WO2016088326A1 - Cylinder rotary compressor - Google Patents

Cylinder rotary compressor Download PDF

Info

Publication number
WO2016088326A1
WO2016088326A1 PCT/JP2015/005817 JP2015005817W WO2016088326A1 WO 2016088326 A1 WO2016088326 A1 WO 2016088326A1 JP 2015005817 W JP2015005817 W JP 2015005817W WO 2016088326 A1 WO2016088326 A1 WO 2016088326A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cylinder
suction passage
compression chamber
shaft
Prior art date
Application number
PCT/JP2015/005817
Other languages
French (fr)
Japanese (ja)
Inventor
善則 村瀬
小川 博史
卓也 石川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016088326A1 publication Critical patent/WO2016088326A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to a cylinder rotary compressor that rotates a cylinder that forms a compression chamber therein.
  • a cylinder rotary type compressor that compresses and discharges a fluid by changing a volume of the compression chamber by rotating a cylinder that forms a compression chamber therein is known.
  • Patent Document 1 a cylindrical cylinder integrally formed with a rotor of an electric motor unit (electric motor unit), a rotor formed of a columnar member disposed inside the cylinder, and a rotor are formed. And a vane that is slidably fitted in the groove and partitions the compression chamber.
  • the volume of the compression chamber is changed by displacing the vane by rotating the cylinder and the rotor in conjunction with different rotating shafts. Furthermore, in the cylinder rotation type compressor of patent document 1, the size reduction as the whole compressor is aimed at by arrange
  • a part of a suction passage that guides a fluid to be compressed sucked from the outside to a compression chamber is formed in a side plate that closes one end of the cylinder in the axial direction.
  • the side plate rotates together with the cylinder, if a part of the suction passage is formed in the side plate, the configuration of the suction passage and the sealing structure are likely to be complicated.
  • the present disclosure aims to suppress an increase in energy loss of a cylinder rotary compressor.
  • a cylinder rotary compressor is a cylindrical cylinder that rotates about a central axis, and is disposed inside the cylinder and rotates about an eccentric shaft that is eccentric with respect to the central axis of the cylinder.
  • the shaft has a shaft-side suction passage through which the fluid to be compressed flowing from the outside flows.
  • the rotor has a rotor-side suction passage that guides the fluid to be compressed flowing out from the shaft-side suction passage to the compression chamber. At least one of the rotor and the cylinder has a circumferential suction passage that guides the compression target fluid that has flowed out of the rotor-side suction passage from the outlet of the rotor-side suction passage to the compression chamber that is in the suction stroke.
  • the circumferential suction passage is formed, it is possible to promptly flow the fluid to be compressed into the compression chamber that has become the suction stroke. Therefore, it is possible to suppress a pressure drop from occurring in the compression chamber immediately after the intake stroke, and to suppress an increase in energy loss of the cylinder rotary compressor.
  • the “compression chamber that has become the suction stroke” means a compression chamber that has become a stroke in which the volume is increased. Including meaning.
  • FIG. 2 is a sectional view taken along the line II-II in FIG.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • It is an external appearance perspective view of the rotor of 1st Embodiment.
  • It is explanatory drawing for demonstrating the operating state of the compressor of 1st Embodiment. It is a figure which shows the change of the volume of the compression chamber with respect to the rotation angle of the compressor of 1st Embodiment.
  • a cylinder rotary compressor 1 (hereinafter simply referred to as a compressor 1) of the present embodiment is applied to a vapor compression refrigeration cycle apparatus that cools air blown into a vehicle interior by a vehicle air conditioner.
  • the refrigerant that is an example of the fluid to be compressed is compressed and discharged.
  • the compressor 1 includes a compression mechanism portion 20 that compresses and discharges a refrigerant into a housing 10 that forms an outer shell thereof, and an electric motor portion (electric motor portion) that drives the compression mechanism portion 20. ) Is configured as an electric compressor containing 30.
  • the housing 10 is configured by combining a plurality of metal members, and has a sealed container structure that forms a substantially cylindrical space inside.
  • the housing 10 includes a bottomed cylindrical (cup-shaped) main housing 11, and a bottomed cylindrical sub-unit disposed so as to close the opening of the main housing 11. It is configured by combining the housing 12 and a disk-shaped lid member 13 arranged so as to close the opening of the sub-housing 12.
  • a seal member made of an O-ring or the like is interposed in the contact portions of the main housing 11, the sub housing 12, and the lid member 13, so that the refrigerant does not leak from each contact portion.
  • a discharge port 11 a that discharges the high-pressure refrigerant pressurized by the compression mechanism 20 to the outside of the housing 10 (specifically, the refrigerant inlet side of the condenser of the refrigeration cycle apparatus). Is formed.
  • a suction port 12 a that sucks low-pressure refrigerant (specifically, low-pressure refrigerant flowing out of the evaporator of the refrigeration cycle apparatus) from the outside of the housing 10 is formed on the cylindrical side surface of the sub-housing 12.
  • a housing side suction passage 13a for guiding the low pressure refrigerant sucked from the suction port 12a to the compression chamber V of the compression mechanism section 20 is formed. Further, a drive circuit (inverter) 30 a for supplying electric power to the motor unit 30 is attached to the surface of the lid member 13 opposite to the surface on the sub housing 12 side.
  • the electric motor unit 30 has a stator 31 as a stator.
  • the stator 31 includes a stator core 31a formed of a metal magnetic material and a stator coil 31b wound around the stator core 31a.
  • the stator 31 is fixed to the inner peripheral surface of the cylindrical side surface of the main housing 11 by a method such as press fitting. Yes.
  • the cylinder 21 is formed of a cylindrical metal magnetic material, and forms a compression chamber of the compression mechanism unit 20 as will be described later.
  • a magnet (permanent magnet) 32 is fixed to the cylinder 21 as shown in the sectional views of FIGS.
  • the cylinder 21 also has a function as a rotor of the electric motor unit 30.
  • the cylinder 21 rotates around the central axis C1 by the rotating magnetic field generated by the stator 31.
  • the rotor of the electric motor unit 30 and the cylinder 21 of the compression mechanism unit 20 are integrally configured.
  • the rotor of the electric motor unit 30 and the cylinder 21 of the compression mechanism unit 20 may be configured as separate members and integrated by a method such as press fitting.
  • the compression mechanism unit 20 includes a cylinder 21, a rotor 22, a vane 23, a shaft 24, and the like.
  • the cylinder 21 is a cylindrical member that forms the compression chamber V therein, and has a function as a rotor of the electric motor unit 30 as described above, and rotates around the central axis C1.
  • the first and second side plates 25a and 25b which are closing members that close the opening end of the cylinder 21, are fixed to both ends of the cylinder 21 in the axial direction. Accordingly, the first and second side plates 25 a and 25 b rotate together with the cylinder 21.
  • the closing member disposed on the sub housing 12 side is referred to as a first side plate 25a
  • the closing member disposed on the bottom surface side of the main housing 11 is referred to as a second side plate 25b.
  • the first and second side plates 25a and 25b have a disk-shaped portion that extends in a direction substantially perpendicular to the rotation axis of the cylinder 21, and a boss portion that is disposed at the center of the disk-shaped portion and protrudes in the axial direction. is doing. Furthermore, a through-hole penetrating the front and back of the first and second side plates 25a and 25b is formed in the boss portion.
  • a bearing mechanism (not shown) is disposed in each of these through holes, and the cylinder 21 is rotatably supported with respect to the shaft 24 by inserting the shaft 24 into the bearing mechanism. Further, both end portions of the shaft 24 are fixed to the housing 10 (specifically, the main housing 11 and the sub-housing 12). Therefore, the shaft 24 does not rotate with respect to the housing 10.
  • the shaft 24 is a substantially cylindrical member that rotatably supports the cylinder 21 (specifically, the first and second side plates 25 a and 25 b fixed to the cylinder 21) and the rotor 22.
  • a small-diameter portion having a smaller outer diameter than the end portion on the sub-housing 12 side is provided in the central portion of the shaft 24 in the axial direction.
  • the small diameter portion constitutes an eccentric portion 24c that is eccentric with respect to the central axis C1 of the cylinder 21.
