WO2018150871A1 - Variable displacement oil pump - Google Patents

Variable displacement oil pump Download PDF

Info

Publication number
WO2018150871A1
WO2018150871A1 PCT/JP2018/003077 JP2018003077W WO2018150871A1 WO 2018150871 A1 WO2018150871 A1 WO 2018150871A1 JP 2018003077 W JP2018003077 W JP 2018003077W WO 2018150871 A1 WO2018150871 A1 WO 2018150871A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
variable displacement
cam ring
pump according
piston portion
Prior art date
Application number
PCT/JP2018/003077
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 佐賀
大西 秀明
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018568089A priority Critical patent/JPWO2018150871A1/en
Priority to CN201880011953.4A priority patent/CN110300851A/en
Publication of WO2018150871A1 publication Critical patent/WO2018150871A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members

Definitions

  • the present invention relates to a variable displacement oil pump.
  • variable displacement oil pump hydraulic pressure is introduced into one of two control oil chambers provided between the inner peripheral surface of the pump housing and the outer peripheral surface of the cam ring from a main oil gallery lower than the pump discharge pressure.
  • the other control oil chamber is introduced with a lower hydraulic pressure of the main oil gallery.
  • the pump discharge pressure may enter one of the control oil chambers from the gap (leak), and the cam ring behavior may become unstable.
  • An object of the present invention is to provide a variable displacement oil pump that suppresses leakage of discharge pressure to a control oil chamber and obtains desired pump discharge pressure and flow rate characteristics.
  • a cam ring in which an eccentric amount between the rotation center of the rotor and the center of the rotor changes linearly by moving in a housing portion of the housing, and a direction in which the eccentric amount of the rotor and the cam ring increases.
  • a biasing member that applies a biasing force to the cam ring, and a piston portion that is integrally provided on the outer periphery of the cam ring and that is provided at a position opposite to the biasing direction of the biasing member with respect to the cam ring.
  • a control oil chamber in which oil is introduced from a main oil gallery in which the piston portion is slidably formed on the inner periphery of the housing and supplies lubricating oil to the sliding portion of the internal combustion engine; the piston portion; A sealing member provided at a position on the discharge portion side, which is a sliding surface with the inner wall surface of the control oil chamber.
  • FIG. 2 It is a schematic diagram of the variable displacement oil pump in the first embodiment. It is a disassembled perspective view of the cam ring and seal member which are provided to this embodiment. It is the A section enlarged view of FIG. FIG. 2 is a sectional view taken along line BB in FIG. FIG. 2 is a cross-sectional view taken along the line CC of FIG. It is a schematic diagram explaining the action
  • FIG. 12 is a cross-sectional view taken along the line EE of FIG.
  • FIG. 12 is a sectional view taken along line FF in FIG. 11.
  • FIG. 12 is a cross-sectional view taken along line HH in FIG. 11. It is the II sectional view taken on the line of FIG.
  • FIG. 1 is a schematic diagram of a variable displacement oil pump according to the present embodiment
  • FIG. 2 is an exploded perspective view of a cam ring and a seal member provided for the present embodiment
  • FIG. 3 is an enlarged view of a portion A in FIG. 1 is a cross-sectional view taken along line BB of FIG. 1
  • FIG. 5 is a cross-sectional view taken along line CC of FIG.
  • variable displacement oil pump includes a pump housing 1 and a drive shaft 4 that is rotatably supported through a central portion of a pump housing chamber 3 as a pump housing portion in the pump housing 1. And a cam ring 5 accommodated in the pump accommodating chamber 3 so as to be linearly movable, and a pump structure accommodated inside the cam ring 5.
  • the pump structure is driven to rotate in the counterclockwise direction in FIG. 1 by the drive shaft 4, thereby increasing or decreasing the volume of the pump chamber 13 that is a working chamber formed between the pump ring body and the cam ring 5. It is like that.
  • the pump housing 1 is provided, for example, at a front end portion of a cylinder block (not shown) of the internal combustion engine 19, and as shown in FIG. 1, a pump body 2 having an opening formed at one end side and the pump housing chamber 3 provided therein. And a cover member (not shown) that closes one end opening of the pump body 2.
  • a first control oil chamber 21 and a second control oil chamber 22 which will be described later are provided inside the pump housing 1, and a pilot valve 40 for controlling supply and discharge of hydraulic pressure to the second control oil chamber 22 is provided. It has been. Further, the pilot valve 40 is operated by the electromagnetic force of the electromagnetic actuator 50 in addition to being operated by the hydraulic pressure of the discharge passage 23 as will be described later.
  • the pump body 2 is integrally formed of an aluminum alloy material that is a non-ferrous metal, and a bearing hole (not shown) that rotatably supports one end portion of the drive shaft 4 is formed at a substantially central position of the bottom wall of the pump housing chamber 3. Has been.
  • a suction port 11 which is a suction portion formed so as to open to a region where the volume of each pump chamber 13 is expanded in accordance with the pump action by the pump structure is provided on one side portion of the pump housing chamber 3. Yes.
  • the discharge port 12 which is a discharge portion formed so as to open to a region where the volume of each pump chamber 13 is reduced is opposed to the left and right sides with the bearing hole interposed therebetween. Is provided.
  • the suction port 11 is formed with a suction passage 11a that passes through the wall of the pump body 2 and communicates with the outside.
  • the oil (lubricating oil) in the oil pan 14 is sucked into the suction passage 11a and the suction port 11 by the negative pressure generated by the pump action of the pump structure. This oil is sucked into each pump chamber 13 in the suction area of the suction port 11.
  • the discharge port 12 is formed with a discharge passage 12a that passes through the bottom wall of the pump body 2 and communicates with the outside. Then, the oil pressurized by the pump action is discharged to the discharge port 12.
  • the discharged oil is supplied from the main oil gallery 18 into the internal combustion engine 19 through the discharge passage 12a as shown by the arrow in FIG. That is, it is supplied to each sliding part such as a piston of the internal combustion engine 19 and a valve timing control device.
  • the main oil gallery 18 has a supply passage 18a for supplying lubricating oil into the internal combustion engine 19 and a discharge passage 23 for returning the lubricating oil circulated through the internal combustion engine 19 to the oil pan 14.
  • a supply passage 18a for supplying lubricating oil into the internal combustion engine 19
  • a discharge passage 23 for returning the lubricating oil circulated through the internal combustion engine 19 to the oil pan 14.
  • an oil filter 49 and an oil cooler are provided in the middle of the supply passage 20.
  • a first control oil chamber 21 is formed on the inner wall surface on one side in the radial direction across the cam ring 5 of the pump body 2, and a second control oil chamber 22 that is a recess is formed on the inner wall surface on the other side. Yes.
  • the first control oil chamber 21 is formed in a concave shape on the inner wall surface of the pump body 2 and is formed in a substantially square shape in cross section, and a bottom surface 21a is formed in a V shape. Further, the first control oil chamber 21 has a relatively small overall volume, and a downstream portion 23b of a branch passage 24 branched at a downstream side of a discharge passage 23 described later is opened at an end portion 21a.
  • the second control oil chamber 22 is formed in a concave shape at a position facing the first control oil chamber 21 of the pump body 2 and the pump storage chamber 3 in the radial direction, and has a substantially square cross section. The entire volume of the second control oil chamber 22 is larger than that of the first control oil chamber 21, and the bottom side communicates with the pilot valve 40.
  • the oil after lubricating the sliding portions in the internal combustion engine 19 and the like is supplied to the first and second control oil chambers 22 and 22 through the discharge passage 23. That is, in the discharge passage 23, the upstream portion 23 a communicates with the drain passage of the internal combustion engine 19, and the downstream portion 23 b communicates with the second control oil chamber 22 via the pilot valve 40. Further, a branch passage 24 is formed which branches on the downstream side of the discharge passage 23. The branch passage 24 has a downstream end 24 a that opens to the end 21 a of the first control oil chamber 21.
  • the oil pressure (pump discharge pressure) of the supply passage 20 is caused by the flow resistance and the like. ) Is lower than. Further, the pulse pressure of this oil is sufficiently reduced due to the aforementioned flow resistance and the like.
  • the cover member (not shown) is formed in a substantially plate shape from a non-ferrous metal aluminum alloy material, and is formed in a rectangular shape that is long in the vertical direction following the outer shape of the pump body 2. Further, the outer peripheral side of the inner surface of the cover member is attached to the mounting surface of the pump body 2 on the opening side of the pump housing chamber 3 by a plurality of bolts not shown. Further, a bearing hole that rotatably supports the other end of the drive shaft 4 is formed through the cover member at a position facing the bearing hole of the pump body 2. Further, on the inner surface of the cover member, similarly to the pump body 2, the suction port and the discharge port are disposed so as to face the suction port 11 and the discharge port 12 of the pump body 2. The suction port 11 and the discharge port 12 may be formed on either the pump body 2 side or the cover member side.
  • the drive shaft 4 is supported at one end in the direction of the rotation axis by a bearing hole in the bottom wall of the pump body 2 and at the other end by a bearing hole in the cover member. Further, the drive shaft 4 has a tip end facing the outside linked to the crankshaft via a gear (not shown). Based on the rotational force transmitted from the crankshaft, the drive shaft 4 rotates a rotor 6 described later in the counterclockwise direction in FIG.
  • the pump structure is rotatably accommodated on the inner peripheral side of the cam ring 5, and a rotor 6 having a central portion coupled to the outer periphery of the drive shaft 4, and a plurality of (this book) radially formed in the outer peripheral portion of the rotor 6.
  • seven vanes 7 are housed in a slot 6a so as to be able to move in and out, and a pair of rotors 6 are formed with a smaller diameter than the rotor 6 and are disposed on both sides of the rotor 6 in the rotation axis direction.
  • ring members 8 and 8 8.
  • a chamber 6b having a substantially circular cross section is provided in each of the inner base end portions of the seven slots 6a formed radially outward from the center side of the rotor 6 so as to introduce discharge oil as hydraulic oil. .
  • the chamber 6 b is pushed outward so that the vanes 7 are in sliding contact with the inner surface of the cam ring 5 by the internal pressure and the centrifugal force accompanying the rotation of the rotor 6.
  • Each vane 7 is configured such that, when the rotor 6 rotates, each distal end surface is in sliding contact with the inner peripheral surface of the cam ring 5, and each proximal end surface is in sliding contact with the outer peripheral surface of each of the ring members 8, 8. .
  • the cam ring 5 is integrally formed in a substantially cylindrical shape by ferrous metal by a sintering method.
  • the cam ring 5 has a width in the axial direction, that is, a length along the rotational axis direction of the drive shaft 4 such that the cam ring 5 can slide with a small gap between the bottom surface of the pump housing chamber 3 and the facing surface of the cover member. Is formed.
  • the cam ring 5 is formed with substantially arc-shaped cutout grooves 5a and 5b on the axial end surfaces of the suction port 11 side and the discharge port 12 side, respectively.
  • a first piston portion 25 slidably accommodated in the first control oil chamber 21 is integrally provided at one position (right side in FIG. 1) of the outer peripheral portion of the cam ring 5.
  • the second piston part slidably accommodated in the second control oil chamber 22 at the other position (left side in FIG. 1) opposite to the first piston part 25 across the center of the cam ring 5. 26 is provided integrally.
  • the first piston portion 25 is formed in a substantially rectangular cross section following the cross sectional shape of the first control oil chamber 21. That is, the cross section in the direction orthogonal to the moving direction axis of the cam ring 5 is formed in a quadrangle.
  • the first piston portion 25 is formed such that the length along the rotation axis direction of the drive shaft 4 is the same as the axial width of the cam ring 5.
  • the first piston portion 25 has a tip surface 25a formed in a substantially V shape, like the V-shaped bottom surface 21a of the first control oil chamber 21.
  • the front end surface 25 a is a pressure receiving surface that faces the first control oil chamber 21 and receives the hydraulic pressure in the first control oil chamber 21.
  • the first piston portion 25 has a first seal groove 27 formed on a surface 25b on one side of the four sides, that is, on the side where the downstream end 24a of the branch passage 24 opens.
  • the first seal groove 27 is formed in a substantially quadrangular cross section and is linear with the same length as the axial direction of the cam ring 5 of the side surface 25 b. Is formed.
  • the first seal member 28 is held in the first seal groove 27.
  • the first seal member 28 is held in a first seal body 28 a that slides on the inner wall surface of the first control oil chamber 21 and the bottom of the first seal groove 27, and the first seal body 28 a And a first elastic body 28b that urges the control oil chamber 21 toward the inner wall surface.
  • the first seal body 28a is formed in a substantially rectangular shape in cross section, and is formed in a linear shape along the axial direction of the cam ring 5 with, for example, a fluorine-based resin material having low friction characteristics.
  • a holding groove 28c into which a part of the first elastic body 28b is fitted is linearly formed at the center position in the width direction of the first seal body 28a.
  • the first elastic body 28b is formed of a synthetic rubber material in a substantially circular cross section, and has the same length as the first seal body 28a.
  • the first seal body 28a is pressed against the inner wall surface of the first control oil chamber 21 by the elastic force of the first elastic body 28b to ensure good liquid tightness of the first control oil chamber 21.
  • the second piston portion 26 is formed in a substantially U-shaped cross section and has a base portion 26a coupled to the cam ring 5 and a side wall 26b extending outward from one end side of the base portion 26a along the moving direction of the cam ring 5. And another side wall 26c extending in parallel with the one side wall 26b from the other end side of the base portion 26a.
  • the one side wall 26b and the other side wall 26c are formed to have the same length as that of the first piston portion 25 in the cam ring 5 axis direction.
  • the side walls 26 b and 26 c are slidable on the opposite side surfaces 22 a and 22 b of the second control oil chamber 22, respectively.
  • the entire inner surface 26 f surrounded by the base portion 26 a and both side walls 26 b and 26 c is a pressure receiving surface that receives the hydraulic pressure in the second control oil chamber 22. Therefore, the pressure receiving area of the entire inner surface 26f is formed larger than the pressure receiving area of the front end surface 25a of the first piston portion 25.
  • the one side wall 26 b is formed at the same position on the radially outer side in the moving direction of the first piston portion 25 and the cam ring 5.
  • a second seal groove 29 is formed on the outer surface 26d of the one side wall 26b. As shown in FIG. 2, the second seal groove 29 is formed in a substantially square shape in cross section, and the length is the same as the axial length of the cam ring 5 of the one side wall 26b.
  • a second seal member 30 having the same configuration as the first seal member 28 is held in the second seal groove 29 . That is, the second seal member 30 is held in the second seal body 30a that slides on the inner wall surface of the second control oil chamber 22 and the bottom of the second seal groove 29, and the second seal body 30a is held in the second position. And a second elastic body 30b that urges the control oil chamber 22 toward the inner wall surface.
  • the second seal main body 30a is formed in a substantially rectangular shape in cross section, and is formed in a linear shape along the axial direction of the cam ring 5 with a fluorine-based resin material having low friction characteristics, for example.
  • the second elastic body 30b is formed of a synthetic rubber material in a substantially circular cross section and has the same length as the second seal body 30a. The second seal body 30a is pressed against the opposing inner surface of the second control oil chamber 22 by the elastic force of the second elastic body 30b to ensure good liquid tightness of the second control oil chamber 22. ing.
  • a coil spring 31 that urges the cam ring 5 toward the first control oil chamber 21 via the second piston portion 26 is accommodated in the second control oil chamber 22.
  • the coil spring 31 has one end elastically contacted with the inner surface of the base portion 26a of the second piston portion 26 and the other end elastically contacted with an outer surface of a valve body 41 (to be described later) of the pilot valve 40. Yes.
  • the cam ring 5 is always applied in the direction in which the amount of eccentricity in the direction of the first control oil chamber 21 increases with respect to the rotation center of the rotor 6 by the urging force of the coil spring 31 (right direction in FIG. 1). It is energized. Therefore, in the non-operating state, the V-shaped tip surface 25 a of the first piston portion 25 is pressed against the V-shaped bottom surface 21 a of the first control oil chamber 21. In this state, the cam ring 5 is restricted to a position where the center eccentricity is maximized.
  • the cam ring 5 has a relative pressure between the hydraulic pressure introduced into the first control oil chamber 21 and the hydraulic pressure introduced into the second control oil chamber 22 and the spring load of the coil spring 31 with respect to the rotation center of the rotor 6. To move straight. That is, the cam ring 5 moves in a direction in which the amount of eccentricity with respect to the rotation center of the rotor 6 increases or decreases, thereby controlling the discharge pressure and the discharge flow rate discharged from the discharge port 12.
  • the pilot valve 40 includes a covered cylindrical valve body 41 fixed in the valve hole 1 a of the pump housing 1, and a spool 42 slidably provided inside the valve body 41.
  • the spool 42 is mainly composed of a valve spring 43 as a biasing member that biases the spool 42 in the direction of the annular wall 41a described later.
  • valve body 41 an annular wall 41a on one end side in the axial direction is formed with an introduction port 41b that communicates the downstream end of the discharge passage 23 with the inside. Further, the valve body 41 has a communication hole 44 penetrating in the radial direction that communicates the inside of the valve body 41 and the second control oil chamber 22 at a substantially central position in the axial direction of the peripheral wall.
  • a drain hole 45 that communicates the inside and the outside of the valve body 41 is formed along the radial direction at a position opposite to the communication hole 44 in the radial direction with respect to the central axis of the peripheral wall of the valve body 41. .
  • an air vent hole 41c that ensures good slidability of the spool 42 is formed penetrating along the radial direction.
  • the spool 42 communicates with the communication hole 44 and the drain hole 45 in accordance with the sliding position, or has a closed cylindrical valve body 46 that restricts the communication, and is integrally formed on one end of the valve body 46 in the axial direction.
  • the passage component 47 is formed to have a hollow inner shape, and an annular plate-shaped guide portion 48 formed integrally with one end edge in the axial direction of the channel component 47.
  • the valve body 46 is formed in a cylindrical shape whose outer peripheral surface slides liquid-tightly on the inner peripheral surface of the valve body 41 and exerts a valve function. Further, the valve body 46 is integrally provided with a disk wall 46a on one end side in the axial direction, that is, on one end side on the passage component 47 side. The disc wall 46 a also functions as a pressure receiving portion that receives the hydraulic pressure introduced into a passage portion 47 b (described later) of the passage constitution portion 47.
  • the passage constituting portion 47 is formed in a cylindrical shape extending in the axial direction from the disc wall 46 a toward the introduction port 41 b, and has an outer diameter smaller than that of the valve body 46. Further, a cylindrical passage 47 a is formed on the outer peripheral surface of the passage constituting portion 47 between the inner peripheral surface of the valve body 41.
