WO2020189008A1 - Oil pump - Google Patents

Oil pump Download PDF

Info

Publication number
WO2020189008A1
WO2020189008A1 PCT/JP2020/002446 JP2020002446W WO2020189008A1 WO 2020189008 A1 WO2020189008 A1 WO 2020189008A1 JP 2020002446 W JP2020002446 W JP 2020002446W WO 2020189008 A1 WO2020189008 A1 WO 2020189008A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
pump
oil pump
oil
discharge
Prior art date
Application number
PCT/JP2020/002446
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 楊
浩二 佐賀
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020189008A1 publication Critical patent/WO2020189008A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to, for example, an oil pump.
  • Patent Document 1 As an oil pump applied to an internal combustion engine for an automobile, the one described in Patent Document 1 below is known.
  • An object of the present invention has been devised in view of such technical problems, and an object of the present invention is to provide an oil pump capable of reducing the flow path resistance and supplying the flow rate of oil required for an internal combustion engine.
  • a discharge passage is formed between a pump discharge hole of a pump structure and a discharge port connected to an internal combustion engine, and the discharge port is formed in the discharge passage. It is configured to have an enlarged passage where the passage area becomes larger as it gets closer.
  • an oil pump capable of reducing the flow path resistance and supplying the flow rate of oil required for the internal combustion engine.
  • FIG. 5 is a sectional view taken along line XI-XI shown in FIG. It is a perspective view which a part of the oil pump was broken.
  • FIG. 1 is an exploded perspective view showing each component of the oil pump according to the embodiment of the present invention
  • FIG. 2 is an external perspective view of the oil pump according to the embodiment of the present invention
  • FIG. 3 is an oil according to the embodiment of the present invention.
  • FIG. 4 is a perspective view of the oil pump according to the embodiment of the present invention as viewed from the first housing side.
  • the oil pump 1 has a pump accommodating portion 2s formed inside, and has an outer shell formed by a bottomed cylindrical first housing 2 having an opening at one end and a second housing 3 that closes the opening of the first housing 2. It is formed.
  • the first housing 2 is rotatably housed inside the first housing 2 and a drive shaft 4 which is rotationally driven by a crankshaft of an engine (not shown) so as to penetrate substantially the center of the second housing 3.
  • a rotor 5 whose central portion is coupled to a drive shaft 4 and a control ring 6 which is a movable member oscillatingly arranged on the outer peripheral side of the rotor 5 are provided.
  • the second housing 3 is provided with a pilot valve 7 which is a control mechanism for controlling hydraulic pressure supply switching in order to swing the control ring 6.
  • the pilot valve 7 is housed in a cylindrical valve body 3a formed in the second housing 3.
  • the pilot valve 7 is mounted between the spool valve body 7a that can slide in the valve body 3a in the vertical direction, the plug 7c that closes the upper end opening of the valve body 3a, and the spool valve body 7a and the plug 7c. It is provided with a valve spring 7b that urges the spool valve body 7a downward.
  • the first housing 2 and the second housing 3 are integrally connected by a plurality of screws 8, and each of the screws 8 is inserted into the screw insertion holes formed in the first housing 2 and the second housing 3, respectively. And these are to be concluded.
  • the first housing 2 is integrally formed of an aluminum alloy material, and one side surface of the control ring 6 in the axial direction slides on the bottom surface of the concave pump accommodating portion 2s, so that accuracy such as flatness and surface roughness can be improved. It is machined high and the sliding range is formed by machining.
  • the first housing 2 and the second housing 3 form a housing to be a housing of the variable displacement pump, and the pump accommodating portion 2s is formed inside the housing.
  • a bearing hole (not shown) for bearing one end of the drive shaft 4 is formed through the bottom surface of the pump accommodating portion 2s, which is an operating chamber, at a substantially central position, and the inner peripheral surface thereof.
  • a bottomed pin hole (not shown) into which a pivot pin 9 which is a pivot pin serving as a pivot point of the control ring 6 is inserted is bored.
  • first seal sliding contact surface 2a a first seal sliding contact surface 2a, a second seal sliding contact surface 2b, and a third seal sliding contact surface 2c are formed on the inner peripheral side of the pump accommodating portion 2s.
  • the first seal sliding contact surface 2a, the second seal sliding contact surface 2b, and the third seal sliding contact surface 2c are each provided with a first seal member 10a, a second seal member 10b, and a third seal provided on the control ring 6.
  • Each of the members 10c is always in sliding contact to seal.
  • the drive shaft 4 protrudes from the first housing 2, and a sprocket 11 is inserted into the protruding tip and fixed with a nut 12.
  • the rotational force transmitted from the crankshaft is transmitted to the rotor 5 via the sprocket 11 to rotate the rotor 5.
  • vanes 13 are slidably held in the seven slits 5a formed radially from the inner center side to the outside so that the vanes 13 can move forward and backward (can appear and disappear).
  • the vane 13 pushes the vane 13 outward by the centrifugal force accompanying the rotation of the rotor 5.
  • each base end edge on the inside is in sliding contact with the outer peripheral surfaces of the pair of front and rear vane rings 14, 14, and each tip edge is in sliding contact with the inner peripheral surface 6d of the control ring 6.
  • a pump chamber (a plurality of oil chambers) is provided between the adjacent vanes 13 and the inner peripheral surface 6d of the control ring 6 and the inner peripheral surface of the rotor 5, the pump accommodating portion 2s, and the inner surface of the first housing 2. (Not shown) are liquidtightly separated.
  • Each vane ring 14 is designed to push each vane 13 out of radiation as it rotates, and even when the engine speed is low and the centrifugal force is small, each tip of each vane 13 is controlled.
  • the pump chamber is liquid-tightly separated by sliding contact with the inner peripheral surface of the ring 6.
  • the control ring 6 is integrally formed of a sintered metal that is easy to process into a substantially cylindrical shape, and as shown in FIG. 1, a pivot recess 6e is formed at a position of a pivot pin 9 on the outer peripheral surface, and the pivot recess 6e is formed.
  • the pivot pin 9 inserted and positioned in is inserted and inserted to serve as an eccentric swing fulcrum.
  • the control ring 6 is provided with an arm portion 19 that receives a coil spring 18 that urges the control ring 6 in the eccentric direction.
  • the coil spring 18 is housed in a spring accommodating chamber 2d formed in the first housing 2.
  • first seal holding groove 6a and a first seal holding groove 6a for inserting the first seal member 10a, the second seal member 10b, and the third seal member 10c into the outer peripheral surface of the control ring 6 on the lower side of the pivot recess 6e.
  • the 2 seal holding groove 6b and the 3rd seal holding groove 6c are formed.
  • the three seal members 10 are elongated linearly along the axial direction of the control ring 6 by, for example, a fluororesin material having low friction characteristics.
  • the first seal is slidably contacted by the elastic force of a rubber elastic member formed at the bottom of each seal holding groove (first seal holding groove 6a, second seal holding groove 6b, third seal holding groove 6c). It is pressed against the surface 2a, the second seal sliding contact surface 2b, and the third seal sliding contact surface 2c.
  • the pressure of the three control oil chambers changes by swinging around the pivot pin 9. The specific configuration of the control oil chamber will be omitted.
  • the first housing 2 is provided with a check valve 17 that returns the oil to the oil pan when the pump discharge pressure rises excessively.
  • the check valve 17 is composed of a check ball 17a that opens and closes the flow path, a check spring 17b that gives an urging force to the check ball 17a, and a plug 17c that prevents the check spring 17b from coming off.
  • the pump component is formed by the drive shaft 4, the rotor 5, the control ring 6, the vane 13, and the vane ring 14.
  • the pump structure is housed inside the pump accommodating portion 2s, and the oil guided from the suction port 15 by being rotationally driven is discharged from the discharge port 16 formed in the second housing 3.
  • a flow path from the suction port 15 to the discharge port 16 is formed inside the oil pump 1 in a state where the first housing 2 and the second housing 3 are combined.
  • the oil pump 1 of this embodiment has a variable capacity type.
  • the oil pump 1 can be rotated into a housing including a first housing 2 having an opening on one end side and a pump accommodating portion 2s provided inside, and a second housing 3 for closing one end opening of the first housing 2.
  • the drive shaft 4 is supported by the pump and is rotationally driven by the crankshaft 21 (FIG. 9) through the substantially central portion of the pump accommodating portion 2s, and is movable (swinging) accommodating in the pump accommodating portion 2s.
  • a control ring 6 which is a member and constitutes a variable mechanism for changing the volume change amount of the pump chamber PR described later in cooperation with the first control oil chamber 31, the second control oil chamber 32 and the like described later and the coil spring 18.
  • the volume of the plurality of pump chambers PR formed between the control ring 6 and the control ring 6 is increased or decreased by being housed on the inner peripheral side of the control ring 6 and rotationally driven by the drive shaft 4 in the clockwise direction in FIG.
  • the pilot valve 7 is provided in the oil passage (first introduction passage 72 described later) branched from the oil main gallery MG, and the introduction of the control pressure guided from the oil main gallery MG to the pilot valve 7 is switched. It includes a solenoid valve 60, which is a switching mechanism for controlling.
  • the pump configuration is rotatably housed on the inner peripheral side of the control ring 6, and the central portion thereof is fitted on the outer peripheral surface of the drive shaft 4 and the rotor 5 is radially cut out on the outer peripheral portion of the rotor 5.
  • a plurality of vanes 13 which are housed in the formed slits 5a so as to be able to appear and disappear, and a pair of vane rings 14 which are formed to have a diameter smaller than that of the rotor 5 and are arranged on both inner peripheral side portions of the rotor 5.
  • the first housing 2 is integrally formed of an aluminum alloy material, and a bearing hole 2e that rotatably supports one end of the drive shaft 4 is formed through the end wall of the pump accommodating portion 2s at a substantially central position. ing. Then, the outer peripheral region of the bearing hole 2e is substantially arcuately concave so as to open in a region where the volume of each pump chamber PR expands (hereinafter, referred to as “suction region”) due to the pumping action of the pump structure.
  • the suction port 23a which is the suction portion of the pump chamber, is opened in a region where the volume of each pump chamber PR is reduced (hereinafter, referred to as “discharge region”), and the discharge port 24a, which is a substantially arcuate concave discharge portion, is provided. Notches are formed so as to substantially face each other with the bearing hole 2e in between.
  • a support groove 2f having a substantially semicircular cross section for swingably supporting the control ring 6 is formed at a predetermined position on the inner peripheral wall of the pump accommodating portion 2s via a rod-shaped pivot pin 9. Further, in the inner peripheral wall of the pump accommodating portion 2s, when M is a straight line connecting the center of the bearing hole 2e and the center of the support groove 2f and N is a straight line orthogonal to this straight line M, it is on the left side of the straight line N. A discharge region is formed and a suction region is formed on the right side.
  • the first seal sliding contact surface 2a to which the first seal member 10a fitted to the outer peripheral portion of the control ring 6 can always be in sliding contact is controlled in the range corresponding to the discharge region.
  • a third seal sliding contact surface 2c is formed so that the third sealing member 10c fitted to the outer peripheral portion of the ring 6 can always be in sliding contact.
  • the suction port 23a is integrally provided with an introduction portion 25 formed so as to bulge toward the spring accommodating chamber 2d, which will be described later, at a substantially intermediate position in the circumferential direction, and the introduction portion 25 and the suction port 23a are integrally provided.
  • a pump suction hole 23b that penetrates the end wall of the first housing 2 and opens to the outside is formed in the vicinity of the boundary portion of the first housing 2.
  • the discharge port 24a has a notch 26 on the outer peripheral side of the starting end portion thereof, which constitutes a discharge passage connected to the discharge port 24a and the pump discharge hole 27 described later.
  • the oil is discharged from the pump structure by penetrating the end wall of the first housing 2 and opening to the outside, and is guided to the discharge port 24a via the communication passage 26.
  • a pump discharge hole 27 for discharging the oil to the oil main gallery MG through a filter (not shown) is formed through along the axial direction.
  • the pump discharge hole 27 is provided so as to directly open into the first passage 81 via the communication hole 80, that is, a part thereof overlaps with the communication passage 26.
  • crankshaft 21 In the drive shaft 4, one end in the axial direction that penetrates the end wall of the first housing 2 and faces the outside is linked to the crankshaft 21 (FIG. 9), and the rotor 5 is based on the rotational force transmitted from the crankshaft 21. Is rotated clockwise in FIG.
  • the rotor 5 has a plurality of slits 5a formed radially outward from the center side thereof, and a cross section for introducing discharge oil at the inner base end portion of each slit 5a.
  • a back pressure chamber 5b having a substantially circular shape is provided, and each vane 13 is pushed outward by the centrifugal force accompanying the rotation of the rotor 5 and the pressure in the back pressure chamber 5b.
  • Each vane 13 has its tip surface in sliding contact with the inner peripheral surface of the control ring 6 and each base end surface in sliding contact with the outer peripheral surface of each vane ring 14 when the rotor 5 is rotated. That is, each of these vanes 13 is configured to be pushed upward in the radial direction of the rotor 5 by each vane ring 14, when the engine speed is low and the centrifugal force and the pressure of the back pressure chamber 5b are small. Even if there is, each tip is in sliding contact with the inner peripheral surface of the control ring 6, and each pump chamber PR is liquid-tightly separated.
  • the control ring 6 is integrally formed of a so-called fired metal in a substantially cylindrical shape, and at a predetermined position on the outer peripheral portion thereof, a substantially arcuate groove-shaped pivot portion that forms an eccentric swing fulcrum by being fitted with a pivot pin 9.
  • a notch 28 is formed along the axial direction, and a coil spring 18 which is an urging member set to a predetermined spring constant is provided at a position opposite to the pivot portion 28 with the center of the control ring 6 interposed therebetween.
  • the interlocking arm portions 19 are projected along the radial direction.
  • the arm portion 19 is provided with a pressing protrusion 19a formed in a substantially arc-convex shape on one side in the moving (rotating) direction, and the pressing protrusion 19a is the tip of the coil spring 18.
  • the arm portion 19 and the coil spring 18 are linked by constantly contacting the portions.
  • a spring accommodating chamber 2d for accommodating and holding the coil spring 18 is provided adjacent to the pump accommodating portion 2s at a position facing the support groove 2f.
  • a coil spring 18 is mounted in the spring accommodating chamber 2d with a predetermined set load W1 between one end wall thereof and the arm portion 19 (pressing protrusion 19a).
  • the other end wall of the spring accommodating chamber 2d is configured as a regulating portion 29 that regulates the movement range of the control ring 6 in the eccentric direction, and is controlled by abutting the other side portion of the arm portion 19 on the regulating portion 29. Further movement of the ring 6 in the eccentric direction is restricted.
  • eccentricity increases via the arm portion 19 due to the urging force of the coil spring 18 (clockwise in FIG. 6, hereinafter referred to as "eccentricity". ) Is constantly urged, and in the non-operating state, as shown in FIG. 6, the other side portion of the arm portion 19 is pressed against the regulating portion 29, and the eccentricity is regulated to the maximum position. It is supposed to be done.
  • the outer peripheral portion of the control ring 6 has a first to third seal configuration having a concentric arcuate sealing surface with the first to third seal sliding contact surfaces 2a to 2c provided on the inner peripheral wall of the pump accommodating portion 2s, respectively.
  • the portions 30a to 30c are formed so as to project, and the first to third seal members 10a to 10c are housed and held on the seal surfaces of the first to third seal constituent portions 30a to 30c, respectively.
  • the first to third seal members 10a to 10c are all formed in a linearly elongated shape along the axial direction of the control ring 6 by, for example, a fluororesin material having low friction characteristics, and are backed up by an elastic member made of rubber.
  • the outer peripheral portion of the control ring 6 includes the first seal member 10a, the second seal member 10b, and the pivot pin 9 housed and held in the first seal component 30a and the second seal component 30b.
  • the pair of the first control oil chamber 31 and the second control oil chamber 32 are separated by.
  • the first control oil chamber 31 and the second control oil chamber 32 are configured to be guided into the engine through a control pressure introduction passage 70 branched from the oil main gallery MG. Specifically, the first control oil chamber 32 is introduced through one of the bifurcated branch passages from the control pressure introduction passage 70, and the first control oil chamber 31 is introduced by the other branch passage.
  • Control pressure corresponding to the in-engine hydraulic pressure which is the pump discharge pressure reduced by the passage of an oil filter (not shown) through the passage 72, the solenoid valve 60, the second introduction passage 71, and the pilot valve 7, respectively (hereinafter, simply “control”). Pressure ”) is supplied.
  • the control pressure acts on the first pressure receiving surface 6f and the second pressure receiving surface 6g formed on the outer peripheral surfaces of the control ring 6 facing the first control oil chamber 31 and the second control oil chamber 32, respectively.
  • a moving force (swinging force) with respect to the control ring 6 is applied.
  • the pressure receiving area of the second pressure receiving surface 6g is larger than the pressure receiving area of the first pressure receiving surface 6f, and the pressure receiving area of the first pressure receiving surface 6f and the pressure receiving area of the third pressure receiving surface 6h described later are combined. It is set to be smaller than the pressure receiving area, and when the same hydraulic pressure acts on the pressure receiving surfaces 6f and 6g, the direction of increasing the eccentricity as a whole (clockwise in FIG. 6; The control ring 6 is urged in the "anti-concentric direction (increase in the amount of eccentricity)").
  • a third control oil chamber is formed by a third seal member 10c and a pivot pin 9 housed and held in the third seal component 30c. 36 are separated.
  • the third control oil chamber 36 has a third pressure receiving surface 6h, so that the pressure is lower than the pump discharge pressure itself (hereinafter, simply referred to as “pump discharge pressure”) discharged from the pump component. It is connected to the outside and is connected to the atmospheric pressure or low pressure chamber 35.
  • the pilot valve 7 is connected to the second introduction passage 71 via an introduction port 50 which is an opening on one end side, and a valve body 3a formed in a substantially cylindrical shape in which the opening on the other end side is closed by a plug 7c and a valve body.
  • a pair of large-diameter first land portions 43a and second land portions 43b that are slidably housed on the inner peripheral side of 3a and are in sliding contact with the inner peripheral surface of the valve body 3a are provided with the first control oil chamber 31, the first.
  • the spool valve body 7a used for controlling the supply and discharge of hydraulic pressure to the control oil chamber 32 and the plug 7c and the spool valve body 7a are mounted with a predetermined set load W2 on the inner circumference on the other end side of the valve body 3a. It is mainly composed of a valve spring 7b that constantly urges the spool valve body 7a toward one end side of the valve body 3a.
  • the valve body 3a accommodates a valve having an inner diameter substantially the same as the outer diameter of the spool valve body 43 (outer diameters of the first land portion 43a and the second land portion 43b) in a range excluding both ends in the axial direction.
  • a portion 41a is bored, and a spool valve body 7a is accommodated and arranged in the valve accommodating portion 41a.
  • An introduction port 50 for introducing control pressure is formed at one end of the valve body 3a in the axial direction by connecting to the second introduction passage 71, while an inner peripheral portion thereof is formed at the other end.
  • the plug 7c is screwed through the female screw portion formed in the above.
  • a connection port 51 connected to the supply / discharge port 68 of the solenoid valve 60 is formed at a position on one end side in the axial direction via the second introduction passage 71, and is formed in the axial direction.
  • a supply / discharge port 52 connected to the first control oil chamber 31 is formed at an intermediate position, and the hydraulic pressure of the first control oil chamber 31 and the second control oil chamber 32 guided through the internal passage 55 is discharged.
  • the first drain port 53 and the second drain port 54 to be used for the above are formed as openings.
  • a first land portion 43a and a second land portion 43b are formed at both ends in the axial direction, and the first land portion 43a and the second land portion 43b are connected by a small diameter shaft portion 43c. ing. Then, by accommodating the spool valve body 7a in the valve accommodating portion 41a, the spool valve body 7a is provided between the first land portion 43a and the valve body 3a inside the valve accommodating portion 41a via the introduction port 50.
  • a back pressure chamber 58 provided between the two and used for discharging the hydraulic pressure guided through the internal passage 55 is separated from each other.
  • the pilot valve 7 is subjected to the urging force of the valve spring 7b based on the set load W2 when the control pressure guided from the introduction port 50 to the pressure chamber 56 is equal to or less than a predetermined pressure (spool operating hydraulic pressure Ps).
  • the spool valve body 7a is pressed against one end side of the valve body 3a. That is, while the second introduction passage 71 and the relay room 57 are communicated with each other via the connection port 51, the communication between the first drain port 53 and the relay room 57 is blocked by the second land portion 43b, and the communication between the first drain port 53 and the relay room 57 is blocked, and the communication is cut off via the supply / discharge port 52.
  • the first control oil chamber 31 and the relay chamber 57 are communicated with each other. As a result, the hydraulic pressure guided from the second introduction passage 71 through the connection port 51 is supplied to the first control oil chamber 31 via the relay chamber 57 and the supply / discharge port 52.
  • the solenoid valve 60 is housed and arranged inside a valve accommodating hole (not shown) interposed in the middle of the first introduction passage 72, and a substantially cylindrical valve body 61 having an oil passage 65 penetrating along the internal axial direction. And, at one end of the valve body 61 (the left end in the figure), the oil passage 65 is expanded and fixed to the outer end of the valve body accommodating portion 66, and the first introduction passage 72 is fixed at the center.
  • a seat member 62 having an introduction port 67 which is an upstream opening connected to the upstream passage 72a of the seat member 62 and a valve seat 62a formed at the inner end opening edge of the seat member 62 so as to be detachable and seatable. It is mainly composed of a ball valve body 63 used for opening and closing the introduction port 67, and a solenoid 64 provided at the other end of the valve body 61 (the right end in the figure).
  • a valve body accommodating portion 66 accommodating the ball valve body 63 is provided on the inner peripheral portion on one end side in a stepped diameter with respect to the oil passage 65, whereby the inner end of the valve body accommodating portion 66 is provided.
  • a valve seat 66a similar to the valve seat 62a provided on the seat member 62 is also formed on the opening edge of the portion.
  • a supply / discharge port 68 connected to the downstream passage 72b and used for supplying / discharging hydraulic pressure to the pilot valve 7 has a diameter.
  • a drain port 69 connected to the oil pan 20 is formed through the outer peripheral portion of the oil passage 65 on the other end side along the radial direction.
  • the solenoid 64 has an armature (not shown) arranged on the inner peripheral side of the coil and a rod 64b fixed to the armature (not shown) having an electromagnetic force generated by energizing a coil (not shown) housed inside the casing 64a. Is configured to advance and move to the left in FIG.
  • the solenoid 64 is energized with an exciting current from an in-vehicle ECU (not shown) based on an engine operating state detected or calculated by predetermined parameters such as the oil temperature and water temperature of the internal combustion engine and the engine speed. It becomes.
  • FIG. 9 is an external perspective view showing a state in which the oil pump according to the embodiment of the present invention is attached to the oil pan
  • FIG. 10 is a top view showing a state in which the oil pump according to the embodiment of the present invention is attached to the oil pan. ..
  • the oil pump 1 is housed in the oil pan 20.
  • the oil pan 20 is composed of an oil pan lower 20a having an open upper portion and an oil pan upper 20b placed above the oil pan lower 20a.
  • the oil pan upper 20b is fixed by the bolt 22.
  • a part of the upper part of the oil pan upper 20b is notched in an arc shape, and the journal portion 21a of the crankshaft 21 is arranged in this notched part, and the crankshaft 21 is rotatably supported.
  • a sprocket (not shown) is attached to the crankshaft 21, and the driving force of the crankshaft 21 is transmitted to the oil pump 1 by connecting the sprocket and the sprocket 11 of the oil pump 1 with a belt.
  • the oil stored in the oil pan lower 20a is sucked from the pump suction hole 23b of the pump structure through the suction port 15, and is pressurized by the pump structure. It is discharged from the pump discharge hole 27 through the discharge passage and from the discharge port 16. The oil discharged from the discharge port 16 is supplied to the internal combustion engine.
  • FIG. 11 is a sectional view taken along line XI-XI shown in FIG.
  • FIG. 12 is a perspective view in which a part of the oil pump is broken.
  • the first direction and the second direction are defined as follows. As shown in FIG. 12, the first direction is a direction along the rotation axis of the drive shaft 4 which is a pump component, and the second direction is a direction orthogonal to the first direction.
  • the pump discharge hole 27 of the pump structure communicates with the communication hole 80 formed in the first housing 2.
  • the communication hole 80 opens and extends along the first direction and communicates with one of the first passages 81.
  • the first passage 81 extends in a second direction orthogonal to the first direction.
  • the oil that has passed through the connecting hole 80 flows into the first passage 81, and the direction of flow in the second direction orthogonal to the first direction is changed.
  • the passage area of the communication hole 80 communicating with the pump discharge hole 27 is S1 and the passage area of the first passage 81 is S2
  • the passage area S2 of the first passage 81 is formed larger than the passage area S1 of the communication hole 80. (S2> S1).
  • the passage area S2 of the first passage 81 is larger than the passage area S1 of the communication hole 80, the pulsation in the discharge passage can be reduced and the vibration of the oil pump can be suppressed.
  • the other side of the first passage 81 communicates with one of the expansion passages 82.
  • the expansion passage 82 extends in the first direction, and is formed so that the passage area increases toward the downstream side.
  • the oil that has passed through the first passage 81 flows into the expansion passage 82, and the direction of flow in the first direction orthogonal to the second direction is changed.
  • the other side of the expansion passage 82 communicates with one of the reduction passage 83.
  • the reduced passage 83 extends in the first direction, and is formed so that the passage area becomes smaller toward the downstream side.
  • the expansion passage 82 and the reduction passage 83 are formed in a short shape. Therefore, the oil pump 1 can be miniaturized.
  • the other side of the reduced passage 83 communicates with one of the second passage 84.
  • the second passage 84 is formed so as to extend in the first direction and the third direction orthogonal to the second direction. In this embodiment, the second passage 84 extends downward.
  • the second passage 84 has a discharge port 16.
  • a discharge port 16 of the oil pump 1 is provided on the other side of the second passage 84.
  • the discharge port 16 communicates with the internal combustion engine.
  • a discharge passage is formed between the pump discharge hole 27 and the discharge port 16 connected to the internal combustion engine.
  • the communication hole 80, the first passage 81, and the expansion passage 82 of this embodiment are formed in the first housing 2 together with the pump component. Further, the reduced passage 83 and the second passage 84 of this embodiment are formed in the second housing 3. Then, the discharge passage is formed by arranging the second housing 3 so as to close the pump accommodating portion 2s of the first housing 2.
  • the configuration of the expansion passage 82 will be described.
  • the expansion passage 82 is composed of a first expansion passage portion 82a extending in the first direction and a second expansion passage portion 82b provided at a position facing the first expansion passage portion 82a.
  • the first expanded passage portion 82a and the second expanded passage portion 82b face each other with a virtual line (broken line in FIG. 11) as a boundary.
  • the second expanded passage portion 82b is formed so that the distance from the first expanded passage portion 82a gradually increases as the distance from the first passage 81 approaches the reduced passage 83 (discharge port 16).
  • the second expansion passage portion 82b is arranged on the crankshaft 21 side.
  • the expansion passage forming portion 85 forming the second expansion passage portion 82b is arranged so as to be inclined so that the reduction passage 83 side is located above the first passage 81 side. As a result, the second expansion passage portion 82b is inclined along the expansion passage forming portion 85.
  • the communication hole 80, the first passage 81, and the expansion passage 82 of this embodiment are formed in the first housing 2 together with the pump structure.
  • the expansion passage 82 whose passage area is expanded is formed in the discharge passage formed between the pump discharge hole 27 and the discharge port 16 connected to the internal combustion engine, the discharge passage The flow path resistance of the oil flowing inside can be reduced, and the necessary oil can be supplied to the internal combustion engine.
  • the reduced passage 83 is composed of a first reduced passage portion 83a extending in the first direction and a second reduced passage portion 83b provided at a position facing the first reduced passage portion 83a.
  • the first reduced passage portion 83a and the second reduced passage portion 83b face each other with a virtual line (broken line in FIG. 11) as a boundary.
  • the first reduced passage portion 83a is located on the same side as the first expanded passage portion 82a and is connected to the first expanded passage portion 82a.
  • the second reduced passage portion 83b is located on the same side as the second expanded passage portion 82b, and is connected to the first expanded passage portion 82a and the second expanded passage portion 82b.
  • the first reduced passage portion 83a is formed so that the distance from the expanded passage 82 to the second reduced passage portion 83b gradually decreases as it approaches the second passage 84 (discharge port 16).
  • the second expansion passage portion 82b is arranged on the crankshaft 21 side.
  • the reduced passage forming portion 86 forming the first reduced passage portion 83a is arranged so as to be inclined so that the discharge port 16 side is located above the expanded passage 82 side. As a result, the first reduced passage portion 83a is inclined along the reduced passage forming portion 86. Further, the first reduced passage portion 83a and the second expanded passage portion 82b are arranged so as to be inclined in the same direction.
  • the reduced passage forming portion 86 forms a part of the second passage 84 and a part of the discharge port 16.
  • the outer circumference of the discharge port 16 is a flange portion for connecting to a passage connected to the internal combustion engine.
  • the strength of the flange portion is ensured and the sealing property at the flange portion is ensured. , Oil leakage can be suppressed.
  • the reduced passage 83 is formed so as to communicate with the expanded passage 82 and reduce the passage area. Since the oil flowing through the discharge passage passes through the expanded passage and the reduced passage, a vortex is generated in the discharge passage, and the pressure of the oil is relieved by the vortex. As a result, in this embodiment, the pulsation in the discharge passage can be reduced, and the vibration of the oil pump due to the pulsation can be reduced.
  • the passage area S7 of the discharge port 16 which is the outlet of the discharge passage is formed to be larger than the passage area S1 of the communication hole 80 which is the inlet of the discharge passage (S7> S1).
  • the passage area S7 of the discharge port 16 is larger than the passage area S1 of the communication hole 80, the flow path resistance in the discharge passage can be reduced.
  • the length L1 of the expansion passage 82 is formed longer than the length L2 of the reduction passage 83.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

A discharge passage that leads from a pump discharge hole to a discharge port connected to an internal combustion engine is formed in a first housing and a second housing accommodating a pump constituent body. The discharge passage is provided with: a first passage that extends in a first direction, which is the direction running along the rotational axis of the pump constituent body, to communicate with the pump discharge hole, that extends in a second direction orthogonal to the first direction, and that is formed larger than the passage area of the pump discharge hole; and an enlarged passage that communicates with the first passage, that extends in the second direction, and that increases in passage area from the first passage towards a discharge port.

