WO2014203879A1 - Vane compressor - Google Patents

Vane compressor Download PDF

Info

Publication number
WO2014203879A1
WO2014203879A1 PCT/JP2014/065993 JP2014065993W WO2014203879A1 WO 2014203879 A1 WO2014203879 A1 WO 2014203879A1 JP 2014065993 W JP2014065993 W JP 2014065993W WO 2014203879 A1 WO2014203879 A1 WO 2014203879A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
groove
vane
side block
pressure
Prior art date
Application number
PCT/JP2014/065993
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 知靖
孝則 寺屋
大沢 仁
Original Assignee
株式会社ヴァレオジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヴァレオジャパン filed Critical 株式会社ヴァレオジャパン
Priority to CN201480034292.9A priority Critical patent/CN105308324B/en
Publication of WO2014203879A1 publication Critical patent/WO2014203879A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump

Definitions

  • the present invention relates to a vane type compressor, and more particularly to a vane type compressor having a structure useful for maintaining a proper distribution of clearances before and after a rotor.
  • Vane type compressors used in refrigeration cycles of vehicle air conditioners have various configurations (see the following patent publication).
  • the vane compressor includes a cylinder 12 formed in the housing 5 and having a cam surface 11 formed on the inner peripheral surface, and an axial direction of the cylinder 12.
  • a pair of side blocks (first side block 13 and second side block 21) that close both ends, a drive shaft 2 rotatably supported by the pair of side blocks, and the drive shaft 2 are fixedly mounted.
  • the rotor 3 is rotatably accommodated in the cylinder, the vane groove 8 is formed from the outer peripheral surface of the rotor 3 toward the inside, and the vane 4 is accommodated in the vane groove 8 so as to be able to protrude and retract.
  • the vane 4 is contacted and supported on the inner peripheral surface (cam surface 11) of the cylinder 12 by the centrifugal force generated by the rotation of the rotor 3 and the back pressure from the back pressure chamber 8a provided at the bottom of the vane groove 8.
  • a compression chamber 31 is defined by the rotor 3 and the vane 4 in a space closed by the cylinder 12 and the pair of side blocks 13 and 21, and the fluid sucked into the compression chamber 31 is caused by the rotation of the rotor 3. To compress.
  • the dimensions of the rotor are controlled so that an appropriate clearance is formed between the two.
  • an oil introduction groove into which oil is introduced (a first oil introduction groove 41 on the first side block 13, a second side block 21 is provided).
  • the second oil introduction groove 42) is formed in the shaft, and lubricating oil is supplied to the bearing portion of the drive shaft 2 and the sliding contact surface between the rotor 3 and the side blocks 13 and 21.
  • one end (front end) of the drive shaft 2 on which the rotor 3 is fixed is required to be directly connected to the drive source, or a power transmission member (pulley, electromagnetic clutch, etc.) for transmitting the power of the drive source is fixed. Therefore, one side block (second side block 21) is made to penetrate. For this reason, when one end of the drive shaft 2 passes through one side block (second side block 21) and protrudes outside the housing, atmospheric pressure acts on one end side of the drive shaft 2, On the other hand, a relatively high pressure inside the compressor acts on the other end side of the drive shaft 2 (side supported by the first side block 13).
  • the drive shaft 2 is biased to one end side (front side) protruding from the side block by the pressure difference acting on both the front and rear sides in the axial direction, and the axial position of the rotor 3 is ,
  • the clearance between the front end of the rotor 3 and the second side block 21 on the front side becomes relatively small.
  • the clearance between the rear end of the rotor 3 and the first side block 13 on the rear side is relatively large. Therefore, on the rear side (first side block 13 side) where the clearance is increased, fluid leaks through the clearance between adjacent compression chambers (oil seal becomes worse), and there is a disadvantage that the compression efficiency is lowered.
  • the clearance on the rear side of the rotor 3 (the clearance between the rotor 3 and the first side block 13) is the clearance on the front side of the rotor (the rotor 3 and the second side block). (Clearance between the two) is not solved, and there still remains a disadvantage that the compression efficiency is lowered.
  • the present invention has been made in view of such circumstances, and balances the forces acting on the front and rear of the rotor and the drive shaft integral with the rotor by causing a difference in the pressure acting on the front and rear of the rotor in the axial direction.
  • the main object is to provide a vane type compressor capable of maintaining the distribution of the clearance in the axial direction of the rotor in an appropriate state.
  • a vane compressor includes a housing, a cam surface formed therein, a cylinder provided in the housing, and both ends of the cylinder in the axial direction closed.
  • a pair of side blocks provided on the drive shaft, a drive shaft rotatably supported by the pair of side blocks, a rotor fixedly mounted on the drive shaft and rotatably accommodated in the cylinder, and the rotor
  • a plurality of formed vane grooves a plurality of vanes that are slidably inserted into the vane grooves; and tips that protrude and retract from the vane grooves and slide on the cam surface; the cylinder and the pair of side blocks;
  • a discharge port provided for discharging the discharged fluid; a discharge chamber for discharging the fluid; an oil chamber for storing oil pressurized by the discharged fluid
  • the vane type compressor comprising: an oil introduction groove provided on a surface facing the rotor, wherein the vane groove is opened; and at least one oil communication path communicating the oil chamber and the oil introduction groove.
  • a suction pressure introduction groove that is provided on a surface of one of the side blocks that faces the rotor and that receives the fluid corresponding to the suction pressure, and a surface of the one side block that faces the rotor.
  • a portion of the oil introduction groove where the vane groove can be opened is reduced to a radially inner side of the rotor, and the pair of side blowers A groove enlarged portion provided on a surface of the other side block facing the rotor of the first side block, wherein a part of the oil introduction groove where the vane groove can be opened is enlarged outward in the radial direction of the rotor; It is characterized by having at least one of these.
  • the suction pressure introduction groove into which a fluid corresponding to suction pressure is introduced on the surface of one side block facing the rotor, the suction pressure introduction groove on the end surface of the rotor facing one side block faces. Since only the pressure corresponding to the suction pressure acts on the portion that is present, the force that urges the rotor toward the other side block can be reduced. Also, by providing a groove reducing portion on the surface of one side block facing the rotor, the area where oil introduced into the oil introduction groove formed in one side block acts on the rotor can be reduced. It becomes possible to reduce the force which urges toward the other side block.
  • the area where the oil introduced into the oil introduction groove formed in the other side block acts on the rotor can be increased. It becomes possible to increase the force that urges the rotor toward one side block. For this reason, by providing at least one of the suction pressure introducing groove, the groove reducing portion, and the groove expanding portion, it is possible to reduce the force for urging the rotor to the other side block. It is possible to adjust the distribution of the clearances on both sides of the rotor in the axial direction by balancing the forces acting on the front and rear of the drive shaft integrated with the rotor.
  • the structure of the side block described above is a relatively low pressure space in the electric compressor in which the drive shaft passes through the other side block and is directly connected to the shaft of the electric motor. Or in the case where the drive shaft passes through the other side block and protrudes to the outside of the housing, the low-pressure space of the drive shaft or the side protruding outside and the side disposed in the housing of the compressor This is an effective configuration for adjusting the bias in the distribution of clearance due to the pressure difference between the two.
  • the suction pressure introduction groove is provided in the one side block between the drive shaft and the cam surface and over an angular range corresponding to the suction port.
  • the groove reducing portion may be configured such that the pressure of the compression chamber in the driving state of the vane compressor is in a range between the drive shaft and a position where the outer peripheral edge of the rotor faces the one side block. Is preferably provided within an angle range corresponding to a region that is equal to or lower than the pressure of the oil introduction groove.
  • An oil introduction groove is provided on one side block by providing a groove reduction portion within a range in which the pressure in the compression chamber is lower than the pressure in the oil introduction groove (the suction stroke region and the initial compression stroke region).
  • the area facing the rotor can be reduced, and the pressure gradient from the compression chamber to the oil introduction groove at the location where the groove reduction portion is provided can be made gentle, and the other side block acting on the rotor can be moved to the side. It becomes possible to reduce the urging force.
  • the groove enlarged portion may be configured such that the pressure of the compression chamber is in a driving state of the vane compressor in a range between the drive shaft and a position where the outer peripheral edge of the rotor faces the other side block. Is preferably provided within an angle range corresponding to a region that is equal to or lower than the pressure of the oil introduction groove.
  • the oil introduction groove is provided on the other side block by providing a groove expansion portion within a region where the pressure of the compression chamber is lower than the pressure of the oil introduction groove (region of suction stroke and initial region of compression stroke). Increases the area facing the rotor, and the pressure gradient from the compression chamber to the oil introduction groove at the location where the groove expansion portion is provided can be made steep, so that one side block acting on the rotor It is possible to increase the urging force.
  • the housing includes a first housing member integrally formed with the cylinder having an inner peripheral surface formed into a perfect circle, and a first side block that closes one end of the cylinder in the axial direction; A second housing member formed with a second side block that closes the other end side of the cylinder in the axial direction is combined to form the pair of side blocks, the first side block and the second side block. You may comprise by this side block.
  • the suction pressure introduction groove for reducing the force for urging the rotor toward the other side block is provided on the surface of the one side block facing the rotor.
  • a configuration in which a groove reducing portion for reducing a force for urging the rotor toward the other side block is provided on a surface facing the rotor of one side block, and a rotor on a surface facing the rotor of the other side block.
  • FIG. 1 is a sectional view showing a vane type compressor according to the present invention.
  • FIG. 2A is a view of the rear side of the vane compressor shown in FIG. 1 as viewed from the line AA, and shows a state where the rotor is removed.
  • FIG. 2 (b) is a view of the vane compressor shown in FIG. 1 as viewed from the BB line.
  • 3 (a) and 3 (b) are views in which hatching is applied to a portion different from the conventional side block (FIG. 6) in the portion shown in FIG. 2 where the rotor of the side block faces.
  • FIG. 4A is a diagram for explaining a change in pressure from the cylinder inner diameter to the rotor inner diameter in a portion where the oil introduction groove is formed, and FIG.
  • FIG. 4B is a diagram illustrating the pressure in the compression chamber and the oil It is a diagram which shows the pressure of an introduction groove
  • FIG. 5 is a cross-sectional view showing a conventional vane compressor.
  • FIG. 6A is a view of the vane compressor shown in FIG. 5 as viewed from the rear side along the line AA, and shows a state in which the rotor is removed.
  • FIG. 6B is a view of the front side as viewed from the line BB of the vane compressor shown in FIG.
  • FIG. 1 shows a vane compressor suitable for a refrigeration cycle using a refrigerant as a working fluid.
  • the vane compressor 1 includes a drive shaft 2, a rotor 3 that is fixed to the drive shaft 2 and rotates as the drive shaft 2 rotates, a vane 4 attached to the rotor 3, and the drive shaft 2.
  • a housing 5 that supports the rotor 3 and the vanes 4 while supporting the rotor 3 and the vanes 4 is provided.
  • the left side is the front side and the right side is the rear side.
  • the housing 5 is configured by combining two members of the first housing member 10 and the second housing member 20.
  • the first housing member 10 accommodates the rotor 3 and is integrally formed so as to close the cylinder 12 having the cam surface 11 formed on the inner peripheral surface and one end side (rear side) of the cylinder 12 in the axial direction.
  • the first side block 13 is formed.
  • the inner peripheral surface (cam surface 11) of the cylinder 12 is formed in a perfect circle in cross section, and the axial length of the cylinder 12 is substantially equal to the axial length of the rotor 3 described later.
  • the second housing member 20 is in contact with an end face on the other end side (front side) in the axial direction of the cylinder 12 and closes the other end side.
  • the shell 22 is formed integrally and extends in the axial direction of the drive shaft 2, and is formed so as to surround the outer peripheral surfaces of the cylinder 12 and the first side block 13.
  • the first housing member 10 and the second housing member 20 are fastened in the axial direction via a connector 6 such as a bolt, and the first side block 13 and the second side block 13 of the first housing member 10 are connected.
  • a sealing member 7 such as an O-ring is interposed between the housing member 20 and the shell 22 so as to be airtightly sealed.
  • the second housing member 20 is integrally formed with a boss portion 23 extending from the second side block 21 to the front side.
  • a pulley 32 (shown by an alternate long and short dash line) that transmits rotational power to the drive shaft 2 is rotatably mounted on the boss portion 23, and rotational power is driven from the pulley 32 via the electromagnetic clutch 33 to the drive shaft 2. It is transmitted to the shaft 2.
  • the drive shaft 2 is rotatably supported by the first side block 13 and the second side block 21 via bearings 14 and 24.
  • the distal end portion of the drive shaft 2 passes through the second side block 21 of the second housing member 20 and protrudes into the boss portion 23.
  • a seal member 25 provided between the boss portion 23 and the drive shaft 2 seals the space between the boss portion 23 and the drive shaft 2 in an airtight manner.
  • the electromagnetic clutch 33 is known per se, and the clutch plate 35 is connected to the pulley 32 via a leaf spring 34 attached in the axial direction to a portion protruding from the housing (second side block) of the drive shaft 2. It is fixed opposite to the friction surface 32a.
