WO2015093504A1 - Compressor - Google Patents
Compressor Download PDFInfo
- Publication number
- WO2015093504A1 WO2015093504A1 PCT/JP2014/083336 JP2014083336W WO2015093504A1 WO 2015093504 A1 WO2015093504 A1 WO 2015093504A1 JP 2014083336 W JP2014083336 W JP 2014083336W WO 2015093504 A1 WO2015093504 A1 WO 2015093504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation
- separation chamber
- chamber
- oil separator
- oil
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/04—Measures to avoid lubricant contaminating the pumped fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3441—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/026—Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
- F04C29/124—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
- F04C29/126—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
- F04C29/128—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
Definitions
- the axis of the separation pipe is shifted from the axis of the separation chamber in a direction substantially perpendicular to the axis of the refrigerant introduction path, so that the opening portion of the refrigerant introduction path is separated from the outer peripheral surface of the separation pipe and the separation chamber. It is possible to face the region where the cross section of the passage between the inner peripheral surface is the largest. As a result, the coolant introduction path can be easily processed, and the working fluid can be smoothly introduced into the separation chamber. Moreover, even when processing of the refrigerant introduction path is anticipated, the oil separator can be easily downsized.
- FIG. 4 is a diagram for explaining the behavior of the working fluid when the working fluid is introduced into the separation chamber in the compressor employing the oil separator according to the present invention.
- FIG. The figure explaining the behavior of a fluid (b) is a figure explaining the behavior of the working fluid at the time of a large flow rate.
- FIGS. 5A and 5B are diagrams for explaining inconveniences when a refrigerant introduction path is formed with respect to a conventional oil separator.
- FIG. 5A is a diagram illustrating a state in which a machining drill is inserted deeply
- FIG. It is a figure which shows the state inserted shallowly.
- the cylinder part 4a of the fixing member 4 has a flange part 4c. 4d is formed.
- the front flange portion 4c is formed in a shape that matches the inner peripheral shape of the shell member 5, is fitted inside the shell member 5, and is in contact with the end surface of the front side block portion 5a.
- the rear flange portion 4 d is also formed in a shape that matches the inner peripheral shape of the shell member 5.
- the rear flange portion 4d is fitted inside the shell member 5 and hermetically sealed with the shell member 5 by a sealing member such as an O-ring.
- the separation pipe 23 is provided in a state where its axis O ′ is shifted with respect to the axis O of the separation chamber 22.
- the direction in which the axis O ′ of the separation pipe 23 is displaced with respect to the axis O of the separation chamber 22 may be set arbitrarily.
- the distance between the axis O ′ of the separation pipe 23 and the opening portion where the refrigerant introduction path 21 opens into the separation chamber 22 is the distance between the axis O of the separation chamber 22 and the opening portion.
- the direction is longer than the distance.
- the axis O ′ of the separation pipe 23 is shifted from the axis O of the separation chamber 22 in a substantially vertical direction ( ⁇ direction) with respect to the axis ⁇ of the refrigerant introduction path 21.
- the refrigerant introduction path 21 is formed so as to face a region having a relatively large passage cross section as in the above configuration, the outer peripheral surface of the separation chamber 22 and the separation pipe 23 at a small flow rate with a small discharge capacity. It becomes possible to increase the flow velocity of the working fluid in a region where the passage cross section with respect to the inner peripheral surface becomes relatively small, and it is possible to efficiently separate the oil.
- the separation pipe 23 is integrally formed with the housing (rear side block portion 4b) together with the separation chamber 22, it is not necessary to adjust the axial center position of the separation pipe 23 and the oil separation effect varies. It can be eliminated.
- the separation pipe 23 does not necessarily have to be formed integrally with the housing (rear side block portion 4 b), and the separation pipe 23 defines the separation chamber 22. You may make it comprise with another member with respect to the member (rear side block part 4b) to comprise.
- the example applied to the vane compressor has been described.
- the movable scroll is driven to rotate by a shaft rotatably disposed in the housing, and with the rotation of the movable scroll, the volume of the compression chamber formed by both scrolls is enlarged and reduced to suck and compress the refrigerant.
- the above-described configuration may be employed when a centrifugal separation type oil separator is provided on the fixed member.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressor (AREA)
- Rotary Pumps (AREA)
Abstract
A compressor provided with a centrifugal oil separator, wherein the oil separator of the compressor is reduced in size by improving the oil separation performance of the oil separator. Even when the oil separator is reduced in size, a refrigerant inlet channel can be formed without interference between a machining drill and a separating pipe when the refrigerant inlet channel is drilled, and the refrigerant inlet channel is smoothly joined to the inner peripheral surface of a separation chamber, thereby further improving oil separation performance. Furthermore, large clearance is ensured in the region faced by the opening of the refrigerant inlet channel. [Solution] A compressor provided with an oil separator (14) having a separation chamber (22), a separation pipe (23) accommodated in the separation chamber (22), and a refrigerant inlet channel (21) communicating a discharge chamber (11) and the separation chamber (22), wherein the axial center (O) of the separation chamber (22) and the axial center (O') of the separation pipe (23) are misaligned.
Description
本発明は、遠心分離式のオイル分離器を備えた圧縮機に関し、特に、オイル分離性能が高いオイル分離器を備えた圧縮機に関する。
The present invention relates to a compressor provided with a centrifugal oil separator, and more particularly to a compressor provided with an oil separator having high oil separation performance.
従来、圧縮機構で圧縮された作動流体からオイルを分離する遠心分離式のオイル分離器を備えた圧縮機としては、例えば、特許文献1や特許文献2で示される圧縮機が公知となっている。
Conventionally, as a compressor including a centrifugal oil separator that separates oil from a working fluid compressed by a compression mechanism, for example, the compressors disclosed in Patent Document 1 and Patent Document 2 are known. .
このうち、特許文献1に示される圧縮機は、シャフトの回動に伴い可動する可動部材と、可動部材と共に圧縮室を構成する固定部材とを備える。固定部材には、圧縮室で圧縮された作動流体を導入してオイル分離するオイル分離器が一体に設けられている。このオイル分離器は、圧縮室で圧縮された作動流体を導入する分離室と、導入された作動流体を旋回させるために分離室に収容された分離パイプとを備え、分離室と分離パイプとを固定部材に同軸上で一体に形成されている。
Among these, the compressor shown in Patent Document 1 includes a movable member that moves as the shaft rotates, and a fixed member that forms a compression chamber together with the movable member. The fixing member is integrally provided with an oil separator that introduces the working fluid compressed in the compression chamber and separates the oil. The oil separator includes a separation chamber for introducing the working fluid compressed in the compression chamber, and a separation pipe accommodated in the separation chamber for swirling the introduced working fluid. It is integrally formed on the fixing member on the same axis.
また、特許文献2に示される圧縮機は、圧縮機のハウジングを構成するリアサイドブロックに、冷凍機油を冷媒ガスから分離するためのサイクロンブロック(オイル分離器)を備える。このオイル分離器は、圧縮された冷媒ガスを旋回させる円筒内周面およびこの円筒内周面の一方の端部側を塞ぐ底面を有する遠心分離本体部と、円筒内周面に囲まれた円柱状空間内に、この円柱状空間の軸に沿って配設され、内部で旋回した冷媒ガスを底面とは反対側の端面から遠心分離本体部の外部に導く内筒状の気体排気部とを有して構成されている。この圧縮機も、気体排気部と遠心分離本体部とは、別部材によって構成されている。
Also, the compressor shown in Patent Document 2 includes a cyclone block (oil separator) for separating the refrigeration oil from the refrigerant gas in the rear side block constituting the housing of the compressor. This oil separator includes a centrifuge main body having a cylinder inner circumferential surface for rotating a compressed refrigerant gas, a bottom surface closing one end of the cylinder inner circumferential surface, and a circle surrounded by the cylinder inner circumferential surface. In the columnar space, an inner cylindrical gas exhaust part that is arranged along the axis of the cylindrical space and guides the refrigerant gas swirled inside from the end surface opposite to the bottom surface to the outside of the centrifugal separation body part. It is configured. Also in this compressor, the gas exhaust part and the centrifugal separation body part are constituted by separate members.