  • the rotor 22 is rotatably supported on the small diameter portion via a bearing mechanism (not shown). For this reason, when the rotor 22 rotates, the rotor 22 rotates around the eccentric shaft C2 that is eccentric with respect to the central axis C1 of the cylinder 21.
  • the shaft 24 is in communication with the housing side suction passage 13a, and a shaft side suction passage 24b for guiding the low-pressure refrigerant flowing from the outside to the compression chamber V side.
  • a plurality (four in this embodiment) of shaft-side suction holes 24a are formed so as to extend in the radial direction and allow the shaft-side suction passage 24b and the compression chamber V to communicate with each other.
  • the rotor 22 is a hollow columnar member (cylindrical member) that is disposed inside the cylinder 21 and extends in the central axis direction of the cylinder 21. As shown in FIG. 1, the axial length of the rotor 22 is approximately the same as the axial length of the eccentric portion 24 c of the shaft 24 and the axial length of the cylindrical space formed inside the cylinder 21. Is formed.
  • the outer diameter dimension of the rotor 22 is formed smaller than the inner diameter dimension of the columnar space formed inside the cylinder 21. More specifically, the outer diameter of the rotor 22 is such that the outer peripheral surface of the rotor 22 and the inner peripheral surface of the cylinder 21 are 1 when viewed from the direction of the central axis C1 of the cylinder 21, as shown in FIG. It is set to contact at a contact point C3.
  • a power transmission unit for transmitting a rotational driving force from the first and second side plates 25a and 25b rotating together with the cylinder 21 to the rotor 22. ing.
  • the power transmission unit provided between the rotor 22 and the first side plate 25 a is a plurality of (on the first side plate 25 a side surface of the rotor 22 ( In the present embodiment, there are three (three) circular holes 221 and a plurality (three in the present embodiment) of driving pins 251 fixed to the first side plate 25a.
  • the plurality of drive pins 251 have a smaller diameter than the hole 221, protrude in the axial direction toward the rotor 22, and are fitted in the holes 221. Therefore, the drive pin 251 and the hole 221 constitute a mechanism equivalent to a so-called pin-hole type anti-rotation mechanism. The same applies to the power transmission unit provided between the rotor 22 and the second side plate 25b.
  • the relative position (relative distance) between each drive pin 251 and the eccentric portion 24c of the shaft 24 changes. Due to the change in the relative position (relative distance), the side wall surface of the hole 221 of the rotor 22 receives a load in the rotational direction from the drive pin 251. As a result, the rotor 22 rotates around the eccentric axis C ⁇ b> 2 in synchronization with the rotation of the cylinder 21.
  • the power transmission unit of the present embodiment power is sequentially transmitted to the rotor 22 by the plurality of drive pins 251 and the holes 221. Therefore, it is desirable that the plurality of drive pins 251 and the holes 221 be arranged at equiangular intervals around the eccentric axis C2. Further, in order to suppress wear on the side wall surface of the hole 221, a wear-inhibiting ring member or the like may be disposed on the side wall surface of the hole 221.
  • a groove portion 22a is formed on the outer peripheral surface of the rotor 22 so as to be recessed toward the inner periphery over the entire axial direction. 23 is slidably fitted. More specifically, in the groove portion 22a of the present embodiment, the surface on which the vane 23 slides (the friction surface with the vane 23) is parallel to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2. Is formed.
  • a rotor side suction passage 22 b that extends in the radial direction and communicates the inner peripheral side and the outer peripheral side of the rotor 22 is formed inside the central portion of the rotor 22 in the axial direction.
  • the rotor-side suction passage 22b is a refrigerant passage that circulates the low-pressure refrigerant flowing out from the shaft-side suction hole 24a provided in the shaft 24 and guides it to the compression chamber V side.
  • the refrigerant outlet of the rotor side suction passage 22b opens to the outer peripheral surface of the rotor 22 on the rear side in the rotational direction with respect to the groove 22a.
  • the refrigerant outlet of the rotor-side suction passage 22b opens closer to the wall surface on the rear side of the outer circumferential surface of the rotor 22 than the wall surface on the front side in the rotational direction of the groove 22a.
  • a circumferential suction passage 22c that guides the refrigerant from the outlet side of the rotor side suction passage 22b formed on the outer peripheral surface of the rotor 22 toward the groove portion 22a is formed. More specifically, as an example of the circumferential suction passage 22c, as shown in FIG. 4, it is formed by notching (shaving off) the axial central portion of the outer circumferential surface of the rotor 22 in the circumferential direction (rotating direction). Cutouts are used.
  • FIG. 4 is an external perspective view of the rotor 22.
  • the lower side of the rotor 22 is the side on which the first side plate 25a is disposed.
  • the vane 23 is formed of a plate-like member, and the axial length of the vane 23 is substantially the same as the axial length of the rotor 22. Further, a hinge portion 23 a is formed at the outer peripheral side end portion of the vane 23. The hinge portion 23a is supported in a groove portion formed on the inner peripheral surface of the cylinder 21 so as to be swingable in the circumferential direction. For this reason, the vane 23 does not leave the cylinder 21.
  • the compression chamber V is formed by the space surrounded by the inner wall surface of the cylinder 21, the outer peripheral surface of the rotor 22, and the plate surface of the vane 23. That is, the compression chamber V formed between the inner peripheral surface of the cylinder 21 and the outer peripheral surface of the rotor 22 is partitioned by the vane 23.
  • the low-pressure refrigerant sucked from the suction port 12a formed in the sub housing 12 is the housing side suction passage 13a ⁇ the shaft side suction passage 24b ( ⁇ the shaft side suction hole 24a) ⁇ the rotor side suction passage 22b ( ⁇ the circumferential suction). It flows in the order of the passage 22c) and is sucked into the compression chamber V.
  • the high-pressure refrigerant compressed in the compression chamber V flows out from the discharge hole 252 formed in the second side plate 25 b to the internal space of the housing 10 and is discharged from the discharge port 11 a formed in the main housing 11.
  • the discharge hole 252 is formed so as to communicate with the compression chamber V displaced to a predetermined position.
  • the second side plate 25b is provided with a discharge valve that suppresses the refrigerant flowing out from the discharge hole 252 to the internal space of the housing 10 from flowing back to the compression chamber V through the discharge hole 252. .
  • FIG. 5 is an explanatory view continuously showing changes in the compression chamber V accompanying the rotation of the cylinder 21 in order to explain the operating state of the compressor 1. Furthermore, in the sectional view corresponding to each rotation angle ⁇ in FIG. 5, the cylinder 21, the rotor 22, the vane 23, and the like in the sectional view equivalent to FIG. 3 are schematically shown.
  • the compression chamber V that is in the suction stroke (the process of expanding the volume) is indicated by the symbol Vs
  • the compression chamber V is the compression process (the process of reducing the volume).
  • the chamber V is indicated by the symbol Vd.
  • the discharge valve opens, and the refrigerant in the compression chamber Vd during the compression stroke passes through the housing 10 It flows into the internal space.
  • the high-pressure refrigerant that has flowed into the internal space of the housing 10 is discharged from the discharge port 11 a of the housing 10.
  • the volume of the compression chamber V changes as shown in FIG. As shown in FIG. 7, in the suction stroke, the refrigerant pressure in the compression chamber V becomes equal to the low-pressure side refrigerant pressure of the cycle, and in the compression stroke, the refrigerant pressure in the compression chamber V becomes the high-pressure side refrigerant of the cycle.
  • the pressure can be increased to a pressure equivalent to the pressure.
  • the compressor 1 of the present embodiment can suck, compress, and discharge a refrigerant that is an example of a fluid to be compressed in a refrigeration cycle. Furthermore, according to the compressor 1 of this embodiment, since the compression mechanism part 20 is arrange
  • the circumferential suction passage 22c is formed on the outer peripheral surface of the rotor 22, an increase in energy loss of the compressor 1 can be suppressed.
  • the circumferential suction passage 22c is formed, so that the fluid to be compressed can be quickly flowed into the compression chamber V that has become the suction stroke. Therefore, it is possible to suppress a pressure drop from occurring in the compression chamber V immediately after the intake stroke, and to suppress an increase in energy loss of the cylinder rotary compressor.