  • the clutch plate 35 is attracted to the pulley 32 by energizing an exciting coil 36 included in the pulley 32, and the rotational power from the traveling engine applied to the pulley 32 is driven via the clutch plate 35 and the plate spring 34 to the drive shaft. 2 is transmitted.
  • the urging force toward the first side block 13 (rear side) is urged to the drive shaft 2 by the spring force of the plate spring 34.
  • the rotor 3 has a circular cross section, and the drive shaft 2 is inserted through an insertion hole 3a provided at the center of the rotor 3, and the rotor 3 is fixed to the drive shaft 2 in a state where the centers of the shafts coincide with each other. Yes. Further, the axial center of the cylinder 12 and the axial center of the rotor 3 (drive shaft 2) are such that the outer peripheral surface of the rotor 3 and the inner peripheral surface (cam surface 11) of the cylinder 12 abut at one place in the circumferential direction. They are shifted (they are shifted by a half of the difference between the inner diameter of the cylinder 12 and the outer diameter of the rotor 3). In the space closed by the cylinder 12, the first side block 13 and the second side block 21, a compression space 30 is defined between the inner peripheral surface of the cylinder 12 and the outer peripheral surface of the rotor 3. ing.
  • a plurality of vane grooves 8 are formed on the outer peripheral surface of the rotor 3, and the vanes 4 are slidably inserted into the respective vane grooves 8.
  • the vane groove 8 is opened not only on the outer peripheral surface of the rotor 3 but also on the end surfaces facing the first side block 13 and the second side block 21, and a back pressure chamber 8 a is formed at the bottom.
  • a plurality of the vane grooves 8 are formed at equal intervals in the circumferential direction.
  • the vane groove is formed so as to be parallel to each other at two places different in phase by 180 degrees, and a plane including the vane 4 and a plane including the axis of the drive shaft 2 parallel to the vane 4 are predetermined. It is formed in a state separated by a distance (offset state).
  • the vane 4 is formed such that the width along the axial direction of the drive shaft 2 is equal to the axial length of the rotor 3, and the length in the insertion direction (sliding direction) into the vane groove 8 is the vane groove. 8 is formed approximately equal to the length in the same direction.
  • the vane 4 is protruded from the vane groove 8 by oil, which will be described later, supplied to the back pressure chamber 8 a of the vane groove 8, and a tip portion thereof can come into contact with the inner peripheral surface (cam surface 11) of the cylinder 12. Yes.
  • the compression space 30 is partitioned into a plurality of compression chambers 31 by the vanes 4 slidably inserted into the vane grooves 8, and the volume of each compression chamber 31 changes as the rotor 3 rotates. ing.
  • the second housing member 20 has a suction port 26 for sucking working fluid (refrigerant gas) from the outside and a discharge port 27 for discharging the working fluid (refrigerant gas) to the outside.
  • the second side block 21 has a suction port 26 and a suction port 26.
  • a communicating suction chamber 28 is formed.
  • the cylinder 12 of the first housing member 10 is located near the front side in the rotational direction of the rotor 3 with respect to a portion (radial seal portion 40) where the outer peripheral surface of the rotor 3 contacts the inner peripheral surface of the cylinder 12.
  • a suction port 15 is formed in communication with the suction chamber 28 to suck fluid into the compression chamber 31.
  • the first housing member 10 is provided with a discharge port 16 for discharging the fluid compressed in the compression chamber in the vicinity of the radial seal portion 40 on the rear side in the rotational direction of the rotor 3. Yes. Further, the first housing member 10 is formed with a discharge chamber 17 that guides the fluid discharged through the discharge port 16 to the discharge port 27.
  • An oil separator (not shown) is disposed between the discharge chamber 17 and the discharge port 27.
  • the lower portion of the first side block 13 of the first housing member 10 and the shell 22 of the second housing member 20 are also provided.
  • An oil chamber 18 for storing high-pressure oil separated from the fluid by an oil separator is provided between the lower portion and the lower portion.
  • a first oil introduction groove 41 is formed on the peripheral edge of the bearing hole 13 a into which the drive shaft 2 is inserted through the bearing 14 on the surface of the first side block 13 that faces the end surface of the rotor 3. Yes.
  • the first oil introduction groove 41 extends in the circumferential direction by denting the opening periphery of the bearing hole 13a.
  • the first oil introduction groove 41 is connected to the oil chamber 18 through an oil communication passage 19 having a throttle portion, and the discharge port 16 is moved from a position where the tip of the vane 4 reaches the suction port 15. When it is in the angle range up to just before reaching, it communicates with the bottom (back pressure chamber 8a) of the vane groove 8.
  • the high-pressure oil stored in the oil chamber 18 is supplied to the first oil introduction groove 41 formed in the first side block 13 via the oil communication path 19, and this first 1 is introduced into the space 45 formed between the sliding portion of the bearing 14 and the like and the end portion of the drive shaft 2 and the first side block 13, and into the back pressure chamber 8 a of the rotor 3. It is supposed to be sent.
  • the vane 4 is pressed against the inner peripheral surface (cam surface 11) of the cylinder 12 by the oil fed into the back pressure chamber 8a, so that stable compression is ensured.
  • a second oil introduction groove 42 is formed on the peripheral edge of the bearing hole 21 a into which the drive shaft 2 is inserted through the bearing 24 on the surface of the second side block 21 that faces the end surface of the rotor 3. Yes.
  • the second oil introduction groove 42 extends in the circumferential direction with the opening periphery of the bearing hole 21a being recessed, and the angle at which the discharge port 16 is provided from the angular position at which the radial seal portion 40 is provided. It is formed over a predetermined angle range (an angle range of about 270 degrees) from the position to the front.
  • the second oil introduction groove 42 is located at the bottom of the vane groove 8 (the back pressure chamber 8a) when it is in an angular range from the position where the tip of the vane 4 reaches the suction port 15 to just before the discharge port 16. ).
  • the oil fed into the back pressure chamber 8a is supplied to the second oil introduction groove 42 in a process in which the back pressure chamber 8a communicates with the second oil introduction groove 42, and the second oil introduction groove 42 is supplied. It is sent to sliding parts, such as a bearing, via.
  • reference numeral 37 denotes a screw hole into which the connector 6 is screwed.
  • the suction pressure introduction groove into which a fluid corresponding to the suction pressure is introduced as shown in FIG. 2A, on the surface of the first side block 13 that faces the end surface of the rotor 3. 43 is formed, and the first oil introduction groove 41 is formed with a groove reducing portion 41a in which a part of the portion where the vane groove 8 can be opened is reduced inward in the radial direction of the rotor.
  • the suction pressure introduction groove 43 is located between the drive shaft 2 and the cam surface 11, more specifically, between the outer edge of the first oil introduction groove 41 and the cam surface 11, and the inner peripheral surface of the cylinder 12. Along the (cam surface), an angle range corresponding to the suction port 15 is provided.
  • the suction port 15 is formed over a range of approximately 90 degrees along the cam surface from the vicinity of the radial seal portion 40.
  • the suction pressure introducing groove 43 is also formed over a range of approximately 90 degrees along the cam surface 11 from the vicinity of the radial seal portion 40 where the outer peripheral edge of the end surface of the rotor 3 faces.
  • the suction pressure introduction groove 43 is formed so as to gradually widen from the vicinity of the radial seal portion 40, and as shown by the hatched portion of the suction pressure introduction groove in FIG. It is formed so as to be opposed to the outer peripheral edge portion with a substantially equal width.
  • the portion of the suction pressure introduction groove 43 indicated by the hatch does not exceed the pressure corresponding to the suction pressure. Therefore, the second portion that acts on the rotor 3 by the amount indicated by the hatch is equivalent to the area indicated by the hatch. The biasing force toward the side block 21 will be reduced.
  • the groove reducing portion 41 a is formed in a range between the drive shaft 2 and the position where the outer peripheral edge of the rotor 3 faces on the surface of the first side block 13 facing the end surface of the rotor 3. Moreover, the groove reducing portion 41a has an angular range corresponding to a region where the pressure in the compression chamber 31 is equal to or lower than the pressure in the oil introduction groove 41 as shown in FIG. 4B in the driving state of the vane compressor. Is provided inside.
  • the groove reducing portion 41a is formed from the vicinity of the radial seal portion 40 over the entire range of about 180 degrees in terms of the rotor rotation angle in which the pressure in the compression chamber 31 is a region below the pressure of the oil introduction groove. Yes. Further, the groove reducing portion 41a is formed so as to gradually become wider from the vicinity of the radial seal portion 40, and the area facing the rotor 3 is smaller than the conventional oil introduction groove shown in FIG. It has become.
  • the groove reducing portion 41a is provided in the region (the suction stroke region and the initial region of the compression stroke) where the pressure in the compression chamber 31 is equal to or lower than the pressure of the oil introduction groove.
  • the change in the radial pressure at the portion of the rotor 3 is the first from the outer diameter of the rotor 3 because the groove width is narrower than the conventional oil introduction groove.
  • the pressure gradient toward the oil introduction groove 41 becomes gentle, and the force acting on the rotor end surface (the urging force acting on the second side block 21 acting on the rotor 3) is reduced.
  • the influence of the suction pressure introduction groove 43 is not considered.
  • the second oil introduction groove 42 has a bottom portion of the vane groove (back pressure chamber 8a).
  • a groove enlarging portion 42 a is formed by enlarging a part of the portion that can be opened outward in the radial direction of the rotor 3.
  • the groove expanding portion 42a is formed between the drive shaft 2 and the position where the outer peripheral edge of the rotor 3 faces on the surface of the second side block 13 that faces the end surface of the rotor 3.
  • the groove expanding portion 42a is provided within an angle range corresponding to a region where the pressure in the compression chamber is equal to or lower than the pressure in the oil introduction groove, as shown in FIG. 4B, in the driving state of the vane compressor. It has been.
  • the groove expanding portion 42a extends from the vicinity of the radial seal portion 40 over the entire range of about 180 degrees in terms of the rotor rotation angle in which the pressure in the compression chamber 31 is a region equal to or lower than the pressure in the second oil introduction groove 42. Is formed. Further, the groove enlarged portion 42 a is formed so as to gradually become narrower from the vicinity of the radial seal portion 40.
  • the groove expanding portion 42a is provided in the region where the pressure in the compression chamber 31 is equal to or lower than the pressure of the oil introduction groove 42 (the suction stroke region and the initial region of the compression stroke), the groove expanding portion 42a is As shown in FIG. 4A, when the radial pressure transition in the provided portion is seen, oil is applied to the end surface of the rotor 3 as the groove width is wider than the conventional oil introduction groove. As the acting area increases, the pressure gradient from the outer diameter of the rotor 3 to the second oil introduction groove 42 becomes steep, and the force acting on the rotor end surface (the urging force of the rotor 3 toward the first side block 13). ) Will increase.
  • the position of the rotor 3 in the axial direction is different from the pressure difference acting on both the front and rear sides of the drive shaft 2 when the electromagnetic clutch 33 to which power is transmitted to the drive shaft 2 is attracted.
  • the spring force of the plate spring 34 of the electromagnetic clutch 33, the effect of reducing the urging force to the second side block acting on the rotor by the suction pressure introduction groove 43, and the second acting on the rotor by the groove reducing portion 41a The position where the effect of reducing the urging force toward the side block and the effect of increasing the urging force toward the first side block acting on the rotor by the groove expanding portion 42a are balanced.
  • the force acting on the rotor by the suction pressure introducing groove 43, the force acting on the rotor by the groove reducing portion 41a, and the force acting on the rotor 3 by the groove expanding portion 42a are all the second side block that acts on the rotor 3.
  • the force acting in the direction of weakening the urging force toward the 21 side is caused, and by these forces, a pressure difference is produced between the front and rear of the rotor 3 in the axial direction, and thereby the force acting on the front and rear of the rotor and the drive shaft integrated therewith is generated. It is possible to balance (reduce the urging force toward the second side block 21) and keep the distribution of the clearance in the axial direction of the rotor in an appropriate state.
  • the configuration in which the suction pressure introducing groove 43, the groove reducing portion 41a, and the groove expanding portion 42a are simultaneously formed is shown, but any one of them may be used. . Even if any two of them are used in combination, reducing the biasing force acting on the rotor 3 toward the second side block 21 can contribute to adjustment of the clearance distribution in the axial direction of the rotor. It becomes possible.
  • the example in which the groove expansion portion 42a is provided over the entire range of the rotor rotation angle range of approximately 180 degrees where the pressure in the compression chamber 31 is equal to or less than the pressure of the oil introduction groove 42 is shown. If the pressure in the compression chamber 31 is within the range of the region where the pressure in the oil introduction groove 42 is lower, the first side block acting on the rotor 3 is adjusted by adjusting the formation position and formation range of the groove expansion portion 42a. It is possible to increase the urging force toward the 13 side.
  • the compressor in the case where there are two vanes 4 has been described, but the same configuration can be adopted in a three or more vane type compressor.
  • the vane groove 8 (vane 4) is offset in the two-vane configuration, but the plane including the vane 4 and the vane 4 are parallel to the drive shaft.
  • the same configuration is adopted to adjust the clearance distribution before and after the rotor 3 in the axial direction even when the plane including the axis 2 is made coincident (offset is set to 0) or when offset to the opposite side. You may make it do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