このように、従来のオイル分離器は、ハウジング内に設けられた遠心分離本体部に、略円柱状の空間に形成された分離室と、この分離室に収容された円筒状の分離パイプとを互いの軸心を一致させて形成し、分離室の内周面と分離パイプの外周面とによって画成された略円筒状の空間を、オイルを含む作動流体を旋回させることで作動流体中のオイルを遠心分離させるようにしている。
As described above, the conventional oil separator includes a separation chamber formed in a substantially columnar space and a cylindrical separation pipe accommodated in the separation chamber in a centrifugal separation body provided in the housing. It is formed by aligning the axes of each other, and the working fluid containing oil is swirled in a substantially cylindrical space defined by the inner peripheral surface of the separation chamber and the outer peripheral surface of the separation pipe. The oil is centrifuged.
しかしながら、分離室と分離パイプとが同心上に形成される従来のオイル分離器においては、必要とする分離能力を確保しようとすると、ある程度の大きさの分離室を確保する必要があるため、オイル分離器の小型化は図りにくく、圧縮機を小型にすることは困難であった。
このため、オイル分離器のオイル分離性能を高めてオイル分離器の小型化を図ることが要請されている。 However, in the conventional oil separator in which the separation chamber and the separation pipe are formed concentrically, it is necessary to secure a separation chamber of a certain size in order to secure the required separation capacity. It was difficult to reduce the size of the separator, and it was difficult to reduce the size of the compressor.
For this reason, it is required to improve the oil separation performance of the oil separator and to reduce the size of the oil separator.
このため、オイル分離器のオイル分離性能を高めてオイル分離器の小型化を図ることが要請されている。 However, in the conventional oil separator in which the separation chamber and the separation pipe are formed concentrically, it is necessary to secure a separation chamber of a certain size in order to secure the required separation capacity. It was difficult to reduce the size of the separator, and it was difficult to reduce the size of the compressor.
For this reason, it is required to improve the oil separation performance of the oil separator and to reduce the size of the oil separator.
しかも、分離室を画成する遠心分離本体部と分離パイプとが一体に形成される特許文献1に示される構成において、オイル分離器の高圧ガスを導入する冷媒導入路を加工ドリルで加工する作業で、分離パイプの外周面と分離室の内周面とのクリアランスが十分に確保されていないと、以下の不都合が生じる。すなわち、加工ドリルを分離本体部の側方から分離室の内周面の接線方向に動かして冷媒導入路を穿設する際に、加工ドリルを分離室に深くまで挿入すると、図5(a)に示されるように、加工ドリル30が分離パイプ23と干渉し、分離パイプ23に穴をあけてしまう不都合がある。また、逆に分離パイプ23との干渉を避けるために加工ドリル30の挿入が浅いと、図5(b)に示されるように、冷媒導入路21が分離室22の内周面に対して接線方向で接続されず、作動流体が分離室22にスムーズに導入されないため作動流体の旋回がうまく行われず、オイル分離性能が悪くなる不都合がある。
In addition, in the configuration shown in Patent Document 1 in which the centrifugal separation main body defining the separation chamber and the separation pipe are integrally formed, an operation of machining the refrigerant introduction path for introducing the high-pressure gas of the oil separator with a machining drill If the clearance between the outer peripheral surface of the separation pipe and the inner peripheral surface of the separation chamber is not sufficiently secured, the following inconvenience occurs. That is, when the machining drill is inserted deeply into the separation chamber when the machining drill is moved from the side of the separation main body in the tangential direction of the inner peripheral surface of the separation chamber to pierce the coolant introduction path, FIG. As shown in FIG. 2, there is a disadvantage that the machining drill 30 interferes with the separation pipe 23 and makes a hole in the separation pipe 23. On the other hand, if the machining drill 30 is shallowly inserted to avoid interference with the separation pipe 23, the coolant introduction path 21 is tangent to the inner peripheral surface of the separation chamber 22, as shown in FIG. Since the working fluid is not smoothly connected to the separation chamber 22 and is not smoothly introduced into the separation chamber 22, the working fluid is not swirled well, and the oil separation performance is deteriorated.
このような不都合を回避するためには、分離パイプの外周面と分離室の内周面とのクリアランスを十分に大きくし、加工ドリルを深くまで挿入しても分離パイプと干渉しないようにすることが望ましい。しかし、従来の上述した構成においては、このクリアランスを大きく確保しようとすると、オイル分離器自体の大型化を招き、圧縮機の小型化が困難になるものであった。
In order to avoid such inconvenience, the clearance between the outer peripheral surface of the separation pipe and the inner peripheral surface of the separation chamber should be sufficiently large so that it does not interfere with the separation pipe even if the machining drill is inserted deeply. Is desirable. However, in the conventional configuration described above, if the clearance is to be secured large, the oil separator itself is increased in size, and it is difficult to reduce the size of the compressor.
また、分離パイプが分離室を画成する遠心分離本体部と別体に構成される特許文献2に示されるような構成においても、分離パイプの外周面と分離室の内周面とのクリアランスが不十分であると、冷媒導入路の開口部位が分離パイプに寄り過ぎ、分離室に導入された作動流体が分離パイプに衝突して作動流体が分離室内をうまく旋回できなくなる不都合がある。
Also, in the configuration as shown in Patent Document 2 in which the separation pipe is separated from the centrifugal separation main body defining the separation chamber, there is a clearance between the outer peripheral surface of the separation pipe and the inner peripheral surface of the separation chamber. If it is insufficient, the opening part of the refrigerant introduction path is too close to the separation pipe, and there is a disadvantage that the working fluid introduced into the separation chamber collides with the separation pipe and the working fluid cannot be swirled well in the separation chamber.
このような不都合を回避するためには、パイプ部の外周面と分離室の内周面とのクリアランスを大きくする必要がある。しかし、従来の上述した構成において、このクリアランスを大きく確保しようとすると、オイル分離器の大型化を招き、圧縮機の小型化を図ることは困難であった。
To avoid such inconvenience, it is necessary to increase the clearance between the outer peripheral surface of the pipe part and the inner peripheral surface of the separation chamber. However, in the conventional configuration described above, if this clearance is to be secured large, the oil separator is increased in size, and it is difficult to reduce the size of the compressor.
本発明は係る事情に鑑みてなされたものであり、分離室と分離パイプとが同心上に形成されていることに起因する上述した不都合を回避し、圧縮機のオイル分離器のオイル分離性能を向上させることでオイル分離器の小型化を図ることを課題としている。また、オイル分離器を小型にした場合でも、冷媒導入路を穿設する際に加工ドリルが分離パイプと干渉する不都合を回避できると共に、冷媒導入路を分離室の内周面に滑らかに繋ぐことでオイル分離性能の一層の向上を図ることができ、さらには、冷媒導入路の開口部が分離パイプに寄り過ぎる不都合を回避することが可能なオイル分離器を備えた圧縮機を提供することをも課題としている。
The present invention has been made in view of such circumstances, and avoids the above-mentioned disadvantages caused by the fact that the separation chamber and the separation pipe are formed concentrically, and improves the oil separation performance of the oil separator of the compressor. The problem is to reduce the size of the oil separator by improving it. Even when the oil separator is downsized, it is possible to avoid the inconvenience that the machining drill interferes with the separation pipe when drilling the refrigerant introduction path, and to smoothly connect the refrigerant introduction path to the inner peripheral surface of the separation chamber. It is possible to further improve the oil separation performance and to provide a compressor including an oil separator that can avoid the disadvantage that the opening of the refrigerant introduction path is too close to the separation pipe. Is also an issue.