  • a cylindrical passage portion 47b that always communicates with the introduction port 41b through an opening portion 47d formed on one end side in the axial direction is formed inside the passage constitution portion 47.
  • a second communication hole 47c that communicates the communication hole 44 of the passage portion 47b and the valve body 41 via the cylindrical passage 47a is formed in the peripheral wall of the passage configuration portion 47 along the radial direction.
  • the passage portion 47b is appropriately communicated with the second control oil chamber 22 through the second communication hole 47c, the cylindrical passage 47a, and the communication hole 44 according to the sliding position of the spool 42.
  • the guide portion 48 slides on the inner peripheral surface of the valve body 41 so that the guide portion 48 cooperates with the valve body 46 when the spool 42 slides to ensure stable slidability in the axial direction. It has become.
  • the valve spring 43 is elastically mounted between the inner end surface of the disc wall 46a and the bottom of the valve body 41, and always urges the entire spool 42 in the direction of the annular wall 41a. As shown in FIG. 1, the valve body 46 closes the drain hole 45 at the moving position where the guide portion 48 is in elastic contact with the inner surface of the annular wall 41 a by the biasing force of the valve spring 43 as shown in FIG. 1. It has become.
  • the spool 42 basically changes the moving position in the axial direction based on the relative pressure between the spring force of the valve spring 43 and the hydraulic pressure introduced from the discharge passage 23 to the introduction port 41b. .
  • the electromagnetic actuator 50 controls the moving position of the spool 42 in such a way as to assist the hydraulic pressure from the discharge passage 23.
  • the electromagnetic actuator 50 includes a solenoid casing (not shown), a coil provided inside the solenoid casing via a bobbin, a fixed iron core provided at an axial end of the coil, and an inner peripheral side of the bobbin.
  • a movable plunger provided so as to be slidable in the axial direction, and a push rod provided at the tip of the movable plunger and pressing the spool 42 from the same axial direction as the hydraulic action direction from the discharge passage 23. Has been.
  • the movable plunger moves forward by energization (pulse current) to the coil output from the control unit, and moves backward by the spring force of the coil spring when not energized.
  • the control unit detects the engine operating state based on information signals from various sensors such as a crank angle sensor. Further, the control unit is configured to change the duty ratio, which is the energization amount to the coil of the electromagnetic actuator 50, according to the engine operation state, or to be in a non-energized state.
  • the duty ratio which is the energization amount to the coil of the electromagnetic actuator 50
  • FIG. 7 shows a state in which only the pressure of the discharge passage 23 is applied to the pilot valve 40.
  • 8 to 10 are characteristic diagrams showing the relationship between the engine speed (pump speed) and the pump discharge pressure.
  • the spool 42 is held at a position where the guide portion 48 abuts against the inner surface of the annular wall 41a by the spring force of the valve spring 43. Therefore, the valve body 46 closes the drain hole 45 although the communication hole 44 is opened on the outer peripheral surface.
  • the hydraulic pressure flowing into the branch passage 24 from the discharge passage 23 flows into the first control oil chamber 21 from the downstream end 24 a of the branch passage 24.
  • the oil pressure in the first control oil chamber 21 is the same as the oil pressure in the second control oil chamber 22. Accordingly, the pressure acting on the first piston portion 25 and the second piston portion 26 is the same, and the same pressure directed toward the center of the cam ring 5 acts on both sides of the cam ring 5. However, since the pressure receiving area of the front end surface 25 a of the first piston portion 25 is smaller than the pressure receiving area of the second piston portion 26, a force in the direction of the first control oil chamber 21 is increased with respect to the cam ring 5.
  • the cam ring 5 moves in the direction of the first control oil chamber 21 with respect to the rotation axis center of the rotor 6 by the combined force of the hydraulic pressure in the second control oil chamber 22 and the spring force of the coil spring 31. It is held in the position of maximum eccentricity.
  • the coil of the electromagnetic actuator 50 is deenergized without being energized from the control unit.
  • the pump discharge pressure (hydraulic pressure in the supply passage 20) discharged from the discharge port 12 increases in proportion to the engine speed as the engine speed increases, as shown by the solid line in FIG. It becomes a characteristic.
  • energization pulse signal
  • the spool 42 of the pilot valve 40 gradually slides toward the bottom of the valve body 41 against the spring force of the valve spring 43.
  • the valve body 46 of the spool 42 gradually opens the drain hole 45 while maintaining the state where the communication hole 44 is opened, and the hydraulic pressure in the second control oil chamber 22 is supplied via the communication hole 44 and the cylindrical passage 47a. It is discharged from the drain hole 45 to the outside.
  • the first control oil chamber 21 is always supplied with hydraulic pressure from the discharge passage 23 via the branch passage 24, but this hydraulic pressure may be low.
  • the sliding position of the spool 42 is changed by the duty ratio control from the control unit to the electromagnetic actuator 50 to control the opening / closing of the drain hole 45 and to increase / decrease the opening area. For this reason, the hydraulic pressure in the second control oil chamber 22 changes.
  • the cam ring 5 is linearly moved between the control oil chambers 21 and 22 so that the pump discharge pressure is variably controlled in accordance with the engine speed as shown by the solid line in FIG. Is possible.
  • the hydraulic pressure in the second control oil chamber 22 is discharged from the drain hole 45 through the communication hole 44 and the cylindrical passage 47a as described above, and the inside becomes a low pressure.
  • high hydraulic pressure is introduced into the first control oil chamber 21 from the branch passage 24, pressing the first piston portion 25, and moving the cam ring 5 toward the second control oil chamber 22.
  • the cam ring 5 has a small amount of eccentricity with respect to the rotation center of the rotor 6 and becomes close to the concentricity. Therefore, as shown by the solid line in FIG. 10, the pump discharge pressure becomes a size in the vicinity of the maximum, and an excessive pressure increase is further suppressed.
  • variable displacement oil pump controls the sliding position of the spool 42 of the pilot valve 40 by the hydraulic pressure of the discharge passage 23 and the solenoid force of the electromagnetic actuator 50, thereby controlling the second control oil chamber 22. Control the hydraulic pressure inside.
  • the movement position of the cam ring 5 in the linear direction can be continuously variably controlled, and the pump discharge pressure can be controlled with high accuracy in accordance with the engine operating state.
  • the space between the inner surface of the first control oil chamber 21 located on the discharge port 12 side and the surface 25 b on one side of the first piston portion 25 is effectively sealed by the first seal member 28. Yes.
  • the second seal member 30 also effectively provides a space between the inner wall surface of the second control oil chamber 22 located on the discharge port 12 side and the outer surface 26d of the one side wall 26b of the second piston portion 26. It is sealed. For this reason, it is possible to sufficiently suppress the high hydraulic pressure on the discharge port 12 side from flowing (leaking) into the second control oil chamber 22. Accordingly, the cam ring 5 is held in a stable position with the behavioral instability being suppressed also in this respect. As a result, more stable discharge pressure and flow rate characteristics of the pump can be obtained.
  • first and second seal members 28 and 30 seal only the portions facing the discharge port 12 side of the piston portions 25 and 26, the first and second seal members 28 and 30 can be efficiently sealed.
  • first seal member 28 and the second seal member 30 are pressed against the opposing surfaces of the first control oil chamber 21 and the second control oil chamber 22 in a surface contact state, the sealing performance is improved. Oil leakage from the discharge port 12 side to the control oil chambers 21 and 22 can be minimized.
  • the oil leakage from the discharge port 12 side can be suppressed only by the first and second seal members 28 and 30, and the structure is simplified because only these two members are used.
  • first seal member 28 and the second seal member 30 are formed by simply forming the seal bodies 28a, 30a and the elastic bodies 28b, 30b in a straight line, the manufacture is easy and the increase in cost is suppressed. it can.
  • each seal body 28a, 30a is held in each seal groove 27, 29, it is possible to suppress the displacement of each piston portion 25, 26 during sliding.
  • the seal bodies 28a and 30a are made of a material harder than the elastic bodies 28b and 30b. However, if these materials are changed according to the specifications, the sliding resistance friction can be reduced and the durability can be improved. Improvement can be achieved.
  • the first piston portion 25 is provided on one side of the cam ring 5 in the linear movement direction, and the second piston portion 26 is provided on the other side opposite thereto. As a result, stable movement guidance of the cam ring 5 is performed.
  • the pump housing 1 can be reduced in size as compared with the case where it is provided elsewhere.
  • FIG. 11 to 15 show a second embodiment of the present invention
  • FIG. 11 is a schematic view of a variable displacement oil pump according to the second embodiment
  • FIG. 12 is an exploded perspective view of a cam ring and a seal member used in this embodiment.
  • 13 is an enlarged view of a portion D in FIG. 11
  • FIG. 14 is a cross-sectional view taken along line EE in FIG. 11
  • FIG. 15 is a cross-sectional view taken along line FF in FIG.
  • the shape of the second piston portion 26 is slightly changed, and the configurations of the first and second seal grooves and the first and second seal members are changed.
  • the second piston portion 26 is formed such that the thickness of the base portion 26a is slightly larger than that of the first embodiment.
  • the first seal groove 27 is formed with a third seal groove 32 along the width direction of one side surface 25c continuous with the one side surface 25b. It is formed in an L shape.
  • the first seal groove 27 has the same cross-sectional shape as that of the first embodiment.
  • the first seal member 28 fitted and held in the first seal groove 27 is also composed of a first seal body 28a and a first elastic body 28b.
  • the third seal groove 32 has the same width and depth as the first seal groove 27.
  • the third seal member 33 held in the third seal groove 32 is similarly composed of a third seal body 33a and a third elastic body 33b.
  • the third seal body 33a is formed of a fluorine-based resin material having a low friction characteristic like the first seal body 28a.
  • the third seal body 33 a is formed in an elongated plate shape, and the length thereof is set to the same length as the third seal groove 32.
  • the third elastic body 33b is formed in a substantially circular cross section by a synthetic rubber material, and has the same length as the third seal body 33a.
  • the third seal body 33a is pressed against the opposing inner surface of the second control oil chamber 22 by the elastic force of the third elastic body 33b to ensure good liquid tightness of the second control oil chamber 22. ing.
  • the opposing edge part of the 1st elastic body 28b and the 3rd elastic body 33b is arrange
  • a fourth seal groove 34 is formed on one outer surface 26g in the base part 26a of the second piston part 26.
  • the fourth seal groove 34 is elongated along the width direction of the base portion 26 a, and the depth thereof is the same as that of the second seal groove 29.
  • a fourth seal member 35 is fitted in the fourth seal groove 34.
  • the fourth seal member 35 includes a fourth seal body 35a and a fourth elastic body 35b.
  • the fourth seal body 35a is formed of the same material as the first seal body 28a.
  • the fourth seal body 35a is formed in an elongated plate shape, and the length thereof is set to the same length as the fourth seal groove 34.
  • the fourth elastic body 35b is also formed in a substantially circular shape in cross section by a synthetic rubber material, and has the same length as the fourth seal body 35a.
  • the fourth seal body 35a is pressed against the opposing inner surface of the second control oil chamber 22 by the elastic force of the fourth elastic body 35b to ensure good liquid tightness of the second control oil chamber 22. ing.
  • the opposing edge part of the 2nd elastic body 30b and the 4th elastic body 35b is arrange
  • the corresponding first control oil chamber 21 and the opposed inner wall surface of the second control oil chamber 22 are formed by the third and fourth seal members 33 and 35. Seal the gap. For this reason, the inflow of high hydraulic pressure from the discharge port 12 side to the first control oil chamber 21 and the second control oil chamber 22 can be further effectively suppressed.
  • FIG. 16 to 20 show a third embodiment of the present invention
  • FIG. 16 is a schematic view of a variable displacement oil pump according to the third embodiment
  • FIG. 17 is an exploded perspective view of a cam ring and a seal member used in this embodiment.
  • FIG. 18 is an enlarged view of a portion G in FIG. 16
  • FIG. 19 is a sectional view taken along line HH in FIG. 16
  • FIG. 20 is a sectional view taken along line II in FIG.
  • first seal groove 27 to the fourth seal groove 34 shown in the second embodiment are formed at the same depth as the seal grooves 27 and 29 shown in the first embodiment. Accordingly, the first seal groove 27 and the third seal groove 32 are formed in an L shape having the same depth. The second seal groove 29 and the fourth seal groove 34 are also formed in an L shape having the same depth.
  • the first seal member 28 is integrated with the third seal member 33 by joining opposite ends thereof, and is formed into an elongated L-shape as a whole.
  • the second seal member 30 is integrated with the fourth seal member 35 by coupling the opposite end portions, and is also formed in an elongated L-shape.
  • the first, second, third and fourth seal members 28 to 35 are respectively the first, second, third and fourth seal bodies 28a to 35a and the first, second, third and fourth elastic bodies. 28b to 35b.
  • the first to fourth seal bodies 28a to 35a are made of a fluorine-based resin material having a low friction characteristic as in the first embodiment.
  • the first to fourth elastic bodies 28b to 35b are also formed in a substantially circular cross section by a synthetic rubber material as in the first embodiment, and have the same length as the seal bodies 28a to 35a.
  • the first to fourth seal bodies 28a to 35a are pressed against the opposing inner side surfaces of the first and second control oil chambers 21 and 22 by the elastic force of the elastic bodies 28b to 35b. Good fluid tightness of the oil chambers 21 and 22 is ensured.
  • the manufacturing operation becomes easy. Further, since the seal grooves 27, 29, 32, and 34 have substantially the same depth, the machining operation is facilitated.
  • first and third elastic bodies 28b and 33b and the second and fourth elastic bodies 30b and 35b are also in a butted state.
  • the present invention is not limited to the configuration of each of the above embodiments.
  • the hydraulic pressure introduced into the pilot valve 40 can be directly introduced not only from the discharge passage 23 but also from the supply passage 20. is there.
  • each sealing member such as the first and second sealing members 28 and 30 may be other materials as long as it is a low friction material.
  • the difference in volume between the first and second control oil chambers 21 and 22 can be freely changed according to the specification and size of the pump.
  • each seal groove on the inner wall surface of each control oil chamber and hold each seal member in each seal groove.
  • a housing having a housing portion therein, a rotor disposed in the housing portion and driven to rotate from the outside of the housing, the rotor housed therein, and the interior of the housing portion
  • a plurality of working chambers are formed between a cam ring in which the amount of eccentricity between the rotation center of the rotor and the center of the rotor changes linearly and an inner periphery of the cam ring.
  • a biasing member that applies a biasing force to the cam ring in a direction in which the eccentric amount of the rotor and the cam ring increases, and a biasing member that is integrally provided on the outer periphery of the cam ring and that biases the biasing member against the cam ring.
  • a piston portion provided at a position opposite to the direction and the piston portion slidably formed on the inner periphery of the housing, and lubricates the sliding portion of the internal combustion engine
  • a control oil chamber into which oil is introduced from a main oil gallery that supplies the suction oil, and a suction side region that is formed on one side of the inner peripheral side of the housing and that increases the volume of each working chamber when the rotor is rotationally driven.
  • a seal member provided at a position on the discharge portion side, which is a sliding surface between the piston portion and the inner wall surface of the control oil chamber.
  • the piston portion has a quadrangular cross section in a direction perpendicular to the moving direction axis of the cam ring.
  • the seal member is provided on at least one side of the piston portion on the side of the discharge portion.
  • the seal member is disposed in a seal groove provided on at least one side of the piston portion.
  • the seal member includes a seal body that slides on the inner wall surface of the control oil chamber, and an elastic body that biases the seal body toward the inner wall surface of the control oil chamber.
  • the seal body is made of a material that is harder and has a lower sliding resistance than the elastic body.
  • the seal member is provided on one side of the discharge unit side and at least one side surface connected to the one side.
  • the seal member is disposed in a seal groove provided in the piston portion.
  • a second piston portion provided integrally with the cam ring and provided at a position facing the piston portion in the moving direction of the cam ring is provided.
  • the second piston portion is slidably disposed in a recess formed in the housing, and is a sliding portion between the recess and the second piston portion, and at least the discharge portion.
  • a second seal member is provided at the side position.
  • the second piston portion urges the cam ring toward the control oil chamber by the urging member.
  • the second piston portion has a state in which a pressure lower than the discharge pressure introduced into the concave portion is applied.
  • the second piston portion has a quadrangular cross section in a direction perpendicular to the moving direction axis of the cam ring.
  • the second seal member is provided on one side of the square surface of the second piston portion and on one side continuous to the one side.
  • the second seal member is disposed in a second seal groove formed on at least one side of the second piston portion.
  • the second seal member is biased toward the sliding surface by the second elastic body.
  • the second seal member is provided on one side surface connected to the one side in addition to the one side on the discharge portion side of the second piston portion.
  • a housing having a housing portion inside, A pump structure that is disposed in the housing and discharges the sucked oil to the outside of the housing; a variable member that variably controls the flow rate of oil discharged from the pump structure by movement; and the pump structure A biasing member that biases the variable member in a direction in which the flow rate of oil discharged from the body increases; and a biasing direction of the biasing member that is provided integrally with the variable member and in the moving direction of the variable member.
  • the oil is guided from a main oil gallery which is composed of a piston portion provided at a position opposite to the shaft, the housing and the piston portion, and supplies oil for lubricating the sliding portion of the internal combustion engine.
  • An oil chamber is provided at a position adjacent to the control oil chamber, and the oil discharged from the pump component is guided, so that the housing in the piston portion is guided.
  • a discharge part that applies a pressing force in one direction to the sliding part with the seal, and a seal member that is provided in the sliding part of the housing and the piston part and suppresses oil leakage from the discharge part to the control oil chamber And.
  • control oil chamber is formed in a concave shape on the inner surface of the housing, and the piston portion is slidably disposed in the control oil chamber and has a cross section perpendicular to the moving direction of the variable member.
  • the shape is formed in a quadrangular shape, and the seal member is disposed between the inner wall surface of the control oil chamber and the outer surface of the piston portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