  • the notch formed by notching the outer peripheral surface of the rotor 22 functions as an example of the circumferential suction passage 22c.
  • FIG. 10 is a drawing corresponding to FIG. 3 of the first embodiment, and the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • the circumferential suction passage 21a is formed in a range overlapping with the circumferential suction passage 22c of the first embodiment when viewed from the radial direction.
  • Other configurations and operations are the same as those in the first embodiment. Therefore, even in the compressor 1 in which the circumferential suction passage 21a is formed on the cylinder 21 side as in the present embodiment, the same effects as in the first embodiment can be obtained.
  • (Third embodiment) In the present embodiment, as shown in the cross-sectional view of FIG. 11, an example will be described in which the groove 22d, the rotor-side suction passage 22b, and the vane 23b formed in the rotor 22 are changed with respect to the first embodiment.
  • the groove portion 22d of the present embodiment has a sliding surface of the vane 23b (friction surface with the vane 23) with respect to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2. It is inclined. More specifically, in the groove 22d, the sliding surface of the vane 23b is inclined in the rotational direction from the inner peripheral side toward the outer peripheral side. For this reason, the vane 23 b fitted in the groove 22 d is also displaced in a direction inclined with respect to the radial direction of the rotor 22.
  • the rotor-side suction passage 22b is also inclined with respect to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2, similarly to the groove portion 22d.
  • the structure corresponding to the hinge part 23a of 1st Embodiment is not formed in the vane 23b of this embodiment.
  • the vane 23 b is disposed so that the outer peripheral end portion is slidable with respect to the inner peripheral surface of the cylinder 21.
  • Other configurations are the same as those of the first embodiment.
  • FIG. 12 is a drawing corresponding to FIG. 5 of the first embodiment, and the rotation angle ⁇ is 0 ° (360 °), 90 ° (450 °), 180 ° (540 °), 270 ° (630 °). The state at the time of becoming is illustrated.
  • a compression chamber Vs having a maximum volume suction stroke is formed on the front side in the rotation direction of the vane 23b, and a minimum volume (that is, the volume is 0) is suctioned on the rear side in the rotation direction of the vane 23.
  • a compression chamber Vs for the stroke is formed.
  • the volume of the chamber Vd is reduced.
  • the high-pressure refrigerant compressed in the compression chamber Vd in the compression stroke is discharged from the discharge port 11a of the housing 10.
  • the compressor 1 of the present embodiment the refrigerant (fluid) can be sucked, compressed, and discharged. Furthermore, according to the compressor 1 of the present embodiment, since the circumferential suction passage 22c is formed, an increase in energy loss of the cylinder rotary compressor can be suppressed as in the first embodiment.
  • the outer peripheral side tip of the vane 23b is slid on the inner peripheral surface of the cylinder 21. According to this, unlike the configuration in which the hinge portion 23a of the vane 23 is swingably supported in the groove portion of the cylinder 21, there is no possibility that the vane 23 and the cylinder 21 are seized. Therefore, the reliability of the compressor 1 as a whole can be improved.
  • the surface on which the vane 23b slides in the groove 22d is inclined with respect to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2. According to this, the stroke amount (movable range) of the vane 23b can be increased as compared with the case where the sliding surface of the vane 23b is formed in parallel with the radial direction. Therefore, the compression ratio of the compressor 1 can be increased.
  • the formation of the circumferential suction passage 22c is extremely effective for suppressing an increase in energy loss of the cylinder rotary compressor.
  • the rotor-side suction passage 22b is also inclined with respect to the radial direction of the rotor 22 in the same manner as the groove portion 22d, so that the outlet of the rotor-side suction passage 22b and the suction stroke of the minimum volume are reduced.
  • the compression chamber V can be brought closer. As a result, it is possible to cause the refrigerant to flow into the compression chamber V that has become the suction stroke even more quickly.
  • the example in which the cylinder rotary compressor 1 according to the present disclosure is applied to the refrigeration cycle device of the vehicle air conditioner has been described.
  • the application of the cylinder rotary compressor 1 according to the present disclosure is limited to this.
  • the cylinder rotary compressor 1 according to the present disclosure can be applied to a wide range of uses as a compressor that compresses various fluids.
  • the power transmission unit of the cylinder rotary compressor 1 is described, but the power transmission unit is not limited to this.
  • the example in which the notch formed by cutting out the outer peripheral surface of the rotor 22 or the inner peripheral surface of the cylinder 21 functions as the circumferential suction passages 21a and 22c has been described.
  • 21a and 22c are not limited to this.
  • the rotor 22 and the cylinder 21 may be bored to form a circumferential suction passage.
  • the cylinder rotary compressor 1 including one vane 23, 23b has been described, but the cylinder rotary compressor 1 including a plurality of vanes 23, 23b may be used.
  • a plurality of compression chambers V are formed, a plurality of circumferential suction passages 21a, 22c for promptly introducing the fluid to be compressed into each compression chamber V may be formed.
  • the constituent elements disclosed in the above embodiments may be appropriately combined within a practicable range.
  • the circumferential suction passage 21a described in the second embodiment may be applied to the compressor 1 of the third embodiment.
  • a circumferential suction passage 21 a may be formed in both the cylinder 21 and the rotor 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

A cylinder rotary compressor according to the present application has, inside an eccentrically rotating rotor (22), a rotor-side intake passage (22b) for guiding a coolant that has flowed out of a shaft-side intake passage (24b) to a compression space (V), the shaft-side intake passage (24b) being formed in a shaft (24). Additionally, the cylinder rotary compressor has, on the outer peripheral surface of the rotor (22), a circumferential direction intake passage (22c) for guiding a coolant that has flowed out of the rotor-side intake passage (22b) to the compression space (V) that has formed an intake stroke from an outlet of the rotor-side intake passage (22b). Accordingly, the coolant is allowed to quickly flow into the compression space (V) that has formed an intake stroke, and reductions in the pressure inside the compression space (V) are suppressed. As a result thereof, increases in energy loss of the cylinder rotary compressor are suppressed.

Description

シリンダ回転型圧縮機Cylinder rotary compressor 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年12月2日に出願された日本特許出願2014-244132を基にしている。 This application is based on Japanese Patent Application No. 2014-244132 filed on Dec. 2, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、内部に圧縮室を形成するシリンダを回転させるシリンダ回転型圧縮機に関する。 The present disclosure relates to a cylinder rotary compressor that rotates a cylinder that forms a compression chamber therein.
 従来、内部に圧縮室を形成するシリンダを回転させることによって、圧縮室の容積を変化させて、流体を圧縮して吐出するシリンダ回転型圧縮機が知られている。 Conventionally, a cylinder rotary type compressor that compresses and discharges a fluid by changing a volume of the compression chamber by rotating a cylinder that forms a compression chamber therein is known.
 例えば、特許文献1には、電動機部(電動モータ部)の回転子と一体的に構成された円筒状のシリンダと、シリンダの内部に配置された円柱状部材からなるロータと、ロータに形成された溝部に摺動可能に嵌め込まれて圧縮室を仕切るベーンと、を備えるシリンダ回転型圧縮機が開示されている。 For example, in Patent Document 1, a cylindrical cylinder integrally formed with a rotor of an electric motor unit (electric motor unit), a rotor formed of a columnar member disposed inside the cylinder, and a rotor are formed. And a vane that is slidably fitted in the groove and partitions the compression chamber.
 この種のシリンダ回転型圧縮機では、シリンダおよびロータを異なる回転軸で連動回転させることによってベーンを変位させて、圧縮室の容積を変化させている。さらに、特許文献1のシリンダ回転型圧縮機では、電動モータ部の内周側に圧縮機構部を配置することによって、圧縮機全体としての小型化を図っている。 In this type of cylinder rotary compressor, the volume of the compression chamber is changed by displacing the vane by rotating the cylinder and the rotor in conjunction with different rotating shafts. Furthermore, in the cylinder rotation type compressor of patent document 1, the size reduction as the whole compressor is aimed at by arrange | positioning a compression mechanism part to the inner peripheral side of an electric motor part.