Description

オイルポンプOil pump
 本発明は、例えば、オイルポンプに関する。 The present invention relates to, for example, an oil pump.
 例えば、自動車用の内燃機関に適用されるオイルポンプとしては、以下の特許文献1に記載されたようなものが知られる。 For example, as an oil pump applied to an internal combustion engine for an automobile, the one described in Patent Document 1 below is known.
 特許文献1の記載の技術は、オイルポンプのハウジング内部に設けられたポンプ構成体から吐出されるオイルが、ハウジングの内部に設けられた通路を介して吐出孔から内燃機関に供給されている。 According to the technique described in Patent Document 1, oil discharged from a pump component provided inside the housing of an oil pump is supplied to an internal combustion engine from a discharge hole through a passage provided inside the housing.
特開2016-104967号公報Japanese Unexamined Patent Publication No. 2016-104967
 しかしながら、特許文献1に記載の技術においては、ポンプ構成体から吐出されるオイルが流れる通路であって、ハウジングの内部に設けられた通路の通路面積がほぼ一定であるため、流路抵抗が大きく、内燃機関に必要なオイルの流量を十分に供給できない恐れがあった。 However, in the technique described in Patent Document 1, since the passage area through which the oil discharged from the pump component flows and the passage area provided inside the housing is substantially constant, the flow path resistance is large. , There was a risk that the flow rate of oil required for the internal combustion engine could not be supplied sufficiently.
 本発明の目的は、かかる技術的課題に鑑みて案出されたものであって、流路抵抗を小さくし、内燃機関に必要なオイルの流量を供給可能なオイルポンプを提供することにある。 An object of the present invention has been devised in view of such technical problems, and an object of the present invention is to provide an oil pump capable of reducing the flow path resistance and supplying the flow rate of oil required for an internal combustion engine.
 本発明によれば、その1つの態様において、ポンプ構成体のポンプ吐出孔から内燃機関に接続される吐出口との間に形成される吐出通路であって、この吐出通路内に前記吐出口に近づくほど通路面積が大きくなる拡大通路を備えるように構成した。 According to the present invention, in one aspect thereof, a discharge passage is formed between a pump discharge hole of a pump structure and a discharge port connected to an internal combustion engine, and the discharge port is formed in the discharge passage. It is configured to have an enlarged passage where the passage area becomes larger as it gets closer.
 本発明の一実施形態によれば、流路抵抗を小さくし、内燃機関に必要なオイルの流量を供給可能なオイルポンプを提供することができる。 According to one embodiment of the present invention, it is possible to provide an oil pump capable of reducing the flow path resistance and supplying the flow rate of oil required for the internal combustion engine.
本発明の実施例に係るオイルポンプの各構成部品を示す分解斜視図である。It is an exploded perspective view which shows each component part of the oil pump which concerns on embodiment of this invention. 本発明の実施例に係るオイルポンプの外観斜視図である。It is external perspective view of the oil pump which concerns on embodiment of this invention. 本発明の実施例に係るオイルポンプを第2ハウジング側から見た斜視図である。It is a perspective view which looked at the oil pump which concerns on embodiment of this invention from the 2nd housing side. 本発明の実施例に係るオイルポンプを第1ハウジング側から見た斜視図である。It is a perspective view which looked at the oil pump which concerns on embodiment of this invention from the 1st housing side. 本発明の実施例に係る可変容量形オイルポンプの油圧回路図である。It is a hydraulic circuit diagram of the variable capacity type oil pump which concerns on embodiment of this invention. 図5に示す可変容量形オイルポンプの拡大図である。It is an enlarged view of the variable capacity type oil pump shown in FIG. 図5に示すパイロット弁の拡大図である。It is an enlarged view of the pilot valve shown in FIG. 図5に示すソレノイドバルブの拡大図である。It is an enlarged view of the solenoid valve shown in FIG. 本発明の実施例に係るオイルポンプをオイルパンに取り付けた状態を示す外観斜視図である。It is an external perspective view which shows the state which attached the oil pump which concerns on embodiment of this invention to an oil pan. 本発明の実施例に係るオイルポンプをオイルパンに取り付けた状態を示す上面図である。It is a top view which shows the state which attached the oil pump which concerns on embodiment of this invention to an oil pan. 図10に示すXI-XI線断面図である。FIG. 5 is a sectional view taken along line XI-XI shown in FIG. オイルポンプの一部を破断した斜視図である。It is a perspective view which a part of the oil pump was broken.
 以下、本発明に係るオイルポンプの実施例について、添付の図面に基づいて説明する。本発明は以下の実施例に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例もその範囲に含むものである。 Hereinafter, examples of the oil pump according to the present invention will be described with reference to the attached drawings. The present invention is not limited to the following examples, and various modifications and applications are included in the technical concept of the present invention.
 本実施例におけるオイルポンプは、可変容量形のベーンポンプに適用したものであって、内燃機関のシリンダブロックの前端部などに設けられる。図1は本発明の実施例に係るオイルポンプの各構成部品を示す分解斜視図、図2は本発明の実施例に係るオイルポンプの外観斜視図、図3は本発明の実施例に係るオイルポンプを第2ハウジング側から見た斜視図、図4は本発明の実施例に係るオイルポンプを第1ハウジング側から見た斜視図である。 The oil pump in this embodiment is applied to a variable displacement vane pump, and is provided at the front end of a cylinder block of an internal combustion engine. FIG. 1 is an exploded perspective view showing each component of the oil pump according to the embodiment of the present invention, FIG. 2 is an external perspective view of the oil pump according to the embodiment of the present invention, and FIG. 3 is an oil according to the embodiment of the present invention. A perspective view of the pump as viewed from the second housing side, FIG. 4 is a perspective view of the oil pump according to the embodiment of the present invention as viewed from the first housing side.
 オイルポンプ1は、内部にポンプ収容部2sが形成されると共に、一端が開口した有底円筒状の第1ハウジング2と、この第1ハウジング2の開口を閉塞する第2ハウジング3とにより外郭が形成されている。 The oil pump 1 has a pump accommodating portion 2s formed inside, and has an outer shell formed by a bottomed cylindrical first housing 2 having an opening at one end and a second housing 3 that closes the opening of the first housing 2. It is formed.
 第1ハウジング2には、第2ハウジング3のほぼ中心部を貫通して、図外の機関のクランクシャフトによって回転駆動される駆動軸4と、第1ハウジング2の内部に回転可能に収容され、中心部が駆動軸4に結合されたロータ5と、ロータ5の外周側に揺動可能に配置された可動部材である制御リング6が備えられている。 The first housing 2 is rotatably housed inside the first housing 2 and a drive shaft 4 which is rotationally driven by a crankshaft of an engine (not shown) so as to penetrate substantially the center of the second housing 3. A rotor 5 whose central portion is coupled to a drive shaft 4 and a control ring 6 which is a movable member oscillatingly arranged on the outer peripheral side of the rotor 5 are provided.
 第2ハウジング3には、制御リング6を揺動させるために、油圧供給切り換えを制御する制御機構であるパイロット弁7が備えられている。 The second housing 3 is provided with a pilot valve 7 which is a control mechanism for controlling hydraulic pressure supply switching in order to swing the control ring 6.
 パイロット弁7は、第2ハウジング3に形成された円筒状のバルブボディ3aに収納されている。パイロット弁7は、バルブボディ3a内に上下方向へ摺動可能なスプール弁体7aと、バルブボディ3aの上端開口を閉塞するプラグ7cと、スプール弁体7aとプラグ7cとの間に弾装されてスプール弁体7aを下方へ付勢するバルブスプリング7bと、を備えている。 The pilot valve 7 is housed in a cylindrical valve body 3a formed in the second housing 3. The pilot valve 7 is mounted between the spool valve body 7a that can slide in the valve body 3a in the vertical direction, the plug 7c that closes the upper end opening of the valve body 3a, and the spool valve body 7a and the plug 7c. It is provided with a valve spring 7b that urges the spool valve body 7a downward.
 第1ハウジング2と第2ハウジング3は、複数のねじ8によって一体的に結合されており、この各ねじ8は、第1ハウジング2と第2ハウジング3にそれぞれ形成されたねじ挿通孔に挿通して、これらを締結するようになっている。 The first housing 2 and the second housing 3 are integrally connected by a plurality of screws 8, and each of the screws 8 is inserted into the screw insertion holes formed in the first housing 2 and the second housing 3, respectively. And these are to be concluded.
 第1ハウジング2は、アルミ合金材によって一体に形成され、凹状のポンプ収容部2sの底面は制御リング6の軸方向の一側面が摺動することから、平面度や表面粗さなどの精度が高く加工され、摺動範囲が機械加工によって形成されている。本実施例では、第1ハウジング2と第2ハウジング3によって可変容量形ポンプの筐体となるハウジングを構成し、このハウジングの内部にポンプ収容部2sが形成されている。 The first housing 2 is integrally formed of an aluminum alloy material, and one side surface of the control ring 6 in the axial direction slides on the bottom surface of the concave pump accommodating portion 2s, so that accuracy such as flatness and surface roughness can be improved. It is machined high and the sliding range is formed by machining. In this embodiment, the first housing 2 and the second housing 3 form a housing to be a housing of the variable displacement pump, and the pump accommodating portion 2s is formed inside the housing.
 また、第1ハウジング2は、作動室であるポンプ収容部2sの底面ほぼ中央位置に駆動軸4の一端部を軸受する軸受孔(図示せず)が貫通形成されていると共に、内周面の所定位置には、制御リング6の枢支点となる枢支ピンであるピボットピン9が挿入される有底状のピン孔(図示せず)が穿設されている。 Further, in the first housing 2, a bearing hole (not shown) for bearing one end of the drive shaft 4 is formed through the bottom surface of the pump accommodating portion 2s, which is an operating chamber, at a substantially central position, and the inner peripheral surface thereof. At a predetermined position, a bottomed pin hole (not shown) into which a pivot pin 9 which is a pivot pin serving as a pivot point of the control ring 6 is inserted is bored.
 また、ポンプ収容部2sの内周側には、第1シール摺接面2a,第2シール摺接面2b,第3シール摺接面2cが形成されている。 Further, a first seal sliding contact surface 2a, a second seal sliding contact surface 2b, and a third seal sliding contact surface 2c are formed on the inner peripheral side of the pump accommodating portion 2s.
 第1シール摺接面2a,第2シール摺接面2b,第3シール摺接面2cのそれぞれには、制御リング6に備えられた第1シール部材10a,第2シール部材10b,第3シール部材10cのそれぞれが常時摺接してシールするようになっている。 The first seal sliding contact surface 2a, the second seal sliding contact surface 2b, and the third seal sliding contact surface 2c are each provided with a first seal member 10a, a second seal member 10b, and a third seal provided on the control ring 6. Each of the members 10c is always in sliding contact to seal.
 駆動軸4は第1ハウジング2から突出し、突出した先端部には、スプロケット11が挿入され、ナット12で固定されている。クランクシャフトから伝達された回転力は、スプロケット11を介してロータ5に伝達され、ロータ5を回転させる。 The drive shaft 4 protrudes from the first housing 2, and a sprocket 11 is inserted into the protruding tip and fixed with a nut 12. The rotational force transmitted from the crankshaft is transmitted to the rotor 5 via the sprocket 11 to rotate the rotor 5.
 ロータ5は、内部中心側から外方へ放射状に形成された7つのスリット5a内にそれぞれ7枚のベーン13が進退可能(出没可能)に摺動保持されている。ベーン13は、ロータ5の回転に伴う遠心力によってベーン13を外方へ押し出すようになっている。 In the rotor 5, seven vanes 13 are slidably held in the seven slits 5a formed radially from the inner center side to the outside so that the vanes 13 can move forward and backward (can appear and disappear). The vane 13 pushes the vane 13 outward by the centrifugal force accompanying the rotation of the rotor 5.
 各ベーン13は、内側の各基端縁が前後一対のベーンリング14,14の外周面に摺接すると共に、各先端縁が制御リング6の内周面6dに摺接可能になっている。また、隣接する各ベーン13間と制御リング6の内周面6d及びロータ5の内周面、ポンプ収容部2s、第1ハウジング2の内側面との間に複数のオイル室であるポンプ室(図示せず)が液密的に隔成されている。各ベーンリング14は、回転に伴って各ベーン13を放射外方へ押し出すようになっており、機関回転数が低く、また、遠心力が小さい場合でも、各ベーン13の各先端部がそれぞれ制御リング6の内周面と摺接してポンプ室が液密に隔成されるようになっている。 In each vane 13, each base end edge on the inside is in sliding contact with the outer peripheral surfaces of the pair of front and rear vane rings 14, 14, and each tip edge is in sliding contact with the inner peripheral surface 6d of the control ring 6. Further, a pump chamber (a plurality of oil chambers) is provided between the adjacent vanes 13 and the inner peripheral surface 6d of the control ring 6 and the inner peripheral surface of the rotor 5, the pump accommodating portion 2s, and the inner surface of the first housing 2. (Not shown) are liquidtightly separated. Each vane ring 14 is designed to push each vane 13 out of radiation as it rotates, and even when the engine speed is low and the centrifugal force is small, each tip of each vane 13 is controlled. The pump chamber is liquid-tightly separated by sliding contact with the inner peripheral surface of the ring 6.
 制御リング6は、加工容易な焼結金属によってほぼ円筒状に一体に形成され、図1に示すように、外周面のピボットピン9の位置にピボット凹部6eが形成されており、このピボット凹部6eに挿入位置決めされたピボットピン9が嵌挿して偏心揺動支点となっている。制御リング6には、制御リング6を偏心方向に付勢するコイルスプリング18を受けるアーム部19が備えられている。コイルスプリング18は第1ハウジング2に形成されたスプリング収容室2dに収納されている。 The control ring 6 is integrally formed of a sintered metal that is easy to process into a substantially cylindrical shape, and as shown in FIG. 1, a pivot recess 6e is formed at a position of a pivot pin 9 on the outer peripheral surface, and the pivot recess 6e is formed. The pivot pin 9 inserted and positioned in is inserted and inserted to serve as an eccentric swing fulcrum. The control ring 6 is provided with an arm portion 19 that receives a coil spring 18 that urges the control ring 6 in the eccentric direction. The coil spring 18 is housed in a spring accommodating chamber 2d formed in the first housing 2.
 また、制御リング6のピボット凹部6eの下方側の外周面には、第1シール部材10a,第2シール部材10b,第3シール部材10cのそれぞれを挿入するための第1シール保持溝6a、第2シール保持溝6b、第3シール保持溝6cが形成されている。 Further, a first seal holding groove 6a and a first seal holding groove 6a for inserting the first seal member 10a, the second seal member 10b, and the third seal member 10c into the outer peripheral surface of the control ring 6 on the lower side of the pivot recess 6e. The 2 seal holding groove 6b and the 3rd seal holding groove 6c are formed.