This variable displacement oil pump is provided with: a rotor (6) disposed within a pump containing chamber (3); a cam ring (5), the amount of eccentricity of which relative to the center of rotation of the rotor changes within the pump containing chamber; a first piston section (25) provided integrally with the outer periphery of the cam ring and located on the side of the cam ring which is opposite the side pressed by a coil spring (31); a first control oil chamber (21) which is formed in the inner periphery of the pump body (2) so that the first piston section can slide thereon, and into which oil pressure is introduced through a discharge passage (23) and a branch passage (24); a first seal member (28) held in a first seal groove (27) formed in the surface (25b) of one side of the first piston section and sealing against the inner wall surface of the first control oil chamber. As a result, the leakage of discharge pressure to the control oil chamber is prevented to obtain desired pump discharge pressure and flow rate characteristics.

Description

可変容量形オイルポンプVariable displacement oil pump
 本発明は、可変容量形オイルポンプに関する。 The present invention relates to a variable displacement oil pump.
 近年、自動車用内燃機関の燃費の向上を目的としたオイルポンプとしては、以下の特許文献1に記載された可変容量形オイルポンプが知られている。 In recent years, a variable displacement oil pump described in Patent Document 1 below is known as an oil pump for improving the fuel efficiency of an internal combustion engine for automobiles.
 この可変容量形オイルポンプは、ポンプハウジングの内周面とカムリングの外周面との間に設けられた2つの制御油室の一方に、ポンプ吐出圧よりも低圧なメインオイルギャラリーから油圧が導入される。他方の制御油室には、メインオイルギャラリーの油圧をさらに低くした油圧が導入される。これら、各制御油室内への油圧を制御することによって、カムリングの偏心量を大きく、あるいは小さくなる方向へ移動させてポンプ吐出圧を制御するようになっている。 In this variable displacement oil pump, hydraulic pressure is introduced into one of two control oil chambers provided between the inner peripheral surface of the pump housing and the outer peripheral surface of the cam ring from a main oil gallery lower than the pump discharge pressure. The The other control oil chamber is introduced with a lower hydraulic pressure of the main oil gallery. By controlling the oil pressure into each control oil chamber, the eccentric amount of the cam ring is moved in the direction of increasing or decreasing to control the pump discharge pressure.
国際公開 WO2014/187503 A1International publication WO2014 / 187503 A1
 しかしながら、カムリングの外周の一方側には、吐出ポートの高い油圧が作用し、他方側には吸入ポートの低い油圧が作用する構造になっている。このため、カムリングは、一方側の吐出ポート側の高油圧によって他方側へ押し付けられて、一方の制御油室を構成するハウジングとカムリングの間の隙間が大きくなってしまうおそれがある。 However, a high hydraulic pressure of the discharge port acts on one side of the outer periphery of the cam ring, and a low hydraulic pressure of the suction port acts on the other side. For this reason, the cam ring is pressed against the other side by the high hydraulic pressure on the one discharge port side, and there is a possibility that the gap between the housing constituting the one control oil chamber and the cam ring becomes large.
 そうすると、前記隙間からポンプ吐出圧が一方の制御油室内に、入り込んで(リーク)、カムリングの挙動が不安定になるおそれがある。 Then, the pump discharge pressure may enter one of the control oil chambers from the gap (leak), and the cam ring behavior may become unstable.
 この結果、可変容量形オイルポンプによる所望の吐出圧及び流量特性が得られなくなるおそれがある。 As a result, there is a possibility that desired discharge pressure and flow rate characteristics by the variable displacement oil pump cannot be obtained.
 本発明は、吐出圧の制御油室へのリークを抑制して、所望のポンプ吐出圧及び流量特性が得られる可変容量形オイルポンプを提供することを目的としている。 An object of the present invention is to provide a variable displacement oil pump that suppresses leakage of discharge pressure to a control oil chamber and obtains desired pump discharge pressure and flow rate characteristics.
 本発明の好ましい一態様としては、ハウジングの収容部内を直線的に移動することによりロータの回転中心と自身の中心との偏心量が変化するカムリングと、前記ロータとカムリングの偏心量が大きくなる方向へ前記カムリングに付勢力を付与する付勢部材と、前記カムリングの外周に一体に設けられて、前記カムリングに対する前記付勢部材の付勢方向に対して逆側となる位置に設けられたピストン部と、前記ハウジングの内周に前記ピストン部が摺動可能に形成され、内燃機関の摺動部に潤滑油を供給するメインオイルギャラリーからオイルが導入される制御油室と、前記ピストン部と前記制御油室の内壁面との摺動面であって、前記吐出部側の位置に設けられたシール部材と、を備えている。 As a preferred aspect of the present invention, a cam ring in which an eccentric amount between the rotation center of the rotor and the center of the rotor changes linearly by moving in a housing portion of the housing, and a direction in which the eccentric amount of the rotor and the cam ring increases. A biasing member that applies a biasing force to the cam ring, and a piston portion that is integrally provided on the outer periphery of the cam ring and that is provided at a position opposite to the biasing direction of the biasing member with respect to the cam ring. A control oil chamber in which oil is introduced from a main oil gallery in which the piston portion is slidably formed on the inner periphery of the housing and supplies lubricating oil to the sliding portion of the internal combustion engine; the piston portion; A sealing member provided at a position on the discharge portion side, which is a sliding surface with the inner wall surface of the control oil chamber.
 本発明の一態様によれば、吐出圧の制御油室へのリークを抑制して、所望のポンプ吐出圧及び流量特性を得ることができる。 According to one aspect of the present invention, it is possible to obtain the desired pump discharge pressure and flow rate characteristics by suppressing the leakage of the discharge pressure to the control oil chamber.
第1実施形態における可変容量形オイルポンプの模式図である。It is a schematic diagram of the variable displacement oil pump in the first embodiment. 本実施形態に供されるカムリングとシール部材の分解斜視図である。It is a disassembled perspective view of the cam ring and seal member which are provided to this embodiment. 図1のA部拡大図である。It is the A section enlarged view of FIG. 図1のB-B線断面図である。FIG. 2 is a sectional view taken along line BB in FIG. 図1のC-C線断面図である。FIG. 2 is a cross-sectional view taken along the line CC of FIG. 本実施形態における可変容量形オイルポンプの作動を説明する模式図である。It is a schematic diagram explaining the action | operation of the variable displacement type oil pump in this embodiment. 本実施形態における可変容量形オイルポンプの作動を説明する模式図である。It is a schematic diagram explaining the action | operation of the variable displacement type oil pump in this embodiment. 本実施形態の可変容量形オイルポンプの機関回転数とポンプ吐出圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the engine speed of the variable displacement type oil pump of this embodiment, and pump discharge pressure. 本実施形態の可変容量形オイルポンプの機関回転数とポンプ吐出圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the engine speed of the variable displacement type oil pump of this embodiment, and pump discharge pressure. 本実施形態の可変容量形オイルポンプの機関回転数とポンプ吐出圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the engine speed of the variable displacement type oil pump of this embodiment, and pump discharge pressure. 本発明の第2実施形態における可変容量形オイルポンプの模式図である。It is a schematic diagram of the variable displacement oil pump in the second embodiment of the present invention. 本実施形態に供されるカムリングとシール部材の分解斜視図である。It is a disassembled perspective view of the cam ring and seal member which are provided to this embodiment. 図11のD部拡大図である。It is the D section enlarged view of FIG. 図11のE-E線断面図であるFIG. 12 is a cross-sectional view taken along the line EE of FIG. 図11のF-F線断面図である。FIG. 12 is a sectional view taken along line FF in FIG. 11. 本発明の第3実施形態における可変容量形オイルポンプの模式図である。It is a schematic diagram of the variable displacement oil pump in the third embodiment of the present invention. 本実施形態に供されるカムリングとシール部材の分解斜視図である。It is a disassembled perspective view of the cam ring and seal member which are provided to this embodiment. 図11のG部拡大図である。It is the G section enlarged view of FIG. 図11のH-H線断面図であるFIG. 12 is a cross-sectional view taken along line HH in FIG. 11. 図11のI-I線断面図である。It is the II sectional view taken on the line of FIG.
 以下、本発明に係る可変容量形オイルポンプの実施形態を図面に基づいて詳述する。なお、以下の実施形態では、自動車用内燃機関の摺動部や機関弁の開閉時期制御に供するバルブタイミング制御装置に対して機関の潤滑油を供給する可変容量形オイルポンプに適用したものを示している。
〔第1実施形態〕
 図1は本実施形態における可変容量形オイルポンプの模式図、図2は本実施形態に供されるカムリングとシール部材の分解斜視図、図3は図1のA部拡大図、図4は図1のB-B線断面図、図5は図1のC-C線断面図である。
Hereinafter, embodiments of a variable displacement oil pump according to the present invention will be described in detail with reference to the drawings. In the following embodiments, the present invention is applied to a variable displacement oil pump that supplies engine lubricating oil to a valve timing control device that is used to control the opening / closing timing of sliding parts and engine valves of an internal combustion engine for automobiles. ing.
[First Embodiment]
1 is a schematic diagram of a variable displacement oil pump according to the present embodiment, FIG. 2 is an exploded perspective view of a cam ring and a seal member provided for the present embodiment, FIG. 3 is an enlarged view of a portion A in FIG. 1 is a cross-sectional view taken along line BB of FIG. 1, and FIG. 5 is a cross-sectional view taken along line CC of FIG.
 可変容量形オイルポンプは、図1に示すように、ポンプハウジング1と、該ポンプハウジング1内のポンプ収容部としてのポンプ収容室3の中心部を貫通して回転可能に支持された駆動軸4と、ポンプ収容室3内で直線移動可能に収容されたカムリング5と、該カムリング5の内側に収容されたポンプ構成体と、を備えている。 As shown in FIG. 1, the variable displacement oil pump includes a pump housing 1 and a drive shaft 4 that is rotatably supported through a central portion of a pump housing chamber 3 as a pump housing portion in the pump housing 1. And a cam ring 5 accommodated in the pump accommodating chamber 3 so as to be linearly movable, and a pump structure accommodated inside the cam ring 5.
 ポンプ構成体は、駆動軸4によって図1中、反時計方向へ回転駆動されることにより、カムリング5との間に形成される作動室であるポンプ室13の容積を増減させてポンプ作用を行うようになっている。 The pump structure is driven to rotate in the counterclockwise direction in FIG. 1 by the drive shaft 4, thereby increasing or decreasing the volume of the pump chamber 13 that is a working chamber formed between the pump ring body and the cam ring 5. It is like that.
 ポンプハウジング1は、例えば、内燃機関19の図外のシリンダブロックの前端部に設けられ、図1に示すように、一端側が開口形成され内部に前記ポンプ収容室3が設けられたポンプボディ2と、該ポンプボディ2の一端開口を閉塞する図外のカバー部材と、を備えている。 The pump housing 1 is provided, for example, at a front end portion of a cylinder block (not shown) of the internal combustion engine 19, and as shown in FIG. 1, a pump body 2 having an opening formed at one end side and the pump housing chamber 3 provided therein. And a cover member (not shown) that closes one end opening of the pump body 2.
 ポンプハウジング1の内部には、後述する第1制御油室21と第2制御油室22が設けられていると共に、前記第2制御油室22への油圧の給排制御するパイロット弁40が設けられている。また、パイロット弁40は、後述するように、排出通路23の油圧によって作動する他に、電磁アクチュエータ50の電磁力によって作動するようになっている。 A first control oil chamber 21 and a second control oil chamber 22 which will be described later are provided inside the pump housing 1, and a pilot valve 40 for controlling supply and discharge of hydraulic pressure to the second control oil chamber 22 is provided. It has been. Further, the pilot valve 40 is operated by the electromagnetic force of the electromagnetic actuator 50 in addition to being operated by the hydraulic pressure of the discharge passage 23 as will be described later.
 ポンプボディ2は、非鉄金属であるアルミニウム合金材により一体に形成され、ポンプ収容室3の底壁のほぼ中央位置に駆動軸4の一端部を回転自在に支持する図外の軸受孔が穿設されている。 The pump body 2 is integrally formed of an aluminum alloy material that is a non-ferrous metal, and a bearing hole (not shown) that rotatably supports one end portion of the drive shaft 4 is formed at a substantially central position of the bottom wall of the pump housing chamber 3. Has been.
 さらに、ポンプ収容室3の一方側部には、ポンプ構成体によるポンプ作用に伴い各ポンプ室13の容積が拡大する領域に開口するように形成された吸入部である吸入ポート11が設けられている。 Further, a suction port 11 which is a suction portion formed so as to open to a region where the volume of each pump chamber 13 is expanded in accordance with the pump action by the pump structure is provided on one side portion of the pump housing chamber 3. Yes.
 また、他方側部の内側面には、各ポンプ室13の容積が縮小する領域に開口するように形成された吐出部である吐出ポート12が、それぞれ軸受孔を挟んでほぼ左右で対向するように設けられている。 In addition, on the inner side surface of the other side portion, the discharge port 12 which is a discharge portion formed so as to open to a region where the volume of each pump chamber 13 is reduced is opposed to the left and right sides with the bearing hole interposed therebetween. Is provided.
 吸入ポート11は、ポンプボディ2の壁部を貫通して外部へと連通する吸入通路11aが形成されている。そして、ポンプ構成体のポンプ作用に伴い発生する負圧によってオイルパン14内のオイル(潤滑油)が、吸入通路11a及び吸入ポート11に吸入される。このオイルが、吸入ポート11の吸入領域にある各ポンプ室13に吸入されるようになっている。 The suction port 11 is formed with a suction passage 11a that passes through the wall of the pump body 2 and communicates with the outside. The oil (lubricating oil) in the oil pan 14 is sucked into the suction passage 11a and the suction port 11 by the negative pressure generated by the pump action of the pump structure. This oil is sucked into each pump chamber 13 in the suction area of the suction port 11.
 吐出ポート12は、ポンプボディ2の底壁を貫通して外部へと連通する吐出通路12aが形成されている。そして、ポンプ作用により加圧されたオイルは、吐出ポート12へと吐出される。この吐出オイルは、図1の矢印で示すように、吐出通路12aを通ってメインオイルギャラリー18から内燃機関19内に供給される。つまり、内燃機関19のピストンなどの各摺動部やバルブタイミング制御装置等へと供給される。 The discharge port 12 is formed with a discharge passage 12a that passes through the bottom wall of the pump body 2 and communicates with the outside. Then, the oil pressurized by the pump action is discharged to the discharge port 12. The discharged oil is supplied from the main oil gallery 18 into the internal combustion engine 19 through the discharge passage 12a as shown by the arrow in FIG. That is, it is supplied to each sliding part such as a piston of the internal combustion engine 19 and a valve timing control device.
 メインオイルギャラリー18は、内燃機関19内に潤滑油を供給する供給通路18aと、内燃機関19内を循環した潤滑油をオイルパン14に戻す排出通路23と、を有している。供給通路20の途中には、オイルフィルタ49や図外のオイルクーラが設けられている。 The main oil gallery 18 has a supply passage 18a for supplying lubricating oil into the internal combustion engine 19 and a discharge passage 23 for returning the lubricating oil circulated through the internal combustion engine 19 to the oil pan 14. In the middle of the supply passage 20, an oil filter 49 and an oil cooler (not shown) are provided.
 ポンプボディ2のカムリング5を挟んだ径方向一方側の内壁面には、第1制御油室21が形成され、他方側の内壁面には、凹部である第2制御油室22が形成されている。 A first control oil chamber 21 is formed on the inner wall surface on one side in the radial direction across the cam ring 5 of the pump body 2, and a second control oil chamber 22 that is a recess is formed on the inner wall surface on the other side. Yes.
 第1制御油室21は、ポンプボディ2の内壁面に凹状に形成されて、横断面ほぼ四角形状に形成されていると共に、底面21aがV字形状に切欠形成されている。また、この第1制御油室21は、全体の容積が比較的小さく形成されて、端部21aに後述する排出通路23の下流側で分岐した分岐通路24の下流部23bが開口している
 第2制御油室22は、ポンプボディ2の第1制御油室21とポンプ収容室3を挟んで径方向で対向する位置に凹状に形成され、横断面ほぼ四角形状に形成されている。この第2制御油室22は、全体の容積全体が第1制御油室21よりも倍以上に大きく形成されて、底部側がパイロット弁40に連通している。
The first control oil chamber 21 is formed in a concave shape on the inner wall surface of the pump body 2 and is formed in a substantially square shape in cross section, and a bottom surface 21a is formed in a V shape. Further, the first control oil chamber 21 has a relatively small overall volume, and a downstream portion 23b of a branch passage 24 branched at a downstream side of a discharge passage 23 described later is opened at an end portion 21a. The second control oil chamber 22 is formed in a concave shape at a position facing the first control oil chamber 21 of the pump body 2 and the pump storage chamber 3 in the radial direction, and has a substantially square cross section. The entire volume of the second control oil chamber 22 is larger than that of the first control oil chamber 21, and the bottom side communicates with the pilot valve 40.
 また、第1、第2制御油室22,22には、内燃機関19内の各摺動部などを潤滑した後のオイルが排出通路23を介して供給されるようになっている。つまり、排出通路23は、上流部23aが内燃機関19のドレン通路に連通し、下流部23bがパイロット弁40を介して第2制御油室22に連通している。また、排出通路23の下流側で分岐した分岐通路24が形成されている。この分岐通路24は、下流端24aが第1制御油室21の端部21aに開口している。 Further, the oil after lubricating the sliding portions in the internal combustion engine 19 and the like is supplied to the first and second control oil chambers 22 and 22 through the discharge passage 23. That is, in the discharge passage 23, the upstream portion 23 a communicates with the drain passage of the internal combustion engine 19, and the downstream portion 23 b communicates with the second control oil chamber 22 via the pilot valve 40. Further, a branch passage 24 is formed which branches on the downstream side of the discharge passage 23. The branch passage 24 has a downstream end 24 a that opens to the end 21 a of the first control oil chamber 21.
 この排出通路23内のオイルは、オイルフィルタ49や内燃機関19の各摺動部などを通過して戻されたものであるから、これらの流動抵抗などによって、供給通路20の油圧(ポンプ吐出圧)よりも低圧になっている。また、このオイルは、前述の流動抵抗などによって脈圧が十分に低減されている。 Since the oil in the discharge passage 23 is returned through the oil filter 49 and the sliding portions of the internal combustion engine 19, the oil pressure (pump discharge pressure) of the supply passage 20 is caused by the flow resistance and the like. ) Is lower than. Further, the pulse pressure of this oil is sufficiently reduced due to the aforementioned flow resistance and the like.
 図示しない前記カバー部材は、非鉄金属のアルミニウム合金材によってほぼ板状に形成され、ポンプボディ2の外形状に倣って上下方向に長い矩形状に形成されている。また、カバー部材は、図外の複数のボルトによって内側面の外周側がポンプボディ2のポンプ収容室3の開口部側の取り付け面に取り付けられている。また、カバー部材のポンプボディ2の軸受孔と対向した位置には、駆動軸4の他端部を回転自在に支持する軸受孔が貫通形成されている。そして、このカバー部材の内側面にも、ポンプボディ2と同様に、吸入ポートや吐出ポートがポンプボディ2の吸入ポート11や吐出ポート12に対向配置されている。なお、吸入ポート11や吐出ポート12は、ポンプボディ2側あるいはカバー部材側のいずれか一方側に形成されていても良い。 The cover member (not shown) is formed in a substantially plate shape from a non-ferrous metal aluminum alloy material, and is formed in a rectangular shape that is long in the vertical direction following the outer shape of the pump body 2. Further, the outer peripheral side of the inner surface of the cover member is attached to the mounting surface of the pump body 2 on the opening side of the pump housing chamber 3 by a plurality of bolts not shown. Further, a bearing hole that rotatably supports the other end of the drive shaft 4 is formed through the cover member at a position facing the bearing hole of the pump body 2. Further, on the inner surface of the cover member, similarly to the pump body 2, the suction port and the discharge port are disposed so as to face the suction port 11 and the discharge port 12 of the pump body 2. The suction port 11 and the discharge port 12 may be formed on either the pump body 2 side or the cover member side.
 駆動軸4は、回転軸方向の一端部がポンプボディ2の底壁の軸受孔に軸支されている一方、他端部がカバー部材の軸受孔に軸受けされている。また、駆動軸4は、外部に臨んだ先端部がクランクシャフトに図外のギアを介して連係されている。このクランクシャフトから伝達された回転力に基づいて駆動軸4が後述するロータ6を図1中の反時計方向へと回転させるようになっている。 The drive shaft 4 is supported at one end in the direction of the rotation axis by a bearing hole in the bottom wall of the pump body 2 and at the other end by a bearing hole in the cover member. Further, the drive shaft 4 has a tip end facing the outside linked to the crankshaft via a gear (not shown). Based on the rotational force transmitted from the crankshaft, the drive shaft 4 rotates a rotor 6 described later in the counterclockwise direction in FIG.