 ところで、特許文献1のシリンダ回転型圧縮機では、シリンダの軸方向一端側を閉塞するサイドプレートに、外部から吸入した圧縮対象流体を圧縮室へ導く吸入通路の一部を形成している。しかしながら、サイドプレートはシリンダとともに回転するので、サイドプレートに吸入通路の一部を形成すると、吸入通路の通路構成やシール構造の複雑化を招きやすい。 Incidentally, in the cylinder rotary compressor of Patent Document 1, a part of a suction passage that guides a fluid to be compressed sucked from the outside to a compression chamber is formed in a side plate that closes one end of the cylinder in the axial direction. However, since the side plate rotates together with the cylinder, if a part of the suction passage is formed in the side plate, the configuration of the suction passage and the sealing structure are likely to be complicated.
特開2012-67735号公報JP 2012-67735 A
 本発明者らは、先に、特願2013-119924号(以下、先願例という。)にて、ロータを回転可能に支持するシャフト、およびロータの内部に吸入通路を形成して、圧縮対象流体を圧縮室へ導くシリンダ回転型圧縮機を提案している。これによれば、吸入通路の通路構成やシール構造の複雑化を招くことなく、圧縮対象流体を圧縮室内へ導くことができる。 The inventors of the present invention previously described in Japanese Patent Application No. 2013-119924 (hereinafter referred to as the prior application example) a shaft that rotatably supports the rotor and a suction passage formed inside the rotor, A cylinder rotary type compressor that introduces fluid into a compression chamber has been proposed. According to this, the fluid to be compressed can be guided into the compression chamber without causing complication of the passage configuration of the suction passage and the seal structure.
 ところが、本発明者らがシリンダ回転型圧縮機の性能向上についての検討を進めたところ、先願例のシリンダ回転型圧縮機では、吸入行程(容積を増加させる行程)となった直後の圧縮室を吸入通路に連通させることができず、吸入行程となった直後の圧縮室内の流体圧力が低下していることが判った。このような圧力低下は、圧縮機を駆動するために消費される動力の増加を招き、圧縮機のエネルギ損失を増加させてしまう。 However, when the present inventors have studied the performance improvement of the cylinder rotary compressor, in the cylinder rotary compressor of the prior application, the compression chamber immediately after the suction stroke (stroke to increase the volume) is reached. As a result, it was found that the fluid pressure in the compression chamber immediately after the intake stroke was reduced. Such a pressure drop causes an increase in power consumed to drive the compressor, and increases energy loss of the compressor.
 本開示は、上記点に鑑み、シリンダ回転型圧縮機のエネルギ損失の増加を抑制することを目的とする。 In view of the above points, the present disclosure aims to suppress an increase in energy loss of a cylinder rotary compressor.
 本開示の一態様によると、シリンダ回転型圧縮機は、中心軸周りに回転する円筒状のシリンダと、シリンダの内部に配置されて、シリンダの中心軸に対して偏心した偏心軸周りに回転する円筒状のロータと、ロータを回転可能に支持するシャフトと、ロータに設けられた溝部に摺動可能に嵌め込まれて、ロータの外周面とシリンダの内周面との間に設けられる圧縮室を仕切るベーンと、を備える。シャフトは内部に、外部から流入した圧縮対象流体を流通させるシャフト側吸入通路有する。ロータは内部に、シャフト側吸入通路から流出した圧縮対象流体を、圧縮室へ導くロータ側吸入通路を有する。ロータおよびシリンダの少なくとも一方は、ロータ側吸入通路から流出した圧縮対象流体を、ロータ側吸入通路の出口から吸入行程となった圧縮室へ導く、周方向吸入通路を有している。 According to one aspect of the present disclosure, a cylinder rotary compressor is a cylindrical cylinder that rotates about a central axis, and is disposed inside the cylinder and rotates about an eccentric shaft that is eccentric with respect to the central axis of the cylinder. A cylindrical rotor, a shaft that rotatably supports the rotor, and a compression chamber that is slidably fitted in a groove provided in the rotor and is provided between the outer peripheral surface of the rotor and the inner peripheral surface of the cylinder. A vane for partitioning. The shaft has a shaft-side suction passage through which the fluid to be compressed flowing from the outside flows. The rotor has a rotor-side suction passage that guides the fluid to be compressed flowing out from the shaft-side suction passage to the compression chamber. At least one of the rotor and the cylinder has a circumferential suction passage that guides the compression target fluid that has flowed out of the rotor-side suction passage from the outlet of the rotor-side suction passage to the compression chamber that is in the suction stroke.
 これによれば、周方向吸入通路が形成されているので、吸入行程となった圧縮室へ速やかに圧縮対象流体を流入させることができる。従って、吸入行程となった直後の圧縮室内に圧力低下が生じてしまうことを抑制し、シリンダ回転型圧縮機のエネルギ損失の増加を抑制することができる。 According to this, since the circumferential suction passage is formed, it is possible to promptly flow the fluid to be compressed into the compression chamber that has become the suction stroke. Therefore, it is possible to suppress a pressure drop from occurring in the compression chamber immediately after the intake stroke, and to suppress an increase in energy loss of the cylinder rotary compressor.
 なお、本開示における「吸入行程となった圧縮室」とは、容積を拡大させる行程となった圧縮室を意味しており、吸入行程となっていれば容積が0となっている圧縮室も含む意味である。 In the present disclosure, the “compression chamber that has become the suction stroke” means a compression chamber that has become a stroke in which the volume is increased. Including meaning.
本開示の第1実施形態の圧縮機の軸方向に平行で、圧縮機を示す断面図である。It is sectional drawing which is parallel to the axial direction of the compressor of 1st Embodiment of this indication, and shows a compressor. 図1のII-II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 図1のIII-III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 第1実施形態のロータの外観斜視図である。It is an external appearance perspective view of the rotor of 1st Embodiment. 第1実施形態の圧縮機の作動状態を説明するための説明図である。It is explanatory drawing for demonstrating the operating state of the compressor of 1st Embodiment. 第1実施形態の圧縮機の回転角に対する圧縮室の容積の変化を示す図である。It is a figure which shows the change of the volume of the compression chamber with respect to the rotation angle of the compressor of 1st Embodiment. 第1実施形態の圧縮機の回転角に対する圧縮室内の冷媒圧力の変化を示す図である。It is a figure which shows the change of the refrigerant | coolant pressure in a compression chamber with respect to the rotation angle of the compressor of 1st Embodiment. 本開示の比較例の圧縮機の作動状態を説明するための説明図である。It is explanatory drawing for demonstrating the operating state of the compressor of the comparative example of this indication. 比較用の圧縮機の回転角に対する圧縮室内の冷媒圧力の変化を示すグラフである。It is a graph which shows the change of the refrigerant | coolant pressure in a compression chamber with respect to the rotation angle of the compressor for a comparison. 本開示の第2実施形態の圧縮機の軸方向に垂直で、圧縮機を示す断面図である。It is a sectional view perpendicular to the axial direction of the compressor of a 2nd embodiment of this indication, and showing a compressor. 本開示の第3実施形態の圧縮機の軸方向に垂直で、圧縮機を示す断面図である。It is a sectional view perpendicular to the axial direction of the compressor of a 3rd embodiment of this indication, and showing a compressor. 第3実施形態の圧縮機の作動状態を説明するための説明図である。It is explanatory drawing for demonstrating the operating state of the compressor of 3rd Embodiment.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 以下、図1~図9を用いて、本開示の第1実施形態を説明する。本実施形態のシリンダ回転型圧縮機1(以下、単に圧縮機1と記載する。)は、車両用空調装置にて車室内へ送風される送風空気を冷却する蒸気圧縮式の冷凍サイクル装置に適用されており、この冷凍サイクル装置において圧縮対象流体の一例である冷媒を圧縮して吐出する機能を果たす。
Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
(First embodiment)
Hereinafter, the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 9. A cylinder rotary compressor 1 (hereinafter simply referred to as a compressor 1) of the present embodiment is applied to a vapor compression refrigeration cycle apparatus that cools air blown into a vehicle interior by a vehicle air conditioner. In this refrigeration cycle apparatus, the refrigerant that is an example of the fluid to be compressed is compressed and discharged.