 3つのシール部材10(第1シール部材10a,第2シール部材10b,第3シール部材10c)は、例えば低摩擦特性を有するフッ素系樹脂材により制御リング6の軸方向に沿って直線状に細長く形成され、各シール保持溝(第1シール保持溝6a、第2シール保持溝6b、第3シール保持溝6c)の底部に配設されたゴム製の弾性部材の弾性力により第1シール摺接面2a,第2シール摺接面2b,第3シール摺接面2cに押し付けられるようになっている。これにより、3つの制御油室の良好な液密性が常時確保されるようになっている。3つの制御油室は、ピボットピン9を中心に揺動することにより、圧力が変化する。なお、制御油室の具体的な構成については省略する。 The three seal members 10 (first seal member 10a, second seal member 10b, third seal member 10c) are elongated linearly along the axial direction of the control ring 6 by, for example, a fluororesin material having low friction characteristics. The first seal is slidably contacted by the elastic force of a rubber elastic member formed at the bottom of each seal holding groove (first seal holding groove 6a, second seal holding groove 6b, third seal holding groove 6c). It is pressed against the surface 2a, the second seal sliding contact surface 2b, and the third seal sliding contact surface 2c. As a result, good liquidtightness of the three control oil chambers is always ensured. The pressure of the three control oil chambers changes by swinging around the pivot pin 9. The specific configuration of the control oil chamber will be omitted.
 また、第1ハウジング2には、ポンプ吐出圧が過上昇した際に、オイルをオイルパンに戻すチェック弁17が設けられている。このチェック弁17は、流路の開閉を行うチェックボール17aと、チェックボール17aに付勢力を与えチェックスプリング17bと、チェックスプリング17bの抜け出しを防止するプラグ17cから構成されている。 Further, the first housing 2 is provided with a check valve 17 that returns the oil to the oil pan when the pump discharge pressure rises excessively. The check valve 17 is composed of a check ball 17a that opens and closes the flow path, a check spring 17b that gives an urging force to the check ball 17a, and a plug 17c that prevents the check spring 17b from coming off.
 本実施例では、駆動軸4とロータ5と制御リング6、ベーン13、ベーンリング14によってポンプ構成体が形成されている。ポンプ構成体は、ポンプ収容部2sの内部に収容され、回転駆動されることにより吸入口15から導かれたオイルを第2ハウジング3に形成した吐出口16から吐出するものである。 In this embodiment, the pump component is formed by the drive shaft 4, the rotor 5, the control ring 6, the vane 13, and the vane ring 14. The pump structure is housed inside the pump accommodating portion 2s, and the oil guided from the suction port 15 by being rotationally driven is discharged from the discharge port 16 formed in the second housing 3.
 オイルポンプ1は、第1ハウジング2と第2ハウジング3とが組み合わされた状態において、内部に吸入口15から吐出口16に至る流路が形成される。 In the oil pump 1, a flow path from the suction port 15 to the discharge port 16 is formed inside the oil pump 1 in a state where the first housing 2 and the second housing 3 are combined.
 次に、オイルポンプ1の構成について、図5を用いて説明する。本実施例のオイルポンプ1は可変容量形としている。 Next, the configuration of the oil pump 1 will be described with reference to FIG. The oil pump 1 of this embodiment has a variable capacity type.
 オイルポンプ1は、一端側が開口形成され内部にポンプ収容部2sが設けられた第1ハウジング2とこの第1ハウジング2の一端開口を閉塞する第2ハウジング3とからなるハウジングと、ハウジングに回転可能に支持され、ポンプ収容部2sのほぼ中心部を貫通してクランクシャフト21(図9)により回転駆動される駆動軸4と、ポンプ収容部2s内に移動(揺動)可能に収容された可動部材であって、後述する第1制御油室31,第2制御油室32等やコイルスプリング18と協働して後述するポンプ室PRの容積変化量を変更する可変機構を構成する制御リング6と、制御リング6の内周側に収容され、駆動軸4によって図5中の時計方向に回転駆動されることで、制御リング6との間に形成される複数のポンプ室PRの容積を増減させてポンプ作用を行うポンプ構成体と、内燃機関のオイルメインギャラリMGの下流側に設けられ、後述する第1制御油室31,第2制御油室32に対する油圧の給排を制御する制御機構であるパイロット弁7と、前記オイルメインギャラリMGから分岐形成される油通路(後述する第1導入通路72)に設けられ、オイルメインギャラリMGからパイロット弁7へと導かれる制御圧の導入を切替制御する切替機構であるソレノイドバルブ60と、を備えている。 The oil pump 1 can be rotated into a housing including a first housing 2 having an opening on one end side and a pump accommodating portion 2s provided inside, and a second housing 3 for closing one end opening of the first housing 2. The drive shaft 4 is supported by the pump and is rotationally driven by the crankshaft 21 (FIG. 9) through the substantially central portion of the pump accommodating portion 2s, and is movable (swinging) accommodating in the pump accommodating portion 2s. A control ring 6 which is a member and constitutes a variable mechanism for changing the volume change amount of the pump chamber PR described later in cooperation with the first control oil chamber 31, the second control oil chamber 32 and the like described later and the coil spring 18. The volume of the plurality of pump chambers PR formed between the control ring 6 and the control ring 6 is increased or decreased by being housed on the inner peripheral side of the control ring 6 and rotationally driven by the drive shaft 4 in the clockwise direction in FIG. A pump structure that pumps the pump, and a control mechanism that is provided on the downstream side of the oil main gallery MG of the internal combustion engine and controls the supply and discharge of hydraulic pressure to the first control oil chamber 31 and the second control oil chamber 32, which will be described later. The pilot valve 7 is provided in the oil passage (first introduction passage 72 described later) branched from the oil main gallery MG, and the introduction of the control pressure guided from the oil main gallery MG to the pilot valve 7 is switched. It includes a solenoid valve 60, which is a switching mechanism for controlling.
 ここで、ポンプ構成体は、制御リング6の内周側に回転可能に収容され、その中心部が駆動軸4の外周面に嵌着されたロータ5と、ロータ5の外周部に放射状に切欠形成された複数のスリット5a内にそれぞれ出没可能に収容された複数のベーン13と、ロータ5よりも小径に形成され、ロータ5の内周側両側部に配設された一対のベーンリング14と、から構成されている。 Here, the pump configuration is rotatably housed on the inner peripheral side of the control ring 6, and the central portion thereof is fitted on the outer peripheral surface of the drive shaft 4 and the rotor 5 is radially cut out on the outer peripheral portion of the rotor 5. A plurality of vanes 13 which are housed in the formed slits 5a so as to be able to appear and disappear, and a pair of vane rings 14 which are formed to have a diameter smaller than that of the rotor 5 and are arranged on both inner peripheral side portions of the rotor 5. , Consists of.
 第1ハウジング2は、アルミニウム合金材料によって一体に形成されており、ポンプ収容部2sの端壁のほぼ中央位置には、駆動軸4の一端部を回転可能に支持する軸受孔2eが貫通形成されている。そして、かかる軸受孔2eの外周域には、ポンプ構成体によるポンプ作用に伴い、各ポンプ室PRの容積が拡大する領域(以下、「吸入領域」という。)に開口するようにしてほぼ円弧凹状の吸入部である吸入ポート23aが、各ポンプ室PRの容積が縮小する領域(以下、「吐出領域」という。)に開口するようにしてほぼ円弧凹状の吐出部である吐出ポート24aが、それぞれ軸受孔2eを挟んでほぼ対向するように切欠形成されている。 The first housing 2 is integrally formed of an aluminum alloy material, and a bearing hole 2e that rotatably supports one end of the drive shaft 4 is formed through the end wall of the pump accommodating portion 2s at a substantially central position. ing. Then, the outer peripheral region of the bearing hole 2e is substantially arcuately concave so as to open in a region where the volume of each pump chamber PR expands (hereinafter, referred to as “suction region”) due to the pumping action of the pump structure. The suction port 23a, which is the suction portion of the pump chamber, is opened in a region where the volume of each pump chamber PR is reduced (hereinafter, referred to as “discharge region”), and the discharge port 24a, which is a substantially arcuate concave discharge portion, is provided. Notches are formed so as to substantially face each other with the bearing hole 2e in between.
 また、ポンプ収容部2sの内周壁の所定位置には、棒状のピボットピン9を介して制御リング6を揺動可能に支持する横断面ほぼ半円状の支持溝2fが切欠形成されている。さらに、このポンプ収容部2sの内周壁のうち、軸受孔2eの中心と支持溝2fの中心とを結ぶ直線をMとし、この直線Mと直交する直線をNとしたとき、直線Nの左側に吐出領域が形成され、右側に吸入領域が形成される。 Further, a support groove 2f having a substantially semicircular cross section for swingably supporting the control ring 6 is formed at a predetermined position on the inner peripheral wall of the pump accommodating portion 2s via a rod-shaped pivot pin 9. Further, in the inner peripheral wall of the pump accommodating portion 2s, when M is a straight line connecting the center of the bearing hole 2e and the center of the support groove 2f and N is a straight line orthogonal to this straight line M, it is on the left side of the straight line N. A discharge region is formed and a suction region is formed on the right side.
 吸入領域に相当する範囲には、制御リング6の外周部に嵌着される第1シール部材10aが常時摺接可能な第1シール摺接面2aが、吐出領域に相当する範囲には、制御リング6の外周部に嵌着される第3シール部材10cが常時摺接可能な第3シール摺接面2cが、それぞれ形成されている。 In the range corresponding to the suction region, the first seal sliding contact surface 2a to which the first seal member 10a fitted to the outer peripheral portion of the control ring 6 can always be in sliding contact is controlled in the range corresponding to the discharge region. A third seal sliding contact surface 2c is formed so that the third sealing member 10c fitted to the outer peripheral portion of the ring 6 can always be in sliding contact.
 吸入ポート23aには、その周方向のほぼ中間位置に、後述するスプリング収容室2d側へ膨出するように形成された導入部25が一体に設けられていて、この導入部25と吸入ポート23aの境界部近傍には、第1ハウジング2の端壁を貫通して外部に開口するポンプ吸入孔23bが貫通形成されている。かかる構成より、内燃機関のオイルパン20に貯留されたオイルが、ポンプ構成体によるポンプ作用に伴って発生する負圧に基づいてポンプ吸入孔23b及び吸入ポート23aを介して吸入領域に係るポンプ室PRに吸入されるようになっている。ここで、ポンプ吸入孔23bは、導入部25と共に吸入領域の制御リング6の外周域に形成される低圧室35と連通するように構成されていて、かかる低圧室35にも前記吸入圧である低圧のオイルが導かれるようになっている。 The suction port 23a is integrally provided with an introduction portion 25 formed so as to bulge toward the spring accommodating chamber 2d, which will be described later, at a substantially intermediate position in the circumferential direction, and the introduction portion 25 and the suction port 23a are integrally provided. A pump suction hole 23b that penetrates the end wall of the first housing 2 and opens to the outside is formed in the vicinity of the boundary portion of the first housing 2. With this configuration, the oil stored in the oil pan 20 of the internal combustion engine is connected to the suction region via the pump suction hole 23b and the suction port 23a based on the negative pressure generated by the pumping action of the pump structure. It is designed to be inhaled by PR. Here, the pump suction hole 23b is configured to communicate with the low pressure chamber 35 formed in the outer peripheral region of the control ring 6 in the suction region together with the introduction portion 25, and the low pressure chamber 35 also has the suction pressure. Low pressure oil is guided.
 一方、吐出ポート24aには、図5,図6に示すように、その始端部の外周側に、吐出ポート24aと後述するポンプ吐出孔27と繋がった吐出通路を構成する連通路26が切欠形成されている。そして、この連通路26の外側端部には、第1ハウジング2の端壁を貫通して外部に開口することによりポンプ構成体から吐出され連通路26を介して吐出ポート24aに導かれたオイルを図示外のフィルタを通してオイルメインギャラリMGへと吐出するためのポンプ吐出孔27が、軸方向に沿って貫通形成されている。このポンプ吐出孔27は、連絡孔80を介して第1通路81に直接開口するように、すなわちその一部が連通路26と重合するように設けられている。 On the other hand, as shown in FIGS. 5 and 6, the discharge port 24a has a notch 26 on the outer peripheral side of the starting end portion thereof, which constitutes a discharge passage connected to the discharge port 24a and the pump discharge hole 27 described later. Has been done. Then, at the outer end of the communication passage 26, the oil is discharged from the pump structure by penetrating the end wall of the first housing 2 and opening to the outside, and is guided to the discharge port 24a via the communication passage 26. A pump discharge hole 27 for discharging the oil to the oil main gallery MG through a filter (not shown) is formed through along the axial direction. The pump discharge hole 27 is provided so as to directly open into the first passage 81 via the communication hole 80, that is, a part thereof overlaps with the communication passage 26.
 駆動軸4は、第1ハウジング2の端壁を貫通して外部へと臨む軸方向一端部がクランクシャフト21(図9)に連係され、クランクシャフト21から伝達される回転力に基づいてロータ5を図5中の時計方向へと回転させる。 In the drive shaft 4, one end in the axial direction that penetrates the end wall of the first housing 2 and faces the outside is linked to the crankshaft 21 (FIG. 9), and the rotor 5 is based on the rotational force transmitted from the crankshaft 21. Is rotated clockwise in FIG.
 ロータ5は、その中心側から径方向外側に向けて放射状に形成された複数のスリット5aが切欠形成されていると共に、各スリット5aの内側基端部には、それぞれ吐出オイルを導入する横断面ほぼ円形状の背圧室5bが設けられており、ロータ5の回転に伴う遠心力と背圧室5b内の圧力とにより、各ベーン13が外方へと押し出されるようになっている。 The rotor 5 has a plurality of slits 5a formed radially outward from the center side thereof, and a cross section for introducing discharge oil at the inner base end portion of each slit 5a. A back pressure chamber 5b having a substantially circular shape is provided, and each vane 13 is pushed outward by the centrifugal force accompanying the rotation of the rotor 5 and the pressure in the back pressure chamber 5b.
 各ベーン13は、ロータ5の回転時において、各先端面が制御リング6の内周面に摺接すると共に、各基端面が前記各ベーンリング14の外周面にそれぞれ摺接するようになっている。すなわち、これらの各ベーン13は、各ベーンリング14によってロータ5の径方向外側へ押し上げられる構成となっており、機関回転数が低く、また、遠心力や背圧室5bの圧力が小さい場合であっても、各先端がそれぞれ制御リング6の内周面と摺接して前記各ポンプ室PRが液密に隔成されるようになっている。 Each vane 13 has its tip surface in sliding contact with the inner peripheral surface of the control ring 6 and each base end surface in sliding contact with the outer peripheral surface of each vane ring 14 when the rotor 5 is rotated. That is, each of these vanes 13 is configured to be pushed upward in the radial direction of the rotor 5 by each vane ring 14, when the engine speed is low and the centrifugal force and the pressure of the back pressure chamber 5b are small. Even if there is, each tip is in sliding contact with the inner peripheral surface of the control ring 6, and each pump chamber PR is liquid-tightly separated.
 制御リング6は、いわゆる燒結金属によりほぼ円筒状に一体形成され、その外周部の所定位置には、ピボットピン9に嵌合することで偏心揺動支点を構成するほぼ円弧凹溝状のピボット部28が軸方向に沿って切欠形成されると共に、該ピボット部28に対し制御リング6の中心を挟んで反対側の位置には、所定のばね定数に設定された付勢部材たるコイルスプリング18に連係するアーム部19が径方向に沿って突設されている。なお、アーム部19には、その移動(回動)方向の一側部に、ほぼ円弧凸状に形成された押圧突部19aが突設されていて、押圧突部19aがコイルスプリング18の先端部に常時当接することによって、アーム部19とコイルスプリング18とが連係するようになっている。 The control ring 6 is integrally formed of a so-called fired metal in a substantially cylindrical shape, and at a predetermined position on the outer peripheral portion thereof, a substantially arcuate groove-shaped pivot portion that forms an eccentric swing fulcrum by being fitted with a pivot pin 9. A notch 28 is formed along the axial direction, and a coil spring 18 which is an urging member set to a predetermined spring constant is provided at a position opposite to the pivot portion 28 with the center of the control ring 6 interposed therebetween. The interlocking arm portions 19 are projected along the radial direction. The arm portion 19 is provided with a pressing protrusion 19a formed in a substantially arc-convex shape on one side in the moving (rotating) direction, and the pressing protrusion 19a is the tip of the coil spring 18. The arm portion 19 and the coil spring 18 are linked by constantly contacting the portions.
