WO2023037875A1 - Variable capacity-type oil pump - Google Patents

Variable capacity-type oil pump Download PDF

Info

Publication number
WO2023037875A1
WO2023037875A1 PCT/JP2022/031801 JP2022031801W WO2023037875A1 WO 2023037875 A1 WO2023037875 A1 WO 2023037875A1 JP 2022031801 W JP2022031801 W JP 2022031801W WO 2023037875 A1 WO2023037875 A1 WO 2023037875A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
oil
passage
variable displacement
pump
Prior art date
Application number
PCT/JP2022/031801
Other languages
French (fr)
Japanese (ja)
Inventor
暢昭 寒川
浩二 佐賀
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023546871A priority Critical patent/JPWO2023037875A1/ja
Priority to CN202280060260.0A priority patent/CN117940669A/en
Publication of WO2023037875A1 publication Critical patent/WO2023037875A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to a variable displacement oil pump.
  • variable displacement oil pump for example, a variable displacement oil pump described in Patent Document 1 below is known.
  • the variable displacement oil pump described in Patent Document 1 has a discharge section that discharges oil to a main gallery, and when the oil from the main gallery is introduced and the adjustment member moves in the direction in which the oil from the discharge section decreases, A first chamber whose volume increases, and a second chamber whose volume increases when oil from the main gallery is introduced through the control valve and the adjustment member moves in the direction in which the pressure of the oil discharged from the discharge port increases. room and,
  • variable displacement oil pump described in Patent Document 1, oil passages for guiding oil from the main gallery to the first and second chambers are formed intricately inside the housing.
  • the present invention has been devised in view of the conventional circumstances, and provides a variable displacement oil pump capable of easily forming an oil passage for guiding oil from a main gallery to a first chamber or a second chamber. It is intended to
  • variable displacement oil pump includes a connecting passage formed linearly at a position adjacent to the first chamber and the second chamber when viewed from the direction along the rotation axis of the pump structure, and the connecting passage.
  • a first chamber oil passage branched in a direction intersecting the longitudinal direction of the passage and connected to the first chamber, and a second chamber oil passage branched in a direction intersecting the longitudinal direction of the connection passage from the control valve accommodating portion and connected to the second chamber.
  • a two-chamber oil passage, and a control valve is inserted into the control valve housing.
  • FIG. 1 is an exploded perspective view of a variable displacement oil pump according to a first embodiment
  • FIG. 1 is a front view of a variable displacement oil pump according to a first embodiment
  • FIG. FIG. 3 is a perspective view of a housing main body in which a cam ring, an electromagnetic valve, etc. are accommodated
  • (a) is a cross-sectional view of an electromagnetic valve housed in a control valve housing
  • (b) is a cross-sectional view of a valve body cut along line AA in (a).
  • It is a cross-sectional view of the variable displacement oil pump showing the first state of the solenoid valve.
  • FIG. 4 is a cross-sectional view of the variable displacement oil pump showing a second state of the solenoid valve;
  • FIG. 4 is a cross-sectional view of the variable displacement oil pump showing a second state of the solenoid valve
  • FIG. 4 is a characteristic diagram showing the correlation between the engine speed and the main gallery pressure of the variable displacement oil pump of the first embodiment; It is a sectional view of the solenoid valve of a 2nd embodiment.
  • FIG. 11 is a front view of the variable displacement oil pump of the third embodiment showing the non-operating state of the solenoid valve;
  • FIG. 11 is a front view of the variable displacement oil pump of the third embodiment, showing the operating state of the solenoid valve;
  • FIG. 11 is a front view of the variable displacement oil pump of the fourth embodiment showing the non-operating state of the solenoid valve;
  • FIG. 11 is a front view of a variable displacement oil pump according to a fourth embodiment, showing operating states of solenoid valves;
  • variable displacement oil pump of the present invention An embodiment of the variable displacement oil pump of the present invention will be described below with reference to the drawings.
  • FIG. 1 is an exploded perspective view of a variable displacement oil pump according to a first embodiment provided in a cylinder block or the like of an internal combustion engine (not shown).
  • FIG. 2 is a front view of the variable displacement oil pump of the first embodiment with the front cover removed.
  • FIG. 3 is a perspective view of the housing body 1 in which the cam ring 6, the solenoid valve 13 and the like are accommodated. In FIG. 3, the components inside the cam ring 6 are omitted to clarify the flow paths such as the connection path 31, and the housing body 1 is shown by schematic phantom lines.
  • the variable displacement oil pump includes a housing consisting of a housing body 1 and a cover member 2, a drive shaft 3, a rotor 4, a plurality of (seven in this embodiment) vanes 5, and a cam ring 6 as an adjusting member. , a first coil spring 7, a pair of ring members 8, first to third sealing means 9 to 11, and five fixing means such as a screw member 12, an electromagnetic valve 13, and a relief valve 14. ing.
  • the housing body 1 is integrally formed of a metal material, such as an aluminum alloy material, and is formed into a cylindrical shape with a bottom so that one end side is open and a pump accommodating chamber 1a recessed in a substantially cylindrical shape is provided therein.
  • the housing body 1 has a first bearing hole 1c that rotatably supports one end of the drive shaft 3 at the center of the bottom surface 1b of the pump housing chamber 1a.
  • the housing body 1 is formed with an annularly continuous flat mounting surface 1d on the outer peripheral side of the opening of the pump accommodating chamber 1a.
  • the mounting surface 1d of the housing body 1 is formed with five screw holes 1e into which the respective screw members 12 are screwed.
  • the cover member 2 is made of a metal material, such as an aluminum alloy material, and is used to close the opening of the housing body 1.
  • the cover member 2 has a flat plate shape and has an outer shape corresponding to the outer shape of the housing body 1 .
  • a second bearing hole 2 a is formed in the cover member 2 at a position corresponding to the first bearing hole 1 c of the housing body 1 to rotatably support the other end of the drive shaft 3 .
  • five fixing means through-holes 2b are formed respectively.
  • the housing main body 1 and the cover member 2 constitute a housing that partitions the pump accommodating chamber 1a.
  • the drive shaft 3 passes through the center of the pump housing chamber 1a and is rotatably supported by the housing, and is rotationally driven by a crankshaft (not shown).
  • the drive shaft 3 rotates the rotor 4 counterclockwise in FIG. 2 by a rotational force transmitted from the crankshaft.
  • the rotor 4 has a cylindrical shape and is rotatably accommodated in the pump accommodation chamber 1a. A central portion of the rotor 4 is coupled to the drive shaft 3 . As shown in FIGS. 1 and 2, the rotor 4 is formed with seven slits 4a radially extending from the inner center side of the rotor 4 to the outside in the radial direction. As shown in FIGS. 1 and 2, back pressure chambers 4b each having a circular cross section are formed at the inner base ends of the respective slits 4a to introduce the discharge oil discharged to the discharge ports 24, which will be described later. . As shown in FIG. 2 , the back pressure chamber 4 b opens into circular recesses 4 c formed on both side surfaces of the rotor 4 .
  • the vanes 5 retractably accommodated in the slits 4a of the rotor 4 are pushed outward by the centrifugal force accompanying the rotation of the rotor 4 and the hydraulic pressure in the back pressure chamber 4b.
  • the vanes 5 are made of metal in the form of thin plates, and are accommodated in the slits 4a of the rotor 4 so as to be retractable. A small gap is formed between the vane 5 and the slit 4a when the vane 5 is accommodated in the slit 4a.
  • the vanes 5 slidably contact the inner peripheral surface of the cam ring 6 at the tip end surfaces and slidably contact the outer peripheral surface of the ring member 8 at the inner end surfaces of the base ends.
  • each pump chamber 15 is liquid-tightly defined. It is designed to be
  • the drive shaft 3, rotor 4, and vanes 5 constitute a pump structure.
  • a cam ring 6 surrounding this pump structure is integrally formed in a cylindrical shape from sintered metal.
  • a first coil spring 7 positioned on the outer periphery of the cam ring 6 is housed in the housing body 1 and always biases the cam ring 6 in a direction to increase the eccentricity of the cam ring 6 with respect to the rotation center of the rotor 4 .
  • a ring member 8 is slidably arranged in a circular concave portion 4c provided in the rotor 4. As shown in FIG.
  • the first to third seal means 9 to 11 are mounted on the cam ring 6 so as to be slidable on the first to third seal contact surfaces 1g, 1h and 1i, and partition the cam ring 6 and the housing body 1.
  • first and second chambers 26 and 27, which are control hydraulic chambers and will be described later, are fluid-tightly defined between the outer peripheral surface of the cam ring 6 and the inner peripheral surface of the housing body 1 .
  • the first sealing means 9 includes a first sealing member 16 and a first elastic member 17 that biases the first sealing member 16 toward the inner peripheral surface of the housing body 1 .
  • the second seal means 10 also includes a second seal member 18 and a second elastic member 19 that biases the second seal member 18 toward the inner peripheral surface of the housing body 1 .
  • the third sealing means 11 includes a third sealing member 20 and a third elastic member 21 that biases the third sealing member 20 toward the inner peripheral surface of the housing body 1 .
  • a circular support hole 1f for rockably supporting the cam ring 6 via a cylindrical pivot pin 22 is formed at a predetermined position on the inner peripheral wall of the pump housing chamber 1a.
  • cam ring reference line M in FIG. cam ring reference line M”.
  • the inner peripheral wall of the pump accommodating chamber 1a is formed with a first seal contact surface 1g in a region on one side (right side in FIG. 2) of the cam ring reference line M.
  • a first seal member 16 provided on the outer periphery of the cam ring 6 is slidably brought into contact with the first seal contact surface 1g.
  • the first seal contact surface 1g is an arcuate surface having a predetermined radius R1 from the center O2 of the pivot pin 22.
  • the radius R1 is set to a circumferential length that allows the first seal member 16 to always slidably contact within the eccentric swing range of the cam ring 6 .
  • a second seal contact surface 1h is formed on the inner peripheral wall of the pump housing chamber 1a in a region on the other side (left side in FIG. 2) of the cam ring reference line M.
  • a second seal member 18 provided on the outer periphery of the cam ring 6 is slidably brought into contact with the second seal contact surface 1h.
  • the second seal contact surface 1h is an arcuate surface formed from the center O2 of the pivot pin 22 with a predetermined radius R2 smaller than the radius R1.
  • the radius R2 is set to a circumferential length that allows the second seal member 18 to always slidably contact within the eccentric swing range of the cam ring 6 .
  • a third seal contact surface is formed on the inner peripheral wall of the pump housing chamber 1a at a position farther from the pivot pin 22 than the second seal contact surface 1h in the region on the left side of the cam ring reference line M. 1i is formed.
  • a third seal member 20 provided on the outer periphery of the cam ring 6 is slidably brought into contact with the third seal contact surface 1i.
  • the third seal contact surface 1i is an arcuate surface extending from the center O2 of the pivot pin 22 with a predetermined radius R3 larger than the radius R1.
  • the radius R3 is set to a circumferential length that allows the third seal member 20 to always slidably contact within the eccentric swing range of the cam ring 6 .
  • a suction port 23 which is an arc-shaped concave suction portion, and a discharge port 24, which is also an arc-shaped concave discharge portion, are provided on the outer peripheral region of the drive shaft 3. are cut so as to face each other with the drive shaft 3 interposed therebetween.
  • the suction port 23 is located on the opposite side of the pivot pin 22 on the bottom surface 1b, and opens to a region (suction region) where the internal volume of the pump chamber 15 (to be described later) increases due to the pumping action of the pump structure. ing.
  • a suction groove (not shown) having the same shape as the suction port 23 is formed on the inner surface of the cover member 2 at a position corresponding to the suction port 23 . It communicates with the suction hole 2c (see FIG. 1) provided in the . As a result, the oil stored in the oil pan of the internal combustion engine (not shown) flows into the suction region through the suction hole 2c and the suction groove of the cover member 2 based on the negative pressure generated by the pump action of the pump assembly. is sucked into each pump chamber 15.
  • the discharge port 24 is located on the pivot pin 22 side and opens in a region (discharge region) where the internal volume of the pump chamber 15 decreases due to the pump action of the pump structure.
  • a discharge hole 1j having a circular cross section is provided which penetrates the side wall of the housing body 1 and opens to the outside.
  • the oil pressurized by the pumping action and discharged to the discharge port 24 flows from the discharge hole 1j through the discharge passage (not shown) and the main gallery (not shown) to each slide of the internal combustion engine (not shown). parts, valve timing devices, etc.
  • a discharge groove (not shown) having the same shape as the discharge port 24 is formed on the inner surface of the cover member 2 at a position corresponding to the discharge port 24 .
  • a spring housing the first coil spring 7 is located between the second seal member 18 and the third seal member 20 at a position facing the flat portion 6 a provided on the outer periphery of the cam ring 6 .
  • a storage chamber 25 is provided in the spring accommodating chamber 25, the first coil spring 7 compressed by a predetermined set load W1 is elastically in contact with one end wall of the spring accommodating chamber 25 and the flat portion 6a. In this manner, the first coil spring 7 constantly moves the cam ring 6 through the flat portion 6a in the direction in which the eccentricity increases (counterclockwise direction in FIG. 2) with the elastic force based on the set load W1. energize.
  • the outer peripheral portion of the cam ring 6 has first to third seal surfaces at positions facing the first to third seal contact surfaces 1g to 1i. Portions 6b to 6d protrude respectively.
  • the first to third seal surfaces have predetermined radii slightly smaller than the radii R1, R2, R3 forming the corresponding seal contact surfaces 1g, 1h, 1i from the center O2 of the pivot pin 22. It is composed by A small clearance is formed between each seal surface and each seal contact surface 1g, 1h, 1i.
  • First and second seal holding grooves 6e, 6f, and 6g each having a U-shaped cross section are formed along the axial direction of the cam ring 6 on the seal surfaces of the seal holding portions 6b, 6c, and 6d, respectively. .
  • first to third seal members 16, 18, 20 contact the first to third seal contact surfaces 1g, 1h, 1i when the cam ring 6 eccentrically swings. retained respectively.
  • a first chamber 26 is defined by the outer peripheral portion of the substantially circular support wall portion 6j of the cam ring 6 surrounding the pivot pin 22 and the first seal member 16.
  • a second chamber 27 is defined by the seal member 18 and the third seal member 20 .
  • Pump discharge pressure is introduced into the first chamber 26 via a first chamber oil passage 32, which will be described later.
  • a pump discharge pressure is supplied via an oil passage 34 .
  • the volume of the first chamber 26 increases when the oil discharged from the discharge port 24 is guided and the cam ring 6 moves in the direction in which the flow rate of the oil discharged from the discharge port 24 decreases.
  • the second chamber 27 is a space that includes the spring housing chamber 25, and is configured so that its volume increases when the cam ring 6 moves in the direction in which the flow rate of the oil discharged from the discharge port 24 increases. ing.
  • the surface adjacent to the first chamber 26 serves as a first pressure receiving surface 6h that receives the pump discharge pressure introduced into the first chamber 26.
  • a surface of the outer peripheral surface of the cam ring 6 adjacent to the second chamber 27 serves as a second pressure receiving surface 6i (including the flat portion 6a) that receives the pump discharge pressure introduced into the second chamber 27.
  • the solenoid valve 13 corresponds to the control valve of the present invention, and controls the axial position of the spool 40 by supplying and discharging oil according to the axial position of the spool 40 in the moving direction, which will be described later.
  • a solenoid portion 29 is provided.
  • the solenoid valve 13 is provided on a regular hexahedral block portion 1k integrally formed on the rear surface of the housing body 1 as shown in FIG. More specifically, the valve portion 28 located on the tip side of the solenoid valve 13 is housed in a control valve housing portion 30 recessed with respect to one surface 1m of the block portion 1k as shown in FIG. A solenoid portion 29 located on the rear end side of 13 protrudes outward from the surface 1m of the block portion 1k.
  • valve portion 28 When the valve portion 28 is housed in the control valve housing portion 30, as shown in FIG.
  • the solenoid portion 29 when viewed along the rotation axis O1 of the pump assembly as shown in FIG. , and the solenoid portion 29 is provided so as not to face the second chamber 27 .
  • the various components and functions of solenoid valve 13 will be described in detail later.
  • connection path 31 extends along the central axis Z between a portion P1 of the first chamber 26 located on the pivot pin 22 side and a portion P2 of the second chamber 27 located on the pivot pin 22 side in the radial direction with respect to the rotation axis O1. It is provided to be connected at the shortest distance along the The outer diameter of the connection path 31 is set smaller than the inner diameter of the control valve accommodating portion 30 .
  • connection path 31 is connected to the first chamber 26 via a first chamber oil path 32 branched in a direction crossing the longitudinal direction of the connection path 31 . More specifically, one end of the connection path 31 is connected to the first chamber 26 via a first chamber oil path 32 branched perpendicular to the longitudinal direction of the connection path 31 .
  • the first chamber oil passage 32 opens toward the first chamber 26 at a point P1 above the first chamber 26 when viewed from the direction along the rotation axis O1 as shown in FIG. Further, as shown in FIG. 3, the outer peripheral portion of the first chamber oil passage 32 is located near the connection passage 31 between the first chamber 26 and the connection passage 31, and an introduction port 33 through which oil from the main gallery is introduced. It is connected to the.
  • the introduction port 33 extends to the outer peripheral portion of the first chamber oil passage 32 so as to be perpendicular to the surface 1n of the housing body 1 on which the discharge holes 1j are provided. Oil from the main gallery is introduced into the first chamber 26 via an inlet 33 and a first chamber oil passage 32 .
  • the other end (not shown) of the connecting passage 31 passing through the solenoid valve 13 is connected to a second chamber oil passage 34 branched in a direction intersecting the longitudinal direction of the connecting passage 31. It is connected to 2 rooms 27. More specifically, the other end of the connection path 31 is connected to the second chamber 27 via a second chamber oil path 34 branched in a direction orthogonal to the longitudinal direction of the connection path 31 .
  • the second chamber oil passage 34 extends parallel to the first chamber oil passage 32 .
  • the second chamber oil passage 34 opens toward the second chamber 27 at a point P2 above the second chamber 27 when viewed from the direction along the rotation axis O1 as shown in FIG. Oil from the main gallery is introduced into the second chamber 27 via the introduction port 33 , the first chamber oil passage 32 , the connection passage 31 and the second chamber oil passage 34 .
  • the relief valve 14 is housed in a valve housing hole 35 (indicated by phantom lines in FIG. 2) formed in the vicinity of the discharge port 24, as shown in FIG. It functions to release the discharge pressure to the outside by opening the valve when the pressure is high.
  • the relief valve 14 includes a lid 36 closing the valve housing hole 35 , a spring 37 having one end in contact with the lid 36 , and a ball 38 having the other end in contact with the spring 37 .
  • FIG. 4(a) is a sectional view of the solenoid valve 13 housed in the control valve housing portion 30, and FIG. 4(b) is a valve body 39 cut along the line AA in FIG. 4(a). is a cross-sectional view of.
  • the control valve housing portion 30 has a bottom portion 30 a with an open connection path 31 and a conical bottom portion 30 a that expands in diameter toward the solenoid portion 29 , and the bottom portion 30 a is axially opposed to the bottom portion 30 a. and a control valve receiving port 30b formed at a position.
  • the valve portion 28 of the solenoid valve 13 is inserted into the control valve housing portion 30 from the control valve housing port 30b toward the bottom portion 30a.
  • connection path 31 actually includes a tip side passage 31b, an axial passage 31c, a first valve opening 31d, an introduction passage 31e, and a second valve opening 31f, which will be described later.
  • the connecting passage 31 between the first chamber oil passage 32 and the bottom portion 30a will be referred to as a "connecting passage inlet portion 31a" below.
  • the valve portion 28 of the solenoid valve 13 includes a generally cylindrical valve body 39 , a spool 40 slidably disposed within the valve body 39 , and a retainer 41 fixed to the inner peripheral portion of the valve body 39 . , and a second coil spring 64 which is a biasing member arranged between the retainer 41 and the spool 40 with a predetermined set load W2 applied thereto.
  • the valve body 39 has a spool accommodating portion 39a that slidably accommodates the spool 40.
  • the spool accommodating portion 39a includes a large-diameter tubular portion 39b located on the side of the connection passage inlet portion 31a, and a large-diameter tubular portion 39b.
  • a small-diameter tubular portion 39c formed integrally with the shaped portion 39b and having an inner diameter smaller than that of the large-diameter tubular portion 39b.
  • a disk-shaped metal fixing member is axially opposed to the bottom portion 30a of the control valve housing portion 30, to which the connection passage inlet portion 31a opens.
  • a retainer 41 forming a part is press-fitted and fixed.
  • the retainer 41 forms, between itself and the bottom portion 30a of the control valve housing portion 30, a tip side passage 31b into which oil is introduced via a connection passage inlet portion 31a.
  • a surface 41 a of the retainer 41 facing the second coil spring 64 is a surface against which one axial end of the second coil spring 64 elastically abuts.
  • two flat portions 39d formed in a width across flat shape are formed on the outer peripheral portion of the large-diameter tubular portion 39b at positions facing each other in the radial direction. formed.
  • a concave portion 39f is formed between the flat portion 39d and a stepped portion 39e provided on one axial end side of the outer peripheral portion of the small-diameter cylindrical portion 39c, and the concave portion 39f is connected to the tip-side passage 31b.
  • an axial passage 31c is formed through which the oil from the tip side passage 31b flows in the axial direction of the valve body 39.
  • a first valve opening 31d is formed that penetrates the inner peripheral surfaces of the flat portion 39d and the large-diameter cylindrical portion 39b and communicates with the axial passage 31c. .
  • the first valve opening 31d always communicates with an introduction passage 31e provided around an intermediate shaft portion 40b of the spool 40, which will be described later.
  • second valve openings 31f are formed in the small-diameter tubular portion 39c at positions near the stepped portion 39e so as to penetrate the inner and outer peripheral surfaces of the small-diameter tubular portion 39c.
  • the second valve openings 31f are provided at equidistant positions in the valve body 39 in the circumferential direction.
  • One of the four second valve openings 31f faces the second chamber oil passage 34 formed in the block portion 1k.
  • third valve openings 62 are formed through the inner and outer peripheral surfaces of the small-diameter tubular portion 39c at positions near the solenoid portion 29 in the small-diameter tubular portion 39c.
  • the third valve openings 62 are provided at equal intervals in the circumferential direction of the valve body 39 and face an external connection passage 63 provided near the control valve housing port 30b of the control valve housing portion 30 .
  • the external connection path 63 communicates with the outside having a lower pressure than the pressure of the oil discharged from the discharge port 24, such as an oil pan (not shown).
  • An annular groove 39g is formed on the outer peripheral surface of the small-diameter cylindrical portion 39c at a position between the second valve opening 31f and the third valve opening 62, in which the first seal ring 42, which is an O-ring, is fitted. there is The first seal ring 42 liquid-tightly seals between the inner peripheral surface of the control valve accommodating portion 30 and the outer peripheral surface of the small-diameter cylindrical portion 39c.
  • the spool 40 includes a large diameter portion 40a, an intermediate shaft portion 40b integrally formed with the large diameter portion 40a, and an intermediate shaft portion 40b integrally formed with the intermediate shaft portion 40b. It has a medium-diameter portion 40c larger in diameter than the portion 40b and a rear end shaft portion 40d integrally formed with the medium-diameter portion 40c.
  • the spool 40 is arranged such that the large diameter portion 40a is positioned on the connection path inlet portion 31a side as shown in FIG. 4(a).
  • the large diameter portion 40 a slides on the inner peripheral surface of the valve body 39 between the first valve opening 31 d and the retainer 41 .
  • a circular recessed groove portion 40e for accommodating a portion of the second coil spring 64 on the other axial end side is formed in one axial end surface 40n of the large diameter portion 40a.
  • a spring accommodating portion 65 that accommodates the second coil spring 64 is provided between the bottom surface 40 f of the circular groove portion 40 e and the retainer 41 .
  • a bottom surface 40f of the circular groove portion 40e is a surface with which the other axial end portion of the second coil spring 64 is elastically abutted.
  • a drain connection passage 40g is formed in the center of the bottom surface 40f of the circular recessed groove 40e and extends axially from the bottom surface 40f beyond the middle diameter portion 40c to a position just before the center of the rear end shaft portion 40d.
  • a rectangular spool drain hole 40h is formed radially through the end portion of the drain connection passage 40g, that is, the end portion located on the rear end shaft portion 40d side.
  • the spool drain holes 40h are provided at two positions facing each other in the radial direction, and communicate with the outside through holes (not shown) provided in the block portion 1k.
  • the other axial end face of the large-diameter portion 40a is formed into an annular first wall on which the main gallery pressure P introduced via the connecting passage inlet portion 31a, the tip side passage 31b, the axial passage 31c, and the first valve opening 31d acts. 1 pressure receiving surface portion 40i.
  • the intermediate shaft portion 40b is provided integrally with the other end in the axial direction of the large diameter portion 40a.
  • An introduction passage 31e is formed that communicates with the axial passage 31c.
  • the medium diameter portion 40c is provided integrally with the other axial end of the intermediate shaft portion 40b so as to axially face the large diameter portion 40a with the intermediate shaft portion 40b interposed therebetween. side slides against the inner peripheral surface of the small-diameter cylindrical portion 39c.
  • One axial end surface of the intermediate diameter portion 40c is formed in a ring-shaped second pressure receiving area on which the main gallery pressure P introduced through the connecting passage inlet portion 31a, the tip side passage 31b, the axial passage 31c, and the first valve opening 31d acts. It becomes the surface part 40j.
  • the second pressure receiving surface portion 40j is set smaller than the first pressure receiving surface portion 40i.
  • the rear end shaft portion 40d is provided integrally with the other end in the axial direction of the intermediate diameter portion 40c, and the axial end face 40k can come into contact with a rod 50 of the solenoid portion 29, which will be described later.