[Problem] To hold the allocation of clearances between the front and the back in the axial direction of a rotor in an appropriate state in a vane compressor by causing a pressure difference between the front and the back in the axial direction of the rotor to balance forces acting on the fronts and the backs of the rotor and a drive shaft formed integrally therewith. [Solution] In a pair of side blocks (13, 21) which close both ends in the axial direction of a cylinder (12), at least one among an inlet pressure introduction groove which is formed in a surface facing a rotor (3) of one side block (13) and into which a fluid corresponding to inlet pressure is introduced, a groove reduction part (41a) which is formed by reducing, inward in the radial direction of the rotor, part of a portion through which a vane groove becomes openable of an oil introduction groove (41) formed in a surface facing the rotor (3) of the one side block, and a groove enlargement part (42a) which is formed by enlarging, outward in the radial direction of the rotor, part of a portion through which the vane groove becomes openable of an oil introduction groove (42) formed in the other side block is provided.

Description

ベーン型圧縮機Vane type compressor
 本発明は、ベーン型圧縮機に関し、特にロータ前後のクリアランスの配分を適正な状態に保つために有用な構造を備えたベーン型圧縮機に関する。 The present invention relates to a vane type compressor, and more particularly to a vane type compressor having a structure useful for maintaining a proper distribution of clearances before and after a rotor.
 車両用空調装置の冷凍サイクル等で用いられるベーン型圧縮機は、各種構成が存在する(下記の特許公報参照)。例えば、図5及び図6の構成で代表されるように、ベーン型圧縮機は、ハウジング5内に形成されてカム面11が内周面に形成されたシリンダ12と、シリンダ12の軸方向の両端を閉塞する一対のサイドブロック(第1のサイドブロック13、第2のサイドブロック21)と、この一対のサイドブロックに回転自在に支持された駆動軸2と、この駆動軸2に固装されてシリンダ内に回転可能に収容されたロータ3と、このロータ3の外周面から内部に向けて形成されたベーン溝8と、このベーン溝8に出没可能に収容されたベーン4とを有する。ベーン4は、ロータ3の回転による遠心力およびベーン溝8の底部に設けられた背圧室8aからの背圧によってシリンダ12の内周面(カム面11)に接触支持されるようになっている。そして、シリンダ12と一対のサイドブロック13,21とにより閉塞された空間にロータ3とベーン4とによって圧縮室31が画成され、この圧縮室31に吸入される流体をロータ3の回転に伴って圧縮させるようにしている。 Vane type compressors used in refrigeration cycles of vehicle air conditioners have various configurations (see the following patent publication). For example, as represented by the configuration in FIGS. 5 and 6, the vane compressor includes a cylinder 12 formed in the housing 5 and having a cam surface 11 formed on the inner peripheral surface, and an axial direction of the cylinder 12. A pair of side blocks (first side block 13 and second side block 21) that close both ends, a drive shaft 2 rotatably supported by the pair of side blocks, and the drive shaft 2 are fixedly mounted. The rotor 3 is rotatably accommodated in the cylinder, the vane groove 8 is formed from the outer peripheral surface of the rotor 3 toward the inside, and the vane 4 is accommodated in the vane groove 8 so as to be able to protrude and retract. The vane 4 is contacted and supported on the inner peripheral surface (cam surface 11) of the cylinder 12 by the centrifugal force generated by the rotation of the rotor 3 and the back pressure from the back pressure chamber 8a provided at the bottom of the vane groove 8. Yes. A compression chamber 31 is defined by the rotor 3 and the vane 4 in a space closed by the cylinder 12 and the pair of side blocks 13 and 21, and the fluid sucked into the compression chamber 31 is caused by the rotation of the rotor 3. To compress.
 このようなベーン型圧縮機においては、ロータ3のスムーズな回転を確保するために、また、圧縮効率の低下を防ぐために、ロータ3の軸方向の前後の端面とそれぞれのサイドブロック13.21との間に適切なクリアランスが形成されるよう、ロータの寸法が管理されている。また、各サイドブロック13,21のロータ3の端面が対峙する面には、オイルが導入されるオイル導入溝(第1のサイドブロック13に第1のオイル導入溝41、第2のサイドブロック21に第2のオイル導入溝42)が形成され、駆動軸2の軸受け部分やロータ3とサイドブロック13,21との摺接面に潤滑用のオイルが供給されるようになっている。なお、各サイドブロックに形成されるオイル導入溝41,42は、ロータ3の背圧室8aを介して連通されており、図6にも示されるように、従来においては、第1のサイドブロック13と第2のサイドブロック21とで対称的な形状に形成されている。 In such a vane compressor, in order to ensure smooth rotation of the rotor 3 and to prevent a reduction in compression efficiency, the front and rear end faces in the axial direction of the rotor 3 and the respective side blocks 13.21 The dimensions of the rotor are controlled so that an appropriate clearance is formed between the two. Further, on the surface of the side blocks 13, 21 facing the end face of the rotor 3, an oil introduction groove into which oil is introduced (a first oil introduction groove 41 on the first side block 13, a second side block 21 is provided). The second oil introduction groove 42) is formed in the shaft, and lubricating oil is supplied to the bearing portion of the drive shaft 2 and the sliding contact surface between the rotor 3 and the side blocks 13 and 21. The oil introduction grooves 41 and 42 formed in each side block communicate with each other through the back pressure chamber 8a of the rotor 3, and as shown in FIG. 13 and the second side block 21 are formed in a symmetrical shape.
特開2013-050038号公報JP 2013-050038 A 特開2007-064163号公報JP 2007-064163 A
 しかしながら、ロータ3が固装されている駆動軸2の一端(前端)は、駆動源に直結させる必要から、或いは、駆動源の動力を伝達する動力伝達部材(プーリ、電磁クラッチ等)を固装する必要から、一方のサイドブロック(第2のサイドブロック21)を貫通させるようにしている。
 このため、駆動軸2の一端が一方のサイドブロック(第2のサイドブロック21)を貫通してハウジングの外部に突出している場合には、駆動軸2の一端側に大気圧が作用し、これに対して、駆動軸2の他端側(第1のサイドブロック13に支持される側)に圧縮機内部の相対的に高い圧力が作用する。したがって、駆動軸2は、軸方向の前後両側に作用する圧力差により、サイドブロックから突出している一端側(前側)へ付勢された状態となり、ロータ3の軸方向の位置は、駆動軸2が貫通しているサイドブロック側(第2のサイドブロック21側)へ接近し、ロータ3の前端と前側の第2のサイドブロック21との間のクリアランスは、相対的に小さくなる。逆に、ロータ3の後端と後側の第1のサイドブロック13との間のクリアランスは、相対的に大きくなる。したがって、クリアランスが大きくなる後側(第1のサイドブロック13側)で、隣り合う圧縮室間でクリアランスを介して流体が漏流し(オイルシールが悪くなり)、圧縮効率が低下する不都合が生じる。
However, one end (front end) of the drive shaft 2 on which the rotor 3 is fixed is required to be directly connected to the drive source, or a power transmission member (pulley, electromagnetic clutch, etc.) for transmitting the power of the drive source is fixed. Therefore, one side block (second side block 21) is made to penetrate.
For this reason, when one end of the drive shaft 2 passes through one side block (second side block 21) and protrudes outside the housing, atmospheric pressure acts on one end side of the drive shaft 2, On the other hand, a relatively high pressure inside the compressor acts on the other end side of the drive shaft 2 (side supported by the first side block 13). Therefore, the drive shaft 2 is biased to one end side (front side) protruding from the side block by the pressure difference acting on both the front and rear sides in the axial direction, and the axial position of the rotor 3 is , The clearance between the front end of the rotor 3 and the second side block 21 on the front side becomes relatively small. Conversely, the clearance between the rear end of the rotor 3 and the first side block 13 on the rear side is relatively large. Therefore, on the rear side (first side block 13 side) where the clearance is increased, fluid leaks through the clearance between adjacent compression chambers (oil seal becomes worse), and there is a disadvantage that the compression efficiency is lowered.
 図5の一点鎖線で示されるように、動力伝達部材として電磁クラッチ33が駆動軸2に設けられる場合には、ロータ3に動力が伝達される電磁クラッチ33の吸着時には、クラッチを構成する板バネのバネ力が駆動軸2を介してロータ3を後方(第1のサイドブロック13側)へ付勢するように作用する。このため、ロータ3の軸方向の位置は、駆動軸2の軸方向の前後両側に作用する圧力差と電磁クラッチ33のバネ力とによって決まることになる。
 しかしながら、ベーン型圧縮機は、小型のものが多く、電磁クラッチのバネ力も駆動軸2の前後両端の圧力差を相殺するほど大きくない。したがって、電磁クラッチ33が設けられていても、ロータ3の後側のクリアランス(ロータ3と第1のサイドブロック13との間のクリアランス)がロータの前側のクリアランス(ロータ3と第2のサイドブロック21との間のクリアランス)よりも大きくなる状態を解消することができず、圧縮効率が低下する不都合は依然として生じている。
As indicated by the one-dot chain line in FIG. 5, when the electromagnetic clutch 33 is provided on the drive shaft 2 as a power transmission member, a leaf spring constituting the clutch is attracted to the electromagnetic clutch 33 that transmits power to the rotor 3. The spring force acts to urge the rotor 3 rearward (on the first side block 13 side) via the drive shaft 2. For this reason, the position of the rotor 3 in the axial direction is determined by the pressure difference acting on both the front and rear sides in the axial direction of the drive shaft 2 and the spring force of the electromagnetic clutch 33.
However, many vane compressors are small, and the spring force of the electromagnetic clutch is not so large as to cancel the pressure difference between the front and rear ends of the drive shaft 2. Therefore, even if the electromagnetic clutch 33 is provided, the clearance on the rear side of the rotor 3 (the clearance between the rotor 3 and the first side block 13) is the clearance on the front side of the rotor (the rotor 3 and the second side block). (Clearance between the two) is not solved, and there still remains a disadvantage that the compression efficiency is lowered.
 そこで、従来においては、ロータの後側のクリアランスが許容範囲に収まるようにするために、ロータの軸方向前後のトータルのクリアランス(ロータ前後のクリアランスの和)が大きくなり過ぎないように管理する方法を採用しているが、このような管理方法では、管理工程の複雑化を招き、また、生産性が低下する等の不都合がある。 Therefore, conventionally, in order to keep the clearance on the rear side of the rotor within an allowable range, the total clearance before and after the rotor in the axial direction (the sum of clearances before and after the rotor) is managed so as not to become too large. However, in such a management method, there are disadvantages such as a complicated management process and a decrease in productivity.
 本発明は、係る事情に鑑みてなされたものであり、ロータの軸方向前後に作用させる圧力に差を生じさせて、ロータ及びこれと一体をなす駆動軸の前後に作用する力をバランスさせることで、ロータの軸方向前後のクリアランスの配分を適正な状態に保持することが可能なベーン型圧縮機を提供することを主たる課題としている。 The present invention has been made in view of such circumstances, and balances the forces acting on the front and rear of the rotor and the drive shaft integral with the rotor by causing a difference in the pressure acting on the front and rear of the rotor in the axial direction. Thus, the main object is to provide a vane type compressor capable of maintaining the distribution of the clearance in the axial direction of the rotor in an appropriate state.
 上記課題を達成するために、本発明に係るベーン型圧縮機は、ハウジングと、カム面が形成され、前記ハウジング内に設けられたシリンダと、前記シリンダの軸方向の両端を閉塞し、前記ハウジングに設けられた一対のサイドブロックと、前記一対のサイドブロックに回転自在に支持された駆動軸と、前記駆動軸に固装されて前記シリンダ内に回転可能に収容されるロータと、前記ロータに形成された複数のベーン溝と、前記ベーン溝に摺動自在に挿入され、先端が前記ベーン溝から出没して前記カム面を摺動する複数のベーンと、前記シリンダと前記一対のサイドブロックとにより閉塞された空間に前記ロータと前記ベーンとによって形成される圧縮室と、前記圧縮室に流体を吸入するために設けられた吸入ポートと、前記圧縮室で圧縮された流体を吐出するために設けられた吐出ポートと、前記流体が吐出される吐出室と、吐出された前記流体によって加圧されたオイルを貯留するオイル室と、前記一対のサイドブロックの前記ロータと対向する面に設けられ、前記ベーン溝が開口するオイル導入溝と、前記オイル室と前記オイル導入溝とを連通する少なくとも一つのオイル連通路と、を備えたベーン型圧縮機において、前記一対のサイドブロックのうちの一方のサイドブロックの前記ロータと対向する面に設けられ、吸入圧相当の前記流体が導入される吸入圧導入溝と、前記一方のサイドブロックの前記ロータと対向する面に設けられ、前記オイル導入溝の前記ベーン溝が開口可能となる部分の一部を前記ロータの径方向内側へ縮小した溝縮小部と、前記一対のサイドブロックのうちの他方のサイドブロックの前記ロータと対向する面に設けられ、前記オイル導入溝の前記ベーン溝が開口可能となる部分の一部を前記ロータの径方向外側へ拡大した溝拡大部と、の少なくともいずれか一つを有することを特徴としている。 In order to achieve the above object, a vane compressor according to the present invention includes a housing, a cam surface formed therein, a cylinder provided in the housing, and both ends of the cylinder in the axial direction closed. A pair of side blocks provided on the drive shaft, a drive shaft rotatably supported by the pair of side blocks, a rotor fixedly mounted on the drive shaft and rotatably accommodated in the cylinder, and the rotor A plurality of formed vane grooves; a plurality of vanes that are slidably inserted into the vane grooves; and tips that protrude and retract from the vane grooves and slide on the cam surface; the cylinder and the pair of side blocks; A compression chamber formed by the rotor and the vane in a space closed by the air, a suction port provided for sucking fluid into the compression chamber, and compression in the compression chamber A discharge port provided for discharging the discharged fluid; a discharge chamber for discharging the fluid; an oil chamber for storing oil pressurized by the discharged fluid; and the pair of side blocks. In the vane type compressor, comprising: an oil introduction groove provided on a surface facing the rotor, wherein the vane groove is opened; and at least one oil communication path communicating the oil chamber and the oil introduction groove. A suction pressure introduction groove that is provided on a surface of one of the side blocks that faces the rotor and that receives the fluid corresponding to the suction pressure, and a surface of the one side block that faces the rotor. A portion of the oil introduction groove where the vane groove can be opened is reduced to a radially inner side of the rotor, and the pair of side blowers A groove enlarged portion provided on a surface of the other side block facing the rotor of the first side block, wherein a part of the oil introduction groove where the vane groove can be opened is enlarged outward in the radial direction of the rotor; It is characterized by having at least one of these.
 したがって、一方のサイドブロックのロータと対向する面に吸入圧相当の流体が導入される吸入圧導入溝を設けることで、一方のサイドブロックと対向するロータの端面の吸入圧導入溝が対向している部分は、吸入圧相当の圧力しか作用しないので、ロータを他方のサイドブロックに向けて付勢する力を低減することが可能となる。
 また、一方のサイドブロックのロータと対向する面に溝縮小部を設けることで、一方のサイドブロックに形成されたオイル導入溝に導入されるオイルがロータに作用する面積を減らすことができ、ロータを他方のサイドブロックに向けて付勢する力を低減させることが可能となる。
 さらに、他方のサイドブロックのロータと対向する面に溝拡大部を設けることで、他方のサイドブロックに形成されたオイル導入溝に導入されるオイルがロータに作用する面積を増大させることができ、ロータを一方のサイドブロックに向けて付勢する力を増大させることが可能となる。