 また、このような構成から、第1ハウジング2の内部には、支持溝2fと対向する位置に、コイルスプリング18を収容保持するスプリング収容室2dが、ポンプ収容部2sに隣接して設けられており、スプリング収容室2dには、その一端壁とアーム部19(押圧突部19a)との間に、所定のセット荷重W1をもってコイルスプリング18が弾装されている。なお、このスプリング収容室2dの他端壁は、制御リング6の偏心方向の移動範囲を規制する規制部29として構成され、規制部29にアーム部19の他側部が当接することにより、制御リング6の偏心方向におけるそれ以上の移動が規制されるようになっている。 Further, from such a configuration, inside the first housing 2, a spring accommodating chamber 2d for accommodating and holding the coil spring 18 is provided adjacent to the pump accommodating portion 2s at a position facing the support groove 2f. A coil spring 18 is mounted in the spring accommodating chamber 2d with a predetermined set load W1 between one end wall thereof and the arm portion 19 (pressing protrusion 19a). The other end wall of the spring accommodating chamber 2d is configured as a regulating portion 29 that regulates the movement range of the control ring 6 in the eccentric direction, and is controlled by abutting the other side portion of the arm portion 19 on the regulating portion 29. Further movement of the ring 6 in the eccentric direction is restricted.
 このようにして、制御リング6については、コイルスプリング18の付勢力をもって、アーム部19を介してその偏心量が増大する方向(図6中の時計方向であって、以下「偏心方向」という。)に常時付勢され、非作動状態においては、図6に示すように、アーム部19の他側部が規制部29に押し付けられた状態となって、その偏心量が最大となる位置に規制されるようになっている。 In this way, the eccentricity of the control ring 6 increases via the arm portion 19 due to the urging force of the coil spring 18 (clockwise in FIG. 6, hereinafter referred to as "eccentricity". ) Is constantly urged, and in the non-operating state, as shown in FIG. 6, the other side portion of the arm portion 19 is pressed against the regulating portion 29, and the eccentricity is regulated to the maximum position. It is supposed to be done.
 また、制御リング6の外周部には、ポンプ収容部2sの内周壁にそれぞれ設けられた第1~第3シール摺接面2a~2cと同心円弧状のシール面を有する第1~第3シール構成部30a~30cが突出形成されており、第1~第3シール構成部30a~30cのシール面にそれぞれ第1~第3シール部材10a~10cが収容保持されている。なお、第1~第3シール部材10a~10cは、いずれも例えば低摩擦特性を有するフッ素系樹脂材によって制御リング6の軸方向に沿って直線状に細長く形成され、ゴム製の弾性部材によりバックアップされて第1~第3シール摺接面2a~2cに押し付けられることにより、第1~第3シール摺接面2a~2cと第1~第3シール構成部30a~30cのシール面との間を液密に隔成している。 Further, the outer peripheral portion of the control ring 6 has a first to third seal configuration having a concentric arcuate sealing surface with the first to third seal sliding contact surfaces 2a to 2c provided on the inner peripheral wall of the pump accommodating portion 2s, respectively. The portions 30a to 30c are formed so as to project, and the first to third seal members 10a to 10c are housed and held on the seal surfaces of the first to third seal constituent portions 30a to 30c, respectively. The first to third seal members 10a to 10c are all formed in a linearly elongated shape along the axial direction of the control ring 6 by, for example, a fluororesin material having low friction characteristics, and are backed up by an elastic member made of rubber. By being pressed against the first to third seal sliding contact surfaces 2a to 2c, between the first to third seal sliding contact surfaces 2a to 2c and the sealing surfaces of the first to third seal constituent parts 30a to 30c. Is liquid-tightly separated.
 そして、かかるシール構造により、制御リング6の外周部には、第1シール構成部30a,第2シール構成部30bに収容保持された第1シール部材10a,第2シール部材10bとピボットピン9とによって、一対の第1制御油室31,第2制御油室32が隔成されている。この第1制御油室31,第2制御油室32には、オイルメインギャラリMGから分岐形成された制御圧導入通路70を通じて機関内へ導かれる構成となっている。具体的には、第2制御油室32には制御圧導入通路70からさらに二股に分岐形成された一方の分岐通路を通じて、また第1制御油室31には他方の分岐通路である第1導入通路72、ソレノイドバルブ60、第2導入通路71、パイロット弁7を通じて、それぞれ図示外のオイルフィルタの通過により減圧されたポンプ吐出圧である前記機関内油圧に相当する制御圧(以下、単に「制御圧」という。)が供給される。 Then, due to such a seal structure, the outer peripheral portion of the control ring 6 includes the first seal member 10a, the second seal member 10b, and the pivot pin 9 housed and held in the first seal component 30a and the second seal component 30b. The pair of the first control oil chamber 31 and the second control oil chamber 32 are separated by. The first control oil chamber 31 and the second control oil chamber 32 are configured to be guided into the engine through a control pressure introduction passage 70 branched from the oil main gallery MG. Specifically, the first control oil chamber 32 is introduced through one of the bifurcated branch passages from the control pressure introduction passage 70, and the first control oil chamber 31 is introduced by the other branch passage. Control pressure corresponding to the in-engine hydraulic pressure, which is the pump discharge pressure reduced by the passage of an oil filter (not shown) through the passage 72, the solenoid valve 60, the second introduction passage 71, and the pilot valve 7, respectively (hereinafter, simply "control"). Pressure ”) is supplied.
 このようにして、制御圧が、それぞれ第1制御油室31,第2制御油室32に面する制御リング6の外周面に構成される第1受圧面6f及び第2受圧面6gに作用することで、制御リング6に対する移動力(揺動力)が付与されることとなる。ここで、第2受圧面6gの受圧面積は、第1受圧面6fの受圧面積よりも大きく、かつ第1受圧面6fの受圧面積と後述する第3受圧面6hの受圧面積とを合わせてなる受圧面積よりも小さくなるように設定されていて、各受圧面6f,6gに同じ油圧が作用した場合には、全体としてその偏心量を増加させる方向(図6中の時計方向であって、以下「反同心方向(偏心量の増加方向)」という。)に制御リング6を付勢する構成となっている。 In this way, the control pressure acts on the first pressure receiving surface 6f and the second pressure receiving surface 6g formed on the outer peripheral surfaces of the control ring 6 facing the first control oil chamber 31 and the second control oil chamber 32, respectively. As a result, a moving force (swinging force) with respect to the control ring 6 is applied. Here, the pressure receiving area of the second pressure receiving surface 6g is larger than the pressure receiving area of the first pressure receiving surface 6f, and the pressure receiving area of the first pressure receiving surface 6f and the pressure receiving area of the third pressure receiving surface 6h described later are combined. It is set to be smaller than the pressure receiving area, and when the same hydraulic pressure acts on the pressure receiving surfaces 6f and 6g, the direction of increasing the eccentricity as a whole (clockwise in FIG. 6; The control ring 6 is urged in the "anti-concentric direction (increase in the amount of eccentricity)").
 また、第1制御油室31と第2制御油室32の周方向間には、第3シール構成部30cに収容保持される第3シール部材10cとピボットピン9とにより、第3制御油室36が隔成されている。この第3制御油室36は、第3受圧面6hを有し、ポンプ構成体から吐出されたポンプ吐出圧そのもの(以下、単に「ポンプ吐出圧」という。)よりも低い圧力となるように、外部と接続され大気圧または低圧室35と接続されている。この第3制御油室36を設けることによって、第1制御油室31の第1受圧面6fを、第2制御油室32の第2受圧面6gよりも小さく形成することが可能となる。 Further, between the first control oil chamber 31 and the second control oil chamber 32 in the circumferential direction, a third control oil chamber is formed by a third seal member 10c and a pivot pin 9 housed and held in the third seal component 30c. 36 are separated. The third control oil chamber 36 has a third pressure receiving surface 6h, so that the pressure is lower than the pump discharge pressure itself (hereinafter, simply referred to as “pump discharge pressure”) discharged from the pump component. It is connected to the outside and is connected to the atmospheric pressure or low pressure chamber 35. By providing the third control oil chamber 36, it is possible to form the first pressure receiving surface 6f of the first control oil chamber 31 smaller than the second pressure receiving surface 6g of the second control oil chamber 32.
 このような構成から、オイルポンプ1では、コイルスプリング18のセット荷重W1に対して第1制御油室31,第2制御油室32及び第3制御油室36の内圧に基づく付勢力が小さいときは、制御リング6は図6に示すような最大偏心状態となる一方、ポンプ吐出圧の上昇に伴って第1制御油室31,第2制御油室32及び第3制御油室36の内圧に基づく付勢力がコイルスプリング18のセット荷重W1を上回ったときは、吐出圧に応じて制御リング6が半同心方向の反対方向である同心方向(以下、同心方向)へ移動することとなる。 From such a configuration, in the oil pump 1, when the urging force based on the internal pressure of the first control oil chamber 31, the second control oil chamber 32 and the third control oil chamber 36 is small with respect to the set load W1 of the coil spring 18. The control ring 6 is in the maximum eccentric state as shown in FIG. 6, while the internal pressures of the first control oil chamber 31, the second control oil chamber 32, and the third control oil chamber 36 are increased as the pump discharge pressure increases. When the urging force based on the oil exceeds the set load W1 of the coil spring 18, the control ring 6 moves in the concentric direction (hereinafter, concentric direction) which is the opposite direction of the semi-concentric direction according to the discharge pressure.
 パイロット弁7は、一端側開口である導入ポート50を介して第2導入通路71に接続され、他端側開口がプラグ7cにより閉塞されるほぼ筒状に形成されたバルブボディ3aと、バルブボディ3aの内周側において摺動可能に収容され、バルブボディ3aの内周面と摺接する1対の大径状の第1ランド部43a及び第2ランド部43bをもって第1制御油室31,第2制御油室32に対する油圧の給排制御に供するスプール弁体7aと、バルブボディ3aの他端側内周においてプラグ7cとスプール弁体7aとの間に所定のセット荷重W2をもって弾装され、スプール弁体7aをバルブボディ3aの一端側へと常時付勢するバルブスプリング7bとから主として構成されている。 The pilot valve 7 is connected to the second introduction passage 71 via an introduction port 50 which is an opening on one end side, and a valve body 3a formed in a substantially cylindrical shape in which the opening on the other end side is closed by a plug 7c and a valve body. A pair of large-diameter first land portions 43a and second land portions 43b that are slidably housed on the inner peripheral side of 3a and are in sliding contact with the inner peripheral surface of the valve body 3a are provided with the first control oil chamber 31, the first. 2 The spool valve body 7a used for controlling the supply and discharge of hydraulic pressure to the control oil chamber 32 and the plug 7c and the spool valve body 7a are mounted with a predetermined set load W2 on the inner circumference on the other end side of the valve body 3a. It is mainly composed of a valve spring 7b that constantly urges the spool valve body 7a toward one end side of the valve body 3a.
 バルブボディ3aには、軸方向両端部を除く範囲に、スプール弁体43の外径(第1ランド部43a,第2ランド部43bの外径)とほぼ同じ内径によって構成される寸胴のバルブ収容部41aが穿設されており、バルブ収容部41a内にスプール弁体7aが収容配置される。そして、このバルブボディ3aの軸方向一端部には、第2導入通路71と接続することによって制御圧の導入に供する導入ポート50が開口形成される一方、他端部には、その内周部に形成された雌ねじ部を介してプラグ7cが螺着されている。 The valve body 3a accommodates a valve having an inner diameter substantially the same as the outer diameter of the spool valve body 43 (outer diameters of the first land portion 43a and the second land portion 43b) in a range excluding both ends in the axial direction. A portion 41a is bored, and a spool valve body 7a is accommodated and arranged in the valve accommodating portion 41a. An introduction port 50 for introducing control pressure is formed at one end of the valve body 3a in the axial direction by connecting to the second introduction passage 71, while an inner peripheral portion thereof is formed at the other end. The plug 7c is screwed through the female screw portion formed in the above.
 さらに、バルブ収容部41aの周壁には、軸方向の一端側位置に、第2導入通路71を介してソレノイドバルブ60の給排ポート68と接続される接続ポート51が開口形成され、軸方向の中間位置に、第1制御油室31に接続される給排ポート52が開口形成されると共に、内部通路55を介して導かれる第1制御油室31,第2制御油室32の油圧の排出に供する第1ドレンポート53,第2ドレンポート54が開口形成されている。 Further, on the peripheral wall of the valve accommodating portion 41a, a connection port 51 connected to the supply / discharge port 68 of the solenoid valve 60 is formed at a position on one end side in the axial direction via the second introduction passage 71, and is formed in the axial direction. A supply / discharge port 52 connected to the first control oil chamber 31 is formed at an intermediate position, and the hydraulic pressure of the first control oil chamber 31 and the second control oil chamber 32 guided through the internal passage 55 is discharged. The first drain port 53 and the second drain port 54 to be used for the above are formed as openings.
 スプール弁体7aは、軸方向の両端部に第1ランド部43a,第2ランド部43bが形成されると共に、この第1ランド部43a,第2ランド部43b間が小径軸部43cにより連接されている。そして、このスプール弁体7aがバルブ収容部41a内に収容されることで、バルブ収容部41aの内部には、第1ランド部43aとバルブボディ3aとの間に設けられて導入ポート50を介して制御圧が導入される圧力室56と、小径軸部43cの外周に設けられて給排ポート52と第1ドレンポート53との中継に供する中継室57と、第2ランド部43bとプラグ7cとの間に設けられて内部通路55を通じて導かれた油圧の排出に供する背圧室58と、がそれぞれ隔成されている。 In the spool valve body 7a, a first land portion 43a and a second land portion 43b are formed at both ends in the axial direction, and the first land portion 43a and the second land portion 43b are connected by a small diameter shaft portion 43c. ing. Then, by accommodating the spool valve body 7a in the valve accommodating portion 41a, the spool valve body 7a is provided between the first land portion 43a and the valve body 3a inside the valve accommodating portion 41a via the introduction port 50. The pressure chamber 56 into which the control pressure is introduced, the relay chamber 57 provided on the outer periphery of the small diameter shaft portion 43c for relaying between the supply / discharge port 52 and the first drain port 53, the second land portion 43b, and the plug 7c. A back pressure chamber 58 provided between the two and used for discharging the hydraulic pressure guided through the internal passage 55 is separated from each other.