 圧縮機1は、図1に示すように、その外殻を形成するハウジング10の内部に、冷媒を圧縮して吐出する圧縮機構部20、および圧縮機構部20を駆動する電動機部(電動モータ部)30を収容した電動圧縮機として構成されている。 As shown in FIG. 1, the compressor 1 includes a compression mechanism portion 20 that compresses and discharges a refrigerant into a housing 10 that forms an outer shell thereof, and an electric motor portion (electric motor portion) that drives the compression mechanism portion 20. ) Is configured as an electric compressor containing 30.
 まず、ハウジング10は、複数の金属製部材を組み合わせることによって構成されており、内部に略円柱状の空間を形成する密閉容器構造のものである。 First, the housing 10 is configured by combining a plurality of metal members, and has a sealed container structure that forms a substantially cylindrical space inside.
 より具体的には、ハウジング10は、図1に示すように、有底円筒状(カップ状)のメインハウジング11、メインハウジング11の開口部を閉塞するように配置された有底円筒状のサブハウジング12、およびサブハウジング12の開口部を閉塞するように配置された円板状の蓋部材13を組み合わせることによって構成されている。 More specifically, as shown in FIG. 1, the housing 10 includes a bottomed cylindrical (cup-shaped) main housing 11, and a bottomed cylindrical sub-unit disposed so as to close the opening of the main housing 11. It is configured by combining the housing 12 and a disk-shaped lid member 13 arranged so as to close the opening of the sub-housing 12.
 なお、メインハウジング11、サブハウジング12、および蓋部材13の当接部には、Oリング等からなる図示しないシール部材が介在されており、各当接部から冷媒が漏れることはない。 It should be noted that a seal member (not shown) made of an O-ring or the like is interposed in the contact portions of the main housing 11, the sub housing 12, and the lid member 13, so that the refrigerant does not leak from each contact portion.
 メインハウジング11の筒状側面には、圧縮機構部20にて昇圧された高圧冷媒をハウジング10の外部(具体的には、冷凍サイクル装置の凝縮器の冷媒入口側)へ吐出する吐出ポート11aが形成されている。サブハウジング12の筒状側面には、ハウジング10の外部から低圧冷媒(具体的には、冷凍サイクル装置の蒸発器から流出した低圧冷媒)を吸入する吸入ポート12aが形成されている。 On the cylindrical side surface of the main housing 11, there is a discharge port 11 a that discharges the high-pressure refrigerant pressurized by the compression mechanism 20 to the outside of the housing 10 (specifically, the refrigerant inlet side of the condenser of the refrigeration cycle apparatus). Is formed. A suction port 12 a that sucks low-pressure refrigerant (specifically, low-pressure refrigerant flowing out of the evaporator of the refrigeration cycle apparatus) from the outside of the housing 10 is formed on the cylindrical side surface of the sub-housing 12.
 サブハウジング12と蓋部材13との間には、吸入ポート12aから吸入された低圧冷媒を、圧縮機構部20の圧縮室Vへ導くためのハウジング側吸入通路13aが形成されている。さらに、蓋部材13のサブハウジング12側の面と反対側の面には、電動機部30へ電力を供給する駆動回路(インバータ)30aが取り付けられている。 Between the sub housing 12 and the lid member 13, a housing side suction passage 13a for guiding the low pressure refrigerant sucked from the suction port 12a to the compression chamber V of the compression mechanism section 20 is formed. Further, a drive circuit (inverter) 30 a for supplying electric power to the motor unit 30 is attached to the surface of the lid member 13 opposite to the surface on the sub housing 12 side.
 次に、電動機部30は、固定子としてのステータ31を有している。ステータ31は、金属磁性材料で形成されたステータコア31a、およびステータコア31aに巻き付けられたステータコイル31bによって構成されており、メインハウジング11の筒状側面の内周面に圧入などの方法によって固定されている。 Next, the electric motor unit 30 has a stator 31 as a stator. The stator 31 includes a stator core 31a formed of a metal magnetic material and a stator coil 31b wound around the stator core 31a. The stator 31 is fixed to the inner peripheral surface of the cylindrical side surface of the main housing 11 by a method such as press fitting. Yes.
 そして、駆動回路30aから、密封端子(ハーメチックシール端子)30bを介して、ステータコイル31bに電力が供給されると、ステータ31の内周側に配置されたシリンダ21を回転させる回転磁界が発生する。シリンダ21は、円筒状の金属磁性材料で形成されており、後述するように、圧縮機構部20の圧縮室を形成するものである。 When electric power is supplied from the drive circuit 30a to the stator coil 31b via the sealing terminal (hermetic seal terminal) 30b, a rotating magnetic field that rotates the cylinder 21 disposed on the inner peripheral side of the stator 31 is generated. . The cylinder 21 is formed of a cylindrical metal magnetic material, and forms a compression chamber of the compression mechanism unit 20 as will be described later.
 さらに、このシリンダ21には、図2、図3の断面図に示すように、マグネット(永久磁石)32が固定されている。これにより、シリンダ21は、電動機部30の回転子としての機能を兼ね備える。そして、シリンダ21は、ステータ31が生じる回転磁界によって中心軸C1周りに回転する。 Furthermore, a magnet (permanent magnet) 32 is fixed to the cylinder 21 as shown in the sectional views of FIGS. Thereby, the cylinder 21 also has a function as a rotor of the electric motor unit 30. The cylinder 21 rotates around the central axis C1 by the rotating magnetic field generated by the stator 31.
 つまり、本実施形態の圧縮機1では、電動機部30の回転子と圧縮機構部20のシリンダ21が一体的に構成されている。もちろん、電動機部30の回転子と圧縮機構部20のシリンダ21とを別部材で構成し、圧入等の方法によって一体化させてもよい。 That is, in the compressor 1 of this embodiment, the rotor of the electric motor unit 30 and the cylinder 21 of the compression mechanism unit 20 are integrally configured. Of course, the rotor of the electric motor unit 30 and the cylinder 21 of the compression mechanism unit 20 may be configured as separate members and integrated by a method such as press fitting.
 次に、圧縮機構部20について説明する。圧縮機構部20は、シリンダ21、ロータ22、ベーン23、並びに、シャフト24等を有して構成されている。シリンダ21は、内部に圧縮室Vを形成する円筒状部材であり、前述の如く、電動機部30の回転子としての機能を兼ね備えており、中心軸C1周りに回転する。 Next, the compression mechanism unit 20 will be described. The compression mechanism unit 20 includes a cylinder 21, a rotor 22, a vane 23, a shaft 24, and the like. The cylinder 21 is a cylindrical member that forms the compression chamber V therein, and has a function as a rotor of the electric motor unit 30 as described above, and rotates around the central axis C1.
 シリンダ21の軸方向両端部には、シリンダ21の開口端部を閉塞する閉塞用部材である第1、第2サイドプレート25a、25bが固定されている。従って、第1、第2サイドプレート25a、25bは、シリンダ21とともに回転する。なお、本実施形態では、サブハウジング12側に配置される閉塞部材を第1サイドプレート25aとし、メインハウジング11の底面側に配置される閉塞部材を第2サイドプレート25bとする。 The first and second side plates 25a and 25b, which are closing members that close the opening end of the cylinder 21, are fixed to both ends of the cylinder 21 in the axial direction. Accordingly, the first and second side plates 25 a and 25 b rotate together with the cylinder 21. In the present embodiment, the closing member disposed on the sub housing 12 side is referred to as a first side plate 25a, and the closing member disposed on the bottom surface side of the main housing 11 is referred to as a second side plate 25b.
 第1、第2サイドプレート25a、25bは、シリンダ21の回転軸に略垂直な方向へ広がる円板状部、および円板状部の中心部に配置されて軸方向に突出するボス部を有している。さらに、ボス部には、第1、第2サイドプレート25a、25bの表裏を貫通する貫通穴が形成されている。 The first and second side plates 25a and 25b have a disk-shaped portion that extends in a direction substantially perpendicular to the rotation axis of the cylinder 21, and a boss portion that is disposed at the center of the disk-shaped portion and protrudes in the axial direction. is doing. Furthermore, a through-hole penetrating the front and back of the first and second side plates 25a and 25b is formed in the boss portion.