上記課題を達成するために、本発明に係る圧縮機は、ハウジングと、前記ハウジングに収容された圧縮機構と、前記ハウジングに形成され、前記圧縮機構で圧縮された作動流体が吐出される吐出室と、前記ハウジングに設けられ、前記圧縮機構で圧縮された作動流体からオイルを分離するオイル分離器と、を備え、前記オイル分離器は、円筒状の分離室と、この分離室に収容される分離パイプと、前記吐出室と前記分離室とを連通する冷媒導入路とを有して構成される場合において、前記分離室の軸心と前記分離パイプの軸心とがずれていることを特徴としている。
In order to achieve the above object, a compressor according to the present invention includes a housing, a compression mechanism accommodated in the housing, and a discharge chamber formed in the housing and discharged with a working fluid compressed by the compression mechanism. And an oil separator that is provided in the housing and separates oil from the working fluid compressed by the compression mechanism, and the oil separator is accommodated in the cylindrical separation chamber and the separation chamber In the case where it is configured to have a separation pipe and a refrigerant introduction path that communicates the discharge chamber and the separation chamber, the axis of the separation chamber and the axis of the separation pipe are misaligned. It is said.
したがって、分離室の軸心と分離パイプの軸心とをずらしたことで、圧縮された作動流体が旋回する通路の通路断面を変化させることができるので、オイル分離性能を高めることが可能となる。その結果、オイル分離能力を高めることができる分、オイル分離器を小型にすることが可能となる。
Accordingly, by shifting the axis of the separation chamber and the axis of the separation pipe, the passage section of the passage in which the compressed working fluid swirls can be changed, so that the oil separation performance can be improved. . As a result, the oil separator can be miniaturized as much as the oil separation capability can be increased.
また、オイル分離器を小型化した場合でも、分離室の軸心と分離パイプの軸心とがずれているので、分離室の内周面と分離パイプの外周面との間のクリアランスを部分的に大きくすることが可能となる。したがって、この部分に臨むように冷媒導入路を穿設することで、冷媒導入路を穿設する際に挿入される加工ドリルが分離パイプと干渉することがなくなる。また、分離パイプとの干渉を避けるために加工ドリルの挿入が浅くなって冷媒導入路を分離室の内周面に滑らかに繋ぐことができなくなる不都合もなくなる。さらには、冷媒導入路の開口部が分離パイプに寄り過ぎる不都合もなくなる。
Even when the oil separator is downsized, the center of the separation chamber and the center of the separation pipe are misaligned, so the clearance between the inner peripheral surface of the separation chamber and the outer peripheral surface of the separation pipe is partially It is possible to make it larger. Therefore, by drilling the coolant introduction path so as to face this portion, the machining drill inserted when drilling the coolant introduction path does not interfere with the separation pipe. Further, there is no inconvenience that the machining drill is shallowly inserted to avoid interference with the separation pipe and the refrigerant introduction path cannot be smoothly connected to the inner peripheral surface of the separation chamber. Furthermore, there is no inconvenience that the opening of the refrigerant introduction path is too close to the separation pipe.
ここで、オイル分離性能を高める上では、分離パイプの軸心は分離室の軸心に対して任意の方向へずらせばよいが、冷媒導入路を加工する観点からは、分離パイプの軸心と冷媒導入路が分離室に開口する開口部位との距離が、分離室の軸心と前記開口部位との距離より長くなるように互いの軸心をずらすとよい。
Here, in order to improve the oil separation performance, the axis of the separation pipe may be shifted in an arbitrary direction with respect to the axis of the separation chamber, but from the viewpoint of processing the refrigerant introduction path, the axis of the separation pipe It is preferable to shift the axis of each other so that the distance between the refrigerant introduction path and the opening part that opens into the separation chamber is longer than the distance between the axis of the separation chamber and the opening part.
このような構成とすることで、分離パイプの外周面と分離室の内周面との間の通路断面が相対的に大きくなる領域に臨むように冷媒導入路を開口させることができ、加工ドリルを挿入する際に分離パイプとの干渉を避けやすくなると共に作動流体のスムーズな導入を図ることができる。また、導入された作動流体が分離パイプと分離室との間隔が狭い領域に向かって流れることで、作動流体の流速を高めて効率よくオイルを分離することが可能となる。
With such a configuration, the coolant introduction path can be opened so as to face a region where the passage cross section between the outer peripheral surface of the separation pipe and the inner peripheral surface of the separation chamber becomes relatively large, and the machining drill It is easy to avoid interference with the separation pipe when inserting the working fluid, and the working fluid can be introduced smoothly. In addition, since the introduced working fluid flows toward a region where the distance between the separation pipe and the separation chamber is narrow, it is possible to increase the flow rate of the working fluid and efficiently separate the oil.
特に、前記分離パイプの軸心は、前記分離室の軸心から前記冷媒導入路の軸線に対して略垂直方向にずらすことで、冷媒導入路の開口部位を分離パイプの外周面と分離室の内周面との間の通路断面が最も大きくなる領域に臨ませることが可能となる。その結果、冷媒導入路の加工がしやすくなり、また、作動流体を分離室にスムーズに導入することが可能となる。しかも、冷媒導入路の加工を見込んだ場合でもオイル分離器の小型化が図りやすいものとなる。
In particular, the axis of the separation pipe is shifted from the axis of the separation chamber in a direction substantially perpendicular to the axis of the refrigerant introduction path, so that the opening portion of the refrigerant introduction path is separated from the outer peripheral surface of the separation pipe and the separation chamber. It is possible to face the region where the cross section of the passage between the inner peripheral surface is the largest. As a result, the coolant introduction path can be easily processed, and the working fluid can be smoothly introduced into the separation chamber. Moreover, even when processing of the refrigerant introduction path is anticipated, the oil separator can be easily downsized.
なお、分離室は、ハウジングに一体に形成され、分離パイプは、分離室を画成するハウジングの部位に一体化されることが好ましい。
このような構成を採用することで、分離パイプの軸心位置の調整が不要となり、オイルの分離効果にばらつきを無くすことが可能となる。 The separation chamber is preferably formed integrally with the housing, and the separation pipe is preferably integrated with a portion of the housing that defines the separation chamber.
By adopting such a configuration, it is not necessary to adjust the axial center position of the separation pipe, and variations in the oil separation effect can be eliminated.
このような構成を採用することで、分離パイプの軸心位置の調整が不要となり、オイルの分離効果にばらつきを無くすことが可能となる。 The separation chamber is preferably formed integrally with the housing, and the separation pipe is preferably integrated with a portion of the housing that defines the separation chamber.
By adopting such a configuration, it is not necessary to adjust the axial center position of the separation pipe, and variations in the oil separation effect can be eliminated.
以上述べたように、本発明によれば、遠心分離式であるオイル分離器を備えた圧縮機において、オイル分離器の分離室の軸心と分離パイプの軸心とをずらしたので、オイル分離器のオイル分離性能を向上させることが可能となり、オイル分離性能を向上させることができた分、オイル分離器を小型化することができ、引いては圧縮機を小型にすることが可能となる。
As described above, according to the present invention, in the compressor equipped with the centrifugal oil separator, the axis of the separation chamber of the oil separator and the axis of the separation pipe are shifted, so that the oil separation The oil separation performance of the compressor can be improved, and the oil separation performance can be improved, so that the oil separator can be reduced in size, and the compressor can be reduced in size. .