 このような構成から、パイロット弁7は、導入ポート50より圧力室56に導かれる制御圧が所定圧(スプール作動油圧Ps)以下の状態では、セット荷重W2に基づくバルブスプリング7bの付勢力によって、スプール弁体7aがバルブボディ3aの一端側へと押し付けられる。すなわち、接続ポート51を介して第2導入通路71と中継室57が連通される一方、第2ランド部43bによって第1ドレンポート53と中継室57の連通が遮断され、給排ポート52を介して第1制御油室31と中継室57が連通される。この結果、第2導入通路71から接続ポート51を通って導かれる油圧が、中継室57と給排ポート52を介して第1制御油室31へと供給されることとなる。 From such a configuration, the pilot valve 7 is subjected to the urging force of the valve spring 7b based on the set load W2 when the control pressure guided from the introduction port 50 to the pressure chamber 56 is equal to or less than a predetermined pressure (spool operating hydraulic pressure Ps). The spool valve body 7a is pressed against one end side of the valve body 3a. That is, while the second introduction passage 71 and the relay room 57 are communicated with each other via the connection port 51, the communication between the first drain port 53 and the relay room 57 is blocked by the second land portion 43b, and the communication between the first drain port 53 and the relay room 57 is blocked, and the communication is cut off via the supply / discharge port 52. The first control oil chamber 31 and the relay chamber 57 are communicated with each other. As a result, the hydraulic pressure guided from the second introduction passage 71 through the connection port 51 is supplied to the first control oil chamber 31 via the relay chamber 57 and the supply / discharge port 52.
 そして、圧力室56に導かれる制御圧が前記所定圧を超えると、バルブスプリング7bの付勢力に抗してスプール弁体7aがバルブボディ3aの他端側へと移動し、給排ポート52を介して第1制御油室31と中継室57との連通が維持される。一方、第1ランド部43aによって第2導入通路71と中継室57との連通が遮断されると、これとほぼ同時に第1ドレンポート53介して中継室57とオイルパン20が連通される。この結果、第1制御油室31内のオイルが給排ポート52と中継室57を通って第1ドレンポート53からオイルパン20へ排出されるように切り換えられる。 Then, when the control pressure guided to the pressure chamber 56 exceeds the predetermined pressure, the spool valve body 7a moves to the other end side of the valve body 3a against the urging force of the valve spring 7b, and the supply / discharge port 52 is opened. Communication between the first control oil chamber 31 and the relay chamber 57 is maintained through the passage. On the other hand, when the communication between the second introduction passage 71 and the relay chamber 57 is cut off by the first land portion 43a, the relay chamber 57 and the oil pan 20 are communicated with each other through the first drain port 53 almost at the same time. As a result, the oil in the first control oil chamber 31 is switched so as to be discharged from the first drain port 53 to the oil pan 20 through the supply / discharge port 52 and the relay chamber 57.
 ソレノイドバルブ60は、第1導入通路72の途中に介在する図示外のバルブ収容孔の内部に収容配置され、内部軸方向に沿って油通路65が貫通形成されてなるほぼ円筒状のバルブボディ61と、バルブボディ61の一端部(同図中の左側端部)において油通路65を拡径形成してなる弁体収容部66の外端部に圧入固定され、中央部に第1導入通路72の上流側通路72aと接続される上流側開口部である導入ポート67を有するシート部材62と、該シート部材62の内端部開口縁に形成されるバルブシート62aに対して離着座可能に設けられ、前記導入ポート67の開閉に供するボール弁体63と、前記バルブボディ61の他端部(同図中の右側端部)に設けられたソレノイド64と、から主として構成されている。 The solenoid valve 60 is housed and arranged inside a valve accommodating hole (not shown) interposed in the middle of the first introduction passage 72, and a substantially cylindrical valve body 61 having an oil passage 65 penetrating along the internal axial direction. And, at one end of the valve body 61 (the left end in the figure), the oil passage 65 is expanded and fixed to the outer end of the valve body accommodating portion 66, and the first introduction passage 72 is fixed at the center. A seat member 62 having an introduction port 67 which is an upstream opening connected to the upstream passage 72a of the seat member 62 and a valve seat 62a formed at the inner end opening edge of the seat member 62 so as to be detachable and seatable. It is mainly composed of a ball valve body 63 used for opening and closing the introduction port 67, and a solenoid 64 provided at the other end of the valve body 61 (the right end in the figure).
 バルブボディ61は、一端側の内周部にボール弁体63を収容する弁体収容部66が油通路65に対して段差拡径状に設けられ、これによって、弁体収容部66の内端部の開口縁にも、シート部材62に設けられたバルブシート62aと同様のバルブシート66aが形成されている。さらに、このバルブボディ61の周壁のうち軸方向一端側となる弁体収容部66の外周部に、下流側通路72bに接続されてパイロット弁7に対する油圧の給排に供する給排ポート68が径方向に沿って貫通形成されると共に、他端側となる油通路65の外周部に、オイルパン20に接続されるドレンポート69が径方向に沿って貫通形成されている。 In the valve body 61, a valve body accommodating portion 66 accommodating the ball valve body 63 is provided on the inner peripheral portion on one end side in a stepped diameter with respect to the oil passage 65, whereby the inner end of the valve body accommodating portion 66 is provided. A valve seat 66a similar to the valve seat 62a provided on the seat member 62 is also formed on the opening edge of the portion. Further, on the outer peripheral portion of the valve body accommodating portion 66, which is one end side in the axial direction of the peripheral wall of the valve body 61, a supply / discharge port 68 connected to the downstream passage 72b and used for supplying / discharging hydraulic pressure to the pilot valve 7 has a diameter. A drain port 69 connected to the oil pan 20 is formed through the outer peripheral portion of the oil passage 65 on the other end side along the radial direction.
 ソレノイド64は、ケーシング64a内部に収容されるコイル(図示外)に通電されることにより発生する電磁力をもって、コイルの内周側に配置されるアーマチュア(図示外)及びこれに固定されるロッド64bが図8中の左方向へと進出移動する構成となっている。なお、このソレノイド64には、内燃機関の油温や水温、機関回転数など所定のパラメータによって検出ないし算出された機関運転状態に基づいて車載のECU(図示外)から励磁電流が通電されることとなる。
    このような構成から、ソレノイド64への通電時には、ロッド64bが進出移動することによってロッド64bの先端部に配置されるボール弁体63がシート部材62側のバルブシート62aへと押し付けられ、導入ポート67と給排ポート68の連通が遮断され、油通路65を通じて給排ポート68とドレンポート69とが連通することとなる。一方、ソレノイド64の非通電時には、導入ポート67より導かれる制御圧に基づいてボール弁体63が後退移動することによって当該ボール弁体63がバルブボディ61側のバルブシート66aへと押し付けられ、導入ポート67と給排ポート68が連通状態となると共に、給排ポート68とドレンポート69との連通が遮断されることとなる。
The solenoid 64 has an armature (not shown) arranged on the inner peripheral side of the coil and a rod 64b fixed to the armature (not shown) having an electromagnetic force generated by energizing a coil (not shown) housed inside the casing 64a. Is configured to advance and move to the left in FIG. The solenoid 64 is energized with an exciting current from an in-vehicle ECU (not shown) based on an engine operating state detected or calculated by predetermined parameters such as the oil temperature and water temperature of the internal combustion engine and the engine speed. It becomes.
From such a configuration, when the solenoid 64 is energized, the ball valve body 63 arranged at the tip of the rod 64b is pressed against the valve seat 62a on the seat member 62 side by the advance movement of the rod 64b, and the introduction port. The communication between the supply / discharge port 68 and the supply / discharge port 68 is cut off, and the supply / discharge port 68 and the drain port 69 communicate with each other through the oil passage 65. On the other hand, when the solenoid 64 is not energized, the ball valve body 63 moves backward based on the control pressure guided from the introduction port 67, so that the ball valve body 63 is pressed against the valve seat 66a on the valve body 61 side and introduced. The port 67 and the supply / discharge port 68 are in a communication state, and the communication between the supply / discharge port 68 and the drain port 69 is cut off.
 次にオイルポンプ1をオイルパンに取り付けた状態について、図9及び図10を用いて説明する。図9は本発明の実施例に係るオイルポンプをオイルパンに取り付けた状態を示す外観斜視図、図10は本発明の実施例に係るオイルポンプをオイルパンに取り付けた状態を示す上面図である。 Next, the state in which the oil pump 1 is attached to the oil pan will be described with reference to FIGS. 9 and 10. FIG. 9 is an external perspective view showing a state in which the oil pump according to the embodiment of the present invention is attached to the oil pan, and FIG. 10 is a top view showing a state in which the oil pump according to the embodiment of the present invention is attached to the oil pan. ..
 オイルポンプ1は、オイルパン20に収容される。オイルパン20は、上方が開口したオイルパンロアー20aと、オイルパンロアー20aの上方に載置されたオイルパンアッパー20bより構成される。オイルパンアッパー20bは、ボルト22により固定される。オイルパンアッパー20bの上部の一部は円弧状に切欠かれており、この切欠かれた部分にクランクシャフト21のジャーナル部21aが配置され、クランクシャフト21が回転可能に支持されている。クランクシャフト21には図示しないスプロケットが取り付けられており、このスプロケットと、オイルポンプ1のスプロケット11とをベルトで連結することにより、クランクシャフト21の駆動力をオイルポンプ1に伝達する。そして、オイルポンプ1が駆動することにより、オイルパンロアー20aに貯油されたオイルが吸入口15を介してポンプ構成体のポンプ吸入孔23bから吸い込まれ、ポンプ構成体にて加圧された後、ポンプ吐出孔27から吐出通路を介して吐出口16から吐出される。吐出口16から吐出されたオイルは内燃機関に供給される。 The oil pump 1 is housed in the oil pan 20. The oil pan 20 is composed of an oil pan lower 20a having an open upper portion and an oil pan upper 20b placed above the oil pan lower 20a. The oil pan upper 20b is fixed by the bolt 22. A part of the upper part of the oil pan upper 20b is notched in an arc shape, and the journal portion 21a of the crankshaft 21 is arranged in this notched part, and the crankshaft 21 is rotatably supported. A sprocket (not shown) is attached to the crankshaft 21, and the driving force of the crankshaft 21 is transmitted to the oil pump 1 by connecting the sprocket and the sprocket 11 of the oil pump 1 with a belt. Then, when the oil pump 1 is driven, the oil stored in the oil pan lower 20a is sucked from the pump suction hole 23b of the pump structure through the suction port 15, and is pressurized by the pump structure. It is discharged from the pump discharge hole 27 through the discharge passage and from the discharge port 16. The oil discharged from the discharge port 16 is supplied to the internal combustion engine.
 従来のオイルポンプは、ポンプ構成体のポンプ吐出孔27から吐出されるオイルが、吐出通路を通って吐出口16に至るにあたり、第1ハウジング2,第2ハウジング3の内部に設けられた吐出通路の通路面積がほぼ一定であるため、流路抵抗が大きく、内燃機関に必要なオイルの流量を十分に供給できない恐れがあった。これを解決するための手段について図11及び図12を用いて説明する。 In the conventional oil pump, when the oil discharged from the pump discharge hole 27 of the pump component reaches the discharge port 16 through the discharge passage, the discharge passage provided inside the first housing 2 and the second housing 3 Since the passage area is almost constant, the flow path resistance is large, and there is a risk that the oil flow rate required for the internal combustion engine cannot be sufficiently supplied. The means for solving this will be described with reference to FIGS. 11 and 12.
 図11は、図10に示すXI-XI線断面図である。図12は、オイルポンプの一部を破断した斜視図である。本実施例において、第1方向、第2方向は以下のように定義する。図12に示すように、第1方向とは、ポンプ構成体である駆動軸4の回転軸線に沿った方向とし、第2方向とは第1方向と直交する方向とする。 FIG. 11 is a sectional view taken along line XI-XI shown in FIG. FIG. 12 is a perspective view in which a part of the oil pump is broken. In this embodiment, the first direction and the second direction are defined as follows. As shown in FIG. 12, the first direction is a direction along the rotation axis of the drive shaft 4 which is a pump component, and the second direction is a direction orthogonal to the first direction.
 ポンプ構成体のポンプ吐出孔27は、第1ハウジング2に形成された連絡孔80と連通している。連絡孔80は、第1方向に沿って開口して延びており、第1通路81の一方と連通している。第1通路81は、第1方向と直交する第2方向に延びている。連絡孔80を通過したオイルは、第1通路81に流入し、第1方向と直交する第2方向に流れる向きが変更される。ポンプ吐出孔27と連通する連絡孔80の通路面積をS1とし、第1通路81の通路面積をS2としたとき、第1通路81の通路面積S2は連絡孔80の通路面積S1よりも大きく形成されている(S2>S1)。本実施例では、第1通路81の通路面積S2を連絡孔80の通路面積S1よりも大きくしているので、吐出通路内の脈動を低減し、オイルポンプの振動を抑制することができる。 The pump discharge hole 27 of the pump structure communicates with the communication hole 80 formed in the first housing 2. The communication hole 80 opens and extends along the first direction and communicates with one of the first passages 81. The first passage 81 extends in a second direction orthogonal to the first direction. The oil that has passed through the connecting hole 80 flows into the first passage 81, and the direction of flow in the second direction orthogonal to the first direction is changed. When the passage area of the communication hole 80 communicating with the pump discharge hole 27 is S1 and the passage area of the first passage 81 is S2, the passage area S2 of the first passage 81 is formed larger than the passage area S1 of the communication hole 80. (S2> S1). In this embodiment, since the passage area S2 of the first passage 81 is larger than the passage area S1 of the communication hole 80, the pulsation in the discharge passage can be reduced and the vibration of the oil pump can be suppressed.
 第1通路81の他方は、拡大通路82の一方と連通している。拡大通路82は、第1方向に延びており、下流側に向かうに従い通路面積が大きくなるように形成されている。第1通路81を通過したオイルは、拡大通路82に流入し、第2方向と直交する第1方向に流れる向きが変更される。 The other side of the first passage 81 communicates with one of the expansion passages 82. The expansion passage 82 extends in the first direction, and is formed so that the passage area increases toward the downstream side. The oil that has passed through the first passage 81 flows into the expansion passage 82, and the direction of flow in the first direction orthogonal to the second direction is changed.
 拡大通路82の他方は、縮小通路83の一方と連通している。縮小通路83は、第1方向に延びており、下流側に向かうに従い通路面積が小さくなるように形成されている。 The other side of the expansion passage 82 communicates with one of the reduction passage 83. The reduced passage 83 extends in the first direction, and is formed so that the passage area becomes smaller toward the downstream side.
 本実施例においては、拡大通路82、縮小通路83は、短形状に形成されている。そのため、オイルポンプ1を小型化することができる。 In this embodiment, the expansion passage 82 and the reduction passage 83 are formed in a short shape. Therefore, the oil pump 1 can be miniaturized.