 これらの貫通穴には、それぞれ図示しない軸受け機構が配置されており、この軸受け機構にシャフト24が挿入されていることによって、シリンダ21がシャフト24に対して回転可能に支持されている。また、シャフト24の両端部は、それぞれハウジング10(具体的には、メインハウジング11およびサブハウジング12)に固定されている。従って、シャフト24がハウジング10に対して回転することはない。 A bearing mechanism (not shown) is disposed in each of these through holes, and the cylinder 21 is rotatably supported with respect to the shaft 24 by inserting the shaft 24 into the bearing mechanism. Further, both end portions of the shaft 24 are fixed to the housing 10 (specifically, the main housing 11 and the sub-housing 12). Therefore, the shaft 24 does not rotate with respect to the housing 10.
 シャフト24は、シリンダ21(具体的には、シリンダ21に固定された第1、第2サイドプレート25a、25b)、およびロータ22を回転自在に支持する略円筒状部材である。 The shaft 24 is a substantially cylindrical member that rotatably supports the cylinder 21 (specifically, the first and second side plates 25 a and 25 b fixed to the cylinder 21) and the rotor 22.
 シャフト24の軸方向中央部には、サブハウジング12側の端部よりも外径寸法の小さい小径部が設けられている。この小径部は、シリンダ21の中心軸C1に対して偏心した偏心部24cを構成している。そして、小径部には、図示しない軸受け機構を介して、ロータ22が回転自在に支持されている。このため、ロータ22が回転する際には、シリンダ21の中心軸C1に対して偏心した偏心軸C2周りに回転する。 A small-diameter portion having a smaller outer diameter than the end portion on the sub-housing 12 side is provided in the central portion of the shaft 24 in the axial direction. The small diameter portion constitutes an eccentric portion 24c that is eccentric with respect to the central axis C1 of the cylinder 21. The rotor 22 is rotatably supported on the small diameter portion via a bearing mechanism (not shown). For this reason, when the rotor 22 rotates, the rotor 22 rotates around the eccentric shaft C2 that is eccentric with respect to the central axis C1 of the cylinder 21.
 さらに、シャフト24の内部には、図1に示すように、ハウジング側吸入通路13aに連通して、外部から流入した低圧冷媒を圧縮室V側へ導くためのシャフト側吸入通路24b、並びに、図1、図3に示すように、径方向に延びてシャフト側吸入通路24bと圧縮室Vとを連通させるための複数(本実施形態では4つ)のシャフト側吸入穴24aが形成されている。 Further, as shown in FIG. 1, the shaft 24 is in communication with the housing side suction passage 13a, and a shaft side suction passage 24b for guiding the low-pressure refrigerant flowing from the outside to the compression chamber V side. 1. As shown in FIG. 3, a plurality (four in this embodiment) of shaft-side suction holes 24a are formed so as to extend in the radial direction and allow the shaft-side suction passage 24b and the compression chamber V to communicate with each other.
 ロータ22は、シリンダ21の内部に配置されてシリンダ21の中心軸方向に延びる中空の円柱状部材(円筒状部材)である。ロータ22の軸方向長さは、図1に示すように、シャフト24の偏心部24cの軸方向長さ、およびシリンダ21の内部に形成される円柱状空間の軸方向長さと略同等の寸法に形成されている。 The rotor 22 is a hollow columnar member (cylindrical member) that is disposed inside the cylinder 21 and extends in the central axis direction of the cylinder 21. As shown in FIG. 1, the axial length of the rotor 22 is approximately the same as the axial length of the eccentric portion 24 c of the shaft 24 and the axial length of the cylindrical space formed inside the cylinder 21. Is formed.
 さらに、ロータ22の外径寸法は、シリンダ21の内部に形成される円柱状空間の内径寸法よりも小さく形成されている。より詳細には、ロータ22の外径寸法は、後述する図5に示すように、シリンダ21の中心軸C1の方向から見たときに、ロータ22の外周面とシリンダ21の内周面が1箇所の接触点C3で接触するように設定されている。 Furthermore, the outer diameter dimension of the rotor 22 is formed smaller than the inner diameter dimension of the columnar space formed inside the cylinder 21. More specifically, the outer diameter of the rotor 22 is such that the outer peripheral surface of the rotor 22 and the inner peripheral surface of the cylinder 21 are 1 when viewed from the direction of the central axis C1 of the cylinder 21, as shown in FIG. It is set to contact at a contact point C3.
 ロータ22と第1、第2サイドプレート25a、25bとの間には、シリンダ21とともに回転する第1、第2サイドプレート25a、25bからロータ22へ回転駆動力を伝達する動力伝達部が設けられている。 Between the rotor 22 and the first and second side plates 25a and 25b, there is provided a power transmission unit for transmitting a rotational driving force from the first and second side plates 25a and 25b rotating together with the cylinder 21 to the rotor 22. ing.
 より詳細には、ロータ22と第1サイドプレート25aとの間に設けられる動力伝達部は、例えば、図2に示すように、ロータ22の第1サイドプレート25a側の面に形成された複数(本実施形態では、3つ)の円形状の穴部221、および第1サイドプレート25aに固定された複数(本実施形態では、3つ)の駆動ピン251を有している。 More specifically, for example, as shown in FIG. 2, the power transmission unit provided between the rotor 22 and the first side plate 25 a is a plurality of (on the first side plate 25 a side surface of the rotor 22 ( In the present embodiment, there are three (three) circular holes 221 and a plurality (three in the present embodiment) of driving pins 251 fixed to the first side plate 25a.
 これらの複数の駆動ピン251は、穴部221よりも小径に形成されており、ロータ22側へ向かって軸方向に突出して、それぞれ穴部221に嵌め込まれている。このため、駆動ピン251および穴部221は、いわゆるピン-ホール式の自転防止機構と同等の機構を構成している。ロータ22と第2サイドプレート25bとの間に設けられる動力伝達部についても同様である。 The plurality of drive pins 251 have a smaller diameter than the hole 221, protrude in the axial direction toward the rotor 22, and are fitted in the holes 221. Therefore, the drive pin 251 and the hole 221 constitute a mechanism equivalent to a so-called pin-hole type anti-rotation mechanism. The same applies to the power transmission unit provided between the rotor 22 and the second side plate 25b.
 本実施形態の動力伝達部によれば、シリンダ21が中心軸C1周りに回転すると、各駆動ピン251とシャフト24の偏心部24cとの相対位置(相対距離)が変化する。この相対位置(相対距離)の変化によって、ロータ22の穴部221の側壁面が駆動ピン251から回転方向の荷重を受ける。その結果、ロータ22は、シリンダ21の回転に同期して偏心軸C2周りに回転する。 According to the power transmission unit of the present embodiment, when the cylinder 21 rotates around the central axis C1, the relative position (relative distance) between each drive pin 251 and the eccentric portion 24c of the shaft 24 changes. Due to the change in the relative position (relative distance), the side wall surface of the hole 221 of the rotor 22 receives a load in the rotational direction from the drive pin 251. As a result, the rotor 22 rotates around the eccentric axis C <b> 2 in synchronization with the rotation of the cylinder 21.
 ここで、本実施形態の動力伝達部では、複数の駆動ピン251および穴部221によって、順次、ロータ22へ動力を伝達している。従って、複数の駆動ピン251および穴部221は、偏心軸C2周りに等角度間隔に配置されていることが望ましい。さらに、穴部221の側壁面の摩耗を抑制するために、穴部221の側壁面に摩耗抑制用のリング部材等を配置してもよい。 Here, in the power transmission unit of the present embodiment, power is sequentially transmitted to the rotor 22 by the plurality of drive pins 251 and the holes 221. Therefore, it is desirable that the plurality of drive pins 251 and the holes 221 be arranged at equiangular intervals around the eccentric axis C2. Further, in order to suppress wear on the side wall surface of the hole 221, a wear-inhibiting ring member or the like may be disposed on the side wall surface of the hole 221.
 また、ロータ22の外周面には、図2、図3に示すように、軸方向の全域に亘って内周側へ凹んだ溝部22aが形成されており、この溝部22aには、後述するベーン23が摺動可能に嵌め込まれている。より詳細には、本実施形態の溝部22aは、偏心軸C2の軸方向から見たときに、ベーン23の摺動する面(ベーン23との摩擦面)が、ロータ22の径方向と平行に形成されている。 Further, as shown in FIGS. 2 and 3, a groove portion 22a is formed on the outer peripheral surface of the rotor 22 so as to be recessed toward the inner periphery over the entire axial direction. 23 is slidably fitted. More specifically, in the groove portion 22a of the present embodiment, the surface on which the vane 23 slides (the friction surface with the vane 23) is parallel to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2. Is formed.
