 and the axial center O of the rotor 3 (drive shaft 2) are such that the outer peripheral surface of the rotor 3 and the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 are in the circumferential direction. It is provided so as to be abutted at one place (is provided by being shifted by a half of the difference between the inner diameter of the cylinder forming portion 12 and the outer diameter of the rotor 3).
  • a compression space 30 is defined between the outer peripheral surface and the outer peripheral surface.
  • the second housing member 20 is formed with a suction port for sucking working fluid (refrigerant gas) from the outside and a discharge port for discharging the working fluid (refrigerant gas) to the outside.
  • the cylinder forming portion 12 of the first housing member 10 has a rotor that is in contact with a portion where the outer peripheral surface of the rotor 3 is in sliding contact with the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 (hereinafter referred to as a radial seal portion 40).
  • a suction port 15 communicating with the suction port is formed in the vicinity of the front side in the rotational direction 3.
  • a discharge port 16 communicating with the discharge port is formed in the vicinity of the rear side in the rotational direction of the rotor 3.
  • reference numeral 36 denotes a screw hole for screwing the connector.
  • the discharge port 16 has a counterbore (counter) that is concavely curved along the circumferential direction at the opening end with the inner peripheral surface (cam surface 11) of the cylinder forming portion 12. (Bore) 16a.
  • the compressed gas is discharged through the counterbore 16a.
  • a discharge chamber 32 is formed between the cylinder forming portion 12 of the first housing member 10 and the shell forming portion 22 of the second housing member 20.
  • the discharge port 16 opens into the discharge chamber 32 and is closed by a discharge valve 33 provided in the discharge chamber 32 so as to be opened and closed.
  • Reference numeral 34 denotes a retainer that regulates the movement of the discharge valve 33.
  • a high-pressure space 35 to which the discharge port is connected is formed between the first side block forming portion 13 of the first housing member 10 and the shell forming portion 22 of the second housing member 20.
  • the discharge chamber 32 communicates with the high-pressure space 35 via an oil separator (not shown).
  • the discharge chamber 32 and the high-pressure space 35 constitute a discharge fluid storage chamber that stores the fluid discharged from the discharge port 16.
  • the working fluid is separated by an oil separator (not shown) between the lower portion of the first side block forming portion 13 of the first housing member 10 and the lower portion of the shell forming portion 22 of the second housing member 20.
  • An oil reservoir chamber 18 is provided for storing oil (having a pressure corresponding to the pressure of the discharge gas).
  • a plurality of vane grooves 5 are formed on the outer peripheral surface of the rotor 3, and the vanes 4 are slidably inserted into the respective vane grooves 5.
  • the vane groove 5 is opened not only on the outer peripheral surface of the rotor 3 but also on the end surface facing the first side block forming portion 13 and the second side block forming portion 21, and a back pressure chamber 5 a is formed at the bottom.
  • a plurality of the vane grooves 5 are formed at equal intervals in the circumferential direction. In this example, the vane grooves 5 are formed so as to be parallel to each other at two positions different in phase by 180 degrees.
  • Each vane groove 5 is formed in the rotor in a state where a plane including the vane 4 and a plane parallel to the vane 4 and including the axis O of the drive shaft 2 are separated by a predetermined distance (offset state). Has been.
  • the vane 4 has a width along the axial direction of the drive shaft 2 equal to the axial length of the rotor 3. Further, the length in the insertion direction (sliding direction) into the vane groove 5 is formed substantially equal to the length of the vane groove 5 in the same direction.
  • the vane 4 is protruded from the vane groove 5 due to the back pressure supplied to the back pressure chamber 5 a of the vane groove 5, and the tip part can come into contact with the inner peripheral surface (cam surface 11) of the cylinder forming part 12. ing.
  • the compression space 30 is partitioned into a plurality of compression chambers 31 by the vanes 4 slidably inserted into the vane grooves 5, and the volume of each compression chamber 31 changes as the rotor 3 rotates. ing.
  • the first side block forming portion 13 has an end surface facing the axial end surface of the rotor 3 and a first recess 41 and a second recess that can communicate with the back pressure chamber 5 a provided at the bottom of the vane groove 5.
  • a recess 42 is formed.
  • the first recess 41 is formed in a range from the position of the radial seal portion 40 to the front of the vane 4 just before reaching the discharge port 16 (before the counterbore 16a).
  • the tip of the vane 4 communicates with the bottom of the vane groove 5 (back pressure chamber 5a) in the stroke before the discharge port 16 from the radial seal portion 40.
  • the second recess 42 is located at the position where the tip of the vane 4 is located at the discharge port 16, in this example, as shown in FIG. 16a to the radial seal portion 40).
  • the second recess 42 communicates with the bottom (back pressure chamber 5a) of the vane groove 5 in the stroke in the range: ⁇ from the discharge port 16 to the radial seal portion 40 at the tip of the vane 4. .
  • first side block forming portion 13 is connected to the first communication passage 51 that communicates the first recess 41 and the oil reservoir chamber 18, and the second communication passage that communicates the second recess 42 and the high-pressure space 35.
  • the communication path 52 is formed.
  • the first communication passage 51 has an oil introduction passage 51a drilled in the radial direction of the first side block forming portion 13 from the oil reservoir chamber 18, one end opened to the oil introduction passage 51a, and the other end And an orifice passage 51b opening in one recess 41.
  • the second communication passage 52 has a gas introduction passage 52a drilled from the high-pressure space 35 in the radial direction of the first side block forming portion 13, and one end opened to the gas introduction passage 52a. And an orifice passage 52b opening in the second recess 42.
  • the discharge gas communicates with the second recess 42 and is directly introduced into the bottom of the vane groove 5 (back pressure chamber 5a).
  • the discharge gas is supplied directly to the back pressure chamber 5a via the second communication passage 52 and the second recess 42 immediately after the compressor 1 is started, so that the tip of the vane 4 is connected to the discharge port 16.
  • the vane 4 is stably pressed against the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 even when passing in the vicinity of. Therefore, it is possible to eliminate a collision sound (chattering noise) generated when the vane 4 is separated from the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 and landed again.
  • the second recess for supplying the discharge gas to the back pressure chamber is formed in a short section in the circumferential direction independently of the first recess, so that the discharge gas is guided to the back pressure chamber. It is possible to reduce the volume of the path up to and increase the immediate effect of the pressure increase in the back pressure chamber 5a.
  • the orifice passage 52b is provided in the second communication passage 52, the amount of discharge gas supplied to the second recess 42 is adjusted by adjusting the diameter of the orifice passage 52b. It becomes possible to do.
  • the range in which the second recess 42 communicates with the bottom of the vane groove 5 is the position where the tip of the vane 4 reaches the discharge port 16 (at the start of the counterbore 16a).
  • the position ⁇ is set to a range ⁇ from the approaching position) to the radial seal portion 40.
  • chattering is more likely to occur between the portion where the tip end of the vane 4 is located at the middle to the end of the discharge port 16 and the radial seal portion 40.
  • the range in which the second recess 42 communicates with the bottom portion (back pressure chamber 5a) of the vane groove 5 is such that the tip of the vane 4 is connected to the discharge port 16 as shown in FIG. You may make it form the 2nd recessed part 42 so that it may become the range (beta) which moves to the radial seal part 40 from a middle position.
  • FIG. 4 and 5 show another configuration example of the vane type compressor according to the present invention.
  • This configuration example is different from the configuration example described above in that an opening / closing valve 54 is provided at the high pressure space side opening of the second communication path.
  • the on-off valve 54 is configured by a ball valve provided at the high-pressure space side opening of the second communication passage 52.
  • the on-off valve 54 is configured by accommodating a valve body 55 that opens and closes the second communication path 52 in the valve body housing portion 56. That is, a valve body accommodating portion 56 that accommodates the valve body 55 by forming a large diameter at the opening end of the second communication path 52 is provided, and the seat surface on which the valve body 55 is seated subsequent to the valve body accommodating portion 56.
  • valve body 55 is constantly urged away from the seat surface 57 by a compression spring 59 accommodated in the spring receiver 58.
  • a pin 60 for restricting the movement of the valve body 55 is fixed to the first side block forming portion 13 on the side opposite to the seat surface 57 with respect to the valve body 55.
  • the on-off valve 54 opens when the differential pressure between the pressure in the high-pressure space 35 and the pressure in the second recess 42 is not more than a predetermined threshold value, and closes when the threshold value is exceeded.
  • the threshold value is set to a value that is somewhat smaller than the differential pressure when the compressor 1 starts to start and reaches steady operation.
  • the opening / closing valve 54 since the opening / closing valve 54 is provided, it is not essential to form a throttle in the second communication path 52.
  • the second communication path 52 extends from the high-pressure space 35 to the first side.
  • a gas introduction passage 52a drilled in the radial direction of the block forming portion 13 and a communication passage 52c (one end opened in the gas introduction passage 52a and the other end opened in the second recess 42 is not formed. (Which does not have a restriction but has a smaller diameter than the gas introduction passage 52a).
  • the other structure is the same as that of the said structural example, it attaches
  • the on-off valve 54 is closed (the valve body 55 is closed on the seat surface 57). Sit down).
  • the discharge gas does not have to be introduced into the back pressure chamber 5a through the second recess 42. (Even when supply of the discharge gas from the second recess 42 is stopped), a sufficient back pressure can be maintained, and the vane 4 is in contact with the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 Can be maintained.
  • the axial end face of the rotor 3 and the first side block are stopped by stopping the supply of the discharge gas from the second communication passage 52 after sufficient back pressure is obtained through the first recess 41. It is avoided that the oil existing between the forming portion 13 is lost more than necessary, the sealing performance between the end surface of the rotor 3 and the first side block forming portion 13 is not impaired, and the compression efficiency is more than necessary. It is possible to prevent the decrease.
  • the on-off valve 54 since a ball valve is used as the on-off valve 54, space can be saved by providing a ball valve at the opening of the second communication passage 52 (a large installation space is ensured). It is also possible to form at low cost. Furthermore, since the outlet side of the on-off valve 54 is directly connected to the second recess 42 communicating with the back pressure chamber 5a, it is possible to connect the high-pressure space and the second recess 42 in the shortest time. In addition, the path volume of the discharge gas can be reduced, and the immediate effect of the pressure increase in the back pressure chamber 5a can be increased.
  • the second communication path 52 is connected to the high-pressure space 35.
  • the pressure of the discharge gas supplied to the second recess 42 is instantly determined by the gas pressure discharged from the discharge port 16.
  • the second communication path 52 may be connected to the discharge chamber 32.
  • the first side block forming portion 13 has a first recess 41 and a first communication passage 51 connected thereto, and a second recess 42 and a second communication passage 52 connected thereto.
  • the second side block forming portion 21 of the second housing member 20 may be formed similarly.
  • the above configuration can be similarly applied to a vane type compressor having three or more vanes.
  • the plane including the vane 4 and the plane parallel to the vane 4 are not only provided when the vane groove 5 (vane 4) is provided offset. In the case where the plane including the axis O of the drive shaft 2 is made coincident (offset is set to 0), or when it is offset to the opposite side to FIG. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