また、オイル分離器を小型にした場合でも分離パイプの外周面と分離室の内周面とのクリアランスが大きくなる部分に臨むように冷媒導入路を形成することが可能となるので、以下の諸効果が得られる。
・冷媒導入路を穿設する際に加工ドリルが分離パイプと干渉することがなくなる。
・冷媒導入路を分離室の内周面に滑らかに繋ぐことが可能になると共に冷媒導入路の開口部が分離パイプに寄り過ぎる不都合もなくなる。
・分離室にスムーズに作動流体を導いてオイル分離を効率よく行うことが可能となる。 Even when the oil separator is downsized, the refrigerant introduction path can be formed so as to face a portion where the clearance between the outer peripheral surface of the separation pipe and the inner peripheral surface of the separation chamber is increased. An effect is obtained.
-When drilling the coolant introduction path, the machining drill will not interfere with the separation pipe.
-The refrigerant introduction path can be smoothly connected to the inner peripheral surface of the separation chamber, and the problem that the opening of the refrigerant introduction path is too close to the separation pipe is eliminated.
-It is possible to conduct the oil efficiently by guiding the working fluid smoothly to the separation chamber.
・冷媒導入路を穿設する際に加工ドリルが分離パイプと干渉することがなくなる。
・冷媒導入路を分離室の内周面に滑らかに繋ぐことが可能になると共に冷媒導入路の開口部が分離パイプに寄り過ぎる不都合もなくなる。
・分離室にスムーズに作動流体を導いてオイル分離を効率よく行うことが可能となる。 Even when the oil separator is downsized, the refrigerant introduction path can be formed so as to face a portion where the clearance between the outer peripheral surface of the separation pipe and the inner peripheral surface of the separation chamber is increased. An effect is obtained.
-When drilling the coolant introduction path, the machining drill will not interfere with the separation pipe.
-The refrigerant introduction path can be smoothly connected to the inner peripheral surface of the separation chamber, and the problem that the opening of the refrigerant introduction path is too close to the separation pipe is eliminated.
-It is possible to conduct the oil efficiently by guiding the working fluid smoothly to the separation chamber.
以下、本発明に係る圧縮機の実施形態を添付図面を参照しながら説明する。
Hereinafter, embodiments of a compressor according to the present invention will be described with reference to the accompanying drawings.
図1及び図2において、冷媒を作動流体とする冷凍サイクルに適したベーン型圧縮機が示されている。このベーン型圧縮機は、シャフト1の回動に伴い可動する可動部材2と、前記可動部材2と共に圧縮室3を構成する固定部材4と、可動部材2及び固定部材4を収容し、固定部材4と共にハウジングを構成するシェル部材5とを備えている。
1 and 2 show a vane type compressor suitable for a refrigeration cycle using a refrigerant as a working fluid. The vane compressor accommodates a movable member 2 that is movable as the shaft 1 rotates, a fixed member 4 that forms a compression chamber 3 together with the movable member 2, and the movable member 2 and the fixed member 4. 4 and a shell member 5 constituting a housing.
固定部材4は、可動部材2を収容するシリンダ部4aと、このシリンダ部4aのリア側に続いて一体に形成されたリアサイドブロック部4bとを有して構成されている。
The fixed member 4 includes a cylinder portion 4a that accommodates the movable member 2, and a rear side block portion 4b that is integrally formed following the rear side of the cylinder portion 4a.
可動部材2は、固定部材4のシリンダ部4aに回転可能に収容され、シャフト1に固定されたロータ2aと、このロータ2aに設けられたベーン溝6に挿入されるベーン2bとを有して構成されている。
The movable member 2 is rotatably accommodated in the cylinder portion 4a of the fixed member 4, and has a rotor 2a fixed to the shaft 1 and a vane 2b inserted into a vane groove 6 provided in the rotor 2a. It is configured.
シェル部材5は、シリンダ部4aのフロント側端面に当接するフロントサイドブロック部5aと、シリンダ部4a及びリアサイドブロック部4bの外周面を包囲するように形成された筒部5bとを有して構成されている。
The shell member 5 includes a front side block portion 5a that abuts on the front side end surface of the cylinder portion 4a, and a cylindrical portion 5b formed so as to surround the outer peripheral surfaces of the cylinder portion 4a and the rear side block portion 4b. Has been.
シャフト1は、シェル部材5のフロントサイドブロック部5aと固定部材4のリアサイドブロック部4bにプレーンベアリングを介して回転可能に支持されている。シェル部材5には、作動流体(冷媒ガス)の吸入口7および吐出口8と、吸入口7に連通し、固定部材4のシリンダ部4aに形成された凹部9と共に構成される吸入空間(低圧空間)10が形成されている。また、固定部材4のシリンダ部4aとシェル部材5の筒部5bとにより、後述する吐出室(高圧空間)11が画成されている。この吐出室11は、固定部材4のリアサイドブロック部4bに形成されたオイル分離器14を介して吐出口8に連通している。
The shaft 1 is rotatably supported by the front side block portion 5a of the shell member 5 and the rear side block portion 4b of the fixing member 4 via a plain bearing. The shell member 5 has a suction space (low pressure) configured to include a suction port 7 and a discharge port 8 for the working fluid (refrigerant gas) and a recess 9 formed in the cylinder portion 4 a of the fixing member 4. Space) 10 is formed. Further, a discharge chamber (high-pressure space) 11 described later is defined by the cylinder portion 4 a of the fixing member 4 and the cylindrical portion 5 b of the shell member 5. The discharge chamber 11 communicates with the discharge port 8 via an oil separator 14 formed in the rear side block portion 4b of the fixing member 4.
シリンダ部4aにより囲まれた空間とロータ2aとの断面は真円状に形成されている。シリンダ部4aの軸中心とロータ2aの軸中心とは、ロータ2aの外周面とシリンダ部4aの内周面とが周方向の一箇所で当接するようにずらして設けられ(シリンダ部の内径とロータ2aの外径との差の1/2だけずらして設けられ)、シリンダ部4aの内周面とロータ2aの外周面との間には圧縮空間13が画成されている。この圧縮空間13はベーン2bによって仕切られて複数の圧縮室3に分割され、各圧縮室3の容積はロータ2aの回転によって変化する。
The space surrounded by the cylinder part 4a and the cross section of the rotor 2a are formed in a perfect circle. The axial center of the cylinder portion 4a and the axial center of the rotor 2a are provided so as to be shifted so that the outer peripheral surface of the rotor 2a and the inner peripheral surface of the cylinder portion 4a are in contact at one place in the circumferential direction (the inner diameter of the cylinder portion) A compression space 13 is defined between the inner peripheral surface of the cylinder portion 4a and the outer peripheral surface of the rotor 2a. This compression space 13 is partitioned by a vane 2b and divided into a plurality of compression chambers 3, and the volume of each compression chamber 3 changes as the rotor 2a rotates.
シェル部材5は、フロントサイドブロック部5aに一体化されたボス部5cに、シャフト1に回転動力を伝達するためのプーリ15が回転自在に外装され、このプーリ15から電磁クラッチ16を介して回転動力がシャフト1に伝達されるようになっている。
The shell member 5 includes a boss portion 5c integrated with the front side block portion 5a, and a pulley 15 for transmitting rotational power to the shaft 1 is rotatably mounted on the shell member 5. The pulley 15 rotates from the pulley 15 via an electromagnetic clutch 16. Power is transmitted to the shaft 1.