 ポンプ構成体は、カムリング5の内周側において回転自在に収容され、中心部が駆動軸4の外周に結合されたロータ6と、該ロータ6の外周部に放射状に切欠形成された複数(本実施形態では7つ)のスロット6a内においてそれぞれ出没自在に収容された7枚のベーン7と、ロータ6より小径に形成され、このロータ6の回転軸方向の両側部に配設された一対のリング部材8,8と、から構成されている。 The pump structure is rotatably accommodated on the inner peripheral side of the cam ring 5, and a rotor 6 having a central portion coupled to the outer periphery of the drive shaft 4, and a plurality of (this book) radially formed in the outer peripheral portion of the rotor 6. In this embodiment, seven vanes 7 are housed in a slot 6a so as to be able to move in and out, and a pair of rotors 6 are formed with a smaller diameter than the rotor 6 and are disposed on both sides of the rotor 6 in the rotation axis direction. And ring members 8 and 8.
 ロータ6の中心側から径方向外側へ放射状に形成された7つのスロット6aの内側基端部には、それぞれ作動油である吐出オイルを導入する横断面ほぼ円形状の室6bが設けられている。この室6bは、内部圧力とロータ6の回転に伴う遠心力とによって各ベーン7がカムリング5の内面に摺接するように外方へと押し出されている。 A chamber 6b having a substantially circular cross section is provided in each of the inner base end portions of the seven slots 6a formed radially outward from the center side of the rotor 6 so as to introduce discharge oil as hydraulic oil. . The chamber 6 b is pushed outward so that the vanes 7 are in sliding contact with the inner surface of the cam ring 5 by the internal pressure and the centrifugal force accompanying the rotation of the rotor 6.
 各ベーン7は、ロータ6の回転時において、各先端面がカムリング5の内周面に摺接すると共に、各基端面が前記各リング部材8,8の外周面にそれぞれ摺接するようになっている。 Each vane 7 is configured such that, when the rotor 6 rotates, each distal end surface is in sliding contact with the inner peripheral surface of the cam ring 5, and each proximal end surface is in sliding contact with the outer peripheral surface of each of the ring members 8, 8. .
 カムリング5は、図1及び図2に示すように、鉄系金属を焼結工法によってほぼ円筒状に一体形成されている。また、カムリング5は、軸方向の幅、つまり駆動軸4の回転軸方向に沿った長さがポンプ収容室3の底面とカバー部材の対向面間で微小隙間をもって摺動可能となる大きさに形成されている。 As shown in FIGS. 1 and 2, the cam ring 5 is integrally formed in a substantially cylindrical shape by ferrous metal by a sintering method. The cam ring 5 has a width in the axial direction, that is, a length along the rotational axis direction of the drive shaft 4 such that the cam ring 5 can slide with a small gap between the bottom surface of the pump housing chamber 3 and the facing surface of the cover member. Is formed.
 なお、カムリング5は、吸入ポート11側と吐出ポート12側の軸方向の端面にほぼ円弧状の切欠溝5a、5bがそれぞれ形成されている。 The cam ring 5 is formed with substantially arc-shaped cutout grooves 5a and 5b on the axial end surfaces of the suction port 11 side and the discharge port 12 side, respectively.
 また、カムリング5の外周部の一方位置(図1中の右側)には、前記第1制御油室21に摺動可能に収容された第1ピストン部25が一体に設けられている。また、この第1ピストン部25に対しカムリング5の中心を挟んだ反対側の他方位置(図1中の左側)には、第2制御油室22に摺動可能に収容された第2ピストン部26が一体に設けられている。 Further, a first piston portion 25 slidably accommodated in the first control oil chamber 21 is integrally provided at one position (right side in FIG. 1) of the outer peripheral portion of the cam ring 5. Further, the second piston part slidably accommodated in the second control oil chamber 22 at the other position (left side in FIG. 1) opposite to the first piston part 25 across the center of the cam ring 5. 26 is provided integrally.
 第1ピストン部25は、第1制御油室21の断面形状に倣って横断面ほぼ矩形状に形成されている。つまり、カムリング5の移動方向軸線に直交する方向の断面が四角形に形成されている。また、第1ピストン部25は、駆動軸4の回転軸方向に沿った長さがカムリング5の軸方向幅と同一に形成されている。 The first piston portion 25 is formed in a substantially rectangular cross section following the cross sectional shape of the first control oil chamber 21. That is, the cross section in the direction orthogonal to the moving direction axis of the cam ring 5 is formed in a quadrangle. The first piston portion 25 is formed such that the length along the rotation axis direction of the drive shaft 4 is the same as the axial width of the cam ring 5.
 また、第1ピストン部25は、先端面25aが第1制御油室21のV字形状の底面21aと同じくほぼV字形状に形成されている。この先端面25aは、第1制御油室21に臨んで該第1制御油室21内の油圧を受ける受圧面になっている。 Also, the first piston portion 25 has a tip surface 25a formed in a substantially V shape, like the V-shaped bottom surface 21a of the first control oil chamber 21. The front end surface 25 a is a pressure receiving surface that faces the first control oil chamber 21 and receives the hydraulic pressure in the first control oil chamber 21.
 そして、第1ピストン部25が第1制御油室21内に最大に入り込んだ位置では、底面21aに先端面25a全体が当接して、カムリング5のそれ以上の直線移動が規制されるようになっている。 And in the position where the 1st piston part 25 entered the maximum in the 1st control oil chamber 21, the front-end | tip surface 25a whole contact | abuts to the bottom face 21a, and the further linear movement of the cam ring 5 comes to be controlled. ing.
 また、第1ピストン部25は、4つの辺のうち吐出ポート12側、つまり分岐通路24の下流端24aが開口する側の一辺の面25bに第1シール溝27が形成されている。この第1シール溝27は、図2及び図3にも示すように、横断面ほぼ四角形状に形成されて、長さが一辺の面25bのカムリング5の軸方向長さと同じ長さで直線状に形成されている。 Also, the first piston portion 25 has a first seal groove 27 formed on a surface 25b on one side of the four sides, that is, on the side where the downstream end 24a of the branch passage 24 opens. As shown in FIGS. 2 and 3, the first seal groove 27 is formed in a substantially quadrangular cross section and is linear with the same length as the axial direction of the cam ring 5 of the side surface 25 b. Is formed.
 また、第1シール溝27には、第1シール部材28が保持されている。この第1シール部材28は、前記第1制御油室21の内壁面に摺動する第1シール本体28aと、第1シール溝27の底部内に保持されて、第1シール本体28aを第1制御油室21の内壁面方向へ付勢する第1弾性体28bと、によって構成されている。 The first seal member 28 is held in the first seal groove 27. The first seal member 28 is held in a first seal body 28 a that slides on the inner wall surface of the first control oil chamber 21 and the bottom of the first seal groove 27, and the first seal body 28 a And a first elastic body 28b that urges the control oil chamber 21 toward the inner wall surface.
 第1シール本体28aは、横断面ほぼ矩形状に形成されて、例えば低摩擦特性を有するフッ素系樹脂材によりカムリング5の軸方向に沿って直線状に細長く形成されている。また、第1シール本体28aの幅方向の中央位置には、第1弾性体28bの一部が嵌り込む保持溝28cが直線状に形成されている。 The first seal body 28a is formed in a substantially rectangular shape in cross section, and is formed in a linear shape along the axial direction of the cam ring 5 with, for example, a fluorine-based resin material having low friction characteristics. In addition, a holding groove 28c into which a part of the first elastic body 28b is fitted is linearly formed at the center position in the width direction of the first seal body 28a.
 第1弾性体28bは合成ゴム材によって横断面ほぼ円形状に形成されて、第1シール本体28aと同じ長さに形成されている。この第1弾性体28bの弾性力によって第1シール本体28aを第1制御油室21の内壁面に押し付けて該第1制御油室21の良好な液密性を確保するようになっている。 The first elastic body 28b is formed of a synthetic rubber material in a substantially circular cross section, and has the same length as the first seal body 28a. The first seal body 28a is pressed against the inner wall surface of the first control oil chamber 21 by the elastic force of the first elastic body 28b to ensure good liquid tightness of the first control oil chamber 21.
 第2ピストン部26は、横断面ほぼコ字形状に形成されて、カムリング5に結合された基部26aと、該基部26aの一端側からカムリング5の移動方向に沿って外側に延びた一側壁26bと、基部26aの他端側から一側壁26bと並行して延びた他側壁26cと、から構成されている。 The second piston portion 26 is formed in a substantially U-shaped cross section and has a base portion 26a coupled to the cam ring 5 and a side wall 26b extending outward from one end side of the base portion 26a along the moving direction of the cam ring 5. And another side wall 26c extending in parallel with the one side wall 26b from the other end side of the base portion 26a.
 一側壁26bと他側壁26cは、カムリング5軸方向の長さが第1ピストン部25と同じ長さに形成されている。また、両側壁26b、26cは、それぞれの外面26d、26eが第2制御油室22の対向両側面22a、22bに摺動可能になっている。さらに、基部26aと両側壁26b、26cで囲まれた内面26fの全体が第2制御油室22内の油圧を受ける受圧面になっている。したがって、この内面26f全体の受圧面積は、第1ピストン部25の先端面25aの受圧面積よりも大きく形成されている。 The one side wall 26b and the other side wall 26c are formed to have the same length as that of the first piston portion 25 in the cam ring 5 axis direction. The side walls 26 b and 26 c are slidable on the opposite side surfaces 22 a and 22 b of the second control oil chamber 22, respectively. Further, the entire inner surface 26 f surrounded by the base portion 26 a and both side walls 26 b and 26 c is a pressure receiving surface that receives the hydraulic pressure in the second control oil chamber 22. Therefore, the pressure receiving area of the entire inner surface 26f is formed larger than the pressure receiving area of the front end surface 25a of the first piston portion 25.
 一側壁26bは、その形成位置が第1ピストン部25とカムリング5の移動方向の径方向外側で同じ位置に形成されている。また、一側壁26bの外面26dには、第2シール溝29が形成されている。この第2シール溝29は、図2に示すように、横断面ほぼ四角形状に形成されて、長さが一側壁26bのカムリング5の軸方向長さと同じ長さ形成されている。 The one side wall 26 b is formed at the same position on the radially outer side in the moving direction of the first piston portion 25 and the cam ring 5. A second seal groove 29 is formed on the outer surface 26d of the one side wall 26b. As shown in FIG. 2, the second seal groove 29 is formed in a substantially square shape in cross section, and the length is the same as the axial length of the cam ring 5 of the one side wall 26b.
 また、第2シール溝29には、第1シール部材28と同じ構成の第2シール部材30が保持されている。つまり、第2シール部材30は、第2制御油室22の内壁面に摺動する第2シール本体30aと、第2シール溝29の底部内に保持されて、第2シール本体30aを第2制御油室22の内壁面方向へ付勢する第2弾性体30bと、によって構成されている。 In the second seal groove 29, a second seal member 30 having the same configuration as the first seal member 28 is held. That is, the second seal member 30 is held in the second seal body 30a that slides on the inner wall surface of the second control oil chamber 22 and the bottom of the second seal groove 29, and the second seal body 30a is held in the second position. And a second elastic body 30b that urges the control oil chamber 22 toward the inner wall surface.
 第2シール本体30aは、横断面ほぼ矩形状に形成されて、例えば低摩擦特性を有するフッ素系樹脂材によりカムリング5の軸方向に沿って直線状に細長く形成されている。第2弾性体30bは合成ゴム材によって横断面ほぼ円形状に形成されて、第2シール本体30aと同じ長さに形成されている。この第2弾性体30bの弾性力によって第2シール本体30aを、第2制御油室22の対向する内側面に押し付けて該第2制御油室22の良好な液密性を確保するようになっている。 The second seal main body 30a is formed in a substantially rectangular shape in cross section, and is formed in a linear shape along the axial direction of the cam ring 5 with a fluorine-based resin material having low friction characteristics, for example. The second elastic body 30b is formed of a synthetic rubber material in a substantially circular cross section and has the same length as the second seal body 30a. The second seal body 30a is pressed against the opposing inner surface of the second control oil chamber 22 by the elastic force of the second elastic body 30b to ensure good liquid tightness of the second control oil chamber 22. ing.
 また、第2制御油室22内には、図1に示すように、第2ピストン部26を介してカムリング5を第1制御油室21方向へ付勢するコイルばね31が収容されている。 Further, as shown in FIG. 1, a coil spring 31 that urges the cam ring 5 toward the first control oil chamber 21 via the second piston portion 26 is accommodated in the second control oil chamber 22.
 このコイルばね31は、一端部が第2ピストン部26の基部26aの内面に弾接し、他端部がパイロット弁40の後述するバルブボディ41の外面に弾接して、予めセット荷重が付与されている。 The coil spring 31 has one end elastically contacted with the inner surface of the base portion 26a of the second piston portion 26 and the other end elastically contacted with an outer surface of a valve body 41 (to be described later) of the pilot valve 40. Yes.
 このように、カムリング5は、コイルばね31の付勢力によって、ロータ6の回転中心に対して第1制御油室21方向への偏心量が増大する方向(図1中の右方向)に常に付勢されている。したがって、非作動状態では、第1ピストン部25のV字形状の先端面25aが第1制御油室21のV字形状の底面21aに押し付けられた状態となっている。この状態において、カムリング5は、中心の偏心量が最大となる位置に規制されている。 As described above, the cam ring 5 is always applied in the direction in which the amount of eccentricity in the direction of the first control oil chamber 21 increases with respect to the rotation center of the rotor 6 by the urging force of the coil spring 31 (right direction in FIG. 1). It is energized. Therefore, in the non-operating state, the V-shaped tip surface 25 a of the first piston portion 25 is pressed against the V-shaped bottom surface 21 a of the first control oil chamber 21. In this state, the cam ring 5 is restricted to a position where the center eccentricity is maximized.
 そして、カムリング5は、第1制御油室21に導入される油圧と、第2制御油室22に導入される油圧およびコイルばね31のばね荷重と、の相対圧によってロータ6の回転中心に対して直線移動する。つまり、カムリング5が、ロータ6の回転中心に対する偏心量が増加する方向か、あるいは減少する方向に移動して、吐出ポート12から吐出される吐出圧と吐出流量を制御するようになっている。 The cam ring 5 has a relative pressure between the hydraulic pressure introduced into the first control oil chamber 21 and the hydraulic pressure introduced into the second control oil chamber 22 and the spring load of the coil spring 31 with respect to the rotation center of the rotor 6. To move straight. That is, the cam ring 5 moves in a direction in which the amount of eccentricity with respect to the rotation center of the rotor 6 increases or decreases, thereby controlling the discharge pressure and the discharge flow rate discharged from the discharge port 12.
 パイロット弁40は、図1に示すように、ポンプハウジング1のバルブ孔1a内に固定された有蓋円筒状のバルブボディ41と、該バルブボディ41の内部に摺動可能に設けられたスプール42と、該スプール42を、後述する円環壁41a方向へ付勢する付勢部材としてのバルブスプリング43と、から主として構成されている。 As shown in FIG. 1, the pilot valve 40 includes a covered cylindrical valve body 41 fixed in the valve hole 1 a of the pump housing 1, and a spool 42 slidably provided inside the valve body 41. The spool 42 is mainly composed of a valve spring 43 as a biasing member that biases the spool 42 in the direction of the annular wall 41a described later.
 バルブボディ41は、軸方向の一端側に有する円環壁41aに排出通路23の下流端と内部を連通する導入口41bが形成されている。また、バルブボディ41は、周壁の軸方向のほぼ中央位置にバルブボディ41内と第2制御油室22を連通する連通孔44が径方向に沿って貫通形成されている。 In the valve body 41, an annular wall 41a on one end side in the axial direction is formed with an introduction port 41b that communicates the downstream end of the discharge passage 23 with the inside. Further, the valve body 41 has a communication hole 44 penetrating in the radial direction that communicates the inside of the valve body 41 and the second control oil chamber 22 at a substantially central position in the axial direction of the peripheral wall.
 また、バルブボディ41の周壁の中心軸線に対して連通孔44と径方向反対側の位置には、バルブボディ41内部と外部とを連通するドレン孔45が径方向に沿って貫通形成されている。このドレン孔45の近傍には、スプール42の良好な摺動性を確保する空気抜き孔41cが径方向に沿って貫通形成されている。 Further, a drain hole 45 that communicates the inside and the outside of the valve body 41 is formed along the radial direction at a position opposite to the communication hole 44 in the radial direction with respect to the central axis of the peripheral wall of the valve body 41. . In the vicinity of the drain hole 45, an air vent hole 41c that ensures good slidability of the spool 42 is formed penetrating along the radial direction.
 スプール42は、摺動位置に応じて連通孔44とドレン孔45とを連通し、あるいはこれらの連通を規制する有蓋円筒状の弁体46と、該弁体46の軸方向一端側に一体に形成され、内部中空状の通路構成部47と、該通路構成部47の軸方向一端縁に一体に形成された円環板状のガイド部48と、を有している。 The spool 42 communicates with the communication hole 44 and the drain hole 45 in accordance with the sliding position, or has a closed cylindrical valve body 46 that restricts the communication, and is integrally formed on one end of the valve body 46 in the axial direction. The passage component 47 is formed to have a hollow inner shape, and an annular plate-shaped guide portion 48 formed integrally with one end edge in the axial direction of the channel component 47.
 弁体46は、外周面がバルブボディ41の内周面を液密的に摺動して弁機能を発揮する筒状に形成されている。また、弁体46は、軸方向の一端側、つまり通路構成部47側の一端側に円板壁46aが一体に設けられている。この円板壁46aは、通路構成部47の後述する通路部47b内に導入される油圧を受ける受圧部としても機能する。 The valve body 46 is formed in a cylindrical shape whose outer peripheral surface slides liquid-tightly on the inner peripheral surface of the valve body 41 and exerts a valve function. Further, the valve body 46 is integrally provided with a disk wall 46a on one end side in the axial direction, that is, on one end side on the passage component 47 side. The disc wall 46 a also functions as a pressure receiving portion that receives the hydraulic pressure introduced into a passage portion 47 b (described later) of the passage constitution portion 47.
 通路構成部47は、円板壁46aから導入口41b方向へ軸方向に延びた円筒状に形成されて、その外径が弁体46よりも小さく設定されている。また、通路構成部47の外周面には、バルブボディ41の内周面との間に筒状通路47aが形成されている。 The passage constituting portion 47 is formed in a cylindrical shape extending in the axial direction from the disc wall 46 a toward the introduction port 41 b, and has an outer diameter smaller than that of the valve body 46. Further, a cylindrical passage 47 a is formed on the outer peripheral surface of the passage constituting portion 47 between the inner peripheral surface of the valve body 41.
 さらに、通路構成部47の内部には、軸方向の一端側に形成された開口部47dを介して導入口41bに常に連通する円柱状の通路部47bが形成されている。通路構成部47の周壁には、通路部47bとバルブボディ41の連通孔44を、筒状通路47aを介して連通する第2連通孔47cが径方向に沿って貫通形成されている。 Furthermore, a cylindrical passage portion 47b that always communicates with the introduction port 41b through an opening portion 47d formed on one end side in the axial direction is formed inside the passage constitution portion 47. A second communication hole 47c that communicates the communication hole 44 of the passage portion 47b and the valve body 41 via the cylindrical passage 47a is formed in the peripheral wall of the passage configuration portion 47 along the radial direction.
 したがって、通路部47bは、スプール42の摺動位置に応じて第2連通孔47cと筒状通路47a及び連通孔44を介して第2制御油室22に適宜連通するようになっている。 Therefore, the passage portion 47b is appropriately communicated with the second control oil chamber 22 through the second communication hole 47c, the cylindrical passage 47a, and the communication hole 44 according to the sliding position of the spool 42.
 ガイド部48は、外周面がバルブボディ41の内周面に摺動して、スプール42の摺動時において弁体46と協働して軸方向への安定した摺動性を確保するようになっている。 The guide portion 48 slides on the inner peripheral surface of the valve body 41 so that the guide portion 48 cooperates with the valve body 46 when the spool 42 slides to ensure stable slidability in the axial direction. It has become.
 バルブスプリング43は、円板壁46aの内端面とバルブボディ41の底部との間に弾装されて、スプール42全体を常に円環壁41a方向へ付勢している。そして、スプール42が、図1に示すように、バルブスプリング43の付勢力でガイド部48が円環壁41aの内面に弾接している移動位置では、弁体46がドレン孔45を閉止するようになっている。 The valve spring 43 is elastically mounted between the inner end surface of the disc wall 46a and the bottom of the valve body 41, and always urges the entire spool 42 in the direction of the annular wall 41a. As shown in FIG. 1, the valve body 46 closes the drain hole 45 at the moving position where the guide portion 48 is in elastic contact with the inner surface of the annular wall 41 a by the biasing force of the valve spring 43 as shown in FIG. 1. It has become.
 よって、スプール42は、基本的にはバルブスプリング43のばね力と、排出通路23から導入口41bに導入された油圧との相対圧に基づいて軸方向の移動位置を変化させるようになっている。 Therefore, the spool 42 basically changes the moving position in the axial direction based on the relative pressure between the spring force of the valve spring 43 and the hydraulic pressure introduced from the discharge passage 23 to the introduction port 41b. .
