WO2020195077A1 - Variable displacement pump - Google Patents

Variable displacement pump Download PDF

Info

Publication number
WO2020195077A1
WO2020195077A1 PCT/JP2020/002448 JP2020002448W WO2020195077A1 WO 2020195077 A1 WO2020195077 A1 WO 2020195077A1 JP 2020002448 W JP2020002448 W JP 2020002448W WO 2020195077 A1 WO2020195077 A1 WO 2020195077A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
variable displacement
displacement pump
control ring
oil
Prior art date
Application number
PCT/JP2020/002448
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 加藤
浩二 佐賀
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2020195077A1 publication Critical patent/WO2020195077A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to, for example, a variable displacement pump.
  • Patent Document 1 As a variable displacement pump applied to an internal combustion engine for an automobile, a technique as described in Patent Document 1 is known.
  • Patent Document 1 the oil discharged from the pump configuration of the variable displacement pump is discharged to the outside of the variable displacement pump through a hole provided in a control ring forming a part of the pump configuration. Was there.
  • control ring is deformed by the pressure of the oil pressurized by the pump component during the operation of the variable displacement pump. Due to this deformation of the control ring, the sliding resistance of the movable part in the pump structure may increase, and the efficiency may deteriorate.
  • An object of the present invention is to provide a variable displacement pump capable of suppressing deterioration of efficiency.
  • a housing having a pump accommodating portion formed therein and a suction portion in which the volumes of a plurality of pump chambers are changed by being accommodated in the pump accommodating portion and driven to rotate.
  • a pump structure that discharges oil derived from the above to a discharge unit and a part of the pump structure are formed, and a plurality of pump chambers are arranged inside so that the pump can be moved according to the state of the internal combustion engine.
  • a control ring that is provided so as to communicate with both ends in the axial direction and through which oil discharged from the plurality of pump chambers flows, and a dividing member that divides the holes into a plurality of holes.
  • the control ring is provided with a control ring that changes the amount of oil discharged from the discharge unit by moving.
  • variable displacement pump capable of suppressing deterioration of efficiency.
  • FIG. 5 is a sectional view taken along line VI-VI. It is a system block diagram of the variable capacity type pump which concerns on embodiment of this invention.
  • FIG. 7 is a sectional view taken along line VIII-VIII in FIG. It is a side view which saw through the variable capacity type pump which concerns on embodiment of this invention. It is a side view of the variable capacity type pump which shows the state which attached the pump cover to the control housing which concerns on embodiment of this invention. It is an enlarged perspective view of the main part of the variable displacement type pump which concerns on embodiment of this invention. It is an enlarged view of the main part of the variable displacement type pump which concerns on embodiment of this invention.
  • FIG. 12 is a sectional view taken along line XIII-XIII in FIG. It is a partially enlarged view of the pump housing which shows the state which removed the control ring from the variable displacement type pump which concerns on embodiment of this invention.
  • FIG. 12 is a sectional view taken along line XIII-XIII in FIG. It is a partially enlarged view of the pump housing which shows the state which removed the control ring from the variable displacement type pump which concerns on embodiment of this invention.
  • FIG. 5 is a partially enlarged view showing a state in which the eccentricity of the control ring of the variable displacement pump according to the embodiment of the present invention is 100%. It is a partially enlarged view which shows the state which the eccentricity amount of the control ring of the variable displacement type pump which concerns on embodiment of this invention is 0%.
  • variable displacement pump oil (lubricating oil) is supplied to the sliding portion of an internal combustion engine for automobiles, and a variable capacity that supplies hydraulic pressure as an operating source of a variable valve mechanism that changes the valve timing of the engine valve.
  • oil lubricating oil
  • variable capacity that supplies hydraulic pressure as an operating source of a variable valve mechanism that changes the valve timing of the engine valve.
  • variable displacement pump in this embodiment is applied to the vane type and is provided at the front end of the cylinder block of the internal combustion engine.
  • FIG. 1 is an external perspective view in which a variable displacement pump is incorporated in an internal combustion engine according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view cut along the axial direction of a crankshaft which is a rotating shaft according to the embodiment of the present invention.
  • a variable displacement pump 120 is attached to the end of the cylinder block 111 of the internal combustion engine 110.
  • a crankshaft 3 that converts the vertical movement of the piston arranged in the internal combustion engine 110 into a rotational movement via a connecting rod.
  • the variable displacement pump 120 is provided with a rotor 4 described later.
  • a penetrating opening 4b is formed in the central portion of the rotor 4, and the crankshaft 3 is inserted into the opening 4b and fixed. As a result, the rotational force of the crankshaft 3 is transmitted to the rotor 4.
  • FIG. 3 is an exploded perspective view of the variable displacement pump as viewed from the control housing side according to the embodiment of the present invention
  • FIG. 4 is an exploded perspective view of the variable displacement pump as viewed from the pump housing side according to the embodiment of the present invention
  • FIG. 5 is a side view of the variable displacement pump as viewed from the control housing side according to the embodiment of the present invention.
  • 6 is a sectional view taken along line VI-VI in FIG. 5
  • FIG. 7 is a system configuration diagram of a variable displacement pump according to an embodiment of the present invention
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a perspective view of the variable displacement pump according to the embodiment of the present invention
  • FIG. 10 is a side view of the variable displacement pump showing a state in which the pump cover is attached to the control housing according to the embodiment of the present invention. is there.
  • variable displacement pump is rotatably housed in a bottomed cylindrical pump housing 1 having an opening closed by a pump cover 2 and a pump housing 1 and a center thereof.
  • the control housing 6 is provided on the outer surface of the control housing 6 and is mainly composed of a pilot valve 7 which is a control mechanism for controlling hydraulic pressure supply switching in order to swing the control ring 5.
  • the crankshaft 3 penetrates substantially the center of the pump housing 1.
  • a solenoid valve 100 which is a switching mechanism described later, is connected to the variable displacement pump.
  • the pump housing 1, the pump cover 2, and the control housing 6 are integrally connected by a plurality of bolts 9, and each of the bolts 9 is integrally connected to the pump housing 1, the control housing 6, and the control housing 6. These are fastened by inserting them into the bolt insertion holes formed in the pump cover 2 respectively.
  • the pump housing 1 is integrally formed of a material containing aluminum such as an aluminum alloy, and the bottom surface of the concave pump accommodating portion 1s slides on one side surface in the axial direction of the control ring 5, so that the flatness, surface roughness, etc.
  • the precision of the machine is high, and the sliding range is formed by machining.
  • the pump housing 1, the pump cover 2, and the control housing 6 form a housing that serves as a housing for the variable displacement pump, and a pump housing portion is formed inside the housing.
  • the pump housing 1 is formed with a bearing hole 1d for bearing one end of the crankshaft 3 penetrating at a substantially central position on the bottom surface of the pump accommodating portion 1s which is an operating chamber.
  • a bottomed pin hole 1c into which a pivot pin 10 (shaft member), which is a pivot pin serving as a pivot point of the control ring 5, is inserted is formed at a predetermined position on the inner peripheral surface. ..
  • a first sealing surface 1a formed in an arc concave shape is formed on the inner peripheral side of the pump accommodating portion 1s at a position above the vertical direction.
  • an arcuate concave second sealing surface 1b is formed on the inner peripheral side of the pump accommodating portion 1s at a position lower in the vertical direction.
  • the first sealing surface 1a seals the first control oil chamber 16 described later with the first sealing member 13 fitted in the first sealing groove 5b formed in the control ring 5 with a constant sliding contact. It has become.
  • the first sealing mechanism is composed of the first sealing surface 1a and the first sealing member 13.
  • the second sealing mechanism is composed of the second sealing surface 1b and the second sealing member 14.
  • the first seal surface 1a and the second seal surface 1b are formed in an arcuate shape having a predetermined length centered on the pivot pin 10, and the control ring 5 swings eccentrically. Within the range, the first seal member 13 and the second seal member 14 are set to a length that allows constant sliding contact.
  • the pump cover 2 is formed with a suction port 11 (suction portion) which is a suction portion having a substantially crescent-shaped notch shape, and the suction port 11 is provided with a radial suction portion.
  • Discharge ports 12 (discharging portions), which are substantially crescent-shaped ejection portions, are formed at positions on opposite sides so as to be substantially opposed to each other. The specific configuration of the suction port 11 and the discharge port 12 will be described later.
  • the pump cover 2 is formed of an aluminum alloy material in a substantially plate shape, and a bearing hole 2a that rotatably supports the other end of the crankshaft 3 is formed through the pump cover 2 at a substantially central position. At the same time, a plurality of boss portions forming bolt insertion holes are integrally formed on the outer peripheral portion. Further, the pump cover 2 is coupled to the pump housing 1 by a plurality of bolts 9 while being positioned in the circumferential direction on the pump housing 1 via a plurality of positioning pins (not shown).
  • the rotational force transmitted from the crankshaft 3 is transmitted to the rotor 4, and the rotor 4 is rotated in the direction of the arrow (clockwise) in FIG. 7, and is the left half of the figure centered on the crankshaft 3. Is the suction area, and the right half is the discharge area.
  • each base end edge is in sliding contact with the outer peripheral surfaces of a pair of front and rear vane rings 18 and 18, and each tip edge is in sliding contact with the inner peripheral surface 5a of the control ring 5.
  • a plurality of pumps having a plurality of hydraulic oil chambers between the adjacent vanes 15 and the inner peripheral surface 5a of the control ring 5 and the inner peripheral surface of the rotor 4, the pump accommodating portion 1s, and the inner surface of the pump cover 2.
  • the chambers 19 are liquidtightly separated.
  • Each vane ring 18 pushes each vane 15 out of the radiation as it rotates, and even when the engine speed is low and the centrifugal force or the pressure of the back pressure chamber 24 is small, each vane 15 is
  • Each tip of the pump chamber 19 is in sliding contact with the inner peripheral surface of the control ring 5, and each pump chamber 19 is liquid-tightly separated.
  • the volume of the pump chamber 19 increases from the state where the volume is the smallest, reaches the maximum volume, and then decreases.
  • the region where the volume of the pump chamber 19 expands becomes the suction region, and the region where the volume decreases becomes the discharge region.
  • the vane 15, the rotor 4, and the control ring 5 which are housed in the pump housing unit 1s and constitute the pump chamber 19 form the pump body.
  • the control ring 5 which constitutes a part of the pump structure, is integrally formed in a substantially cylindrical shape by a sintered metal of an iron-based material that is easy to process, and as shown in FIGS. 3, 4, and 7, the outer peripheral surface thereof.
  • a pivot recess 5d is formed at the position of the pivot pin 10, and the pivot pin 10 inserted and positioned in the pivot recess 5d is inserted and inserted to serve as an eccentric swing fulcrum.
  • holes 25 (holes 25a and 25b) communicating with the discharge port 12 are formed through, and a second seal groove 5c is formed through the second seal groove 5c.
  • a substantially triangular second protrusion 5g for holding the seal member 14 is provided.
  • the hole 25 is provided on the side of the plurality of pump chambers 19 closest to the pump chamber 19 having the smallest volume in the section where the volume of the plurality of pump chambers 19 decreases with the rotational drive of the pump components. That is, the hole 25 is between the intermediate position of the section where the volume of the pump chamber decreases in the circumferential direction with the rotational drive of the pump configuration and the terminal portion of the discharge port 12 closest to the pump chamber having the smallest volume. It is provided in.
  • a substantially triangular first protrusion 5h for holding the first seal member 13 is provided via the first seal groove 5b.
  • the hole 25 is rectangular and is provided along the rotation axis of the rotor 4 which is a part of the pump structure, and the oil discharged from the pump structure flows through the hole 25 in communication with the discharge port 12.
  • the hole portion 25 is divided into a plurality of holes 25a and 25b by a dividing member 37 (partitioning member).
  • the dividing member 37 divides the hole 25 into two holes 25a and 25b in the radial direction with respect to the rotation axis of the rotor 4, which is a part of the pump structure. The configuration of the hole 25 will be described later.
  • the dividing member 37 may divide the hole 25 into a plurality of two or more holes.
  • the oil is discharged from the discharge port 12, and a part of the oil on the attachment side to the cylinder block 111 (lower side in FIG. 8) passes through the plurality of holes 25a and 25b. It is guided to the discharge passage 61.
  • the pump component is housed inside the pump accommodating portion and is driven to rotate to discharge the oil guided from the suction port 11 (inhalation portion) from the discharge port 12 (discharge portion). Further, the rotor 4, the vane 15, the vane ring 18, and the control ring 5 are made of an iron-based material.
  • a first control oil chamber 16 is formed on the upper side centering on the control ring 5 between the outer peripheral surface of the control ring 5 on the first protrusion 5h and the second protrusion 5g side and the pump housing 1.
  • a second control oil chamber 17 is formed on the lower side, respectively.
  • the first control oil chamber 16 reduces the control ring 5 by the hydraulic pressure supplied to the inside, which is one of the directions in which the eccentricity changes against the spring force of the coil spring 28 described later (from the pump configuration). It is designed to press in the direction in which the amount of discharged oil decreases). That is, the first control oil chamber 16 is a reduction side control chamber.
  • the oil discharged from the discharge port portion is guided to the first control oil chamber 16 through the discharge hole 12a, the main oil gallery 31, the second oil gallery 33, and the first control groove 35, and the oil discharge amount is increased. It is configured to increase the volume of the pump chamber as the control ring moves in a decreasing direction. Further, the first control oil chamber 16 is configured to communicate with or be cut off from the discharge port 12 via the pilot valve 7, and is always provided by the first seal mechanism even when the control ring 5 swings. It is designed to be liquidtightly sealed.
  • the second control oil chamber 17 assists the control ring 5 with the spring force of the coil spring 28 described later by the hydraulic pressure supplied to the inside to urge the control ring 5 in a direction in which the amount of eccentricity increases, and the solenoid valve 100 Hydraulic pressure is supplied or discharged via the solenoid valve 7. That is, the second control oil chamber 17 is an increasing side control chamber.
  • the distance from the eccentric swing fulcrum to the second seal member 14 is set to be larger than the distance to the first seal member 13, the outer surface of the control ring 5 on the second control oil chamber 17 side.
  • the area of the second pressure receiving surface 20 is larger than the area of the first pressure receiving surface 21 which is the outer surface on the side of the first control oil chamber 16.
  • the pressing force on the control ring 5 by the hydraulic pressure in the second control oil chamber 17 is slightly offset by the opposite hydraulic pressure in the first control oil chamber 16, and as a result, the control ring 5 is pivoted by the discharge oil pressure.
  • the force that attempts to reduce the amount of eccentricity by swinging counterclockwise with the pin 10 as a fulcrum becomes smaller, and the spring force of the coil spring 28 described later that urges the control ring 5 clockwise in opposition to this becomes smaller. Can be set small.
  • the first seal member 13 and the second seal member 14 are formed of, for example, a low-wear synthetic resin material elongated along the axial direction of the control ring 5, and the first protrusions 5h and the second of the control ring 5 are formed. It is held in the first seal groove 5b and the second seal groove 5c formed on the outer peripheral surface of the protrusion 5g. Further, the first seal member 13 and the second seal member 14 are moved forward by the elastic force of the rubber elastic members 13a and 14a fixed to the bottom side of the first seal groove 5b and the second seal groove 5c, that is, each seal. It is designed to be pressed against the surfaces 1a and 1b. As a result, good liquidtightness of the first control oil chamber 16 and the second control oil chamber 17 is always ensured.
  • the suction port 11 is open to a region where the volume of each pump chamber 19 is expanded, and is substantially centered by the negative pressure generated by the pumping action of the pump structure.
  • the oil in the oil pan 55 is introduced through the formed suction port 11a.
  • a spring accommodating chamber 27 for accommodating the coil spring 28 is formed in the pump housing 1 and communicates with the suction port 11a.
  • the suction port 11a communicates with the low pressure chamber 22 together with the spring accommodating chamber 27, and sucks oil sucked from the oil pan 55 through the suction passage by the negative pressure generated by the pumping action of the pump component. It is supplied to 11 and is supplied to each pump chamber 19 whose volume has been expanded. Therefore, the entire suction port 11, suction port 11a, spring accommodating chamber 27, and low pressure chamber 22 are configured as a low pressure portion.
  • the discharge port 12 is open to a region where the volume of each pump chamber 19 is reduced due to the pumping action of the pump structure, and the discharge hole 12a formed in the pump housing 1 is used through the main oil gallery 31. It communicates with each sliding part of the engine and, for example, a valve timing control device which is a variable valve gear.
  • a filter 34 for removing impurities of oil is installed in the middle of the main oil gallery 31.
  • control ring 5 is integrally provided with an arm 26 which is an extending portion protruding outward in the radial direction at a position opposite to the pivot recess 5d on the outer peripheral surface of the tubular body.
  • the arm 26 is urged by a coil spring 28 to swing the control ring 5.
  • a spring accommodating chamber 27 is formed at a position below the arm 26 of the pump housing 1.
  • the spring accommodating chamber 27 is formed in a substantially flat rectangular shape extending along the axial direction of the pump housing 1, and internally, the control ring 5 is urged clockwise in FIG. 7 via the arm 26, that is, The control ring in the direction of increasing eccentricity between the center of rotation of the rotor 4 and the center of the inner peripheral surface of the control ring 5 (the direction in which the amount of oil discharged from the pump component increases).
  • a coil spring 28, which is an urging member for urging 5, is housed and arranged.
  • the spring accommodating chamber 27 communicates with the low pressure chamber 22 via the suction port 11.
  • the lower end edge of the coil spring 28 (biasing member) is in contact with the bottom surface of the spring accommodating chamber 27, while the upper end edge is in elastic contact with the arm 26, and a predetermined spring load W is applied in the spring accommodating chamber 27.
  • the upper end edge is constantly in contact with the arm 26 and is urged in a direction in which the amount of eccentricity between the center of rotation of the rotor 4 in the control ring 5 and the center of the inner peripheral surface of the control ring 5 increases.
  • the coil spring 28 is urged in a direction in which the control ring 5 is always eccentric upward via the arm 26 in a state where the spring load W is applied, that is, in a direction in which the volume of each pump chamber 19 increases.
  • the spring load W is a load that is introduced only into the first control oil chamber 16 and the control ring 5 starts to move when the hydraulic pressure is the required hydraulic pressure P1 of the valve timing control device.
  • a regulating portion 29 is formed at a position facing the spring accommodating chamber 27 of the pump housing 1 in the axial direction so that the upper surface of the arm 26 abuts and regulates the maximum clockwise rotation position of the arm 26.
  • the pump housing 1 is formed with a discharge pressure introduction hole 30, and the first control groove 35 and the first control groove 35 communicating with the first control oil chamber 16 and the second control oil chamber 17 are formed.
  • Two control grooves 36 are formed respectively.
  • the discharge pressure introduction hole 30 communicates with the hydraulic pressure introduction port 45 described later of the pilot valve 7.
  • the first control groove 35 is connected to the second oil gallery 33 via a control groove 35b (FIGS. 9 and 10) whose one end is also opened in the pump cover 2.