また、固定部材4のシリンダ部4aは、その両端部に径方向に突出するフランジ部4c.4dが形成されている。フロント側のフランジ部4cは、シェル部材5の内周形状に合わせた形状に形成されており、シェル部材5の内側に嵌入されてフロントサイドブロック部5aの端面に当接されている。また、リア側のフランジ部4dも、シェル部材5の内周形状に合わせた形状に形成されている。リア側のフランジ部4dは、シェル部材5の内側に嵌入されてオーリング等のシール部材によりシェル部材5との間が気密よくシールされている。
Further, the cylinder part 4a of the fixing member 4 has a flange part 4c. 4d is formed. The front flange portion 4c is formed in a shape that matches the inner peripheral shape of the shell member 5, is fitted inside the shell member 5, and is in contact with the end surface of the front side block portion 5a. Further, the rear flange portion 4 d is also formed in a shape that matches the inner peripheral shape of the shell member 5. The rear flange portion 4d is fitted inside the shell member 5 and hermetically sealed with the shell member 5 by a sealing member such as an O-ring.
シリンダ部4aの周面には、吸入空間10に連通する吸入ポート17と、吐出室11と連通する吐出ポート18が設けられている。したがってシリンダ部4aをシェル部材5に嵌入させると、吸入空間10は、吸入ポート17を介して圧縮室3に連通し、シリンダ部4aの外周面と筒部5bの内周面との間には、両側端がフランジ部4c.4dによって画成された前記吐出室11が形成され、この吐出室11が吐出ポート18を介して圧縮室3に連通可能となっている。そして、吐出ポート18は、吐出室11に収容される吐出弁19により開閉されるようになっている。
A suction port 17 communicating with the suction space 10 and a discharge port 18 communicating with the discharge chamber 11 are provided on the peripheral surface of the cylinder portion 4a. Therefore, when the cylinder portion 4a is fitted into the shell member 5, the suction space 10 communicates with the compression chamber 3 via the suction port 17, and between the outer peripheral surface of the cylinder portion 4a and the inner peripheral surface of the cylindrical portion 5b. , Both ends are flange portions 4c. The discharge chamber 11 defined by 4d is formed, and the discharge chamber 11 can communicate with the compression chamber 3 via the discharge port 18. The discharge port 18 is opened and closed by a discharge valve 19 accommodated in the discharge chamber 11.
この吐出室11は、シリンダ部4aの吐出ポート18の近傍に突設された隔壁20を境にして吐出弁19が設けられている部位からシリンダ部4aのほぼ全周に亘って設けられている。隔壁20に対して吐出ポート18が設けられている側とは反対側の部分は、フランジ部4d(リアサイドブロック部4b)に形成された冷媒導入路21を介して以下述べるオイル分離器14に連通している。
The discharge chamber 11 is provided over almost the entire circumference of the cylinder portion 4a from a portion where the discharge valve 19 is provided with a partition wall 20 protruding in the vicinity of the discharge port 18 of the cylinder portion 4a as a boundary. . The portion of the partition 20 opposite to the side where the discharge port 18 is provided communicates with an oil separator 14 described below through a refrigerant introduction path 21 formed in the flange portion 4d (rear side block portion 4b). is doing.
オイル分離器14は、固定部材4のリアサイドブロック部4bに一体に形成されているもので、フランジ部4dに形成された冷媒導入路21が連通する円筒状の空間に形成された分離室22を備えている。オイル分離器14は、この分離室22に固定部材4(リアサイドブロック部4b)と一体に形成された略円筒状の分離パイプ23を収納して構成されている。
The oil separator 14 is formed integrally with the rear side block portion 4b of the fixing member 4, and includes a separation chamber 22 formed in a cylindrical space through which the refrigerant introduction path 21 formed in the flange portion 4d communicates. I have. The oil separator 14 is configured by housing a substantially cylindrical separation pipe 23 formed integrally with the fixing member 4 (rear side block portion 4b) in the separation chamber 22.
冷媒導入路21は、図3にも示されるように、分離室22の上端部の内周面に対して接線方向で繋がるように形成され、吐出室側から加工ドリル30で穿設することで形成されている。
As shown in FIG. 3, the refrigerant introduction path 21 is formed so as to be connected in a tangential direction to the inner peripheral surface of the upper end portion of the separation chamber 22, and is drilled by the machining drill 30 from the discharge chamber side. Is formed.
分離室22は、前記シャフト1の軸方向に対して略直交する方向に延設されると共にその軸線が鉛直線に対して斜めに傾斜するように形成されている。この分離室22の上端部は、分離パイプ23を介して前記シェル部材5の吐出口8に連通し、下端部は、リアサイドブロック部4bの側面に開口されている。そして、この分離室22の下端部の開口部は、シェル部材5の筒部5bにより覆われている。
The separation chamber 22 is formed so as to extend in a direction substantially orthogonal to the axial direction of the shaft 1 and to have its axis inclined obliquely with respect to the vertical line. An upper end portion of the separation chamber 22 communicates with the discharge port 8 of the shell member 5 through a separation pipe 23, and a lower end portion is opened on a side surface of the rear side block portion 4b. The opening at the lower end of the separation chamber 22 is covered with the cylindrical portion 5 b of the shell member 5.
この例において、筒部5bは、リアサイドブロック部4bの全体が収容される程度に軸方向に延設されている。また、分離室22は、圧縮機の軸方向の前後においてリアサイドブロック部4bの周方向の設けられたオーリング等のシール部材によりシェル部材5の筒部5bとの間が気密よくシールされている。
In this example, the cylinder part 5b is extended in the axial direction to the extent that the entire rear side block part 4b is accommodated. Further, the separation chamber 22 is hermetically sealed between the cylindrical portion 5b of the shell member 5 by a sealing member such as an O-ring provided in the circumferential direction of the rear side block portion 4b before and after the axial direction of the compressor. .
このようなオイル分離器14において、分離パイプ23は、その軸心O’を分離室22の軸心Oに対してずらした状態で設けられている。分離パイプ23の軸心O’を分離室22の軸心Oに対してずらす方向は、任意に設定してもよい。しかし、冷媒導入路21を形成するために、分離パイプ23の軸心O’と冷媒導入路21が分離室22に開口する開口部位との距離が分離室22の軸心Oと前記開口部位との距離よりも長くなる方向としている。特に、この例では、分離パイプ23の軸心O’を、分離室22の軸心Oから冷媒導入路21の軸線αに対して略垂直方向(β方向)にずらすようにしている。
In such an oil separator 14, the separation pipe 23 is provided in a state where its axis O ′ is shifted with respect to the axis O of the separation chamber 22. The direction in which the axis O ′ of the separation pipe 23 is displaced with respect to the axis O of the separation chamber 22 may be set arbitrarily. However, in order to form the refrigerant introduction path 21, the distance between the axis O ′ of the separation pipe 23 and the opening portion where the refrigerant introduction path 21 opens into the separation chamber 22 is the distance between the axis O of the separation chamber 22 and the opening portion. The direction is longer than the distance. In particular, in this example, the axis O ′ of the separation pipe 23 is shifted from the axis O of the separation chamber 22 in a substantially vertical direction (β direction) with respect to the axis α of the refrigerant introduction path 21.
なお、このようなオイル分離器14を構成している分離室22や分離パイプ23は、固定部材4を鋳造により成型する際に同時に成型される。したがって型が抜きやすいように、分離室22にあっては、下端の開口部にかけて径が徐々に大きくなるテーパ形状に形成され、また、分離パイプ23にあっては、先端部に向かうにつれて外周面の径が徐々に小さくなるテーパ形状に形成されている。
Note that the separation chamber 22 and the separation pipe 23 that constitute such an oil separator 14 are simultaneously formed when the fixing member 4 is formed by casting. Therefore, the separation chamber 22 is formed in a tapered shape whose diameter gradually increases toward the opening at the lower end so that the mold can be easily removed, and the outer peripheral surface of the separation pipe 23 toward the tip. The diameter of the taper is gradually reduced.