 電磁アクチュエータ50は、排出通路23からの油圧をアシストする形でスプール42の移動位置を制御するものである。この電磁アクチュエータ50は、図外のソレノイドケーシングと、該ソレノイドケーシングの内部にボビンを介して設けられたコイルと、該コイルの軸方向端部に設けられた固定鉄心と、ボビンの内周側に軸方向へ摺動可能に設けられた可動プランジャと、該可動プランジャの先端部に設けられて、スプール42を排出通路23からの油圧作用方向と同じ軸方向から押圧するプッシュロッドと、から主として構成されている。 The electromagnetic actuator 50 controls the moving position of the spool 42 in such a way as to assist the hydraulic pressure from the discharge passage 23. The electromagnetic actuator 50 includes a solenoid casing (not shown), a coil provided inside the solenoid casing via a bobbin, a fixed iron core provided at an axial end of the coil, and an inner peripheral side of the bobbin. A movable plunger provided so as to be slidable in the axial direction, and a push rod provided at the tip of the movable plunger and pressing the spool 42 from the same axial direction as the hydraulic action direction from the discharge passage 23. Has been.
 可動プランジャは、コントロールユニットから出力されたコイルへの通電(パルス電流)によって進出移動し、非通電によってコイルスプリングのばね力によって後退移動するようになっている。 The movable plunger moves forward by energization (pulse current) to the coil output from the control unit, and moves backward by the spring force of the coil spring when not energized.
 コントロールユニットは、クランク角センサなどの各種のセンサ類からの情報信号に基づいて機関運転状態を検出する。また、コントロールユニットは、機関運転状態に応じて電磁アクチュエータ50のコイルへの通電量であるデューティ比を変化させるか、非通電状態とするようになっている。
〔可変容量形オイルポンプの作用〕
 以下、本実施形態に係る可変容量形オイルポンプの作用について簡単に説明する。図6はパイロット弁40に対して排出通路23の油圧と電磁アクチュエータの押圧力を付与した状態を示し、図7はパイロット弁40に対して排出通路23の圧力のみを付与した状態を示し、図8~図10は機関回転数(ポンプ回転数)とポンプ吐出圧との関係を示す特性図である。
The control unit detects the engine operating state based on information signals from various sensors such as a crank angle sensor. Further, the control unit is configured to change the duty ratio, which is the energization amount to the coil of the electromagnetic actuator 50, according to the engine operation state, or to be in a non-energized state.
[Operation of variable displacement oil pump]
Hereinafter, the operation of the variable displacement oil pump according to the present embodiment will be briefly described. 6 shows a state in which the hydraulic pressure of the discharge passage 23 and the pressing force of the electromagnetic actuator are applied to the pilot valve 40, and FIG. 7 shows a state in which only the pressure of the discharge passage 23 is applied to the pilot valve 40. 8 to 10 are characteristic diagrams showing the relationship between the engine speed (pump speed) and the pump discharge pressure.
 機関始動時には、可変容量形オイルポンプの吐出ポート12から吐出通路12aへ圧送されるポンプ吐出圧が低い。したがって、メインオイルギャラリー18の供給通路20から機関19内の動弁機構などの摺動部を潤滑した後に、排出通路23からパイロット弁40の導入口41bから通路部47bに流入した油圧も低い。このため、通路部47b内で円板壁46a作用する油圧も小さい。 When the engine is started, the pump discharge pressure pumped from the discharge port 12 of the variable displacement oil pump to the discharge passage 12a is low. Therefore, after lubricating the sliding portion such as the valve mechanism in the engine 19 from the supply passage 20 of the main oil gallery 18, the hydraulic pressure flowing into the passage portion 47b from the introduction port 41b of the pilot valve 40 from the discharge passage 23 is also low. For this reason, the hydraulic pressure acting on the disk wall 46a in the passage portion 47b is also small.
 よって、スプール42は、図1に示すように、バルブスプリング43のばね力によってガイド部48が円環壁41aの内面に当接した位置に保持されている。このため、弁体46は、外周面で連通孔44は開成しているもののドレン孔45を閉止している。 Therefore, as shown in FIG. 1, the spool 42 is held at a position where the guide portion 48 abuts against the inner surface of the annular wall 41a by the spring force of the valve spring 43. Therefore, the valve body 46 closes the drain hole 45 although the communication hole 44 is opened on the outer peripheral surface.
 これによって、通路部47b内に流入した油圧は、矢印で示すように、第2連通孔47cと筒状通路47a及び連通孔44を通って第2制御油室22に流入する。 Thus, the hydraulic pressure that has flowed into the passage portion 47b flows into the second control oil chamber 22 through the second communication hole 47c, the cylindrical passage 47a, and the communication hole 44, as indicated by arrows.
 一方、排出通路23から分岐通路24に流入した油圧は、該分岐通路24の下流端24aから第1制御油室21内に流入する。この第1制御油室21内の油圧は、第2制御油室22内の油圧と同圧である。したがって、第1ピストン部25と第2ピストン部26に作用する圧力が同じになり、カムリング5の両側には互いにカムリング5の中心方向へ向く同じ圧力が作用する。しかし、第1ピストン部25の先端面25aの受圧面積は、第2ピストン部26の受圧面積よりも小さいので、カムリング5に対して第1制御油室21方向への力が大きくなる。 On the other hand, the hydraulic pressure flowing into the branch passage 24 from the discharge passage 23 flows into the first control oil chamber 21 from the downstream end 24 a of the branch passage 24. The oil pressure in the first control oil chamber 21 is the same as the oil pressure in the second control oil chamber 22. Accordingly, the pressure acting on the first piston portion 25 and the second piston portion 26 is the same, and the same pressure directed toward the center of the cam ring 5 acts on both sides of the cam ring 5. However, since the pressure receiving area of the front end surface 25 a of the first piston portion 25 is smaller than the pressure receiving area of the second piston portion 26, a force in the direction of the first control oil chamber 21 is increased with respect to the cam ring 5.
 よって、カムリング5は、図1に示すように、第2制御油室22内の油圧とコイルばね31のばね力との合成力によってロータ6の回転軸中心に対して第1制御油室21方向へ最大に偏心した移動位置に保持されている。 Therefore, as shown in FIG. 1, the cam ring 5 moves in the direction of the first control oil chamber 21 with respect to the rotation axis center of the rotor 6 by the combined force of the hydraulic pressure in the second control oil chamber 22 and the spring force of the coil spring 31. It is held in the position of maximum eccentricity.
 なお、このとき、電磁アクチュエータ50のコイルには、コントロールユニットから通電されず消磁状態になっている。 At this time, the coil of the electromagnetic actuator 50 is deenergized without being energized from the control unit.
 このため、吐出ポート12から吐出されたポンプ吐出圧(供給通路20内の油圧)は、図8の実線で示すように、機関回転数の上昇に伴って該機関回転数と比例的に上昇する特性となる。 Therefore, the pump discharge pressure (hydraulic pressure in the supply passage 20) discharged from the discharge port 12 increases in proportion to the engine speed as the engine speed increases, as shown by the solid line in FIG. It becomes a characteristic.
 ポンプ吐出圧が次第に高くなって所望の高さになると、図6に示すように、今度は、パイロット弁40に対して排出通路23からの油圧の他に、電磁アクチュエータ50の押圧力が作用する。 When the pump discharge pressure gradually increases to a desired level, as shown in FIG. 6, in addition to the hydraulic pressure from the discharge passage 23, the pressing force of the electromagnetic actuator 50 acts on the pilot valve 40. .
 すなわち、コントロールユニットから電磁アクチュエータ50のコイルに通電(パルス信号)が出力されると共に、デューティ比を適宜変化させる。これによって、パイロット弁40のスプール42は、バルブスプリング43のばね力に抗して次第にバルブボディ41の底部方向へ摺動する。そうすると、スプール42の弁体46が、連通孔44を開いた状態を維持しつつドレン孔45を漸次開いて、第2制御油室22内の油圧を連通孔44、筒状通路47aを介してドレン孔45から外部に排出する。 That is, energization (pulse signal) is output from the control unit to the coil of the electromagnetic actuator 50, and the duty ratio is appropriately changed. Accordingly, the spool 42 of the pilot valve 40 gradually slides toward the bottom of the valve body 41 against the spring force of the valve spring 43. Then, the valve body 46 of the spool 42 gradually opens the drain hole 45 while maintaining the state where the communication hole 44 is opened, and the hydraulic pressure in the second control oil chamber 22 is supplied via the communication hole 44 and the cylindrical passage 47a. It is discharged from the drain hole 45 to the outside.
 この間、第1制御油室21には、排出通路23から分岐通路24を介して常に油圧が供給されているが、この油圧は低圧であってもよい。 During this time, the first control oil chamber 21 is always supplied with hydraulic pressure from the discharge passage 23 via the branch passage 24, but this hydraulic pressure may be low.
 そして、スプール42は、コントロールユニットから電磁アクチュエータ50へのデューティ比制御によって、その摺動位置が変化してドレン孔45を開閉制御及び開口面積を増減変化させる。このため、第2制御油室22内の油圧が増減変化する。 The sliding position of the spool 42 is changed by the duty ratio control from the control unit to the electromagnetic actuator 50 to control the opening / closing of the drain hole 45 and to increase / decrease the opening area. For this reason, the hydraulic pressure in the second control oil chamber 22 changes.
 したがって、カムリング5には、第1制御油室21内の油圧と、変化している第2制御油室22内の油圧及びコイルばね31のばね力との相対圧が作用する。つまり、第1制御油室21内の油圧が、第2制御油室22の油圧とコイルばね31の合成力よりも大きくなった場合は、カムリング5は第2制御油室22方向へ直線的に移動する。これによって、カムリング5は、その中心がロータ6の回転中心に対して偏心量が小さくなる。 Therefore, relative pressure between the hydraulic pressure in the first control oil chamber 21 and the changing hydraulic pressure in the second control oil chamber 22 and the spring force of the coil spring 31 acts on the cam ring 5. That is, when the hydraulic pressure in the first control oil chamber 21 becomes larger than the combined force of the hydraulic pressure in the second control oil chamber 22 and the coil spring 31, the cam ring 5 linearly moves toward the second control oil chamber 22. Moving. As a result, the cam ring 5 has a small eccentric amount with respect to the center of rotation of the rotor 6.
 このように、カムリング5が、両制御油室21,22間で直線移動することによって、ポンプ吐出圧を、図9の実線で示すように、機関回転数に応じて無段階に可変制御することが可能になる。 As described above, the cam ring 5 is linearly moved between the control oil chambers 21 and 22 so that the pump discharge pressure is variably controlled in accordance with the engine speed as shown by the solid line in FIG. Is possible.
 次に、吐出ポート12からのポンプ吐出圧が大きくなって、排出通路23からパイロット弁40のスプール42の円板壁46aに作用する油圧が大きくなる。そうすると、スプール42は、図7に示すように、バルブスプリング43のばね力に抗してバルブボディ41の底部方向へ摺動してドレン孔45を大きく開く。 Next, the pump discharge pressure from the discharge port 12 increases, and the hydraulic pressure acting on the disk wall 46a of the spool 42 of the pilot valve 40 from the discharge passage 23 increases. Then, the spool 42 slides toward the bottom of the valve body 41 against the spring force of the valve spring 43, as shown in FIG.
 このため、第2制御油室22内の油圧は、前述と同じく、連通孔44と筒状通路47aを通ってドレン孔45から排出されて内部が低圧になる。一方、第1制御油室21には、分岐通路24から高い油圧が導入されて、第1ピストン部25を押圧して、カムリング5を第2制御油室22方向へ移動させる。これにより、カムリング5は、ロータ6の回転中心に対する偏心量が小さくなり、同心に近くなる。したがって、ポンプ吐出圧は、図10の実線で示すように、最大付近の大きさになってそれ以上の過度な圧力上昇が抑制される。 For this reason, the hydraulic pressure in the second control oil chamber 22 is discharged from the drain hole 45 through the communication hole 44 and the cylindrical passage 47a as described above, and the inside becomes a low pressure. On the other hand, high hydraulic pressure is introduced into the first control oil chamber 21 from the branch passage 24, pressing the first piston portion 25, and moving the cam ring 5 toward the second control oil chamber 22. As a result, the cam ring 5 has a small amount of eccentricity with respect to the rotation center of the rotor 6 and becomes close to the concentricity. Therefore, as shown by the solid line in FIG. 10, the pump discharge pressure becomes a size in the vicinity of the maximum, and an excessive pressure increase is further suppressed.
 このように、本実施形態における可変容量形オイルポンプは、パイロット弁40のスプール42の摺動位置を、排出通路23の油圧と電磁アクチュエータ50のソレノイド力によって制御して、第2制御油室22内の油圧を制御する。これによって、カムリング5の直線方向の移動位置を連続的に可変制御して、ポンプ吐出圧を機関運転状態に応じて高精度に制御することが可能になる。 As described above, the variable displacement oil pump according to the present embodiment controls the sliding position of the spool 42 of the pilot valve 40 by the hydraulic pressure of the discharge passage 23 and the solenoid force of the electromagnetic actuator 50, thereby controlling the second control oil chamber 22. Control the hydraulic pressure inside. As a result, the movement position of the cam ring 5 in the linear direction can be continuously variably controlled, and the pump discharge pressure can be controlled with high accuracy in accordance with the engine operating state.
 また、本実施形態では、吐出ポート12側に位置する第1制御油室21の内面と第1ピストン部25の一辺の面25bとの間が、第1シール部材28によって効果的にシールされている。 In the present embodiment, the space between the inner surface of the first control oil chamber 21 located on the discharge port 12 side and the surface 25 b on one side of the first piston portion 25 is effectively sealed by the first seal member 28. Yes.
 このため、吐出ポート12側(吐出領域)の高油圧が第1制御油室21内に流入(リーク)するのを十分に抑制することが可能になる。したがって、カムリング5は、挙動の不安定化が抑えられ、安定した位置に保持させることができる。この結果、ポンプ吐出圧を所望の安定した吐出圧及び流量特性を得ることができる。 For this reason, it becomes possible to sufficiently suppress the high hydraulic pressure on the discharge port 12 side (discharge region) from flowing into the first control oil chamber 21 (leakage). Therefore, the cam ring 5 can be held in a stable position with the behavior unstable. As a result, a desired stable discharge pressure and flow rate characteristic of the pump discharge pressure can be obtained.
 また、排出通路23には、ポンプ吐出圧をほぼ同じ油圧が作用する供給通路20の油圧ではなく、オイルフィルタ49や機関19内部の摺動部などを通って脈圧が十分に抑えられた油圧が流入する。 In addition, in the discharge passage 23, not the oil pressure of the supply passage 20 where substantially the same oil pressure as the pump discharge pressure is applied, but the oil pressure in which the pulse pressure is sufficiently suppressed through the oil filter 49, the sliding portion inside the engine 19, etc. Flows in.
 このため、スプール42の通路部47b内には、脈圧の少ない油圧が作用することから、円板壁46aには常に安定した油圧が作用する。したがって、スプール42は、その保持位置や摺動位置が安定化して、第2制御油室22の油圧の供給や排出の精度が高くなる。この結果、カムリング5の直線移動及び移動位置の安定化が図れることから、前述したポンプ吐出圧及びの特性をさらに精度良く制御することができる。 For this reason, since a low hydraulic pressure acts on the passage portion 47b of the spool 42, a stable hydraulic pressure always acts on the disk wall 46a. Therefore, the holding position and the sliding position of the spool 42 are stabilized, and the accuracy of supply and discharge of the hydraulic pressure in the second control oil chamber 22 is increased. As a result, since the linear movement of the cam ring 5 and the stabilization of the movement position can be achieved, the above-described pump discharge pressure and characteristics can be controlled with higher accuracy.
 また、スプール42には、排出通路23の脈圧が抑えられた安定した油圧と電磁アクチュエータ50のソレノイド力とのバランスされた圧力が作用することから、この点でもスプール42の安定した摺動位置制御を行うことができる。 In addition, since the balanced pressure of the stable hydraulic pressure in which the pulse pressure of the discharge passage 23 is suppressed and the solenoid force of the electromagnetic actuator 50 acts on the spool 42, the stable sliding position of the spool 42 also in this respect. Control can be performed.
 また、本実施形態では、吐出ポート12側に位置する第2制御油室22の内壁面と第2ピストン部26の一側壁26bの外面26dとの間も、第2シール部材30によって効果的にシールされている。このため、吐出ポート12側の高油圧が第2制御油室22内に流入(リーク)するのを十分に抑制することができる。したがって、カムリング5は、この点でも挙動の不安定化が抑えられて、安定した位置に保持される。この結果、ポンプのさらに安定した吐出圧および流量特性とすることができる。 In the present embodiment, the second seal member 30 also effectively provides a space between the inner wall surface of the second control oil chamber 22 located on the discharge port 12 side and the outer surface 26d of the one side wall 26b of the second piston portion 26. It is sealed. For this reason, it is possible to sufficiently suppress the high hydraulic pressure on the discharge port 12 side from flowing (leaking) into the second control oil chamber 22. Accordingly, the cam ring 5 is held in a stable position with the behavioral instability being suppressed also in this respect. As a result, more stable discharge pressure and flow rate characteristics of the pump can be obtained.
 第1、第2シール部材28,30は、各ピストン部25,26の吐出ポート12側に面した部位のみをシールすることから、効率良くシールすることができる。 Since the first and second seal members 28 and 30 seal only the portions facing the discharge port 12 side of the piston portions 25 and 26, the first and second seal members 28 and 30 can be efficiently sealed.
 また、前記第1シール部材28と第2シール部材30は、第1制御油室21と第2制御油室22の対向する面にそれぞれ面接触状態で押し付けられることから、シール性能が高くなって吐出ポート12側から各制御油室21,22へのオイルのリークを極力少なくできる。 Further, since the first seal member 28 and the second seal member 30 are pressed against the opposing surfaces of the first control oil chamber 21 and the second control oil chamber 22 in a surface contact state, the sealing performance is improved. Oil leakage from the discharge port 12 side to the control oil chambers 21 and 22 can be minimized.
 前記第1、第2シール部材28,30だけで、吐出ポート12側からのオイルのリークを抑制できると共に、これら2つの部材のみであるから、構造が簡単になる。 The oil leakage from the discharge port 12 side can be suppressed only by the first and second seal members 28 and 30, and the structure is simplified because only these two members are used.
 また、前記第1シール部材28と第2シール部材30は、各シール本体28a、30aや各弾性体28b、30bを単に直線状に形成したものであるから、製造が容易でコストの高騰が抑制できる。 Further, since the first seal member 28 and the second seal member 30 are formed by simply forming the seal bodies 28a, 30a and the elastic bodies 28b, 30b in a straight line, the manufacture is easy and the increase in cost is suppressed. it can.
 さらに、各シール本体28a,30aは、各シール溝27,29内に保持されているので、各ピストン部25,26の摺動時におけるずれを抑制できる。 Furthermore, since each seal body 28a, 30a is held in each seal groove 27, 29, it is possible to suppress the displacement of each piston portion 25, 26 during sliding.
 また、各シール本体28a,30aは、各弾性体28b、30bの材質よりも硬質な材質であるが、これらの材質を仕様等に応じて変更すれば、摺動抵抗摩擦の低減や耐久性の向上が図れる。 The seal bodies 28a and 30a are made of a material harder than the elastic bodies 28b and 30b. However, if these materials are changed according to the specifications, the sliding resistance friction can be reduced and the durability can be improved. Improvement can be achieved.
 本実施形態では、カムリング5の直線移動方向の一方側に第1ピストン部25を設け、これと反対の他方側に第2ピストン部26を設けた。これらによって、カムリング5の安定した移動案内が行われる。 In the present embodiment, the first piston portion 25 is provided on one side of the cam ring 5 in the linear movement direction, and the second piston portion 26 is provided on the other side opposite thereto. As a result, stable movement guidance of the cam ring 5 is performed.
 前記コイルばね31を、第2ピストン部26の内側に配置したことから、別な所に設ける場合に比較してポンプハウジング1を小型化することができる。 Since the coil spring 31 is disposed on the inner side of the second piston portion 26, the pump housing 1 can be reduced in size as compared with the case where it is provided elsewhere.
 前記第2ピストン部26の内部には、排出通路23からポンプ吐出圧よりも低い圧力が作用する。このため、第2制御油室22に吐出ポート12側からの高油圧が入り易くなるが、これを第2シール部材30によって効果的に抑制できる。
〔第2実施形態〕
 図11~図15は本発明の第2実施形態を示し、図11は第2実施形態の可変容量形オイルポンプの模式図、図12は本実施形態に供されるカムリングとシール部材の分解斜視図、図13は図11のD部拡大図、図14は図11のE-E線断面図、図15は図11のF-F線断面図である。
A pressure lower than the pump discharge pressure is applied from the discharge passage 23 to the inside of the second piston portion 26. For this reason, high hydraulic pressure from the discharge port 12 side easily enters the second control oil chamber 22, but this can be effectively suppressed by the second seal member 30.
[Second Embodiment]
11 to 15 show a second embodiment of the present invention, FIG. 11 is a schematic view of a variable displacement oil pump according to the second embodiment, and FIG. 12 is an exploded perspective view of a cam ring and a seal member used in this embodiment. 13 is an enlarged view of a portion D in FIG. 11, FIG. 14 is a cross-sectional view taken along line EE in FIG. 11, and FIG. 15 is a cross-sectional view taken along line FF in FIG.
 この実施形態では、特に、第2ピストン部26の形状をやや変更すると共に、第1、第2シール溝及び第1、第2シール部材の構成を変更したものである。 In this embodiment, in particular, the shape of the second piston portion 26 is slightly changed, and the configurations of the first and second seal grooves and the first and second seal members are changed.