 縮小通路83の他方は、第2通路84の一方と連通している。第2通路84は、第1方向及び第2方向と直交する第3方向に延びるように形成されている。本実施例では、第2通路84は、下方向に延びている。第2通路84は、吐出口16を有している。 The other side of the reduced passage 83 communicates with one of the second passage 84. The second passage 84 is formed so as to extend in the first direction and the third direction orthogonal to the second direction. In this embodiment, the second passage 84 extends downward. The second passage 84 has a discharge port 16.
 第2通路84の他方には、オイルポンプ1の吐出口16が設けられている。吐出口16は内燃機関に連通している。本実施例においては、ポンプ吐出孔27から内燃機関に接続される吐出口16との間に吐出通路が形成されている。 A discharge port 16 of the oil pump 1 is provided on the other side of the second passage 84. The discharge port 16 communicates with the internal combustion engine. In this embodiment, a discharge passage is formed between the pump discharge hole 27 and the discharge port 16 connected to the internal combustion engine.
 本実施例の連絡孔80、第1通路81、拡大通路82は、ポンプ構成体と共に第1ハウジング2に形成されている。また、本実施例の縮小通路83、第2通路84は第2ハウジング3に形成されている。そして、第1ハウジング2のポンプ収容部2sを閉塞するように第2ハウジング3を配置することにより、吐出通路が形成される。 The communication hole 80, the first passage 81, and the expansion passage 82 of this embodiment are formed in the first housing 2 together with the pump component. Further, the reduced passage 83 and the second passage 84 of this embodiment are formed in the second housing 3. Then, the discharge passage is formed by arranging the second housing 3 so as to close the pump accommodating portion 2s of the first housing 2.
 本実施例では、拡大通路82と縮小通路83とを別々の部材である第1ハウジング2と第2ハウジング3とに分けて形成したので、通路を形成し易い。 In this embodiment, since the expansion passage 82 and the reduction passage 83 are separately formed into the first housing 2 and the second housing 3, it is easy to form the passage.
 拡大通路82の構成について説明する。拡大通路82は、第1通路81から吐出口16に近づくほど通路面積が大きくなっている。すなわち、拡大通路82における第1通路81側の通路面積S3よりも吐出口16側の通路面積S4の方が大きい(S3<S4)。また、第1通路81側の通路面積S3と第1通路81の通路面積S2は等しく(S3=S2)。その結果、拡大通路82における吐出口16側の通路面積S4は、第1通路81の通路面積S2及び連絡孔80の通路面積S1よりも大きい(S4>S2>S1)。これにより、連絡孔80から拡大通路82までの吐出通路の流路抵抗を低減することができる。 The configuration of the expansion passage 82 will be described. The expanded passage 82 has a larger passage area as it approaches the discharge port 16 from the first passage 81. That is, the passage area S4 on the discharge port 16 side is larger than the passage area S3 on the first passage 81 side in the expanded passage 82 (S3 <S4). Further, the passage area S3 on the first passage 81 side and the passage area S2 of the first passage 81 are equal (S3 = S2). As a result, the passage area S4 on the discharge port 16 side of the expanded passage 82 is larger than the passage area S2 of the first passage 81 and the passage area S1 of the connecting hole 80 (S4> S2> S1). Thereby, the flow path resistance of the discharge passage from the connecting hole 80 to the expansion passage 82 can be reduced.
 拡大通路82は、第1方向に延びた第1拡大通路部82aと、この第1拡大通路部82aに対向する位置に設けられた第2拡大通路部82bとから構成されている。第1拡大通路部82aと第2拡大通路部82bは、仮想線(図11の破線)を境に対向している。そして、第2拡大通路部82bは、第1通路81から縮小通路83(吐出口16)に近づくほど第1拡大通路部82aとの距離が徐々に大きくなるように形成されている。第2拡大通路部82bはクランクシャフト21側に配置されている。 The expansion passage 82 is composed of a first expansion passage portion 82a extending in the first direction and a second expansion passage portion 82b provided at a position facing the first expansion passage portion 82a. The first expanded passage portion 82a and the second expanded passage portion 82b face each other with a virtual line (broken line in FIG. 11) as a boundary. The second expanded passage portion 82b is formed so that the distance from the first expanded passage portion 82a gradually increases as the distance from the first passage 81 approaches the reduced passage 83 (discharge port 16). The second expansion passage portion 82b is arranged on the crankshaft 21 side.
 第2拡大通路部82bを形成する拡大通路形成部85は、第1通路81側に対し縮小通路83側が上方に位置するように傾斜して配置されている。その結果、第2拡大通路部82bは拡大通路形成部85に沿って傾斜している。 The expansion passage forming portion 85 forming the second expansion passage portion 82b is arranged so as to be inclined so that the reduction passage 83 side is located above the first passage 81 side. As a result, the second expansion passage portion 82b is inclined along the expansion passage forming portion 85.
 本実施例の連絡孔80、第1通路81、拡大通路82は、ポンプ構成体と共に第1ハウジング2に形成されている。 The communication hole 80, the first passage 81, and the expansion passage 82 of this embodiment are formed in the first housing 2 together with the pump structure.
 本実施例においては、ポンプ吐出孔27から内燃機関に接続される吐出口16との間に形成された吐出通路内に、通路面積が拡大する拡大通路82を形成するようにしたので、吐出通路内を流れるオイルの流路抵抗を低減することができ、内燃機関に必要なオイルを供給することができる。 In this embodiment, since the expansion passage 82 whose passage area is expanded is formed in the discharge passage formed between the pump discharge hole 27 and the discharge port 16 connected to the internal combustion engine, the discharge passage The flow path resistance of the oil flowing inside can be reduced, and the necessary oil can be supplied to the internal combustion engine.
 次に縮小通路83の構成について説明する。縮小通路83は、拡大通路82から吐出口16に近づくほど通路面積が小さくなっている。すなわち、縮小通路83における拡大通路82側の通路面積S5よりも吐出口16側の通路面積S6の方が小さい(S5>S6)。また、縮小通路83における拡大通路82側の通路面積S5と拡大通路82における吐出口16側の通路面積S4は等しい(S5=S4)。これにより、第1ハウジング2と第2ハウジング3との接合部による吐出通路内の流路抵抗を低減でき、接合部でのシール性を確保することができる。 Next, the configuration of the reduced passage 83 will be described. The reduced passage 83 has a smaller passage area as it approaches the discharge port 16 from the expanded passage 82. That is, the passage area S6 on the discharge port 16 side is smaller than the passage area S5 on the expansion passage 82 side in the reduction passage 83 (S5> S6). Further, the passage area S5 on the expansion passage 82 side in the reduction passage 83 and the passage area S4 on the discharge port 16 side in the expansion passage 82 are equal (S5 = S4). As a result, the flow path resistance in the discharge passage due to the joint portion between the first housing 2 and the second housing 3 can be reduced, and the sealing property at the joint portion can be ensured.
 縮小通路83は、第1方向に延びた第1縮小通路部83aと、この第1縮小通路部83aに対向する位置に設けられた第2縮小通路部83bとから構成されている。第1縮小通路部83aと第2縮小通路部83bは、仮想線(図11の破線)を境に対向している。第1縮小通路部83aは、第1拡大通路部82aと同じ側に位置し、第1拡大通路部82aと繋がっている。第2縮小通路部83bは、第2拡大通路部82bと同じ側に位置し、第1拡大通路部82a及び第2拡大通路部82bと繋がっている。 The reduced passage 83 is composed of a first reduced passage portion 83a extending in the first direction and a second reduced passage portion 83b provided at a position facing the first reduced passage portion 83a. The first reduced passage portion 83a and the second reduced passage portion 83b face each other with a virtual line (broken line in FIG. 11) as a boundary. The first reduced passage portion 83a is located on the same side as the first expanded passage portion 82a and is connected to the first expanded passage portion 82a. The second reduced passage portion 83b is located on the same side as the second expanded passage portion 82b, and is connected to the first expanded passage portion 82a and the second expanded passage portion 82b.
 そして、第1縮小通路部83aは、拡大通路82から第2通路84(吐出口16)に近づくほど第2縮小通路部83bとの距離が徐々に小さくなるように形成されている。第2拡大通路部82bはクランクシャフト21側に配置されている。 The first reduced passage portion 83a is formed so that the distance from the expanded passage 82 to the second reduced passage portion 83b gradually decreases as it approaches the second passage 84 (discharge port 16). The second expansion passage portion 82b is arranged on the crankshaft 21 side.
 第1縮小通路部83aを形成する縮小通路形成部86は、拡大通路82側に対し吐出口16側が上方に位置するように傾斜して配置されている。その結果、第1縮小通路部83aは縮小通路形成部86に沿って傾斜している。また、第1縮小通路部83aと第2拡大通路部82bとは、同じ方向に傾斜して配置されている。 The reduced passage forming portion 86 forming the first reduced passage portion 83a is arranged so as to be inclined so that the discharge port 16 side is located above the expanded passage 82 side. As a result, the first reduced passage portion 83a is inclined along the reduced passage forming portion 86. Further, the first reduced passage portion 83a and the second expanded passage portion 82b are arranged so as to be inclined in the same direction.
 縮小通路形成部86は第2通路84の一部、及び吐出口16の一部を形成している。吐出口16の外周は、内燃機関に繋がる通路と接続されるためのフランジ部となる。本実施例では、肉厚の縮小通路形成部86にて吐出口16のフランジ部の一部を形成するようにしているので、フランジ部の強度を確保してフランジ部でのシール性を確保し、オイル漏れを抑制することができる。 The reduced passage forming portion 86 forms a part of the second passage 84 and a part of the discharge port 16. The outer circumference of the discharge port 16 is a flange portion for connecting to a passage connected to the internal combustion engine. In this embodiment, since a part of the flange portion of the discharge port 16 is formed by the reduced wall thickness passage forming portion 86, the strength of the flange portion is ensured and the sealing property at the flange portion is ensured. , Oil leakage can be suppressed.
 本実施例においては、拡大通路82と連通し、通路面積が縮小する縮小通路83を形成するようにしている。吐出通路を流れるオイルは、拡大された通路と縮小通路とを通過するので、吐出通路内で渦が発生し、その渦によりオイルの圧力が緩和される。その結果、本実施例では、吐出通路内での脈動を低減し、脈動によるオイルポンプの振動を低減することができる。 In this embodiment, the reduced passage 83 is formed so as to communicate with the expanded passage 82 and reduce the passage area. Since the oil flowing through the discharge passage passes through the expanded passage and the reduced passage, a vortex is generated in the discharge passage, and the pressure of the oil is relieved by the vortex. As a result, in this embodiment, the pulsation in the discharge passage can be reduced, and the vibration of the oil pump due to the pulsation can be reduced.
 吐出口16の通路面積S7は、縮小通路83における吐出口16側の通路面積S6と等しい(S7=S6)。また、縮小通路83における吐出口16側の通路面積S6と拡大通路82における第1通路81側の通路面積S3は等しい(S6=S3)。その結果、第1通路81の通路面積S2、第1通路81側の通路面積S3、縮小通路83における吐出口16側の通路面積S6、吐出口16の通路面積S7は共に等しい(S2=S3=S6=S7)。 The passage area S7 of the discharge port 16 is equal to the passage area S6 on the discharge port 16 side in the reduced passage 83 (S7 = S6). Further, the passage area S6 on the discharge port 16 side in the reduced passage 83 and the passage area S3 on the first passage 81 side in the expanded passage 82 are equal (S6 = S3). As a result, the passage area S2 of the first passage 81, the passage area S3 on the first passage 81 side, the passage area S6 on the discharge port 16 side in the reduced passage 83, and the passage area S7 of the discharge port 16 are all equal (S2 = S3 =). S6 = S7).
 従って、吐出通路の出口となる吐出口16の通路面積S7は、吐出通路の入口となる連通する連絡孔80の通路面積S1よりも大きく形成されている(S7>S1)。本実施例においては、吐出口16の通路面積S7を連絡孔80の通路面積S1よりも大きくしているので、吐出通路内の流路抵抗を低減することができる。 Therefore, the passage area S7 of the discharge port 16 which is the outlet of the discharge passage is formed to be larger than the passage area S1 of the communication hole 80 which is the inlet of the discharge passage (S7> S1). In this embodiment, since the passage area S7 of the discharge port 16 is larger than the passage area S1 of the communication hole 80, the flow path resistance in the discharge passage can be reduced.
 次に第1方向における拡大通路82と縮小通路83との長さを比較すると、拡大通路82の長さL1は、縮小通路83の長さL2よりも長く形成されている。これにより、ポンプ構成体から吐出されたオイルの流れを整流する区間を長くすることができ、振動を低減することができる。 Next, comparing the lengths of the expansion passage 82 and the reduction passage 83 in the first direction, the length L1 of the expansion passage 82 is formed longer than the length L2 of the reduction passage 83. As a result, the section for rectifying the flow of oil discharged from the pump component can be lengthened, and vibration can be reduced.
 以上説明したように本実施例によれば、流路抵抗を小さくし、内燃機関に必要なオイルの流量を供給可能なオイルポンプを提供することができる。 As described above, according to this embodiment, it is possible to provide an oil pump capable of reducing the flow path resistance and supplying the flow rate of oil required for the internal combustion engine.
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。 The present invention is not limited to the above-described embodiment, and includes various modifications. The above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 本願は、2019年3月20日付出願の日本国特許出願第2019-052386号に基づく優先権を主張する。2019年3月20日付出願の日本国特許出願第2019-052386号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2019-052386 filed on March 20, 2019. The entire disclosure, including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2019-052386 filed March 20, 2019, is incorporated herein by reference in its entirety.
 1…オイルポンプ、2…第1ハウジング、2s…ポンプ収容部、3…第2ハウジング、4…駆動軸、6…制御リング、7…パイロット弁、9…ピボットピン、11…スプロケット、15…吸入口、16…吐出口、17…チェック弁、20…オイルパン、20a…オイルパンロアー、20b…オイルパンアッパー、21…クランクシャフト、23a…吸入ポート、23b…ポンプ吸入孔、24a…吐出ポート、27…ポンプ吐出孔、80…連絡孔、81…第1通路、82…拡大通路、82a…第1拡大通路部、82b…第2拡大通路部、83…縮小通路、83a…第1縮小通路部、83b…第2縮小通路部、84…第2通路、85…拡大通路形成部、86…縮小通路形成部 1 ... Oil pump, 2 ... 1st housing, 2s ... Pump housing, 3 ... 2nd housing, 4 ... Drive shaft, 6 ... Control ring, 7 ... Pilot valve, 9 ... Pivot pin, 11 ... Sprocket, 15 ... Suction Port, 16 ... Discharge port, 17 ... Check valve, 20 ... Oil pan, 20a ... Oil pan lower, 20b ... Oil pan upper, 21 ... Crankshaft, 23a ... Suction port, 23b ... Pump suction hole, 24a ... Discharge port, 27 ... Pump discharge hole, 80 ... Communication hole, 81 ... First passage, 82 ... Expansion passage, 82a ... First expansion passage, 82b ... Second expansion passage, 83 ... Reduction passage, 83a ... First reduction passage , 83b ... Second reduced passage portion, 84 ... Second passage, 85 ... Expanded passage forming portion, 86 ... Reduced passage forming portion