したがって、分離室22に流入した作動流体は、この分離室22に収容された分離パイプ23の周りを旋回し、その過程で混在しているオイルが分離され、オイルが分離された作動流体を、分離パイプ23を介して吐出口8から吐出する。また、分離されたオイルは、分離室22の下端部に連通するように固定部材4に形成されたオイル排出孔24を介して固定部材4の底部に形成されたオイル貯留室25に溜められ、その後、オイル供給通路26を介して、オイル貯留室25と各潤滑部分との圧力差により、各潤滑部分へ供給される。
Therefore, the working fluid that has flowed into the separation chamber 22 swirls around the separation pipe 23 accommodated in the separation chamber 22, oil mixed in the process is separated, and the working fluid from which the oil has been separated is separated. It discharges from the discharge outlet 8 through the separation pipe 23. The separated oil is stored in an oil storage chamber 25 formed at the bottom of the fixing member 4 via an oil discharge hole 24 formed in the fixing member 4 so as to communicate with the lower end of the separation chamber 22. Thereafter, the oil is supplied to each lubrication portion through the oil supply passage 26 due to a pressure difference between the oil storage chamber 25 and each lubrication portion.
以上の構成において、図示しない動力源からの回転動力がプーリ15及び電磁クラッチ16を介してシャフト1に伝達され、ロータ2aが回転すると、吸入口7から吸入空間10に流入した作動流体が吸入ポート17を介して圧縮空間13に吸入される。圧縮空間内のベーン2bによって仕切られた各圧縮室3の容積はロータ2aの回転に伴って変化するので、ベーン2b間に閉じ込められた作動流体は圧縮され、吐出ポート18から吐出弁19を介して吐出室11に吐出される。吐出室11に吐出された作動流体は、シリンダ部4aの外周面に沿って(シェル部材5の筒部5bの内周面に沿って)周方向に移動し、シリンダ部4aの周囲をほぼ一周してフランジ部4d(リアサイドブロック部4b)に形成された冷媒導入路21を介してリアサイドブロック部4bに一体形成されたオイル分離器14の分離室22に導入される。その後、作動流体は、分離室内を旋回する過程でオイルが分離され、分離パイプ23を通って吐出口8から外部回路へ吐出され、分離されたオイルは、分離室22の下端に形成されたオイル排出孔24を介してオイル貯留室25に導かれる。
In the above configuration, rotational power from a power source (not shown) is transmitted to the shaft 1 via the pulley 15 and the electromagnetic clutch 16, and when the rotor 2a rotates, the working fluid flowing into the suction space 10 from the suction port 7 is sucked into the suction port. The air is sucked into the compression space 13 through 17. Since the volume of each compression chamber 3 partitioned by the vane 2b in the compression space changes with the rotation of the rotor 2a, the working fluid confined between the vanes 2b is compressed and is discharged from the discharge port 18 through the discharge valve 19. And discharged into the discharge chamber 11. The working fluid discharged into the discharge chamber 11 moves in the circumferential direction along the outer peripheral surface of the cylinder portion 4a (along the inner peripheral surface of the cylindrical portion 5b of the shell member 5), and makes one round around the cylinder portion 4a. And it introduce | transduces into the separation chamber 22 of the oil separator 14 integrally formed in the rear side block part 4b via the refrigerant | coolant introduction path 21 formed in the flange part 4d (rear side block part 4b). Thereafter, the oil is separated from the working fluid in the process of swirling in the separation chamber, and is discharged to the external circuit from the discharge port 8 through the separation pipe 23. The separated oil is oil formed at the lower end of the separation chamber 22. It is guided to the oil storage chamber 25 through the discharge hole 24.
その際、オイル分離器14においては、分離室22の軸心Oと分離パイプ23の軸心O’とがずれているので、分離室22の外周面と分離パイプ23の内周面との間の通路断面は(圧縮された作動流体が旋回する通路の断面)は変化する。この通路断面の変化により、オイル分離性能を高めることが可能となる。
At that time, in the oil separator 14, the axis O of the separation chamber 22 and the axis O ′ of the separation pipe 23 are displaced, so that the space between the outer peripheral surface of the separation chamber 22 and the inner peripheral surface of the separation pipe 23 is different. The cross section of the passage (the cross section of the passage in which the compressed working fluid swirls) changes. This change in the cross-section of the passage can improve the oil separation performance.
特に、上記構成のように通路断面が相対的に大きい領域に臨むように冷媒導入路21が形成されている場合は、吐出容量が少ない小流量時において、分離室22の外周面と分離パイプ23の内周面との間の通路断面が相対的に小さくなる領域で作動流体の流速を速めることが可能となり、効率よくオイルを分離することが可能となる。
In particular, when the refrigerant introduction path 21 is formed so as to face a region having a relatively large passage cross section as in the above configuration, the outer peripheral surface of the separation chamber 22 and the separation pipe 23 at a small flow rate with a small discharge capacity. It becomes possible to increase the flow velocity of the working fluid in a region where the passage cross section with respect to the inner peripheral surface becomes relatively small, and it is possible to efficiently separate the oil.
また、吐出容量が多い大流量時においては、通路断面が小さい領域で作動流体が分離パイプ23の軸方向に拡散されて旋回することになるので、作動流体の流速を保ちつつ圧損を生じにくくすることが可能となり、十分にオイル分離を行うことが可能となる。
このため、オイル分離能力を高めることができるので、その分、オイル分離器14を小型にすることが可能となり、圧縮機の小型化に寄与することが可能となる。 In addition, when the flow rate is large and the discharge capacity is large, the working fluid is swung while being diffused in the axial direction of theseparation pipe 23 in a region where the passage cross section is small, so that it is difficult to cause pressure loss while maintaining the flow rate of the working fluid. And sufficient oil separation can be performed.
For this reason, since the oil separation capability can be increased, theoil separator 14 can be made smaller by that amount, which can contribute to the downsizing of the compressor.
このため、オイル分離能力を高めることができるので、その分、オイル分離器14を小型にすることが可能となり、圧縮機の小型化に寄与することが可能となる。 In addition, when the flow rate is large and the discharge capacity is large, the working fluid is swung while being diffused in the axial direction of the
For this reason, since the oil separation capability can be increased, the
また、オイル分離器14を小型化した場合でも、分離室22の軸心Oと分離パイプ23の軸心O’とはずれているので、分離室22の内周面と分離パイプ23の外周面との間のクリアランスが大きい部分に冷媒導入路21を臨むように穿設することで、冷媒導入路21を穿設する際に加工ドリル30が分離パイプ23と干渉することがなくなる。また、分離パイプ23との干渉を避けるために加工ドリル30の挿入が浅くなって冷媒導入路21を分離室22の壁面に滑らかに繋ぐことができなくなる不都合もなくなる。さらには、冷媒導入路21の開口部が分離パイプ23に寄り過ぎる不都合もなくなり、効率のよいオイル分離を確保することが可能となる。
Even when the oil separator 14 is downsized, since the axis O of the separation chamber 22 and the axis O ′ of the separation pipe 23 are displaced, the inner peripheral surface of the separation chamber 22 and the outer peripheral surface of the separation pipe 23 By drilling so that the refrigerant introduction path 21 faces the part where the clearance between them is large, the machining drill 30 does not interfere with the separation pipe 23 when the refrigerant introduction path 21 is drilled. Further, there is no inconvenience that the processing drill 30 is shallowly inserted to avoid interference with the separation pipe 23 and the refrigerant introduction path 21 cannot be smoothly connected to the wall surface of the separation chamber 22. Furthermore, there is no inconvenience that the opening of the refrigerant introduction path 21 is too close to the separation pipe 23, and efficient oil separation can be ensured.