 すなわち、第2ピストン部26は、図12に示すように、基部26aの肉厚が第1実施形態のものよりもやや大きく形成されている。 That is, as shown in FIG. 12, the second piston portion 26 is formed such that the thickness of the base portion 26a is slightly larger than that of the first embodiment.
 第1シール溝27は、第1ピストン部25の一辺の面25b側の他に、一辺の面25bと連続する一側面25cの幅方向に沿った第3シール溝32が形成されて、全体がL字形状に形成されている。第1シール溝27は、その横断面形状が第1実施形態のものと同じく形成されている。また、この第1シール溝27内に嵌め込み保持される第1シール部材28も、同じく第1シール本体28aと第1弾性体28bとから構成されている。 In addition to the one side surface 25b side of the first piston portion 25, the first seal groove 27 is formed with a third seal groove 32 along the width direction of one side surface 25c continuous with the one side surface 25b. It is formed in an L shape. The first seal groove 27 has the same cross-sectional shape as that of the first embodiment. Further, the first seal member 28 fitted and held in the first seal groove 27 is also composed of a first seal body 28a and a first elastic body 28b.
 第3シール溝32は、その幅長さや深さは第1シール溝27と同じである。 The third seal groove 32 has the same width and depth as the first seal groove 27.
 そして、第3シール溝32内に保持される第3シール部材33は、同じく第3シール本体33aと、第3弾性体33bとから構成されている。この第3シール本体33aは、第1シール本体28aと同じく低摩擦特性を有するフッ素系樹脂材により形成されている。また、この第3シール本体33aは、細長い板状に形成されて、その長さは第3シール溝32と同じ長さに設定されている。 The third seal member 33 held in the third seal groove 32 is similarly composed of a third seal body 33a and a third elastic body 33b. The third seal body 33a is formed of a fluorine-based resin material having a low friction characteristic like the first seal body 28a. The third seal body 33 a is formed in an elongated plate shape, and the length thereof is set to the same length as the third seal groove 32.
 第3弾性体33bは、合成ゴム材によって横断面ほぼ円形状に形成されて、第3シール本体33aと同じ長さに形成されている。この第3弾性体33bの弾性力によって第3シール本体33aを、第2制御油室22の対向する内側面に押し付けて該第2制御油室22の良好な液密性を確保するようになっている。なお、第1弾性体28bと第3弾性体33bの対向する端部は、ほぼ直角方向から突き合わせ状態に配置されている。 The third elastic body 33b is formed in a substantially circular cross section by a synthetic rubber material, and has the same length as the third seal body 33a. The third seal body 33a is pressed against the opposing inner surface of the second control oil chamber 22 by the elastic force of the third elastic body 33b to ensure good liquid tightness of the second control oil chamber 22. ing. In addition, the opposing edge part of the 1st elastic body 28b and the 3rd elastic body 33b is arrange | positioned in the abutting state from the substantially right angle direction.
 一方、第2ピストン部26の基部26aには、第2シール溝29の他に、一方の外面26gに第4シール溝34が形成されている。この第4シール溝34は、基部26aの幅方向に沿って細長く形成されていると共に、その深さは第2シール溝29と同じ深さに形成されている。この第4シール溝34には、第4シール部材35が嵌め込まれている。 On the other hand, in addition to the second seal groove 29, a fourth seal groove 34 is formed on one outer surface 26g in the base part 26a of the second piston part 26. The fourth seal groove 34 is elongated along the width direction of the base portion 26 a, and the depth thereof is the same as that of the second seal groove 29. A fourth seal member 35 is fitted in the fourth seal groove 34.
 この第4シール部材35は、第4シール本体35aと、第4弾性体35bとから構成されている。この第4シール本体35aは、第1シール本体28aと同じく材質で形成されている。また、この第4シール本体35aは、細長い板状に形成されて、その長さは第4シール溝34と同じ長さに設定されている。 The fourth seal member 35 includes a fourth seal body 35a and a fourth elastic body 35b. The fourth seal body 35a is formed of the same material as the first seal body 28a. The fourth seal body 35a is formed in an elongated plate shape, and the length thereof is set to the same length as the fourth seal groove 34.
 第4弾性体35bも合成ゴム材によって横断面ほぼ円形状に形成されて、第4シール本体35aと同じ長さに形成されている。この第4弾性体35bの弾性力によって第4シール本体35aを、第2制御油室22の対向する内側面に押し付けて該第2制御油室22の良好な液密性を確保するようになっている。なお、第2弾性体30bと第4弾性体35bの対向する端部は、ほぼ直角方向から突き合わせ状態に配置されている。 The fourth elastic body 35b is also formed in a substantially circular shape in cross section by a synthetic rubber material, and has the same length as the fourth seal body 35a. The fourth seal body 35a is pressed against the opposing inner surface of the second control oil chamber 22 by the elastic force of the fourth elastic body 35b to ensure good liquid tightness of the second control oil chamber 22. ing. In addition, the opposing edge part of the 2nd elastic body 30b and the 4th elastic body 35b is arrange | positioned in the abutting state from the substantially right angle direction.
 したがって、第1、第2シール部材28、30の他に、第3、第4シール部材33、35によって、対応する第1制御油室21と第2制御油室22の対向する内壁面との間をシールする。このため、吐出ポート12側から第1制御油室21や第2制御油室22への高油圧の流入をさらに効果的に抑制することができる。 Therefore, in addition to the first and second seal members 28 and 30, the corresponding first control oil chamber 21 and the opposed inner wall surface of the second control oil chamber 22 are formed by the third and fourth seal members 33 and 35. Seal the gap. For this reason, the inflow of high hydraulic pressure from the discharge port 12 side to the first control oil chamber 21 and the second control oil chamber 22 can be further effectively suppressed.
 なお、他の作用効果は第1実施形態と同じである。 Other functions and effects are the same as those in the first embodiment.
 また、前記第1弾性体28bと第3弾性体33b、第2弾性体30bと第4弾性体35bは、それぞれの対向端部がほぼ直角方向から突き合わせ状になっている。しかし、各シール本体28a~35aに対する弾性反力を発揮できれば、必ずしも突き合わせ状にする必要はなく、互いに離間した状態になっていても良い。
〔第3実施形態〕
 図16~図20は本発明の第3実施形態を示し、図16は第3実施形態の可変容量形オイルポンプの模式図、図17は本実施形態に供されるカムリングとシール部材の分解斜視図、図18は図16のG部拡大図、図19は図16のH-H線断面図、図20は図16のI-I線断面図である。
The first elastic body 28b and the third elastic body 33b, and the second elastic body 30b and the fourth elastic body 35b are opposed to each other in a substantially perpendicular direction. However, as long as an elastic reaction force can be exerted on each of the seal bodies 28a to 35a, it is not always necessary to have a butt shape, and the seal bodies 28a to 35a may be separated from each other.
[Third Embodiment]
16 to 20 show a third embodiment of the present invention, FIG. 16 is a schematic view of a variable displacement oil pump according to the third embodiment, and FIG. 17 is an exploded perspective view of a cam ring and a seal member used in this embodiment. 18, FIG. 18 is an enlarged view of a portion G in FIG. 16, FIG. 19 is a sectional view taken along line HH in FIG. 16, and FIG. 20 is a sectional view taken along line II in FIG.
 この実施形態では、第2実施形態に示した第1シール溝27~第4シール溝34が、第1実施形態に示した各シール溝27、29と同じ深さに形成されている。したがって、第1シール溝27と第3シール溝32が、同じ深さのL字形状に形成されている。また、第2シール溝29と第4シール溝34も、同じ深さのL字形状に形成されている。 In this embodiment, the first seal groove 27 to the fourth seal groove 34 shown in the second embodiment are formed at the same depth as the seal grooves 27 and 29 shown in the first embodiment. Accordingly, the first seal groove 27 and the third seal groove 32 are formed in an L shape having the same depth. The second seal groove 29 and the fourth seal groove 34 are also formed in an L shape having the same depth.
 第1シール部材28は、第3シール部材33と対向端部が結合されて一体化され、全体が細長いL字形状に形成されている。一方、第2シール部材30は、第4シール部材35と対向端部が結合されて一体化され、同じく全体が細長いL字形に形成されている。 The first seal member 28 is integrated with the third seal member 33 by joining opposite ends thereof, and is formed into an elongated L-shape as a whole. On the other hand, the second seal member 30 is integrated with the fourth seal member 35 by coupling the opposite end portions, and is also formed in an elongated L-shape.
 第1、第2、第3、第4シール部材28~35は、それぞれ第1、第2、第3、第4シール本体28a~35aと、第1、第2、第3、第4弾性体28b~35bとから構成されている。 The first, second, third and fourth seal members 28 to 35 are respectively the first, second, third and fourth seal bodies 28a to 35a and the first, second, third and fourth elastic bodies. 28b to 35b.
 第1~第4シール本体28a~35aは、第1実施形態と同じくその材質が低摩擦特性を有するフッ素系樹脂材により形成されている。一方、第1~第4弾性体28b~35bも第1実施形態と同じく合成ゴム材によって横断面ほぼ円形状に形成されて、各シール本体28a~35aと同じ長さに形成されている。この各弾性体28b~35bの弾性力によって、第1~第4シール本体28a~35aを、第1、第2制御油室21、22の対向する内側面に押し付けて該第1、第2制御油室21、22の良好な液密性を確保するようになっている。 The first to fourth seal bodies 28a to 35a are made of a fluorine-based resin material having a low friction characteristic as in the first embodiment. On the other hand, the first to fourth elastic bodies 28b to 35b are also formed in a substantially circular cross section by a synthetic rubber material as in the first embodiment, and have the same length as the seal bodies 28a to 35a. The first to fourth seal bodies 28a to 35a are pressed against the opposing inner side surfaces of the first and second control oil chambers 21 and 22 by the elastic force of the elastic bodies 28b to 35b. Good fluid tightness of the oil chambers 21 and 22 is ensured.
 このため、吐出ポート12側から第1制御油室21や第2制御油室22への高油圧の流入をさらに効果的に抑制することができる。 For this reason, inflow of high hydraulic pressure from the discharge port 12 side to the first control oil chamber 21 and the second control oil chamber 22 can be further effectively suppressed.
 また、各シール部材28、30、33、35をそれぞれ一体化することによって製造作業が容易になる。さらに、各シール溝27,29、32、34は、深さがほぼ同一であるから、加工作業が容易になる。 Further, by integrating the seal members 28, 30, 33, and 35, the manufacturing operation becomes easy. Further, since the seal grooves 27, 29, 32, and 34 have substantially the same depth, the machining operation is facilitated.
 なお、他の作用効果は第1、2実施形態と同じである。 The other functions and effects are the same as those in the first and second embodiments.
 また、第1、第3弾性体28b、33bや第2、第4弾性体30b、35bのそれぞれの対向端部も突き合わせ状態になっているが、必ずしも突き合わせる必要はない。 Further, the opposing end portions of the first and third elastic bodies 28b and 33b and the second and fourth elastic bodies 30b and 35b are also in a butted state.
 本発明は、前記各実施形態の構成に限定されるものではなく、例えば、パイロット弁40に導入される油圧を、排出通路23だけでなく、供給通路20から直接的に導入することも可能である。 The present invention is not limited to the configuration of each of the above embodiments. For example, the hydraulic pressure introduced into the pilot valve 40 can be directly introduced not only from the discharge passage 23 but also from the supply passage 20. is there.
 また、第1、第2シール部材28、30などの各シール部材の材質としては、低摩擦材であれば他の材質であっても構わない。 Further, the material of each sealing member such as the first and second sealing members 28 and 30 may be other materials as long as it is a low friction material.
 さらに、第1、第2制御油室21,22の容積の差は、ポンプの仕様や大きさに応じて自由に変更することも可能である。 Furthermore, the difference in volume between the first and second control oil chambers 21 and 22 can be freely changed according to the specification and size of the pump.
 さらに、前記各シール溝を各制御油室の内壁面に形成して、該各シール溝内に各シール部材を保持することも可能である。 Furthermore, it is also possible to form each seal groove on the inner wall surface of each control oil chamber and hold each seal member in each seal groove.
 また、弾性体を有さないシール部材を、弾性体を設けて外側に付勢させることも可能である。 It is also possible to bias a sealing member that does not have an elastic body outwardly by providing an elastic body.
 本発明の好ましい別の態様としては、内部に収容部を有するハウジングと、前記収容部内に配置され、前記ハウジングの外部から回転駆動されるロータと、該ロータを内部に収容し、前記収容部内を直線的に移動することにより前記ロータの回転中心と自身の中心との偏心量が変化するカムリングと、前記ロータの外周に設けられて、前記カムリングの内周との間に複数の作動室を形成するベーンと、前記ロータとカムリングの偏心量が大きくなる方向へ前記カムリングに付勢力を付与する付勢部材と、前記カムリングの外周に一体に設けられて、前記カムリングに対する前記付勢部材の付勢方向に対して逆側となる位置に設けられたピストン部と、前記ハウジングの内周に前記ピストン部が摺動可能に形成され、内燃機関の摺動部に潤滑油を供給するメインオイルギャラリーからオイルが導入される制御油室と、前記ハウジングの内周側の一方側に形成され、前記ロータが回転駆動することによって前記各作動室の容積が増大する吸入側領域に開口形成された吸入部と、前記ハウジングの内周側の他方側に形成され、前記ロータが回転駆動することによって前記各作動油室の容積が減少する吐出側領域に開口形成された吐出部と、前記ピストン部と前記制御油室の内壁面との摺動面であって、前記吐出部側の位置に設けられたシール部材と、を備えている。 As another preferable aspect of the present invention, a housing having a housing portion therein, a rotor disposed in the housing portion and driven to rotate from the outside of the housing, the rotor housed therein, and the interior of the housing portion A plurality of working chambers are formed between a cam ring in which the amount of eccentricity between the rotation center of the rotor and the center of the rotor changes linearly and an inner periphery of the cam ring. A biasing member that applies a biasing force to the cam ring in a direction in which the eccentric amount of the rotor and the cam ring increases, and a biasing member that is integrally provided on the outer periphery of the cam ring and that biases the biasing member against the cam ring. A piston portion provided at a position opposite to the direction and the piston portion slidably formed on the inner periphery of the housing, and lubricates the sliding portion of the internal combustion engine A control oil chamber into which oil is introduced from a main oil gallery that supplies the suction oil, and a suction side region that is formed on one side of the inner peripheral side of the housing and that increases the volume of each working chamber when the rotor is rotationally driven. And a discharge part formed on the discharge side region in which the volume of each hydraulic oil chamber is reduced when the rotor is rotationally driven. And a seal member provided at a position on the discharge portion side, which is a sliding surface between the piston portion and the inner wall surface of the control oil chamber.
 さらに好ましくは、前記ピストン部は、前記カムリングの移動方向軸線に直交する方向の断面が四角形である。 More preferably, the piston portion has a quadrangular cross section in a direction perpendicular to the moving direction axis of the cam ring.
 さらに好ましくは、前記シール部材は、前記ピストン部の少なくとも四角形状の前記吐出部側の一辺に設けられている。 More preferably, the seal member is provided on at least one side of the piston portion on the side of the discharge portion.
 さらに好ましくは、前記シール部材は、前記ピストン部の少なくとも一辺に設けられたシール溝内に配置されている。 More preferably, the seal member is disposed in a seal groove provided on at least one side of the piston portion.
 さらに好ましくは、前記シール部材は、前記制御油室の内壁面と摺動するシール本体と、該シール本体を前記制御油室の内壁面側に付勢する弾性体によって構成されている。 More preferably, the seal member includes a seal body that slides on the inner wall surface of the control oil chamber, and an elastic body that biases the seal body toward the inner wall surface of the control oil chamber.
 さらに好ましくは、前記シール本体は、前記弾性体よりも硬質でかつ摺動抵抗の小さな材料によって形成されている。 More preferably, the seal body is made of a material that is harder and has a lower sliding resistance than the elastic body.
 さらに好ましくは、前記シール部材は、前記吐出部側の一辺と、この一辺に連なる少なくとも一側面に設けられている。 More preferably, the seal member is provided on one side of the discharge unit side and at least one side surface connected to the one side.
 さらに好ましくは、前記シール部材は、前記ピストン部に設けられたシール溝内に配置されている。 More preferably, the seal member is disposed in a seal groove provided in the piston portion.
 さらに好ましくは、前記カムリングと一体に設けられ、前記カムリングの移動方向において、前記ピストン部と対向する位置に設けられた第2ピストン部を備えている。 More preferably, a second piston portion provided integrally with the cam ring and provided at a position facing the piston portion in the moving direction of the cam ring is provided.
 さらに好ましくは、前記第2ピストン部は、前記ハウジングに形成された凹部内に摺動可能に配置されていると共に、前記凹部と第2ピストン部との摺動部であって、少なくとも前記吐出部側の位置に第2シール部材が設けられている。 More preferably, the second piston portion is slidably disposed in a recess formed in the housing, and is a sliding portion between the recess and the second piston portion, and at least the discharge portion. A second seal member is provided at the side position.
 さらに好ましくは、前記第2ピストン部は、前記付勢部材によってカムリングを制御油室方向へ付勢している。 More preferably, the second piston portion urges the cam ring toward the control oil chamber by the urging member.
 さらに好ましくは、前記第2ピストン部には、前記凹部内に導入された前記吐出圧よりも低圧の圧力が作用する状態が存在している。 More preferably, the second piston portion has a state in which a pressure lower than the discharge pressure introduced into the concave portion is applied.
 さらに好ましくは、前記第2ピストン部は、前記カムリングの移動方向軸線に直交する方向の断面は四角形状である。 More preferably, the second piston portion has a quadrangular cross section in a direction perpendicular to the moving direction axis of the cam ring.
 さらに好ましくは、前記第2シール部材は、前記第2ピストン部の四角面中、前記吐出部側の一辺と、この一辺に連なる一側面に設けられている。 More preferably, the second seal member is provided on one side of the square surface of the second piston portion and on one side continuous to the one side.
 さらに好ましくは、前記第2シール部材は、前記第2ピストン部の少なくとも一辺に形成された第2シール溝内に配置されている。 More preferably, the second seal member is disposed in a second seal groove formed on at least one side of the second piston portion.
 さらに好ましくは、前記第2シール部材は、第2弾性体によって摺動面側に付勢されている。 More preferably, the second seal member is biased toward the sliding surface by the second elastic body.
 さらに好ましくは、前記第2シール部材は、前記第2ピストン部の前記吐出部側の一辺の他に、該一辺に連なる一側面に設けられている。 More preferably, the second seal member is provided on one side surface connected to the one side in addition to the one side on the discharge portion side of the second piston portion.
 別の好ましい態様として、内部に収容部を有するハウジングと、
 前記収容部に配置され、吸入されたオイルを前記ハウジングの外部に吐出するポンプ構成体と、移動することによって前記ポンプ構成体から吐出されるオイルの流量を可変制御する可変部材と、前記ポンプ構成体から吐出されるオイルの流量が多くなる方向へ前記可変部材を付勢する付勢部材と、前記可変部材と一体に設けられ、該可変部材の移動方向において、前記付勢部材の付勢方向に対して逆側となる位置に設けられたピストン部と、前記ハウジングと前記ピストン部によって構成され、内燃機関の摺動部を潤滑するためのオイルを供給するメインオイルギャラリーからオイルが導かれる制御油室と、該制御油室と隣接した位置に設けられ、前記ポンプ構成体から吐出されたオイルが導かれることにより、前記ピストン部におけるハウジングとの摺動部に一方向の押圧力を付与する吐出部と、前記ハウジングと前記ピストン部の摺動部に設けられ、前記吐出部から制御油室へのオイルの漏れを抑制するシール部材と、を備えている。
As another preferred aspect, a housing having a housing portion inside,
A pump structure that is disposed in the housing and discharges the sucked oil to the outside of the housing; a variable member that variably controls the flow rate of oil discharged from the pump structure by movement; and the pump structure A biasing member that biases the variable member in a direction in which the flow rate of oil discharged from the body increases; and a biasing direction of the biasing member that is provided integrally with the variable member and in the moving direction of the variable member. The oil is guided from a main oil gallery which is composed of a piston portion provided at a position opposite to the shaft, the housing and the piston portion, and supplies oil for lubricating the sliding portion of the internal combustion engine. An oil chamber is provided at a position adjacent to the control oil chamber, and the oil discharged from the pump component is guided, so that the housing in the piston portion is guided. A discharge part that applies a pressing force in one direction to the sliding part with the seal, and a seal member that is provided in the sliding part of the housing and the piston part and suppresses oil leakage from the discharge part to the control oil chamber And.
 さらに好ましくは、前記制御油室は、前記ハウジングの内面に凹状に形成され、前記ピストン部は、前記制御油室内に摺動可能に配置されていると共に、前記可変部材の移動方向に直交する断面形状が四角形状に形成され、前記シール部材は、前記制御油室の内壁面とピストン部の外面との間に配置されている。 More preferably, the control oil chamber is formed in a concave shape on the inner surface of the housing, and the piston portion is slidably disposed in the control oil chamber and has a cross section perpendicular to the moving direction of the variable member. The shape is formed in a quadrangular shape, and the seal member is disposed between the inner wall surface of the control oil chamber and the outer surface of the piston portion.