  • the second control groove 36 branches from the first control groove 35 and communicates with the second control oil chamber 17.
  • the oil discharged from the discharge port 12 formed in the pump cover 2 is guided to the discharge passage 61 from the discharge opening 60 formed in the control housing 6 and flows toward the discharge hole 12a.
  • the discharge port 12 and the discharge passage 61 are connected to each other. The configuration of the discharge passage 61 will be described later.
  • the pilot valve 7 is integrally provided on one side of the outer surface of the control housing 6 in the vertical direction, and has a cylindrical valve body 40 whose upper portion is closed and a valve body.
  • a spool valve 42 that is slidable in the vertical direction in the valve accommodating portion 41 formed inside the 40, a plug 43 that closes the lower end opening of the valve accommodating portion 41, and a bullet between the spool valve 42 and the plug 43. It is equipped with a valve spring 44, which is mounted and urges the spool valve 42 upward.
  • the spool valve 42 controls the supply and discharge of hydraulic pressure to the second control oil chamber 17 by means of a pair of large diameter portions, a first land portion 42a and a second land portion 42b.
  • the valve body 40 is formed with an introduction port 46, which is an introduction passage opening connected to the solenoid valve 100. Further, on the peripheral wall of the valve accommodating portion 41, one end side is connected to the second control oil chamber 17 and the other end side is always connected to the relay chamber 47, which will be described later, at an intermediate position in the axial direction, so that the second control oil is connected.
  • a hydraulic pressure introduction port 45 which is an opening of a control oil chamber for supplying and discharging hydraulic pressure to the chamber 17, is formed, and one end side is directly connected to the outside or the suction side at a position on the other end side in the axial direction.
  • the first drain port 48 which is a control drain opening for discharging the hydraulic pressure in the second control oil chamber 17, is formed through the relay chamber 47. Similar to the first drain port 48, the valve body 40 is directly connected to the outside or the suction side at the axial position of the peripheral wall on one end side and overlapping the back pressure chamber 52 described later in the radial direction. 2 Drain port 49 is formed as an opening. The first drain port 48 and the second drain port 49 communicate with the oil pan 55, and the oil discharged from the first drain port 48 and the second drain port 49 is stored in the oil pan 55.
  • a communication oil passage 50 for communicating the introduction port 46 and the relay chamber 47, which will be described later, is configured with the spool valve 42 at the position on the upper end side in FIG. ing.
  • the spool valve 42 is provided with a first land portion 42a and a second land portion 42b at both ends in the axial direction, and a shaft portion 42c having a small diameter between the first land portion 42a and the second land portion 42b. Is provided. Then, by accommodating the spool valve 42 in the valve accommodating portion 41, the spool valve 42 is provided in the valve body 40 on the axially outer side of the first land portion 42a and is introduced between the spool valve 42 and one end portion of the valve body 40.
  • the pressure chamber 51 from which the discharge pressure is guided from the port 46 is provided between the first land portion 42a and the second land portion 42b, and the hydraulic pressure introduction port 45 and the introduction port 46 (communication oil passage) are provided depending on the axial position of the spool valve 42. 50) or the relay chamber 47 that relays the first drain port 48 and the plug 43 on the axially outer side of the second land portion 42b, and relays through the outer peripheral side (micro gap) of the second land portion 42b.
  • the back pressure chamber 52 used to discharge the oil leaked from the chamber 47 is separated from each other.
  • the spool valve 42 when the discharge pressure guided from the introduction port 46 to the pressure chamber 51 is equal to or less than a predetermined pressure, the spool valve 42 is on the upper end side of the valve accommodating portion 41 with the urging force of the valve spring 44. It will be located in the first region, which is a predetermined region of (see FIG. 7). That is, since the spool valve 42 is located in the first region, the introduction port 46 and the relay chamber 47 are connected to each other via the communication oil passage 50, while the first drain port 48 and the relay chamber 47 are connected by the second land portion 42b. As a result of the connection of the second control oil chamber 17 and the relay chamber 47 being connected via the hydraulic pressure introduction port 45, the hydraulic pressure guided from the introduction port 46 through the communication oil passage 50 is passed through the relay chamber 47. 2 It will be supplied to the control oil chamber 17.
  • the spool valve 42 moves from the first region to the lower end side of the valve accommodating portion 41 against the urging force of the valve spring 44, and the valve It will be located in the second region, which is a predetermined region on the lower end side of the accommodating portion 41 (not shown). That is, by locating the spool valve 42 in the second region, the second control oil chamber 17 is maintained in connection with the relay chamber 47 via the hydraulic introduction port 45, while the communication oil passage is maintained by the first land portion 42a.
  • connection between the 50 and the relay chamber 47 is cut off, and as a result of connecting the relay chamber 47 and the oil pan 55 via the first drain port 48, the oil in the second control oil chamber 17 flows through the relay chamber 47 to the first drain. It will be discharged to the oil pan 55 through the port 48.
  • pilot valve 7 is operated by the solenoid 56, and the solenoid 56 is energized with an exciting current from an in-vehicle ECU (not shown) via the connector portion 57.
  • the solenoid valve 100 is interposed in the middle of the first oil gallery 32, and the substantially cylindrical valve body 101 having an oil passage 102 penetrating along the internal axial direction and the valve body 101 thereof.
  • the oil passage 102 is expanded and fixed to the outer end of the valve body accommodating portion 103, and the first oil gallery 32 is located at the center thereof. It is formed on a seat member 105 having an introduction port 104 which is an upstream opening connected to an upstream passage (hereinafter, simply referred to as "upstream passage") 32a, and an inner end opening edge of the seat member 105.
  • a ball valve body 106 that can be detached and seated from the valve seat 105a to open and close the introduction port 104, and a solenoid 107 provided at the other end of the valve body 101 (the right end in the figure). , Is mainly composed of.
  • the valve body 101 is provided with a valve body accommodating portion 103 accommodating the ball valve body 106 on the inner peripheral portion on one end side in a stepped diameter expansion with respect to the oil passage 102.
  • a supply / discharge port which is a downstream opening that is connected to the downstream passage 32b and is used for supplying and discharging hydraulic pressure to the pilot valve 7 on the outer peripheral portion of the valve body accommodating portion 103, which is one end side of the peripheral wall of the valve body 101.
  • the 108 is formed to penetrate along the radial direction
  • the drain port 109 which is a switching drain opening connected to the oil pan 55, penetrates along the radial direction on the outer peripheral portion of the oil passage 102 on the other end side. It is formed.
  • the solenoid 107 has an armature (not shown) arranged on the inner peripheral side of the coil and a rod fixed thereto by an electromagnetic force generated by energizing a coil (not shown) housed inside the casing 107a.
  • the 107b is configured to advance and move to the left in FIG.
  • the solenoid 107 is energized with an exciting current from an in-vehicle ECU (not shown) based on the engine operating state detected or calculated by predetermined parameters such as the oil temperature and water temperature of the internal combustion engine and the engine speed. It becomes.
  • the solenoid 107 when the solenoid 107 is energized, the rod 107b is advanced and moved, so that the ball valve body 106 arranged at the tip of the rod 107b is pressed against the valve seat 105a on the seat member 105 side and introduced.
  • the communication between the port 104 and the supply / discharge port 108 is cut off, and the supply / discharge port 108 and the drain port 109 communicate with each other through the oil passage 102.
  • the solenoid 107 when the solenoid 107 is not energized, the ball valve body 106 moves backward based on the discharge pressure guided from the introduction port 104, so that the ball valve body 106 is pressed toward the valve body 101 and becomes the introduction port 104.
  • the hydraulic pressure introduction port 45 is in a communication state, and the communication between the hydraulic pressure introduction port 45 and the drain port 109 is cut off.
  • the oil discharged from the discharge port 12 formed in the pump cover 2 is guided to the discharge passage 61 from the discharge opening 60 formed in the control housing 6 and into the discharge hole 12a. It flows toward.
  • the discharge hole 12a is located at a position away from the control ring support portion 65 and is formed in the discharge passage 61.
  • the configuration of the discharge passage 61 will be described with reference to FIGS. 9 and 10.
  • the discharge passage 61 is provided with a control ring support portion 65 that supports the pivot pin 10 of the control ring 5.
  • the control ring support portion 65 is formed to be gradually thinner toward the direction away from the rotation axis of the rotor 4 which is a part of the pump structure when viewed from the direction of the rotation axis of the rotor 4 which is a part of the pump structure. Has been done.
  • the control ring support 65 is formed in a teardrop shape.
  • the oil discharged from the discharge opening 60 to the discharge passage 61 is divided into two flow paths by the control ring support portion 65, merges in the discharge passage 61, and then guided to the discharge hole 12a.
  • the discharge passage 61 includes a first discharge passage 61a formed between the peripheral wall of the control ring support portion 65 and the peripheral wall of the discharge passage 61 in the rotation direction of the rotor 4, which is a part of the pump configuration, and the pump configuration.
  • the peripheral wall of the control ring support portion 65 forming the first discharge passage 61a and the peripheral wall of the discharge passage 61 are formed substantially parallel to each other along the oil flow direction. As a result, the oil can flow smoothly to the downstream side.
  • control ring support portion 65 of the present embodiment is separated from the rotation shaft of the rotor 4 which is a part of the pump structure when viewed from the direction of the rotation shaft of the rotor 4 which is a part of the pump structure. It is characterized by having a so-called teardrop shape, which is gradually formed thinner in the direction.
  • the pressure increases at the collision site.
  • the pressure drops sharply and peeling occurs (a vortex is generated).
  • the flow is turbulent, and the turbulence causes a pressure loss, which reduces the efficiency of the pump.
  • the control ring support portion 65 is formed in a columnar shape, the oil collides with the control ring support portion 65 at the upstream end 65a and peels off at the downstream end 65b where the first discharge passage 61a and the second discharge passage 61b merge. Will occur, resulting in pressure loss.
  • the downstream end 65b of the control ring support portion 65 is set to a position extended to the downstream side. That is, the distance connecting the center of the pivot pin 10 and the downstream end 65b is longer than the distance connecting the center of the pivot pin 10 and the upstream end 65a. Then, the oil that collides with the control ring support portion 65 at the upstream end 65a is divided into the first discharge passage 61a and the second discharge passage 61b, and merges at the position where the oil has passed the downstream end 65b.
  • the control ring support portion 65 has a teardrop shape so that the oil flowing through the peripheral wall of the control ring support portion 65 can smoothly flow to the downstream side.
  • control ring support portion 65 has a so-called teardrop shape in which the control ring support portion 65 is gradually formed to become thinner in the direction away from the rotation axis of the pump mechanism when viewed from the direction of the rotation axis of the pump mechanism. , The oil flow can be smoothed and the pressure loss of the pump can be reduced.
  • the second control oil chamber 17 and the first control oil chamber 16 are formed, and the second pressure receiving surface 20 which is the outer surface of the control ring 5 on the second control oil chamber 17 side.
  • the first pressure receiving surface 21, which is the outer surface on the first control oil chamber 16 side receives high pressure. Since the pressure acts toward the inner peripheral side of the control ring 5, the control ring 5 is deformed in the crushing direction.
  • the control ring 5 is formed with a penetrating hole that communicates with the discharge port 12, and the hole reduces the rigidity of the control ring 5. Therefore, the control ring 5 is easily deformed by the pressure.
  • FIG. 11 is an enlarged perspective view of a main part of the variable displacement pump according to the embodiment of the present invention
  • FIG. 12 is an enlarged view of the main part of the variable displacement pump according to the embodiment of the present invention
  • FIG. 13 is FIG. XIII-XIII line sectional view
  • FIG. 14 is a partially enlarged view showing a state in which the control ring is removed from the variable displacement pump according to the embodiment of the present invention
  • FIG. 15 is a partially enlarged view showing a state in which the control ring is removed from the variable displacement pump according to the embodiment of the present invention
  • FIG. 16 is a partially enlarged view showing a state in which the eccentricity of the control ring is maximum
  • FIG. 16 is a partially enlarged view showing a state in which the eccentricity of the control ring of the variable displacement pump according to the embodiment of the present invention is the minimum.
  • the hole portion 25 of this embodiment is divided into a plurality of parts by the dividing member 37.
  • the dividing member 37 is arranged between the holes 25a and 25b.
  • the dividing member 37 secures the rigidity of the control ring 5 and plays a role as a support as a reinforcing member for suppressing the deformation of the hole 25 when a pressure is applied to the control ring 5.
  • the control ring 37 may be controlled.
  • the ring 5 may be provided at an angle with respect to the radial direction.
  • the control ring 5 abuts on the coil spring 28 (biasing member) in the hole 25 in the radial direction with respect to the rotation axis of the rotor 4, which is a part of the pump structure. It is provided on the side (lower side in FIG. 7) where the coil spring 28 (biasing member) is arranged with respect to the reference line BL of the control ring 5 connecting the portion and the pivot pin 10 (shaft member).
  • the hole 25 is provided on the side where the pressure of the oil to be pressurized and discharged becomes high. With this configuration, the pressure of the discharged oil can be increased.
  • the hole 25 is on the side where the coil spring 28 (biasing member) is arranged with respect to the reference line BL of the control ring 5 in the radial direction with respect to the rotation axis of the pump component. It may be provided on the opposite side (upper side in FIG. 7). That is, the hole 25 is provided on the side closer to the pump chamber 19 having the largest volume among the plurality of pump chambers 19 in the section where the volume of the plurality of pump chambers 19 decreases with the rotational drive of the pump components. May be.
  • the hole 25 is formed at an intermediate position of a section in which the volume of the pump chamber decreases in the circumferential direction as the pump component is rotationally driven, and a discharge port 12 closest to the pump chamber having the largest volume. It will be provided between the start and end of. In this case, the effect of being able to quickly discharge the pressurized oil can be expected.
  • the dividing member 37 is integrally formed with the control ring 5. With this configuration, the holes 25a and 25b can be easily formed in the control ring 5.
  • the dividing member 37 may be formed separately from the control ring 5.
  • the dividing member 37 is made of a material harder than the control ring 5. In this case, since the dividing member 37 can be formed thin while ensuring the rigidity of the dividing member 37, the flow rate of the oil passing through the holes 25a and 25b can be secured.
  • the dividing member 37 is provided at the center of the hole 25 in the circumferential direction in the radial direction with respect to the rotation axis of the pump component.
  • control ring 5 is recessed in the direction along the rotation axis of the rotor 4, which is a part of the pump structure, and straddles the hole 25 and the dividing member 37 in the radial direction with respect to the rotation axis. It is provided with a groove portion 5e provided in the above. In this embodiment, oil can easily flow from the other pump chamber 19 adjacent to the one pump chamber 19 toward the one pump chamber 19 through the groove portion 5e, and the flow path resistance can be reduced.
  • the groove portion 5e is formed to have a larger radial size (width) with respect to the rotation axis as it approaches the hole portion 25.
  • the groove portion 5e is formed to have a larger radial size (width) with respect to the rotation axis on the downstream side (position where the hole portion 25 is located) than on the upstream side (upper side of FIG. 11).
  • the groove portion 5e is formed so as to extend to the intermediate positions 5e1 and 5e2 on the outer side in the radial direction so as to overlap a part of the hole portion 25 in the circumferential direction of the rotation axis.
  • the groove portion 5e is formed so as to extend to the low position portion 37a which is an intermediate position on the radial outer side of the rotation axis in the dividing member 37.
  • a high position portion 37b having a height higher than that of the low position portion 37a is formed on the outer side in the radial direction of the low position portion 37a in the direction along the rotation axis direction.
  • the dividing member 37 is formed with stepped portions having different heights in the direction along the rotation axis.
  • the groove portion 5e of this embodiment is provided halfway between the hole portion 25 and the dividing member 37 in the radial direction with respect to the rotation axis.
  • groove portion 5e of this embodiment is formed to have a larger diameter in the radial direction with respect to the rotation axis as it approaches the hole portion 25.
  • the groove 5e has been described in FIGS. 11 and 12 on the side opposite to the mounting side of the cylinder block 111, the groove 5e of this embodiment is similarly formed on the mounting side of the cylinder block 111. There is. Then, as shown in FIG. 13, oil passages 70 and 71 are formed in the control ring 5 by the groove portion 5e on the side opposite to the mounting side of the cylinder block 111 and on the mounting side of the cylinder block 111, respectively. Further, as shown in FIGS. 13 and 14, the pump housing 1 has an oil passage between the pump accommodating portion 1s and the control ring 5 in which the pump component is accommodating in the direction of the rotation axis. A recess 1e is formed.
  • the recess 1e has a shape recessed toward the cylinder block 111 in the direction of the rotation axis. In a state where the control ring 5 is arranged in the pump accommodating portion 1s, the control ring 5 and the recess 1e overlap each other when viewed from the direction of the rotation axis.
  • FIG. 15 shows a state in which the amount of eccentricity of the control ring 5 is maximum (100%).
  • the holes 25 (holes 25a and 25b) formed by the control ring 5 are entirely overlapped with the recess 1e. Since the entire holes 25 (holes 25a and 25b) overlap with the recesses 1e, the oil discharged from the holes 25 (holes 25a and 25b) flows smoothly without being hindered.
  • FIG. 16 shows a state in which the amount of eccentricity of the control ring 5 is the minimum (0%).
  • the hole 25 (holes 25a, 25b) formed by the control ring 5 overlaps a part of the recess 1e.
  • the groove portion 5e of the control ring 5 overlaps with the edge of the recess 1e of the pump housing 1 as surrounded by the dotted line in FIG. As a result, the amount of oil discharged from the holes 25 (holes 25a and 25b) is adjusted to be narrowed down.
  • the deformation of the control ring due to the internal pressure of the pump chamber 19 is suppressed, and between the control ring in the pump configuration and the movable portion that is moved by being rotationally driven.
  • the increase in friction can be suppressed, and the deterioration of the efficiency of the variable displacement pump can be suppressed.
  • control ring 5 swings with respect to the pivot pin 10, but when the control ring 5 slides straight, the center of the inner peripheral surface of the control ring 5 and the rotor 4 It can also be applied to variable displacement pumps whose eccentricity with the center of rotation changes.
  • the present invention has mainly described an embodiment in which the pump component is a vane pump having a rotor 4, a vane 15, a vane ring 18, and a control ring 5, but the inscribed gear pump accommodating the inner rotor and the outer rotor Can also be applied.
  • the control ring 5 is arranged on the outer circumference of the outer rotor, and the rotation center of the outer rotor is revolved around the rotation center of the inner rotor to change the amount of oil discharged from the pump configuration. it can.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • main oil gallery 32 ... 1st Oil gallery, 32a ... upstream passage, 32b ... downstream passage, 33 ... second oil gallery, 35 ... first control groove, 36 ... second control groove, 37 ... split member, 60 ... discharge opening, 61 ... discharge passage , 61a ... 1st discharge passage, 61b ... 2nd discharge passage, 65 ... control ring support, 65a ... upstream end, 65b ... downstream end, 70, 71 ... oil passage, 110 ... internal combustion engine, 111 ... cylinder block, 120 ... Variable displacement pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