特に、上述の構成例では、分離パイプ23の軸心O’を分離室22の軸心Oから冷媒導入路21の軸線αに対して略垂直方向(β方向)にずらしているので、冷媒導入路21の開口部位を分離パイプ23の外周面と分離室22の内周面との間の通路断面が最も大きくなる領域に冷媒導入路21を臨ませることが可能となる。したがって、冷媒導入路21の加工がしやすくなり、また、作動流体を分離室22にスムーズに導入することが可能となる。しかも、冷媒導入路21の加工ドリルによる加工を見込んだ場合でもオイル分離器の小型化が図りやすいものとなる。
In particular, in the above-described configuration example, the axis O ′ of the separation pipe 23 is shifted from the axis O of the separation chamber 22 in a direction substantially perpendicular to the axis α of the refrigerant introduction path 21 (β direction). It is possible to make the refrigerant introduction path 21 face the area where the passage cross section between the outer peripheral surface of the separation pipe 23 and the inner peripheral surface of the separation chamber 22 becomes the largest in the opening portion of the path 21. Therefore, the coolant introduction path 21 can be easily processed, and the working fluid can be smoothly introduced into the separation chamber 22. Moreover, the oil separator can be easily downsized even when machining with a machining drill in the refrigerant introduction path 21 is anticipated.
なお、以上の構成においては、分離パイプ23を分離室22と共にハウジング(リアサイドブロック部4b)に一体に形成したので、分離パイプ23の軸心位置の調整が不要となり、オイルの分離効果にばらつきを無くすことが可能となる。しかしながら、分離性能を向上させ、オイル分離器14の小型化を図る上では、分離パイプ23をハウジング(リアサイドブロック部4b)に必ずしも一体に形成する必要はなく、分離パイプ23を分離室22を画成する部材(リアサイドブロック部4b)に対して別部材で構成するようにしてもよい。
In the above configuration, since the separation pipe 23 is integrally formed with the housing (rear side block portion 4b) together with the separation chamber 22, it is not necessary to adjust the axial center position of the separation pipe 23 and the oil separation effect varies. It can be eliminated. However, in order to improve the separation performance and reduce the size of the oil separator 14, the separation pipe 23 does not necessarily have to be formed integrally with the housing (rear side block portion 4 b), and the separation pipe 23 defines the separation chamber 22. You may make it comprise with another member with respect to the member (rear side block part 4b) to comprise.
また、上述の構成においては、ベーン型圧縮機に適用した例を示したが、ハウジングに固定された固定スクロール(固定部材)と、固定スクロールに対して可動(旋回)する可動スクロール(可動部材)とを有し、可動スクロールを、ハウジングに回転可能に配設されたシャフトにより旋回駆動し、可動スクロールの旋回とともに、両スクロールによって形成される圧縮室の体積を拡大縮小することにより冷媒を吸入圧縮するスクロール型圧縮機に対して、固定部材に遠心分離型のオイル分離器を設ける場合に上述した構成を採用してもよい。
また、上述の構成においては、シリンダ部4aと一体をなすリアサイドブロック部4bにオイル分離器14を設け、これをシェル部材5に収容する構成例について説明したが、シリンダ部と一体をなすフロントサイドブロック部にオイル分離器を設け、これをシェル部材に収容する構成において、上述と同様の構成を採用してもよい。 In the above-described configuration, the example applied to the vane compressor has been described. However, the fixed scroll (fixed member) fixed to the housing and the movable scroll (movable member) movable (turning) with respect to the fixed scroll. The movable scroll is driven to rotate by a shaft rotatably disposed in the housing, and with the rotation of the movable scroll, the volume of the compression chamber formed by both scrolls is enlarged and reduced to suck and compress the refrigerant. For the scroll type compressor, the above-described configuration may be employed when a centrifugal separation type oil separator is provided on the fixed member.
Further, in the above-described configuration, the configuration example in which theoil separator 14 is provided in the rear side block portion 4b integrated with the cylinder portion 4a and accommodated in the shell member 5 has been described, but the front side integrated with the cylinder portion has been described. In the configuration in which an oil separator is provided in the block portion and this is accommodated in the shell member, the same configuration as described above may be adopted.
また、上述の構成においては、シリンダ部4aと一体をなすリアサイドブロック部4bにオイル分離器14を設け、これをシェル部材5に収容する構成例について説明したが、シリンダ部と一体をなすフロントサイドブロック部にオイル分離器を設け、これをシェル部材に収容する構成において、上述と同様の構成を採用してもよい。 In the above-described configuration, the example applied to the vane compressor has been described. However, the fixed scroll (fixed member) fixed to the housing and the movable scroll (movable member) movable (turning) with respect to the fixed scroll. The movable scroll is driven to rotate by a shaft rotatably disposed in the housing, and with the rotation of the movable scroll, the volume of the compression chamber formed by both scrolls is enlarged and reduced to suck and compress the refrigerant. For the scroll type compressor, the above-described configuration may be employed when a centrifugal separation type oil separator is provided on the fixed member.
Further, in the above-described configuration, the configuration example in which the
1 シャフト
2 可動部
3 圧縮室
4 固定部
4a シリンダ部
4b リアサイドブロック部
5 シェル部材
5a フロントサイドブロック部
5b 筒部
11 吐出室
14 オイル分離器
21 冷媒導入路
22 分離室
23 分離パイプ
O 分離室の軸心
O’ 分離パイプの軸心
α 冷媒導入路の軸線 DESCRIPTION OFSYMBOLS 1 Shaft 2 Movable part 3 Compression chamber 4 Fixed part 4a Cylinder part 4b Rear side block part 5 Shell member 5a Front side block part 5b Cylindrical part 11 Discharge chamber 14 Oil separator 21 Refrigerant introduction path 22 Separation chamber 23 Separation pipe O Axle O 'Axis of separation pipe α Axis of refrigerant introduction path
2 可動部
3 圧縮室
4 固定部
4a シリンダ部
4b リアサイドブロック部
5 シェル部材
5a フロントサイドブロック部
5b 筒部
11 吐出室
14 オイル分離器
21 冷媒導入路
22 分離室
23 分離パイプ
O 分離室の軸心
O’ 分離パイプの軸心
α 冷媒導入路の軸線 DESCRIPTION OF
Claims (4)
- ハウジングと、
前記ハウジングに収容された圧縮機構と、
前記ハウジングに形成され、前記圧縮機構で圧縮された作動流体が吐出される吐出室と、
前記ハウジングに設けられ、前記圧縮機構で圧縮された作動流体からオイルを分離するオイル分離器と、
を備え、
前記オイル分離器は、円筒状の分離室と、この分離室に収容される分離パイプと、前記吐出室と前記分離室とを連通する冷媒導入路とを有して構成される遠心分離式である圧縮機において、
前記分離室の軸心と前記分離パイプの軸心とがずれていることを特徴とする圧縮機。 A housing;
A compression mechanism housed in the housing;
A discharge chamber that is formed in the housing and discharges the working fluid compressed by the compression mechanism;
An oil separator provided in the housing and separating oil from the working fluid compressed by the compression mechanism;
With
The oil separator is a centrifugal separation type configured to have a cylindrical separation chamber, a separation pipe accommodated in the separation chamber, and a refrigerant introduction path communicating the discharge chamber and the separation chamber. In a compressor,
The compressor characterized in that an axis of the separation chamber is displaced from an axis of the separation pipe. - 前記分離パイプの軸心と前記冷媒導入路が前記分離室に開口する開口部位との距離は、前記分離室の軸心と前記開口部位との距離より長いことを特徴とする請求項1記載の圧縮機。 The distance between the axis of the separation pipe and the opening part where the refrigerant introduction path opens into the separation chamber is longer than the distance between the axis of the separation chamber and the opening part. Compressor.