[Problem] To provide a vane compressor that can prevent chattering during startup by improving the promptness of pressure increases in a back pressure chamber and thereby reliably biasing a vane, during initial startup, low rotational speed, or the like, toward the inner circumferential face of a cylinder. [Solution] On an end face on the compression chamber side of a first side block forming portion (13) that is integral with a cylinder forming portion (12), a first concave portion (41) that communicates with the bottom of a vane groove (5) (back pressure chamber (5a)) is provided in the path of the distal end of a vane (4) from a sliding contact portion (radial seal portion (40)) of a rotor (3) and cam face (11) to the front of a delivery port (16), and a second concave portion (42) that communicates with the bottom of the vane groove (5) (back pressure chamber (5a)) is provided in the path of the distal end of the vane (4) in the range from the delivery port (16) to the radial seal portion (40). The first concave portion (41) and an oil reservoir (18) are joined by a first joining channel (51), and the second concave portion (42) and a high-pressure space (35) are joined by a second joining channel (52).

Description

ベーン型圧縮機Vane type compressor
 本発明は、ベーン型圧縮機に関し、特に起動時等において発生するベーンの振動に伴うノイズ(チャタリングノイズ)を低減するために有用な構造を備えたベーン型圧縮機に関する。 The present invention relates to a vane type compressor, and more particularly, to a vane type compressor having a structure useful for reducing noise (chattering noise) associated with vane vibration that occurs during startup.
 一般的に、ベーン型圧縮機は、両端が閉塞されると共にカム面が内周面に形成されたシリンダと、シリンダ内に回転可能に支持されたロータと、このロータの外周面から内部に向けて形成されたベーン溝と、このベーン溝に出没可能に収容されたベーンとを有して構成され、ベーンは、ロータの回転による遠心力およびベーン溝の底部に設けられた背圧室から作用する背圧によってシリンダの内周面に接触支持される構造となっている。 In general, a vane compressor has a cylinder in which both ends are closed and a cam surface is formed on an inner peripheral surface, a rotor that is rotatably supported in the cylinder, and an outer surface of the rotor that is directed inward. The vane groove is configured to have a vane groove accommodated in the vane groove so as to be able to appear and retract. The vane acts from the centrifugal force generated by the rotation of the rotor and the back pressure chamber provided at the bottom of the vane groove. The back pressure is such that it is supported in contact with the inner peripheral surface of the cylinder.
 このような圧縮機においては、起動初期において高低圧差が小さいため、ベーンがシリンダの内周面から離れ、再びシリンダの内周面に着地して衝突音(チャタリングノイズ)を発生させる状態が長く続きやすい。 In such a compressor, since the high / low pressure difference is small in the initial stage of the start-up, the state in which the vane leaves the inner peripheral surface of the cylinder and landes on the inner peripheral surface of the cylinder again to generate a collision noise (chattering noise) continues for a long time. Cheap.
 この現象は、特に、ベーンの先端部が吐出ポートを通過する付近からロータとシリンダの内周面とが摺接する部分(ラジアルシール部)を通過するまでの間で生じやすい。そのメカニズムは以下のように考えられている。
 図7に示されるように、吐出ポート16は、通常、圧縮ガスのスムーズな流れを確保するために、シリンダの内周面との開口端に周方向に延設された座ぐり(カウンターボア)16aを有している。このため、ベーン4の先端部が座ぐり16aに差し掛かると(例えば、2枚ベーンのベーン型圧縮機においては、ベーン4の先端部がラジアルシール部に位置している場合をロータ回転角0度とした場合に、ロータが300度を超えた辺りから)、ベーン4の背面側(ベーンの回転方向後方側)の圧縮室で圧縮された高い圧力が座ぐり16aを回り込んでベーン4の先端部の全面に作用する。これに対して、ベーン4の底部に作用する背圧(ベーン背圧)は、圧縮機の吐出圧に関連しており、吐出圧と吸入圧との中間圧となるため、ベーン4が座繰り16aを通過する際のベーン4の先端部にかかる前記圧力を支えきれなくなる。その結果、ベーンがシリンダの内周面から離れ、上述した現象が生じる。
This phenomenon is particularly likely to occur between the vicinity of the end of the vane passing through the discharge port and the passage of the portion where the rotor and the inner peripheral surface of the cylinder are in sliding contact (radial seal portion). The mechanism is considered as follows.
As shown in FIG. 7, the discharge port 16 usually has a counterbore (counterbore) extending in the circumferential direction at the opening end with the inner peripheral surface of the cylinder in order to ensure a smooth flow of compressed gas. 16a. For this reason, when the tip of the vane 4 approaches the counterbore 16a (for example, in a vane type compressor having two vanes, the rotor rotation angle is 0 when the tip of the vane 4 is positioned at the radial seal portion. High pressure compressed in the compression chamber on the back side of the vane 4 (the rear side in the direction of rotation of the vane) enters the counterbore 16a and the vane 4 Acts on the entire surface of the tip. On the other hand, the back pressure acting on the bottom of the vane 4 (vane back pressure) is related to the discharge pressure of the compressor and is an intermediate pressure between the discharge pressure and the suction pressure. The pressure applied to the tip of the vane 4 when passing through 16a cannot be supported. As a result, the vane is separated from the inner peripheral surface of the cylinder, and the phenomenon described above occurs.
 このような不都合を避けるために、従来においては、下記する特許文献に示されるように、サイドブロックのロータと対峙する面に、ベーン溝の底部に形成された背圧室と連通するように凹部を設け、この凹部に、吐出圧で押されたオイルを供給する連通路を接続すると共に吐出室に連通して吐出ガスを供給するガス流路を接続する構成が提案されている。
 このような構成によれば、ロータの回転初期に圧縮室で圧縮された吐出ガスをガス流路から凹部を介して背圧室に直接供給し、ベーンを確実にシリンダの内周面に付勢して起動時のチャタリングを防止することが期待できる。
In order to avoid such an inconvenience, conventionally, as shown in the following patent document, a concave portion is formed on the surface of the side block facing the rotor so as to communicate with the back pressure chamber formed at the bottom of the vane groove. A configuration has been proposed in which a communication path for supplying oil pressed by the discharge pressure is connected to the recess, and a gas flow path for supplying discharge gas is connected to the discharge chamber.
According to such a configuration, the discharge gas compressed in the compression chamber at the initial stage of rotation of the rotor is directly supplied from the gas flow path to the back pressure chamber through the recess, and the vane is reliably urged to the inner peripheral surface of the cylinder. It can be expected to prevent chattering at startup.
特開2004-52607号公報JP 2004-52607 A
 しかしながら、上述の提案された構成においては、サイドブロックのロータと対峙する面に形成された凹部に、オイルが供給されると共に吐出ガスが供給される構成であり、凹部は駆動軸を支持する貫通支持孔を中心として周方向の幅広い範囲に形成されている。このため、上述の構成においては、吐出ガスを背圧室に導くまでの経路容積が大きくなり、背圧室の圧力が高まるまでに遅れが生じ、即座に十分な背圧力が得られなくなる不都合が懸念される。
 また、上述の構成においては、上記凹部の縁部が長くなり、この縁部からオイルや吐出ガスが洩れることにより、即座に十分な背圧力が得られなくなる不都合も懸念される。
 このように、起動初期等に生じるチャタリングの発生を防止するためには、背圧室の圧力上昇の即効性を高めることは重要な課題である。
However, in the proposed configuration described above, oil is supplied to the recess formed on the surface of the side block facing the rotor and the discharge gas is supplied, and the recess is a through hole that supports the drive shaft. It is formed in a wide range in the circumferential direction around the support hole. For this reason, in the above-described configuration, the path volume until the discharge gas is guided to the back pressure chamber is increased, a delay occurs until the pressure in the back pressure chamber increases, and a sufficient back pressure cannot be obtained immediately. Concerned.
Further, in the above-described configuration, there is a concern that the edge of the recess becomes long, and oil or discharged gas leaks from the edge, so that a sufficient back pressure cannot be obtained immediately.
Thus, in order to prevent the occurrence of chattering that occurs in the initial stage of startup, it is an important issue to increase the immediate effect of the pressure increase in the back pressure chamber.
 本発明は、係る事情に鑑みてなされたものであり、背圧室の圧力上昇の即効性を高めて、起動初期や低回転時等において、ベーンを確実にシリンダの内周面に当接させてベーンのチャタリングの発生を防止するようにしたベーン型圧縮機を提供することを主たる課題としている。 The present invention has been made in view of such circumstances, and enhances the immediate effect of the pressure increase in the back pressure chamber so that the vane is brought into contact with the inner peripheral surface of the cylinder at the initial stage of startup or during low rotation. The main object is to provide a vane type compressor that prevents the occurrence of chattering of vanes.
 上記課題を達成するために、本発明に係るベーン型圧縮機は、ハウジングと、カム面が形成され、前記ハウジングの一部を構成するシリンダ形成部と、前記シリンダ形成部の軸方向の両端を閉塞し、前記ハウジングの一部を構成する一対のサイドブロック形成部と、前記一対のサイドブロック形成部に回転自在に支持された駆動軸と、前記駆動軸に固装されて前記シリンダ形成部内に回転可能に収容されるロータと、前記ロータの外周面の一部と前記シリンダ形成部の内周面の一部が摺接するラジアルシール部と、前記ロータに形成された複数のベーン溝と、前記ベーン溝に摺動自在に挿入され、先端部が前記ベーン溝から出没して前記カム面を摺動する複数のベーンと、前記シリンダ形成部と前記一対のサイドブロック形成部とにより閉塞された空間に、前記ロータと前記ベーンによって形成される圧縮室と、前記圧縮室に流体を吸入する吸入ポートと、前記圧縮室で圧縮された前記流体を吐出する吐出ポートと、前記吐出ポートから吐出された流体を収容する吐出流体収容室と、吐出された前記流体の圧力に相当する圧力のオイルを貯留するオイル溜まり室と、を備えたベーン型圧縮機において、