  • the solenoid portion 29 is provided at the rear end portion of the valve body 39 and includes a case 43 , a closing member 44 , a coil 45 , a bobbin 46 , a fixed iron core 47 , a solenoid portion sleeve 48 , and a movable iron core 49 . and a rod 50.
  • the case 43 is formed in a cylindrical shape and accommodates the coil 45, the bobbin 46, the fixed iron core 47, the solenoid section sleeve 48, the movable iron core 49 and the rod 50 inside.
  • the case 43 is closed by a bottomed cylindrical closing member 44 .
  • the coil 45 is wound around a generally cylindrical bobbin 46 .
  • a substantially cylindrical sleeve for solenoid portion 48 is press-fitted and fixed to the inner peripheral surface of the bobbin 46 on the one axial end 46a side.
  • a movable iron core 49 is provided on the inner peripheral side of the solenoid portion sleeve 48 so as to be movable along the axial direction.
  • a substantially cylindrical stationary core 47 is press-fitted to the inner peripheral surface of the bobbin 46 on the side of the other end 46 b in the axial direction.
  • a rod 50 is provided on the inner peripheral side of the fixed iron core 47 and is movable in the axial direction by operating integrally with the movable iron core 49 as the movable iron core 49 moves.
  • the tip portion 50a of the rod 50 can bias the axial end surface 40k of the rear end shaft portion 40d of the spool 40 accommodated in the valve body 39 as the rod 50 moves toward one end in the axial direction.
  • the space between the fixed iron core 47 and the valve body 39 is liquid-tightly sealed by an annular seal member, for example, a second seal ring 51 which is an O-ring.
  • the space between the fixed core 47 and the bobbin 46 is liquid-tightly sealed by an annular seal member, for example, a third seal ring 52 which is an O-ring.
  • the solenoid portion 29 urges the rear end shaft portion 40d of the spool 40 from the rear end portion of the valve body 39 toward the tip portion in response to an externally applied electric signal. More specifically, when a pulse voltage is applied to the coil 45 from an electronic controller (not shown), the solenoid portion 29 applies a thrust force to the movable iron core 49 according to the voltage value of the pulse voltage. Then, the spool 40 is set by combining the resultant force Fp+Fr of the hydraulic force Fp applied to the spool 40 and the thrust of the movable iron core 49 (the pressing force Fr of the rod 50) transmitted through the rod 50 and the spring force Fs2 of the second coil spring 64. It is designed to move forward and backward based on the relative difference.
  • the electronic controller employs a so-called PWM (Pulse Width Modulation) method, and modulates the pulse width of the pulse voltage applied to the coil 45. That is, by changing the duty ratio D, the pulse voltage applied to the coil 45 The voltage value is controlled steplessly.
  • the electronic controller detects the operating state of the engine from the oil temperature, water temperature, engine speed, load, etc., and energizes the coil 45 especially when the engine is in a low speed state such as when the engine is started. On the other hand, when the engine speed N exceeds a predetermined value, the coil 45 is energized in order to adjust the main gallery pressure P.
  • FIG. 5 is a cross-sectional view of the variable displacement oil pump showing the first state of the solenoid valve 13
  • FIG. 6 is a cross-sectional view of the variable displacement oil pump showing the second state of the solenoid valve 13.
  • 5 and 6 show the axial position of the spool and the flow of oil through the solenoid valve 13, the solenoid valve 13 is arranged on the side of the cam ring 6.
  • the electromagnetic valve 13 has the positional relationship shown in FIGS. 1 to 3 as described above.
  • FIG. 7 is a characteristic diagram showing the correlation between the engine speed N and the main gallery pressure P of the variable displacement oil pump of the first embodiment.
  • the spool 40 is subjected to the hydraulic pressure Fp acting on the spool 40 and the spring force Fs2 of the second coil spring 64. moves axially within the valve body 39 based on . More specifically, when the hydraulic force Fp is greater than the spring force Fs, the spool 40 moves toward the distal end of the valve body 39. On the other hand, when the spring force Fs2 is greater than the hydraulic force Fp, The spool 40 moves toward the rear end of the valve body 39 .
  • the main gallery pressure P is equal to or less than the predetermined value P2.
  • the predetermined value P2 indicates the required engine oil pressure required for lubricating the bearings of the crankshaft when the engine is rotating at high speed.
  • the hydraulic pressure Fp which is proportional to the main gallery pressure P, is equal to or less than a predetermined value, and the hydraulic pressure Fp becomes equal to or less than the spring force Fs2. Therefore, the spool 40 is at a position near the solenoid portion 29 (the position of the spool 40 shown in FIG. 5).
  • the communication between the second valve opening 31f and the external connection passage 63 is blocked by the outer peripheral surface of the intermediate diameter portion 40c, and the first valve opening 31d and the second valve opening 31f communicate through the introduction passage 31e.
  • the oil in the main gallery flows through the first chamber oil passage 32, the connection passage inlet portion 31a, the tip side passage 31b, the axial direction passage 31c, the first valve opening 31d, the introduction passage 31e, It is led to the second chamber 27 via the second valve opening 31 f and the second chamber oil passage 34 .
  • a resultant force PO2+Fs1 of the internal pressure PO2 of the second chamber 27 and the spring force Fs1 of the first coil spring exceeds the internal pressure PO1 of the first chamber .
  • the cam ring 6 is at the most eccentric position (the position of the cam ring 6 shown in FIG. 5), and the amount of eccentricity is maximized.
  • the solenoid valve 13 connects the tip side passage 31b and the second chamber 27 via the axial passage 31c, the first valve opening 31d, the introduction passage 31e, the second valve opening 31f, and the second chamber oil passage 34. It is in the first state. Therefore, as shown in FIG. 7, when the engine speed N is equal to or lower than the predetermined engine speed N2, the main gallery pressure P changes according to the engine speed N at its maximum capacity.
  • the spool 40 slightly moves toward the distal end of the valve body 39 by a predetermined distance (the position of the spool 40 shown in FIG. 6). During this movement, since the duty ratio D is 0%, the rod 50 is at the most retracted position and is separated from the other end of the spool 40 in the axial direction.
  • the second valve opening 31f communicates with the external connection passage 63, and the oil in the second chamber 27 flows through the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, and the third valve opening 62. and discharged to the outside through the external connection path 63 .
  • the electromagnetic valve 13 is in the second state in which the second chamber 27 and the external connection passage 63 are connected via the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, and the third valve opening 62. be.
  • the internal pressure PO1 in the first chamber 26 becomes high, and this internal pressure PO1 urges the cam ring 6 toward the first coil spring 7 against the spring force Fs1 of the first coil spring 7 .
  • the cam ring 6 moves toward the first coil spring 7 and the eccentricity is reduced. Accordingly, the discharge amount of the variable displacement pump decreases, and the main gallery pressure P decreases toward the predetermined value P2. Further, when the main gallery pressure P falls below the predetermined value P2, the hydraulic pressure in the first chamber 26 becomes low again, the cam ring 6 moves to the position on the first chamber 26 side, and the capacity increases.
  • the spool 40 when the main gallery pressure P is lower than the predetermined value P2, the spool 40 is positioned closer to the solenoid portion 29 and allows communication between the main gallery and the second chamber 27, while the main gallery pressure P decreases to the predetermined value P2. , the spool 40 is at a position separated from the solenoid portion 29, and the second chamber 27 and the outside are communicated. As a result, the main gallery pressure P is maintained at the predetermined value P2 and within a range (control oil pressure Pt2) near the predetermined value P2.
  • the spool 40 changes the hydraulic pressure Fp applied to the spool 40 and the force of the rod 50. It moves in the axial direction within the valve body 39 based on the resultant force Fp+Fr with the pressing force Fr and the spring force Fs2 of the second coil spring 64 . More specifically, when the resultant force Fp+Fr is greater than the spring force Fs2, the spool 40 moves toward the distal end of the valve body 39. On the other hand, when the spring force Fs2 is greater than the resultant force Fp+Fr, the spool 40 , moves to the rear end side of the valve body 39 .
  • the pressing force Fr assists the hydraulic force Fp, so the main gallery pressure P moves the spool 40 with a predetermined pressure Px lower than the predetermined value P2.
  • the control oil pressure controlled by the spool 40 also becomes a predetermined control oil pressure Ptx lower than the control oil pressure Pt2.
  • the duty ratio D is the maximum value, that is, 100%, the control oil pressure Pt1 controlled by the spool 40 is maintained at the lowest oil pressure P1 or in a range near P1.
  • the coil 45 When the engine is in a low rotation state such as when the engine is started, that is, when the engine speed N is lower than N1, the coil 45 is de-energized and the duty ratio D is 0%.
  • variable displacement oil pump is linearly formed at a position adjacent to the first chamber 26 and the second chamber 27 when viewed along the rotation axis O1 of the pump structure.
  • An electromagnetic valve 13 forming a part of the connection passage 31 is inserted into the control valve accommodating portion 30 . ing.
  • the solenoid valve 13 itself is directly connected to the first chamber oil passage 32 and the second chamber oil passage 34, which are the only lateral holes, and the oil passages are provided in the valve portion 28 of the solenoid valve 13 and its outer peripheral portion. is sealed by a sealed ring 42. Therefore, since a relatively long seal by the mating surfaces between the housing body 1 and the cover member 2 is not required, an oil passage for guiding oil from the main gallery to the first chamber 26 and the second chamber 27 can be easily formed. can do. Also, deterioration of the sealing performance between the solenoid valve 13 and the first and second chambers 26 and 27 can be suppressed. In addition, since the oil passage is shortened, the variable displacement oil pump can be downsized and the manufacturing cost of the pump can be reduced.
  • the solenoid valve 13 is arranged at a position close to the second chamber 27, and the oil from the main gallery flows through the straight connecting passage 31 and the second chamber. Since the oil is guided to the second chamber 27 via a relatively short oil passage including the oil passage 34, the responsiveness of hydraulic pressure to the second chamber 27 can be improved. When discharging oil from the second chamber 27 to the outside, the oil can be discharged through the second chamber oil passage 34 and the solenoid valve 13, so even in such a case, the response of the hydraulic pressure can be improved. can be improved.
  • the solenoid valve 13 is switched between the first state in which the distal end side passage 31b and the second chamber 27 are connected and the second state in which the second chamber 27 and the external connection path 63 are connected. configured to be switchable.
  • variable displacement oil pump can be controlled to a predetermined oil pressure.
  • a solenoid valve used in a valve timing control device for an internal combustion engine generally has a valve body, a spool, a valve sleeve, and a coil spring.
  • the disk-shaped retainer 41 which is a smaller component, is used in place of the cylindrical valve sleeve, which simplifies the structure of the solenoid valve 13 and reduces the manufacturing cost of the solenoid valve 13. can be reduced.
  • the oil from the main gallery is introduced into the tip side passage 31b and flows radially through the valve body 39, then axially through the axial passage 31c, and then flows through the first valve. It is introduced into the introduction passage 31e through the opening 31d.
  • the spool 40 is stably operated by bypassing the hydraulic pressure from the radially outer side of the valve body 39 instead of directly acting in the axial direction of the spool 40, and the solenoid valve 13 is operated. You can have more control.
  • the solenoid valve 13 is attached to the rear end of the valve body 39 in response to an electric signal externally applied to the rear end of the spool 40 from the rear end of the valve body 39 toward the front end thereof. It has a solenoid portion 29 that biases the shaft portion 40d.
  • the spool 40 includes a spool drain hole 40h that opens in the rear end shaft portion 40d in the radial direction, and a drain connection passage that connects the spool drain hole 40h and the inside of the second coil spring 64. 40 g.
  • the air expanded in the spring accommodating portion 65 during operation of the internal combustion engine is discharged to the outside through the drain connection passage 40g and the spool drain hole 40h.
  • expansion and contraction of the second coil spring 64 are not suppressed by the expanded air, and the electromagnetic valve 13 is efficiently operated only by the hydraulic force Fp, the pressing force Fr of the rod 50, and the spring force Fs2 of the second coil spring 64. can be activated.
  • the volume of the second chamber 27 increases when the cam ring 6 moves in the direction in which the flow rate of the oil discharged from the discharge port 24 increases.
  • the spring force of the first coil spring 7 acts in the same direction as the hydraulic pressure in the second chamber 27 biases the cam ring 6 . Therefore, by increasing the contribution of the hydraulic pressure to the operation of the cam ring 6, the size of the first coil spring 7 can be reduced and the variable displacement oil pump can be simplified.
  • the minimum discharge pressure of the variable displacement oil pump is set low, and the fuel of the internal combustion engine is reduced. Consumption rate can be improved.
  • the solenoid valve 13 has a tip portion of the valve portion 28 that is located between the first chamber 26 and the second chamber 27 when viewed in the direction along the rotation axis O1 of the pump structure.
  • a solenoid portion 29 is provided outside the second chamber 27 so as to overlap a part of the cam ring 6 provided therebetween and on the opposite side of the tip portion of the valve portion 28 .
  • the distance between the solenoid valve 13 and the second chamber 27 is shorter than when the solenoid valve 13 is arranged on the side of the cam ring 6 . Therefore, when supplying oil to the second chamber 27 and when discharging oil from the second chamber 27, the responsiveness of the hydraulic pressure can be improved.
  • connection path 31 is arranged between the pivot pin 22 of the cam ring 6 and the drive shaft 3 of the pump assembly when viewed in the direction along the rotation axis O1 of the pump assembly. It is
  • connection path 31 and the first and second chambers 26 and 27 are arranged in the first and second chambers. They are connected over a short distance via paths 32 and 34, so that the supply of oil to the first chamber 26 and the supply and discharge of oil to and from the second chamber 27 can be performed quickly.
  • the first chamber oil passage 32 extends radially from the first chamber 26 toward the pivot pin 22 of the cam ring 6 when viewed in the direction along the rotation axis O1 of the pump assembly. , that is, it opens on the swing fulcrum side, and when viewed along the rotation axis O1 of the pump structure, the second chamber oil passage 34 extends radially from the second chamber 27 at the swing fulcrum of the cam ring 6 . open on the side.
  • the connection path 31 is formed at a position that connects the first chamber 26 and the second chamber 27 at the shortest distance when viewed from the direction along the rotation axis O1 of the pump assembly.
  • connection path 31 and the first and second chambers 26, 27 are connected at the shortest distance via the first and second chamber oil paths 32, 34, so that oil is supplied to the first chamber 26 and the second chamber 26 is supplied. Oil can be supplied and discharged from the chamber 27 more quickly.
  • an introduction port 33 through which oil from the main gallery is introduced is provided between the first chamber 26 and the connection path 31 .
  • the distance between the introduction port 33 and the first chamber 26 can be shortened compared to the case where the introduction port 33 is provided in the connection path 31, and the oil can be efficiently supplied to the first chamber 26. .
  • FIG. 8 is a cross-sectional view of the solenoid valve 13 of the second embodiment.
  • the solenoid valve 13 has the same configuration as a solenoid valve of the type generally used in a valve timing control device for an internal combustion engine, and the valve portion 28 is a valve It has a part sleeve 53 .
  • the valve portion 28 includes a cylindrical valve body 39, a cylindrical valve portion sleeve 53 fixed to the inner periphery of the distal end portion of the valve body 39, and a valve portion disposed in the valve body 39.
  • a spool 40 slidably provided on the inner peripheral surface of the body 39 and the outer peripheral surface of the valve sleeve 53, and a second coil spring 64 provided between the spool 40 and the valve sleeve 53. , is equipped with
  • the valve body 39 has a hole portion 39j, four second chamber openings 39k, an external connection path 63, and four air drain holes 39m.
  • the hole 39j is open at the tip 39h and extends from the tip 39h toward the rear end 39i.
  • the hole 39j opens to a connection path entrance (not shown) provided in the housing body.
  • the inner peripheral surface of the hole 39j is formed with an annular recess 39f into which the outer peripheral portion of the retaining ring 54 used for fixing the valve sleeve 53 is fitted.
  • the second chamber openings 39k are provided at equal intervals in the circumferential direction on the rear end portion 39i side of the valve body 39, and penetrate the valve body 39 in the radial direction.
  • the second chamber opening 39k communicates with a second chamber oil passage (not shown) connected to the second chamber of the variable displacement oil pump.
  • the external connection path 63 radially penetrates the valve body 39 between the second chamber opening 39k and the rear end portion 39i.
  • the external connection path 63 communicates with the outside having a lower pressure than the pressure of the oil discharged from the discharge port 24, such as an oil pan.
  • the air drain holes 39m are provided at circumferentially equal intervals in the vicinity of the tip portion 39h, and penetrate the valve body 39 in the radial direction.
  • the air drain hole 39m communicates between the spring accommodating portion 65 that accommodates the second coil spring 64 and the outside.
  • the valve portion sleeve 53 has a cylindrical body portion 53a and an annular flange portion 53b protruding radially outward from the outer circumference of one axial end portion of the body portion 53a.
  • the main body portion 53a includes a sleeve axial opening 53c facing the hole portion 39j, and four sleeve axial openings 53c provided on the rear end portion 39i side of the sleeve axial opening 53c and penetrating in the radial direction at equally spaced positions in the circumferential direction. It has an opening 53d. Oil from the inside of the body portion 53a is led to the sleeve radial opening 53d.
  • the flange portion 53b is fixed to the stepped portion 39e by being pressed toward the rear end portion 39i by the retaining ring 54 while being in contact with the stepped portion 39e provided in the hole portion 39j of the valve body 39.
  • the main body portion 53a extends along the axis of the valve body 39 from the joint portion with the flange portion 53b to the axial position corresponding to the second chamber opening 39k. extending along the direction.
  • a surface 53e of the flange portion 53b adjacent to the body portion 53a is a surface with which one end portion of the second coil spring 64 is elastically abutted.
  • the spool 40 has a large diameter portion 40a, an intermediate shaft portion 40b, a medium diameter portion 40c, and a rear end shaft portion 40d. As shown in FIG. 8, inside the large-diameter portion 40a, the intermediate shaft portion 40b and the medium-diameter portion 40c, a central hole portion 39n extending from one axial end of the large-diameter portion 40a to the other axial end of the medium-diameter portion 40c is provided. is formed.
  • the hole diameter of the central hole portion 39n is set to a size corresponding to the outer diameter of the valve sleeve 53, so that the inner peripheral surface of the central hole portion 39n is aligned with the outer peripheral surface of the valve sleeve 53. It is slidable against.
  • the large diameter portion 40a is provided between the sleeve axial opening 53c and the sleeve radial opening 53d so as to extend from the front end portion 39h side of the valve body 39 toward the rear end portion 39i side.
  • the intermediate shaft portion 40b has a spool radial opening 40m provided at a position axially adjacent to the large diameter portion 40a.
  • the spool radial opening 40m opens into the central hole portion 39n of the intermediate shaft portion 40b and communicates with the sleeve radial opening 53d of the valve portion sleeve 53 . Oil that has passed through the body portion 53a and the sleeve radial opening 53d is led to the spool radial opening 40m.
  • the oil guided to the spool radial opening 40m is guided to the second chamber (not shown) through the introduction passage 31e, the second chamber opening 39k and the second chamber oil passage (not shown).
  • the medium diameter portion 40c is arranged between the external connection path 63 and the second chamber opening 39k when the second coil spring 64 is expanded as shown in FIG.
  • the second coil spring 64 urges the spool 40 toward the rear end portion 39i of the valve body 39 so that the one axial end surface 40n of the large diameter portion 40a and the surface 53e of the flange portion 53b of the valve portion sleeve 53 are connected to each other. is placed in a compressed state between
  • the solenoid valve 13 rotates the spool 40 from the rear end portion 39i of the valve body 39 toward the front end portion 39h in response to an electric signal externally applied to the rear end portion 39i of the valve body 39 .
  • the hydraulic pressure of the variable displacement oil pump is nullified. It can be controlled in stages.
  • FIG. 9 is a front view of the variable displacement oil pump of the third embodiment showing the non-operating state of the solenoid valve 13
  • FIG. 10 is a variable displacement oil pump of the third embodiment showing the operating state of the solenoid valve 13.
  • 1 is a front view of a type oil pump.
  • FIG. In FIGS. 9 and 10, the solenoid valve 13 is shown to be arranged radially outward of the cam ring 6 in order to facilitate understanding of the oil flow.
  • the valve portion 28 of the electromagnetic valve 13 is arranged so as to face a partial region of the cam ring 6 when viewed in the direction along O1.
  • the cam ring 6 does not swing around the pivot pin but moves linearly, so that the pump assembly is aligned with the center of the inner circumference of the cam ring 6 and the drive shaft 3 of the pump assembly. It is arranged so that the rotation axis O1 is eccentric.
  • the cam ring 6 includes a first projecting portion 55 projecting radially outward from the outer peripheral portion of the cam ring 6 and a second projecting portion 55 provided radially opposite to the first projecting portion 55 and projecting from the outer peripheral portion of the cam ring 6 . and a protrusion 56 .
  • the first protrusion 55 is slidably arranged between two side walls 57a, 57a of a first recess 57 provided in the inner peripheral wall of the pump housing chamber 1a.
  • the sliding direction of the first projecting portion 55 is the direction along the longitudinal direction of the electromagnetic valve 13 .
  • a first chamber 26 into which oil from the main gallery is introduced is formed between the tip of the first protrusion 55 and the bottom of the first recess 57 .
  • the second projecting portion 56 is slidably disposed between two side walls 58a, 58a of a second recessed portion 58 provided in the inner peripheral wall of the pump housing chamber 1a.
  • the sliding direction of the second projecting portion 56 is along the longitudinal direction of the electromagnetic valve 13 as with the first projecting portion 55 .
  • a second chamber 27 into which oil from the main gallery can be introduced via the solenoid valve 13 .
  • a third coil spring 59 that is compressed by a predetermined set load W3 is provided between the second projection 56 and the bottom of the second recess 58 .
  • the third coil spring 59 moves the cam ring 6 linearly toward the first chamber 26 against the hydraulic pressure in the first chamber 26 by the combined force of the biasing force of the third coil spring 59 and the hydraulic pressure in the second chamber 27 .
  • the oil in the main gallery flows through the first chamber oil passage 32, the connecting passage inlet 31a, the tip side passage 31b, the axial passage 31c, and the first valve.
  • the oil is led to the introduction passage 31e through the opening 31d, and then to the second chamber 27 through the second valve opening 31f and the second chamber oil passage 34 from the introduction passage 31e.
  • the oil in the main gallery flows through the first chamber oil passage 32, the connection passage inlet portion 31a, the tip side passage 31b, the axial direction passage 31c and the first oil passage. It is led to the introduction passage 31e through the valve opening 31d.
  • the oil in the second chamber 27 is discharged to the outside through the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, the third valve opening 62 and the external connection passage 63.
  • variable displacement oil pump having such a configuration, an oil passage for guiding oil from the main gallery to the first chamber 26 and the second chamber 27 can be easily formed as in the first embodiment. , it is possible to suppress the deterioration of the sealing performance. In addition, the variable displacement oil pump can be made smaller and manufacturing costs associated with the pump can be reduced.
  • FIG. 11 is a front view of the variable displacement oil pump of the fourth embodiment showing the non-operating state of the solenoid valve 13
  • FIG. 12 shows the operating state of the solenoid valve 13 of the variable displacement oil pump of the fourth embodiment.
  • 1 is a front view of a type oil pump.
  • FIG. In FIGS. 11 and 12, the solenoid valve 13 is shown to be disposed radially outward of the cam ring 6 in order to facilitate understanding of the oil flow.
  • the valve portion 28 of the electromagnetic valve 13 is arranged so as to face a partial region of the cam ring 6 when viewed in the direction along O1.
  • the second chamber 27 is arranged above the cam ring reference line M and adjacent to the first chamber 26 in the circumferential direction. are arranged to More specifically, as shown in FIGS. 11 and 12, only the first and second seal members 16, 18 are present as seal members, and both the first and second seal members 16, 18 are aligned with the cam ring reference line M is placed above.
  • a first chamber 26 is formed between the pivot pin 22 and the first seal member 16
  • a second chamber 27 is formed between the first seal member 16 and the second seal member 18 .
  • the second chamber 27 is configured such that its volume increases when the cam ring 6 moves in a direction in which the flow rate of oil discharged from the discharge port 24 decreases.
  • the spool 40 of the solenoid valve 13 has an annular rear end shaft enlarged diameter portion 40o provided at the other axial end of the rear end shaft portion 40d of the spool 40. As shown in FIG.
  • the rear end shaft portion enlarged diameter portion 40o is provided at a position facing the intermediate diameter portion 40c and the spool 40 in the axial direction, and has the same outer diameter as the outer diameter of the intermediate diameter portion 40c.
  • the oil in the main gallery flows through the first chamber oil passage 32, the connecting passage inlet 31a, the tip side passage 31b, the axial passage 31c, and the first valve. It is led to the introduction passage 31e through the opening 31d.
  • the oil in the second chamber 27 is discharged to the outside through the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, the third valve opening 62 and the external connection passage 63.
  • the second chamber 27 is arranged above the cam ring reference line M and adjacent to the first chamber 26 in the circumferential direction.
  • variable displacement oil pump having such a configuration, an oil passage for guiding oil from the main gallery to the first chamber 26 and the second chamber 27 can be easily formed as in the first embodiment. , it is possible to suppress the deterioration of the sealing performance. In addition, the variable displacement oil pump can be made smaller and manufacturing costs associated with the pump can be reduced.
  • variable displacement oil pump has the first chamber 26 and the second chamber 27 .
  • the solenoid valve by arranging the solenoid valve near the first chamber, the solenoid valve seals the oil passage in the first chamber, and there is no need to bypass the oil passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