 このため、吸入圧導入溝、溝縮小部、溝拡大部の少なくともいずれか1つを設けることで、ロータを他方のサイドブロックに付勢する力を低減することが可能となり、これによりロータ及びこれと一体をなす駆動軸の前後に作用する力をバランスさせてロータの軸方向両側のクリアランスの配分を調整することが可能となる。
Therefore, by providing a suction pressure introduction groove into which a fluid corresponding to suction pressure is introduced on the surface of one side block facing the rotor, the suction pressure introduction groove on the end surface of the rotor facing one side block faces. Since only the pressure corresponding to the suction pressure acts on the portion that is present, the force that urges the rotor toward the other side block can be reduced.
Also, by providing a groove reducing portion on the surface of one side block facing the rotor, the area where oil introduced into the oil introduction groove formed in one side block acts on the rotor can be reduced. It becomes possible to reduce the force which urges toward the other side block.
Furthermore, by providing a groove expanding portion on the surface facing the rotor of the other side block, the area where the oil introduced into the oil introduction groove formed in the other side block acts on the rotor can be increased. It becomes possible to increase the force that urges the rotor toward one side block.
For this reason, by providing at least one of the suction pressure introducing groove, the groove reducing portion, and the groove expanding portion, it is possible to reduce the force for urging the rotor to the other side block. It is possible to adjust the distribution of the clearances on both sides of the rotor in the axial direction by balancing the forces acting on the front and rear of the drive shaft integrated with the rotor.
 なお、上述したサイドブロックの構成は、特に、駆動軸が他方のサイドブロックを貫通して電動モータの軸に直結している電動圧縮機において、電動モータを収容する空間が相対的に低圧である場合や、駆動軸が他方のサイドブロックを貫通してハウジングの外部へ突出しているような場合において、駆動軸の低圧空間または外部に突出している側と圧縮機のハウジング内に配置される側との圧力差に起因するクリアランスの配分の偏りを調整するために有効な構成である。 In addition, the structure of the side block described above is a relatively low pressure space in the electric compressor in which the drive shaft passes through the other side block and is directly connected to the shaft of the electric motor. Or in the case where the drive shaft passes through the other side block and protrudes to the outside of the housing, the low-pressure space of the drive shaft or the side protruding outside and the side disposed in the housing of the compressor This is an effective configuration for adjusting the bias in the distribution of clearance due to the pressure difference between the two.
 ここで、前記吸入圧導入溝は、前記一方のサイドブロックに、前記駆動軸と前記カム面との間に位置し、前記吸入ポートに対応した角度範囲に亘って設けることが好ましい。
 吸入圧導入溝を吸入ポートに対応した角度範囲で設けることで、圧縮行程での流体の圧縮を阻害しない範囲で吸入圧導入溝を大きく形成することが可能となり、また、ロータに作用する他方のサイドブロック側への付勢力をできるだけ低減することが可能となる。
Here, it is preferable that the suction pressure introduction groove is provided in the one side block between the drive shaft and the cam surface and over an angular range corresponding to the suction port.
By providing the suction pressure introduction groove in an angle range corresponding to the suction port, it is possible to make the suction pressure introduction groove large in a range that does not hinder the compression of the fluid in the compression stroke, and the other one that acts on the rotor. It is possible to reduce the urging force toward the side block as much as possible.
 また、前記溝縮小部は、前記一方のサイドブロックに、前記駆動軸と前記ロータの外周縁が対向する位置との間の範囲で、前記ベーン型圧縮機の駆動状態において、前記圧縮室の圧力が前記オイル導入溝の圧力以下となる領域に対応した角度範囲内に設けられることが好ましい。
 一方のサイドブロックに、オイル導入溝の圧力より圧縮室の圧力が低くなる領域(吸入行程の領域、及び、圧縮行程の初期の領域)の範囲内で溝縮小部を設けることで、オイル導入溝がロータと対峙する面積を小さくすると共に、溝縮小部が設けられている箇所での圧縮室からオイル導入溝に至る圧力勾配を緩やかにすることができ、ロータに作用する他方のサイドブロック側への付勢力を低減させることが可能となる。
In addition, the groove reducing portion may be configured such that the pressure of the compression chamber in the driving state of the vane compressor is in a range between the drive shaft and a position where the outer peripheral edge of the rotor faces the one side block. Is preferably provided within an angle range corresponding to a region that is equal to or lower than the pressure of the oil introduction groove.
An oil introduction groove is provided on one side block by providing a groove reduction portion within a range in which the pressure in the compression chamber is lower than the pressure in the oil introduction groove (the suction stroke region and the initial compression stroke region). The area facing the rotor can be reduced, and the pressure gradient from the compression chamber to the oil introduction groove at the location where the groove reduction portion is provided can be made gentle, and the other side block acting on the rotor can be moved to the side. It becomes possible to reduce the urging force.
 さらに、前記溝拡大部は、前記他方のサイドブロックに、前記駆動軸と前記ロータの外周縁が対向する位置との間の範囲で、前記ベーン型圧縮機の駆動状態において、前記圧縮室の圧力が前記オイル導入溝の圧力以下となる領域に対応した角度範囲内に設けられることが好ましい。
 他方のサイドブロックに、オイル導入溝の圧力より圧縮室の圧力が低くなる領域(吸入行程の領域、及び、圧縮行程の初期の領域)の範囲内で溝拡大部を設けることで、オイル導入溝がロータと対峙する面積を大きくすると共に、溝拡大部が設けられている箇所での圧縮室からオイル導入溝に至る圧力勾配を急にすることができ、ロータに作用する一方のサイドブロック側への付勢力を増大させることが可能となる。
Further, the groove enlarged portion may be configured such that the pressure of the compression chamber is in a driving state of the vane compressor in a range between the drive shaft and a position where the outer peripheral edge of the rotor faces the other side block. Is preferably provided within an angle range corresponding to a region that is equal to or lower than the pressure of the oil introduction groove.
The oil introduction groove is provided on the other side block by providing a groove expansion portion within a region where the pressure of the compression chamber is lower than the pressure of the oil introduction groove (region of suction stroke and initial region of compression stroke). Increases the area facing the rotor, and the pressure gradient from the compression chamber to the oil introduction groove at the location where the groove expansion portion is provided can be made steep, so that one side block acting on the rotor It is possible to increase the urging force.
 なお、前記ハウジングは、内周面が真円に形成された前記シリンダ、及び、前記シリンダの軸方向の一端側を閉塞する第1のサイドブロックが一体に形成された第1のハウジング部材と、前記シリンダの軸方向の他端側を閉塞する第2のサイドブロックが形成された第2のハウジング部材とを組み合わせて構成し、前記一対のサイドブロックを、前記第1のサイドブロックと前記第2のサイドブロックとにより構成してもよい。 The housing includes a first housing member integrally formed with the cylinder having an inner peripheral surface formed into a perfect circle, and a first side block that closes one end of the cylinder in the axial direction; A second housing member formed with a second side block that closes the other end side of the cylinder in the axial direction is combined to form the pair of side blocks, the first side block and the second side block. You may comprise by this side block.
 以上述べたように、本発明によれば、一方のサイドブロックのロータと対向する面にロータを他方のサイドブロック側へ向けて付勢する力を低減するための吸入圧導入溝を設ける構成と、一方のサイドブロックのロータと対向する面にロータを他方のサイドブロックに向けて付勢する力を低減させるための溝縮小部を設ける構成と、他方のサイドブロックのロータと対向する面にロータを一方のサイドブロックに向けて付勢する力を増大させるための溝拡大部を設ける構成との少なくともいずれか一つを採用することで、ロータの軸方向前後に作用させる圧力に差を生じさせることが可能となる。そして、この圧力差によって、ロータ及びこれと一体をなす駆動軸の前後に作用する力をバランスさせることで、ロータの軸方向前後のクリアランスの配分を適正な状態に保持することが可能となる。このため、ロータのスムーズな回転を確保しつつ、圧縮効率の低下を招くことがなくなる。 As described above, according to the present invention, the suction pressure introduction groove for reducing the force for urging the rotor toward the other side block is provided on the surface of the one side block facing the rotor. A configuration in which a groove reducing portion for reducing a force for urging the rotor toward the other side block is provided on a surface facing the rotor of one side block, and a rotor on a surface facing the rotor of the other side block. By adopting at least one of the configuration provided with a groove expanding portion for increasing the force for urging the one side block toward one side block, a difference is generated in the pressure applied in the axial direction of the rotor. It becomes possible. Then, by balancing the forces acting on the front and rear of the rotor and the drive shaft integrated with the rotor by this pressure difference, it becomes possible to keep the distribution of the clearance in the front and rear in the axial direction of the rotor in an appropriate state. For this reason, the compression efficiency is not reduced while ensuring smooth rotation of the rotor.
図1は、本発明にかかるベーン型圧縮機を示す断面図である。FIG. 1 is a sectional view showing a vane type compressor according to the present invention. 図2(a)は、図1で示すベーン型圧縮機のA-A線からリア側を見た図であり、ロータを外した状態を示す。また、図2(b)は、図1で示すベーン型圧縮機のB-B線からフロント側を見た図である。FIG. 2A is a view of the rear side of the vane compressor shown in FIG. 1 as viewed from the line AA, and shows a state where the rotor is removed. FIG. 2 (b) is a view of the vane compressor shown in FIG. 1 as viewed from the BB line. 図3(a),(b)は、図2で示す図において、サイドブロックのロータが対峙している部分で従来のサイドブロック(図6)とは異なる部分にハッチを施した図である。3 (a) and 3 (b) are views in which hatching is applied to a portion different from the conventional side block (FIG. 6) in the portion shown in FIG. 2 where the rotor of the side block faces. 図4(a)は、オイル導入溝が形成されている部分について、シリンダ内径からロータ内径に至るまでの圧力変化を説明する線図であり、図4(b)は、圧縮室の圧力とオイル導入溝の圧力をロータの回転角に応じて示す線図である。FIG. 4A is a diagram for explaining a change in pressure from the cylinder inner diameter to the rotor inner diameter in a portion where the oil introduction groove is formed, and FIG. 4B is a diagram illustrating the pressure in the compression chamber and the oil It is a diagram which shows the pressure of an introduction groove | channel according to the rotation angle of a rotor. 図5は、従来のベーン型圧縮機を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional vane compressor. 図6(a)は、図5で示すベーン型圧縮機のA-A線からリア側を見た図であり、ロータを外した状態を示す。また、図6(b)は、図5で示すベーン型圧縮機のB-B線からフロント側を見た図である。FIG. 6A is a view of the vane compressor shown in FIG. 5 as viewed from the rear side along the line AA, and shows a state in which the rotor is removed. FIG. 6B is a view of the front side as viewed from the line BB of the vane compressor shown in FIG.
 以下、本発明のベーン型圧縮機について図面を参照しながら説明する。 Hereinafter, the vane type compressor of the present invention will be described with reference to the drawings.
 図1において、冷媒を作動流体とする冷凍サイクルに適したベーン型圧縮機が示されている。このベーン型圧縮機1は、駆動軸2と、駆動軸2に固定されて当該駆動軸2の回動に伴い回転するロータ3と、このロータ3に取り付けられるベーン4と、駆動軸2を回転自在に支持すると共にロータ3及びベーン4を収容するハウジング5とを有して構成されている。なお、圧縮機を側方から見た図1において、左側をフロント側、右側をリア側とする。 FIG. 1 shows a vane compressor suitable for a refrigeration cycle using a refrigerant as a working fluid. The vane compressor 1 includes a drive shaft 2, a rotor 3 that is fixed to the drive shaft 2 and rotates as the drive shaft 2 rotates, a vane 4 attached to the rotor 3, and the drive shaft 2. A housing 5 that supports the rotor 3 and the vanes 4 while supporting the rotor 3 and the vanes 4 is provided. In FIG. 1 when the compressor is viewed from the side, the left side is the front side and the right side is the rear side.
 ハウジング5は、第1のハウジング部材10と第2のハウジング部材20との2つの部材を組み合わせて構成されている。
 第1のハウジング部材10は、ロータ3を収納すると共にカム面11が内周面に形成されたシリンダ12と、このシリンダ12の軸方向の一端側(リア側)を閉塞するように一体に形成された第1のサイドブロック13とから構成されている。シリンダ12の内周面(カム面11)は、断面が真円に形成され、シリンダ12の軸方向の長さは、後述するロータ3の軸方向の長さにほぼ等しく形成されている。
The housing 5 is configured by combining two members of the first housing member 10 and the second housing member 20.
The first housing member 10 accommodates the rotor 3 and is integrally formed so as to close the cylinder 12 having the cam surface 11 formed on the inner peripheral surface and one end side (rear side) of the cylinder 12 in the axial direction. The first side block 13 is formed. The inner peripheral surface (cam surface 11) of the cylinder 12 is formed in a perfect circle in cross section, and the axial length of the cylinder 12 is substantially equal to the axial length of the rotor 3 described later.
 第2のハウジング部材20は、シリンダ12の軸方向の他端側(フロント側)の端面に当接してこの他端側を閉塞する第2のサイドブロック21と、この第2のサイドブロック21に一体に形成されて駆動軸2の軸方向に延設され、前記シリンダ12及び第1のサイドブロック13の外周面を包囲するように形成されたシェル22とを有して構成されている。 The second housing member 20 is in contact with an end face on the other end side (front side) in the axial direction of the cylinder 12 and closes the other end side. The shell 22 is formed integrally and extends in the axial direction of the drive shaft 2, and is formed so as to surround the outer peripheral surfaces of the cylinder 12 and the first side block 13.
 そして、これら第1のハウジング部材10と第2のハウジング部材20とは、ボルト等の連結具6を介して軸方向に締結され、第1のハウジング部材10の第1のサイドブロック13と第2のハウジング部材20のシェル22との間は、Oリング等のシール部材7が介在されて気密よくシールされている。 The first housing member 10 and the second housing member 20 are fastened in the axial direction via a connector 6 such as a bolt, and the first side block 13 and the second side block 13 of the first housing member 10 are connected. A sealing member 7 such as an O-ring is interposed between the housing member 20 and the shell 22 so as to be airtightly sealed.