 少なくとも一方の前記サイドブロック形成部の前記圧縮室側端面に、前記ベーンの先端部が前記ラジアルシール部から前記吐出ポートの手前にある行程において、前記ベーン溝の底部と連通する第1の凹部と、前記第1の凹部と前記オイル溜まり室とを連通する第1の連通路と、を設け、さらに、前記ベーンの先端部が前記吐出ポートから前記ラジアルシール部までの範囲にある行程において、前記ベーン溝の底部と連通する第2の凹部と、前記第2の凹部と前記吐出流体収容室とを連通する第2の連通路と、
を設けたことを特徴としている。
In order to achieve the above object, a vane type compressor according to the present invention includes a housing, a cylinder forming portion that forms a cam surface, and that forms part of the housing, and both ends of the cylinder forming portion in the axial direction. A pair of side block forming portions that are closed and constitute a part of the housing, a drive shaft that is rotatably supported by the pair of side block forming portions, and a cylinder that is fixed to the drive shaft and is mounted in the cylinder forming portion. A rotor that is rotatably accommodated, a radial seal portion in which a part of an outer peripheral surface of the rotor and a part of an inner peripheral surface of the cylinder forming portion are in sliding contact, a plurality of vane grooves formed in the rotor, A plurality of vanes that are slidably inserted into the vane grooves, the tip portions of which protrude from the vane grooves and slide on the cam surface, are closed by the cylinder forming portion and the pair of side block forming portions. A compression chamber formed by the rotor and the vane, a suction port for sucking fluid into the compression chamber, a discharge port for discharging the fluid compressed in the compression chamber, and a discharge port. In a vane compressor comprising: a discharge fluid storage chamber that stores a discharged fluid; and an oil reservoir chamber that stores oil having a pressure corresponding to the pressure of the discharged fluid.
A first concave portion communicating with a bottom portion of the vane groove in a stroke in which a tip end portion of the vane is located in front of the discharge port from the radial seal portion on the compression chamber side end surface of at least one of the side block forming portions; A first communication passage that communicates the first recess and the oil reservoir chamber, and further, in a stroke in which the tip of the vane is in a range from the discharge port to the radial seal portion, A second recess communicating with the bottom of the vane groove; a second communication path communicating the second recess with the discharge fluid storage chamber;
It is characterized by providing.
 したがって、第2の凹部が第1の凹部とは独立に設けられ、この第2の凹部に第2の連通路を介して吐出ポートから吐出した流体を収容する吐出流体収容室が連通しているので、ベーンのチャタリングが発生しやすい吐出ポートの近傍にベーンの先端部が位置する場合に、ベーン溝の底部を第2の凹部と連通させることで、ベーンの背圧室に、吐出流体を速やかに供給でき(吐出流体収容室の圧力を速やかに伝達でき)、ベーンの背圧を吐出圧又はこれに近い圧力とすることが可能となる。このため、十分な背圧力を即座に確保することができるので、ベーンの先端部が吐出ポートに差し掛かる際にベーンの先端部にかかる圧力を支えることができ、ベーンのカム面に当接した状態を維持することが可能となる。 Accordingly, the second recess is provided independently of the first recess, and a discharge fluid storage chamber that stores the fluid discharged from the discharge port via the second communication path communicates with the second recess. Therefore, when the tip of the vane is positioned near the discharge port where vane chattering is likely to occur, the bottom of the vane groove is communicated with the second recess, so that the discharge fluid can be quickly transferred to the back pressure chamber of the vane. (The pressure in the discharge fluid storage chamber can be quickly transmitted), and the back pressure of the vane can be set to the discharge pressure or a pressure close thereto. For this reason, since sufficient back pressure can be secured immediately, it is possible to support the pressure applied to the tip of the vane when the tip of the vane reaches the discharge port, and contact the vane cam surface. It becomes possible to maintain the state.
 このような構成において、前記第2の連通路には、前記吐出流体収容室の圧力と前記第2の凹部の圧力との差圧が所定値以下で開弁し、該所定値を超えると閉弁する開閉弁を設けるようにしてもよい。
 このような開閉弁を設けることで、吐出圧力が高くなり、吐出流体収容室の圧力と第2の凹部の圧力との差圧が所定値を超えると開閉弁は閉弁するが、このような場合には第1の凹部を介して供給される背圧も十分に高くなるので、第2の凹部からの吐出流体の供給を停止しても十分な背圧力を保つことができ、ベーンをシリンダのカム面に当接した状態を維持することが可能となる。なお、いつまでも第2の凹部を介して吐出流体収容室からの吐出流体を供給していると、ロータの軸方向端面とサイドブロック形成部との間のオイルが少なくなり、この間のシール性が損なわれて圧縮効率が低下する恐れがあるが、第1の凹部を介して十分な背圧力が得られるに至った後は、開閉弁を閉じて吐出流体の供給を止めることで、圧縮効率を必要以上に低下させることを防ぐことが可能となる。
In such a configuration, the second communication passage opens in the second communication passage when the pressure difference between the pressure in the discharge fluid storage chamber and the pressure in the second recess is less than a predetermined value, and closes when the pressure exceeds the predetermined value. An on-off valve may be provided.
By providing such an on-off valve, the discharge pressure increases, and the on-off valve closes when the pressure difference between the pressure in the discharge fluid storage chamber and the pressure in the second recess exceeds a predetermined value. In this case, since the back pressure supplied through the first recess is sufficiently high, the back pressure can be maintained even if the supply of the discharge fluid from the second recess is stopped, and the vane It is possible to maintain the state in contact with the cam surface. If the discharge fluid from the discharge fluid storage chamber is supplied through the second recess forever, the amount of oil between the axial end surface of the rotor and the side block forming portion is reduced, and the sealing performance between them is impaired. However, after sufficient back pressure is obtained via the first recess, compression efficiency is required by closing the on-off valve and stopping the supply of the discharge fluid. It is possible to prevent the lowering.
 ここで、前記開閉弁は、前記第2の連通路の吐出流体収容室側開口部に設けられたボール弁を用いるとよい。
 第2の連通路の開口部にボール弁を設けることで、省スペース化を図ることができ(設置スペースを大きく確保する必要がなく)、また、安価に形成することが可能となる。
Here, as the on-off valve, a ball valve provided in the discharge fluid storage chamber side opening of the second communication path may be used.
By providing a ball valve at the opening of the second communication path, space can be saved (there is no need to secure a large installation space), and it can be formed at low cost.
 また、上述した開閉弁を持たない場合には、前記第2の連通路に絞りを設けるようにしてもよい。
 このような絞りを第2の連通路に設けることで、開閉弁を持たない場合においても第2の凹部に供給する吐出流体量を調整することが可能となる。
Further, when the above-described on-off valve is not provided, a throttle may be provided in the second communication path.
By providing such a throttle in the second communication path, it is possible to adjust the amount of discharged fluid supplied to the second recess even when there is no on-off valve.
 なお、ベーン溝の底部と第2の凹部との連通は、ベーンの先端部が、前記ロータの回転方向における前記吐出ポートの始端部から前記ラジアルシール部までの範囲にある行程、より好ましくは、前記ベーンの先端部が、前記吐出ポートの中程から前記ラジアルシール部までの範囲にある行程において行うようにするとよい。 The communication between the bottom of the vane groove and the second recess is preferably a stroke in which the tip of the vane is in the range from the start end of the discharge port to the radial seal in the rotational direction of the rotor, The tip of the vane may be performed in a stroke in a range from the middle of the discharge port to the radial seal portion.
 以上述べたように、本発明によれば、少なくとも一方のサイドブロック形成部のロータの端面と対峙する端面に、ベーンの先端部がラジアルシール部から吐出ポートの手前にある行程においてベーン溝の底部と連通する第1の凹部と、ベーンの先端部が吐出ポートからラジアルシール部までの範囲にある行程においてベーン溝の底部と連通する第2の凹部とを設け、第1の凹部をオイル溜まり室と連通し、第2の凹部を吐出流体収容室と連通するようにしたので、ベーンの先端部がチャタリングを発生しやすい吐出ポートからラジアルシール部までの範囲に位置する場合に、吐出流体収容室の吐出流体を周方向の短い区間に形成された第2の凹部を介してベーン溝の底部に導くことが可能となる。その結果、吐出流体をベーン溝の底部へ導く経路の容積を小さくでき、背圧室の圧力上昇の即効性を高めて、起動初期や低回転時等においてもベーンを確実にシリンダの内周面に付勢して起動時等のベーンのチャタリングを防止することが可能となる。 As described above, according to the present invention, the bottom portion of the vane groove in the stroke in which the tip end portion of the vane is located on the end surface facing the end surface of the rotor of at least one side block forming portion before the discharge port from the radial seal portion. A first recess that communicates with the bottom of the vane groove in a stroke in which the tip of the vane is in the range from the discharge port to the radial seal portion, and the first recess serves as an oil reservoir. Since the second recess communicates with the discharge fluid storage chamber, the discharge fluid storage chamber can be used when the tip of the vane is located in the range from the discharge port to the radial seal portion where chattering is likely to occur. It is possible to guide the discharged fluid to the bottom of the vane groove through the second recess formed in the short circumferential section. As a result, the volume of the path that guides the discharged fluid to the bottom of the vane groove can be reduced, and the immediate effect of the pressure increase in the back pressure chamber can be increased, so that the vane can be reliably secured even at the initial start-up or at low rotation. It is possible to prevent vane chattering at the time of startup or the like.