A variable displacement pump of an internal combustion engine comprises: a housing having a pump accommodation part formed therein; a pump structure accommodated in the pump accommodation part and configured to be driven to rotate thereby to change the volume of a plurality of pump chambers to eject oil guided from a suction part to an ejection part; a bore provided to enable communication between ends in an axial direction and allow the oil ejected from the plurality of pump chambers to flow therethrough, the bore being a control ring movable according to the state of the internal combustion engine, the control ring forming a portion of the pump structure and having the plurality of pump chambers disposed therein; and a dividing member for dividing the bore into a plurality of bores, wherein the control ring moves to change the amount of oil being ejected from the ejection part.

Description

可変容量形ポンプVariable displacement pump
 本発明は、例えば、可変容量形ポンプに関する。 The present invention relates to, for example, a variable displacement pump.
 例えば、自動車用の内燃機関に適用される可変容量形ポンプとしては、特許文献1に記載されたような技術が知られる。 For example, as a variable displacement pump applied to an internal combustion engine for an automobile, a technique as described in Patent Document 1 is known.
 特許文献1においては、可変容量形ポンプのポンプ構成体から吐出されるオイルが、ポンプ構成体の一部を構成する制御リングに設けられた孔を介して、可変容量形ポンプの外部へ吐出されていた。 In Patent Document 1, the oil discharged from the pump configuration of the variable displacement pump is discharged to the outside of the variable displacement pump through a hole provided in a control ring forming a part of the pump configuration. Was there.
特開2012-172516号公報Japanese Unexamined Patent Publication No. 2012-172516
 しかしながら、特許文献1に記載の技術においては、可変容量形ポンプの運転中において、ポンプ構成体によって加圧されるオイルの圧力によって、制御リングが変形してしまう。この制御リングの変形により、ポンプ構成体における可動部位の摺動抵抗が増大し、効率が悪化してしまう恐れがあった。 However, in the technique described in Patent Document 1, the control ring is deformed by the pressure of the oil pressurized by the pump component during the operation of the variable displacement pump. Due to this deformation of the control ring, the sliding resistance of the movable part in the pump structure may increase, and the efficiency may deteriorate.
 本発明の目的は、効率の悪化を抑制可能な可変容量形ポンプを提供することにある。 An object of the present invention is to provide a variable displacement pump capable of suppressing deterioration of efficiency.
 本発明の一実施形態によれば、内部にポンプ収容部が形成されたハウジングと、前記ポンプ収容部に収容され、回転駆動されることによって、複数のポンプ室の容積が変化して、吸入部から導かれたオイルを吐出部へ吐出するポンプ構成体と、前記ポンプ構成体の一部を構成するとともに、内部に前記複数のポンプ室が配置され、前記内燃機関の状態に応じて移動可能となっている制御リングであって、軸方向両端を連通するように設けられ、前記複数のポンプ室から吐出されたオイルが流通する孔部と、前記孔部を複数の孔に分割する分割部材と、を有し、移動することによって前記吐出部から吐出されるオイルの量を変化させる前記制御リングと、を備えたものである。 According to one embodiment of the present invention, a housing having a pump accommodating portion formed therein and a suction portion in which the volumes of a plurality of pump chambers are changed by being accommodated in the pump accommodating portion and driven to rotate. A pump structure that discharges oil derived from the above to a discharge unit and a part of the pump structure are formed, and a plurality of pump chambers are arranged inside so that the pump can be moved according to the state of the internal combustion engine. A control ring that is provided so as to communicate with both ends in the axial direction and through which oil discharged from the plurality of pump chambers flows, and a dividing member that divides the holes into a plurality of holes. The control ring is provided with a control ring that changes the amount of oil discharged from the discharge unit by moving.
 本発明の一実施形態によれば、効率の悪化を抑制可能な可変容量形ポンプを提供することができる。 According to one embodiment of the present invention, it is possible to provide a variable displacement pump capable of suppressing deterioration of efficiency.
本発明の実施例に係る内燃機関に可変容量形ポンプを組み込んだ外観斜視図である。It is external perspective view which incorporated the variable capacity type pump into the internal combustion engine which concerns on embodiment of this invention. 本発明の実施例に係るクランクシャフトの軸方向に切断した断面図である。It is sectional drawing which cut in the axial direction of the crankshaft which concerns on embodiment of this invention. 本発明の実施例に係る制御ハウジング側から見た可変容量形ポンプの分解斜視図である。It is an exploded perspective view of the variable displacement type pump seen from the control housing side which concerns on embodiment of this invention. 本発明の実施例に係るポンプハウジング側から見た可変容量形ポンプの分解斜視図である。It is an exploded perspective view of the variable displacement type pump seen from the pump housing side which concerns on embodiment of this invention. 本発明の第1実施例に係る制御ハウジング側から見た可変容量形ポンプの側面図である。It is a side view of the variable displacement type pump seen from the control housing side which concerns on 1st Embodiment of this invention. 図5におけVI-VI断面図である。FIG. 5 is a sectional view taken along line VI-VI. 本発明の実施例に係る可変容量形ポンプのシステム構成図である。It is a system block diagram of the variable capacity type pump which concerns on embodiment of this invention. 図7におけるVIII-VIII線断面図である。FIG. 7 is a sectional view taken along line VIII-VIII in FIG. 本発明の実施例に係る可変容量形ポンプを透視した側面図である。It is a side view which saw through the variable capacity type pump which concerns on embodiment of this invention. 本発明の実施例に係る制御ハウジングにポンプカバーを取り付けた状態を示す可変容量形ポンプの側面図である。It is a side view of the variable capacity type pump which shows the state which attached the pump cover to the control housing which concerns on embodiment of this invention. 本発明の実施例に係る可変容量形ポンプの要部拡大斜視図である。It is an enlarged perspective view of the main part of the variable displacement type pump which concerns on embodiment of this invention. 本発明の実施例に係る可変容量形ポンプの要部拡大図である。It is an enlarged view of the main part of the variable displacement type pump which concerns on embodiment of this invention. 図12におけるXIII-XIII線断面図である。FIG. 12 is a sectional view taken along line XIII-XIII in FIG. 本発明の実施例に係る可変容量形ポンプから制御リングを除いた状態を示すポンプハウジングの部分拡大図である。It is a partially enlarged view of the pump housing which shows the state which removed the control ring from the variable displacement type pump which concerns on embodiment of this invention. 本発明の実施例に係る可変容量形ポンプの制御リングの偏心量が100%の状態を示す部分拡大図である。FIG. 5 is a partially enlarged view showing a state in which the eccentricity of the control ring of the variable displacement pump according to the embodiment of the present invention is 100%. 本発明の実施例に係る可変容量形ポンプの制御リングの偏心量が0%の状態を示す部分拡大図である。It is a partially enlarged view which shows the state which the eccentricity amount of the control ring of the variable displacement type pump which concerns on embodiment of this invention is 0%.
 以下、本発明に係る可変容量形ポンプの実施形態を図面に基づいて詳述する。なお、本実施例は、自動車用内燃機関の摺動部にオイル(潤滑油)を供給すると共に、機関弁のバルブタイミングを可変にする可変動弁機構の作動源としての油圧を供給する可変容量形ポンプに適用したものを示している。 Hereinafter, embodiments of the variable displacement pump according to the present invention will be described in detail with reference to the drawings. In this embodiment, oil (lubricating oil) is supplied to the sliding portion of an internal combustion engine for automobiles, and a variable capacity that supplies hydraulic pressure as an operating source of a variable valve mechanism that changes the valve timing of the engine valve. The one applied to the type pump is shown.
 本実施例における可変容量形ポンプは、ベーンタイプに適用したものであって、内燃機関のシリンダブロックの前端部などに設けられる。 The variable displacement pump in this embodiment is applied to the vane type and is provided at the front end of the cylinder block of the internal combustion engine.
 図1は本発明の実施例に係る内燃機関に可変容量形ポンプを組み込んだ外観斜視図、図2は本発明の実施例に係る回転軸であるクランクシャフトの軸方向に沿って切断した断面図である。図1及び図2において、内燃機関110のシリンダブロック111の端部には可変容量形ポンプ120が取り付けられている。シリンダブロック111の内部には、内燃機関110に配置されたピストンの上下運動を、コンロッドを介して回転運動に変換するクランクシャフト3が備えられている。可変容量形ポンプ120には後述するロータ4が備えられている。ロータ4の中央部には貫通した開口部4bが形成されており、この開口部4bにクランクシャフト3が挿入されて固定される。これにより、クランクシャフト3の回転力がロータ4に伝達される。 FIG. 1 is an external perspective view in which a variable displacement pump is incorporated in an internal combustion engine according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view cut along the axial direction of a crankshaft which is a rotating shaft according to the embodiment of the present invention. Is. In FIGS. 1 and 2, a variable displacement pump 120 is attached to the end of the cylinder block 111 of the internal combustion engine 110. Inside the cylinder block 111, there is provided a crankshaft 3 that converts the vertical movement of the piston arranged in the internal combustion engine 110 into a rotational movement via a connecting rod. The variable displacement pump 120 is provided with a rotor 4 described later. A penetrating opening 4b is formed in the central portion of the rotor 4, and the crankshaft 3 is inserted into the opening 4b and fixed. As a result, the rotational force of the crankshaft 3 is transmitted to the rotor 4.
 次に図3~図10を用いて可変容量形ポンプの構成について説明する。図3は本発明の実施例に係る制御ハウジング側から見た可変容量形ポンプの分解斜視図、図4は本発明の実施例に係るポンプハウジング側から見た可変容量形ポンプの分解斜視図、図5は本発明の実施例に係る制御ハウジング側から見た可変容量形ポンプの側面図である。図6は図5におけるVI-VI線断面図、図7は本発明の実施例に係る可変容量形ポンプのシステム構成図、図8は図7におけるVIII-VIII線断面図である。図9は、本発明の実施例に係る可変容量形ポンプを透視した側面図、図10は本発明の実施例に係る制御ハウジングにポンプカバーを取り付けた状態を示す可変容量形ポンプの側面図である。 Next, the configuration of the variable displacement pump will be described with reference to FIGS. 3 to 10. FIG. 3 is an exploded perspective view of the variable displacement pump as viewed from the control housing side according to the embodiment of the present invention, and FIG. 4 is an exploded perspective view of the variable displacement pump as viewed from the pump housing side according to the embodiment of the present invention. FIG. 5 is a side view of the variable displacement pump as viewed from the control housing side according to the embodiment of the present invention. 6 is a sectional view taken along line VI-VI in FIG. 5, FIG. 7 is a system configuration diagram of a variable displacement pump according to an embodiment of the present invention, and FIG. 8 is a sectional view taken along line VIII-VIII in FIG. FIG. 9 is a perspective view of the variable displacement pump according to the embodiment of the present invention, and FIG. 10 is a side view of the variable displacement pump showing a state in which the pump cover is attached to the control housing according to the embodiment of the present invention. is there.
 図3乃至図6に示すように、可変容量形ポンプは一端開口がポンプカバー2、及びによって閉塞された有底円筒状のポンプハウジング1と、ポンプハウジング1の内部に回転自在に収容され、中央の開口部4bにクランクシャフト3が挿入され結合されたロータ4と、ロータ4の外周側に揺動可能に配置され、クランクシャフト3が挿入された可動部材である制御リング5と、ポンプカバー2の外側面に配置固定された制御ハウジング6に設けられ、制御リング5を揺動させるために、油圧供給切り換えを制御する制御機構であるパイロット弁7から主として構成されている。クランクシャフト3はポンプハウジング1のほぼ中心部を貫通している。また、可変容量形ポンプには後述する切換機構であるソレノイドバルブ100が接続されている。 As shown in FIGS. 3 to 6, the variable displacement pump is rotatably housed in a bottomed cylindrical pump housing 1 having an opening closed by a pump cover 2 and a pump housing 1 and a center thereof. The rotor 4 to which the crankshaft 3 is inserted and connected to the opening 4b of the above, the control ring 5 which is a movable member which is swingably arranged on the outer peripheral side of the rotor 4 and into which the crankshaft 3 is inserted, and the pump cover 2 The control housing 6 is provided on the outer surface of the control housing 6 and is mainly composed of a pilot valve 7 which is a control mechanism for controlling hydraulic pressure supply switching in order to swing the control ring 5. The crankshaft 3 penetrates substantially the center of the pump housing 1. Further, a solenoid valve 100, which is a switching mechanism described later, is connected to the variable displacement pump.
 ポンプハウジング1とポンプカバー2及び制御ハウジング6は、図3及び図5に示すように、複数のボルト9によって一体的に結合されており、この各ボルト9は、ポンプハウジング1と制御ハウジング6及びポンプカバー2にそれぞれ形成されたボルト挿通孔に挿通して、これらを締結するようになっている。 As shown in FIGS. 3 and 5, the pump housing 1, the pump cover 2, and the control housing 6 are integrally connected by a plurality of bolts 9, and each of the bolts 9 is integrally connected to the pump housing 1, the control housing 6, and the control housing 6. These are fastened by inserting them into the bolt insertion holes formed in the pump cover 2 respectively.
 ポンプハウジング1は、アルミニウム合金等、アルミニウム含む材料によって一体に形成され、凹状のポンプ収容部1sの底面は制御リング5の軸方向の一側面が摺動することから、平面度や表面粗さなどの精度が高く加工され、摺動範囲が機械加工によって形成されている。本実施例では、ポンプハウジング1とポンプカバー2及び制御ハウジング6によって可変容量形ポンプの筐体となるハウジングを構成し、このハウジングの内部にポンプ収容部が形成されている。 The pump housing 1 is integrally formed of a material containing aluminum such as an aluminum alloy, and the bottom surface of the concave pump accommodating portion 1s slides on one side surface in the axial direction of the control ring 5, so that the flatness, surface roughness, etc. The precision of the machine is high, and the sliding range is formed by machining. In this embodiment, the pump housing 1, the pump cover 2, and the control housing 6 form a housing that serves as a housing for the variable displacement pump, and a pump housing portion is formed inside the housing.
 また、ポンプハウジング1は、図3、図4、図6に示すように、作動室であるポンプ収容部1sの底面ほぼ中央位置にクランクシャフト3の一端部を軸受する軸受孔1dが貫通形成されていると共に、内周面の所定位置には、制御リング5の枢支点となる枢支ピンであるピボットピン10(軸部材)が挿入される有底状のピン孔1cが穿設されている。 Further, as shown in FIGS. 3, 4, and 6, the pump housing 1 is formed with a bearing hole 1d for bearing one end of the crankshaft 3 penetrating at a substantially central position on the bottom surface of the pump accommodating portion 1s which is an operating chamber. At the same time, a bottomed pin hole 1c into which a pivot pin 10 (shaft member), which is a pivot pin serving as a pivot point of the control ring 5, is inserted is formed at a predetermined position on the inner peripheral surface. ..
 また、ポンプ収容部1sの垂直方向上方の位置の内周側には、円弧凹状に形成された第1シール面1aが形成されている。一方、ポンプ収容部1sの垂直方向下方の位置の内周側には、円弧凹状の第2シール面1bが形成されている。 Further, a first sealing surface 1a formed in an arc concave shape is formed on the inner peripheral side of the pump accommodating portion 1s at a position above the vertical direction. On the other hand, an arcuate concave second sealing surface 1b is formed on the inner peripheral side of the pump accommodating portion 1s at a position lower in the vertical direction.
 第1シール面1aは、後述する第1制御油室16を、制御リング5に形成された後述する第1シール溝5bに嵌着された第1シール部材13が常時摺接してシールするようになっている。第1シール面1aと第1シール部材13とによって第1シール機構が構成されている。 The first sealing surface 1a seals the first control oil chamber 16 described later with the first sealing member 13 fitted in the first sealing groove 5b formed in the control ring 5 with a constant sliding contact. It has become. The first sealing mechanism is composed of the first sealing surface 1a and the first sealing member 13.
 第2シール面1bは、制御リング5に形成された第2シール溝5cに嵌着された後述する第2シール部材14が常時摺接して後述する第2制御油室17をシールするようになっている。第2シール面1bと第2シール部材14とによって第2シール機構が構成されている。 On the second sealing surface 1b, the second sealing member 14 described later, which is fitted in the second sealing groove 5c formed in the control ring 5, is constantly in sliding contact with the second sealing oil chamber 17 described later. ing. The second sealing mechanism is composed of the second sealing surface 1b and the second sealing member 14.
 また、第1シール面1aと第2シール面1bは、図7に示すように、ピボットピン10を中心とした所定長さの円弧面状に形成されており、制御リング5が偏心揺動する範囲において第1シール部材13,第2シール部材14が常時摺接可能な長さに設定されている。 Further, as shown in FIG. 7, the first seal surface 1a and the second seal surface 1b are formed in an arcuate shape having a predetermined length centered on the pivot pin 10, and the control ring 5 swings eccentrically. Within the range, the first seal member 13 and the second seal member 14 are set to a length that allows constant sliding contact.
 また、ポンプカバー2には、図3及び図4に示すように、ほぼ三日月切欠き状の吸入部である吸入ポート11(吸入部)が形成されていると共に、この吸入ポート11に径方向の反対側の位置に、ほぼ三日月切欠き状の吐出部である吐出ポート12(吐出部)がそれぞれほぼ対向して形成されている。なお、この吸入ポート11と吐出ポート12の具体的構成については後述する。 Further, as shown in FIGS. 3 and 4, the pump cover 2 is formed with a suction port 11 (suction portion) which is a suction portion having a substantially crescent-shaped notch shape, and the suction port 11 is provided with a radial suction portion. Discharge ports 12 (discharging portions), which are substantially crescent-shaped ejection portions, are formed at positions on opposite sides so as to be substantially opposed to each other. The specific configuration of the suction port 11 and the discharge port 12 will be described later.
 ポンプカバー2は、図3及び図4に示すように、アルミニウム合金材によってほぼプレート状に形成され、ほぼ中央位置にクランクシャフト3の他端部を回転可能に支持する軸受孔2aが貫通形成されていると共に、外周部にボルト挿通孔を形成する複数のボス部が一体に形成されている。また、このポンプカバー2は、図外の複数の位置決めピンを介してポンプハウジング1に円周方向の位置決めされつつ複数のボルト9によってポンプハウジング1に結合されている。 As shown in FIGS. 3 and 4, the pump cover 2 is formed of an aluminum alloy material in a substantially plate shape, and a bearing hole 2a that rotatably supports the other end of the crankshaft 3 is formed through the pump cover 2 at a substantially central position. At the same time, a plurality of boss portions forming bolt insertion holes are integrally formed on the outer peripheral portion. Further, the pump cover 2 is coupled to the pump housing 1 by a plurality of bolts 9 while being positioned in the circumferential direction on the pump housing 1 via a plurality of positioning pins (not shown).
 クランクシャフト3から伝達された回転力はロータ4に伝達され、ロータ4を図7中、矢印方向(時計方向)に回転するようになっており、クランクシャフト3を中心とした図中左側の半分が吸入領域となり、右側の半分が吐出領域となる。 The rotational force transmitted from the crankshaft 3 is transmitted to the rotor 4, and the rotor 4 is rotated in the direction of the arrow (clockwise) in FIG. 7, and is the left half of the figure centered on the crankshaft 3. Is the suction area, and the right half is the discharge area.
 ロータ4は、図3及び図4に示すように、内部中心側から外方へ放射状に形成された9つのスリット4a内にそれぞれ9枚のベーン15が進退可能(出没可能)に摺動保持されていると共に、各スリット4aの基端部に吐出ポート12に吐出された吐出油圧を導入する断面ほぼ円形状の背圧室24がそれぞれ形成されている。この各背圧室24内の圧力とロータ4の回転に伴う遠心力とによってベーン15を外方へ押し出すようになっている。 In the rotor 4, as shown in FIGS. 3 and 4, nine vanes 15 are slidably held in the nine slits 4a formed radially outward from the inner center side so that the nine vanes 15 can move forward and backward (appearance possible). At the same time, a back pressure chamber 24 having a substantially circular cross section is formed at the base end of each slit 4a to introduce the discharge hydraulic pressure discharged to the discharge port 12. The vane 15 is pushed outward by the pressure in each back pressure chamber 24 and the centrifugal force accompanying the rotation of the rotor 4.