 また、第2のハウジング部材20には、第2のサイドブロック21からフロント側に延設されたボス部23が一体に形成されている。このボス部23には、駆動軸2に回転動力を伝えるプーリ32(一点鎖線で示す)が回転自在に外装され、駆動軸2には、このプーリ32から電磁クラッチ33を介して回転動力が駆動軸2に伝達されるようになっている。 Also, the second housing member 20 is integrally formed with a boss portion 23 extending from the second side block 21 to the front side. A pulley 32 (shown by an alternate long and short dash line) that transmits rotational power to the drive shaft 2 is rotatably mounted on the boss portion 23, and rotational power is driven from the pulley 32 via the electromagnetic clutch 33 to the drive shaft 2. It is transmitted to the shaft 2.
 前記駆動軸2は、第1のサイドブロック13と第2のサイドブロック21とにベアリング14,24を介して回転自在に支持されている。駆動軸2の先端部は、第2のハウジング部材20の第2のサイドブロック21を貫通してボス部23内に突出している。このボス部23と駆動軸2との間に設けられたシール部材25によって、該ボス部23と駆動軸2との間が気密よくシールされている。 The drive shaft 2 is rotatably supported by the first side block 13 and the second side block 21 via bearings 14 and 24. The distal end portion of the drive shaft 2 passes through the second side block 21 of the second housing member 20 and protrudes into the boss portion 23. A seal member 25 provided between the boss portion 23 and the drive shaft 2 seals the space between the boss portion 23 and the drive shaft 2 in an airtight manner.
 なお、電磁クラッチ33は、それ自体公知のもので、駆動軸2のハウジング(第2のサイドブロック)から突出した部分に、軸方向に取り付けられた板バネ34を介してクラッチ板35がプーリ32の摩擦面32aに対峙して固定されている。クラッチ板35は、プーリ32に内包された励磁コイル36への通電によりプーリ32に吸着し、このプーリ32に与えられる走行用エンジンからの回転動力をクラッチ板35及び板バネ34を介して駆動軸2に伝達するようになっている。
 このクラッチ板35のプーリ32への吸着により、駆動軸2には、板バネ34のバネ力によって第1のサイドブロック13側(リア側)へ向かう付勢力が付勢される。
The electromagnetic clutch 33 is known per se, and the clutch plate 35 is connected to the pulley 32 via a leaf spring 34 attached in the axial direction to a portion protruding from the housing (second side block) of the drive shaft 2. It is fixed opposite to the friction surface 32a. The clutch plate 35 is attracted to the pulley 32 by energizing an exciting coil 36 included in the pulley 32, and the rotational power from the traveling engine applied to the pulley 32 is driven via the clutch plate 35 and the plate spring 34 to the drive shaft. 2 is transmitted.
By the adsorption of the clutch plate 35 to the pulley 32, the urging force toward the first side block 13 (rear side) is urged to the drive shaft 2 by the spring force of the plate spring 34.
 前記ロータ3は、断面が真円状に形成され、その軸中心に設けられた挿通孔3aに前記駆動軸2が挿通され、互いの軸中心を一致させた状態で駆動軸2に固定されている。また、シリンダ12の軸中心とロータ3(駆動軸2)の軸中心とは、ロータ3の外周面とシリンダ12の内周面(カム面11)とが周方向の一箇所で当接するようにずらして設けられている(シリンダ12の内径とロータ3の外径との差の1/2だけずらして設けられている)。そして、シリンダ12と第1のサイドブロック13及び第2のサイドブロック21とにより閉塞された空間には、シリンダ12の内周面とロータ3の外周面との間に圧縮空間30が画成されている。 The rotor 3 has a circular cross section, and the drive shaft 2 is inserted through an insertion hole 3a provided at the center of the rotor 3, and the rotor 3 is fixed to the drive shaft 2 in a state where the centers of the shafts coincide with each other. Yes. Further, the axial center of the cylinder 12 and the axial center of the rotor 3 (drive shaft 2) are such that the outer peripheral surface of the rotor 3 and the inner peripheral surface (cam surface 11) of the cylinder 12 abut at one place in the circumferential direction. They are shifted (they are shifted by a half of the difference between the inner diameter of the cylinder 12 and the outer diameter of the rotor 3). In the space closed by the cylinder 12, the first side block 13 and the second side block 21, a compression space 30 is defined between the inner peripheral surface of the cylinder 12 and the outer peripheral surface of the rotor 3. ing.
 前記ロータ3の外周面には、複数のベーン溝8が形成され、それぞれのベーン溝8には、ベーン4が摺動自在に挿入されている。ベーン溝8は、ロータ3の外周面のみならず第1のサイドブロック13及び第2のサイドブロック21と対峙する端面にも開口されており、底部には背圧室8aが形成されている。このベーン溝8は、周方向に等間隔に複数形成されている。この例では、ベーン溝は、180度位相が異なる2箇所に互いに平行となるように形成され、ベーン4を含む平面と、ベーン4と平行をなし駆動軸2の軸心を含む平面とが所定の距離だけ離れた状態(オフセットされた状態)で形成されている。 A plurality of vane grooves 8 are formed on the outer peripheral surface of the rotor 3, and the vanes 4 are slidably inserted into the respective vane grooves 8. The vane groove 8 is opened not only on the outer peripheral surface of the rotor 3 but also on the end surfaces facing the first side block 13 and the second side block 21, and a back pressure chamber 8 a is formed at the bottom. A plurality of the vane grooves 8 are formed at equal intervals in the circumferential direction. In this example, the vane groove is formed so as to be parallel to each other at two places different in phase by 180 degrees, and a plane including the vane 4 and a plane including the axis of the drive shaft 2 parallel to the vane 4 are predetermined. It is formed in a state separated by a distance (offset state).
 ベーン4は、駆動軸2の軸方向に沿った幅が前記ロータ3の軸方向の長さに等しく形成され、また、ベーン溝8への挿入方向(摺動方向)の長さは、ベーン溝8の同方向の長さに略等しく形成されている。このベーン4は、ベーン溝8の背圧室8aに供給される後述するオイルにより、ベーン溝8から突出されて先端部がシリンダ12の内周面(カム面11)に当接可能となっている。 The vane 4 is formed such that the width along the axial direction of the drive shaft 2 is equal to the axial length of the rotor 3, and the length in the insertion direction (sliding direction) into the vane groove 8 is the vane groove. 8 is formed approximately equal to the length in the same direction. The vane 4 is protruded from the vane groove 8 by oil, which will be described later, supplied to the back pressure chamber 8 a of the vane groove 8, and a tip portion thereof can come into contact with the inner peripheral surface (cam surface 11) of the cylinder 12. Yes.
 したがって、前記圧縮空間30は、ベーン溝8に摺動自在に挿入されたベーン4によって複数の圧縮室31に仕切られ、それぞれの圧縮室31の容積は、ロータ3の回転によって変化するようになっている。 Therefore, the compression space 30 is partitioned into a plurality of compression chambers 31 by the vanes 4 slidably inserted into the vane grooves 8, and the volume of each compression chamber 31 changes as the rotor 3 rotates. ing.
 なお、第2のハウジング部材20には、作動流体(冷媒ガス)を外部から吸入する吸入口26および外部へ吐出する吐出口27が形成され、第2のサイドブロック21には、吸入口26と連通する吸入室28が形成されている。また、第1のハウジング部材10のシリンダ12には、ロータ3の外周面がシリンダ12の内周面と当接する部位(ラジアルシール部40)に対してロータ3の回転方向の前方側の近傍に、前記吸入室28に連通して前記圧縮室31に流体を吸入するための吸入ポート15が形成されている。 The second housing member 20 has a suction port 26 for sucking working fluid (refrigerant gas) from the outside and a discharge port 27 for discharging the working fluid (refrigerant gas) to the outside. The second side block 21 has a suction port 26 and a suction port 26. A communicating suction chamber 28 is formed. In addition, the cylinder 12 of the first housing member 10 is located near the front side in the rotational direction of the rotor 3 with respect to a portion (radial seal portion 40) where the outer peripheral surface of the rotor 3 contacts the inner peripheral surface of the cylinder 12. A suction port 15 is formed in communication with the suction chamber 28 to suck fluid into the compression chamber 31.
 さらに、第1のハウジング部材10には、ラジアルシール部40に対してロータ3の回転方向の後方側の近傍に、前記圧縮室で圧縮された流体を吐出するための吐出ポート16が設けられている。また、第1のハウジング部材10には、この吐出ポート16を介して吐出された流体を吐出口27に導く吐出室17が形成されている。 Further, the first housing member 10 is provided with a discharge port 16 for discharging the fluid compressed in the compression chamber in the vicinity of the radial seal portion 40 on the rear side in the rotational direction of the rotor 3. Yes. Further, the first housing member 10 is formed with a discharge chamber 17 that guides the fluid discharged through the discharge port 16 to the discharge port 27.
 吐出室17と吐出口27との間には、図示しないオイル分離器が配置されているまた、第1のハウジング部材10の第1のサイドブロック13の下部と第2のハウジング部材20のシェル22の下部との間には、オイル分離器によって流体から分離された高圧オイルを溜めるオイル室18が設けられている。 An oil separator (not shown) is disposed between the discharge chamber 17 and the discharge port 27. The lower portion of the first side block 13 of the first housing member 10 and the shell 22 of the second housing member 20 are also provided. An oil chamber 18 for storing high-pressure oil separated from the fluid by an oil separator is provided between the lower portion and the lower portion.
 また、第1のサイドブロック13のロータ3の端面と対峙する面には、駆動軸2がベアリング14を介して挿入される軸受け孔13aの開口周縁に第1のオイル導入溝41が形成されている。この第1のオイル導入溝41は、軸受け孔13aの開口周縁を凹ませて周方向に延設されているもので、ラジアルシール部40が設けられた角度位置から吐出ポート16が設けられた角度位置より手前までの所定の角度範囲(約270度の角度範囲)にかけて形成されている。また、第1のオイル導入溝41は、絞り部を有するオイル連通路19を介して前記オイル室18と接続され、また、ベーン4の先端部が吸入ポート15に差し掛かる位置から吐出ポート16に差し掛かる直前までの角度範囲にある場合にベーン溝8の底部(背圧室8a)と連通されている。 In addition, a first oil introduction groove 41 is formed on the peripheral edge of the bearing hole 13 a into which the drive shaft 2 is inserted through the bearing 14 on the surface of the first side block 13 that faces the end surface of the rotor 3. Yes. The first oil introduction groove 41 extends in the circumferential direction by denting the opening periphery of the bearing hole 13a. The angle at which the discharge port 16 is provided from the angular position at which the radial seal portion 40 is provided. It is formed over a predetermined angle range (an angle range of about 270 degrees) from the position to the front. The first oil introduction groove 41 is connected to the oil chamber 18 through an oil communication passage 19 having a throttle portion, and the discharge port 16 is moved from a position where the tip of the vane 4 reaches the suction port 15. When it is in the angle range up to just before reaching, it communicates with the bottom (back pressure chamber 8a) of the vane groove 8.
 したがって、吐出圧が高くなると、オイル室18に貯留されている高圧オイルは、オイル連通路19を介して第1のサイドブロック13に形成された第1のオイル導入溝41に供給され、この第1のオイル導入溝41からベアリング14等の摺動部分や駆動軸2の末端部と第1のサイドブロック13との間に形成された空間45に送り込まれると共に、ロータ3の背圧室8aに送り込まれるようになっている。前記ベーン4は、この背圧室8aに送り込まれたオイルにより、シリンダ12の内周面(カム面11)に押し付けられ、したがって、安定した圧縮が確保されるようになっている。 Therefore, when the discharge pressure increases, the high-pressure oil stored in the oil chamber 18 is supplied to the first oil introduction groove 41 formed in the first side block 13 via the oil communication path 19, and this first 1 is introduced into the space 45 formed between the sliding portion of the bearing 14 and the like and the end portion of the drive shaft 2 and the first side block 13, and into the back pressure chamber 8 a of the rotor 3. It is supposed to be sent. The vane 4 is pressed against the inner peripheral surface (cam surface 11) of the cylinder 12 by the oil fed into the back pressure chamber 8a, so that stable compression is ensured.
 さらに、第2のサイドブロック21のロータ3の端面と対峙する面には、駆動軸2がベアリング24を介して挿入される軸受け孔21aの開口周縁に第2のオイル導入溝42が形成されている。この第2のオイル導入溝42は、軸受け孔21aの開口周縁を凹ませて周方向に延設されているもので、ラジアルシール部40が設けられた角度位置から吐出ポート16が設けられた角度位置より手前までの所定の角度範囲(約270度の角度範囲)にかけて形成されている。また、第2のオイル導入溝42は、ベーン4の先端部が吸入ポート15に差し掛かる位置から吐出ポート16に差し掛かる直前までの角度範囲にある場合にベーン溝8の底部(背圧室8a)と連通するようになっている。 Further, a second oil introduction groove 42 is formed on the peripheral edge of the bearing hole 21 a into which the drive shaft 2 is inserted through the bearing 24 on the surface of the second side block 21 that faces the end surface of the rotor 3. Yes. The second oil introduction groove 42 extends in the circumferential direction with the opening periphery of the bearing hole 21a being recessed, and the angle at which the discharge port 16 is provided from the angular position at which the radial seal portion 40 is provided. It is formed over a predetermined angle range (an angle range of about 270 degrees) from the position to the front. Further, the second oil introduction groove 42 is located at the bottom of the vane groove 8 (the back pressure chamber 8a) when it is in an angular range from the position where the tip of the vane 4 reaches the suction port 15 to just before the discharge port 16. ).
 したがって、背圧室8aに送り込まれたオイルは、この背圧室8aが第2のオイル導入溝42と連通する行程で第2のオイル導入溝42に供給され、この第2のオイル導入溝42を介してベアリング等の摺動部分に送り込まれるようになっている。
 なお、図2において、37は、連結具6を螺合するねじ穴である。
Accordingly, the oil fed into the back pressure chamber 8a is supplied to the second oil introduction groove 42 in a process in which the back pressure chamber 8a communicates with the second oil introduction groove 42, and the second oil introduction groove 42 is supplied. It is sent to sliding parts, such as a bearing, via.
In FIG. 2, reference numeral 37 denotes a screw hole into which the connector 6 is screwed.
 そして、このような構成において、第1のサイドブロック13のロータ3の端面と対峙する面には、図2(a)に示されるように、吸入圧相当の流体が導入される吸入圧導入溝43が形成され、また、前記第1のオイル導入溝41には、ベーン溝8が開口可能となる部分の一部をロータの径方向内側へ縮小した溝縮小部41aが形成されている。 In such a configuration, the suction pressure introduction groove into which a fluid corresponding to the suction pressure is introduced, as shown in FIG. 2A, on the surface of the first side block 13 that faces the end surface of the rotor 3. 43 is formed, and the first oil introduction groove 41 is formed with a groove reducing portion 41a in which a part of the portion where the vane groove 8 can be opened is reduced inward in the radial direction of the rotor.
 吸入圧導入溝43は、駆動軸2とカム面11との間、より具体的には、第1のオイル導入溝41の外縁とカム面11との間に位置し、シリンダ12の内周面(カム面)に沿って、吸入ポート15に対応した角度範囲に亘って設けられている。 The suction pressure introduction groove 43 is located between the drive shaft 2 and the cam surface 11, more specifically, between the outer edge of the first oil introduction groove 41 and the cam surface 11, and the inner peripheral surface of the cylinder 12. Along the (cam surface), an angle range corresponding to the suction port 15 is provided.