 また、第2の連通路に、吐出流体収容室の圧力と第2の凹部の圧力との差圧が所定値以下で開弁し、該所定値を超えると閉弁する開閉弁が設けられているので、十分な背圧力が得られるに至った後には、ベーン溝の底部への吐出流体の供給を止めることで、ロータの軸方向端面とサイドブロック形成部との間のシール性が損なわれことを回避し、圧縮効率を必要以上に低下させることを防ぐことが可能となる。 The second communication path is provided with an opening / closing valve that opens when the pressure difference between the pressure of the discharge fluid storage chamber and the pressure of the second recess is less than a predetermined value and closes when the pressure exceeds the predetermined value. Therefore, after sufficient back pressure is obtained, the sealing performance between the axial end surface of the rotor and the side block forming portion is impaired by stopping the supply of the discharge fluid to the bottom of the vane groove. It is possible to avoid this and prevent the compression efficiency from being lowered more than necessary.
 尚、このような開閉弁としては、第2の連通路の吐出流体収容室側開口部に設けられたボール弁を用いるとよい。このような構成とすることで、省スペース化が図れ、また、安価に形成することが可能となる。 In addition, as such an on-off valve, it is good to use the ball valve provided in the discharge fluid storage chamber side opening part of a 2nd communicating path. By adopting such a configuration, space can be saved, and it can be formed at low cost.
 また、開閉弁を具備しない場合には、第2の連通路に絞りを設けることが好ましい。このような構成とすることで、第2の凹部に供給する吐出流体量を調整することが可能となる。 In the case where no on-off valve is provided, it is preferable to provide a throttle in the second communication path. By setting it as such a structure, it becomes possible to adjust the amount of discharge fluid supplied to a 2nd recessed part.
図1は、本発明にかかるベーン型圧縮機を示す図であり、(a)はその側断面図、(b)は(a)のA-A線で切断した断面図である。1A and 1B are views showing a vane type compressor according to the present invention, in which FIG. 1A is a side sectional view thereof, and FIG. 1B is a sectional view taken along line AA in FIG. 図2(a)は、図1で示すベーン型圧縮機の第1のハウジング部材と第2のハウジング部材を示す断面斜視図であり、図2(b)は、第2の凹部とオリフィス通路との接続部分の拡大斜視図、図2(c)は、第1の凹部とオリフィス通路との接続部分の拡大斜視図である。2A is a cross-sectional perspective view showing the first housing member and the second housing member of the vane compressor shown in FIG. 1, and FIG. 2B shows the second recess and the orifice passage. FIG. 2C is an enlarged perspective view of the connecting portion between the first recess and the orifice passage. 図3は、背圧室と第2の凹部との連通状態を説明する図であり、図3(a)は、第2の凹部をベーンの先端部が吐出ポートの始端に差し掛かる位置からラジアルシール部にかけて形成した例を示し、図3(b)は、第2の凹部をベーンの先端部が吐出ポートの中程からラジアルシール部にかけて形成した例を示す図である。FIG. 3 is a view for explaining the communication state between the back pressure chamber and the second recess, and FIG. 3 (a) is a diagram showing a radial direction from the position where the tip of the vane approaches the start end of the discharge port. FIG. 3B is a diagram showing an example in which the second concave portion is formed from the middle of the discharge port to the radial seal portion from the middle of the discharge port. 図4は、本発明にかかるベーン型圧縮機の他の例を示す図であり、(a)はその側断面図、(b)は(a)のA-A線で切断した断面図である。4A and 4B are diagrams showing another example of the vane type compressor according to the present invention, in which FIG. 4A is a side sectional view thereof, and FIG. 4B is a sectional view taken along line AA in FIG. . 図5(a)は、図4で示すベーン型圧縮機の第1のハウジング部材と第2のハウジング部材を示す断面斜視図であり、図5(b)は、第2の凹部と連通路との接続部分の拡大斜視図、図5(c)は、第1の凹部とオリフィス通路との接続部分の拡大斜視図である。FIG. 5A is a cross-sectional perspective view showing the first housing member and the second housing member of the vane compressor shown in FIG. 4, and FIG. 5B shows the second recess and the communication path. FIG. 5C is an enlarged perspective view of the connecting portion between the first recess and the orifice passage. 図6は、開閉弁の詳細を示す断面図である。FIG. 6 is a cross-sectional view showing details of the on-off valve. 図7(a)は、ベーンの先端部が吐出ポートを通過する際にベーンの先端部に作用する力を説明する説明図であり、図7(b)は、従来の構成を2枚ベーンのベーン型圧縮機に採用した場合のロータ回転角に対するベーンの回転方向前方側の圧力、ベーンの回転方向後方側の圧力、ベーン背圧を示す特性線図である。FIG. 7A is an explanatory view for explaining the force acting on the tip of the vane when the tip of the vane passes through the discharge port, and FIG. 7B shows the conventional configuration of two vanes. It is a characteristic diagram which shows the pressure of the vane rotation direction front side with respect to a rotor rotation angle at the time of employ | adopting a vane type compressor, the pressure of the vane rotation direction back side, and a vane back pressure.
 以下、本発明のベーン型圧縮機について図面を参照しながら説明する。
 図1及び図2において、冷媒を作動流体とする冷凍サイクルに適したベーン型圧縮機が示されている。このベーン型圧縮機1は、駆動軸2と、駆動軸2に固定されて当該駆動軸2の回動に伴い回転するロータ3と、このロータ3に取り付けられるベーン4と、駆動軸2を回転自在に支持すると共にロータ3及びベーン4を収容するハウジング9とを有して構成されている。なお、図1において、左側をフロント側、右側をリア側とする。
Hereinafter, the vane type compressor of the present invention will be described with reference to the drawings.
1 and 2 show a vane type compressor suitable for a refrigeration cycle using a refrigerant as a working fluid. The vane compressor 1 includes a drive shaft 2, a rotor 3 that is fixed to the drive shaft 2 and rotates as the drive shaft 2 rotates, a vane 4 attached to the rotor 3, and the drive shaft 2. A housing 9 that supports the rotor 3 and the vanes 4 while supporting them freely is configured. In FIG. 1, the left side is the front side and the right side is the rear side.
 ハウジング9は、第1のハウジング部材10と第2のハウジング部材20との2つの部材を組み合わせて構成されている。第1のハウジング部材10は、ロータ3を収納すると共にカム面11が内周面に形成されたシリンダ形成部12と、このシリンダ形成部12の軸方向の一端側(リア側)を閉塞するように一体に形成された第1のサイドブロック形成部13とから構成されている。シリンダ形成部12の内周面(カム面11)は、断面が真円に形成され、軸方向の長さが後述するロータ3の軸方向の長さにほぼ等しく形成されている。 The housing 9 is configured by combining two members, a first housing member 10 and a second housing member 20. The first housing member 10 houses the rotor 3 and closes the cylinder forming portion 12 having the cam surface 11 formed on the inner peripheral surface and one end side (rear side) in the axial direction of the cylinder forming portion 12. The first side block forming portion 13 is formed integrally with the first side block forming portion 13. The inner peripheral surface (cam surface 11) of the cylinder forming portion 12 is formed in a perfect circle in cross section, and the axial length is substantially equal to the axial length of the rotor 3 described later.
 第2のハウジング部材20は、シリンダ形成部12の軸方向の他端側(フロント側)の端面に当接してこの他端側を閉塞する第2のサイドブロック形成部21と、この第2のサイドブロック形成部21に一体に形成されたシェル形成部22とを有して構成されている。このシェル形成部22は、駆動軸2の軸方向に延設され、前記シリンダ形成部12及び第1のサイドブロック形成部13の外周面を包囲するように形成されている。 The second housing member 20 includes a second side block forming portion 21 that is in contact with an end face on the other end side (front side) in the axial direction of the cylinder forming portion 12 and closes the other end side. And a shell forming portion 22 formed integrally with the side block forming portion 21. The shell forming portion 22 extends in the axial direction of the drive shaft 2 and is formed so as to surround the outer peripheral surfaces of the cylinder forming portion 12 and the first side block forming portion 13.
 そして、これら第1のハウジング部材10と第2のハウジング部材20とは、図示しないボルト等の連結具を介して軸方向に締結されている。また、第1のハウジング部材10の第1のサイドブロック形成部13と第2のハウジング部材20のシェル形成部22との間は、Oリング等のシール部材8が介在されて気密よくシールされている。 The first housing member 10 and the second housing member 20 are fastened in the axial direction via a coupling tool such as a bolt (not shown). Further, a seal member 8 such as an O-ring is interposed between the first side block forming portion 13 of the first housing member 10 and the shell forming portion 22 of the second housing member 20 so as to be airtightly sealed. Yes.
 また、第2のハウジング部材20には、第2のサイドブロック形成部21からフロント側に延設されたボス部23が一体に形成されている。このボス部23には、駆動軸2に回転動力を伝えるプーリ(図示せず)が回転自在に外装され、回転動力が、このプーリから図示しない電磁クラッチを介して駆動軸2に伝達されるようになっている。 Also, the second housing member 20 is integrally formed with a boss portion 23 extending from the second side block forming portion 21 to the front side. A pulley (not shown) that transmits rotational power to the drive shaft 2 is rotatably mounted on the boss portion 23 so that the rotational power is transmitted from the pulley to the drive shaft 2 via an electromagnetic clutch (not shown). It has become.