 ロータ22の軸方向中央部の内部には、図3に示すように、径方向に延びて、ロータ22の内周側と外周側とを連通させるロータ側吸入通路22bが形成されている。このロータ側吸入通路22bは、シャフト24に設けられたシャフト側吸入穴24aから流出した低圧冷媒を流通させて、圧縮室V側へ導く冷媒通路である。 As shown in FIG. 3, a rotor side suction passage 22 b that extends in the radial direction and communicates the inner peripheral side and the outer peripheral side of the rotor 22 is formed inside the central portion of the rotor 22 in the axial direction. The rotor-side suction passage 22b is a refrigerant passage that circulates the low-pressure refrigerant flowing out from the shaft-side suction hole 24a provided in the shaft 24 and guides it to the compression chamber V side.
 さらに、図3から明らかなように、ロータ側吸入通路22bの冷媒出口は、溝部22aに対して回転方向後方側のロータ22の外周面に開口している。換言すると、ロータ側吸入通路22bの冷媒出口は、ロータ22の外周面のうち、溝部22aの回転方向前方側の壁面よりも後方側の壁面の近くに開口している。 Further, as is apparent from FIG. 3, the refrigerant outlet of the rotor side suction passage 22b opens to the outer peripheral surface of the rotor 22 on the rear side in the rotational direction with respect to the groove 22a. In other words, the refrigerant outlet of the rotor-side suction passage 22b opens closer to the wall surface on the rear side of the outer circumferential surface of the rotor 22 than the wall surface on the front side in the rotational direction of the groove 22a.
 ロータ22の外周面には、ロータ22の外周面に形成されたロータ側吸入通路22bの出口側から溝部22a側へ向かって冷媒を導く周方向吸入通路22cが形成されている。より具体的には、この周方向吸入通路22cの一例として、図4に示すように、ロータ22の外周面の軸方向中央部を周方向(回転方向)に切り欠く(削り落とす)ことによって形成された切り欠きが用いられている。 On the outer peripheral surface of the rotor 22, a circumferential suction passage 22c that guides the refrigerant from the outlet side of the rotor side suction passage 22b formed on the outer peripheral surface of the rotor 22 toward the groove portion 22a is formed. More specifically, as an example of the circumferential suction passage 22c, as shown in FIG. 4, it is formed by notching (shaving off) the axial central portion of the outer circumferential surface of the rotor 22 in the circumferential direction (rotating direction). Cutouts are used.
 なお、図4は、ロータ22の外観斜視図であり、この図4では、ロータ22の下方側が、第1サイドプレート25aの配置される側となる。 4 is an external perspective view of the rotor 22. In FIG. 4, the lower side of the rotor 22 is the side on which the first side plate 25a is disposed.
 ベーン23は、板状部材で形成されており、その軸方向長さは、ロータ22の軸方向長さと略同等の寸法に形成されている。さらに、ベーン23の外周側端部にはヒンジ部23aが形成されている。ヒンジ部23aは、シリンダ21の内周面に形成された溝部に、周方向に揺動自在に支持されている。このため、ベーン23がシリンダ21から離れることはない。 The vane 23 is formed of a plate-like member, and the axial length of the vane 23 is substantially the same as the axial length of the rotor 22. Further, a hinge portion 23 a is formed at the outer peripheral side end portion of the vane 23. The hinge portion 23a is supported in a groove portion formed on the inner peripheral surface of the cylinder 21 so as to be swingable in the circumferential direction. For this reason, the vane 23 does not leave the cylinder 21.
 従って、本実施形態の圧縮機構部20では、シリンダ21の内壁面、ロータ22の外周面、およびベーン23の板面に囲まれた空間によって、圧縮室Vが形成される。つまり、シリンダ21の内周面とロータ22の外周面との間に形成される圧縮室Vは、ベーン23によって仕切られる。 Therefore, in the compression mechanism unit 20 of the present embodiment, the compression chamber V is formed by the space surrounded by the inner wall surface of the cylinder 21, the outer peripheral surface of the rotor 22, and the plate surface of the vane 23. That is, the compression chamber V formed between the inner peripheral surface of the cylinder 21 and the outer peripheral surface of the rotor 22 is partitioned by the vane 23.
 そして、サブハウジング12に形成された吸入ポート12aから吸入された低圧冷媒は、ハウジング側吸入通路13a→シャフト側吸入通路24b(→シャフト側吸入穴24a)→ロータ側吸入通路22b(→周方向吸入通路22c)の順に流れて圧縮室Vへ吸入される。 The low-pressure refrigerant sucked from the suction port 12a formed in the sub housing 12 is the housing side suction passage 13a → the shaft side suction passage 24b (→ the shaft side suction hole 24a) → the rotor side suction passage 22b (→ the circumferential suction). It flows in the order of the passage 22c) and is sucked into the compression chamber V.
 圧縮室Vにて圧縮された高圧冷媒は、第2サイドプレート25bに形成された吐出穴252からハウジング10の内部空間へ流出し、メインハウジング11に形成された吐出ポート11aから吐出される。この吐出穴252は、所定の位置に変位した圧縮室Vと連通するように形成されている。 The high-pressure refrigerant compressed in the compression chamber V flows out from the discharge hole 252 formed in the second side plate 25 b to the internal space of the housing 10 and is discharged from the discharge port 11 a formed in the main housing 11. The discharge hole 252 is formed so as to communicate with the compression chamber V displaced to a predetermined position.
 さらに、第2サイドプレート25bには、吐出穴252からハウジング10の内部空間へ流出した冷媒が、吐出穴252を介して圧縮室Vへ逆流してしまうことを抑制する吐出弁が配置されている。 Further, the second side plate 25b is provided with a discharge valve that suppresses the refrigerant flowing out from the discharge hole 252 to the internal space of the housing 10 from flowing back to the compression chamber V through the discharge hole 252. .
 次に、図5を用いて、本実施形態の圧縮機1の作動について説明する。図5は、圧縮機1の作動状態を説明するために、シリンダ21の回転に伴う圧縮室Vの変化を連続的に示した説明図である。さらに、図5の各回転角θに対応する断面図では、図3と同等の断面図におけるシリンダ21、ロータ22、およびベーン23等を模式的に示している。 Next, the operation of the compressor 1 of this embodiment will be described with reference to FIG. FIG. 5 is an explanatory view continuously showing changes in the compression chamber V accompanying the rotation of the cylinder 21 in order to explain the operating state of the compressor 1. Furthermore, in the sectional view corresponding to each rotation angle θ in FIG. 5, the cylinder 21, the rotor 22, the vane 23, and the like in the sectional view equivalent to FIG. 3 are schematically shown.
 また、図5では、図示の明確化のため、シリンダ21の回転角θ=0に対応する断面図に各構成部材の符号を付している。また、図5では、説明の明確化のため、吸入行程(容積を拡大させる行程)となっている圧縮室VをVsの符号で示し、圧縮行程(容積を縮小させる行程)となっている圧縮室VをVdの符号で示している。 Further, in FIG. 5, the reference numerals of the respective constituent members are attached to the cross-sectional view corresponding to the rotation angle θ = 0 of the cylinder 21 for clarity of illustration. Further, in FIG. 5, for the sake of clarification, the compression chamber V that is in the suction stroke (the process of expanding the volume) is indicated by the symbol Vs, and the compression chamber V is the compression process (the process of reducing the volume). The chamber V is indicated by the symbol Vd.
 まず、回転角θが0°となっている際には、接触点C3とベーン23のヒンジ部23aが重なっている。この状態では、ベーン23の殆どがロータ22の溝部22a内に収容されている。さらに、ベーン23の回転方向前方側に最大容積の吸入行程の圧縮室Vsが形成され、ベーン23の回転方向後方側に最小容積(すなわち、容積が0)の吸入行程の圧縮室Vsが形成されている。 First, when the rotation angle θ is 0 °, the contact point C3 and the hinge portion 23a of the vane 23 overlap. In this state, most of the vanes 23 are accommodated in the grooves 22 a of the rotor 22. Further, a compression chamber Vs having a maximum suction stroke is formed on the front side in the rotation direction of the vane 23, and a compression chamber Vs having a minimum suction stroke (that is, a volume of 0) is formed on the rear side in the rotation direction of the vane 23. ing.