 各ベーン15は、内側の各基端縁が前後一対のベーンリング18、18の外周面に摺接している共に、各先端縁が制御リング5の内周面5aに摺接自在になっている。また、隣接する各ベーン15間と制御リング5の内周面5a及びロータ4の内周面、ポンプ収容部1s、ポンプカバー2の内側面との間に複数の作動油室である複数のポンプ室19が液密的に隔成されている。各ベーンリング18は、回転に伴って各ベーン15を放射外方へ押し出すようになっており、機関回転数が低く、また、遠心力や背圧室24の圧力が小さい場合でも、各ベーン15の各先端部がそれぞれ制御リング5の内周面と摺接して各ポンプ室19が液密に隔成されるようになっている。 In each vane 15, each base end edge is in sliding contact with the outer peripheral surfaces of a pair of front and rear vane rings 18 and 18, and each tip edge is in sliding contact with the inner peripheral surface 5a of the control ring 5. .. Further, a plurality of pumps having a plurality of hydraulic oil chambers between the adjacent vanes 15 and the inner peripheral surface 5a of the control ring 5 and the inner peripheral surface of the rotor 4, the pump accommodating portion 1s, and the inner surface of the pump cover 2. The chambers 19 are liquidtightly separated. Each vane ring 18 pushes each vane 15 out of the radiation as it rotates, and even when the engine speed is low and the centrifugal force or the pressure of the back pressure chamber 24 is small, each vane 15 is Each tip of the pump chamber 19 is in sliding contact with the inner peripheral surface of the control ring 5, and each pump chamber 19 is liquid-tightly separated.
 このため、クランクシャフト3から伝達された回転力がロータ4に伝達されると、ポンプ室19は、容積が最も小さい状態から容積が拡大し、最大容積となった後、容積が縮小する。このようにポンプ室19の容積が拡大する領域が吸入領域となり、容積が縮小する領域が吐出領域となる。 Therefore, when the rotational force transmitted from the crankshaft 3 is transmitted to the rotor 4, the volume of the pump chamber 19 increases from the state where the volume is the smallest, reaches the maximum volume, and then decreases. The region where the volume of the pump chamber 19 expands becomes the suction region, and the region where the volume decreases becomes the discharge region.
 尚、本実施形態の場合、ポンプ収容部1sに収容されて、ポンプ室19を構成する、ベーン15、ロータ4及び制御リング5がポンプ構成体を構成する。 In the case of the present embodiment, the vane 15, the rotor 4, and the control ring 5 which are housed in the pump housing unit 1s and constitute the pump chamber 19 form the pump body.
 ポンプ構成体の一部を構成する制御リング5は、加工容易な鉄系材料の焼結金属によってほぼ円筒状に一体に形成され、図3、図4及び図7に示すように、外周面のピボットピン10の位置にピボット凹部5dが形成されており、このピボット凹部5dに挿入位置決めされたピボットピン10が嵌挿して偏心揺動支点となっている。 The control ring 5, which constitutes a part of the pump structure, is integrally formed in a substantially cylindrical shape by a sintered metal of an iron-based material that is easy to process, and as shown in FIGS. 3, 4, and 7, the outer peripheral surface thereof. A pivot recess 5d is formed at the position of the pivot pin 10, and the pivot pin 10 inserted and positioned in the pivot recess 5d is inserted and inserted to serve as an eccentric swing fulcrum.
 また、制御リング5のピボット凹部5dの下方側の位置には、吐出ポート12と連通する孔部25(孔25a,25b)が貫通形成されていると共に、第2シール溝5cを介して第2シール部材14を保持するほぼ三角形状の第2突起部5gが設けられている。孔部25は、複数のポンプ室19の容積がポンプ構成体の回転駆動に伴って減少する区間において、複数のポンプ室19のうち最も容積が小さくなるポンプ室19に近い側に設けられる。すなわち、孔部25は、ポンプ室の容積がポンプ構成体の回転駆動に伴って周方向に減少する区間の中間位置と、最も容積が小さくなるポンプ室に近い吐出ポート12の終端部との間に設けられている。 Further, at a position on the lower side of the pivot recess 5d of the control ring 5, holes 25 ( holes 25a and 25b) communicating with the discharge port 12 are formed through, and a second seal groove 5c is formed through the second seal groove 5c. A substantially triangular second protrusion 5g for holding the seal member 14 is provided. The hole 25 is provided on the side of the plurality of pump chambers 19 closest to the pump chamber 19 having the smallest volume in the section where the volume of the plurality of pump chambers 19 decreases with the rotational drive of the pump components. That is, the hole 25 is between the intermediate position of the section where the volume of the pump chamber decreases in the circumferential direction with the rotational drive of the pump configuration and the terminal portion of the discharge port 12 closest to the pump chamber having the smallest volume. It is provided in.
 さらに、制御リング5の上方側の位置には、第1シール溝5bを介して第1シール部材13を保持するほぼ三角形状の第1突起部5hが設けられている。孔部25は、矩形であってポンプ構成体の一部であるロータ4の回転軸線に沿って設けられており、吐出ポート12と連通してポンプ構成体から吐出されたオイルが流れる。孔部25は、分割部材37(仕切部材)によって複数の孔25a,25bに分割されている。分割部材37は、ポンプ構成体の一部であるロータ4の回転軸線に対する径方向において孔部25を二つの孔25a,25bに分割している。孔部25の構成については後述する。なお、分割部材37は、孔部25を二つ以上の複数の孔に分割するものであっても良い。 Further, at a position on the upper side of the control ring 5, a substantially triangular first protrusion 5h for holding the first seal member 13 is provided via the first seal groove 5b. The hole 25 is rectangular and is provided along the rotation axis of the rotor 4 which is a part of the pump structure, and the oil discharged from the pump structure flows through the hole 25 in communication with the discharge port 12. The hole portion 25 is divided into a plurality of holes 25a and 25b by a dividing member 37 (partitioning member). The dividing member 37 divides the hole 25 into two holes 25a and 25b in the radial direction with respect to the rotation axis of the rotor 4, which is a part of the pump structure. The configuration of the hole 25 will be described later. The dividing member 37 may divide the hole 25 into a plurality of two or more holes.
 図8の矢印で示すように、オイルは吐出ポート12から吐出されると共に、シリンダブロック111への取付側(図8の下方側)のある一部のオイルが複数の孔25a,25bを通り、吐出通路61へと導かれる。 As shown by the arrow in FIG. 8, the oil is discharged from the discharge port 12, and a part of the oil on the attachment side to the cylinder block 111 (lower side in FIG. 8) passes through the plurality of holes 25a and 25b. It is guided to the discharge passage 61.
 ポンプ構成体は、ポンプ収容部の内部に収容され、回転駆動されることにより吸入ポート11(吸入部)から導かれたオイルを吐出ポート12(吐出部)から吐出するものである。また、ロータ4、ベーン15、ベーンリング18、制御リング5は、鉄系材料で形成されている。 The pump component is housed inside the pump accommodating portion and is driven to rotate to discharge the oil guided from the suction port 11 (inhalation portion) from the discharge port 12 (discharge portion). Further, the rotor 4, the vane 15, the vane ring 18, and the control ring 5 are made of an iron-based material.
 制御リング5の第1突起部5h、第2突起部5g側の外周面とポンプハウジング1の間には、制御リング5を中心とした上方側に第1制御油室16が形成されていると共に、下方側には第2制御油室17がそれぞれ形成されている。 A first control oil chamber 16 is formed on the upper side centering on the control ring 5 between the outer peripheral surface of the control ring 5 on the first protrusion 5h and the second protrusion 5g side and the pump housing 1. A second control oil chamber 17 is formed on the lower side, respectively.
 第1制御油室16は、内部に供給された油圧によって制御リング5を後述するコイルばね28のばね力に抗して偏心量が変化する方向の1つである減少する方向(ポンプ構成体から吐出されるオイルの量が減少する方向)へ押圧するようになっている。すなわち、第1制御油室16は減少側制御室となっている。 The first control oil chamber 16 reduces the control ring 5 by the hydraulic pressure supplied to the inside, which is one of the directions in which the eccentricity changes against the spring force of the coil spring 28 described later (from the pump configuration). It is designed to press in the direction in which the amount of discharged oil decreases). That is, the first control oil chamber 16 is a reduction side control chamber.
 第1制御油室16には、排出孔12a、メインオイルギャラリー31,第2オイルギャラリー33,第1制御溝35を介して、吐出ポート部から吐出されたオイルが導かれ、オイルの吐出量が減少する方向へ制御リングが移動したときにポンプ室の容積が増加するように構成されている。また、この第1制御油室16は、パイロット弁7を介して吐出ポート12に連通あるいは連通が遮断されるようになっていると共に、制御リング5の揺動時においても第1シール機構によって常時液密的にシールされるようになっている。 The oil discharged from the discharge port portion is guided to the first control oil chamber 16 through the discharge hole 12a, the main oil gallery 31, the second oil gallery 33, and the first control groove 35, and the oil discharge amount is increased. It is configured to increase the volume of the pump chamber as the control ring moves in a decreasing direction. Further, the first control oil chamber 16 is configured to communicate with or be cut off from the discharge port 12 via the pilot valve 7, and is always provided by the first seal mechanism even when the control ring 5 swings. It is designed to be liquidtightly sealed.
 第2制御油室17は、内部に供給された油圧によって制御リング5を後述するコイルばね28のばね力とアシストして偏心量が増加する方向へ付勢するようになっており、ソレノイドバルブ100やパイロット弁7を介して油圧が供給あるいは排出されるようになっている。すなわち、第2制御油室17は増大側制御室となっている。 The second control oil chamber 17 assists the control ring 5 with the spring force of the coil spring 28 described later by the hydraulic pressure supplied to the inside to urge the control ring 5 in a direction in which the amount of eccentricity increases, and the solenoid valve 100 Hydraulic pressure is supplied or discharged via the solenoid valve 7. That is, the second control oil chamber 17 is an increasing side control chamber.
 また、偏心揺動支点から第2シール部材14までの距離が、第1シール部材13までの距離よりも大きく設定されていることから、制御リング5の第2制御油室17側の外側面である第2受圧面20の面積が、第1制御油室16側の外側面である第1受圧面21の面積よりも大きくなっている。 Further, since the distance from the eccentric swing fulcrum to the second seal member 14 is set to be larger than the distance to the first seal member 13, the outer surface of the control ring 5 on the second control oil chamber 17 side. The area of the second pressure receiving surface 20 is larger than the area of the first pressure receiving surface 21 which is the outer surface on the side of the first control oil chamber 16.
 したがって、第2制御油室17内の油圧による制御リング5に対する押圧力が、第1制御油室16内の反対の油圧によって僅かに相殺されて、結果として吐出油圧力により制御リング5を、ピボットピン10を支点として反時計方向へ揺動させて偏心量を減少させようとする力は小さくなり、これに対向して制御リング5を時計方向へ付勢する後述のコイルばね28のばね力を小さく設定できる。 Therefore, the pressing force on the control ring 5 by the hydraulic pressure in the second control oil chamber 17 is slightly offset by the opposite hydraulic pressure in the first control oil chamber 16, and as a result, the control ring 5 is pivoted by the discharge oil pressure. The force that attempts to reduce the amount of eccentricity by swinging counterclockwise with the pin 10 as a fulcrum becomes smaller, and the spring force of the coil spring 28 described later that urges the control ring 5 clockwise in opposition to this becomes smaller. Can be set small.
 第1シール部材13,第2シール部材14は、例えば低摩耗性の合成樹脂材によって制御リング5の軸方向に沿って細長く形成されていると共に、制御リング5の第1突起部5h,第2突起部5gの外周面に形成された第1シール溝5b、第2シール溝5c内に保持されている。さらに第1シール部材13,第2シール部材14は、第1シール溝5b、第2シール溝5cの底部側に固定されたゴム製の弾性部材13a、14aの弾性力によって前方へ、つまり各シール面1a、1bに押し付けられるようになっている。これにより、第1制御油室16、第2制御油室17の常時良好な液密性を確保するようになっている。 The first seal member 13 and the second seal member 14 are formed of, for example, a low-wear synthetic resin material elongated along the axial direction of the control ring 5, and the first protrusions 5h and the second of the control ring 5 are formed. It is held in the first seal groove 5b and the second seal groove 5c formed on the outer peripheral surface of the protrusion 5g. Further, the first seal member 13 and the second seal member 14 are moved forward by the elastic force of the rubber elastic members 13a and 14a fixed to the bottom side of the first seal groove 5b and the second seal groove 5c, that is, each seal. It is designed to be pressed against the surfaces 1a and 1b. As a result, good liquidtightness of the first control oil chamber 16 and the second control oil chamber 17 is always ensured.
 吸入ポート11は、図7及び図9に示すように、各ポンプ室19の容積が拡大する領域に開口していると共に、ポンプ構成体によるポンプ作用に伴って発生する負圧によって、ほぼ中央に形成された吸入口11aを介してオイルパン55内のオイルが導入されるようになっている。 As shown in FIGS. 7 and 9, the suction port 11 is open to a region where the volume of each pump chamber 19 is expanded, and is substantially centered by the negative pressure generated by the pumping action of the pump structure. The oil in the oil pan 55 is introduced through the formed suction port 11a.
 ポンプハウジング1には、コイルばね28を収容するばね収容室27が形成されており、吸入口11aと連通している。この吸入口11aは、ばね収容室27と共に低圧室22と連通していると共に、ポンプ構成体のポンプ作用によって発生する負圧によって、オイルパン55から吸入通路を介して吸い上げられたオイルを吸入ポート11に供給して、容積が拡大された各ポンプ室19に供給するようになっている。したがって、吸入ポート11と吸入口11a、ばね収容室27及び低圧室22の全体が低圧部として構成されている。 A spring accommodating chamber 27 for accommodating the coil spring 28 is formed in the pump housing 1 and communicates with the suction port 11a. The suction port 11a communicates with the low pressure chamber 22 together with the spring accommodating chamber 27, and sucks oil sucked from the oil pan 55 through the suction passage by the negative pressure generated by the pumping action of the pump component. It is supplied to 11 and is supplied to each pump chamber 19 whose volume has been expanded. Therefore, the entire suction port 11, suction port 11a, spring accommodating chamber 27, and low pressure chamber 22 are configured as a low pressure portion.
 一方、吐出ポート12は、ポンプ構成体によるポンプ作用に伴って各ポンプ室19の容積が縮小する領域に開口していると共に、ポンプハウジング1に形成された排出孔12aからメインオイルギャラリー31を介して機関の各摺動部および可変動弁装置である例えばバルブタイミング制御装置に連通している。メインオイルギャラリー31の途中には、オイルの不純物を除去するフィルタ34が取り付けられている。 On the other hand, the discharge port 12 is open to a region where the volume of each pump chamber 19 is reduced due to the pumping action of the pump structure, and the discharge hole 12a formed in the pump housing 1 is used through the main oil gallery 31. It communicates with each sliding part of the engine and, for example, a valve timing control device which is a variable valve gear. A filter 34 for removing impurities of oil is installed in the middle of the main oil gallery 31.
 制御リング5は、図7に示すように筒状本体の外周面のピボット凹部5dと反対側の位置に径方向外側に突出した延出部であるアーム26が一体に設けられている。このアーム26は、コイルばね28により付勢されており、制御リング5を揺動させる。 As shown in FIG. 7, the control ring 5 is integrally provided with an arm 26 which is an extending portion protruding outward in the radial direction at a position opposite to the pivot recess 5d on the outer peripheral surface of the tubular body. The arm 26 is urged by a coil spring 28 to swing the control ring 5.
 また、ポンプハウジング1のアーム26の下方位置には、ばね収容室27が形成されている。 Further, a spring accommodating chamber 27 is formed at a position below the arm 26 of the pump housing 1.
 ばね収容室27は、ポンプハウジング1の軸方向に沿って延びたほぼ平面矩形状に形成され、内部には、アーム26を介して制御リング5を図7中、時計方向へ付勢する、つまりロータ4の回転中心と制御リング5の内周面の中心との偏心量が変化する方向の1つである大きくなる方向(ポンプ構成体から吐出されるオイルの量が増加する方向)へ制御リング5を付勢する付勢部材であるコイルばね28が収容配置されている。なお、ばね収容室27は吸入ポート11を介して低圧室22に連通している。 The spring accommodating chamber 27 is formed in a substantially flat rectangular shape extending along the axial direction of the pump housing 1, and internally, the control ring 5 is urged clockwise in FIG. 7 via the arm 26, that is, The control ring in the direction of increasing eccentricity between the center of rotation of the rotor 4 and the center of the inner peripheral surface of the control ring 5 (the direction in which the amount of oil discharged from the pump component increases). A coil spring 28, which is an urging member for urging 5, is housed and arranged. The spring accommodating chamber 27 communicates with the low pressure chamber 22 via the suction port 11.
 コイルばね28(付勢部材)は、下端縁がばね収容室27の底面に弾接している一方、上端縁がアーム26に弾接しており、ばね収容室27内において所定のばね荷重Wが付与されていて、上端縁がアーム26に常時当接しつつ制御リング5におけるロータ4の回転中心と制御リング5の内周面の中心との偏心量が大きくなる方向へ付勢している。 The lower end edge of the coil spring 28 (biasing member) is in contact with the bottom surface of the spring accommodating chamber 27, while the upper end edge is in elastic contact with the arm 26, and a predetermined spring load W is applied in the spring accommodating chamber 27. The upper end edge is constantly in contact with the arm 26 and is urged in a direction in which the amount of eccentricity between the center of rotation of the rotor 4 in the control ring 5 and the center of the inner peripheral surface of the control ring 5 increases.
 つまり、コイルばね28は、ばね荷重Wが付与された状態で常にアーム26を介して制御リング5を上方へ偏心させる方向、つまり各ポンプ室19の容積が大きくなる方向に付勢している。ばね荷重Wは、油圧がバルブタイミング制御装置の必要油圧P1のときに第1制御油室16のみに導入されて制御リング5が動き出す荷重である。 That is, the coil spring 28 is urged in a direction in which the control ring 5 is always eccentric upward via the arm 26 in a state where the spring load W is applied, that is, in a direction in which the volume of each pump chamber 19 increases. The spring load W is a load that is introduced only into the first control oil chamber 16 and the control ring 5 starts to move when the hydraulic pressure is the required hydraulic pressure P1 of the valve timing control device.
 また、ポンプハウジング1のばね収容室27と軸方向から対向する位置に、アーム26の上面が当接してアーム26の時計方向の最大回動位置を規制する規制部29が形成されている。 Further, a regulating portion 29 is formed at a position facing the spring accommodating chamber 27 of the pump housing 1 in the axial direction so that the upper surface of the arm 26 abuts and regulates the maximum clockwise rotation position of the arm 26.
 そして、ポンプハウジング1には、図7に示すように、吐出圧導入孔30が形成されている共に、第1制御油室16,第2制御油室17と連通する第1制御溝35と第2制御溝36がそれぞれ形成されている。 Then, as shown in FIG. 7, the pump housing 1 is formed with a discharge pressure introduction hole 30, and the first control groove 35 and the first control groove 35 communicating with the first control oil chamber 16 and the second control oil chamber 17 are formed. Two control grooves 36 are formed respectively.
 吐出圧導入孔30は、パイロット弁7の後述する油圧導入ポート45に連通している。 The discharge pressure introduction hole 30 communicates with the hydraulic pressure introduction port 45 described later of the pilot valve 7.
 第1制御溝35は、一端が同じくポンプカバー2に開口した制御溝35b(図9,図10)を介して、第2オイルギャラリー33に接続されている。 The first control groove 35 is connected to the second oil gallery 33 via a control groove 35b (FIGS. 9 and 10) whose one end is also opened in the pump cover 2.
 一方、第2制御溝36は、第1制御溝35から分岐し、第2制御油室17に連通している。 On the other hand, the second control groove 36 branches from the first control groove 35 and communicates with the second control oil chamber 17.
 ポンプカバー2に形成された吐出ポート12から吐出したオイルは、制御ハウジング6に形成された吐出開口60から吐出通路61に導かれ、排出孔12aに向かって流れる。吐出ポート12と吐出通路61とは接続されている。吐出通路61の構成については、後述する。 The oil discharged from the discharge port 12 formed in the pump cover 2 is guided to the discharge passage 61 from the discharge opening 60 formed in the control housing 6 and flows toward the discharge hole 12a. The discharge port 12 and the discharge passage 61 are connected to each other. The configuration of the discharge passage 61 will be described later.