 前記駆動軸2は、第1のサイドブロック形成部13と第2のサイドブロック形成部21とにベアリング14,24を介して回転自在に支持されている。また、駆動軸2は、先端部が第2のハウジング部材20のボス部23内に突出し、ボス部23との間に設けられたシール部材25によって該ボス部23との間が気密よくシールされている。 The drive shaft 2 is rotatably supported by the first side block forming portion 13 and the second side block forming portion 21 via bearings 14 and 24. The drive shaft 2 has a tip projecting into the boss portion 23 of the second housing member 20, and the space between the drive shaft 2 and the boss portion 23 is hermetically sealed by a seal member 25 provided between the drive shaft 2 and the boss portion 23. ing.
 前記ロータ3は、断面が真円状に形成され、その軸中心に設けられた挿通孔3aに前記駆動軸2が挿通され、互いの軸中心を一致させた状態で駆動軸2に固定されている。また、シリンダ形成部12の軸中心O‘とロータ3(駆動軸2)の軸中心Oとは、ロータ3の外周面とシリンダ形成部12の内周面(カム面11)とが周方向の一箇所で当接するようにずらして設けられている(シリンダ形成部12の内径とロータ3の外径との差の1/2だけずらして設けられている)。そして、シリンダ形成部12と第1のサイドブロック形成部13及び第2のサイドブロック形成部21とにより閉塞された空間には、シリンダ形成部12の内周面(カム面11)とロータ3の外周面との間に圧縮空間30が画成されている。 The rotor 3 has a circular cross section, and the drive shaft 2 is inserted through an insertion hole 3a provided at the center of the rotor 3, and the rotor 3 is fixed to the drive shaft 2 in a state where the centers of the shafts coincide with each other. Yes. The axial center O ′ of the cylinder forming portion 12 and the axial center O of the rotor 3 (drive shaft 2) are such that the outer peripheral surface of the rotor 3 and the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 are in the circumferential direction. It is provided so as to be abutted at one place (is provided by being shifted by a half of the difference between the inner diameter of the cylinder forming portion 12 and the outer diameter of the rotor 3). In the space closed by the cylinder forming portion 12, the first side block forming portion 13, and the second side block forming portion 21, the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 and the rotor 3 A compression space 30 is defined between the outer peripheral surface and the outer peripheral surface.
 また、第2のハウジング部材20には、作動流体(冷媒ガス)を外部から吸入する吸入口および外部へ吐出する吐出口が形成されている。第1のハウジング部材10のシリンダ形成部12には、ロータ3の外周面がシリンダ形成部12の内周面(カム面11)と摺接する部位(以下、ラジアルシール部40)に対して、ロータ3の回転方向の前方側近傍に吸入口と連通する吸入ポート15が形成されている。また、ロータ3の回転方向の後方側直近に吐出口と連通する吐出ポート16が形成されている。なお、図1(b)において、36は、連結具を螺合するねじ穴である。 Also, the second housing member 20 is formed with a suction port for sucking working fluid (refrigerant gas) from the outside and a discharge port for discharging the working fluid (refrigerant gas) to the outside. The cylinder forming portion 12 of the first housing member 10 has a rotor that is in contact with a portion where the outer peripheral surface of the rotor 3 is in sliding contact with the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 (hereinafter referred to as a radial seal portion 40). A suction port 15 communicating with the suction port is formed in the vicinity of the front side in the rotational direction 3. Further, a discharge port 16 communicating with the discharge port is formed in the vicinity of the rear side in the rotational direction of the rotor 3. In FIG. 1B, reference numeral 36 denotes a screw hole for screwing the connector.
 吐出ポート16は、図3(a)にも示されるように、シリンダ形成部12の内周面(カム面11)との開口端に周方向に沿って湾曲状に凹ませた座ぐり(カウンターボア)16aを備えている。圧縮ガスは、この座ぐり16aを介して吐出される。第1のハウジング部材10のシリンダ形成部12と第2のハウジング部材20のシェル形成部22との間には、吐出室32が形成されている。前記吐出ポート16は、この吐出室32に開口し、吐出室32に設けられた吐出弁33により開閉可能に閉塞されている。なお、34は、吐出弁33の動きを規制するリテーナである。 As shown in FIG. 3A, the discharge port 16 has a counterbore (counter) that is concavely curved along the circumferential direction at the opening end with the inner peripheral surface (cam surface 11) of the cylinder forming portion 12. (Bore) 16a. The compressed gas is discharged through the counterbore 16a. A discharge chamber 32 is formed between the cylinder forming portion 12 of the first housing member 10 and the shell forming portion 22 of the second housing member 20. The discharge port 16 opens into the discharge chamber 32 and is closed by a discharge valve 33 provided in the discharge chamber 32 so as to be opened and closed. Reference numeral 34 denotes a retainer that regulates the movement of the discharge valve 33.
 また、第1のハウジング部材10の第1のサイドブロック形成部13と第2のハウジング部材20のシェル形成部22との間は、前記吐出口が接続する高圧空間35が形成されている。前記吐出室32は、図示しないオイル分離器を介してこの高圧空間35に連通している。これら吐出室32および高圧空間35により、吐出ポート16から吐出した流体を収容する吐出流体収容室が構成されている。さらに、第1のハウジング部材10の第1のサイドブロック形成部13の下部と第2のハウジング部材20のシェル形成部22の下部との間には、図示しないオイル分離器によって作動流体から分離されたオイル(吐出ガスの圧力に相当する圧力を有する)を溜めるオイル溜まり室18が設けられている。 Further, a high-pressure space 35 to which the discharge port is connected is formed between the first side block forming portion 13 of the first housing member 10 and the shell forming portion 22 of the second housing member 20. The discharge chamber 32 communicates with the high-pressure space 35 via an oil separator (not shown). The discharge chamber 32 and the high-pressure space 35 constitute a discharge fluid storage chamber that stores the fluid discharged from the discharge port 16. Further, the working fluid is separated by an oil separator (not shown) between the lower portion of the first side block forming portion 13 of the first housing member 10 and the lower portion of the shell forming portion 22 of the second housing member 20. An oil reservoir chamber 18 is provided for storing oil (having a pressure corresponding to the pressure of the discharge gas).
 前記ロータ3の外周面には、複数のベーン溝5が形成され、それぞれのベーン溝5には、ベーン4が摺動自在に挿入されている。ベーン溝5は、ロータ3の外周面のみならず第1のサイドブロック形成部13及び第2のサイドブロック形成部21と対峙する端面にも開口されており、底部には背圧室5aが形成されている。このベーン溝5は、周方向に等間隔に複数形成され、この例では、180度位相が異なる2箇所に互いに平行となるように形成されている。また、それぞれのベーン溝5は、ベーン4を含む平面と、ベーン4と平行をなし駆動軸2の軸心Oを含む平面とが所定の距離だけ離れた状態(オフセットした状態)でロータに形成されている。 A plurality of vane grooves 5 are formed on the outer peripheral surface of the rotor 3, and the vanes 4 are slidably inserted into the respective vane grooves 5. The vane groove 5 is opened not only on the outer peripheral surface of the rotor 3 but also on the end surface facing the first side block forming portion 13 and the second side block forming portion 21, and a back pressure chamber 5 a is formed at the bottom. Has been. A plurality of the vane grooves 5 are formed at equal intervals in the circumferential direction. In this example, the vane grooves 5 are formed so as to be parallel to each other at two positions different in phase by 180 degrees. Each vane groove 5 is formed in the rotor in a state where a plane including the vane 4 and a plane parallel to the vane 4 and including the axis O of the drive shaft 2 are separated by a predetermined distance (offset state). Has been.
 ベーン4は、駆動軸2の軸方向に沿った幅が前記ロータ3の軸方向の長さに等しく形成されている。また、ベーン溝5への挿入方向(摺動方向)の長さは、ベーン溝5の同方向の長さに略等しく形成されている。このベーン4は、ベーン溝5の背圧室5aに供給される背圧により、ベーン溝5から突出されて先端部がシリンダ形成部12の内周面(カム面11)に当接可能となっている。 The vane 4 has a width along the axial direction of the drive shaft 2 equal to the axial length of the rotor 3. Further, the length in the insertion direction (sliding direction) into the vane groove 5 is formed substantially equal to the length of the vane groove 5 in the same direction. The vane 4 is protruded from the vane groove 5 due to the back pressure supplied to the back pressure chamber 5 a of the vane groove 5, and the tip part can come into contact with the inner peripheral surface (cam surface 11) of the cylinder forming part 12. ing.
 したがって、前記圧縮空間30は、ベーン溝5に摺動自在に挿入されたベーン4によって複数の圧縮室31に仕切られ、それぞれの圧縮室31の容積は、ロータ3の回転によって変化するようになっている。 Therefore, the compression space 30 is partitioned into a plurality of compression chambers 31 by the vanes 4 slidably inserted into the vane grooves 5, and the volume of each compression chamber 31 changes as the rotor 3 rotates. ing.
 そして、第1のサイドブロック形成部13のロータ3の軸方向端面と対峙する端面には、ベーン溝5の底部に設けられた背圧室5aと連通可能な第1の凹部41と第2の凹部42が形成されている。 The first side block forming portion 13 has an end surface facing the axial end surface of the rotor 3 and a first recess 41 and a second recess that can communicate with the back pressure chamber 5 a provided at the bottom of the vane groove 5. A recess 42 is formed.
 第1の凹部41は、ベーン4の先端部がラジアルシール部40の位置から吐出ポート16に差し掛かる手前(座ぐり16aより手前)の範囲にかけて形成されている。ベーン4の先端部は、ラジアルシール部40から吐出ポート16の手前にある行程において、ベーン溝5の底部(背圧室5a)と連通するようになっている。 The first recess 41 is formed in a range from the position of the radial seal portion 40 to the front of the vane 4 just before reaching the discharge port 16 (before the counterbore 16a). The tip of the vane 4 communicates with the bottom of the vane groove 5 (back pressure chamber 5a) in the stroke before the discharge port 16 from the radial seal portion 40.