This variable capacity-type oil pump comprises: a connection path (31) linearly formed at a position adjacent to a first chamber (26) and a second chamber (27) when viewed in a direction along the rotation axis (O1) of a pump structure; a first chamber oil path (32) which branches from the connection path (31) and is connected to the first chamber (26); and a second chamber oil path (34) which branches from the connection path (31) and is connected to the second chamber (27). In addition, a valve section (28) of a solenoid valve (13) is inserted into a control valve accommodation section (30) provided in a block section (1k), the valve section including a part of the connection path (31).

Description

可変容量形オイルポンプVariable displacement oil pump
 本発明は、可変容量形オイルポンプに関する。 The present invention relates to a variable displacement oil pump.
 可変容量形オイルポンプとして、例えば以下の特許文献1に記載された可変容量形オイルポンプが知られている。 As a variable displacement oil pump, for example, a variable displacement oil pump described in Patent Document 1 below is known.
 特許文献1に記載の可変容量形オイルポンプは、メインギャラリにオイルを吐出する吐出部と、メインギャラリからのオイルが導入され、吐出部からのオイルが減少する方向に調整部材が動いたときに容積が増加する第1室と、メインギャラリからのオイルが制御弁を介して導入され、吐出部から吐出されるオイルの圧力が増加する方向に調整部材が動いたときに容積が増加する第2室と、を備えている。 The variable displacement oil pump described in Patent Document 1 has a discharge section that discharges oil to a main gallery, and when the oil from the main gallery is introduced and the adjustment member moves in the direction in which the oil from the discharge section decreases, A first chamber whose volume increases, and a second chamber whose volume increases when oil from the main gallery is introduced through the control valve and the adjustment member moves in the direction in which the pressure of the oil discharged from the discharge port increases. room and,
国際公開第2020/071061号WO2020/071061
 特許文献1に記載の可変容量形オイルポンプでは、メインギャラリからのオイルを第1室や第2室に導くための油路がハウジング内部に複雑に形成されていた。 In the variable displacement oil pump described in Patent Document 1, oil passages for guiding oil from the main gallery to the first and second chambers are formed intricately inside the housing.
 本発明は、従来の実情に鑑みて案出されたもので、メインギャラリからのオイルを第1室や第2室に導くための油路を容易に形成可能な可変容量形オイルポンプを提供することを目的としている。 SUMMARY OF THE INVENTION The present invention has been devised in view of the conventional circumstances, and provides a variable displacement oil pump capable of easily forming an oil passage for guiding oil from a main gallery to a first chamber or a second chamber. It is intended to
 本発明では、可変容量形オイルポンプが、ポンプ構成体の回転軸線に沿った方向から見たときに第1室および第2室と隣接した位置に直線状に形成された接続路と、該接続路の長手方向と交差する方向に分岐し、第1室と繋がった第1室油路と、制御弁収容部から接続路の長手方向と交差する方向に分岐し、第2室に繋がった第2室油路と、を有し、制御弁が制御弁収容部に挿入されている。 In the present invention, the variable displacement oil pump includes a connecting passage formed linearly at a position adjacent to the first chamber and the second chamber when viewed from the direction along the rotation axis of the pump structure, and the connecting passage. A first chamber oil passage branched in a direction intersecting the longitudinal direction of the passage and connected to the first chamber, and a second chamber oil passage branched in a direction intersecting the longitudinal direction of the connection passage from the control valve accommodating portion and connected to the second chamber. and a two-chamber oil passage, and a control valve is inserted into the control valve housing.
 本発明によれば、メインギャラリからのオイルを第1室や第2室に導くための油路を容易に形成することができる。 According to the present invention, it is possible to easily form oil passages for guiding oil from the main gallery to the first and second chambers.
第1の実施形態の可変容量形オイルポンプの分解斜視図である。1 is an exploded perspective view of a variable displacement oil pump according to a first embodiment; FIG. 第1の実施形態の可変容量形オイルポンプの正面図である。1 is a front view of a variable displacement oil pump according to a first embodiment; FIG. カムリングおよび電磁弁等を収容した状態のハウジング本体の斜視図である。FIG. 3 is a perspective view of a housing main body in which a cam ring, an electromagnetic valve, etc. are accommodated; (a)は、制御弁収容部に収容された電磁弁の断面図、(b)は、(a)の線A-Aに沿って切断したバルブボディの断面図である。(a) is a cross-sectional view of an electromagnetic valve housed in a control valve housing, and (b) is a cross-sectional view of a valve body cut along line AA in (a). 電磁弁の第1状態を示す可変容量形オイルポンプの断面面である。It is a cross-sectional view of the variable displacement oil pump showing the first state of the solenoid valve. 電磁弁の第2状態を示す可変容量形オイルポンプの断面図である。FIG. 4 is a cross-sectional view of the variable displacement oil pump showing a second state of the solenoid valve; 第1の実施形態の可変容量形オイルポンプの機関回転数とメインギャラリ圧との相関関係を示す特性図である。FIG. 4 is a characteristic diagram showing the correlation between the engine speed and the main gallery pressure of the variable displacement oil pump of the first embodiment; 第2の実施形態の電磁弁の断面図である。It is a sectional view of the solenoid valve of a 2nd embodiment. 電磁弁の非作動状態を示す第3の実施形態の可変容量形オイルポンプの正面図である。FIG. 11 is a front view of the variable displacement oil pump of the third embodiment showing the non-operating state of the solenoid valve; 電磁弁の作動状態を示す第3の実施形態の可変容量形オイルポンプの正面図である。FIG. 11 is a front view of the variable displacement oil pump of the third embodiment, showing the operating state of the solenoid valve; 電磁弁の非作動状態を示す第4の実施形態の可変容量形オイルポンプの正面図である。FIG. 11 is a front view of the variable displacement oil pump of the fourth embodiment showing the non-operating state of the solenoid valve; 電磁弁の作動状態を示す第4の実施形態の可変容量形オイルポンプの正面図である。FIG. 11 is a front view of a variable displacement oil pump according to a fourth embodiment, showing operating states of solenoid valves;
 以下、本発明の可変容量形オイルポンプの一実施形態を図面に基づき説明する。 An embodiment of the variable displacement oil pump of the present invention will be described below with reference to the drawings.
 [第1の実施形態]
 (可変容量形オイルポンプの構成)
 図1は、図示せぬ内燃機関のシリンダブロック等に設けられる第1の実施形態の可変容量形オイルポンプの分解斜視図である。図2は、フロントカバーを取り外した状態の第1の実施形態の可変容量形オイルポンプの正面図である。図3は、カムリング6および電磁弁13等を収容した状態のハウジング本体1の斜視図である。なお、図3では、接続路31等の流路を明確にするためにカムリング6内の構成要素を省略し、ハウジング本体1を概略的な仮想線で示している。
[First embodiment]
(Configuration of variable displacement oil pump)
FIG. 1 is an exploded perspective view of a variable displacement oil pump according to a first embodiment provided in a cylinder block or the like of an internal combustion engine (not shown). FIG. 2 is a front view of the variable displacement oil pump of the first embodiment with the front cover removed. FIG. 3 is a perspective view of the housing body 1 in which the cam ring 6, the solenoid valve 13 and the like are accommodated. In FIG. 3, the components inside the cam ring 6 are omitted to clarify the flow paths such as the connection path 31, and the housing body 1 is shown by schematic phantom lines.
 可変容量形オイルポンプは、ハウジング本体1とカバー部材2とからなるハウジングと、駆動軸3と、ロータ4と、複数(本実施形態では7つ)のベーン5と、調整部材としてのカムリング6と、第1コイルスプリング7と、一対のリング部材8と、第1~第3シール手段9~11と、5つの固定手段、例えばねじ部材12と、電磁弁13と、リリーフ弁14と、を備えている。 The variable displacement oil pump includes a housing consisting of a housing body 1 and a cover member 2, a drive shaft 3, a rotor 4, a plurality of (seven in this embodiment) vanes 5, and a cam ring 6 as an adjusting member. , a first coil spring 7, a pair of ring members 8, first to third sealing means 9 to 11, and five fixing means such as a screw member 12, an electromagnetic valve 13, and a relief valve 14. ing.
 ハウジング本体1は、金属材料、例えばアルミニウム合金材料によって一体に形成されており、一端側が開口し、かつ内部に概ね円柱状に窪んだポンプ収容室1aを有するように有底筒状に形成されている。図1に示すように、ハウジング本体1は、ポンプ収容室1aの底面1bの中央位置に、駆動軸3の一端を回転可能に支持する第1軸受孔1cを有している。ハウジング本体1には、ポンプ収容室1aの開口の外周側に、環状に連続した平坦な取付面1dが形成されている。ハウジング本体1の取付面1dには、各ねじ部材12がねじ留めされる5つのねじ穴1eがそれぞれ形成されている。 The housing body 1 is integrally formed of a metal material, such as an aluminum alloy material, and is formed into a cylindrical shape with a bottom so that one end side is open and a pump accommodating chamber 1a recessed in a substantially cylindrical shape is provided therein. there is As shown in FIG. 1, the housing body 1 has a first bearing hole 1c that rotatably supports one end of the drive shaft 3 at the center of the bottom surface 1b of the pump housing chamber 1a. The housing body 1 is formed with an annularly continuous flat mounting surface 1d on the outer peripheral side of the opening of the pump accommodating chamber 1a. The mounting surface 1d of the housing body 1 is formed with five screw holes 1e into which the respective screw members 12 are screwed.
 カバー部材2は、ハウジング本体1と同様に金属材料、例えばアルミニウム合金材料によって形成されており、ハウジング本体1の開口を閉塞するように用いられる。カバー部材2は、平板状をなしており、ハウジング本体1の外形に対応した外形を有している。カバー部材2には、ハウジング本体1の第1軸受孔1cに対応した位置に、駆動軸3の他端を回転可能に支持する第2軸受孔2aが形成されている。さらに、カバー部材2の外周部には、ハウジング本体1の5つのねじ穴1eに対応した位置に、各ねじ部材12が挿入される5つの固定手段貫通孔2b(図1には4つの固定手段貫通孔2bが示されている)がそれぞれ形成されている。 Like the housing body 1, the cover member 2 is made of a metal material, such as an aluminum alloy material, and is used to close the opening of the housing body 1. The cover member 2 has a flat plate shape and has an outer shape corresponding to the outer shape of the housing body 1 . A second bearing hole 2 a is formed in the cover member 2 at a position corresponding to the first bearing hole 1 c of the housing body 1 to rotatably support the other end of the drive shaft 3 . Further, on the outer peripheral portion of the cover member 2, at positions corresponding to the five screw holes 1e of the housing body 1, five fixing means through-holes 2b (four fixing means in FIG. through holes 2b) are formed respectively.
 上記ハウジング本体1およびカバー部材2によって、ポンプ収容室1aを仕切るハウジングが構成されている。 The housing main body 1 and the cover member 2 constitute a housing that partitions the pump accommodating chamber 1a.
 駆動軸3は、ポンプ収容室1aの中心部を貫通して上記ハウジングに回転可能に支持されており、図示せぬクランクシャフトにより回転駆動される。駆動軸3は、クランクシャフトから伝達される回転力によって、ロータ4を図2中の反時計回りの方向へ回転させる。 The drive shaft 3 passes through the center of the pump housing chamber 1a and is rotatably supported by the housing, and is rotationally driven by a crankshaft (not shown). The drive shaft 3 rotates the rotor 4 counterclockwise in FIG. 2 by a rotational force transmitted from the crankshaft.
 ロータ4は、円筒状をなしており、ポンプ収容室1a内に回転可能に収容される。ロータ4の中心部は、駆動軸3に結合される。図1および図2に示すようにロータ4には、該ロータ4の内部中心側から径方向外側へ放射状に延びる7つのスリット4aが開口形成されている。また、図1および図2に示すように、各スリット4aの内側基端部には、後述の吐出ポート24に吐出された吐出油を導入する断面円形の背圧室4bがそれぞれ形成されている。図2に示すように、背圧室4bは、ロータ4の両側面に形成された円形凹部4cに開口している。後述する第2室27からのオイルが、吐出ポート24と、ポンプ収容室1aの底面1bに形成された図示せぬ油導入溝と、円形凹部4cとを介して背圧室4bに流入する。これにより、ロータ4のスリット4a内に出没可能に収容された各ベーン5が、ロータ4の回転に伴う遠心力と背圧室4bの油圧とによって外方へ押し出される。 The rotor 4 has a cylindrical shape and is rotatably accommodated in the pump accommodation chamber 1a. A central portion of the rotor 4 is coupled to the drive shaft 3 . As shown in FIGS. 1 and 2, the rotor 4 is formed with seven slits 4a radially extending from the inner center side of the rotor 4 to the outside in the radial direction. As shown in FIGS. 1 and 2, back pressure chambers 4b each having a circular cross section are formed at the inner base ends of the respective slits 4a to introduce the discharge oil discharged to the discharge ports 24, which will be described later. . As shown in FIG. 2 , the back pressure chamber 4 b opens into circular recesses 4 c formed on both side surfaces of the rotor 4 . Oil from a second chamber 27, which will be described later, flows into the back pressure chamber 4b via the discharge port 24, an oil introduction groove (not shown) formed in the bottom surface 1b of the pump housing chamber 1a, and the circular recess 4c. As a result, the vanes 5 retractably accommodated in the slits 4a of the rotor 4 are pushed outward by the centrifugal force accompanying the rotation of the rotor 4 and the hydraulic pressure in the back pressure chamber 4b.
 ベーン5は、金属により薄い板状に形成されており、ロータ4のスリット4aに出没可能に収容される。ベーン5がスリット4a内に収容された状態では、ベーン5とスリット4aとの間に多少の隙間が形成される。ベーン5は、ロータ4の回転時において、先端面がカムリング6の内周面に摺動可能に接触するとともに、基端部の内端面がリング部材8の外周面に摺動可能に接触する。これにより、機関回転数が低く、上記遠心力や背圧室4bの油圧が小さいときでも、ベーン5がカムリング6の内周面に摺動可能に接触して各ポンプ室15が液密に画定されるようになっている。 The vanes 5 are made of metal in the form of thin plates, and are accommodated in the slits 4a of the rotor 4 so as to be retractable. A small gap is formed between the vane 5 and the slit 4a when the vane 5 is accommodated in the slit 4a. When the rotor 4 rotates, the vanes 5 slidably contact the inner peripheral surface of the cam ring 6 at the tip end surfaces and slidably contact the outer peripheral surface of the ring member 8 at the inner end surfaces of the base ends. As a result, even when the engine speed is low and the centrifugal force and the hydraulic pressure in the back pressure chamber 4b are small, the vanes 5 slidably come into contact with the inner peripheral surface of the cam ring 6, and each pump chamber 15 is liquid-tightly defined. It is designed to be
 なお、駆動軸3、ロータ4および各ベーン5がポンプ構成体を構成している。このポンプ構成体を取り囲むカムリング6は、焼結金属によって円筒状に一体に形成されている。カムリング6の外周に位置する第1コイルスプリング7は、ハウジング本体1内に収容されており、ロータ4の回転中心に対するカムリング6の偏心量が増大する方向へカムリング6を常時付勢する。また、ロータ4に設けられた円形凹部4c内には、リング部材8が摺動可能に配置される。 The drive shaft 3, rotor 4, and vanes 5 constitute a pump structure. A cam ring 6 surrounding this pump structure is integrally formed in a cylindrical shape from sintered metal. A first coil spring 7 positioned on the outer periphery of the cam ring 6 is housed in the housing body 1 and always biases the cam ring 6 in a direction to increase the eccentricity of the cam ring 6 with respect to the rotation center of the rotor 4 . A ring member 8 is slidably arranged in a circular concave portion 4c provided in the rotor 4. As shown in FIG.
 第1~第3シール手段9~11は、第1~第3シール接触面1g,1h,1iに摺動可能にカムリング6に装着され、該カムリング6とハウジング本体1との間を仕切る。これにより、カムリング6の外周面とハウジング本体1の内周面との間に、制御油圧室である後述する第1、第2室26,27が液密に画定される。第1シール手段9は、第1シール部材16と、該第1シール部材16をハウジング本体1の内周面に向けて付勢する第1弾性部材17と、を備えている。また、第2シール手段10は、第2シール部材18と、該第2シール部材18をハウジング本体1の内周面に向けて付勢する第2弾性部材19と、を備えている。また、第3シール手段11は、第3シール部材20と、該第3シール部材20をハウジング本体1の内周面に向けて付勢する第3弾性部材21と、を備えている。 The first to third seal means 9 to 11 are mounted on the cam ring 6 so as to be slidable on the first to third seal contact surfaces 1g, 1h and 1i, and partition the cam ring 6 and the housing body 1. As a result, first and second chambers 26 and 27, which are control hydraulic chambers and will be described later, are fluid-tightly defined between the outer peripheral surface of the cam ring 6 and the inner peripheral surface of the housing body 1 . The first sealing means 9 includes a first sealing member 16 and a first elastic member 17 that biases the first sealing member 16 toward the inner peripheral surface of the housing body 1 . The second seal means 10 also includes a second seal member 18 and a second elastic member 19 that biases the second seal member 18 toward the inner peripheral surface of the housing body 1 . Also, the third sealing means 11 includes a third sealing member 20 and a third elastic member 21 that biases the third sealing member 20 toward the inner peripheral surface of the housing body 1 .
 図1に示すように、ポンプ収容室1aの内周壁の所定位置には、円柱状のピボットピン22を介してカムリング6を揺動可能に支持する円形の支持穴1fが形成されている。ここで、以下の説明の便宜上、図2において、第1軸受孔1cの中心(ポンプ構成体の回転軸線O1)と、支持穴1fの中心(ピボットピン22の中心O2)とを通る直線を「カムリング基準線M」と定義する。 As shown in FIG. 1, a circular support hole 1f for rockably supporting the cam ring 6 via a cylindrical pivot pin 22 is formed at a predetermined position on the inner peripheral wall of the pump housing chamber 1a. Here, for the convenience of the following explanation, in FIG. cam ring reference line M”.
 図2に示すように、ポンプ収容室1aの内周壁には、カムリング基準線Mよりも一方側(図2の右側)の領域において、第1シール接触面1gが形成されている。この第1シール接触面1gに、カムリング6の外周部に設けられた第1シール部材16が摺動可能に接触する。第1シール接触面1gは、図2に示すように、ピボットピン22の中心O2から所定の半径R1によって構成された円弧面となっている。半径R1は、カムリング6の偏心揺動範囲において第1シール部材16が常時摺動可能に接触することができる周方向長さに設定されている。 As shown in FIG. 2, the inner peripheral wall of the pump accommodating chamber 1a is formed with a first seal contact surface 1g in a region on one side (right side in FIG. 2) of the cam ring reference line M. A first seal member 16 provided on the outer periphery of the cam ring 6 is slidably brought into contact with the first seal contact surface 1g. As shown in FIG. 2, the first seal contact surface 1g is an arcuate surface having a predetermined radius R1 from the center O2 of the pivot pin 22. As shown in FIG. The radius R1 is set to a circumferential length that allows the first seal member 16 to always slidably contact within the eccentric swing range of the cam ring 6 .
 同様に、図2に示すように、ポンプ収容室1aの内周壁には、カムリング基準線Mよりも他方側(図2の左側)の領域において、第2シール接触面1hが形成されている。この第2シール接触面1hに、カムリング6の外周部に設けられた第2シール部材18が摺動可能に接触する。第2シール接触面1hは、図2に示すように、ピボットピン22の中心O2から半径R1よりも小さい所定の半径R2によって構成された円弧面となっている。半径R2は、カムリング6の偏心揺動範囲において第2シール部材18が常時摺動可能に接触することができる周方向長さに設定されている。 Similarly, as shown in FIG. 2, a second seal contact surface 1h is formed on the inner peripheral wall of the pump housing chamber 1a in a region on the other side (left side in FIG. 2) of the cam ring reference line M. A second seal member 18 provided on the outer periphery of the cam ring 6 is slidably brought into contact with the second seal contact surface 1h. As shown in FIG. 2, the second seal contact surface 1h is an arcuate surface formed from the center O2 of the pivot pin 22 with a predetermined radius R2 smaller than the radius R1. The radius R2 is set to a circumferential length that allows the second seal member 18 to always slidably contact within the eccentric swing range of the cam ring 6 .
 さらに、図2に示すように、ポンプ収容室1aの内周壁には、カムリング基準線Mよりも左側の領域において第2シール接触面1hよりもピボットピン22から遠い位置に、第3シール接触面1iが形成されている。この第3シール接触面1iに、カムリング6の外周部に設けられた第3シール部材20が摺動可能に接触する。第3シール接触面1iは、図2に示すように、ピボットピン22の中心O2から半径R1よりも大きい所定の半径R3によって構成された円弧面となっている。半径R3は、カムリング6の偏心揺動範囲において第3シール部材20が常時摺動可能に接触することができる周方向長さに設定されている。 Further, as shown in FIG. 2, a third seal contact surface is formed on the inner peripheral wall of the pump housing chamber 1a at a position farther from the pivot pin 22 than the second seal contact surface 1h in the region on the left side of the cam ring reference line M. 1i is formed. A third seal member 20 provided on the outer periphery of the cam ring 6 is slidably brought into contact with the third seal contact surface 1i. As shown in FIG. 2, the third seal contact surface 1i is an arcuate surface extending from the center O2 of the pivot pin 22 with a predetermined radius R3 larger than the radius R1. The radius R3 is set to a circumferential length that allows the third seal member 20 to always slidably contact within the eccentric swing range of the cam ring 6 .
 また、ポンプ収容室1aの底面1bには、図2に示すように、駆動軸3の外周域に、円弧凹状の吸入部である吸入ポート23と、同じく円弧凹状の吐出部である吐出ポート24とが、駆動軸3を挟んで対向するように切り欠かれている。吸入ポート23は、底面1bにおいて、ピボットピン22と反対側に位置しており、上記ポンプ構成体のポンプ作用に伴って後述するポンプ室15の内部容積が増大する領域(吸入領域)に開口している。 As shown in FIG. 2, on the bottom surface 1b of the pump housing chamber 1a, a suction port 23, which is an arc-shaped concave suction portion, and a discharge port 24, which is also an arc-shaped concave discharge portion, are provided on the outer peripheral region of the drive shaft 3. are cut so as to face each other with the drive shaft 3 interposed therebetween. The suction port 23 is located on the opposite side of the pivot pin 22 on the bottom surface 1b, and opens to a region (suction region) where the internal volume of the pump chamber 15 (to be described later) increases due to the pumping action of the pump structure. ing.