Claims (11)

  1.  内燃機関のオイルポンプであって、該オイルポンプは、
     内部にポンプ収容部が形成されたハウジングと、
     前記ポンプ収容部に収容され、回転駆動されることによってポンプ吸入孔から吸入したオイルをポンプ吐出孔から吐出するポンプ構成体と、
     前記ポンプ吐出孔から前記内燃機関に接続される吐出口との間に形成される吐出通路とを備え、
     前記吐出通路は、
     前記ポンプ構成体の回転軸線に沿った方向である第1方向に延びた前記ポンプ吐出孔と連通すると共に、前記第1方向に直交する第2方向に延び、前記ポンプ吐出孔の通路面積より大きく形成された第1通路と、
     前記第1通路と連通すると共に、前記第2方向に延び、前記第1通路から前記吐出口に近づくほど通路面積が大きくなる拡大通路と、
     を備えたことを特徴とするオイルポンプ。
    An oil pump for an internal combustion engine.
    A housing with a pump housing inside,
    A pump structure that is housed in the pump accommodating portion and is rotationally driven to discharge oil sucked from the pump suction hole from the pump discharge hole.
    A discharge passage formed between the pump discharge hole and a discharge port connected to the internal combustion engine is provided.
    The discharge passage
    It communicates with the pump discharge hole extending in the first direction, which is the direction along the rotation axis of the pump structure, and extends in the second direction orthogonal to the first direction, and is larger than the passage area of the pump discharge hole. The formed first passage and
    An expanded passage that communicates with the first passage and extends in the second direction, and the passage area increases as the passage approaches the discharge port from the first passage.
    An oil pump characterized by being equipped with.
  2.  請求項1に記載のオイルポンプにおいて、
     前記吐出通路は、
     前記拡大通路と連通すると共に、前記拡大通路から前記吐出口に近づくほど通路面積が小さくなる縮小通路を備えることを特徴とするオイルポンプ。
    In the oil pump according to claim 1,
    The discharge passage
    An oil pump comprising a reduced passage that communicates with the expanded passage and whose passage area becomes smaller as it approaches the discharge port from the expanded passage.
  3.  請求項2に記載のオイルポンプにおいて、
     前記吐出通路は、
     前記縮小通路と連通すると共に、前記第1方向および前記第2方向と直交する第3方向に延び、前記吐出口を有する第2通路を備えることを特徴とするオイルポンプ。
    In the oil pump according to claim 2,
    The discharge passage
    An oil pump comprising a second passage that communicates with the reduced passage, extends in the first direction and a third direction orthogonal to the second direction, and has the discharge port.
  4.  請求項3に記載のオイルポンプにおいて、
     前記拡大通路は、
     前記第2方向に延びた第1拡大通路部と、
     前記第1拡大通路部に対向する位置に設けられ、前記第1通路から前記縮小通路に近づくほど前記第1拡大通路部との間の距離が徐々に大きくなるように形成された第2拡大通路部と、を有し、
     前記縮小通路は、
     前記第2拡大通路部と同じ側に位置する第2縮小通路部と、
     前記第1拡大通路部と同じ側に位置すると共に、前記第2縮小通路部に対向する位置に設けられ、前記拡大通路から前記第2通路に近づくほど前記第2縮小通路部との間の距離が小さくなるよう形成された第1縮小通路部と、を備えることを特徴とするオイルポンプ。
    In the oil pump according to claim 3,
    The expansion passage
    The first expansion passage portion extending in the second direction and the
    A second expansion passage provided at a position facing the first expansion passage portion, and formed so that the distance between the first expansion passage and the first expansion passage gradually increases as the distance from the first passage approaches the reduction passage. With a part,
    The reduced passage
    The second reduced passage portion located on the same side as the second expanded passage portion and
    It is located on the same side as the first expansion passage portion and is provided at a position facing the second reduction passage portion, and the closer to the second passage from the expansion passage, the distance between the second reduction passage portion and the second reduction passage portion. An oil pump characterized by comprising a first reduced passage portion formed so as to be smaller in size.
  5.  請求項4に記載のオイルポンプにおいて、
     前記第2拡大通路部は、前記第1通路側に対し前記縮小通路側が上方に位置するように傾斜して形成され、
     前記第2縮小通路部は、前記第2拡大通路部と同じ方向に傾斜して形成されたことを特徴とするオイルポンプ。
    In the oil pump according to claim 4,
    The second enlarged passage portion is formed so as to be inclined so that the reduced passage side is located above the first passage side.
    The oil pump is characterized in that the second reduced passage portion is formed so as to be inclined in the same direction as the second expanded passage portion.
  6.  請求項4に記載のオイルポンプにおいて、
     前記第2拡大通路部は、前記内燃機関に設けられたクランクシャフト側に配置されたことを特徴とするオイルポンプ。
    In the oil pump according to claim 4,
    The oil pump characterized in that the second expansion passage portion is arranged on the crankshaft side provided in the internal combustion engine.
  7.  請求項2に記載のオイルポンプにおいて、
     前記第2方向において、前記拡大通路は、前記縮小通路よりも長く形成されたことを特徴とするオイルポンプ。
    In the oil pump according to claim 2,
    An oil pump characterized in that, in the second direction, the expansion passage is formed longer than the reduction passage.
  8.  請求項2に記載のオイルポンプにおいて、
     前記ハウジングは、前記ポンプ構成体を収容する前記ポンプ収容部が形成された第1ハウジングと、前記ポンプ収容部を閉塞する第2ハウジングと、を有し、
     前記拡大通路は、前記第1ハウジングに設けられ、
     前記縮小通路は、前記第2ハウジングに設けられたことを特徴とするオイルポンプ。
    In the oil pump according to claim 2,
    The housing has a first housing in which the pump accommodating portion for accommodating the pump component is formed, and a second housing for closing the pump accommodating portion.
    The expansion passage is provided in the first housing.
    The reduced passage is an oil pump provided in the second housing.
  9.  請求項1に記載のオイルポンプにおいて、
     前記オイルポンプは、前記ポンプ吐出孔及び前記第1通路と連通する連絡孔を備え、
     前記第1通路は、前記連絡孔の通路面積よりも大きく形成されたことを特徴とするオイルポンプ。
    In the oil pump according to claim 1,
    The oil pump includes a pump discharge hole and a communication hole communicating with the first passage.
    The oil pump is characterized in that the first passage is formed larger than the passage area of the communication hole.
  10.  請求項1に記載のオイルポンプにおいて、
     前記オイルポンプは、前記ポンプ吐出孔及び前記第1通路と連通する連絡孔を備え、
     前記吐出口の通路面積は、前記連絡孔の通路面積よりも大きく形成されたことを特徴とするオイルポンプ。
    In the oil pump according to claim 1,
    The oil pump includes a pump discharge hole and a communication hole that communicates with the first passage.
    An oil pump characterized in that the passage area of the discharge port is formed to be larger than the passage area of the communication hole.
  11.  請求項2に記載のオイルポンプにおいて、
     前記拡大通路または前記縮小通路は、短形状に形成されたことを特徴とするオイルポンプ。
    In the oil pump according to claim 2,
    An oil pump characterized in that the expansion passage or the reduction passage is formed in a short shape.
PCT/JP2020/002446 2019-03-20 2020-01-24 Oil pump WO2020189008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-052386 2019-03-20
JP2019052386A JP2020153290A (en) 2019-03-20 2019-03-20 Oil pump