 これに対して、第2の凹部42は、ベーン4の先端部が吐出ポート16にある位置、この例では、図3(a)に示されるように、吐出ポート16に差し掛かる位置(座ぐり16aの始端に差し掛かる位置)からラジアルシール部40にかけて形成されている。この第2の凹部42は、ベーン4の先端部が吐出ポート16からラジアルシール部40までの範囲:αにある行程においてベーン溝5の底部(背圧室5a)と連通するようになっている。 On the other hand, the second recess 42 is located at the position where the tip of the vane 4 is located at the discharge port 16, in this example, as shown in FIG. 16a to the radial seal portion 40). The second recess 42 communicates with the bottom (back pressure chamber 5a) of the vane groove 5 in the stroke in the range: α from the discharge port 16 to the radial seal portion 40 at the tip of the vane 4. .
 また、第1のサイドブロック形成部13には、第1の凹部41とオイル溜まり室18とを連通する第1の連通路51と、第2の凹部42と高圧空間35とを連通する第2の連通路52とが形成されている。 Further, the first side block forming portion 13 is connected to the first communication passage 51 that communicates the first recess 41 and the oil reservoir chamber 18, and the second communication passage that communicates the second recess 42 and the high-pressure space 35. The communication path 52 is formed.
 第1の連通路51は、オイル溜まり室18から第1のサイドブロック形成部13の径方向に穿設されたオイル導入通路51aと、このオイル導入通路51aに一端が開口し、他端が第1の凹部41に開口するオリフィス通路51bとを有して構成されている。
 また、第2の連通路52は、高圧空間35から第1のサイドブロック形成部13の径方向に穿設されたガス導入通路52aと、このガス導入通路52aに一端が開口し、他端が第2の凹部42に開口するオリフィス通路52bと、を有して構成されている。
 これらオリフィス通路51b、52bによって、第1の連通路51と第2の連通路52には、絞りが構成されている。
The first communication passage 51 has an oil introduction passage 51a drilled in the radial direction of the first side block forming portion 13 from the oil reservoir chamber 18, one end opened to the oil introduction passage 51a, and the other end And an orifice passage 51b opening in one recess 41.
The second communication passage 52 has a gas introduction passage 52a drilled from the high-pressure space 35 in the radial direction of the first side block forming portion 13, and one end opened to the gas introduction passage 52a. And an orifice passage 52b opening in the second recess 42.
These orifice passages 51b and 52b constitute a restriction in the first communication passage 51 and the second communication passage 52.
 したがって、ベーン溝5の底部(背圧室5a)が第1の凹部41に連通すると、オイル導入通路51a及びオリフィス通路51bを介してオイル溜まり室18から供給された吐出圧力に相当する圧力を有するオイルが背圧室5aに送り込まれる。そして、ベーン溝5の底部(背圧室5a)が第2の凹部42に連通すると、ガス導入通路52a及びオリフィス通路52bを介して高圧空間35から供給された吐出ガスが背圧室5aに直接送り込まれる。 Therefore, when the bottom portion (back pressure chamber 5a) of the vane groove 5 communicates with the first recess 41, the pressure corresponding to the discharge pressure supplied from the oil reservoir chamber 18 through the oil introduction passage 51a and the orifice passage 51b is obtained. Oil is fed into the back pressure chamber 5a. When the bottom portion (back pressure chamber 5a) of the vane groove 5 communicates with the second recess 42, the discharge gas supplied from the high pressure space 35 via the gas introduction passage 52a and the orifice passage 52b directly enters the back pressure chamber 5a. It is sent.
 以上の構成において、圧縮機1が起動してロータ3が回転し始めると、圧縮室31で圧縮した吐出ガスが吐出ポート16を介して吐出室32に吐出され始める。この起動初期においては、吐出圧が十分に大きくなく、また、吐出圧によりオイル溜まり室18から第1の連通路51を介して第1の凹部41に送り込まれるオイルは、その粘性抵抗等のため、起動後ただちにベーン4に対して十分な背圧力を供給することができない。しかし、ベーン4の先端部がシリンダ形成部12の内周面(カム面11)から離れやすい吐出ポート16(座ぐり16a)に差し掛かった時点から、ベーン溝5の底部(背圧室5a)は第2の凹部42に連通し、このベーン溝5の底部(背圧室5a)に吐出ガスが直接導入される。このように、吐出ガスが、圧縮機1の起動直後に第2の連通路52および第2の凹部42を介して直接背圧室5aに供給されるので、ベーン4の先端部が吐出ポート16の近傍を通過する場合でも、ベーン4はシリンダ形成部12の内周面(カム面11)に安定して押し付けられる。したがって、ベーン4がシリンダ形成部12の内周面(カム面11)から離れて再び着地することで生じる衝突音(チャタリングノイズ)を無くすことが可能となる。
 特に、本構成においては、吐出ガスを背圧室に供給する第2の凹部が第1の凹部とは独立に且つ周方向の短い区間に形成されているので、吐出ガスを背圧室に導くまでの経路の容積を小さくすることができ、背圧室5aの圧力上昇の即効性を高めることが可能となる。
In the above configuration, when the compressor 1 is started and the rotor 3 starts to rotate, the discharge gas compressed in the compression chamber 31 starts to be discharged into the discharge chamber 32 through the discharge port 16. In the initial stage of startup, the discharge pressure is not sufficiently high, and the oil sent from the oil reservoir chamber 18 to the first recess 41 through the first communication passage 51 by the discharge pressure is due to its viscous resistance and the like. Immediately after starting, sufficient back pressure cannot be supplied to the vane 4. However, the bottom portion (back pressure chamber 5a) of the vane groove 5 starts from the point when the tip of the vane 4 reaches the discharge port 16 (spot face 16a) that is easily separated from the inner peripheral surface (cam surface 11) of the cylinder forming portion 12. The discharge gas communicates with the second recess 42 and is directly introduced into the bottom of the vane groove 5 (back pressure chamber 5a). Thus, the discharge gas is supplied directly to the back pressure chamber 5a via the second communication passage 52 and the second recess 42 immediately after the compressor 1 is started, so that the tip of the vane 4 is connected to the discharge port 16. The vane 4 is stably pressed against the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 even when passing in the vicinity of. Therefore, it is possible to eliminate a collision sound (chattering noise) generated when the vane 4 is separated from the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 and landed again.
In particular, in this configuration, the second recess for supplying the discharge gas to the back pressure chamber is formed in a short section in the circumferential direction independently of the first recess, so that the discharge gas is guided to the back pressure chamber. It is possible to reduce the volume of the path up to and increase the immediate effect of the pressure increase in the back pressure chamber 5a.
 また、上述の構成においては、第2の連通路52に、オリフィス通路52bが設けられているので、第2の凹部42に供給する吐出ガス量をこのオリフィス通路52bの径を調整することで調整することが可能となる。 In the above-described configuration, since the orifice passage 52b is provided in the second communication passage 52, the amount of discharge gas supplied to the second recess 42 is adjusted by adjusting the diameter of the orifice passage 52b. It becomes possible to do.
 なお、上述の例では、第2の凹部42がベーン溝5の底部(背圧室5a)と連通する範囲は、ベーン4の先端部が吐出ポート16に差し掛かる位置(座ぐり16aの始端に差し掛かる位置)からラジアルシール部40にかけての範囲αに設定されている。しかし、チャタリングがより発生しやすいのは、ベーン4の先端部が吐出ポート16の中程から終端に位置する部位からラジアルシール部40までの間であるとの知見を得ている。そこで、より好ましくは、第2の凹部42がベーン溝5の底部(背圧室5a)と連通する範囲が、図3(b)に示されるように、ベーン4の先端部が吐出ポート16の中程にある位置からラジアルシール部40にかけて動く範囲βとなるよう、第2の凹部42を形成するようにしてもよい。 In the above example, the range in which the second recess 42 communicates with the bottom of the vane groove 5 (back pressure chamber 5a) is the position where the tip of the vane 4 reaches the discharge port 16 (at the start of the counterbore 16a). The position α is set to a range α from the approaching position) to the radial seal portion 40. However, it has been found that chattering is more likely to occur between the portion where the tip end of the vane 4 is located at the middle to the end of the discharge port 16 and the radial seal portion 40. Therefore, more preferably, the range in which the second recess 42 communicates with the bottom portion (back pressure chamber 5a) of the vane groove 5 is such that the tip of the vane 4 is connected to the discharge port 16 as shown in FIG. You may make it form the 2nd recessed part 42 so that it may become the range (beta) which moves to the radial seal part 40 from a middle position.
 図4および図5において、本発明に係るベーン型圧縮機の他の構成例が示されている。この構成例においては、第2の連通路の高圧空間側開口部に開閉弁54を設けた点が前記構成例と異なっている。
 この開閉弁54は、第2の連通路52の高圧空間側開口部に設けられたボール弁で構成されている。図6に示されるように、開閉弁54は、弁体収容部56に第2の連通路52を開閉させる弁体55を収容して構成されている。すなわち、第2の連通路52の開口端部に径を大きく形成して弁体55を収容する弁体収容部56を設け、この弁体収容部56に続いて弁体55が着座するシート面57とばね受け58を形成し、ばね受け58に収容された圧縮スプリング59により弁体55を常時シート面57から離反させる方向に付勢するようにしている。また、弁体55に対してシート面57とは反対側には、弁体55の動きを規制するピン60が第1のサイドブロック形成部13に固定されている。
4 and 5 show another configuration example of the vane type compressor according to the present invention. This configuration example is different from the configuration example described above in that an opening / closing valve 54 is provided at the high pressure space side opening of the second communication path.