 また、カバー部材2の内側面には、吸入ポート23に対応した位置に、該吸入ポート23と同様の形状を有した図示せぬ吸入溝が形成されており、この吸入溝は、カバー部材2に設けられた吸入孔2c(図1参照)と連通している。これにより、図示せぬ内燃機関のオイルパンに貯留されたオイルが、ポンプ構成体のポンプ作用に伴って発生する負圧に基づき吸入孔2cおよびカバー部材2の吸入溝を介して吸入領域の後述する各ポンプ室15に吸入される。 A suction groove (not shown) having the same shape as the suction port 23 is formed on the inner surface of the cover member 2 at a position corresponding to the suction port 23 . It communicates with the suction hole 2c (see FIG. 1) provided in the . As a result, the oil stored in the oil pan of the internal combustion engine (not shown) flows into the suction region through the suction hole 2c and the suction groove of the cover member 2 based on the negative pressure generated by the pump action of the pump assembly. is sucked into each pump chamber 15.
 一方、吐出ポート24は、ピボットピン22側に位置しており、上記ポンプ構成体のポンプ作用に伴ってポンプ室15の内部容積が減少する領域(吐出領域)に開口している。吐出ポート24の始端部付近には、図1に示すようにハウジング本体1の側壁を貫通して外部に開口する断面円形の吐出孔1jが設けられている。これにより、上記ポンプ作用に基づいて加圧され吐出ポート24へと吐出されたオイルが、吐出孔1jから図示せぬ吐出通路および図示せぬメインギャラリを通って図示せぬ内燃機関の各摺動部やバルブタイミング装置等へと供給される。なお、カバー部材2の内側面には、吐出ポート24に対応した位置に、該吐出ポート24と同様の形状を有した図示せぬ吐出溝が形成されている。 On the other hand, the discharge port 24 is located on the pivot pin 22 side and opens in a region (discharge region) where the internal volume of the pump chamber 15 decreases due to the pump action of the pump structure. In the vicinity of the starting end of the discharge port 24, as shown in FIG. 1, a discharge hole 1j having a circular cross section is provided which penetrates the side wall of the housing body 1 and opens to the outside. As a result, the oil pressurized by the pumping action and discharged to the discharge port 24 flows from the discharge hole 1j through the discharge passage (not shown) and the main gallery (not shown) to each slide of the internal combustion engine (not shown). parts, valve timing devices, etc. A discharge groove (not shown) having the same shape as the discharge port 24 is formed on the inner surface of the cover member 2 at a position corresponding to the discharge port 24 .
 また、ハウジング本体1内には、第2シール部材18と第3シール部材20との間でカムリング6の外周に設けられた平坦部6aと対向する位置に、第1コイルスプリング7を収容するばね収容室25が設けられている。このばね収容室25内では、所定のセット荷重W1により圧縮された第1コイルスプリング7が、ばね収容室25の一端壁と平坦部6aとに弾性的に当接している。このように、第1コイルスプリング7は、セット荷重W1に基づく弾性力をもって、平坦部6aを介してカムリング6を、その偏心量が増大する方向(図2中の反時計回りの方向)へ常時付勢する。 Further, in the housing body 1 , a spring housing the first coil spring 7 is located between the second seal member 18 and the third seal member 20 at a position facing the flat portion 6 a provided on the outer periphery of the cam ring 6 . A storage chamber 25 is provided. In the spring accommodating chamber 25, the first coil spring 7 compressed by a predetermined set load W1 is elastically in contact with one end wall of the spring accommodating chamber 25 and the flat portion 6a. In this manner, the first coil spring 7 constantly moves the cam ring 6 through the flat portion 6a in the direction in which the eccentricity increases (counterclockwise direction in FIG. 2) with the elastic force based on the set load W1. energize.
 さらに、カムリング6の外周部には、図2に示すように、第1~第3シール接触面1g~1iと対向する位置に、第1~第3シール面を有する第1~第3シール保持部6b~6dがそれぞれ突出している。ここで、第1~第3シール面は、それぞれピボットピン22の中心O2からこれに対応する各シール接触面1g,1h,1iを構成する半径R1,R2,R3よりも僅かに小さい所定の半径によって構成されている。各シール面と各シール接触面1g,1h,1iとの間には、それぞれ微小なクリアランスが形成されている。また、各シール保持部6b,6c,6dの各シール面に、断面U字状の第1、第2シール保持溝6e,6f,6gが、カムリング6の軸方向に沿ってそれぞれ形成されている。第1~第3シール保持溝6e~6g内に、カムリング6の偏心揺動時に第1~第3シール接触面1g,1h,1iに接触する第1~第3シール部材16,18,20がそれぞれ保持されている。 Further, as shown in FIG. 2, the outer peripheral portion of the cam ring 6 has first to third seal surfaces at positions facing the first to third seal contact surfaces 1g to 1i. Portions 6b to 6d protrude respectively. Here, the first to third seal surfaces have predetermined radii slightly smaller than the radii R1, R2, R3 forming the corresponding seal contact surfaces 1g, 1h, 1i from the center O2 of the pivot pin 22. It is composed by A small clearance is formed between each seal surface and each seal contact surface 1g, 1h, 1i. First and second seal holding grooves 6e, 6f, and 6g each having a U-shaped cross section are formed along the axial direction of the cam ring 6 on the seal surfaces of the seal holding portions 6b, 6c, and 6d, respectively. . In the first to third seal holding grooves 6e to 6g, first to third seal members 16, 18, 20 contact the first to third seal contact surfaces 1g, 1h, 1i when the cam ring 6 eccentrically swings. retained respectively.
 また、カムリング6の外周域には、ピボットピン22を囲むカムリング6の概ね円形の支持壁部6jの外周部と第1シール部材16とによって第1室26が画定されており、一方、第2シール部材18と第3シール部材20とによって第2室27が画定されている。第1室26には、後述の第1室油路32を介してポンプ吐出圧が導入され、一方、第2室27には、第1室油路32、後述の接続路31および第2室油路34を介してポンプ吐出圧が供給される。第1室26は、吐出ポート24から吐出されたオイルが導かれて、吐出ポート24から吐出されるオイルの流量が小さくなる方向にカムリング6が動いたときに容積が大きくなるように構成されている。また、第2室27は、ばね収容室25を含む空間となっており、吐出ポート24から吐出されるオイルの流量が大きくなる方向にカムリング6が動いたときに容積が大きくなるように構成されている。 Further, in the outer peripheral area of the cam ring 6, a first chamber 26 is defined by the outer peripheral portion of the substantially circular support wall portion 6j of the cam ring 6 surrounding the pivot pin 22 and the first seal member 16. A second chamber 27 is defined by the seal member 18 and the third seal member 20 . Pump discharge pressure is introduced into the first chamber 26 via a first chamber oil passage 32, which will be described later. A pump discharge pressure is supplied via an oil passage 34 . The volume of the first chamber 26 increases when the oil discharged from the discharge port 24 is guided and the cam ring 6 moves in the direction in which the flow rate of the oil discharged from the discharge port 24 decreases. there is The second chamber 27 is a space that includes the spring housing chamber 25, and is configured so that its volume increases when the cam ring 6 moves in the direction in which the flow rate of the oil discharged from the discharge port 24 increases. ing.
 カムリング6の外周面のうち第1室26と隣接する面は、該第1室26に導入されたポンプ吐出圧を受ける第1受圧面6hとなっている。また、カムリング6の外周面のうち第2室27と隣接する面は、該第2室27に導入されたポンプ吐出圧を受ける第2受圧面6i(平坦部6aを含む)となっている。 Of the outer peripheral surface of the cam ring 6, the surface adjacent to the first chamber 26 serves as a first pressure receiving surface 6h that receives the pump discharge pressure introduced into the first chamber 26. A surface of the outer peripheral surface of the cam ring 6 adjacent to the second chamber 27 serves as a second pressure receiving surface 6i (including the flat portion 6a) that receives the pump discharge pressure introduced into the second chamber 27. As shown in FIG.
 そして、各ポンプ吐出圧がカムリング6の対応する第1および第2受圧面6h,6iに作用することで、該第1および第2受圧面6h,6iに作用する油圧に基づく付勢力と第1コイルスプリング7による付勢力とのバランスによってカムリング6の偏心量が制御される。ここで、第1受圧面6hの受圧面積は、第2受圧面6iの受圧面積よりも大きく設定されており、両受圧面6h,6iに油圧が作用した場合は、全体として偏心量が減少する方向へとカムリング6を付勢することとなる。 When each pump discharge pressure acts on the corresponding first and second pressure receiving surfaces 6h, 6i of the cam ring 6, the urging force based on the hydraulic pressure acting on the first and second pressure receiving surfaces 6h, 6i and the first The amount of eccentricity of the cam ring 6 is controlled by the balance with the biasing force of the coil spring 7 . Here, the pressure receiving area of the first pressure receiving surface 6h is set larger than the pressure receiving area of the second pressure receiving surface 6i, and when hydraulic pressure acts on both pressure receiving surfaces 6h and 6i, the eccentricity as a whole decreases. The cam ring 6 is urged in the direction.
 電磁弁13は、本発明の制御弁に相当し、後述するスプール40の移動方向における軸方向位置に応じてオイルの給排に供する弁部28と、通電によってスプール40の軸方向位置を制御するソレノイド部29と、を備えている。電磁弁13は、図1に示すようにハウジング本体1の背面に一体に形成された正六面体状のブロック部1kに設けられている。より詳細には、電磁弁13の先端側に位置する弁部28が、図1に示すようにブロック部1kの1つの面1mに対して窪む制御弁収容部30内に収容され、電磁弁13の後端側に位置するソレノイド部29が、ブロック部1kの面1mから外側に突出する。弁部28が制御弁収容部30内に収容された状態では、図2に示すようにポンプ構成体の回転軸線O1に沿った方向から見たときに、弁部28の先端部が、第1室26と第2室27との間のカムリング6の領域とオーバーラップし、ソレノイド部29が第2室27よりも外側に位置している。換言すれば、図2に示すようにポンプ構成体の回転軸線O1に沿った方向に見たときに、弁部28の先端部が、第1室26と第2室27との間のカムリング6の領域と対向するように設けられ、ソレノイド部29が第2室27と対向しないように設けられている。電磁弁13の種々の構成要素および機能については後に詳細に説明される。 The solenoid valve 13 corresponds to the control valve of the present invention, and controls the axial position of the spool 40 by supplying and discharging oil according to the axial position of the spool 40 in the moving direction, which will be described later. A solenoid portion 29 is provided. The solenoid valve 13 is provided on a regular hexahedral block portion 1k integrally formed on the rear surface of the housing body 1 as shown in FIG. More specifically, the valve portion 28 located on the tip side of the solenoid valve 13 is housed in a control valve housing portion 30 recessed with respect to one surface 1m of the block portion 1k as shown in FIG. A solenoid portion 29 located on the rear end side of 13 protrudes outward from the surface 1m of the block portion 1k. When the valve portion 28 is housed in the control valve housing portion 30, as shown in FIG. The area of the cam ring 6 between the chamber 26 and the second chamber 27 overlaps, and the solenoid portion 29 is positioned outside the second chamber 27 . In other words, when viewed along the rotation axis O1 of the pump assembly as shown in FIG. , and the solenoid portion 29 is provided so as not to face the second chamber 27 . The various components and functions of solenoid valve 13 will be described in detail later.
 また、ハウジング本体1には、図2に示すようにポンプ構成体の回転軸線O1に沿った方向から見たときに電磁弁13の中心軸Z上に位置し、メインギャラリからのオイルが後述の導入口33および第1室油路32を介して導かれる直線状の接続路(直線油路部)31(仮想線で示す)が形成されている。接続路31は、図2に示すように、カムリング6の揺動支点であるピボットピン22とポンプ構成体の駆動軸3との間の領域においてピボットピン22に隣接した位置に設けられている。つまり、接続路31は、回転軸線O1に対する径方向において第1室26のうちピボットピン22側に位置する箇所P1と第2室27のうちピボットピン22側に位置する箇所P2とを中心軸Zに沿って最短距離で結ぶように設けられている。接続路31の外径は、制御弁収容部30の内径よりも小さく設定されている。 As shown in FIG. 2, the housing main body 1 is located on the center axis Z of the solenoid valve 13 when viewed from the direction along the rotation axis O1 of the pump structure, and oil from the main gallery is supplied to the main gallery. A linear connecting passage (straight oil passage portion) 31 (indicated by a phantom line) guided through the introduction port 33 and the first chamber oil passage 32 is formed. As shown in FIG. 2, the connection path 31 is provided at a position adjacent to the pivot pin 22 in the region between the pivot pin 22, which is the swing fulcrum of the cam ring 6, and the drive shaft 3 of the pump assembly. In other words, the connection path 31 extends along the central axis Z between a portion P1 of the first chamber 26 located on the pivot pin 22 side and a portion P2 of the second chamber 27 located on the pivot pin 22 side in the radial direction with respect to the rotation axis O1. It is provided to be connected at the shortest distance along the The outer diameter of the connection path 31 is set smaller than the inner diameter of the control valve accommodating portion 30 .
 また、図3に示すように、接続路31の一端部は、接続路31の長手方向と交差する方向に分岐した第1室油路32を介して第1室26に繋がっている。より詳細には、接続路31の一端部は、接続路31の長手方向と直交するように分岐した第1室油路32を介して第1室26に繋がっている。第1室油路32は、図2に示すように回転軸線O1に沿った方向から見たときに、第1室26上の箇所P1で第1室26に向かって開口している。また、図3に示すように、第1室油路32の外周部は、第1室26と接続路31との間の接続路31寄り位置で、メインギャラリからのオイルが導かれる導入口33に接続されている。図3に示すように、導入口33は、ハウジング本体1のうち吐出孔1jが設けられている面1nに対して直交するように第1室油路32の外周部に延びている。第1室26には、メインギャラリからのオイルが、導入口33および第1室油路32を介して導入されるようになっている。 Also, as shown in FIG. 3, one end of the connection path 31 is connected to the first chamber 26 via a first chamber oil path 32 branched in a direction crossing the longitudinal direction of the connection path 31 . More specifically, one end of the connection path 31 is connected to the first chamber 26 via a first chamber oil path 32 branched perpendicular to the longitudinal direction of the connection path 31 . The first chamber oil passage 32 opens toward the first chamber 26 at a point P1 above the first chamber 26 when viewed from the direction along the rotation axis O1 as shown in FIG. Further, as shown in FIG. 3, the outer peripheral portion of the first chamber oil passage 32 is located near the connection passage 31 between the first chamber 26 and the connection passage 31, and an introduction port 33 through which oil from the main gallery is introduced. It is connected to the. As shown in FIG. 3, the introduction port 33 extends to the outer peripheral portion of the first chamber oil passage 32 so as to be perpendicular to the surface 1n of the housing body 1 on which the discharge holes 1j are provided. Oil from the main gallery is introduced into the first chamber 26 via an inlet 33 and a first chamber oil passage 32 .
 また、図3に示すように、電磁弁13内を通る接続路31の図示せぬ他端部は、接続路31の長手方向と交差する方向に分岐した第2室油路34を介して第2室27に繋がっている。より詳細には、接続路31の他端部は、接続路31の長手方向と直交する方向に分岐した第2室油路34を介して第2室27に繋がっている。図3に示すように、第2室油路34は、第1室油路32と平行に延びている。第2室油路34は、図2に示すように回転軸線O1に沿った方向から見たときに、第2室27上の箇所P2で第2室27に向かって開口している。第2室27には、メインギャラリからのオイルが、導入口33、第1室油路32、接続路31および第2室油路34を介して導入されるようになっている。 As shown in FIG. 3, the other end (not shown) of the connecting passage 31 passing through the solenoid valve 13 is connected to a second chamber oil passage 34 branched in a direction intersecting the longitudinal direction of the connecting passage 31. It is connected to 2 rooms 27. More specifically, the other end of the connection path 31 is connected to the second chamber 27 via a second chamber oil path 34 branched in a direction orthogonal to the longitudinal direction of the connection path 31 . As shown in FIG. 3 , the second chamber oil passage 34 extends parallel to the first chamber oil passage 32 . The second chamber oil passage 34 opens toward the second chamber 27 at a point P2 above the second chamber 27 when viewed from the direction along the rotation axis O1 as shown in FIG. Oil from the main gallery is introduced into the second chamber 27 via the introduction port 33 , the first chamber oil passage 32 , the connection passage 31 and the second chamber oil passage 34 .
 リリーフ弁14は、図2に示すように吐出ポート24付近に形成された弁収容穴35(図2に仮想線で示す)に収容され、可変容量形オイルポンプの吐出圧が所定の吐出圧よりも高いときに開弁して吐出圧を外部へ逃がすように機能する。リリーフ弁14は、弁収容穴35を塞ぐ蓋36と、該蓋36に一端が当接するスプリング37と、スプリング37の他端が当接するボール38と、を備えている。可変容量形オイルポンプの吐出圧が所定の吐出圧よりも高いときに該吐出圧がボール38に作用し、該ボール38が蓋36に対してスプリング37を収縮させると、ボール38の背面側に設けられた図示せぬリリーフ孔を介して吐出圧が外部へ逃げるようになっている。
(電磁弁の構成)
 図4(a)は、制御弁収容部30に収容された電磁弁13の断面図であり、図4(b)は、図4(a)の線A-Aに沿って切断したバルブボディ39の断面図である。
The relief valve 14 is housed in a valve housing hole 35 (indicated by phantom lines in FIG. 2) formed in the vicinity of the discharge port 24, as shown in FIG. It functions to release the discharge pressure to the outside by opening the valve when the pressure is high. The relief valve 14 includes a lid 36 closing the valve housing hole 35 , a spring 37 having one end in contact with the lid 36 , and a ball 38 having the other end in contact with the spring 37 . When the discharge pressure of the variable displacement oil pump is higher than a predetermined discharge pressure, the discharge pressure acts on the ball 38, and when the ball 38 contracts the spring 37 against the lid 36, the back side of the ball 38 The discharge pressure is released to the outside through a relief hole (not shown) provided.
(Configuration of solenoid valve)
4(a) is a sectional view of the solenoid valve 13 housed in the control valve housing portion 30, and FIG. 4(b) is a valve body 39 cut along the line AA in FIG. 4(a). is a cross-sectional view of.
 図4(a)に示すように、制御弁収容部30は、接続路31が開口し、ソレノイド部29側へ向かうにつれて円錐状に拡径する底部30aと、該底部30aと軸方向に対向する位置に形成された制御弁収容口30bと、を有している。電磁弁13の弁部28は、制御弁収容口30bから底部30aに向かって制御弁収容部30に挿入されている。 As shown in FIG. 4( a ), the control valve housing portion 30 has a bottom portion 30 a with an open connection path 31 and a conical bottom portion 30 a that expands in diameter toward the solenoid portion 29 , and the bottom portion 30 a is axially opposed to the bottom portion 30 a. and a control valve receiving port 30b formed at a position. The valve portion 28 of the solenoid valve 13 is inserted into the control valve housing portion 30 from the control valve housing port 30b toward the bottom portion 30a.
 ここで、接続路31は、実際には、後述の先端側通路31b、軸方向通路31c、第1バルブ開口31d、導入通路31e、第2バルブ開口31fを含むが、流路を明確にするために、第1室油路32と底部30aとの間の接続路31を「接続路入口部31a」として以下に説明する。 Here, the connection path 31 actually includes a tip side passage 31b, an axial passage 31c, a first valve opening 31d, an introduction passage 31e, and a second valve opening 31f, which will be described later. First, the connecting passage 31 between the first chamber oil passage 32 and the bottom portion 30a will be referred to as a "connecting passage inlet portion 31a" below.
 電磁弁13の弁部28は、概ね円筒状をなすバルブボディ39と、該バルブボディ39内に摺動可能に配置されたスプール40と、バルブボディ39の内周部に固定されたリテーナ41と、該リテーナ41とスプール40との間に所定のセット荷重W2が付与された状態で配置された付勢部材である第2コイルスプリング64と、を備えている。 The valve portion 28 of the solenoid valve 13 includes a generally cylindrical valve body 39 , a spool 40 slidably disposed within the valve body 39 , and a retainer 41 fixed to the inner peripheral portion of the valve body 39 . , and a second coil spring 64 which is a biasing member arranged between the retainer 41 and the spool 40 with a predetermined set load W2 applied thereto.
 バルブボディ39は、スプール40を摺動可能に収容するスプール収容部39aを有し、このスプール収容部39aは、接続路入口部31a側に位置する大径筒状部39bと、該大径筒状部39bと一体に形成され、大径筒状部39bよりも小さい内径を有する小径筒状部39cと、を備えている。 The valve body 39 has a spool accommodating portion 39a that slidably accommodates the spool 40. The spool accommodating portion 39a includes a large-diameter tubular portion 39b located on the side of the connection passage inlet portion 31a, and a large-diameter tubular portion 39b. A small-diameter tubular portion 39c formed integrally with the shaped portion 39b and having an inner diameter smaller than that of the large-diameter tubular portion 39b.
 大径筒状部39bの一端部付近の内周面には、接続路入口部31aが開口する制御弁収容部30の底部30aと軸方向に対向するように、円盤状をなす金属製の固定部を構成するリテーナ41が圧入固定されている。リテーナ41は、制御弁収容部30の底部30aとの間に、オイルが接続路入口部31aを介して導入される先端側通路31bを形成する。リテーナ41のうち第2コイルスプリング64と対向する側の面41aは、第2コイルスプリング64の軸方向一端部が弾性的に当接する面となる。 On the inner peripheral surface near one end of the large-diameter cylindrical portion 39b, a disk-shaped metal fixing member is axially opposed to the bottom portion 30a of the control valve housing portion 30, to which the connection passage inlet portion 31a opens. A retainer 41 forming a part is press-fitted and fixed. The retainer 41 forms, between itself and the bottom portion 30a of the control valve housing portion 30, a tip side passage 31b into which oil is introduced via a connection passage inlet portion 31a. A surface 41 a of the retainer 41 facing the second coil spring 64 is a surface against which one axial end of the second coil spring 64 elastically abuts.
 図4(a)および図4(b)に示すように、大径筒状部39bの外周部には、径方向に対向した位置に、二面幅状に形成された2つの平面部39dが形成されている。平面部39dと、小径筒状部39cの外周部の軸方向一端側に設けられた段差部39eとの間には、凹部39fが形成されており、該凹部39fは、先端側通路31bと繋がり、該先端側通路31bからのオイルをバルブボディ39の軸方向に通流させる軸方向通路31cを形成する。各平面部39dのうち段差部39e付近の位置には、平面部39dと大径筒状部39bの内周面を貫通し、軸方向通路31cと連通する第1バルブ開口31dが形成されている。第1バルブ開口31dは、スプール40の後述の中間軸部40bの周囲に設けられた導入通路31eと常時連通している。 As shown in FIGS. 4(a) and 4(b), two flat portions 39d formed in a width across flat shape are formed on the outer peripheral portion of the large-diameter tubular portion 39b at positions facing each other in the radial direction. formed. A concave portion 39f is formed between the flat portion 39d and a stepped portion 39e provided on one axial end side of the outer peripheral portion of the small-diameter cylindrical portion 39c, and the concave portion 39f is connected to the tip-side passage 31b. , an axial passage 31c is formed through which the oil from the tip side passage 31b flows in the axial direction of the valve body 39. As shown in FIG. At a position near the stepped portion 39e of each flat portion 39d, a first valve opening 31d is formed that penetrates the inner peripheral surfaces of the flat portion 39d and the large-diameter cylindrical portion 39b and communicates with the axial passage 31c. . The first valve opening 31d always communicates with an introduction passage 31e provided around an intermediate shaft portion 40b of the spool 40, which will be described later.