 この例では、吸入ポート15は、ラジアルシール部40の近傍からカム面に沿って略90度の範囲に亘って形成されている。また、吸入圧導入溝43も、ロータ3の端面の外周縁部が対峙するラジアルシール部40の近傍からカム面11に沿って略90度の範囲に亘って形成されている。しかも、吸入圧導入溝43は、ラジアルシール部40の近傍から徐々に幅広となるように形成され、図3(a)の吸入圧導入溝のハッチを付した部分で示されるように、ロータ端面の外周縁部に対してほぼ等しい幅で対向するように形成されている。 In this example, the suction port 15 is formed over a range of approximately 90 degrees along the cam surface from the vicinity of the radial seal portion 40. The suction pressure introducing groove 43 is also formed over a range of approximately 90 degrees along the cam surface 11 from the vicinity of the radial seal portion 40 where the outer peripheral edge of the end surface of the rotor 3 faces. Moreover, the suction pressure introduction groove 43 is formed so as to gradually widen from the vicinity of the radial seal portion 40, and as shown by the hatched portion of the suction pressure introduction groove in FIG. It is formed so as to be opposed to the outer peripheral edge portion with a substantially equal width.
 したがって、吸入圧導入溝43のハッチで示された面積の部分は、吸入圧相当の圧力以上となることがないので、このハッチで示された面積の分だけ、ロータ3に作用する第2のサイドブロック21側への付勢力が低減されることとなる。 Accordingly, the portion of the suction pressure introduction groove 43 indicated by the hatch does not exceed the pressure corresponding to the suction pressure. Therefore, the second portion that acts on the rotor 3 by the amount indicated by the hatch is equivalent to the area indicated by the hatch. The biasing force toward the side block 21 will be reduced.
 次に、前記溝縮小部41aは、第1のサイドブロック13のロータ3の端面と対峙する面において駆動軸2とロータ3の外周縁が対向する位置との間の範囲に形成されている。しかも、溝縮小部41aは、ベーン型圧縮機の駆動状態において、図4(b)にも示されるように、圧縮室31の圧力がオイル導入溝41の圧力以下となる領域に対応した角度範囲内に設けられている。 Next, the groove reducing portion 41 a is formed in a range between the drive shaft 2 and the position where the outer peripheral edge of the rotor 3 faces on the surface of the first side block 13 facing the end surface of the rotor 3. Moreover, the groove reducing portion 41a has an angular range corresponding to a region where the pressure in the compression chamber 31 is equal to or lower than the pressure in the oil introduction groove 41 as shown in FIG. 4B in the driving state of the vane compressor. Is provided inside.
 この例では、溝縮小部41aは、ラジアルシール部40の近傍から、圧縮室31の圧力がオイル導入溝の圧力以下の領域となるロータ回転角で約180度の全範囲に亘って形成されている。また、溝縮小部41aは、ラジアルシール部40の近傍から徐々に幅広となるように形成されており、図6で示す従来のオイル導入溝よりハッチで示す部分だけロータ3と対向する面積が小さくなっている。 In this example, the groove reducing portion 41a is formed from the vicinity of the radial seal portion 40 over the entire range of about 180 degrees in terms of the rotor rotation angle in which the pressure in the compression chamber 31 is a region below the pressure of the oil introduction groove. Yes. Further, the groove reducing portion 41a is formed so as to gradually become wider from the vicinity of the radial seal portion 40, and the area facing the rotor 3 is smaller than the conventional oil introduction groove shown in FIG. It has become.
 このように、圧縮室31の圧力がオイル導入溝の圧力以下となる領域(吸入行程の領域、及び、圧縮行程の初期の領域)で溝縮小部41aを設けたので、溝縮小部41aを設けた部分での径方向の圧力推移を見ると、図4(a)に示されるように、従前のオイル導入溝に比べて、溝幅が狭められている分、ロータ3の外径から第1のオイル導入溝41にかけての圧力勾配は緩やかとなり、ロータ端面に作用する力(ロータ3に作用する第2のサイドブロック21側への付勢力)は低減される。なお、この図示のケースでは、吸入圧導入溝43による影響は考慮されていない。 As described above, since the groove reducing portion 41a is provided in the region (the suction stroke region and the initial region of the compression stroke) where the pressure in the compression chamber 31 is equal to or lower than the pressure of the oil introduction groove, the groove reducing portion 41a is provided. As shown in FIG. 4 (a), the change in the radial pressure at the portion of the rotor 3 is the first from the outer diameter of the rotor 3 because the groove width is narrower than the conventional oil introduction groove. The pressure gradient toward the oil introduction groove 41 becomes gentle, and the force acting on the rotor end surface (the urging force acting on the second side block 21 acting on the rotor 3) is reduced. In the illustrated case, the influence of the suction pressure introduction groove 43 is not considered.
 また、第2のサイドブロック13のロータ3の端面と対峙する面には、図2(b)に示されるように、第2のオイル導入溝42に、ベーン溝の底部(背圧室8a)が開口可能となる部分の一部をロータ3の径方向外側へ拡大した溝拡大部42aが形成されている。 Further, on the surface of the second side block 13 that faces the end surface of the rotor 3, as shown in FIG. 2B, the second oil introduction groove 42 has a bottom portion of the vane groove (back pressure chamber 8a). A groove enlarging portion 42 a is formed by enlarging a part of the portion that can be opened outward in the radial direction of the rotor 3.
 この溝拡大部42aは、第2のサイドブロック13のロータ3の端面と対峙する面において駆動軸2とロータ3の外周縁が対向する位置との間に形成されている。しかも、溝拡大部42aは、ベーン型圧縮機の駆動状態において、図4(b)に示されるように、圧縮室の圧力がオイル導入溝の圧力以下となる領域に対応した角度範囲内に設けられている。 The groove expanding portion 42a is formed between the drive shaft 2 and the position where the outer peripheral edge of the rotor 3 faces on the surface of the second side block 13 that faces the end surface of the rotor 3. In addition, the groove expanding portion 42a is provided within an angle range corresponding to a region where the pressure in the compression chamber is equal to or lower than the pressure in the oil introduction groove, as shown in FIG. 4B, in the driving state of the vane compressor. It has been.
 この例では、溝拡大部42aは、ラジアルシール部40の近傍から、圧縮室31の圧力が第2のオイル導入溝42の圧力以下の領域となるロータ回転角で約180度の全範囲に亘って形成されている。また、溝拡大部42aは、ラジアルシール部40の近傍から徐々に幅狭になるように形成されている。 In this example, the groove expanding portion 42a extends from the vicinity of the radial seal portion 40 over the entire range of about 180 degrees in terms of the rotor rotation angle in which the pressure in the compression chamber 31 is a region equal to or lower than the pressure in the second oil introduction groove 42. Is formed. Further, the groove enlarged portion 42 a is formed so as to gradually become narrower from the vicinity of the radial seal portion 40.
 このように、圧縮室31の圧力がオイル導入溝42の圧力以下となる領域(吸入行程の領域、及び、圧縮行程の初期の領域)で溝拡大部42aを設けたので、溝拡大部42aを設けた部分での径方向の圧力推移を見ると、図4(a)に示されるように、従前のオイル導入溝に比べて、溝幅が拡げられている分、ロータ3の端面にオイルが作用する面積が大きくなると共に、ロータ3の外径から第2のオイル導入溝42にかけての圧力勾配は急となり、ロータ端面に作用する力(ロータ3の第1のサイドブロック13側への付勢力)は増大することになる。 As described above, since the groove expanding portion 42a is provided in the region where the pressure in the compression chamber 31 is equal to or lower than the pressure of the oil introduction groove 42 (the suction stroke region and the initial region of the compression stroke), the groove expanding portion 42a is As shown in FIG. 4A, when the radial pressure transition in the provided portion is seen, oil is applied to the end surface of the rotor 3 as the groove width is wider than the conventional oil introduction groove. As the acting area increases, the pressure gradient from the outer diameter of the rotor 3 to the second oil introduction groove 42 becomes steep, and the force acting on the rotor end surface (the urging force of the rotor 3 toward the first side block 13). ) Will increase.
 したがって、電磁クラッチ33が設けられている場合において、駆動軸2に動力が伝達される電磁クラッチ33の吸着時には、ロータ3の軸方向の位置は、駆動軸2の前後両側に作用する圧力差と、電磁クラッチ33の板バネ34のバネ力と、吸入圧導入溝43によるロータに作用する第2のサイドブロック側への付勢力の低減効果と、溝縮小部41aによるロータに作用する第2のサイドブロック側への付勢力の低減効果と、溝拡大部42aによるロータに作用する第1のサイドブロック側への付勢力の増大効果とが釣り合った位置となる。 Therefore, in the case where the electromagnetic clutch 33 is provided, the position of the rotor 3 in the axial direction is different from the pressure difference acting on both the front and rear sides of the drive shaft 2 when the electromagnetic clutch 33 to which power is transmitted to the drive shaft 2 is attracted. The spring force of the plate spring 34 of the electromagnetic clutch 33, the effect of reducing the urging force to the second side block acting on the rotor by the suction pressure introduction groove 43, and the second acting on the rotor by the groove reducing portion 41a. The position where the effect of reducing the urging force toward the side block and the effect of increasing the urging force toward the first side block acting on the rotor by the groove expanding portion 42a are balanced.
 吸入圧導入溝43によるロータに作用する力、溝縮小部41aによるロータに作用する力、及び、溝拡大部42aによるロータ3に作用する力は、いずれもロータ3に作用する第2のサイドブロック21側への付勢力を弱める方向に作用しており、これらの力でロータ3の軸方向前後に圧力差を生じさせ、これによってロータ及びこれと一体をなす駆動軸の前後に作用する力をバランスさせ(第2のサイドブロック21側への付勢力を減殺し)、ロータの軸方向前後のクリアランスの配分を適正な状態に保持することが可能となる。 The force acting on the rotor by the suction pressure introducing groove 43, the force acting on the rotor by the groove reducing portion 41a, and the force acting on the rotor 3 by the groove expanding portion 42a are all the second side block that acts on the rotor 3. The force acting in the direction of weakening the urging force toward the 21 side is caused, and by these forces, a pressure difference is produced between the front and rear of the rotor 3 in the axial direction, and thereby the force acting on the front and rear of the rotor and the drive shaft integrated therewith is generated. It is possible to balance (reduce the urging force toward the second side block 21) and keep the distribution of the clearance in the axial direction of the rotor in an appropriate state.
 なお、上述の例では、吸入圧導入溝43と、溝縮小部41aと、溝拡大部42aとの3つを同時に形成する構成を示したが、このうちのいずれか1つを用いてもよい。また、いずれか2つを組み合わせて用いても、ロータ3に作用する第2のサイドブロック21側への付勢力を低減することで、ロータの軸方向前後のクリアランス配分の調整に寄与することが可能となる。 In the above example, the configuration in which the suction pressure introducing groove 43, the groove reducing portion 41a, and the groove expanding portion 42a are simultaneously formed is shown, but any one of them may be used. . Even if any two of them are used in combination, reducing the biasing force acting on the rotor 3 toward the second side block 21 can contribute to adjustment of the clearance distribution in the axial direction of the rotor. It becomes possible.
 また、上述の例では、圧縮室31の圧力がオイル導入溝41の圧力以下の領域となる略180度のロータ回転角範囲の全域に亘って溝縮小部41aを設けた例を示したが、圧縮室31の圧力がオイル導入溝41の圧力以下となる領域の範囲内であれば、溝縮小部41aの形成位置や形成範囲を調節することで、ロータ3に作用する第2のサイドブロック側への付勢力を低減することが可能となる。 In the above example, the example in which the groove reducing portion 41a is provided over the entire range of the rotor rotation angle range of approximately 180 degrees, in which the pressure of the compression chamber 31 is equal to or lower than the pressure of the oil introduction groove 41, is shown. If the pressure in the compression chamber 31 is within the range of the region where the pressure is less than or equal to the pressure of the oil introduction groove 41, the second side block side acting on the rotor 3 is adjusted by adjusting the formation position and formation range of the groove reduction portion 41a. It becomes possible to reduce the urging force to.
 同様に、上述の例では、圧縮室31の圧力がオイル導入溝42の圧力以下の領域となる略180度のロータ回転角範囲の全域に亘って溝拡大部42aを設けた例を示したが、圧縮室31の圧力がオイル導入溝42の圧力以下となる領域の範囲内であれば、溝拡大部42aの形成位置や形成範囲を調節することで、ロータ3に作用する第1のサイドブロック13側への付勢力を増大することが可能となる。 Similarly, in the above-described example, the example in which the groove expansion portion 42a is provided over the entire range of the rotor rotation angle range of approximately 180 degrees where the pressure in the compression chamber 31 is equal to or less than the pressure of the oil introduction groove 42 is shown. If the pressure in the compression chamber 31 is within the range of the region where the pressure in the oil introduction groove 42 is lower, the first side block acting on the rotor 3 is adjusted by adjusting the formation position and formation range of the groove expansion portion 42a. It is possible to increase the urging force toward the 13 side.
 さらに、以上の構成においては、ベーン4が2枚の場合の圧縮機について説明したが、3枚以上のベーン型圧縮機においても、同様の構成を採用することが可能である。また、2枚ベーンの構成においても、上述の例では、ベーン溝8(ベーン4)がオフセットして設けられた例を示したが、ベーン4を含む平面と、ベーン4と平行をなし駆動軸2の軸心を含む平面とを一致させる(オフセットを0にする)場合や、逆側にオフセットしている場合においても、同様の構成を採用してロータ3の軸方向前後のクリアランス配分を調整するようにしてもよい。 Furthermore, in the above configuration, the compressor in the case where there are two vanes 4 has been described, but the same configuration can be adopted in a three or more vane type compressor. In the above-described example, the vane groove 8 (vane 4) is offset in the two-vane configuration, but the plane including the vane 4 and the vane 4 are parallel to the drive shaft. The same configuration is adopted to adjust the clearance distribution before and after the rotor 3 in the axial direction even when the plane including the axis 2 is made coincident (offset is set to 0) or when offset to the opposite side. You may make it do.
 1 ベーン型圧縮機
 2 駆動軸
 3 ロータ
 4 ベーン
 5 ハウジング
 8 ベーン溝
 8a 背圧室 
 10 第1のハウジング部材
 11 カム面
 12 シリンダ
 13 第1のサイドブロック
 15 吸入ポート
 16 吐出ポート
 17 吐出室
 18 オイル室
 19 オイル連通路
 20 第2のハウジング部材
 21 第2のサイドブロック
 31 圧縮室
 41 第1のオイル導入溝
 41a 溝縮小部
 42 第2のオイル導入溝
 42a 溝拡大部
 43 吸入圧導入溝
DESCRIPTION OF SYMBOLS 1 Vane type compressor 2 Drive shaft 3 Rotor 4 Vane 5 Housing 8 Vane groove 8a Back pressure chamber
DESCRIPTION OF SYMBOLS 10 1st housing member 11 Cam surface 12 Cylinder 13 1st side block 15 Intake port 16 Discharge port 17 Discharge chamber 18 Oil chamber 19 Oil communication path 20 2nd housing member 21 2nd side block 31 Compression chamber 41 1st 1 oil introduction groove 41a groove reduction part 42 second oil introduction groove 42a groove enlargement part 43 suction pressure introduction groove