The on-off valve 54 is configured by a ball valve provided at the high-pressure space side opening of the second communication passage 52. As shown in FIG. 6, the on-off valve 54 is configured by accommodating a valve body 55 that opens and closes the second communication path 52 in the valve body housing portion 56. That is, a valve body accommodating portion 56 that accommodates the valve body 55 by forming a large diameter at the opening end of the second communication path 52 is provided, and the seat surface on which the valve body 55 is seated subsequent to the valve body accommodating portion 56. 57 and a spring receiver 58 are formed, and the valve body 55 is constantly urged away from the seat surface 57 by a compression spring 59 accommodated in the spring receiver 58. A pin 60 for restricting the movement of the valve body 55 is fixed to the first side block forming portion 13 on the side opposite to the seat surface 57 with respect to the valve body 55.
 したがって、開閉弁54は、高圧空間35の圧力と第2の凹部42の圧力との差圧が所定の閾値以下で開弁し、また前記閾値値を超えると閉弁するようになっている。なお、その閾値は、圧縮機1が起動し始めて定常運転に至った際の差圧よりも幾分小さい値に設定されている。 Therefore, the on-off valve 54 opens when the differential pressure between the pressure in the high-pressure space 35 and the pressure in the second recess 42 is not more than a predetermined threshold value, and closes when the threshold value is exceeded. The threshold value is set to a value that is somewhat smaller than the differential pressure when the compressor 1 starts to start and reaches steady operation.
 また、開閉弁54を設けたことに伴い、第2の連通路52に絞りを形成することは必須ではなくなり、この例においては、第2の連通路52が、高圧空間35から第1のサイドブロック形成部13の径方向に穿設されたガス導入通路52aと、このガス導入通路52aに一端が開口し、他端が第2の凹部42に開口する絞りが形成されていない連通路52c(絞りを有しないがガス導入通路52aより小さい径を有する)とにより構成されている。
 なお、他の構成は、前記構成例と同様であるので、同一箇所に同一符号を付し付して説明を省略する。
In addition, since the opening / closing valve 54 is provided, it is not essential to form a throttle in the second communication path 52. In this example, the second communication path 52 extends from the high-pressure space 35 to the first side. A gas introduction passage 52a drilled in the radial direction of the block forming portion 13 and a communication passage 52c (one end opened in the gas introduction passage 52a and the other end opened in the second recess 42 is not formed. (Which does not have a restriction but has a smaller diameter than the gas introduction passage 52a).
In addition, since the other structure is the same as that of the said structural example, it attaches | subjects the same code | symbol to the same location, and abbreviate | omits description.
 このような構成において、圧縮機が起動する初期においては、高圧空間35の圧力と第2の凹部41の圧力との差が小さく、弁体55をばね力に抗してシート面57に着座させることができないため、第2の連通路52は解放された状態にある。したがって、吐出ガスは、ベーン溝5の底部(背圧室5a)が第2の凹部42に連通すると、第2の連通路52を介して背圧室5aに即座に供給される。
 このため、ベーン4の先端部が吐出ポート16の近傍を通過する場合でも、ベーン4はシリンダ形成部12の内周面(カム面11)に安定して押し付けられ、ベーン4がシリンダ形成部12の内周面から離れて再び着地することによって衝突音(チャタリングノイズ)を発生させる不都合がなくなる。
In such a configuration, at the initial stage of starting the compressor, the difference between the pressure in the high pressure space 35 and the pressure in the second recess 41 is small, and the valve body 55 is seated on the seat surface 57 against the spring force. Since this is not possible, the second communication path 52 is in a released state. Therefore, the discharge gas is immediately supplied to the back pressure chamber 5a via the second communication passage 52 when the bottom portion (back pressure chamber 5a) of the vane groove 5 communicates with the second recess 42.
For this reason, even when the tip end portion of the vane 4 passes near the discharge port 16, the vane 4 is stably pressed against the inner peripheral surface (cam surface 11) of the cylinder forming portion 12, and the vane 4 is pressed against the cylinder forming portion 12. The inconvenience of generating a collision sound (chattering noise) is eliminated by landing again from the inner peripheral surface of the.
 これに対して、吐出圧力が高くなり、高圧空間35の圧力と第2の凹部42の圧力との差が所定値を超えると、開閉弁54が閉弁する(弁体55がシート面57に着座する)。
 しかし、この時点においては、第1の凹部41を介して供給されるオイルの圧力も十分に高くなっているので、第2の凹部42を介して吐出ガスを背圧室5aに導入しなくても(第2の凹部42からの吐出ガスの供給を停止しても)十分な背圧力を保つことができ、ベーン4をシリンダ形成部12の内周面(カム面11)に当接した状態を維持することが可能となる。しかも、第1の凹部41を介して十分な背圧力が得られるに至った後に第2の連通路52からの吐出ガスの供給を止めることで、ロータ3の軸方向端面と第1のサイドブロック形成部13との間に存在しているオイルが必要以上に無くなることが回避され、ロータ3の端面と第1のサイドブロック形成部13との間のシール性が損なわれず、圧縮効率を必要以上に低下することを防ぐことが可能となる。
On the other hand, when the discharge pressure increases and the difference between the pressure in the high pressure space 35 and the pressure in the second recess 42 exceeds a predetermined value, the on-off valve 54 is closed (the valve body 55 is closed on the seat surface 57). Sit down).
However, since the pressure of the oil supplied through the first recess 41 is sufficiently high at this time, the discharge gas does not have to be introduced into the back pressure chamber 5a through the second recess 42. (Even when supply of the discharge gas from the second recess 42 is stopped), a sufficient back pressure can be maintained, and the vane 4 is in contact with the inner peripheral surface (cam surface 11) of the cylinder forming portion 12 Can be maintained. Moreover, the axial end face of the rotor 3 and the first side block are stopped by stopping the supply of the discharge gas from the second communication passage 52 after sufficient back pressure is obtained through the first recess 41. It is avoided that the oil existing between the forming portion 13 is lost more than necessary, the sealing performance between the end surface of the rotor 3 and the first side block forming portion 13 is not impaired, and the compression efficiency is more than necessary. It is possible to prevent the decrease.
 また、この例では、開閉弁54としてボール弁が用いられているので、第2の連通路52の開口部にボール弁が設けることで、省スペース化を図ることができ(設置スペースを大きく確保する必要がなく)、また、安価に形成することが可能となる。
 さらに、開閉弁54の出口側が、背圧室5aと連通する第2の凹部42に直接接続されているので、高圧空間と第2の凹部42とを最短で結ぶことが可能となり、この点からも吐出ガスの経路容積を小さくすることができ、背圧室5aの圧力上昇の即効性を高めることが可能となる。
In this example, since a ball valve is used as the on-off valve 54, space can be saved by providing a ball valve at the opening of the second communication passage 52 (a large installation space is ensured). It is also possible to form at low cost.
Furthermore, since the outlet side of the on-off valve 54 is directly connected to the second recess 42 communicating with the back pressure chamber 5a, it is possible to connect the high-pressure space and the second recess 42 in the shortest time. In addition, the path volume of the discharge gas can be reduced, and the immediate effect of the pressure increase in the back pressure chamber 5a can be increased.
 なお、以上の構成においては、第2の連通路52を高圧空間35に接続した例を示したが、第2の凹部42に供給する吐出ガスの圧力を吐出ポート16から吐出したガス圧により即座に追従させるためには、第2の連通路52を吐出室32に接続させるようにしてもよい。
 また、この例では、第1のサイドブロック形成部13に第1の凹部41とこれに接続する第1の連通路51、及び、第2の凹部42とこれに接続する第2の連通路52を形成する例を示したが、第2のハウジング部材20の第2のサイドブロック形成部21に同様に形成するようにしてもよい。
In the above configuration, the example in which the second communication path 52 is connected to the high-pressure space 35 has been described. However, the pressure of the discharge gas supplied to the second recess 42 is instantly determined by the gas pressure discharged from the discharge port 16. In order to follow this, the second communication path 52 may be connected to the discharge chamber 32.
In this example, the first side block forming portion 13 has a first recess 41 and a first communication passage 51 connected thereto, and a second recess 42 and a second communication passage 52 connected thereto. However, the second side block forming portion 21 of the second housing member 20 may be formed similarly.
 さらに、以上の構成は、ベーンが3枚以上であるベーン型圧縮機においても、同様に採用可能である。また、2枚ベーンの構成においても、図1(b)で示すように、ベーン溝5(ベーン4)がオフセットして設けられた場合のみならず、ベーン4を含む平面と、ベーン4と平行をなし駆動軸2の軸心Oを含む平面とを一致させる(オフセットを0にする)場合や、図1(b)とは逆側にオフセットしている場合においても同様に採用するようにしてもよい。 Furthermore, the above configuration can be similarly applied to a vane type compressor having three or more vanes. Also in the configuration of two vanes, as shown in FIG. 1B, the plane including the vane 4 and the plane parallel to the vane 4 are not only provided when the vane groove 5 (vane 4) is provided offset. In the case where the plane including the axis O of the drive shaft 2 is made coincident (offset is set to 0), or when it is offset to the opposite side to FIG. Also good.
 1 ベーン型圧縮機
 2 駆動軸
 3 ロータ
 4 ベーン
 5 ベーン溝
 9 ハウジング
 10 第1のハウジング部材
 11 カム面
 12 シリンダ形成部
 13 第1のサイドブロック形成部
 15 吸入ポート
 16 吐出ポート
 18 オイル溜まり室
 20 第2のハウジング部材
 21 第2のサイドブロック形成部
 31 圧縮室
 32 吐出室
 35 高圧空間
 40 ラジアルシール部
 41 第1の凹部
 42 第2の凹部
 51 第1の連通路
 52 第2の連通路
 52b オリフィス通路
 54 開閉弁 
 