 また、小径筒状部39cのうち段差部39e付近の位置には、小径筒状部39cの内周面と外周面を貫通する4つの第2バルブ開口31fが形成されている。第2バルブ開口31fは、バルブボディ39の周方向等間隔位置に設けられている。4つの第2バルブ開口31fのうちの1つは、ブロック部1kに形成された第2室油路34と対向している。また、小径筒状部39cのうちソレノイド部29寄りの位置には、小径筒状部39cの内周面と外周面を貫通する4つの第3バルブ開口62が形成されている。この第3バルブ開口62は、バルブボディ39の周方向等間隔位置に設けられ、制御弁収容部30の制御弁収容口30b付近に設けられた外部接続路63に対向している。外部接続路63は、吐出ポート24から吐出されるオイルの圧力よりも低圧な外部、例えば図示せぬオイルパンと連通している。 Four second valve openings 31f are formed in the small-diameter tubular portion 39c at positions near the stepped portion 39e so as to penetrate the inner and outer peripheral surfaces of the small-diameter tubular portion 39c. The second valve openings 31f are provided at equidistant positions in the valve body 39 in the circumferential direction. One of the four second valve openings 31f faces the second chamber oil passage 34 formed in the block portion 1k. Further, four third valve openings 62 are formed through the inner and outer peripheral surfaces of the small-diameter tubular portion 39c at positions near the solenoid portion 29 in the small-diameter tubular portion 39c. The third valve openings 62 are provided at equal intervals in the circumferential direction of the valve body 39 and face an external connection passage 63 provided near the control valve housing port 30b of the control valve housing portion 30 . The external connection path 63 communicates with the outside having a lower pressure than the pressure of the oil discharged from the discharge port 24, such as an oil pan (not shown).
 また、小径筒状部39cの外周面には、第2バルブ開口31fと第3バルブ開口62との間の位置に、Oリングである第1シールリング42が嵌め込まれる環状溝39gが形成されている。第1シールリング42は、制御弁収容部30の内周面と小径筒状部39cの外周面との間を液密にシールする。 An annular groove 39g is formed on the outer peripheral surface of the small-diameter cylindrical portion 39c at a position between the second valve opening 31f and the third valve opening 62, in which the first seal ring 42, which is an O-ring, is fitted. there is The first seal ring 42 liquid-tightly seals between the inner peripheral surface of the control valve accommodating portion 30 and the outer peripheral surface of the small-diameter cylindrical portion 39c.
 スプール40は、大径部40aと、該大径部40aと一体に形成された中間軸部40bと、該中間軸部40bと一体に形成され、大径部40aよりも小径で、かつ中間軸部40bよりも大径な中径部40cと、該中径部40cと一体に形成された後端軸部40dと、を有している。スプール40は、図4(a)に示すように大径部40aが接続路入口部31a側に位置するように配置される。 The spool 40 includes a large diameter portion 40a, an intermediate shaft portion 40b integrally formed with the large diameter portion 40a, and an intermediate shaft portion 40b integrally formed with the intermediate shaft portion 40b. It has a medium-diameter portion 40c larger in diameter than the portion 40b and a rear end shaft portion 40d integrally formed with the medium-diameter portion 40c. The spool 40 is arranged such that the large diameter portion 40a is positioned on the connection path inlet portion 31a side as shown in FIG. 4(a).
 大径部40aは、第1バルブ開口31dとリテーナ41との間でバルブボディ39の内周面と摺動する。大径部40aの軸方向一端面40nには、第2コイルスプリング64の軸方向他端側の部位を収容する円形凹溝部40eが形成されている。円形凹溝部40eの底面40fとリテーナ41との間には、第2コイルスプリング64を収容するスプリング収容部65が設けられている。円形凹溝部40eの底面40fは、第2コイルスプリング64の軸方向他端部が弾性的に当接する面となっている。円形凹溝部40eの底面40fの中央には、該底面40fから中径部40cを越えて後端軸部40dの中央部の手前の位置まで軸方向に延びるドレン接続通路40gが形成されている。ドレン接続通路40gの終端部、つまり、後端軸部40d側に位置した端部には、矩形状のスプールドレン穴40hが径方向に貫通形成されている。スプールドレン穴40hは、径方向に対向する2つの位置に設けられており、ブロック部1kに設けられた図示せぬ孔部を介して外部と連通している。内燃機関の運転中に、スプリング収容部65内の空気の温度が上昇し、この空気が膨張した場合には、膨張した空気が、ドレン接続通路40g、スプールドレン穴40hおよび孔部を介して外部に排出される。 The large diameter portion 40 a slides on the inner peripheral surface of the valve body 39 between the first valve opening 31 d and the retainer 41 . A circular recessed groove portion 40e for accommodating a portion of the second coil spring 64 on the other axial end side is formed in one axial end surface 40n of the large diameter portion 40a. A spring accommodating portion 65 that accommodates the second coil spring 64 is provided between the bottom surface 40 f of the circular groove portion 40 e and the retainer 41 . A bottom surface 40f of the circular groove portion 40e is a surface with which the other axial end portion of the second coil spring 64 is elastically abutted. A drain connection passage 40g is formed in the center of the bottom surface 40f of the circular recessed groove 40e and extends axially from the bottom surface 40f beyond the middle diameter portion 40c to a position just before the center of the rear end shaft portion 40d. A rectangular spool drain hole 40h is formed radially through the end portion of the drain connection passage 40g, that is, the end portion located on the rear end shaft portion 40d side. The spool drain holes 40h are provided at two positions facing each other in the radial direction, and communicate with the outside through holes (not shown) provided in the block portion 1k. During operation of the internal combustion engine, if the temperature of the air in the spring accommodating portion 65 rises and the air expands, the expanded air is discharged to the outside through the drain connection passage 40g, the spool drain hole 40h and the hole. discharged to
 また、大径部40aの軸方向他端面は、接続路入口部31a、先端側通路31b、軸方向通路31cおよび第1バルブ開口31dを介して導入されるメインギャラリ圧Pが作用する環状の第1受圧面部40iとなっている。 The other axial end face of the large-diameter portion 40a is formed into an annular first wall on which the main gallery pressure P introduced via the connecting passage inlet portion 31a, the tip side passage 31b, the axial passage 31c, and the first valve opening 31d acts. 1 pressure receiving surface portion 40i.
 中間軸部40bは、大径部40aの軸方向他端に一体に設けられており、バルブボディ39の大径筒状部39bの内周面との間に、第1バルブ開口31dを介して軸方向通路31cと繋がる導入通路31eを形成する。 The intermediate shaft portion 40b is provided integrally with the other end in the axial direction of the large diameter portion 40a. An introduction passage 31e is formed that communicates with the axial passage 31c.
 中径部40cは、中間軸部40bを挟んで大径部40aと軸方向に対向するように中間軸部40bの軸方向他端と一体に設けられ、第2バルブ開口31fよりもソレノイド部29側において小径筒状部39cの内周面と摺動する。中径部40cの軸方向一端面は、接続路入口部31a、先端側通路31b、軸方向通路31cおよび第1バルブ開口31dを介して導入されるメインギャラリ圧Pが作用する環状の第2受圧面部40jとなっている。第2受圧面部40jは、第1受圧面部40iよりも小さく設定されている。メインギャラリ圧Pを、大径部40aの第1受圧面部40iと中径部40cの第2受圧面部40jとの受圧面積の差に乗算することにより、バルブボディ39の先端部側へスプール40を付勢する油圧力Fpが算出される。 The medium diameter portion 40c is provided integrally with the other axial end of the intermediate shaft portion 40b so as to axially face the large diameter portion 40a with the intermediate shaft portion 40b interposed therebetween. side slides against the inner peripheral surface of the small-diameter cylindrical portion 39c. One axial end surface of the intermediate diameter portion 40c is formed in a ring-shaped second pressure receiving area on which the main gallery pressure P introduced through the connecting passage inlet portion 31a, the tip side passage 31b, the axial passage 31c, and the first valve opening 31d acts. It becomes the surface part 40j. The second pressure receiving surface portion 40j is set smaller than the first pressure receiving surface portion 40i. By multiplying the main gallery pressure P by the difference in pressure receiving surface area between the first pressure receiving surface portion 40i of the large diameter portion 40a and the second pressure receiving surface portion 40j of the medium diameter portion 40c, the spool 40 is moved toward the tip portion side of the valve body 39. An urging hydraulic pressure Fp is calculated.
 後端軸部40dは、中径部40cの軸方向他端に一体に設けられており、軸方向端面40kがソレノイド部29の後述のロッド50に当接可能となっている。 The rear end shaft portion 40d is provided integrally with the other end in the axial direction of the intermediate diameter portion 40c, and the axial end face 40k can come into contact with a rod 50 of the solenoid portion 29, which will be described later.
 ソレノイド部29は、バルブボディ39の後端部に設けられており、ケース43と、閉塞部材44と、コイル45と、ボビン46と、固定鉄心47と、ソレノイド部用スリーブ48と、可動鉄心49と、ロッド50と、を備えている。 The solenoid portion 29 is provided at the rear end portion of the valve body 39 and includes a case 43 , a closing member 44 , a coil 45 , a bobbin 46 , a fixed iron core 47 , a solenoid portion sleeve 48 , and a movable iron core 49 . and a rod 50.
 ケース43は、円筒状に形成されており、内部にコイル45、ボビン46、固定鉄心47、ソレノイド部用スリーブ48、可動鉄心49およびロッド50を収容している。ケース43は、有底円筒状の閉塞部材44によって閉塞されている。 The case 43 is formed in a cylindrical shape and accommodates the coil 45, the bobbin 46, the fixed iron core 47, the solenoid section sleeve 48, the movable iron core 49 and the rod 50 inside. The case 43 is closed by a bottomed cylindrical closing member 44 .
 コイル45は、概ね円筒状に形成されたボビン46の周囲に巻き回される。ボビン46の軸線方向一端46a側の内周面には、概ね円筒状をなすソレノイド部用スリーブ48が圧入固定されている。ソレノイド部用スリーブ48の内周側には、可動鉄心49が、軸線方向に沿って移動可能となるように設けられている。また、ボビン46の軸線方向他端46b側の内周面には、概ね円筒状をなす固定鉄心47が圧入固定されている。固定鉄心47の内周側には、可動鉄心49の移動に伴い可動鉄心49と一体に動作することで軸線方向に移動可能なロッド50が設けられている。ロッド50の先端部50aは、ロッド50の軸線方向一端側への移動に伴って、バルブボディ39内に収容されたスプール40の後端軸部40dの軸方向端面40kを付勢可能となっている。さらに、固定鉄心47とバルブボディ39との間は、環状のシール部材、例えばOリングである第2シールリング51によって液密にシールされている。同様に、固定鉄心47とボビン46との間も、環状のシール部材、例えばOリングである第3シールリング52によって液密にシールされている。 The coil 45 is wound around a generally cylindrical bobbin 46 . A substantially cylindrical sleeve for solenoid portion 48 is press-fitted and fixed to the inner peripheral surface of the bobbin 46 on the one axial end 46a side. A movable iron core 49 is provided on the inner peripheral side of the solenoid portion sleeve 48 so as to be movable along the axial direction. A substantially cylindrical stationary core 47 is press-fitted to the inner peripheral surface of the bobbin 46 on the side of the other end 46 b in the axial direction. A rod 50 is provided on the inner peripheral side of the fixed iron core 47 and is movable in the axial direction by operating integrally with the movable iron core 49 as the movable iron core 49 moves. The tip portion 50a of the rod 50 can bias the axial end surface 40k of the rear end shaft portion 40d of the spool 40 accommodated in the valve body 39 as the rod 50 moves toward one end in the axial direction. there is Further, the space between the fixed iron core 47 and the valve body 39 is liquid-tightly sealed by an annular seal member, for example, a second seal ring 51 which is an O-ring. Similarly, the space between the fixed core 47 and the bobbin 46 is liquid-tightly sealed by an annular seal member, for example, a third seal ring 52 which is an O-ring.
 かかる電磁弁13において、ソレノイド部29は、外部から与えられる電気信号に応じてバルブボディ39の後端部から先端部に向かってスプール40の後端軸部40dを付勢する。より詳細には、ソレノイド部29は、コイル45に図外の電子コントローラからパルス電圧が印加されると、そのパルス電圧の電圧値に応じた推力が可動鉄心49に作用する。そして、スプール40を、スプール40に掛かる油圧力Fpおよびロッド50を介して伝達される可動鉄心49の推力(ロッド50の押圧力Fr)の合力Fp+Frと第2コイルスプリング64のばね力Fs2との相対差に基づき進退移動させるようになっている。 In the electromagnetic valve 13, the solenoid portion 29 urges the rear end shaft portion 40d of the spool 40 from the rear end portion of the valve body 39 toward the tip portion in response to an externally applied electric signal. More specifically, when a pulse voltage is applied to the coil 45 from an electronic controller (not shown), the solenoid portion 29 applies a thrust force to the movable iron core 49 according to the voltage value of the pulse voltage. Then, the spool 40 is set by combining the resultant force Fp+Fr of the hydraulic force Fp applied to the spool 40 and the thrust of the movable iron core 49 (the pressing force Fr of the rod 50) transmitted through the rod 50 and the spring force Fs2 of the second coil spring 64. It is designed to move forward and backward based on the relative difference.
 上記電子コントローラは、いわゆるPWM(パルス幅変調)方式を用いたもので、コイル45に印加するパルス電圧のパルス幅を変調させる、すなわちデューティ比Dを変化させることによってコイル45に印加するパルス電圧の電圧値を無段階に制御するようになっている。また、電子コントローラは、機関の油温や水温、機関回転数や負荷等から機関運転状態を検出して、特に機関始動時等の機関が低回転状態にある場合には、コイル45に対する通電を遮断する一方、機関回転数Nが所定値以上になると、メインギャラリ圧Pを調圧するためにコイル45へ通電を行うようになっている。 The electronic controller employs a so-called PWM (Pulse Width Modulation) method, and modulates the pulse width of the pulse voltage applied to the coil 45. That is, by changing the duty ratio D, the pulse voltage applied to the coil 45 The voltage value is controlled steplessly. In addition, the electronic controller detects the operating state of the engine from the oil temperature, water temperature, engine speed, load, etc., and energizes the coil 45 especially when the engine is in a low speed state such as when the engine is started. On the other hand, when the engine speed N exceeds a predetermined value, the coil 45 is energized in order to adjust the main gallery pressure P.
 図5は、電磁弁13の第1状態を示す可変容量形オイルポンプの断面面であり、図6は、電磁弁13の第2状態を示す可変容量形オイルポンプの断面図である。なお、図5および図6は、スプールの軸方向位置や電磁弁13を通じたオイルの流れを示すため、電磁弁13がカムリング6の側方に配置されているが、実際には、カムリング6と電磁弁13とは、上述したように図1~3に示す位置関係を有している。図7は、第1の実施形態の可変容量形オイルポンプの機関回転数Nとメインギャラリ圧Pとの相関関係を示す特性図である。 FIG. 5 is a cross-sectional view of the variable displacement oil pump showing the first state of the solenoid valve 13, and FIG. 6 is a cross-sectional view of the variable displacement oil pump showing the second state of the solenoid valve 13. 5 and 6 show the axial position of the spool and the flow of oil through the solenoid valve 13, the solenoid valve 13 is arranged on the side of the cam ring 6. The electromagnetic valve 13 has the positional relationship shown in FIGS. 1 to 3 as described above. FIG. 7 is a characteristic diagram showing the correlation between the engine speed N and the main gallery pressure P of the variable displacement oil pump of the first embodiment.
 以下に、電磁弁13の作動と、該作動に伴うカムリング6の作動について説明する。 The operation of the solenoid valve 13 and the associated operation of the cam ring 6 will be described below.
 まず、電磁弁13のコイル45に通電がされない場合、つまりデューティ比Dが0%の場合には、スプール40は、該スプール40に掛かる油圧力Fpと、第2コイルスプリング64のばね力Fs2とに基づいて、バルブボディ39内で軸方向に移動する。より詳細には、油圧力Fpがばね力Fsよりも大きい場合には、スプール40は、バルブボディ39の先端部側へ移動し、一方、ばね力Fs2が油圧力Fpよりも大きい場合には、スプール40は、バルブボディ39の後端部側へ移動する。 First, when the coil 45 of the solenoid valve 13 is not energized, that is, when the duty ratio D is 0%, the spool 40 is subjected to the hydraulic pressure Fp acting on the spool 40 and the spring force Fs2 of the second coil spring 64. moves axially within the valve body 39 based on . More specifically, when the hydraulic force Fp is greater than the spring force Fs, the spool 40 moves toward the distal end of the valve body 39. On the other hand, when the spring force Fs2 is greater than the hydraulic force Fp, The spool 40 moves toward the rear end of the valve body 39 .
 図7に示すように、機関回転数Nが所定機関回転数N2以下であるときには、メインギャラリ圧Pが所定値P2以下となっている。ここで、所定値P2は、機関高回転時のクランクシャフトの軸受部の潤滑に要する機関要求油圧を示している。また、メインギャラリ圧Pと比例関係にある油圧力Fpは、所定値以下となっており、油圧力Fpがばね力Fs2以下になる。従って、スプール40は、ソレノイド部29寄りの位置(図5に示すスプール40の位置)にある。このとき、第2バルブ開口31fと外部接続路63との連通が中径部40cの外周面によって遮断され、第1バルブ開口31dと第2バルブ開口31fとが導入通路31eを介して連通する。これにより、図5に示すように、メインギャラリ内のオイルは、第1室油路32、接続路入口部31a、先端側通路31b、軸方向通路31c、第1バルブ開口31d、導入通路31e、第2バルブ開口31fおよび第2室油路34を介して第2室27に導かれる。そして、第2室27の内圧PO2と第1コイルスプリングのばね力Fs1との合力PO2+Fs1が第1室26の内圧PO1よりも上回る。このため、カムリング6は、最も偏心した位置(図5に示すカムリング6の位置)にあり、偏心量が最大となる。このとき、電磁弁13は、軸方向通路31c、第1バルブ開口31d、導入通路31e、第2バルブ開口31fおよび第2室油路34を介して先端側通路31bと第2室27を接続する第1状態にある。よって、図7に示すように、機関回転数Nが所定機関回転数N2以下のときに、メインギャラリ圧Pは、最大容量で機関回転数Nに応じて変化する。 As shown in FIG. 7, when the engine speed N is equal to or less than the predetermined engine speed N2, the main gallery pressure P is equal to or less than the predetermined value P2. Here, the predetermined value P2 indicates the required engine oil pressure required for lubricating the bearings of the crankshaft when the engine is rotating at high speed. Further, the hydraulic pressure Fp, which is proportional to the main gallery pressure P, is equal to or less than a predetermined value, and the hydraulic pressure Fp becomes equal to or less than the spring force Fs2. Therefore, the spool 40 is at a position near the solenoid portion 29 (the position of the spool 40 shown in FIG. 5). At this time, the communication between the second valve opening 31f and the external connection passage 63 is blocked by the outer peripheral surface of the intermediate diameter portion 40c, and the first valve opening 31d and the second valve opening 31f communicate through the introduction passage 31e. As a result, as shown in FIG. 5, the oil in the main gallery flows through the first chamber oil passage 32, the connection passage inlet portion 31a, the tip side passage 31b, the axial direction passage 31c, the first valve opening 31d, the introduction passage 31e, It is led to the second chamber 27 via the second valve opening 31 f and the second chamber oil passage 34 . A resultant force PO2+Fs1 of the internal pressure PO2 of the second chamber 27 and the spring force Fs1 of the first coil spring exceeds the internal pressure PO1 of the first chamber . Therefore, the cam ring 6 is at the most eccentric position (the position of the cam ring 6 shown in FIG. 5), and the amount of eccentricity is maximized. At this time, the solenoid valve 13 connects the tip side passage 31b and the second chamber 27 via the axial passage 31c, the first valve opening 31d, the introduction passage 31e, the second valve opening 31f, and the second chamber oil passage 34. It is in the first state. Therefore, as shown in FIG. 7, when the engine speed N is equal to or lower than the predetermined engine speed N2, the main gallery pressure P changes according to the engine speed N at its maximum capacity.
 また、機関回転数Nが所定機関回転数N2よりも大きいときに、メインギャラリ圧Pが所定値P2に達すると、油圧力Fpが所定値に達し、油圧力Fpがばね力Fs2よりも大きくなる。そして、スプール40がバルブボディ39の先端部側へ所定の距離(図6に示すスプール40の位置)だけ僅かに移動する。なお、この移動時には、デューティ比Dが0%であるため、ロッド50は最も後退した位置にあり、スプール40の軸方向他端から離間している。また、第2バルブ開口31fが外部接続路63と連通しており、第2室27内のオイルが、第2室油路34、第2バルブ開口31f、排出用通路60、第3バルブ開口62および外部接続路63を介して外部に排出される。このとき、電磁弁13は、第2室油路34、第2バルブ開口31f、排出用通路60、第3バルブ開口62を介して第2室27と外部接続路63を接続する第2状態にある。これにより、第1室26の内圧PO1が高圧となり、この内圧PO1が第1コイルスプリング7のばね力Fs1に抗してカムリング6を第1コイルスプリング7側へ付勢する。そして、カムリング6は、第1コイルスプリング7側に移動し、偏心量が小さくなる。これに伴い、可変容量形ポンプの吐出量が減少し、メインギャラリ圧Pが所定値P2へ向かって低下する。また、メインギャラリ圧Pが所定値P2以下に低下すると、第1室26の油圧が再び低圧となり、カムリング6が第1室26側の位置に移動し、容量が増加する。 Further, when the engine speed N is higher than the predetermined engine speed N2, when the main gallery pressure P reaches a predetermined value P2, the hydraulic pressure Fp reaches a predetermined value and becomes larger than the spring force Fs2. . Then, the spool 40 slightly moves toward the distal end of the valve body 39 by a predetermined distance (the position of the spool 40 shown in FIG. 6). During this movement, since the duty ratio D is 0%, the rod 50 is at the most retracted position and is separated from the other end of the spool 40 in the axial direction. The second valve opening 31f communicates with the external connection passage 63, and the oil in the second chamber 27 flows through the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, and the third valve opening 62. and discharged to the outside through the external connection path 63 . At this time, the electromagnetic valve 13 is in the second state in which the second chamber 27 and the external connection passage 63 are connected via the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, and the third valve opening 62. be. As a result, the internal pressure PO1 in the first chamber 26 becomes high, and this internal pressure PO1 urges the cam ring 6 toward the first coil spring 7 against the spring force Fs1 of the first coil spring 7 . Then, the cam ring 6 moves toward the first coil spring 7 and the eccentricity is reduced. Accordingly, the discharge amount of the variable displacement pump decreases, and the main gallery pressure P decreases toward the predetermined value P2. Further, when the main gallery pressure P falls below the predetermined value P2, the hydraulic pressure in the first chamber 26 becomes low again, the cam ring 6 moves to the position on the first chamber 26 side, and the capacity increases.