 パイロット弁7は、図3、図4及び図7に示すように、制御ハウジング6の外面一側部に一体に上下方向に設けられ、上部が閉塞された円筒状のバルブボディ40と、バルブボディ40の内部に形成されたバルブ収容部41内に上下方向へ摺動自在なスプール弁42と、バルブ収容部41の下端開口を閉塞するプラグ43と、スプール弁42とプラグ43との間に弾装されてスプール弁42を上方へ付勢するバルブスプリング44と、を備えている。スプール弁42は、1対の大径部である第1ランド部42a,第2ランド部42bをもって第2制御油室17に対しての油圧の給排制御を行う。 As shown in FIGS. 3, 4, and 7, the pilot valve 7 is integrally provided on one side of the outer surface of the control housing 6 in the vertical direction, and has a cylindrical valve body 40 whose upper portion is closed and a valve body. A spool valve 42 that is slidable in the vertical direction in the valve accommodating portion 41 formed inside the 40, a plug 43 that closes the lower end opening of the valve accommodating portion 41, and a bullet between the spool valve 42 and the plug 43. It is equipped with a valve spring 44, which is mounted and urges the spool valve 42 upward. The spool valve 42 controls the supply and discharge of hydraulic pressure to the second control oil chamber 17 by means of a pair of large diameter portions, a first land portion 42a and a second land portion 42b.
 バルブボディ40には、ソレノイドバルブ100と接続される導入通路開口部である導入ポート46が開口形成されている。さらに、バルブ収容部41の周壁には、その軸方向中間位置に、一端側が第2制御油室17に接続されると共に他端側が後述する中継室47と常時接続されることで第2制御油室17に対する油圧の給排に供する制御油室開口部である油圧導入ポート45が開口形成されると共に、その軸方向他端側の位置に、一端側が外部へ直接開口又は吸入側に接続され、後述する中継室47との接続を切り替えることによって当該中継室47を介して第2制御油室17内の油圧の排出に供する制御ドレン開口部である第1ドレンポート48が開口形成されている。なお、バルブボディ40の一端側周壁であって径方向に後述する背圧室52と重なり合う軸方向位置にも、第1ドレンポート48と同様に、外部へ直接開口又は吸入側に接続される第2ドレンポート49が開口形成されている。第1ドレンポート48及び第2ドレンポート49はオイルパン55に連通しており、第1ドレンポート48及び第2ドレンポート49から排出されたオイルは、オイルパン55に貯留される。 The valve body 40 is formed with an introduction port 46, which is an introduction passage opening connected to the solenoid valve 100. Further, on the peripheral wall of the valve accommodating portion 41, one end side is connected to the second control oil chamber 17 and the other end side is always connected to the relay chamber 47, which will be described later, at an intermediate position in the axial direction, so that the second control oil is connected. A hydraulic pressure introduction port 45, which is an opening of a control oil chamber for supplying and discharging hydraulic pressure to the chamber 17, is formed, and one end side is directly connected to the outside or the suction side at a position on the other end side in the axial direction. By switching the connection with the relay chamber 47, which will be described later, the first drain port 48, which is a control drain opening for discharging the hydraulic pressure in the second control oil chamber 17, is formed through the relay chamber 47. Similar to the first drain port 48, the valve body 40 is directly connected to the outside or the suction side at the axial position of the peripheral wall on one end side and overlapping the back pressure chamber 52 described later in the radial direction. 2 Drain port 49 is formed as an opening. The first drain port 48 and the second drain port 49 communicate with the oil pan 55, and the oil discharged from the first drain port 48 and the second drain port 49 is stored in the oil pan 55.
 また、バルブボディ40の周壁部には、スプール弁42が図7中の上端側の位置にある状態で導入ポート46と後述する中継室47を連通する連通油路50が構成されるようになっている。 Further, on the peripheral wall portion of the valve body 40, a communication oil passage 50 for communicating the introduction port 46 and the relay chamber 47, which will be described later, is configured with the spool valve 42 at the position on the upper end side in FIG. ing.
 スプール弁42は、その軸方向の両端部に、第1ランド部42a,第2ランド部42bが設けられると共に、第1ランド部42a,第2ランド部42b間に、小径部である軸部42cが設けられている。そして、かかるスプール弁42がバルブ収容部41内に収容されることによって、バルブボディ40内には、第1ランド部42aの軸方向外側においてバルブボディ40の一端部との間に設けられ、導入ポート46から吐出圧が導かれる圧力室51と、第1ランド部42a,第2ランド部42b間に設けられ、当該スプール弁42の軸方向位置によって油圧導入ポート45と導入ポート46(連通油路50)又は第1ドレンポート48とを中継する中継室47と、第2ランド部42bの軸方向外側においてプラグ43との間に設けられ、第2ランド部42bの外周側(微小隙間)を通じて中継室47より漏出したオイルの排出に供する背圧室52と、がそれぞれ隔成されることとなる。 The spool valve 42 is provided with a first land portion 42a and a second land portion 42b at both ends in the axial direction, and a shaft portion 42c having a small diameter between the first land portion 42a and the second land portion 42b. Is provided. Then, by accommodating the spool valve 42 in the valve accommodating portion 41, the spool valve 42 is provided in the valve body 40 on the axially outer side of the first land portion 42a and is introduced between the spool valve 42 and one end portion of the valve body 40. The pressure chamber 51 from which the discharge pressure is guided from the port 46 is provided between the first land portion 42a and the second land portion 42b, and the hydraulic pressure introduction port 45 and the introduction port 46 (communication oil passage) are provided depending on the axial position of the spool valve 42. 50) or the relay chamber 47 that relays the first drain port 48 and the plug 43 on the axially outer side of the second land portion 42b, and relays through the outer peripheral side (micro gap) of the second land portion 42b. The back pressure chamber 52 used to discharge the oil leaked from the chamber 47 is separated from each other.
 このような構成から、パイロット弁7は、導入ポート46より圧力室51に導かれる吐出圧が所定圧以下の状態では、バルブスプリング44の付勢力をもって、スプール弁42がバルブ収容部41の上端側の所定領域である第1領域に位置することとなる(図7参照)。すなわち、スプール弁42が第1領域に位置することにより、連通油路50を介して導入ポート46と中継室47が接続される一方、第2ランド部42bによって第1ドレンポート48と中継室47の接続が遮断されて、油圧導入ポート45を介して第2制御油室17と中継室47が接続される結果、導入ポート46から連通油路50を通じて導かれる油圧が中継室47を介して第2制御油室17へと供給されることとなる。 With such a configuration, in the pilot valve 7, when the discharge pressure guided from the introduction port 46 to the pressure chamber 51 is equal to or less than a predetermined pressure, the spool valve 42 is on the upper end side of the valve accommodating portion 41 with the urging force of the valve spring 44. It will be located in the first region, which is a predetermined region of (see FIG. 7). That is, since the spool valve 42 is located in the first region, the introduction port 46 and the relay chamber 47 are connected to each other via the communication oil passage 50, while the first drain port 48 and the relay chamber 47 are connected by the second land portion 42b. As a result of the connection of the second control oil chamber 17 and the relay chamber 47 being connected via the hydraulic pressure introduction port 45, the hydraulic pressure guided from the introduction port 46 through the communication oil passage 50 is passed through the relay chamber 47. 2 It will be supplied to the control oil chamber 17.
 そして、圧力室51へと導かれる吐出圧が所定圧を超えると、バルブスプリング44の付勢力に抗してスプール弁42が第1領域からバルブ収容部41の下端側へと移動し、当該バルブ収容部41の下端側の所定領域である第2領域に位置することとなる(図示せず)。すなわち、スプール弁42が第2領域に位置することによって、油圧導入ポート45を介して第2制御油室17は中継室47との接続が維持される一方、第1ランド部42aによって連通油路50と中継室47の接続が遮断されて、第1ドレンポート48を介して中継室47とオイルパン55が接続される結果、第2制御油室17内のオイルが中継室47を通じ第1ドレンポート48を介してオイルパン55へと排出されることとなる。 Then, when the discharge pressure guided to the pressure chamber 51 exceeds a predetermined pressure, the spool valve 42 moves from the first region to the lower end side of the valve accommodating portion 41 against the urging force of the valve spring 44, and the valve It will be located in the second region, which is a predetermined region on the lower end side of the accommodating portion 41 (not shown). That is, by locating the spool valve 42 in the second region, the second control oil chamber 17 is maintained in connection with the relay chamber 47 via the hydraulic introduction port 45, while the communication oil passage is maintained by the first land portion 42a. The connection between the 50 and the relay chamber 47 is cut off, and as a result of connecting the relay chamber 47 and the oil pan 55 via the first drain port 48, the oil in the second control oil chamber 17 flows through the relay chamber 47 to the first drain. It will be discharged to the oil pan 55 through the port 48.
 また、パイロット弁7は、ソレノイド56によって動作し、ソレノイド56はコネクタ部57を介して車載のECU(図示外)から励磁電流が通電される。 Further, the pilot valve 7 is operated by the solenoid 56, and the solenoid 56 is energized with an exciting current from an in-vehicle ECU (not shown) via the connector portion 57.
 ソレノイドバルブ100は、図7に示すように、第1オイルギャラリー32の途中に介在しており、内部軸方向に沿って油通路102が貫通形成されてなるほぼ円筒状のバルブボディ101と、このバルブボディ101の一端部(同図中の左側端部)において油通路102を拡径形成してなる弁体収容部103の外端部に圧入固定され、その中央部に第1オイルギャラリー32の上流側の通路(以下、単に「上流側通路」という。)32aと接続される上流側開口部である導入ポート104を有するシート部材105と、該シート部材105の内端部開口縁に形成されるバルブシート105aに対して離着座可能に設けられ、導入ポート104の開閉に供するボール弁体106と、バルブボディ101の他端部(同図中の右側端部)に設けられたソレノイド107と、から主として構成されている。 As shown in FIG. 7, the solenoid valve 100 is interposed in the middle of the first oil gallery 32, and the substantially cylindrical valve body 101 having an oil passage 102 penetrating along the internal axial direction and the valve body 101 thereof. At one end of the valve body 101 (the left end in the figure), the oil passage 102 is expanded and fixed to the outer end of the valve body accommodating portion 103, and the first oil gallery 32 is located at the center thereof. It is formed on a seat member 105 having an introduction port 104 which is an upstream opening connected to an upstream passage (hereinafter, simply referred to as "upstream passage") 32a, and an inner end opening edge of the seat member 105. A ball valve body 106 that can be detached and seated from the valve seat 105a to open and close the introduction port 104, and a solenoid 107 provided at the other end of the valve body 101 (the right end in the figure). , Is mainly composed of.
 バルブボディ101は、その一端側内周部に、ボール弁体106を収容する弁体収容部103が油通路102に対し段差拡径状に設けられている。バルブボディ101の周壁のうち、その一端側となる弁体収容部103の外周部に、下流側通路32bと接続されてパイロット弁7に対する油圧の給排に供する下流側開口部である給排ポート108が径方向に沿って貫通形成されると共に、その他端側となる油通路102の外周部に、オイルパン55へと接続される切替ドレン開口部であるドレンポート109が径方向に沿って貫通形成されている。 The valve body 101 is provided with a valve body accommodating portion 103 accommodating the ball valve body 106 on the inner peripheral portion on one end side in a stepped diameter expansion with respect to the oil passage 102. A supply / discharge port, which is a downstream opening that is connected to the downstream passage 32b and is used for supplying and discharging hydraulic pressure to the pilot valve 7 on the outer peripheral portion of the valve body accommodating portion 103, which is one end side of the peripheral wall of the valve body 101. The 108 is formed to penetrate along the radial direction, and the drain port 109, which is a switching drain opening connected to the oil pan 55, penetrates along the radial direction on the outer peripheral portion of the oil passage 102 on the other end side. It is formed.
 ソレノイド107は、ケーシング107a内部に収容されるコイル(図示外)に通電されることにより発生する電磁力をもって、当該コイルの内周側に配置されるアーマチュア(図示外)及びこれに固定されるロッド107bが図5中の左方向へと進出移動する構成となっている。なお、このソレノイド107には、内燃機関の油温や水温、機関回転数など所定のパラメータによって検出ないし算出された機関運転状態に基づいて車載のECU(図示外)から励磁電流が通電されることとなる。 The solenoid 107 has an armature (not shown) arranged on the inner peripheral side of the coil and a rod fixed thereto by an electromagnetic force generated by energizing a coil (not shown) housed inside the casing 107a. The 107b is configured to advance and move to the left in FIG. The solenoid 107 is energized with an exciting current from an in-vehicle ECU (not shown) based on the engine operating state detected or calculated by predetermined parameters such as the oil temperature and water temperature of the internal combustion engine and the engine speed. It becomes.
 このような構成から、ソレノイド107への通電時には、ロッド107bが進出移動することによって当該ロッド107bの先端部に配置されるボール弁体106がシート部材105側のバルブシート105aへと押し付けられ、導入ポート104と給排ポート108の連通が遮断され、油通路102を通じ給排ポート108とドレンポート109が連通することとなる。一方、当該ソレノイド107の非通電時には、導入ポート104より導かれる吐出圧に基づいてボール弁体106が後退移動することにより当該ボール弁体106がバルブボディ101側へと押し付けられ、導入ポート104と油圧導入ポート45が連通状態となると共に、油圧導入ポート45とドレンポート109の連通が遮断されることとなる。 From such a configuration, when the solenoid 107 is energized, the rod 107b is advanced and moved, so that the ball valve body 106 arranged at the tip of the rod 107b is pressed against the valve seat 105a on the seat member 105 side and introduced. The communication between the port 104 and the supply / discharge port 108 is cut off, and the supply / discharge port 108 and the drain port 109 communicate with each other through the oil passage 102. On the other hand, when the solenoid 107 is not energized, the ball valve body 106 moves backward based on the discharge pressure guided from the introduction port 104, so that the ball valve body 106 is pressed toward the valve body 101 and becomes the introduction port 104. The hydraulic pressure introduction port 45 is in a communication state, and the communication between the hydraulic pressure introduction port 45 and the drain port 109 is cut off.
 さて、前述したように、本実施例では、ポンプカバー2に形成された吐出ポート12から吐出したオイルは、制御ハウジング6に形成された吐出開口60から吐出通路61に導かれ、排出孔12aに向かって流れる。排出孔12aは制御リング支持部65から離れた位置にあって吐出通路61に形成されている。吐出通路61の構成について、図9及び図10を用いて説明する。 By the way, as described above, in this embodiment, the oil discharged from the discharge port 12 formed in the pump cover 2 is guided to the discharge passage 61 from the discharge opening 60 formed in the control housing 6 and into the discharge hole 12a. It flows toward. The discharge hole 12a is located at a position away from the control ring support portion 65 and is formed in the discharge passage 61. The configuration of the discharge passage 61 will be described with reference to FIGS. 9 and 10.
 図9及び図10に示すように、吐出通路61には、制御リング5のピボットピン10を支持する制御リング支持部65が備えられている。制御リング支持部65は、ポンプ構成体の一部であるロータ4の回転軸の方向から見たときにポンプ構成体の一部であるロータ4の回転軸から離れる方向に向かって徐々に細く形成されている。換言すると、制御リング支持部65は、涙滴型に形成されている。 As shown in FIGS. 9 and 10, the discharge passage 61 is provided with a control ring support portion 65 that supports the pivot pin 10 of the control ring 5. The control ring support portion 65 is formed to be gradually thinner toward the direction away from the rotation axis of the rotor 4 which is a part of the pump structure when viewed from the direction of the rotation axis of the rotor 4 which is a part of the pump structure. Has been done. In other words, the control ring support 65 is formed in a teardrop shape.
 吐出開口60から吐出通路61に吐出されるオイルは、制御リング支持部65によって2つの流路に分かれ、吐出通路61にて合流した後、排出孔12aに導かれる。吐出通路61は、ポンプ構成体の一部であるロータ4の回転方向において制御リング支持部65の周壁と吐出通路61の周壁との間に形成された第1吐出通路61aと、ポンプ構成体の一部であるロータ4の回転方向とは反対方向において制御リング支持部65の周壁と吐出通路61の周壁との間に形成された第2吐出通路61bとを備えている。第1吐出通路61aを形成する制御リング支持部65の周壁と吐出通路61の周壁とはオイルの流れ方向に沿ってほぼ平行に形成されている。これにより、オイルをスムーズに下流側に流すことができる。 The oil discharged from the discharge opening 60 to the discharge passage 61 is divided into two flow paths by the control ring support portion 65, merges in the discharge passage 61, and then guided to the discharge hole 12a. The discharge passage 61 includes a first discharge passage 61a formed between the peripheral wall of the control ring support portion 65 and the peripheral wall of the discharge passage 61 in the rotation direction of the rotor 4, which is a part of the pump configuration, and the pump configuration. A second discharge passage 61b formed between the peripheral wall of the control ring support portion 65 and the peripheral wall of the discharge passage 61 in a direction opposite to the rotation direction of the rotor 4, which is a part of the rotor 4, is provided. The peripheral wall of the control ring support portion 65 forming the first discharge passage 61a and the peripheral wall of the discharge passage 61 are formed substantially parallel to each other along the oil flow direction. As a result, the oil can flow smoothly to the downstream side.
 本実施例の制御リング支持部65は、上述したようにポンプ構成体の一部であるロータ4の回転軸の方向から見たときにポンプ構成体の一部であるロータ4の回転軸から離れる方向に向かって徐々に細く形成した、所謂涙滴型としていることを特徴としている。 As described above, the control ring support portion 65 of the present embodiment is separated from the rotation shaft of the rotor 4 which is a part of the pump structure when viewed from the direction of the rotation shaft of the rotor 4 which is a part of the pump structure. It is characterized by having a so-called teardrop shape, which is gradually formed thinner in the direction.
 一般的に物体に流れが衝突すると、衝突した部位では圧力が高くなる。一方、衝突した部位の下流側では急激に圧力が低下し、剥離が発生する(渦が発生する)。剥離が発生した部分では、流れが乱れ、その乱れが圧力損失となり、ポンプの効率が低下する。例えば、制御リング支持部65を円柱状に形成した場合、オイルは制御リング支持部65に上流端65aに衝突し、第1吐出通路61aと第2吐出通路61bとが合流した下流端65bでは剥離が発生し、圧力損失となる。流れの剥離を抑制するためには、剥離の位置を下流側に移動させ、圧力が急激に低下する部分を小さくすることが有効である。そこで本実施例では、制御リング支持部65の下流端65bを下流側に伸ばした位置としている。すなわち、ピボットピン10の中心と上流端65aを結ぶ距離よりも、ピボットピン10の中心と下流端65b結ぶ距離の方を長くしている。そして、制御リング支持部65に上流端65aに衝突したオイルは、第1吐出通路61aと第2吐出通路61bとに分流し、下流端65bを通過した位置で合流する。本実施例では、制御リング支持部65は涙滴型とし、制御リング支持部65の周壁を流れるオイルをスムーズに下流側に流すようにしている。 Generally, when a flow collides with an object, the pressure increases at the collision site. On the other hand, on the downstream side of the collision site, the pressure drops sharply and peeling occurs (a vortex is generated). At the part where the peeling occurs, the flow is turbulent, and the turbulence causes a pressure loss, which reduces the efficiency of the pump. For example, when the control ring support portion 65 is formed in a columnar shape, the oil collides with the control ring support portion 65 at the upstream end 65a and peels off at the downstream end 65b where the first discharge passage 61a and the second discharge passage 61b merge. Will occur, resulting in pressure loss. In order to suppress the separation of the flow, it is effective to move the separation position to the downstream side and reduce the portion where the pressure drops sharply. Therefore, in this embodiment, the downstream end 65b of the control ring support portion 65 is set to a position extended to the downstream side. That is, the distance connecting the center of the pivot pin 10 and the downstream end 65b is longer than the distance connecting the center of the pivot pin 10 and the upstream end 65a. Then, the oil that collides with the control ring support portion 65 at the upstream end 65a is divided into the first discharge passage 61a and the second discharge passage 61b, and merges at the position where the oil has passed the downstream end 65b. In this embodiment, the control ring support portion 65 has a teardrop shape so that the oil flowing through the peripheral wall of the control ring support portion 65 can smoothly flow to the downstream side.