Publications (1)

Publication Number Publication Date
WO2020189008A1 true WO2020189008A1 (en) 2020-09-24

Family

ID=72520696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002446 WO2020189008A1 (en) 2019-03-20 2020-01-24 Oil pump

Country Status (2)

Country Link
JP (1) JP2020153290A (en)
WO (1) WO2020189008A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773881A (en) * 1980-10-23 1982-05-08 Nissan Motor Co Ltd Variable capacity vane pump
JP2016104967A (en) * 2014-12-01 2016-06-09 日立オートモティブシステムズ株式会社 Variable capacity type oil pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773881A (en) * 1980-10-23 1982-05-08 Nissan Motor Co Ltd Variable capacity vane pump
JP2016104967A (en) * 2014-12-01 2016-06-09 日立オートモティブシステムズ株式会社 Variable capacity type oil pump

Also Published As

Publication number Publication date
JP2020153290A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5688003B2 (en) Variable displacement oil pump
JP6006098B2 (en) Variable displacement pump
JP5679958B2 (en) Variable displacement pump
JP5620882B2 (en) Variable displacement pump
JP5564450B2 (en) Oil pump
JP6419223B2 (en) Variable displacement pump
JP6622809B2 (en) Variable displacement oil pump
JP6664465B2 (en) Variable displacement pump
JP6259035B2 (en) Variable displacement pump
JP6838772B2 (en) Variable capacity oil pump
JP6039831B2 (en) Variable displacement pump
WO2020189008A1 (en) Oil pump
WO2020195077A1 (en) Variable displacement pump
JP7042099B2 (en) Pump device
JP2021124098A (en) Variable displacement pump
JP6567678B2 (en) Variable displacement oil pump
JP6543682B2 (en) Variable displacement pump
WO2023037875A1 (en) Variable capacity-type oil pump
WO2022137658A1 (en) Variable displacement pump
WO2023037737A1 (en) Variable-capacity oil pump
JP2015161248A (en) Variable capacity type oil pump
JP2020041522A (en) Variable displacement pump
JP6573509B2 (en) Variable displacement pump
JP2015083839A (en) Variable displacement pump
JP2016211524A (en) Pump unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773773

Country of ref document: EP

Kind code of ref document: A1