 このように、メインギャラリ圧Pが所定値P2よりも小さいときには、スプール40がソレノイド部29寄りの位置にあり、メインギャラリと第2室27とを連通させる一方、メインギャラリ圧Pが所定値P2に達すると、スプール40がソレノイド部29から離間した位置にあり、第2室27と外部とを連通させる。これにより、メインギャラリ圧Pは、所定値P2および該所定値P2近傍の範囲(制御油圧Pt2)に維持される。 In this way, when the main gallery pressure P is lower than the predetermined value P2, the spool 40 is positioned closer to the solenoid portion 29 and allows communication between the main gallery and the second chamber 27, while the main gallery pressure P decreases to the predetermined value P2. , the spool 40 is at a position separated from the solenoid portion 29, and the second chamber 27 and the outside are communicated. As a result, the main gallery pressure P is maintained at the predetermined value P2 and within a range (control oil pressure Pt2) near the predetermined value P2.
 また、電磁弁13のコイル45に通電がされた場合、つまりデューティ比DがX(0<X<100)%の場合には、スプール40は、該スプール40に掛かる油圧力Fpとロッド50の押圧力Frとの合力Fp+Frと、第2コイルスプリング64のばね力Fs2とに基づいて、バルブボディ39内で軸方向に移動する。より詳細には、合力Fp+Frがばね力Fs2よりも大きい場合には、スプール40は、バルブボディ39の先端部側へ移動する一方、ばね力Fs2が合力Fp+Frよりも大きい場合には、スプール40は、バルブボディ39の後端部側へ移動する。バルブボディ39の一端部側への移動の際には、押圧力Frが油圧力Fpをアシストするので、メインギャラリ圧Pは所定値P2より低い所定の圧力Pxでもってスプール40を移動させる。これに伴い、スプール40により制御される制御油圧も、制御油圧Pt2より低い所定の制御油圧Ptxとなる。また、デューティ比Dが最大値、つまり100%である場合には、スプール40により制御される制御油圧Pt1が、最低の油圧であるP1またはP1近傍の範囲に維持される。 Further, when the coil 45 of the solenoid valve 13 is energized, that is, when the duty ratio D is X (0<X<100)%, the spool 40 changes the hydraulic pressure Fp applied to the spool 40 and the force of the rod 50. It moves in the axial direction within the valve body 39 based on the resultant force Fp+Fr with the pressing force Fr and the spring force Fs2 of the second coil spring 64 . More specifically, when the resultant force Fp+Fr is greater than the spring force Fs2, the spool 40 moves toward the distal end of the valve body 39. On the other hand, when the spring force Fs2 is greater than the resultant force Fp+Fr, the spool 40 , moves to the rear end side of the valve body 39 . When the valve body 39 moves toward one end, the pressing force Fr assists the hydraulic force Fp, so the main gallery pressure P moves the spool 40 with a predetermined pressure Px lower than the predetermined value P2. Along with this, the control oil pressure controlled by the spool 40 also becomes a predetermined control oil pressure Ptx lower than the control oil pressure Pt2. Further, when the duty ratio D is the maximum value, that is, 100%, the control oil pressure Pt1 controlled by the spool 40 is maintained at the lowest oil pressure P1 or in a range near P1.
 なお、機関始動時等の機関が低回転状態にある場合、つまり機関回転数NがN1よりも低い場合には、コイル45に対する通電が遮断され、デューティ比Dが0%となっている。 When the engine is in a low rotation state such as when the engine is started, that is, when the engine speed N is lower than N1, the coil 45 is de-energized and the duty ratio D is 0%.
 [第1の実施形態の効果]
 従来技術の可変容量形オイルポンプでは、メインギャラリからのオイルを第1室に導くとともに電磁弁を介して第2室に導く油路を形成するために、ハウジング本体とカバー部材との合わせ面を利用し、また、場合によっては横穴を形成することにより、吐出ポートを迂回させていた。このため、油路が比較的長く、かつ複雑なものとなり、油路の形成が困難になるという問題があった。
また、可変容量形オイルポンプが大型化する、ハウジング本体とカバー部材との合わせ面のシール性能が低下する、第2室と電磁弁との間の油圧の応答性が低下する等の問題もあった。
[Effect of the first embodiment]
In the conventional variable displacement oil pump, in order to form an oil passage leading the oil from the main gallery to the first chamber and to the second chamber via the solenoid valve, the mating surfaces of the housing body and the cover member are formed. The discharge port was bypassed by utilizing and in some cases forming a lateral hole. Therefore, there is a problem that the oil passage becomes relatively long and complicated, making it difficult to form the oil passage.
In addition, there are problems such as an increase in the size of the variable displacement oil pump, a decrease in the sealing performance of the mating surface between the housing body and the cover member, and a decrease in the responsiveness of the hydraulic pressure between the second chamber and the solenoid valve. rice field.
 第1の実施形態では、可変容量形オイルポンプが、ポンプ構成体の回転軸線O1に沿った方向から見たときに第1室26および第2室27と隣接した位置に直線状に形成された接続路31と、該接続路31の長手方向と交差する方向に分岐し、第1室26と繋がった第1室油路32と、制御弁収容部30から接続路31の長手方向と交差する方向に分岐し、第2室27に繋がった第2室油路34と、を有しており、内部に接続路31の一部を構成する電磁弁13が、制御弁収容部30に挿入されている。 In the first embodiment, the variable displacement oil pump is linearly formed at a position adjacent to the first chamber 26 and the second chamber 27 when viewed along the rotation axis O1 of the pump structure. A connecting passage 31, a first chamber oil passage 32 branched in a direction intersecting the longitudinal direction of the connecting passage 31 and connected to the first chamber 26, and a control valve accommodating portion 30 intersecting the longitudinal direction of the connecting passage 31. and a second chamber oil passage 34 branched in the direction and connected to the second chamber 27 . An electromagnetic valve 13 forming a part of the connection passage 31 is inserted into the control valve accommodating portion 30 . ing.
 このため、電磁弁13自体が唯一の横穴である第1室油路32および第2室油路34に直接繋がった状態で、油路が、電磁弁13の弁部28およびその外周部に設けられたシールリング42によってシールされる。従って、ハウジング本体1とカバー部材2との間の合わせ面による比較的長いシールが必要なくなるので、メインギャラリからのオイルを第1室26や第2室27に導くための油路を容易に形成することができる。また、電磁弁13と第1および第2室26,27との間のシール性の低下を抑制することもできる。また、油路が短くなるので、可変容量形オイルポンプを小型化し、該ポンプに関する製造コストを削減することができる。 Therefore, the solenoid valve 13 itself is directly connected to the first chamber oil passage 32 and the second chamber oil passage 34, which are the only lateral holes, and the oil passages are provided in the valve portion 28 of the solenoid valve 13 and its outer peripheral portion. is sealed by a sealed ring 42. Therefore, since a relatively long seal by the mating surfaces between the housing body 1 and the cover member 2 is not required, an oil passage for guiding oil from the main gallery to the first chamber 26 and the second chamber 27 can be easily formed. can do. Also, deterioration of the sealing performance between the solenoid valve 13 and the first and second chambers 26 and 27 can be suppressed. In addition, since the oil passage is shortened, the variable displacement oil pump can be downsized and the manufacturing cost of the pump can be reduced.
 また、上記第1の実施形態の可変容量形オイルポンプの構成では、電磁弁13が第2室27に近い位置に配置され、メインギャラリからのオイルが直線状の接続路31と、第2室油路34とを含む比較的短い油路を介して第2室27に導かれるので、第2室27への油圧の応答性を向上させることができる。また、第2室27から外部へオイルを排出する際には、第2室油路34および電磁弁13を介してオイルを排出すれば良いので、このような場合にも、油圧の応答性を向上させることができる。 Further, in the configuration of the variable displacement oil pump of the first embodiment, the solenoid valve 13 is arranged at a position close to the second chamber 27, and the oil from the main gallery flows through the straight connecting passage 31 and the second chamber. Since the oil is guided to the second chamber 27 via a relatively short oil passage including the oil passage 34, the responsiveness of hydraulic pressure to the second chamber 27 can be improved. When discharging oil from the second chamber 27 to the outside, the oil can be discharged through the second chamber oil passage 34 and the solenoid valve 13, so even in such a case, the response of the hydraulic pressure can be improved. can be improved.
 さらに、第1の実施形態では、電磁弁13は、先端側通路31bと第2室27を接続する第1状態と、第2室27と外部接続路63を接続する第2状態との間で切り替え可能に構成されている。 Furthermore, in the first embodiment, the solenoid valve 13 is switched between the first state in which the distal end side passage 31b and the second chamber 27 are connected and the second state in which the second chamber 27 and the external connection path 63 are connected. configured to be switchable.
 このため、第1状態では、第2室27にオイルが適宜供給され、一方、第2状態では、第2室27からオイルが適宜排出される。従って、所定の油圧に可変容量形オイルポンプを制御することができる。 Therefore, oil is appropriately supplied to the second chamber 27 in the first state, while oil is appropriately discharged from the second chamber 27 in the second state. Therefore, the variable displacement oil pump can be controlled to a predetermined oil pressure.
 また、第1の実施形態では、電磁弁13の弁部28は、バルブボディ39と、該バルブボディ39内に摺動可能に配置されたスプール40と、バルブボディ39の内周部に固定された円盤状のリテーナ41と、該リテーナ41とスプール40との間に配置された第2コイルスプリング64と、を備えている。 In the first embodiment, the valve portion 28 of the solenoid valve 13 is fixed to the valve body 39, the spool 40 slidably arranged in the valve body 39, and the inner peripheral portion of the valve body 39. and a second coil spring 64 arranged between the retainer 41 and the spool 40 .
 一般に、内燃機関のバルブタイミング制御装置に用いられる電磁弁は、バルブボディ、スプール、弁部用スリーブおよびコイルスプリングを有している。しかし、本実施形態では、円筒状の弁部用スリーブの代わりに、より小型の部品である円盤状のリテーナ41が用いられるので、電磁弁13の構造を簡素化し、電磁弁13にかかる製造コストを削減することができる。 A solenoid valve used in a valve timing control device for an internal combustion engine generally has a valve body, a spool, a valve sleeve, and a coil spring. However, in this embodiment, the disk-shaped retainer 41, which is a smaller component, is used in place of the cylindrical valve sleeve, which simplifies the structure of the solenoid valve 13 and reduces the manufacturing cost of the solenoid valve 13. can be reduced.
 さらに、第1の実施形態では、メインギャラリからのオイルが、先端側通路31bに導入されてバルブボディ39の径方向へ流れ、そして、軸方向通路31cを通じて軸方向へ流れてから、第1バルブ開口31dを介して導入通路31eへ導入される。 Further, in the first embodiment, the oil from the main gallery is introduced into the tip side passage 31b and flows radially through the valve body 39, then axially through the axial passage 31c, and then flows through the first valve. It is introduced into the introduction passage 31e through the opening 31d.
 仮に先端側通路からオイルを導入してスプールに直接油圧を作用させると、スプールが軸方向の油圧の影響を受けて安定的な作動が抑制される虞があった。しかし、第1の実施形態のように、スプール40の軸方向に油圧を直接作用させずにバルブボディ39の径方向外側から迂回させることで、安定的にスプール40を作動させ、電磁弁13をより細かく制御することができる。 If oil is introduced from the tip side passage and hydraulic pressure is directly applied to the spool, there is a risk that the spool will be affected by the axial hydraulic pressure and its stable operation will be suppressed. However, as in the first embodiment, the spool 40 is stably operated by bypassing the hydraulic pressure from the radially outer side of the valve body 39 instead of directly acting in the axial direction of the spool 40, and the solenoid valve 13 is operated. You can have more control.
 また、第1の実施形態では、電磁弁13は、バルブボディ39の後端部に、外部から与えられる電気信号に応じてバルブボディ39の後端部から先端部に向かってスプール40の後端軸部40dを付勢するソレノイド部29を有している。 Further, in the first embodiment, the solenoid valve 13 is attached to the rear end of the valve body 39 in response to an electric signal externally applied to the rear end of the spool 40 from the rear end of the valve body 39 toward the front end thereof. It has a solenoid portion 29 that biases the shaft portion 40d.
 このため、デューティ比Dを適宜制御して第2室27の油圧を調整することで、可変容量形オイルポンプの油圧を無段階に制御することができる。 Therefore, by appropriately controlling the duty ratio D to adjust the hydraulic pressure of the second chamber 27, the hydraulic pressure of the variable displacement oil pump can be controlled steplessly.
 さらに、第1の実施形態では、スプール40は、径方向において後端軸部40dに開口したスプールドレン穴40hと、該スプールドレン穴40hと第2コイルスプリング64の内部とを接続するドレン接続通路40gと、を有している。 Furthermore, in the first embodiment, the spool 40 includes a spool drain hole 40h that opens in the rear end shaft portion 40d in the radial direction, and a drain connection passage that connects the spool drain hole 40h and the inside of the second coil spring 64. 40 g.
 このため、内燃機関の運転中にスプリング収容部65内で膨張した空気が、ドレン接続通路40gおよびスプールドレン穴40hを介して外部に排出される。これにより、膨張した空気によって第2コイルスプリング64の伸張動作および収縮動作が抑制されず、油圧力Fp、ロッド50の押圧力Frおよび第2コイルスプリング64のばね力Fs2のみによって効率良く電磁弁13を作動させることができる。 Therefore, the air expanded in the spring accommodating portion 65 during operation of the internal combustion engine is discharged to the outside through the drain connection passage 40g and the spool drain hole 40h. As a result, expansion and contraction of the second coil spring 64 are not suppressed by the expanded air, and the electromagnetic valve 13 is efficiently operated only by the hydraulic force Fp, the pressing force Fr of the rod 50, and the spring force Fs2 of the second coil spring 64. can be activated.
 また、第1の実施形態では、第2室27は、吐出ポート24から吐出されるオイルの流量が大きくなる方向にカムリング6が動いたときに容積が大きくなる。 Also, in the first embodiment, the volume of the second chamber 27 increases when the cam ring 6 moves in the direction in which the flow rate of the oil discharged from the discharge port 24 increases.
 このように第2室27が構成されている場合には、第2室27の油圧がカムリング6を付勢する方向と同じ方向に、第1コイルスプリング7のばね力が作用する。このため、カムリング6の作動における油圧の寄与率を増加させれば、第1コイルスプリング7を小型化し、可変容量形オイルポンプを簡素化することができる。 When the second chamber 27 is configured in this way, the spring force of the first coil spring 7 acts in the same direction as the hydraulic pressure in the second chamber 27 biases the cam ring 6 . Therefore, by increasing the contribution of the hydraulic pressure to the operation of the cam ring 6, the size of the first coil spring 7 can be reduced and the variable displacement oil pump can be simplified.
 また、小型の第1コイルスプリング7を用いて、主に第2室27の油圧によってカムリング6の移動を制御することで、可変容量形オイルポンプの最低吐出圧を低く設定し、内燃機関の燃料消費率を向上させることができる。 In addition, by controlling the movement of the cam ring 6 mainly by the hydraulic pressure in the second chamber 27 using the small first coil spring 7, the minimum discharge pressure of the variable displacement oil pump is set low, and the fuel of the internal combustion engine is reduced. Consumption rate can be improved.
 さらに、第1の実施形態では、電磁弁13は、ポンプ構成体の回転軸線O1に沿った方向から見たときに、弁部28の先端部が、第1室26と第2室27との間に設けられたカムリング6の一部の領域とオーバーラップするように設けられ、弁部28の先端部の反対側にあるソレノイド部29が、第2室27よりも外側に設けられている。 Furthermore, in the first embodiment, the solenoid valve 13 has a tip portion of the valve portion 28 that is located between the first chamber 26 and the second chamber 27 when viewed in the direction along the rotation axis O1 of the pump structure. A solenoid portion 29 is provided outside the second chamber 27 so as to overlap a part of the cam ring 6 provided therebetween and on the opposite side of the tip portion of the valve portion 28 .
 このような電磁弁13とカムリング6の配置では、電磁弁13がカムリング6の側方に配置される場合と比べて、電磁弁13と第2室27との間の距離が短くなる。従って、第2室27へオイルを供給する際や第2室27からオイルを排出する際に、油圧の応答性を向上させることができる。 With this arrangement of the solenoid valve 13 and the cam ring 6 , the distance between the solenoid valve 13 and the second chamber 27 is shorter than when the solenoid valve 13 is arranged on the side of the cam ring 6 . Therefore, when supplying oil to the second chamber 27 and when discharging oil from the second chamber 27, the responsiveness of the hydraulic pressure can be improved.
 また、第1の実施形態では、接続路31は、ポンプ構成体の回転軸線O1に沿った方向から見たときに、カムリング6のピボットピン22とポンプ構成体の駆動軸3との間に配置されている。 Further, in the first embodiment, the connection path 31 is arranged between the pivot pin 22 of the cam ring 6 and the drive shaft 3 of the pump assembly when viewed in the direction along the rotation axis O1 of the pump assembly. It is
 このため、駆動軸3を挟んでピボットピン22と反対側に接続路31が配置される場合と比べて、接続路31と第1および第2室26,27とが第1および第2室油路32,34を介して短い距離で接続され、第1室26へのオイルの供給および第2室27のオイルの給排を迅速に行うことができる。 Therefore, compared to the case where the connection path 31 is arranged on the opposite side of the pivot pin 22 with the drive shaft 3 interposed therebetween, the connection path 31 and the first and second chambers 26 and 27 are arranged in the first and second chambers. They are connected over a short distance via paths 32 and 34, so that the supply of oil to the first chamber 26 and the supply and discharge of oil to and from the second chamber 27 can be performed quickly.
 さらに、第1の実施形態では、第1室油路32は、ポンプ構成体の回転軸線O1に沿った方向から見たときに、径方向において第1室26のうちカムリング6のピボットピン22側、つまり揺動支点側で開口し、第2室油路34は、ポンプ構成体の回転軸線O1に沿った方向から見たときに、径方向において第2室27のうちカムリング6の揺動支点側で開口する。このとき、接続路31は、ポンプ構成体の回転軸線O1に沿った方向から見たときに、第1室26と第2室27とを最短距離で結ぶ位置に形成される。 Furthermore, in the first embodiment, the first chamber oil passage 32 extends radially from the first chamber 26 toward the pivot pin 22 of the cam ring 6 when viewed in the direction along the rotation axis O1 of the pump assembly. , that is, it opens on the swing fulcrum side, and when viewed along the rotation axis O1 of the pump structure, the second chamber oil passage 34 extends radially from the second chamber 27 at the swing fulcrum of the cam ring 6 . open on the side. At this time, the connection path 31 is formed at a position that connects the first chamber 26 and the second chamber 27 at the shortest distance when viewed from the direction along the rotation axis O1 of the pump assembly.
 このため、接続路31と第1および第2室26,27とが第1および第2室油路32,34を介して最短距離で接続され、第1室26へのオイルの供給および第2室27のオイルの給排をより迅速に行うことができる。 Therefore, the connection path 31 and the first and second chambers 26, 27 are connected at the shortest distance via the first and second chamber oil paths 32, 34, so that oil is supplied to the first chamber 26 and the second chamber 26 is supplied. Oil can be supplied and discharged from the chamber 27 more quickly.
 また、第1の実施形態では、第1室26と接続路31との間に、メインギャラリからのオイルが導入される導入口33が設けられている。 Further, in the first embodiment, an introduction port 33 through which oil from the main gallery is introduced is provided between the first chamber 26 and the connection path 31 .
 このため、導入口33が接続路31に設けられる場合と比べて、導入口33と第1室26との間の距離を短くし、第1室26にオイルを効率的に供給することができる。 Therefore, the distance between the introduction port 33 and the first chamber 26 can be shortened compared to the case where the introduction port 33 is provided in the connection path 31, and the oil can be efficiently supplied to the first chamber 26. .
 [第2の実施形態]
 図8は、第2の実施形態の電磁弁13の断面図である。
[Second embodiment]
FIG. 8 is a cross-sectional view of the solenoid valve 13 of the second embodiment.
 第2の実施形態では、第1の実施形態と異なり、電磁弁13が、一般に内燃機関のバルブタイミング制御装置に用いられる形式の電磁弁と同様の構成を有しており、弁部28が弁部用スリーブ53を有している。 In the second embodiment, unlike the first embodiment, the solenoid valve 13 has the same configuration as a solenoid valve of the type generally used in a valve timing control device for an internal combustion engine, and the valve portion 28 is a valve It has a part sleeve 53 .
 弁部28は、円筒状に形成されたバルブボディ39と、該バルブボディ39の先端部の内周に固定された円筒状の弁部用スリーブ53と、バルブボディ39内に配置され、該バルブボディ39の内周面と弁部用スリーブ53の外周面とに摺動可能に設けられたスプール40と、該スプール40と弁部用スリーブ53との間に設けられた第2コイルスプリング64と、を備えている。 The valve portion 28 includes a cylindrical valve body 39, a cylindrical valve portion sleeve 53 fixed to the inner periphery of the distal end portion of the valve body 39, and a valve portion disposed in the valve body 39. A spool 40 slidably provided on the inner peripheral surface of the body 39 and the outer peripheral surface of the valve sleeve 53, and a second coil spring 64 provided between the spool 40 and the valve sleeve 53. , is equipped with
 バルブボディ39は、穴部39jと、4つの第2室開口39kと、外部接続路63と、4つの空気ドレン穴39mと、を備えている。 The valve body 39 has a hole portion 39j, four second chamber openings 39k, an external connection path 63, and four air drain holes 39m.