 本実施例によれば、制御リング支持部65は、ポンプ機構の回転軸の方向から見たときにポンプ機構の回転軸から離れる方向に向かって徐々に細く形成した、所謂涙滴型としているので、オイルの流れをスムーズにし、ポンプの圧力損失を低減することができる。 According to this embodiment, the control ring support portion 65 has a so-called teardrop shape in which the control ring support portion 65 is gradually formed to become thinner in the direction away from the rotation axis of the pump mechanism when viewed from the direction of the rotation axis of the pump mechanism. , The oil flow can be smoothed and the pressure loss of the pump can be reduced.
 さて、本実施例の可変容量形ポンプは、第2制御油室17及び第1制御油室16が形成され、制御リング5の第2制御油室17側の外側面である第2受圧面20、及び第1制御油室16側の外側面である第1受圧面21で高い圧力を受ける。圧力は制御リング5の内周側に向かって働くので、制御リング5は押し潰さる方向に変形する。制御リング5には、吐出ポート12と連通する貫通した孔部が形成され、この孔部によって制御リング5の剛性が低下する。このため、制御リング5は、圧力により変形し易くなる。制御リング5が変形すると、制御リング5の内側が真円状態から楕円状態へと変化し、制御リング5の内側に配置されるポンプ構成における可動部位の回転が阻害され、負荷が増大する可能性がある。この課題を解決するための構成について、図7から図9、図11から図16を用いて説明する。 In the variable displacement pump of this embodiment, the second control oil chamber 17 and the first control oil chamber 16 are formed, and the second pressure receiving surface 20 which is the outer surface of the control ring 5 on the second control oil chamber 17 side. , And the first pressure receiving surface 21, which is the outer surface on the first control oil chamber 16 side, receives high pressure. Since the pressure acts toward the inner peripheral side of the control ring 5, the control ring 5 is deformed in the crushing direction. The control ring 5 is formed with a penetrating hole that communicates with the discharge port 12, and the hole reduces the rigidity of the control ring 5. Therefore, the control ring 5 is easily deformed by the pressure. When the control ring 5 is deformed, the inside of the control ring 5 changes from a perfect circular state to an elliptical state, and the rotation of movable parts in the pump configuration arranged inside the control ring 5 is hindered, which may increase the load. There is. A configuration for solving this problem will be described with reference to FIGS. 7 to 9 and 11 to 16.
 図11は、本発明の実施例に係る可変容量形ポンプの要部拡大斜視図、図12は、本発明の実施例に係る可変容量形ポンプの要部拡大図、図13は、図12におけるXIII-XIII線断面図、図14は、本発明の実施例に係る可変容量形ポンプから制御リングを除いた状態を示す部分拡大図、図15は、本発明の実施例に係る可変容量形ポンプの制御リングの偏心量が最大の状態を示す部分拡大図、図16は、本発明の実施例に係る可変容量形ポンプの制御リングの偏心量が最小の状態を示す部分拡大図である。 FIG. 11 is an enlarged perspective view of a main part of the variable displacement pump according to the embodiment of the present invention, FIG. 12 is an enlarged view of the main part of the variable displacement pump according to the embodiment of the present invention, and FIG. 13 is FIG. XIII-XIII line sectional view, FIG. 14 is a partially enlarged view showing a state in which the control ring is removed from the variable displacement pump according to the embodiment of the present invention, and FIG. 15 is a partially enlarged view showing a state in which the control ring is removed from the variable displacement pump according to the embodiment of the present invention. FIG. 16 is a partially enlarged view showing a state in which the eccentricity of the control ring is maximum, and FIG. 16 is a partially enlarged view showing a state in which the eccentricity of the control ring of the variable displacement pump according to the embodiment of the present invention is the minimum.
 図11及び図12に示すように、本実施例の孔部25は、分割部材37によって複数に分割されている。換言すると、孔25a,25bの間には分割部材37が配置されている。分割部材37は、制御リング5の剛性を確保し、制御リング5に圧力が加わった際に、孔部25が変形するのを抑制する補強部材となる支柱としての役割を担っている。 As shown in FIGS. 11 and 12, the hole portion 25 of this embodiment is divided into a plurality of parts by the dividing member 37. In other words, the dividing member 37 is arranged between the holes 25a and 25b. The dividing member 37 secures the rigidity of the control ring 5 and plays a role as a support as a reinforcing member for suppressing the deformation of the hole 25 when a pressure is applied to the control ring 5.
 この分割部材37は、吐出圧力の作用する制御リング5の内周から外周に向けて径方向に延びるように形成すると効果的であるが、制御リング5の形状や吐出領域の場所によっては、制御リング5の径方向に対して、傾斜して設けてもよい。 It is effective to form the dividing member 37 so as to extend in the radial direction from the inner circumference of the control ring 5 on which the discharge pressure acts to the outer circumference. However, depending on the shape of the control ring 5 and the location of the discharge region, the control ring 37 may be controlled. The ring 5 may be provided at an angle with respect to the radial direction.
 本実施例において、孔部25は、図7に示すように、ポンプ構成体の一部であるロータ4の回転軸線に対する径方向において、制御リング5がコイルばね28(付勢部材)と当接する部分と、ピポットピン10(軸部材)とを結んだ制御リング5の基準線BLに対して、コイルばね28(付勢部材)が配置された側(図7において下側)に設けられている。換言すると、孔部25は、加圧され吐出されるオイルの圧力が高くなる側に設けられている。このように構成することにより、吐出するオイルの圧力を高めることができる。 In this embodiment, as shown in FIG. 7, the control ring 5 abuts on the coil spring 28 (biasing member) in the hole 25 in the radial direction with respect to the rotation axis of the rotor 4, which is a part of the pump structure. It is provided on the side (lower side in FIG. 7) where the coil spring 28 (biasing member) is arranged with respect to the reference line BL of the control ring 5 connecting the portion and the pivot pin 10 (shaft member). In other words, the hole 25 is provided on the side where the pressure of the oil to be pressurized and discharged becomes high. With this configuration, the pressure of the discharged oil can be increased.
 また、上記とは逆に、孔部25は、ポンプ構成体の回転軸線に対する径方向において、制御リング5の基準線BLに対して、コイルばね28(付勢部材)が配置された側とは反対側(図7において上側)に設けるようにしても良い。つまり、孔部25は、複数のポンプ室19の容積がポンプ構成体の回転駆動に伴って減少する区間において、複数のポンプ室19のうち最も容積が大きくなるポンプ室19に近い側に設けられていてもよい。このような実施形態の場合、孔部25は、ポンプ室の容積がポンプ構成体の回転駆動に伴って周方向に減少する区間の中間位置と、最も容積が大きくなるポンプ室に近い吐出ポート12の始端部との間に設けられることになる。この場合、加圧したオイルを素早く吐出することができるといった効果が期待できる。 Further, contrary to the above, the hole 25 is on the side where the coil spring 28 (biasing member) is arranged with respect to the reference line BL of the control ring 5 in the radial direction with respect to the rotation axis of the pump component. It may be provided on the opposite side (upper side in FIG. 7). That is, the hole 25 is provided on the side closer to the pump chamber 19 having the largest volume among the plurality of pump chambers 19 in the section where the volume of the plurality of pump chambers 19 decreases with the rotational drive of the pump components. May be. In the case of such an embodiment, the hole 25 is formed at an intermediate position of a section in which the volume of the pump chamber decreases in the circumferential direction as the pump component is rotationally driven, and a discharge port 12 closest to the pump chamber having the largest volume. It will be provided between the start and end of. In this case, the effect of being able to quickly discharge the pressurized oil can be expected.
 本実施例において、分割部材37は制御リング5と一体に形成されている。このように構成することにより、孔25a、25bを容易に制御リング5に形成することができる。これとは別に、分割部材37は制御リング5と別体に形成するようにしても良い。例えば、分割部材37を制御リング5と別体に形成した場合は、分割部材37を制御リング5よりも硬い材料で構成する。この場合、分割部材37の剛性を確保した上で分割部材37を細く形成することができるので、孔25a、25bを通過するオイルの流量を確保することができる。 In this embodiment, the dividing member 37 is integrally formed with the control ring 5. With this configuration, the holes 25a and 25b can be easily formed in the control ring 5. Apart from this, the dividing member 37 may be formed separately from the control ring 5. For example, when the dividing member 37 is formed separately from the control ring 5, the dividing member 37 is made of a material harder than the control ring 5. In this case, since the dividing member 37 can be formed thin while ensuring the rigidity of the dividing member 37, the flow rate of the oil passing through the holes 25a and 25b can be secured.
 分割部材37は、ポンプ構成体の回転軸線に対する径方向において、孔部25の周方向中央に設けられている。このように構成することにより、孔25a、25bの大きさをほぼ均等に構成することができ、孔25a、25bを通過するオイルの流量をバランス良く確保することができる。 The dividing member 37 is provided at the center of the hole 25 in the circumferential direction in the radial direction with respect to the rotation axis of the pump component. With this configuration, the sizes of the holes 25a and 25b can be configured to be substantially uniform, and the flow rate of oil passing through the holes 25a and 25b can be ensured in a well-balanced manner.
 図11に示すように、制御リング5には、ポンプ構成体の一部であるロータ4の回転軸線に沿った方向において凹み、回転軸線に対する径方向において孔部25と分割部材37を跨がって設けられた溝部5eを備えている。本実施例では溝部5eを介して、一のポンプ室19と隣り合う他のポンプ室19から一のポンプ室19へ向かってオイルを流入し易くなり、流路抵抗を低減することができる。 As shown in FIG. 11, the control ring 5 is recessed in the direction along the rotation axis of the rotor 4, which is a part of the pump structure, and straddles the hole 25 and the dividing member 37 in the radial direction with respect to the rotation axis. It is provided with a groove portion 5e provided in the above. In this embodiment, oil can easily flow from the other pump chamber 19 adjacent to the one pump chamber 19 toward the one pump chamber 19 through the groove portion 5e, and the flow path resistance can be reduced.
 また、溝部5eは孔部25に近づくほど、回転軸線に対する径方向の大きさ(幅)が大きく形成されている。換言すると、溝部5eは上流側(図11の上方)より下流側(孔部25がある位置)の方が、回転軸線に対する径方向の大きさ(幅)が大きく形成されている。 Further, the groove portion 5e is formed to have a larger radial size (width) with respect to the rotation axis as it approaches the hole portion 25. In other words, the groove portion 5e is formed to have a larger radial size (width) with respect to the rotation axis on the downstream side (position where the hole portion 25 is located) than on the upstream side (upper side of FIG. 11).
 さらに溝部5eは、回転軸線の周方向において孔部25の一部と重なるように径方向外側の途中位置5e1,5e2まで延びて形成されている。同様に、溝部5eは、分割部材37において回転軸線の径方向外側の途中位置となる低位置部37aまで延びて形成されている。低位置部37aの径方向外側には回転軸方向に沿った方向において低位置部37aより高さが高い高位置部37bが形成されている。換言すると、分割部材37には、回転軸線に沿った方向において高さが異なる段差部が形成されている。 Further, the groove portion 5e is formed so as to extend to the intermediate positions 5e1 and 5e2 on the outer side in the radial direction so as to overlap a part of the hole portion 25 in the circumferential direction of the rotation axis. Similarly, the groove portion 5e is formed so as to extend to the low position portion 37a which is an intermediate position on the radial outer side of the rotation axis in the dividing member 37. A high position portion 37b having a height higher than that of the low position portion 37a is formed on the outer side in the radial direction of the low position portion 37a in the direction along the rotation axis direction. In other words, the dividing member 37 is formed with stepped portions having different heights in the direction along the rotation axis.
 上記のように本実施例の溝部5eは、回転軸線に対する径方向において、孔部25と分割部材37の途中まで設けられている。 As described above, the groove portion 5e of this embodiment is provided halfway between the hole portion 25 and the dividing member 37 in the radial direction with respect to the rotation axis.
 また、本実施例の溝部5eは、孔部25に近づくほど、回転軸線に対する径方向の大きさが大きく形成されている。 Further, the groove portion 5e of this embodiment is formed to have a larger diameter in the radial direction with respect to the rotation axis as it approaches the hole portion 25.
 図11及び図12において、溝部5eはシリンダブロック111の取付側と反対側に形成されている例で説明したが、本実施例の溝部5eはシリンダブロック111の取付側にも同様に形成されている。そして、図13に示すように、溝部5eによって制御リング5には、シリンダブロック111の取付側と反対側、及びシリンダブロック111の取付側には、それぞれ油通路70、71が形成される。また、ポンプハウジング1には、図13及び図14に示すように、回転軸線の方向において、ポンプ収容部1sと、ポンプ構成体が内部に収容された制御リング5との間に、油通路となる凹部1eが形成されている。 Although the groove 5e has been described in FIGS. 11 and 12 on the side opposite to the mounting side of the cylinder block 111, the groove 5e of this embodiment is similarly formed on the mounting side of the cylinder block 111. There is. Then, as shown in FIG. 13, oil passages 70 and 71 are formed in the control ring 5 by the groove portion 5e on the side opposite to the mounting side of the cylinder block 111 and on the mounting side of the cylinder block 111, respectively. Further, as shown in FIGS. 13 and 14, the pump housing 1 has an oil passage between the pump accommodating portion 1s and the control ring 5 in which the pump component is accommodating in the direction of the rotation axis. A recess 1e is formed.
 次に図14から図16を用いて、凹部1eと制御リング5との関係について説明する。 Next, the relationship between the recess 1e and the control ring 5 will be described with reference to FIGS. 14 to 16.
 凹部1eは、回転軸線の方向において、シリンダブロック111側に向かって凹んだ形状を成している。ポンプ収容部1sに制御リング5が配置された状態において、制御リング5と凹部1eは回転軸線の方向から見て重なり合っている。 The recess 1e has a shape recessed toward the cylinder block 111 in the direction of the rotation axis. In a state where the control ring 5 is arranged in the pump accommodating portion 1s, the control ring 5 and the recess 1e overlap each other when viewed from the direction of the rotation axis.
 図15は制御リング5の偏心量が最大(100%)の状態である。このとき、制御リング5の形成した孔部25(孔25a,25b)は、凹部1eと全体が重なり合っている。孔部25(孔25a,25b)は、凹部1eと全体が重なっているので、孔部25(孔25a,25b)から吐出したオイルは、阻害されることなくスムーズに流れる。 FIG. 15 shows a state in which the amount of eccentricity of the control ring 5 is maximum (100%). At this time, the holes 25 ( holes 25a and 25b) formed by the control ring 5 are entirely overlapped with the recess 1e. Since the entire holes 25 ( holes 25a and 25b) overlap with the recesses 1e, the oil discharged from the holes 25 ( holes 25a and 25b) flows smoothly without being hindered.
 一方、図16は制御リング5の偏心量が最小(0%)の状態である。このとき、制御リング5の形成した孔部25(孔25a,25b)は、凹部1eとの一部と重なり合っている。さらに制御リング5の溝部5eは、図16中の点線で囲ったように、ポンプハウジング1の凹部1eの縁と重なり合っている。これにより、孔部25(孔25a,25b)から吐出するオイル量を絞り込むように調整する。 On the other hand, FIG. 16 shows a state in which the amount of eccentricity of the control ring 5 is the minimum (0%). At this time, the hole 25 ( holes 25a, 25b) formed by the control ring 5 overlaps a part of the recess 1e. Further, the groove portion 5e of the control ring 5 overlaps with the edge of the recess 1e of the pump housing 1 as surrounded by the dotted line in FIG. As a result, the amount of oil discharged from the holes 25 ( holes 25a and 25b) is adjusted to be narrowed down.
 以上説明したように、本実施例によれば、ポンプ室19の内圧による制御リングの変形が抑制されると共に、ポンプ構成体における制御リングと回転駆動されることにより可動する可動部位との間のフリクションの増加が抑制されて、可変容量形ポンプの効率の悪化を抑制できる。 As described above, according to the present embodiment, the deformation of the control ring due to the internal pressure of the pump chamber 19 is suppressed, and between the control ring in the pump configuration and the movable portion that is moved by being rotationally driven. The increase in friction can be suppressed, and the deterioration of the efficiency of the variable displacement pump can be suppressed.
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。 The present invention is not limited to the above-described embodiment, and includes various modifications. The above-described examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 また、本発明は、制御リング5がピボットピン10を基準に揺動する実施例を中心に説明したが、制御リング5が真っ直ぐスライドすることによって、制御リング5の内周面の中心とロータ4の回転中心との偏心量が変化する可変容量形ポンプにも適用できる。 Further, the present invention has mainly described an embodiment in which the control ring 5 swings with respect to the pivot pin 10, but when the control ring 5 slides straight, the center of the inner peripheral surface of the control ring 5 and the rotor 4 It can also be applied to variable displacement pumps whose eccentricity with the center of rotation changes.
 さらに、本発明は、ポンプ構成体がロータ4、ベーン15およびベーンリング18、制御リング5を有したベーンポンプである実施例を中心に説明したが、インナーロータとアウターロータを収容した内接ギアポンプにも適用できる。このとき、制御リング5をアウターロータの外周に配置させて、アウターロータの回転中心をインナーロータの回転中心に対して公転移動させることによってポンプ構成体から吐出されるオイルの量を変化させることができる。 Further, the present invention has mainly described an embodiment in which the pump component is a vane pump having a rotor 4, a vane 15, a vane ring 18, and a control ring 5, but the inscribed gear pump accommodating the inner rotor and the outer rotor Can also be applied. At this time, the control ring 5 is arranged on the outer circumference of the outer rotor, and the rotation center of the outer rotor is revolved around the rotation center of the inner rotor to change the amount of oil discharged from the pump configuration. it can.
 すなわち、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 That is, the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 本願は、2019年3月22日付出願の日本国特許出願第2019-054006号に基づく優先権を主張する。2019年3月22日付出願の日本国特許出願第2019-054006号の明細書、特許請求の範囲、図面、および要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2019-054006 filed on March 22, 2019. The entire disclosure, including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2019-054006 filed March 22, 2019, is incorporated herein by reference in its entirety.
 1…ポンプハウジング、1c…ピン孔、1e…凹部、1s…ポンプ収容部、2…ポンプカバー、3…クランクシャフト、4…ロータ、4b…開口部、5…制御リング、5e…溝部、6…制御ハウジング、7…パイロット弁、10…ピボットピン、11…吸入ポート、12…吐出ポート、12a…排出孔、13…第1シール部材、14…第2シール部材、15…ベーン、16…第1制御油室、17…第2制御油室、18…ベーンリング、19…ポンプ室、25…孔部、25a,25b…孔、30…吐出圧導入孔、31…メインオイルギャラリー、32…第1オイルギャラリー、32a…上流側通路、32b…下流側通路、33…第2オイルギャラリー、35…第1制御溝、36…第2制御溝、37…分割部材、60…吐出開口、61…吐出通路、61a…第1吐出通路、61b…第2吐出通路、65…制御リング支持部、65a…上流端、65b…下流端、70,71…油通路、110…内燃機関、111…シリンダブロック、120…可変容量形ポンプ 1 ... Pump housing, 1c ... Pin hole, 1e ... Recess, 1s ... Pump housing, 2 ... Pump cover, 3 ... Crankshaft, 4 ... Rotor, 4b ... Opening, 5 ... Control ring, 5e ... Groove, 6 ... Control housing, 7 ... Pilot valve, 10 ... Pivot pin, 11 ... Suction port, 12 ... Discharge port, 12a ... Discharge hole, 13 ... First seal member, 14 ... Second seal member, 15 ... Vane, 16 ... First Control oil chamber, 17 ... 2nd control oil chamber, 18 ... vane ring, 19 ... pump chamber, 25 ... hole, 25a, 25b ... hole, 30 ... discharge pressure introduction hole, 31 ... main oil gallery, 32 ... 1st Oil gallery, 32a ... upstream passage, 32b ... downstream passage, 33 ... second oil gallery, 35 ... first control groove, 36 ... second control groove, 37 ... split member, 60 ... discharge opening, 61 ... discharge passage , 61a ... 1st discharge passage, 61b ... 2nd discharge passage, 65 ... control ring support, 65a ... upstream end, 65b ... downstream end, 70, 71 ... oil passage, 110 ... internal combustion engine, 111 ... cylinder block, 120 … Variable displacement pump