DESCRIPTION OF SYMBOLS 1 Vane type compressor 2 Drive shaft 3 Rotor 4 Vane 5 Vane groove 9 Housing 10 First housing member 11 Cam surface 12 Cylinder formation part 13 First side block formation part 15 Suction port 16 Discharge port 18 Oil reservoir chamber 20 First 2 housing member 21 second side block forming portion 31 compression chamber 32 discharge chamber 35 high pressure space 40 radial seal portion 41 first concave portion 42 second concave portion 51 first communication passage 52 second communication passage 52b orifice passage 54 On-off valve

Claims (5)

  1.  ハウジングと、カム面が形成され、前記ハウジングの一部を構成するシリンダ形成部と、
     前記シリンダ形成部の軸方向の両端を閉塞し、前記ハウジングの一部を構成する一対のサイドブロック形成部と、
     前記一対のサイドブロック形成部に回転自在に支持された駆動軸と、前記駆動軸に固装されて前記シリンダ形成部内に回転可能に収容されるロータと、
     前記ロータの外周面の一部と前記シリンダ形成部の内周面の一部が摺接するラジアルシール部と、
     前記ロータに形成された複数のベーン溝と、前記ベーン溝に摺動自在に挿入され、先端部が前記ベーン溝から出没して前記カム面を摺動する複数のベーンと、
     前記シリンダ形成部と前記一対のサイドブロック形成部とにより閉塞された空間に、前記ロータと前記ベーンによって形成される圧縮室と、
     前記圧縮室に流体を吸入する吸入ポートと、前記圧縮室で圧縮された前記流体を吐出する吐出ポートと、
     前記吐出ポートから吐出された流体を収容する吐出流体収容室と、
     吐出された前記流体の圧力に相当する圧力のオイルを貯留するオイル溜まり室と、
    を備えたベーン型圧縮機において、
     少なくとも一方の前記サイドブロック形成部の前記圧縮室側端面に、前記ベーンの先端部が前記ラジアルシール部から前記吐出ポートの手前にある行程において、前記ベーン溝の底部と連通する第1の凹部と、前記第1の凹部と前記オイル溜まり室とを連通する第1の連通路と、を設け、
     さらに、前記ベーンの先端部が前記吐出ポートから前記ラジアルシール部までの範囲にある行程において、前記ベーン溝の底部と連通する第2の凹部と、
     前記第2の凹部と前記吐出流体収容室とを連通する第2の連通路と、
    を設けたことを特徴とするベーン型圧縮機。
    A housing, and a cylinder forming portion having a cam surface and constituting a part of the housing;
    A pair of side block forming parts that closes both axial ends of the cylinder forming part and constitutes a part of the housing;
    A drive shaft rotatably supported by the pair of side block forming portions; a rotor fixedly mounted on the drive shaft and rotatably accommodated in the cylinder forming portion;
    A radial seal portion in which a portion of the outer peripheral surface of the rotor and a portion of the inner peripheral surface of the cylinder forming portion are in sliding contact;
    A plurality of vane grooves formed in the rotor, and a plurality of vanes which are slidably inserted into the vane grooves, and whose tip ends slide out of the vane grooves and slide on the cam surface;
    A compression chamber formed by the rotor and the vane in a space closed by the cylinder forming portion and the pair of side block forming portions;
    A suction port for sucking fluid into the compression chamber; a discharge port for discharging the fluid compressed in the compression chamber;
    A discharge fluid storage chamber for storing the fluid discharged from the discharge port;
    An oil reservoir chamber for storing oil at a pressure corresponding to the pressure of the discharged fluid;
    In a vane compressor equipped with
    A first concave portion communicating with a bottom portion of the vane groove in a stroke in which a tip end portion of the vane is located in front of the discharge port from the radial seal portion on the compression chamber side end surface of at least one of the side block forming portions; A first communication passage that communicates the first recess and the oil reservoir chamber;
    And a second recess communicating with the bottom of the vane groove in a stroke in which the tip of the vane is in a range from the discharge port to the radial seal portion;
    A second communication path communicating the second recess and the discharge fluid storage chamber;
    The vane type compressor characterized by having provided.
  2.  前記第2の連通路に、前記吐出流体収容室の圧力と前記第2の凹部の圧力との差圧が所定値以下で開弁し、該所定値を超えると閉弁する開閉弁を設けたことを特徴とする請求項1に記載のベーン型圧縮機。 The second communication path is provided with an opening / closing valve that opens when the pressure difference between the pressure of the discharge fluid storage chamber and the pressure of the second recess is less than a predetermined value and closes when the pressure exceeds the predetermined value. The vane type compressor according to claim 1.
  3.  前記開閉弁は、前記第2の連通路の前記吐出流体収容室側開口部に設けられたボール弁であることを特徴とする請求項1又は2に記載のベーン型圧縮機。 The vane compressor according to claim 1 or 2, wherein the on-off valve is a ball valve provided at the discharge fluid storage chamber side opening of the second communication path.
  4.  前記第2の連通路に絞りを設けたことを特徴とする請求項1記載のベーン型圧縮機。 2. The vane type compressor according to claim 1, wherein a throttle is provided in the second communication path.
  5.  前記ベーンの先端部が、前記ロータの回転方向における前記吐出ポートの始端部から前記ラジアルシール部までの範囲にある行程、より好ましくは、前記ベーンの先端部が、前記吐出ポートの中程から前記ラジアルシール部までの範囲にある行程において、前記ベーン溝の底部と前記第2の凹部とが連通することを特徴とする請求項1乃至4のいずれかに記載のベーン型圧縮機。
     
    A stroke where the tip of the vane is in a range from the starting end of the discharge port to the radial seal in the rotational direction of the rotor, more preferably, the tip of the vane is from the middle of the discharge port 5. The vane compressor according to claim 1, wherein a bottom portion of the vane groove communicates with the second concave portion in a stroke in a range up to a radial seal portion.
PCT/JP2014/056300 2013-03-27 2014-03-11 Vane compressor WO2014156609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013066906A JP6174879B2 (en) 2013-03-27 2013-03-27 Vane type compressor
JP2013-066906 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014156609A1 true WO2014156609A1 (en) 2014-10-02

Family

ID=51623592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056300 WO2014156609A1 (en) 2013-03-27 2014-03-11 Vane compressor

Country Status (2)

Country Link
JP (1) JP6174879B2 (en)
WO (1) WO2014156609A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109296532A (en) * 2018-12-14 2019-02-01 重庆工商大学 Blade electronics aspiration pump
EP3650634A1 (en) * 2018-11-09 2020-05-13 Lg Electronics Inc. Vane rotary compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545751B (en) * 2016-01-21 2018-02-13 珠海凌达压缩机有限公司 Exhaust device, rotor type compressor and air conditioner
KR101879674B1 (en) * 2016-11-28 2018-08-02 영신정공 주식회사 Vehicle Refrigerant Compressor with Vane Back-pressure Configuration Structure
JP2019011682A (en) 2017-06-29 2019-01-24 株式会社ヴァレオジャパン Vane compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153587A (en) * 1985-12-27 1987-07-08 Nissan Motor Co Ltd Rotary compressor
JPH09329094A (en) * 1996-06-10 1997-12-22 Zexel Corp Vane type compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153587A (en) * 1985-12-27 1987-07-08 Nissan Motor Co Ltd Rotary compressor
JPH09329094A (en) * 1996-06-10 1997-12-22 Zexel Corp Vane type compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3650634A1 (en) * 2018-11-09 2020-05-13 Lg Electronics Inc. Vane rotary compressor
US11428224B2 (en) 2018-11-09 2022-08-30 Lg Electronics Inc. Vane rotary compressor having a bearing with back pressure pockets
CN109296532A (en) * 2018-12-14 2019-02-01 重庆工商大学 Blade electronics aspiration pump
CN109296532B (en) * 2018-12-14 2024-01-26 重庆工商大学 Electronic air pump with rotary vane

Also Published As

Publication number Publication date
JP6174879B2 (en) 2017-08-02
JP2014190263A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
WO2014156609A1 (en) Vane compressor
WO2015104930A1 (en) Gas compressor
JP2005042675A (en) Variable displacement pump
JP6852636B2 (en) Vane compressor
WO2011122146A1 (en) Compressor
JP5938054B2 (en) Compressor
JP6083408B2 (en) Vane type compressor
JP2019065767A (en) Vane compressor
WO2015093504A1 (en) Compressor
JP6760836B2 (en) Refueling structure of vane type compressor
WO2017111012A1 (en) Vane compressor
WO2017150357A1 (en) Vane compressor
JP2014218961A (en) Vane type compressor
JP6242606B2 (en) Vane type compressor
JP2015140705A (en) compressor
JP2019011682A (en) Vane compressor
KR20020066969A (en) Axial pressure seal lubricator
JP2018141430A (en) Vane type compressor
WO2014203879A1 (en) Vane compressor
WO2014103974A1 (en) Gas compressor
JP7207058B2 (en) vane compressor
JP2004052607A (en) Gas compressor
WO2020189008A1 (en) Oil pump
JP2017061861A (en) Vane type compressor
WO2017094639A1 (en) Vane-type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14775115

Country of ref document: EP

Kind code of ref document: A1