 穴部39jは、先端部39hが開口し、該先端部39hから後端部39iに向かって延びている。穴部39jは、ハウジング本体に設けられた図示せぬ接続路入口部に開口している。穴部39jの内周面には、弁部用スリーブ53の固定に供する留め輪54の外周部が嵌めこまれる環状凹部39fが形成されている。 The hole 39j is open at the tip 39h and extends from the tip 39h toward the rear end 39i. The hole 39j opens to a connection path entrance (not shown) provided in the housing body. The inner peripheral surface of the hole 39j is formed with an annular recess 39f into which the outer peripheral portion of the retaining ring 54 used for fixing the valve sleeve 53 is fitted.
 第2室開口39kは、バルブボディ39の後端部39i側において周方向等間隔位置に設けられ、バルブボディ39を径方向に貫通する。第2室開口39kは、可変容量形オイルポンプの第2室と繋がった図示せぬ第2室油路と連通している。 The second chamber openings 39k are provided at equal intervals in the circumferential direction on the rear end portion 39i side of the valve body 39, and penetrate the valve body 39 in the radial direction. The second chamber opening 39k communicates with a second chamber oil passage (not shown) connected to the second chamber of the variable displacement oil pump.
 外部接続路63は、第2室開口39kと後端部39iとの間においてバルブボディ39を径方向に貫通する。外部接続路63は、吐出ポート24から吐出されるオイルの圧力よりも低圧な外部、例えばオイルパンと連通している。 The external connection path 63 radially penetrates the valve body 39 between the second chamber opening 39k and the rear end portion 39i. The external connection path 63 communicates with the outside having a lower pressure than the pressure of the oil discharged from the discharge port 24, such as an oil pan.
 空気ドレン穴39mは、先端部39h付近において周方向等間隔位置に設けられ、バルブボディ39を径方向に貫通する。空気ドレン穴39mは、第2コイルスプリング64を収容するスプリング収容部65と外部とを連通する。 The air drain holes 39m are provided at circumferentially equal intervals in the vicinity of the tip portion 39h, and penetrate the valve body 39 in the radial direction. The air drain hole 39m communicates between the spring accommodating portion 65 that accommodates the second coil spring 64 and the outside.
 弁部用スリーブ53は、円筒状の本体部53aと、該本体部53aの軸方向一端部の外周から径方向外側へ突出した円環状のフランジ部53bと、を有している。 The valve portion sleeve 53 has a cylindrical body portion 53a and an annular flange portion 53b protruding radially outward from the outer circumference of one axial end portion of the body portion 53a.
 本体部53aは、穴部39jと対向したスリーブ軸方向開口53cと、スリーブ軸方向開口53cよりも後端部39i側に設けられ、周方向等間隔位置で径方向に貫通する4つのスリーブ径方向開口53dと、を有している。スリーブ径方向開口53dには、本体部53aの内部からのオイルが導かれる。 The main body portion 53a includes a sleeve axial opening 53c facing the hole portion 39j, and four sleeve axial openings 53c provided on the rear end portion 39i side of the sleeve axial opening 53c and penetrating in the radial direction at equally spaced positions in the circumferential direction. It has an opening 53d. Oil from the inside of the body portion 53a is led to the sleeve radial opening 53d.
 フランジ部53bは、バルブボディ39の穴部39jに設けられた段差部39eに当接された状態で留め輪54によって後端部39i側へ押し付けられることで段差部39eに固定される。図8に示すようにフランジ部53bが段差部39eに固定された状態では、本体部53aは、フランジ部53bとの付け根部から第2室開口39kに対応した軸方向位置までバルブボディ39の軸方向に沿って延びている。本体部53aに隣接したフランジ部53bの面53eは、第2コイルスプリング64の一端部が弾性的に当接する面となる。 The flange portion 53b is fixed to the stepped portion 39e by being pressed toward the rear end portion 39i by the retaining ring 54 while being in contact with the stepped portion 39e provided in the hole portion 39j of the valve body 39. As shown in FIG. 8, when the flange portion 53b is fixed to the stepped portion 39e, the main body portion 53a extends along the axis of the valve body 39 from the joint portion with the flange portion 53b to the axial position corresponding to the second chamber opening 39k. extending along the direction. A surface 53e of the flange portion 53b adjacent to the body portion 53a is a surface with which one end portion of the second coil spring 64 is elastically abutted.
 スプール40は、大径部40aと、中間軸部40bと、中径部40cと、後端軸部40dと、を有している。図8に示すように、大径部40a、中間軸部40bおよび中径部40cの内部には、大径部40aの軸方向一端から中径部40cの軸方向他端へ延びる中央穴部39nが形成されている。中央穴部39nの穴径は、弁部用スリーブ53の外径と対応する大きさに設定されており、このため、中央穴部39nの内周面は、弁部用スリーブ53の外周面に対して摺動可能となっている。 The spool 40 has a large diameter portion 40a, an intermediate shaft portion 40b, a medium diameter portion 40c, and a rear end shaft portion 40d. As shown in FIG. 8, inside the large-diameter portion 40a, the intermediate shaft portion 40b and the medium-diameter portion 40c, a central hole portion 39n extending from one axial end of the large-diameter portion 40a to the other axial end of the medium-diameter portion 40c is provided. is formed. The hole diameter of the central hole portion 39n is set to a size corresponding to the outer diameter of the valve sleeve 53, so that the inner peripheral surface of the central hole portion 39n is aligned with the outer peripheral surface of the valve sleeve 53. It is slidable against.
 大径部40aは、バルブボディ39の先端部39h側から後端部39i側に向かって延びるようにスリーブ軸方向開口53cとスリーブ径方向開口53dとの間に設けられている。 The large diameter portion 40a is provided between the sleeve axial opening 53c and the sleeve radial opening 53d so as to extend from the front end portion 39h side of the valve body 39 toward the rear end portion 39i side.
 中間軸部40bは、大径部40aと軸方向に隣接した位置に設けられたスプール径方向開口40mを有している。スプール径方向開口40mは、中間軸部40bの中央穴部39nに開口し、弁部用スリーブ53のスリーブ径方向開口53dと連通する。スプール径方向開口40mには、本体部53aおよびスリーブ径方向開口53dを通ったオイルが導かれる。スプール径方向開口40mに導かれたオイルは、導入通路31e、第2室開口39kおよび図示せぬ第2室油路を介して図示せぬ第2室へ導かれる。 The intermediate shaft portion 40b has a spool radial opening 40m provided at a position axially adjacent to the large diameter portion 40a. The spool radial opening 40m opens into the central hole portion 39n of the intermediate shaft portion 40b and communicates with the sleeve radial opening 53d of the valve portion sleeve 53 . Oil that has passed through the body portion 53a and the sleeve radial opening 53d is led to the spool radial opening 40m. The oil guided to the spool radial opening 40m is guided to the second chamber (not shown) through the introduction passage 31e, the second chamber opening 39k and the second chamber oil passage (not shown).
 中径部40cは、図8に示すように第2コイルスプリング64が拡張した状態では外部接続路63と第2室開口39kとの間に配置されている。 The medium diameter portion 40c is arranged between the external connection path 63 and the second chamber opening 39k when the second coil spring 64 is expanded as shown in FIG.
 第2コイルスプリング64は、バルブボディ39の後端部39iに向かってスプール40を付勢するように、大径部40aの軸方向一端面40nと弁部用スリーブ53のフランジ部53bの面53eとの間に圧縮状態で配置されている。 The second coil spring 64 urges the spool 40 toward the rear end portion 39i of the valve body 39 so that the one axial end surface 40n of the large diameter portion 40a and the surface 53e of the flange portion 53b of the valve portion sleeve 53 are connected to each other. is placed in a compressed state between
 [第2の実施形態の効果]
 第2の実施形態では、電磁弁13の弁部28は、バルブボディ39と、該バルブボディ39の内周に固定された弁部用スリーブ53と、バルブボディ39の内周面と弁部用スリーブ53の外周面とに摺動可能に設けられたスプール40と、該スプール40と弁部用スリーブ53との間に設けられた第2コイルスプリング(スプール付勢部材)64と、を備えている。
[Effect of Second Embodiment]
In the second embodiment, the valve portion 28 of the solenoid valve 13 includes a valve body 39, a valve portion sleeve 53 fixed to the inner periphery of the valve body 39, an inner peripheral surface of the valve body 39 and a valve portion sleeve 53 fixed to the inner periphery of the valve body 39. A spool 40 slidably provided on the outer peripheral surface of the sleeve 53, and a second coil spring (spool biasing member) 64 provided between the spool 40 and the valve portion sleeve 53. there is
 このため、弁部用スリーブ53の本体部53aにスリーブ径方向開口53dを設けて第2室開口39kと適宜連通させることで、第2室27に導入される油圧をより細かく制御することができる。 Therefore, by providing a sleeve radial opening 53d in the main body portion 53a of the valve sleeve 53 and appropriately communicating with the second chamber opening 39k, the hydraulic pressure introduced into the second chamber 27 can be more finely controlled. .
 また、第2の実施形態では、電磁弁13は、バルブボディ39の後端部39iに、外部から与えられる電気信号に応じてバルブボディ39の後端部39iから先端部39hに向かってスプール40の後端軸部40dを付勢するソレノイド部29を有している。 Further, in the second embodiment, the solenoid valve 13 rotates the spool 40 from the rear end portion 39i of the valve body 39 toward the front end portion 39h in response to an electric signal externally applied to the rear end portion 39i of the valve body 39 . has a solenoid portion 29 for biasing the rear end shaft portion 40d.
 このため、弁部用スリーブ53を有する第2の実施形態の電磁弁13においても、デューティ比Dを適宜制御して第2室の油圧を調整することで、可変容量形オイルポンプの油圧を無段階に制御することができる。 Therefore, even in the solenoid valve 13 of the second embodiment having the valve portion sleeve 53, by appropriately controlling the duty ratio D to adjust the hydraulic pressure in the second chamber, the hydraulic pressure of the variable displacement oil pump is nullified. It can be controlled in stages.
 [第3の実施形態]
 図9は、電磁弁13の非作動状態を示す第3の実施形態の可変容量形オイルポンプの正面図であり、図10は、電磁弁13の作動状態を示す第3の実施形態の可変容量形オイルポンプの正面図である。なお、図9および図10では、オイルの流れを理解し易くするため、電磁弁13がカムリング6の径方向外側に配置されるように示してあるが、実際には、ポンプ構成体の回転軸線O1に沿った方向から見て電磁弁13の弁部28がカムリング6の一部の領域と対向するように配置される。
[Third embodiment]
9 is a front view of the variable displacement oil pump of the third embodiment showing the non-operating state of the solenoid valve 13, and FIG. 10 is a variable displacement oil pump of the third embodiment showing the operating state of the solenoid valve 13. 1 is a front view of a type oil pump. FIG. In FIGS. 9 and 10, the solenoid valve 13 is shown to be arranged radially outward of the cam ring 6 in order to facilitate understanding of the oil flow. The valve portion 28 of the electromagnetic valve 13 is arranged so as to face a partial region of the cam ring 6 when viewed in the direction along O1.
 第3の実施形態では、カムリング6がピボットピンを中心として揺動するのではなく、直線的に移動することにより、ポンプ構成体は、カムリング6の内周中心とポンプ構成体の駆動軸3の回転軸線O1が偏心するように配置される。 In the third embodiment, the cam ring 6 does not swing around the pivot pin but moves linearly, so that the pump assembly is aligned with the center of the inner circumference of the cam ring 6 and the drive shaft 3 of the pump assembly. It is arranged so that the rotation axis O1 is eccentric.
 カムリング6は、該カムリング6の外周部から径方向外側に突出した第1突出部55と、該第1突出部55とは径方向反対側に設けられ、カムリング6の外周部から突出した第2突出部56と、を備えている。 The cam ring 6 includes a first projecting portion 55 projecting radially outward from the outer peripheral portion of the cam ring 6 and a second projecting portion 55 provided radially opposite to the first projecting portion 55 and projecting from the outer peripheral portion of the cam ring 6 . and a protrusion 56 .
 第1突出部55は、ポンプ収容室1aの内周壁に設けられた第1窪み部57の2つの側壁57a,57aの間に摺動可能に配置されている。ここで、第1突出部55の摺動方向は、電磁弁13の長手方向に沿った方向である。第1突出部55の先端部と第1窪み部57の底部との間には、メインギャラリからのオイルが導入される第1室26となっている。 The first protrusion 55 is slidably arranged between two side walls 57a, 57a of a first recess 57 provided in the inner peripheral wall of the pump housing chamber 1a. Here, the sliding direction of the first projecting portion 55 is the direction along the longitudinal direction of the electromagnetic valve 13 . A first chamber 26 into which oil from the main gallery is introduced is formed between the tip of the first protrusion 55 and the bottom of the first recess 57 .
 第2突出部56は、ポンプ収容室1aの内周壁に設けられた第2窪み部58の2つの側壁58a,58aとの間に摺動可能に配置されている。ここで、第2突出部56の摺動方向は、第1突出部55と同様に、電磁弁13の長手方向に沿った方向である。第2突出部56と第2窪み部58の底部との間には、メインギャラリからのオイルが電磁弁13を介して導入可能な第2室27となっている。 The second projecting portion 56 is slidably disposed between two side walls 58a, 58a of a second recessed portion 58 provided in the inner peripheral wall of the pump housing chamber 1a. Here, the sliding direction of the second projecting portion 56 is along the longitudinal direction of the electromagnetic valve 13 as with the first projecting portion 55 . Between the second protrusion 56 and the bottom of the second recess 58 is a second chamber 27 into which oil from the main gallery can be introduced via the solenoid valve 13 .
 また、第2突出部56と第2窪み部58の底部との間には、所定のセット荷重W3により圧縮された第3コイルスプリング59が設けられている。第3コイルスプリング59は、第3コイルスプリング59の付勢力と第2室27の油圧との合力によって、第1室26の油圧に抗してカムリング6を第1室26側へ直線的に移動させる。 A third coil spring 59 that is compressed by a predetermined set load W3 is provided between the second projection 56 and the bottom of the second recess 58 . The third coil spring 59 moves the cam ring 6 linearly toward the first chamber 26 against the hydraulic pressure in the first chamber 26 by the combined force of the biasing force of the third coil spring 59 and the hydraulic pressure in the second chamber 27 . Let
 図9に示すように、電磁弁13が非作動状態のときには、メインギャラリ内のオイルが、第1室油路32、接続路入口部31a、先端側通路31b、軸方向通路31c、第1バルブ開口31dを介して導入通路31eに導かれ、そして、該導入通路31eから第2バルブ開口31f、第2室油路34を介して第2室27に導かれる。 As shown in FIG. 9, when the solenoid valve 13 is in a non-operating state, the oil in the main gallery flows through the first chamber oil passage 32, the connecting passage inlet 31a, the tip side passage 31b, the axial passage 31c, and the first valve. The oil is led to the introduction passage 31e through the opening 31d, and then to the second chamber 27 through the second valve opening 31f and the second chamber oil passage 34 from the introduction passage 31e.
 また、図10に示すように、電磁弁13が作動状態のときには、メインギャラリ内のオイルが、第1室油路32、接続路入口部31a、先端側通路31b、軸方向通路31cおよび第1バルブ開口31dを介して導入通路31eに導かれる。同時に、第2室27内のオイルが、第2室油路34、第2バルブ開口31f、排出用通路60、第3バルブ開口62および外部接続路63を介して外部に排出される。 Further, as shown in FIG. 10, when the solenoid valve 13 is in the operating state, the oil in the main gallery flows through the first chamber oil passage 32, the connection passage inlet portion 31a, the tip side passage 31b, the axial direction passage 31c and the first oil passage. It is led to the introduction passage 31e through the valve opening 31d. At the same time, the oil in the second chamber 27 is discharged to the outside through the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, the third valve opening 62 and the external connection passage 63.
 [第3の実施形態の効果]
 第3の実施形態では、可変容量形オイルポンプにおいて、カムリング6がピボットピンを中心として揺動するのではなく、直線的に移動する。
[Effect of the third embodiment]
In the third embodiment, in the variable displacement oil pump, the cam ring 6 does not swing around the pivot pin but moves linearly.
 このような構成を有した可変容量形オイルポンプによっても、第1の実施形態と同様に、メインギャラリからのオイルを第1室26や第2室27に導くための油路を容易に形成し、シール性の低下を抑制することができる。さらに、可変容量形オイルポンプを小型化し、該ポンプに関する製造コストを削減することもできる。 Even with the variable displacement oil pump having such a configuration, an oil passage for guiding oil from the main gallery to the first chamber 26 and the second chamber 27 can be easily formed as in the first embodiment. , it is possible to suppress the deterioration of the sealing performance. In addition, the variable displacement oil pump can be made smaller and manufacturing costs associated with the pump can be reduced.
 [第4の実施形態]
 図11は、電磁弁13の非作動状態を示す第4の実施形態の可変容量形オイルポンプの正面図であり、図12は、電磁弁13の作動状態を示す第4の実施形態の可変容量形オイルポンプの正面図である。なお、図11および図12では、オイルの流れを理解し易くするため、電磁弁13がカムリング6の径方向外側に配置されるように示してあるが、実際には、ポンプ構成体の回転軸線O1に沿った方向から見て電磁弁13の弁部28がカムリング6の一部の領域と対向するように配置される。
[Fourth embodiment]
11 is a front view of the variable displacement oil pump of the fourth embodiment showing the non-operating state of the solenoid valve 13, and FIG. 12 shows the operating state of the solenoid valve 13 of the variable displacement oil pump of the fourth embodiment. 1 is a front view of a type oil pump. FIG. In FIGS. 11 and 12, the solenoid valve 13 is shown to be disposed radially outward of the cam ring 6 in order to facilitate understanding of the oil flow. The valve portion 28 of the electromagnetic valve 13 is arranged so as to face a partial region of the cam ring 6 when viewed in the direction along O1.
 第4の実施形態の可変容量形オイルポンプでは、第1の実施形態とは異なり、第2室27が、カムリング基準線Mよりも上側に配置されており、第1室26と周方向に隣接するように配置されている。より詳細には、図11および図12に示すようにシール部材として第1および第2シール部材16,18のみが存在し、第1および第2シール部材16,18の双方が、カムリング基準線Mよりも上側に配置されている。そして、第1室26がピボットピン22と第1シール部材16との間に形成され、さらに、第2室27が第1シール部材16と第2シール部材18との間に形成されている。第2室27は、吐出ポート24から吐出されるオイルの流量が小さくなる方向にカムリング6が動いたときに容積が大きくなるように構成されている。 In the variable displacement oil pump of the fourth embodiment, unlike the first embodiment, the second chamber 27 is arranged above the cam ring reference line M and adjacent to the first chamber 26 in the circumferential direction. are arranged to More specifically, as shown in FIGS. 11 and 12, only the first and second seal members 16, 18 are present as seal members, and both the first and second seal members 16, 18 are aligned with the cam ring reference line M is placed above. A first chamber 26 is formed between the pivot pin 22 and the first seal member 16 , and a second chamber 27 is formed between the first seal member 16 and the second seal member 18 . The second chamber 27 is configured such that its volume increases when the cam ring 6 moves in a direction in which the flow rate of oil discharged from the discharge port 24 decreases.
 また、電磁弁13のスプール40が、該スプール40の後端軸部40dの軸方向他端部に設けられた円環状の後端軸部拡径部40oを有している。後端軸部拡径部40oは、中径部40cとスプール40の軸方向に対向する位置に設けられ、中径部40cの外径と同じ大きさの外径を有している。 Further, the spool 40 of the solenoid valve 13 has an annular rear end shaft enlarged diameter portion 40o provided at the other axial end of the rear end shaft portion 40d of the spool 40. As shown in FIG. The rear end shaft portion enlarged diameter portion 40o is provided at a position facing the intermediate diameter portion 40c and the spool 40 in the axial direction, and has the same outer diameter as the outer diameter of the intermediate diameter portion 40c.
 図11に示すように、電磁弁13が非作動状態のときには、メインギャラリ内のオイルが、第1室油路32、接続路入口部31a、先端側通路31b、軸方向通路31c、第1バルブ開口31dを介して導入通路31eに導かれる。同時に、第2室27内のオイルが、第2室油路34、第2バルブ開口31f、排出用通路60、第3バルブ開口62および外部接続路63を介して外部に排出される。 As shown in FIG. 11, when the solenoid valve 13 is in a non-operating state, the oil in the main gallery flows through the first chamber oil passage 32, the connecting passage inlet 31a, the tip side passage 31b, the axial passage 31c, and the first valve. It is led to the introduction passage 31e through the opening 31d. At the same time, the oil in the second chamber 27 is discharged to the outside through the second chamber oil passage 34, the second valve opening 31f, the discharge passage 60, the third valve opening 62 and the external connection passage 63.
 また、図12に示すように、電磁弁13が作動状態のときには、メインギャラリ内のオイルが、第1室油路32、接続路入口部31a、先端側通路31b、軸方向通路31c、第1バルブ開口31d、排出用通路60、第2バルブ開口31f、第2室油路34を介して第2室27に導かれる。 Further, as shown in FIG. 12, when the solenoid valve 13 is in the operating state, the oil in the main gallery flows through the first chamber oil passage 32, the connecting passage inlet 31a, the tip side passage 31b, the axial passage 31c, the first It is led to the second chamber 27 via the valve opening 31d, the discharge passage 60, the second valve opening 31f, and the second chamber oil passage .
 [第4の実施形態の効果]
 第4の実施形態では、第2室27が、カムリング基準線Mよりも上側に配置されており、第1室26と周方向に隣接するように配置されている。
[Effect of the fourth embodiment]
In the fourth embodiment, the second chamber 27 is arranged above the cam ring reference line M and adjacent to the first chamber 26 in the circumferential direction.
 このような構成を有した可変容量形オイルポンプによっても、第1の実施形態と同様に、メインギャラリからのオイルを第1室26や第2室27に導くための油路を容易に形成し、シール性の低下を抑制することができる。さらに、可変容量形オイルポンプを小型化し、該ポンプに関する製造コストを削減することもできる。 Even with the variable displacement oil pump having such a configuration, an oil passage for guiding oil from the main gallery to the first chamber 26 and the second chamber 27 can be easily formed as in the first embodiment. , it is possible to suppress the deterioration of the sealing performance. In addition, the variable displacement oil pump can be made smaller and manufacturing costs associated with the pump can be reduced.
 なお、上記各実施形態では、可変容量形オイルポンプが第1室26および第2室27を有した例を開示したが、可変容量形オイルポンプが第1室のみを有する場合には、当然のことながら、第1室の付近に電磁弁を配置することで該電磁弁が第1室油路の封止となり、また、油路を迂回させる必要もなくなる。
 