Claims (14)

  1.  内燃機関の可変容量形ポンプであって、
     内部にポンプ収容部が形成されたハウジングと、
     前記ポンプ収容部に収容され、回転駆動されることによって、複数のポンプ室の容積が変化して、吸入部から導かれたオイルを吐出部へ吐出するポンプ構成体と、
     前記ポンプ構成体の一部を構成するとともに、内部に前記複数のポンプ室が配置され、前記内燃機関の状態に応じて移動可能となっている制御リングであって、軸方向両端を連通するように設けられ、前記複数のポンプ室から吐出されたオイルが流通する孔部と、前記孔部を複数の孔に分割する分割部材と、を有し、移動することによって前記吐出部から吐出されるオイルの量を変化させる前記制御リングと、
     を備える可変容量形ポンプ。
    A variable displacement pump for internal combustion engines
    A housing with a pump housing inside,
    A pump configuration in which the volumes of the plurality of pump chambers are changed by being accommodated in the pump accommodating portion and driven to rotate, and the oil guided from the suction portion is discharged to the discharge portion.
    A control ring that constitutes a part of the pump structure and has a plurality of pump chambers arranged therein so as to be movable according to the state of the internal combustion engine so as to communicate with both ends in the axial direction. It has a hole portion through which oil discharged from the plurality of pump chambers flows, and a dividing member for dividing the hole portion into a plurality of holes, and is discharged from the discharge portion by moving. The control ring that changes the amount of oil and
    Variable displacement pump equipped with.
  2.  請求項1に記載の可変容量形ポンプであって、
     前記孔部は、前記複数のポンプ室の容積が前記ポンプ構成体の回転駆動に伴って減少する区間において、前記複数のポンプ室のうち最も容積が小さくなるポンプ室に近い側に設けられている可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The hole is provided on the side closer to the pump chamber having the smallest volume among the plurality of pump chambers in a section in which the volume of the plurality of pump chambers decreases with the rotational drive of the pump component. Variable displacement pump.
  3.  請求項1に記載の可変容量形ポンプであって、
     前記分割部材は、前記制御リングと一体に形成された可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The split member is a variable displacement pump integrally formed with the control ring.
  4.  請求項1に記載の可変容量形ポンプであって、
     前記分割部材は、前記制御リングの径方向において、前記孔部の周方向中央に設けられた可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The dividing member is a variable displacement pump provided at the center of the hole in the radial direction of the control ring.
  5.  請求項2に記載の可変容量形ポンプであって、
     前記制御リングは、軸方向において凹み、径方向において前記孔部と前記分割部材を跨がって設けられた溝部を備えた可変容量形ポンプ。
    The variable displacement pump according to claim 2.
    The control ring is a variable displacement pump having a recess in the axial direction and a groove provided so as to straddle the hole and the dividing member in the radial direction.
  6.  請求項5に記載の可変容量形ポンプであって、
     前記溝部は、前記孔部に近づくほど、前記制御リングの径方向の大きさが大きく形成された可変容量形ポンプ。
    The variable displacement pump according to claim 5.
    A variable displacement pump in which the groove portion is formed so that the radial size of the control ring increases as it approaches the hole portion.
  7.  請求項5に記載の可変容量形ポンプであって、
     前記溝部は、前記制御リングの径方向において、前記孔部と前記分割部材の途中まで設けられた可変容量形ポンプ。
    The variable displacement pump according to claim 5.
    The groove portion is a variable displacement pump provided halfway between the hole portion and the dividing member in the radial direction of the control ring.
  8.  請求項7に記載の可変容量形ポンプであって、
     前記分割部材には、前記制御リングの軸方向において高さが異なる段差部が形成されている可変容量形ポンプ。
    The variable displacement pump according to claim 7.
    A variable displacement pump in which a step portion having different heights in the axial direction of the control ring is formed on the divided member.
  9.  請求項5に記載の可変容量形ポンプであって、
     前記ハウジングは、前記ポンプ収容部と、前記制御リングとの間に、凹部を有し、
     前記孔部は、オイルの吐出量が最大のときに、前記凹部の全体と重なり合い、
     前記溝部は、オイルの吐出量が最小のときに、前記凹部の縁と重なり合う可変容量形ポンプ。
    The variable displacement pump according to claim 5.
    The housing has a recess between the pump accommodating portion and the control ring.
    The hole overlaps with the entire recess when the oil discharge rate is maximum.
    The groove is a variable displacement pump that overlaps the edge of the recess when the amount of oil discharged is the minimum.
  10.  請求項1に記載の可変容量形ポンプであって、
     前記孔部は、矩形である可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The hole is a rectangular variable displacement pump.
  11.  請求項1に記載の可変容量形ポンプであって、
     前記ポンプ構成体及び前記制御リングは、鉄系材料で形成された可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The pump structure and the control ring are variable displacement pumps made of an iron-based material.
  12.  請求項11に記載の可変容量形ポンプであって、
     前記制御リングは、焼結金属で形成された可変容量形ポンプ。
    The variable displacement pump according to claim 11.
    The control ring is a variable displacement pump made of sintered metal.
  13.  請求項1に記載の可変容量形ポンプであって、
     前記ハウジングは、アルミニウムを含む材料で形成された可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The housing is a variable displacement pump made of a material containing aluminum.
  14.  請求項1に記載の可変容量形ポンプであって、
     前記ポンプ構成体は、前記内燃機関に設けられたクランクシャフトが挿入され、前記クランクシャフトにより回転駆動される可変容量形ポンプ。
    The variable displacement pump according to claim 1.
    The pump component is a variable displacement pump into which a crankshaft provided in the internal combustion engine is inserted and rotationally driven by the crankshaft.
PCT/JP2020/002448 2019-03-22 2020-01-24 Variable displacement pump WO2020195077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-054006 2019-03-22
JP2019054006A JP2020153330A (en) 2019-03-22 2019-03-22 Variable displacement pump