- 前記分離パイプの軸心は、前記分離室の軸心から前記冷媒導入路の軸線に対して略垂直方向にずれていることを特徴とする請求項2記載の圧縮機。 3. The compressor according to claim 2, wherein the axis of the separation pipe is displaced in a direction substantially perpendicular to the axis of the refrigerant introduction path from the axis of the separation chamber.
- 前記分離室は、前記ハウジングに一体に形成され、前記分離パイプは、前記分離室を画成するハウジングの部位に一体化されていることを特徴とする請求項1乃至3のいずれかに記載の圧縮機。 4. The separation chamber according to claim 1, wherein the separation chamber is integrally formed with the housing, and the separation pipe is integrated with a portion of the housing that defines the separation chamber. Compressor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14872970.0A EP3156650A4 (en) | 2013-12-20 | 2014-12-17 | Compressor |
CN201480067804.1A CN105814312A (en) | 2013-12-20 | 2014-12-17 | Compressor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013263147A JP6238726B2 (en) | 2013-12-20 | 2013-12-20 | Compressor |
JP2013-263147 | 2013-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093504A1 true WO2015093504A1 (en) | 2015-06-25 |
Family
ID=53402849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083336 WO2015093504A1 (en) | 2013-12-20 | 2014-12-17 | Compressor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3156650A4 (en) |
JP (1) | JP6238726B2 (en) |
CN (1) | CN105814312A (en) |
WO (1) | WO2015093504A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020148159A (en) * | 2019-03-15 | 2020-09-17 | 株式会社豊田自動織機 | Compressor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017207145A1 (en) * | 2017-04-27 | 2018-10-31 | Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg | compressor |
CN110259689B (en) * | 2018-03-12 | 2024-10-22 | 广东威灵汽车部件有限公司 | Rotary compressor and vehicle with same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030074870A1 (en) * | 2001-10-18 | 2003-04-24 | Mietto Virgilio | Air/oil separation tank |
JP2007327340A (en) | 2006-06-06 | 2007-12-20 | Calsonic Compressor Inc | Gas compressor |
US20090191081A1 (en) * | 2006-06-15 | 2009-07-30 | Geonho Lee | Scroll compressor improved in function of oil circulation and back pressure control |
WO2011080865A1 (en) * | 2009-12-29 | 2011-07-07 | 株式会社ヴァレオジャパン | Compressor |
JP2011247575A (en) * | 2010-04-26 | 2011-12-08 | Nichirei Kogyo Kk | Gas-liquid separator, and refrigerating device including the same |
JP2013164008A (en) * | 2012-02-10 | 2013-08-22 | Panasonic Corp | Compressor |
JP2013227890A (en) * | 2012-04-25 | 2013-11-07 | Calsonic Kansei Corp | Gas compressor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4226907A1 (en) * | 1992-08-14 | 1994-02-17 | Basf Magnetics Gmbh | Film or layer of transparent material, especially plastic |
US5502984A (en) * | 1993-11-17 | 1996-04-02 | American Standard Inc. | Non-concentric oil separator |
JP3721933B2 (en) * | 2000-04-17 | 2005-11-30 | 株式会社デンソー | Compressor |
JP4149947B2 (en) * | 2004-03-18 | 2008-09-17 | サンデン株式会社 | Compressor |
CN201148971Y (en) * | 2007-12-21 | 2008-11-12 | 上海三电贝洱汽车空调有限公司 | Oil separator of rotary vane compressor |
JP4992822B2 (en) * | 2008-05-16 | 2012-08-08 | 株式会社豊田自動織機 | Scroll compressor |
CN201943959U (en) * | 2011-03-08 | 2011-08-24 | 上海威乐汽车空调器有限公司 | Effective vortex compressor oil separating structure of automotive air conditioner |
-
2013
- 2013-12-20 JP JP2013263147A patent/JP6238726B2/en not_active Expired - Fee Related
-
2014
- 2014-12-17 CN CN201480067804.1A patent/CN105814312A/en active Pending
- 2014-12-17 EP EP14872970.0A patent/EP3156650A4/en not_active Withdrawn
- 2014-12-17 WO PCT/JP2014/083336 patent/WO2015093504A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030074870A1 (en) * | 2001-10-18 | 2003-04-24 | Mietto Virgilio | Air/oil separation tank |
JP2007327340A (en) | 2006-06-06 | 2007-12-20 | Calsonic Compressor Inc | Gas compressor |
US20090191081A1 (en) * | 2006-06-15 | 2009-07-30 | Geonho Lee | Scroll compressor improved in function of oil circulation and back pressure control |
WO2011080865A1 (en) * | 2009-12-29 | 2011-07-07 | 株式会社ヴァレオジャパン | Compressor |
JP2011247575A (en) * | 2010-04-26 | 2011-12-08 | Nichirei Kogyo Kk | Gas-liquid separator, and refrigerating device including the same |
JP2013164008A (en) * | 2012-02-10 | 2013-08-22 | Panasonic Corp | Compressor |
JP2013227890A (en) * | 2012-04-25 | 2013-11-07 | Calsonic Kansei Corp | Gas compressor |
Non-Patent Citations (1)
Title |
---|
See also references of EP3156650A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020148159A (en) * | 2019-03-15 | 2020-09-17 | 株式会社豊田自動織機 | Compressor |
Also Published As
Publication number | Publication date |
---|---|
EP3156650A1 (en) | 2017-04-19 |
JP2015117671A (en) | 2015-06-25 |
CN105814312A (en) | 2016-07-27 |
JP6238726B2 (en) | 2017-11-29 |
EP3156650A4 (en) | 2018-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5707336B2 (en) | Compressor | |
US8945265B2 (en) | Compressor | |
JP5766764B2 (en) | Vane type compressor | |
WO2015093504A1 (en) | Compressor | |
WO2016190380A1 (en) | Compressor | |
WO2016189801A1 (en) | Cylinder-rotation-type compressor | |
WO2018123860A1 (en) | Oil supply structure for vane compressor | |
JP6369066B2 (en) | Compressor | |
JP5708571B2 (en) | Tandem vane compressor | |
WO2018142466A1 (en) | Compressor | |
JP6201863B2 (en) | Compressor | |
JP4043233B2 (en) | Gas compressor | |
KR101003954B1 (en) | Rotary compressor equipped with combined driving shaft-vane | |
KR100498378B1 (en) | Apparatus for reduce the noise of scroll compressor | |
JP2017227197A (en) | Compressor and lubricating oil separation method | |
KR20170040409A (en) | Vane rotary compressor | |
JP2022166884A (en) | screw compressor | |
WO2017150357A1 (en) | Vane compressor | |
JP2009270466A (en) | Compressor with oil separator | |
WO2016088326A1 (en) | Cylinder rotary compressor | |
JPH04325795A (en) | Rotary compressor | |
JP2019143591A (en) | Scroll compressor | |
JP2005299391A (en) | Compressor | |
KR20160040936A (en) | A compressor having an oil separator | |
JP2012167619A (en) | High-pressure dome type compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14872970 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014872970 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014872970 Country of ref document: EP |