In each of the above embodiments, an example in which the variable displacement oil pump has the first chamber 26 and the second chamber 27 is disclosed. However, by arranging the solenoid valve near the first chamber, the solenoid valve seals the oil passage in the first chamber, and there is no need to bypass the oil passage.

Claims (16)

  1.  ポンプ収容室を有するハウジングと、
     前記ポンプ収容室の内部に移動可能に設けられた調整部材と、
     前記調整部材内に設けられたポンプ構成体であって、回転駆動されることによって吸入部から吸入されたオイルを吐出部から吐出すると共に、前記調整部材が移動すると前記吐出部から吐出されるオイルの流量が変化する前記ポンプ構成体と、
     前記ポンプ構成体の回転軸線に対する径方向において、前記ポンプ収容室と前記調整部材との間に形成され、前記吐出部から吐出されたオイルが導かれて、前記吐出部から吐出されるオイルの流量が小さくなる方向に前記調整部材が動いたときに容積が大きくなる第1室と、
     前記ポンプ構成体の回転軸線に対する径方向において、前記ポンプ収容室と前記調整部材との間に形成され、前記吐出部から吐出されたオイルが導かれる第2室と、
     前記ポンプ構成体の回転軸線に沿った方向から見たときに、前記第1室および前記第2室と隣接した位置に直線状に形成されると共に、メインギャラリを通過したオイルが導かれる接続路と、
     前記接続路の長手方向と交差する方向に分岐し、前記第1室と繋がった第1室油路と、
     前記接続路と繋がり、前記接続路よりも大径に形成された制御弁収容部であって、前記接続路が開口する底部と、該底部と対向する位置に開口した制御弁収容口と、前記吐出部から吐出されるオイルの圧力よりも低圧な外部と連通する外部接続路と、を有した前記制御弁収容部と、
     前記制御弁収容部から前記接続路の長手方向と交差する方向に分岐し、前記第2室に繋がった第2室油路と、
     前記制御弁収容部の前記制御弁収容口から前記底部に向かって前記制御弁収容部に挿入された制御弁であって、前記制御弁収容部の底部と前記制御弁の先端部との間で形成される先端側通路に前記第2室油路を接続する前記制御弁と、
     を備えた可変容量形オイルポンプ。
    a housing having a pump chamber;
    an adjustment member movably provided inside the pump housing chamber;
    A pump structure provided in the adjustment member, which is driven to rotate and discharges oil sucked from a suction part from a discharge part, and when the adjustment member moves, the oil is discharged from the discharge part. the pump arrangement that varies the flow rate of
    A flow rate of oil discharged from the discharge portion is formed between the pump housing chamber and the adjustment member in a radial direction with respect to the rotation axis of the pump structure, and the oil discharged from the discharge portion is guided. a first chamber whose volume increases when the adjustment member moves in a direction in which the
    a second chamber formed between the pump accommodating chamber and the adjustment member in a radial direction with respect to the rotation axis of the pump structure, and into which the oil discharged from the discharge portion is guided;
    A connection path formed linearly adjacent to the first chamber and the second chamber when viewed from the direction along the rotation axis of the pump assembly, and through which the oil that has passed through the main gallery is guided. and,
    a first chamber oil passage branched in a direction crossing the longitudinal direction of the connection passage and connected to the first chamber;
    A control valve housing portion connected to the connection path and formed to have a diameter larger than that of the connection path, the control valve housing portion having a bottom opening to the connection path, a control valve housing opening facing the bottom portion, and the control valve housing portion having an external connection passage that communicates with the outside having a lower pressure than the pressure of the oil discharged from the discharge portion;
    a second chamber oil passage branching from the control valve accommodating portion in a direction crossing the longitudinal direction of the connection passage and connected to the second chamber;
    A control valve inserted into the control valve housing portion from the control valve housing opening of the control valve housing portion toward the bottom portion, wherein the control valve housing portion has a bottom portion and a tip end portion of the control valve. the control valve that connects the second chamber oil passage to the tip side passage that is formed;
    Variable displacement oil pump with
  2.  請求項1に記載の可変容量形オイルポンプにおいて、
     前記先端側通路と前記第2室を接続する第1状態と、前記第2室と前記外部接続路を接続する第2状態との間で切り替わることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 1,
    A variable displacement oil pump characterized by switching between a first state in which the tip side passage and the second chamber are connected and a second state in which the second chamber and the external connection path are connected.
  3.  請求項1に記載の可変容量形オイルポンプにおいて、
     前記制御弁は、
     前記接続路が開口する前記制御弁収容部の底部と対向する位置に設けられ、前記制御弁収容部の底部との間に前記先端側通路を形成する固定部と、
     前記制御弁収容部に収容され、前記固定部が内周面に固定される筒状のバルブボディであって、前記制御弁収容部の内周と前記固定部の外周との間で前記先端側通路と繋がり、軸方向通路を形成する凹部と、該凹部に設けられて、前記バルブボディの外周と内周を貫通する第1バルブ開口と、前記第1バルブ開口よりも先端部の反対である後端部側に設けられ、前記バルブボディの外周と内周を貫通し、前記第2室油路と対向する第2バルブ開口と、を有した前記バルブボディと、
     前記バルブボディの内周に収容されたスプールであって、前記第1バルブ開口と前記固定部との間で前記バルブボディの内周と摺動する大径部と、前記大径部と隣接した位置に設けられ、前記バルブボディの内周との間で前記第1バルブ開口を介して前記軸方向通路と繋がる導入通路を形成する中間軸部と、前記大径部と対向する位置に設けられ、前記第2バルブ開口から後端部側にある前記バルブボディの内周面と摺動し、前記大径部よりも小径で、かつ前記中間軸部よりも大径に形成された中径部と、前記中間軸部よりも前記後端部側に設けられた後端軸部と、を有したスプールと、
     前記バルブボディの内周において、前記固定部と前記スプールとの間に設けられ、前記スプールを前記後端部に向かって付勢するスプリングと、
     を備えることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 1,
    The control valve is
    a fixing portion provided at a position facing the bottom portion of the control valve housing portion where the connection path opens, and forming the tip side passage between the bottom portion of the control valve housing portion;
    A cylindrical valve body that is housed in the control valve housing portion and that has the fixing portion fixed to the inner peripheral surface thereof, wherein the distal end side is provided between the inner circumference of the control valve housing portion and the outer circumference of the fixing portion. a recess communicating with the passageway to form an axial passage; a first valve opening provided in the recess and penetrating the outer and inner peripheries of the valve body; the valve body having a second valve opening provided on the rear end side, penetrating the outer and inner circumferences of the valve body and facing the second chamber oil passage;
    A spool accommodated in the inner periphery of the valve body, the large diameter portion sliding on the inner periphery of the valve body between the first valve opening and the fixed portion, and the large diameter portion adjacent to the large diameter portion. provided at a position facing the large diameter portion and an intermediate shaft portion that forms an introduction passage that is connected to the axial passage through the first valve opening between itself and the inner circumference of the valve body. a middle diameter portion sliding on the inner peripheral surface of the valve body located on the rear end side from the second valve opening and having a smaller diameter than the large diameter portion and a larger diameter than the intermediate shaft portion; and a rear end shaft portion provided closer to the rear end portion than the intermediate shaft portion;
    a spring provided between the fixing portion and the spool on the inner circumference of the valve body and biasing the spool toward the rear end portion;
    A variable displacement oil pump characterized by comprising:
  4.  請求項3に記載の可変容量形オイルポンプにおいて、
     前記制御弁は、前記バルブボディの後端部に、外部から与えられる電気信号に応じて前記後端部から前記先端部に向かって前記スプールの後端軸部を付勢するソレノイド部を有することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 3,
    The control valve has a solenoid portion at the rear end portion of the valve body for urging the rear end shaft portion of the spool from the rear end portion toward the tip portion in response to an electric signal applied from the outside. A variable displacement oil pump characterized by
  5.  請求項3に記載の可変容量形オイルポンプにおいて、
     前記スプールは、径方向において前記後端軸部に開口したスプールドレン穴と、前記スプールドレン穴と前記スプリングの内部とを接続するドレン接続通路と、を有し、
     前記バルブボディは、前記後端軸部と前記スリーブとの間に形成された空間と連通し、前記外部接続路と対向する位置に設けられた第3バルブ開口を有することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 3,
    The spool has a spool drain hole that opens in the rear end shaft portion in the radial direction, and a drain connection passage that connects the spool drain hole and the inside of the spring,
    The variable capacity valve body is characterized in that the valve body communicates with a space formed between the rear end shaft portion and the sleeve and has a third valve opening provided at a position facing the external connection path. shape oil pump.
  6.  請求項1に記載の可変容量形オイルポンプにおいて、
     前記制御弁は、
     円筒状に形成されたバルブボディであって、先端部から該先端部とは反対側の後端部に向かって延び、前記先端部に開口した穴部と、前記バルブボディの径方向に設けられ、前記第2室油路と連通する第2室開口と、前記吐出部から吐出されるオイルの圧力によりも低圧な外部と連通する外部接続路と、を有したバルブボディと、
     前記バルブボディの内側において、前記先端部側に固定され、前記先端部から前記後端部に向かって延びたスリーブであって、前記穴部と対向したスリーブ軸方向開口と、前記スリーブ軸方向開口よりも前記後端部側で径方向に設けられたスリーブ径方向開口と、を有したスリーブと、
     前記バルブボディの内周と前記スリーブの外周との間に配置されたスプールであって、前記先端部から前記後端部に向かって、前記スリーブ軸方向開口と前記スリーブ径方向開口との間に設けられ、前記バルブボディの内周と摺動する大径部と、該大径部と隣接した位置に設けられ、前記バルブボディの内周との間で導入通路を形成する中間軸部と、該中間軸部に開口し、前記スリーブ径方向開口と連通するスプール径方向開口と、前記大径部と対向する位置に設けられ、前記外部接続路と前記第2室開口との間に前記中間軸部よりも大きく前記大径部よりも小さく形成され、前記バルブボディの内周と摺動する中径部と、前記中径部と隣接した位置に設けられ、前記バルブボディの内周との間で排出通路を形成する後端軸部と、を有したスプールと、
     前記スプールを前記後端部に向かって付勢するスプール付勢部材と、
     を有することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 1,
    The control valve is
    A valve body formed in a cylindrical shape, extending from a front end portion toward a rear end portion on the opposite side of the front end portion, and having a hole opening in the front end portion and a hole portion provided in the radial direction of the valve body. a valve body having a second chamber opening that communicates with the second chamber oil passage, and an external connection passage that communicates with an outside having a lower pressure than the pressure of the oil discharged from the discharge portion;
    Inside the valve body, a sleeve fixed to the tip portion side and extending from the tip portion toward the rear end portion has a sleeve axial opening facing the hole, and the sleeve axial opening. a sleeve radial opening provided radially on the rearward end side of the sleeve;
    a spool disposed between the inner periphery of the valve body and the outer periphery of the sleeve, the spool extending from the distal end toward the rearward end between the sleeve axial opening and the sleeve radial opening; a large-diameter portion that slides on the inner circumference of the valve body; an intermediate shaft portion that is provided adjacent to the large-diameter portion and forms an introduction passage with the inner circumference of the valve body; A spool radial opening that opens in the intermediate shaft portion and communicates with the sleeve radial opening; A medium-diameter portion that is formed to be larger than the shaft portion and smaller than the large-diameter portion and that slides on the inner circumference of the valve body, and a medium-diameter portion that is provided at a position adjacent to the medium-diameter portion and is located adjacent to the inner circumference of the valve body. a trailing shaft forming a discharge passage therebetween;
    a spool biasing member that biases the spool toward the rear end;
    A variable displacement oil pump characterized by comprising:
  7.  請求項6に記載の可変容量形オイルポンプにおいて、
     前記制御弁は、前記バルブボディの後端部に、外部から与えられる電気信号に応じて前記後端部から前記先端部に向かって前記スプールの後端軸部を付勢するソレノイド部を有することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 6,
    The control valve has a solenoid portion at the rear end portion of the valve body for urging the rear end shaft portion of the spool from the rear end portion toward the tip portion in response to an electric signal applied from the outside. A variable displacement oil pump characterized by
  8.  請求項1に記載の可変容量形オイルポンプにおいて、
     前記第2室は、前記吐出部から吐出されるオイルの流量が大きくなる方向に前記調整部材が動いたときに容積が大きくなることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 1,
    A variable displacement oil pump, wherein the volume of the second chamber increases when the adjusting member moves in a direction in which the flow rate of the oil discharged from the discharge portion increases.
  9.  請求項8に記載の可変容量形オイルポンプにおいて、
     前記ポンプ構成体は、前記調整部材の内周中心と前記ポンプ構成体の駆動軸の回転軸線が偏心して配置され、前記調整部材は、揺動支点を中心に揺動することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 8,
    The pump structure is arranged such that the center of the inner periphery of the adjustment member and the rotation axis of the drive shaft of the pump structure are eccentric, and the adjustment member swings around a swing fulcrum. Capacitive oil pump.
  10.  請求項9に記載の可変容量形オイルポンプにおいて、
     前記制御弁は、前記回転軸線に沿った方向から見たときに、前記先端部が、前記第1室と前記第2室との間に設けられた前記調整部材とオーバーラップするように設けられ、前記先端部の反対側にある前記後端部が、前記第2室よりも外側に設けられることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 9,
    The control valve is provided such that the tip portion overlaps the adjustment member provided between the first chamber and the second chamber when viewed in a direction along the rotation axis. , wherein the rear end opposite to the front end is provided outside the second chamber.
  11.  請求項9に記載の可変容量形オイルポンプにおいて、
     前記接続路は、前記回転軸線に沿った方向から見たときに、前記調整部材の揺動支点と前記ポンプ構成体の駆動軸との間に配置されていることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 9,
    The variable displacement oil, wherein the connection path is arranged between the swing fulcrum of the adjustment member and the drive shaft of the pump assembly when viewed in the direction along the rotation axis. pump.
  12.  請求項11に記載の可変容量形オイルポンプにおいて、
     前記第1室油路は、前記回転軸線に沿った方向から見たときに、前記径方向において前記第1室の前記揺動支点側で開口し、
     前記第2室油路は、前記回転軸線に沿った方向から見たときに、前記径方向において前記第2室の前記揺動支点側で開口することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 11,
    the first chamber oil passage is open on the swing fulcrum side of the first chamber in the radial direction when viewed in the direction along the rotation axis;
    A variable displacement oil pump, wherein the second chamber oil passage opens on the swing fulcrum side of the second chamber in the radial direction when viewed along the rotation axis.
  13.  請求項11に記載の可変容量形オイルポンプにおいて、
     前記第1室と前記接続路との間に、前記メインギャラリからのオイルが導入される導入口が設けられていることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 11,
    A variable displacement oil pump, wherein an inlet for introducing oil from the main gallery is provided between the first chamber and the connecting passage.
  14.  請求項8に記載の可変容量形オイルポンプにおいて、
     前記ポンプ構成体は、前記調整部材の内周の中心と前記ポンプ構成体の駆動軸の回転軸線が偏心して配置され、
     前記調整部材は、直線的に移動することを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 8,
    The pump structure is arranged such that the center of the inner circumference of the adjustment member and the axis of rotation of the drive shaft of the pump structure are eccentric,
    A variable displacement oil pump, wherein the adjustment member moves linearly.
  15.  請求項1に記載の可変容量形オイルポンプにおいて、
     前記第2室は、前記吐出部から吐出されるオイルの流量が小さくなる方向に前記調整部材が動いたときに容積が大きくなることを特徴とする可変容量形オイルポンプ。
    In the variable displacement oil pump according to claim 1,
    A variable displacement oil pump, wherein the volume of the second chamber increases when the adjusting member moves in a direction in which the flow rate of the oil discharged from the discharge portion decreases.
  16.  ポンプ収容室を有するハウジングと、
     前記ポンプ収容室の内部に移動可能に設けられた調整部材と、
     前記調整部材内に設けられたポンプ構成体であって、回転駆動されることによって吸入部から吸入されたオイルを吐出部から吐出すると共に、前記調整部材が移動すると前記吐出部から吐出されるオイルの流量が変化する前記ポンプ構成体と、
     前記ポンプ構成体の回転軸線に対する径方向において、前記ポンプ収容室と前記調整部材との間に形成され、前記吐出部から吐出されたオイルが導かれて、前記吐出部から吐出されるオイルの流量が小さくなる方向に前記調整部材が動いたときに容積が大きくなる第1室と、
     前記ポンプ構成体の回転軸線に沿った方向から見たときに、前記第1室および前記第2室と隣接した位置に設けられ、前記第1室側からメインギャラリを通過したオイルが導かれる油路であって、前記ポンプ構成体の回転軸線に沿った方向から見たときに、前記第1室と前記第2室とを最短距離で結ぶ位置に形成された直線油路部と、該直線油路部から分岐し、前記第1室と繋がった第1室油路と、前記直線油路部から分岐し、前記第2室と繋がった第2室油路と、前記直線油路部から分岐し、前記吐出部から吐出されるオイルの圧力よりも低圧な外部と繋がる外部接続路と、を有した油路と、
     前記直線油路部上に設けられた制御弁であって、前記制御弁の先端部に設けられた先端側通路に前記第2室油路を接続する前記制御弁と、
     を備えた可変容量形オイルポンプ。
    a housing having a pump chamber;
    an adjustment member movably provided inside the pump housing chamber;
    A pump structure provided in the adjustment member, which is driven to rotate and discharges oil sucked from a suction part from a discharge part, and when the adjustment member moves, the oil is discharged from the discharge part. the pump arrangement that varies the flow rate of
    A flow rate of oil discharged from the discharge portion is formed between the pump housing chamber and the adjustment member in a radial direction with respect to the rotation axis of the pump structure, and the oil discharged from the discharge portion is guided. a first chamber whose volume increases when the adjustment member moves in a direction in which the
    Oil provided at a position adjacent to the first chamber and the second chamber when viewed from the direction along the rotation axis of the pump structure, and to which oil that has passed through the main gallery from the first chamber side is guided. a linear oil passage portion formed at a position connecting the first chamber and the second chamber at the shortest distance when viewed from the direction along the rotation axis of the pump assembly; a first chamber oil passage branched from the oil passage portion and connected to the first chamber; a second chamber oil passage branched from the straight oil passage portion and connected to the second chamber; an oil passage having an external connection passage branched and connected to the outside having a lower pressure than the pressure of the oil discharged from the discharge portion;
    a control valve provided on the linear oil passage portion, the control valve connecting the second chamber oil passage to a tip side passage provided at a tip portion of the control valve;
    Variable displacement oil pump with
PCT/JP2022/031801 2021-09-10 2022-08-24 Variable capacity-type oil pump WO2023037875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023546871A JPWO2023037875A1 (en) 2021-09-10 2022-08-24
CN202280060260.0A CN117940669A (en) 2021-09-10 2022-08-24 Variable capacity oil pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-147656 2021-09-10
JP2021147656 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023037875A1 true WO2023037875A1 (en) 2023-03-16

Family

ID=85506627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031801 WO2023037875A1 (en) 2021-09-10 2022-08-24 Variable capacity-type oil pump

Country Status (3)

Country Link
JP (1) JPWO2023037875A1 (en)
CN (1) CN117940669A (en)
WO (1) WO2023037875A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159354A (en) * 2018-10-05 2020-10-01 株式会社山田製作所 Variable displacement oil pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159354A (en) * 2018-10-05 2020-10-01 株式会社山田製作所 Variable displacement oil pump

Also Published As

Publication number Publication date
CN117940669A (en) 2024-04-26
JPWO2023037875A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5688003B2 (en) Variable displacement oil pump
JP5174720B2 (en) Variable displacement pump
JP5620882B2 (en) Variable displacement pump
JP3866410B2 (en) Variable displacement pump
JP6289943B2 (en) Variable displacement pump
JP5993291B2 (en) Variable displacement pump
KR0167866B1 (en) Variable displacement pump
JP5564450B2 (en) Oil pump
JP5897943B2 (en) Vane pump
JP5897945B2 (en) Vane pump
JP6419223B2 (en) Variable displacement pump
JP6838772B2 (en) Variable capacity oil pump
WO2023037875A1 (en) Variable capacity-type oil pump
JP5499151B2 (en) Variable displacement pump
JP6567678B2 (en) Variable displacement oil pump
JP7324158B2 (en) variable displacement pump
WO2018150871A1 (en) Variable displacement oil pump
JP5261235B2 (en) Variable displacement vane pump
WO2020189008A1 (en) Oil pump
WO2021054137A1 (en) Variable displacement pump
JP5238482B2 (en) Variable displacement vane pump
WO2023149098A1 (en) Variable-capacity oil pump
JP6543682B2 (en) Variable displacement pump
WO2023166963A1 (en) Variable displacement oil pump
WO2023037737A1 (en) Variable-capacity oil pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546871

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060260.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22867197

Country of ref document: EP

Kind code of ref document: A1