Claims (6)

  1.  ハウジングと、カム面が形成され、前記ハウジング内に設けられたシリンダと、前記シリンダの軸方向の両端を閉塞し、前記ハウジングに設けられた一対のサイドブロックと、前記一対のサイドブロックに回転自在に支持された駆動軸と、前記駆動軸に固装されて前記シリンダ内に回転可能に収容されるロータと、前記ロータに形成された複数のベーン溝と、前記ベーン溝に摺動自在に挿入され、先端が前記ベーン溝から出没して前記カム面を摺動する複数のベーンと、前記シリンダと前記一対のサイドブロックとにより閉塞された空間に前記ロータと前記ベーンとによって形成される圧縮室と、前記圧縮室に流体を吸入するために設けられた吸入ポートと、前記圧縮室で圧縮された流体を吐出するために設けられた吐出ポートと、前記流体が吐出される吐出室と、吐出された前記流体によって加圧されたオイルを貯留するオイル室と、前記一対のサイドブロックの前記ロータと対向する面に設けられ、前記ベーン溝が開口するオイル導入溝と、前記オイル室と前記オイル導入溝とを連通する少なくとも一つのオイル連通路と、を備えたベーン型圧縮機において、
     前記一対のサイドブロックのうちの一方のサイドブロックの前記ロータと対向する面に設けられ、吸入圧相当の前記流体が導入される吸入圧導入溝と、
     前記一方のサイドブロックの前記ロータと対向する面に設けられ、前記オイル導入溝の前記ベーン溝が開口可能となる部分の一部を前記ロータの径方向内側へ縮小した溝縮小部と、
     前記一対のサイドブロックのうちの他方のサイドブロックの前記ロータと対向する面に設けられ、前記オイル導入溝の前記ベーン溝が開口可能となる部分の一部を前記ロータの径方向外側へ拡大した溝拡大部と、
    の少なくともいずれか一つを有することを特徴とするベーン型圧縮機。
    A housing, a cam surface is formed, the cylinder provided in the housing, the both ends of the cylinder in the axial direction are closed, the pair of side blocks provided in the housing, and the pair of side blocks are rotatable. A drive shaft supported by the rotor, a rotor fixed to the drive shaft and rotatably accommodated in the cylinder, a plurality of vane grooves formed in the rotor, and a slidably inserted into the vane groove And a compression chamber formed by the rotor and the vane in a space closed by the plurality of vanes whose tips protrude from the vane grooves and slide on the cam surface, the cylinder, and the pair of side blocks. A suction port provided for sucking fluid into the compression chamber, a discharge port provided for discharging fluid compressed in the compression chamber, and the fluid An oil discharge groove, an oil chamber storing oil pressurized by the discharged fluid, and an oil introduction groove provided on a surface of the pair of side blocks facing the rotor and opening the vane groove And a vane type compressor comprising: at least one oil communication path communicating the oil chamber and the oil introduction groove;
    A suction pressure introduction groove that is provided on a surface of the one side block of the pair of side blocks facing the rotor and into which the fluid corresponding to the suction pressure is introduced;
    A groove reducing portion provided on a surface of the one side block facing the rotor, wherein a part of the oil introduction groove that allows the vane groove to be opened is reduced inward in the radial direction of the rotor;
    A part of the other side block of the pair of side blocks that is provided on the surface facing the rotor and that allows the opening of the vane groove of the oil introduction groove is expanded radially outward of the rotor. An enlarged groove part,
    A vane type compressor having at least one of the following.
  2.  前記駆動軸は、前記他方のサイドブロックを貫通して前記ハウジングの外部へ突出していることを特徴とする請求項1に記載のベーン型圧縮機。 2. The vane compressor according to claim 1, wherein the drive shaft passes through the other side block and protrudes to the outside of the housing.
  3.  前記吸入圧導入溝は、前記一方のサイドブロックに、前記駆動軸と前記カム面との間に位置し、前記吸入ポートに対応した角度範囲に亘って設けられていることを特徴とする請求項1又は2に記載のベーン型圧縮機。 The suction pressure introducing groove is provided in the one side block between the drive shaft and the cam surface, and is provided over an angular range corresponding to the suction port. The vane type compressor according to 1 or 2.
  4.  前記溝縮小部は、前記一方のサイドブロックに、前記駆動軸と前記ロータの外周縁が対向する位置との間の範囲で、前記ベーン型圧縮機の駆動状態において、前記圧縮室の圧力が前記オイル導入溝の圧力以下となる領域に対応した角度範囲内に設けられていることを特徴とする請求項1又は2に記載のベーン型圧縮機。 The groove reducing portion is configured such that, in the driving state of the vane compressor, the pressure in the compression chamber is in a range between the drive shaft and a position where the outer peripheral edge of the rotor faces the one side block. The vane type compressor according to claim 1 or 2, wherein the vane type compressor is provided within an angle range corresponding to a region that is equal to or lower than a pressure of the oil introduction groove.
  5.  前記溝拡大部は、前記他方のサイドブロックに、前記駆動軸と前記ロータの外周縁が対向する位置との間の範囲で、前記ベーン型圧縮機の駆動状態において、前記圧縮室の圧力が前記オイル導入溝の圧力以下となる領域に対応した角度範囲内に設けられていることを特徴とする請求項1又は2に記載のベーン型圧縮機。 The groove enlarging portion is configured such that the pressure in the compression chamber is in the drive state of the vane compressor in a range between the drive shaft and a position where the outer peripheral edge of the rotor faces the other side block. The vane type compressor according to claim 1 or 2, wherein the vane type compressor is provided within an angle range corresponding to a region that is equal to or lower than a pressure of the oil introduction groove.
  6.  前記ハウジングは、内周面が真円に形成された前記シリンダ、及び、前記シリンダの軸方向の一端側を閉塞する第1のサイドブロックが一体に形成された第1のハウジング部材と、前記シリンダの軸方向の他端側を閉塞する第2のサイドブロックが形成された第2のハウジング部材とを組み合わせて構成され、
     前記一対のサイドブロックは、前記第1のサイドブロックと前記第2のサイドブロックであることを特徴とする請求項1乃至5のいずれかに記載のベーン型圧縮機。
    The housing includes a first housing member formed integrally with the cylinder having an inner peripheral surface formed into a perfect circle, and a first side block that closes one end of the cylinder in the axial direction, and the cylinder. A second housing member formed with a second side block for closing the other end side in the axial direction.
    6. The vane compressor according to claim 1, wherein the pair of side blocks are the first side block and the second side block.
PCT/JP2014/065993 2013-06-20 2014-06-17 Vane compressor WO2014203879A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480034292.9A CN105308324B (en) 2013-06-20 2014-06-17 sliding-vane compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-129188 2013-06-20
JP2013129188A JP2015004288A (en) 2013-06-20 2013-06-20 Vane type compressor