Claims (19)

  1.  内部に収容部を有するハウジングと、
     前記収容部内に配置され、前記ハウジングの外部から回転駆動されるロータと、
     該ロータを内部に収容し、前記収容部内を直線的に移動することにより前記ロータの回転中心と自身の中心との偏心量が変化するカムリングと、
     前記ロータの外周に設けられて、前記カムリングの内周との間に複数の作動室を形成するベーンと、
     前記ロータとカムリングの偏心量が大きくなる方向へ前記カムリングに付勢力を付与する付勢部材と、
     前記カムリングの外周に一体に設けられて、前記カムリングに対する前記付勢部材の付勢方向に対して逆側となる位置に設けられたピストン部と、
     前記ハウジングの内周に前記ピストン部が摺動可能に形成され、内燃機関の摺動部に潤滑油を供給するメインオイルギャラリーからオイルが導入される制御油室と、
     前記ハウジングの内周側の一方側に形成され、前記ロータが回転駆動することによって前記各作動室の容積が増大する吸入側領域に開口形成された吸入部と、
     前記ハウジングの内周側の他方側に形成され、前記ロータが回転駆動することによって前記各作動油室の容積が減少する吐出側領域に開口形成された吐出部と、
     前記ピストン部と前記制御油室の内壁面との摺動面であって、前記吐出部側の位置に設けられたシール部材と、
     を備えたことを特徴とする可変容量形オイルポンプ。
    A housing having an accommodating portion therein;
    A rotor disposed in the housing and driven to rotate from the outside of the housing;
    A cam ring in which the rotor is housed and the amount of eccentricity between the center of rotation of the rotor and the center of the rotor changes by moving linearly in the housing portion;
    A vane provided on the outer periphery of the rotor and forming a plurality of working chambers with the inner periphery of the cam ring;
    An urging member for applying an urging force to the cam ring in a direction in which the eccentric amount of the rotor and the cam ring is increased;
    A piston portion provided integrally with the outer periphery of the cam ring and provided at a position opposite to the biasing direction of the biasing member with respect to the cam ring;
    A control oil chamber in which the piston portion is slidably formed on the inner periphery of the housing, and oil is introduced from a main oil gallery that supplies lubricating oil to the sliding portion of the internal combustion engine;
    A suction portion formed on one side of the inner peripheral side of the housing and formed in an opening side region in which the volume of each working chamber increases when the rotor is driven to rotate;
    A discharge part formed on the other side of the inner peripheral side of the housing and having an opening formed in a discharge side region in which the volume of each hydraulic oil chamber decreases as the rotor rotates.
    A sliding surface between the piston portion and the inner wall surface of the control oil chamber, and a seal member provided at a position on the discharge portion side;
    A variable displacement oil pump characterized by comprising:
  2.  請求項1に記載の可変容量形オイルポンプであって、
     前記ピストン部は、前記カムリングの移動方向軸線に直交する方向の断面が四角形であることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 1,
    The piston section has a quadrangular cross section in a direction orthogonal to the moving direction axis of the cam ring.
  3.  請求項2に記載の可変容量形オイルポンプであって、
     前記シール部材は、前記ピストン部の少なくとも四角形状の前記吐出部側の一辺に設けられていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 2,
    The variable displacement oil pump according to claim 1, wherein the seal member is provided on at least one side of the piston portion on the side of the discharge portion.
  4.  請求項3に記載の可変容量形オイルポンプであって、
     前記シール部材は、前記ピストン部の少なくとも一辺に設けられたシール溝内に配置されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 3,
    The variable displacement oil pump according to claim 1, wherein the seal member is disposed in a seal groove provided on at least one side of the piston portion.
  5.  請求項4に記載の可変容量形オイルポンプであって、
     前記シール部材は、前記制御油室の内壁面と摺動するシール本体と、該シール本体を前記制御油室の内壁面側に付勢する弾性体によって構成されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 4, wherein
    The seal member is composed of a seal body that slides on the inner wall surface of the control oil chamber, and an elastic body that biases the seal body toward the inner wall surface of the control oil chamber. Shape oil pump.
  6.  請求項5に記載の可変容量形オイルポンプであって、
     前記シール本体は、前記弾性体よりも硬質でかつ摺動抵抗の小さな材料によって形成されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 5,
    The variable capacity oil pump, wherein the seal body is formed of a material that is harder than the elastic body and has a small sliding resistance.
  7.  請求項3に記載の可変容量形オイルポンプであって、
     前記シール部材は、前記吐出部側の一辺と、この一辺に連なる少なくとも一側面に設けられていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 3,
    The variable displacement oil pump according to claim 1, wherein the seal member is provided on one side of the discharge portion side and at least one side surface continuous with the one side.
  8.  請求項7に記載の可変容量形オイルポンプであって、
     前記シール部材は、前記ピストン部に設けられたシール溝内に配置されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 7,
    The variable displacement oil pump, wherein the seal member is disposed in a seal groove provided in the piston portion.
  9.  請求項1に記載の可変容量形オイルポンプであって、
     前記カムリングと一体に設けられ、前記カムリングの移動方向において、前記ピストン部と対向する位置に設けられた第2ピストン部を備えていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 1,
    A variable displacement oil pump provided with a second piston portion provided integrally with the cam ring and provided at a position facing the piston portion in a moving direction of the cam ring.
  10.  請求項9に記載の可変容量形オイルポンプであって、
     前記第2ピストン部は、前記ハウジングに形成された凹部内に摺動可能に配置されていると共に、前記凹部と第2ピストン部との摺動部であって、少なくとも前記吐出部側の位置に第2シール部材が設けられていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 9,
    The second piston part is slidably disposed in a recess formed in the housing, and is a sliding part between the recess and the second piston part, at least at a position on the discharge part side. A variable displacement oil pump, wherein a second seal member is provided.
  11.  請求項9に記載の可変容量形オイルポンプであって、
     前記第2ピストン部は、前記付勢部材によってカムリングを制御油室方向へ付勢していることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 9,
    The variable displacement oil pump, wherein the second piston portion urges the cam ring toward the control oil chamber by the urging member.
  12.  請求項9に記載の可変容量形オイルポンプであって、
     前記第2ピストン部には、前記凹部内に導入された前記吐出圧よりも低圧の圧力が作用する状態が存在することを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 9,
    The variable piston type oil pump according to claim 1, wherein the second piston portion has a state in which a pressure lower than the discharge pressure introduced into the recess is present.
  13.  請求項9に記載の可変容量形オイルポンプであって、
     前記第2ピストン部は、前記カムリングの移動方向軸線に直交する方向の断面は四角形状であることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 9,
    The variable displacement oil pump according to claim 2, wherein the second piston portion has a quadrangular cross section in a direction orthogonal to the moving direction axis of the cam ring.
  14.  請求項13に記載の可変容量形オイルポンプであって、
     前記第2シール部材は、前記第2ピストン部の四角面中、前記吐出部側の一辺と、この一辺に連なる一側面に設けられていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 13,
    The variable-capacity oil pump, wherein the second seal member is provided on one side of the square side surface of the second piston portion on the discharge portion side and on one side surface connected to the one side.
  15.  請求項14に記載の可変容量形オイルポンプであって、
     前記第2シール部材は、前記第2ピストン部の少なくとも一辺に形成された第2シール溝内に配置されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 14,
    The variable capacity type oil pump, wherein the second seal member is disposed in a second seal groove formed on at least one side of the second piston portion.
  16.  請求項10に記載の可変容量形オイルポンプであって、
     前記第2シール部材は、第2弾性体によって摺動面側に付勢されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 10,
    The variable displacement oil pump, wherein the second seal member is biased toward the sliding surface by a second elastic body.
  17.  請求項14に記載の可変容量形オイルポンプであって、
     前記第2シール部材は、前記第2ピストン部の前記吐出部側の一辺の他に、該一辺に連なる一側面に設けられていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 14,
    The variable capacity oil pump, wherein the second seal member is provided on one side surface connected to the one side in addition to the one side on the discharge portion side of the second piston portion.
  18.  内部に収容部を有するハウジングと、
     前記収容部に配置され、吸入されたオイルを前記ハウジングの外部に吐出するポンプ構成体と、
     移動することによって前記ポンプ構成体から吐出されるオイルの流量を可変制御する可変部材と、
     前記ポンプ構成体から吐出されるオイルの流量が多くなる方向へ前記可変部材を付勢する付勢部材と、
     前記可変部材と一体に設けられ、該可変部材の移動方向において、前記付勢部材の付勢方向に対して逆側となる位置に設けられたピストン部と、
     前記ハウジングと前記ピストン部によって構成され、内燃機関の摺動部を潤滑するためのオイルを供給するメインオイルギャラリーからオイルが導かれる制御油室と、
     該制御油室と隣接した位置に設けられ、前記ポンプ構成体から吐出されたオイルが導かれることにより、前記ピストン部におけるハウジングとの摺動部に一方向の押圧力を付与する吐出部と、
     前記ハウジングと前記ピストン部の摺動部に設けられ、前記吐出部から制御油室へのオイルの漏れを抑制するシール部材と、
     を備えたことを特徴とする可変容量形オイルポンプ。
    A housing having an accommodating portion therein;
    A pump structure that is disposed in the housing and discharges the sucked oil to the outside of the housing;
    A variable member that variably controls the flow rate of oil discharged from the pump component by moving;
    An urging member that urges the variable member in a direction in which the flow rate of oil discharged from the pump structure increases.
    A piston portion provided integrally with the variable member, and provided in a position opposite to the biasing direction of the biasing member in the moving direction of the variable member;
    A control oil chamber that is constituted by the housing and the piston portion, and in which the oil is guided from a main oil gallery that supplies oil for lubricating the sliding portion of the internal combustion engine;
    A discharge part that is provided at a position adjacent to the control oil chamber, and that guides the oil discharged from the pump structure to apply a unidirectional pressing force to the sliding part of the piston part with the housing;
    A seal member provided in a sliding portion of the housing and the piston portion, and suppressing leakage of oil from the discharge portion to a control oil chamber;
    A variable displacement oil pump characterized by comprising:
  19.  請求項18に記載の可変容量形オイルポンプであって、
     前記制御油室は、前記ハウジングの内面に凹状に形成され、
     前記ピストン部は、前記制御油室内に摺動可能に配置されていると共に、前記可変部材の移動方向に直交する断面形状が四角形状に形成され、
     前記シール部材は、前記制御油室の内壁面とピストン部の外面との間に配置されていることを特徴とする可変容量形オイルポンプ。
    The variable displacement oil pump according to claim 18,
    The control oil chamber is formed in a concave shape on the inner surface of the housing,
    The piston portion is slidably disposed in the control oil chamber, and a cross-sectional shape perpendicular to the moving direction of the variable member is formed in a quadrangular shape.
    The variable displacement oil pump according to claim 1, wherein the seal member is disposed between an inner wall surface of the control oil chamber and an outer surface of the piston portion.
PCT/JP2018/003077 2017-02-17 2018-01-31 Variable displacement oil pump WO2018150871A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018568089A JPWO2018150871A1 (en) 2017-02-17 2018-01-31 Variable displacement oil pump
CN201880011953.4A CN110300851A (en) 2017-02-17 2018-01-31 Capacity-variable type oil pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017027448 2017-02-17
JP2017-027448 2017-02-17