Publications (1)

Publication Number Publication Date
WO2020195077A1 true WO2020195077A1 (en) 2020-10-01

Family

ID=72558338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002448 WO2020195077A1 (en) 2019-03-22 2020-01-24 Variable displacement pump

Country Status (2)

Country Link
JP (1) JP2020153330A (en)
WO (1) WO2020195077A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022137658A1 (en) * 2020-12-25 2022-06-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172516A (en) * 2011-02-17 2012-09-10 Hitachi Automotive Systems Ltd Oil pump
JP2013130089A (en) * 2011-12-21 2013-07-04 Hitachi Automotive Systems Ltd Variable displacement pump
JP2017505871A (en) * 2014-12-31 2017-02-23 スタックポール インターナショナル エンジニアード プロダクツ,リミテッド.Stackpole International Engineered Products, Ltd. Variable displacement vane pump with built-in fail-safe function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172516A (en) * 2011-02-17 2012-09-10 Hitachi Automotive Systems Ltd Oil pump
JP2013130089A (en) * 2011-12-21 2013-07-04 Hitachi Automotive Systems Ltd Variable displacement pump
JP2017505871A (en) * 2014-12-31 2017-02-23 スタックポール インターナショナル エンジニアード プロダクツ,リミテッド.Stackpole International Engineered Products, Ltd. Variable displacement vane pump with built-in fail-safe function

Also Published As

Publication number Publication date
JP2020153330A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5679958B2 (en) Variable displacement pump
US10060433B2 (en) Variable vane displacement pump utilizing a control valve and a switching valve
JP5364606B2 (en) Vane pump
US9670926B2 (en) Variable displacement pump
JP5620882B2 (en) Variable displacement pump
JP5690238B2 (en) Variable displacement oil pump
JP6419223B2 (en) Variable displacement pump
JP2005042674A (en) Variable displacement pump
JP6838772B2 (en) Variable capacity oil pump
WO2020195077A1 (en) Variable displacement pump
EP3428450B1 (en) Variable displacement pump
JP6039831B2 (en) Variable displacement pump
WO2022137658A1 (en) Variable displacement pump
CN111630276B (en) Pump device
WO2020189008A1 (en) Oil pump
CN108026923B (en) Variable displacement oil pump
JP3758855B2 (en) Variable displacement vane pump
JP2020041522A (en) Variable displacement pump
JP4009455B2 (en) Variable displacement vane pump
JP6573509B2 (en) Variable displacement pump
JP2021113499A (en) Oil pump
JP2015161248A (en) Variable capacity type oil pump
CN115398083A (en) Pressurized oil reservoir for camshaft phaser
JP2015059523A (en) Variable displacement vane pump
JP2015083839A (en) Variable displacement pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20778530

Country of ref document: EP

Kind code of ref document: A1