Publications (1)

Publication Number Publication Date
WO2014203879A1 true WO2014203879A1 (en) 2014-12-24

Family

ID=52104611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065993 WO2014203879A1 (en) 2013-06-20 2014-06-17 Vane compressor

Country Status (3)

Country Link
JP (1) JP2015004288A (en)
CN (1) CN105308324B (en)
WO (1) WO2014203879A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180039543A (en) * 2017-01-06 2018-04-18 이민석 Displacement Turning vane Rotary Compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192885A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Vane type compressor
JPS6378183U (en) * 1986-11-07 1988-05-24
JPH1137073A (en) * 1997-07-16 1999-02-09 Seiko Seiki Co Ltd Gas compressor
WO2011080865A1 (en) * 2009-12-29 2011-07-07 株式会社ヴァレオジャパン Compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110790A (en) * 1980-12-29 1982-07-09 Toyoda Autom Loom Works Ltd Vane compressor
JPS6097391U (en) * 1983-12-08 1985-07-03 三菱重工業株式会社 rotating fluid machine
JP4043233B2 (en) * 2001-12-28 2008-02-06 カルソニックコンプレッサー株式会社 Gas compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59192885A (en) * 1983-04-15 1984-11-01 Hitachi Ltd Vane type compressor
JPS6378183U (en) * 1986-11-07 1988-05-24
JPH1137073A (en) * 1997-07-16 1999-02-09 Seiko Seiki Co Ltd Gas compressor
WO2011080865A1 (en) * 2009-12-29 2011-07-07 株式会社ヴァレオジャパン Compressor

Also Published As

Publication number Publication date
CN105308324B (en) 2018-01-30
JP2015004288A (en) 2015-01-08
CN105308324A (en) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2013077388A1 (en) Gas compressor
WO2013047307A1 (en) Hermetically closed compressor and refrigeration cycle device
JP5879010B2 (en) Gas compressor
WO2013150967A1 (en) Gas compressor
KR101423009B1 (en) Vane compressor
WO2013172144A1 (en) Gas compressor
WO2013183436A1 (en) Gas compressor
CN101925744A (en) Rotary fluid machine
JP2014190263A (en) Vane type compressor
WO2014203879A1 (en) Vane compressor
JP5963548B2 (en) Gas compressor
JP6242606B2 (en) Vane type compressor
JP2013194549A (en) Gas compressor
JP5826715B2 (en) Gas compressor
JP5963544B2 (en) Gas compressor
JP5878157B2 (en) Gas compressor
JP7272310B2 (en) vane compressor
JP2019011682A (en) Vane compressor
JP4421359B2 (en) Gas compressor
WO2014103974A1 (en) Gas compressor
JP5826709B2 (en) Gas compressor
JP5826708B2 (en) Gas compressor
JP2014181686A (en) Compressor
WO2016129334A1 (en) Gas compressor
JP2014181598A (en) Vane type compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034292.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814633

Country of ref document: EP

Kind code of ref document: A1