Publications (1)

Publication Number Publication Date
WO2018150871A1 true WO2018150871A1 (en) 2018-08-23

Family

ID=63170621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003077 WO2018150871A1 (en) 2017-02-17 2018-01-31 Variable displacement oil pump

Country Status (3)

Country Link
JP (2) JPWO2018150871A1 (en)
CN (1) CN110300851A (en)
WO (1) WO2018150871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535215A (en) * 2019-05-29 2022-08-05 ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Variable displacement lubricating oil pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149260A (en) * 1991-05-15 1993-06-15 Mannesmann Rexroth Gmbh Vane pump
JP2010526237A (en) * 2007-05-04 2010-07-29 ボーグワーナー・インコーポレーテッド Hydraulic pump with variable flow rate and pressure and improved open loop electrical control

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044192B2 (en) * 2006-10-30 2012-10-10 株式会社ショーワ Variable displacement pump
JP5364606B2 (en) * 2010-01-29 2013-12-11 日立オートモティブシステムズ株式会社 Vane pump
JP5688003B2 (en) * 2011-12-21 2015-03-25 日立オートモティブシステムズ株式会社 Variable displacement oil pump
JP6004919B2 (en) * 2012-11-27 2016-10-12 日立オートモティブシステムズ株式会社 Variable displacement oil pump
JP6006098B2 (en) * 2012-11-27 2016-10-12 日立オートモティブシステムズ株式会社 Variable displacement pump
WO2014187503A1 (en) * 2013-05-24 2014-11-27 Pierburg Pump Technology Gmbh Variable displacement lubricant pump
JP6171852B2 (en) * 2013-10-30 2017-08-02 アイシン精機株式会社 Oil pump device
KR101548432B1 (en) * 2013-12-19 2015-08-28 영신정공 주식회사 Variable Vane Pump
JP2016104967A (en) * 2014-12-01 2016-06-09 日立オートモティブシステムズ株式会社 Variable capacity type oil pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149260A (en) * 1991-05-15 1993-06-15 Mannesmann Rexroth Gmbh Vane pump
JP2010526237A (en) * 2007-05-04 2010-07-29 ボーグワーナー・インコーポレーテッド Hydraulic pump with variable flow rate and pressure and improved open loop electrical control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022535215A (en) * 2019-05-29 2022-08-05 ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Variable displacement lubricating oil pump
JP7289372B2 (en) 2019-05-29 2023-06-09 ピアーブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Variable displacement lubricating oil pump

Also Published As

Publication number Publication date
CN110300851A (en) 2019-10-01
JP2021167606A (en) 2021-10-21
JPWO2018150871A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP5174720B2 (en) Variable displacement pump
JP6289943B2 (en) Variable displacement pump
JP5897943B2 (en) Vane pump
JP5688003B2 (en) Variable displacement oil pump
JP5620882B2 (en) Variable displacement pump
US20110194967A1 (en) Variable displacement pump, oil jet and lublicating system using variable displacement pump
JP5897945B2 (en) Vane pump
JP5116546B2 (en) Variable displacement vane pump
JP5564450B2 (en) Oil pump
JP6419223B2 (en) Variable displacement pump
JP6647540B2 (en) Regulating unit for a mechanically adjustable coolant pump of an internal combustion engine
JP2020034004A (en) Variable displacement oil pump
JP6700418B2 (en) Variable displacement pump
WO2018150871A1 (en) Variable displacement oil pump
JP6664465B2 (en) Variable displacement pump
JP5499151B2 (en) Variable displacement pump
JP7324158B2 (en) variable displacement pump
JP3910760B2 (en) Valve timing control device for internal combustion engine
WO2023037875A1 (en) Variable capacity-type oil pump
JP7324292B2 (en) variable displacement pump
WO2023037737A1 (en) Variable-capacity oil pump
JPWO2018100909A1 (en) Hydraulic control valve and valve timing control device for internal combustion engine
JP6243262B2 (en) Variable displacement vane pump
WO2023166963A1 (en) Variable displacement oil pump
JP6543682B2 (en) Variable displacement pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18753627

Country of ref document: EP

Kind code of ref document: A1