 回転角θが0°から増加するに伴って、図5の回転角θ=30°~330°に示すように、シリンダ21、ロータ22、およびベーン23が変位して、ベーン23の回転方向後方側に形成される吸入行程の圧縮室Vsの容積が増加する。これにより、シャフト側吸入通路24bから流出した低圧冷媒が、ロータ側吸入通路22bおよび周方向吸入通路22cを介して、吸入行程の圧縮室Vs内へ流入する。 As the rotation angle θ increases from 0 °, the cylinder 21, the rotor 22, and the vane 23 are displaced as shown in the rotation angle θ = 30 ° to 330 ° in FIG. The volume of the compression chamber Vs in the suction stroke formed on the side increases. As a result, the low-pressure refrigerant that has flowed out of the shaft-side suction passage 24b flows into the compression chamber Vs in the suction stroke via the rotor-side suction passage 22b and the circumferential suction passage 22c.
 回転角θが360°に達すると(すなわち、回転角θ=0°に戻ると)、ベーン23の回転方向前方側の吸入行程の圧縮室Vsが最大容積となる。さらに、回転角θが360°から増加すると、回転角θ=0°~360°で容積を増加させた吸入行程の圧縮室Vsとロータ側吸入通路22bとの連通、並びに、吸入行程の圧縮室Vsと周方向吸入通路22cとの連通が遮断される。これにより、ベーン23の回転方向前方側に、圧縮行程の圧縮室Vdが形成される。 When the rotation angle θ reaches 360 ° (that is, when the rotation angle θ returns to 0 °), the compression chamber Vs in the suction stroke on the front side in the rotation direction of the vane 23 becomes the maximum volume. Further, when the rotation angle θ increases from 360 °, the communication between the compression chamber Vs of the suction stroke and the rotor side suction passage 22b whose volume is increased at the rotation angle θ = 0 ° to 360 °, and the compression chamber of the suction stroke Communication between Vs and the circumferential suction passage 22c is blocked. Thereby, the compression chamber Vd of the compression stroke is formed on the front side in the rotation direction of the vane 23.
 回転角θが360°から増加するに伴って、図5の回転角θ=390°~690°に点ハッチングで示すように、ベーン23の回転方向前方側に形成された圧縮行程の圧縮室Vdの容積が縮小する。 As the rotation angle θ increases from 360 °, the compression chamber Vd of the compression stroke formed on the front side in the rotation direction of the vane 23 as shown by the point hatching at the rotation angle θ = 390 ° to 690 ° in FIG. The volume of is reduced.
 そして、圧縮行程の圧縮室Vd内の冷媒圧力が第2サイドプレート25bに配置された吐出弁の開弁圧を超えると、吐出弁が開き、圧縮行程の圧縮室Vd内の冷媒がハウジング10の内部空間へ流出する。ハウジング10の内部空間へ流出した高圧冷媒は、ハウジング10の吐出ポート11aから吐出される。 When the refrigerant pressure in the compression chamber Vd during the compression stroke exceeds the valve opening pressure of the discharge valve disposed in the second side plate 25b, the discharge valve opens, and the refrigerant in the compression chamber Vd during the compression stroke passes through the housing 10 It flows into the internal space. The high-pressure refrigerant that has flowed into the internal space of the housing 10 is discharged from the discharge port 11 a of the housing 10.
 従って、本実施形態の圧縮機1では、回転角θの増加に伴って、図6に示すように、圧縮室Vの容積が変化する。そして、図7に示すように、吸入行程では、圧縮室V内の冷媒圧力がサイクルの低圧側冷媒圧力と同等の圧力となり、圧縮行程では、圧縮室V内の冷媒圧力がサイクルの高圧側冷媒圧力と同等の圧力となるまで上昇させることができる。 Therefore, in the compressor 1 of the present embodiment, as the rotation angle θ increases, the volume of the compression chamber V changes as shown in FIG. As shown in FIG. 7, in the suction stroke, the refrigerant pressure in the compression chamber V becomes equal to the low-pressure side refrigerant pressure of the cycle, and in the compression stroke, the refrigerant pressure in the compression chamber V becomes the high-pressure side refrigerant of the cycle. The pressure can be increased to a pressure equivalent to the pressure.
 ここで、上記の説明では、圧縮機1の作動態様の明確化のため、回転角θが0°から720°まで変化する間の圧縮室Vの変化を説明したが、実際には、回転角θが0°から360°まで変化する際に説明した冷媒の吸入行程と、回転角θが360°から720°まで変化する際に説明した冷媒の圧縮行程は、シリンダが1回転する際に同時に行われる。 Here, in the above description, in order to clarify the operation mode of the compressor 1, the change in the compression chamber V while the rotation angle θ changes from 0 ° to 720 ° has been described. The refrigerant suction stroke described when θ changes from 0 ° to 360 ° and the refrigerant compression stroke described when the rotation angle θ changes from 360 ° to 720 ° are simultaneously performed when the cylinder rotates once. Done.
 以上の如く、本実施形態の圧縮機1は、冷凍サイクルにおいて、圧縮対象流体の一例である冷媒を吸入し、圧縮して吐出することができる。さらに、本実施形態の圧縮機1によれば、電動機部30の内周側に圧縮機構部20が配置されているので、圧縮機1全体としての小型化を図ることができる。 As described above, the compressor 1 of the present embodiment can suck, compress, and discharge a refrigerant that is an example of a fluid to be compressed in a refrigeration cycle. Furthermore, according to the compressor 1 of this embodiment, since the compression mechanism part 20 is arrange | positioned at the inner peripheral side of the electric motor part 30, size reduction as the compressor 1 whole can be achieved.
 また、本実施形態の圧縮機1によれば、ロータ22の外周面に周方向吸入通路22cが形成されているので、圧縮機1のエネルギ損失の増加を抑制することができる。 Further, according to the compressor 1 of the present embodiment, since the circumferential suction passage 22c is formed on the outer peripheral surface of the rotor 22, an increase in energy loss of the compressor 1 can be suppressed.
 このことを、図8、図9を用いて詳細に説明する。図8は、本実施形態の圧縮機1に対して、周方向吸入通路22cが形成されていない比較用圧縮機における、圧縮室Vの変化を示した説明図である。より詳細には、図8には、図5の回転角θ=0°およびθ=30°に対応する図面が示されている。 This will be described in detail with reference to FIGS. FIG. 8 is an explanatory diagram showing changes in the compression chamber V in the comparative compressor in which the circumferential suction passage 22c is not formed with respect to the compressor 1 of the present embodiment. More specifically, FIG. 8 shows a drawing corresponding to the rotation angles θ = 0 ° and θ = 30 ° of FIG.
 この比較用圧縮機においても、回転角θが0°となっている際には、接触点C3とベーン23のヒンジ部23aが重なっており、ベーン23の回転方向後方側に、最小容積(すなわち、容積が0)の吸入行程の圧縮室Vsが形成される。さらに、回転角θが0°から増加するに伴って、図8の回転角θ=30°に示すように、ベーン23の回転方向後方側に形成される吸入行程の圧縮室Vsの容積が増加する。 Also in this comparative compressor, when the rotation angle θ is 0 °, the contact point C3 and the hinge portion 23a of the vane 23 overlap each other, and the minimum volume (that is, the rearward direction of the vane 23 in the rotation direction) , The compression chamber Vs of the suction stroke having a volume of 0) is formed. Further, as the rotation angle θ increases from 0 °, the volume of the compression chamber Vs in the suction stroke formed on the rear side in the rotation direction of the vane 23 increases as shown by the rotation angle θ = 30 ° in FIG. To do.
 ところが、比較用圧縮機では、周方向吸入通路22cが形成されていないので、回転角θが30°程度に増加するまで、ロータ側吸入通路22bと吸入行程の圧縮室Vが連通しない。このため、図9に示すように、比較用圧縮機の吸入行程では、回転角θが30°程度に増加するまで、圧縮室V内の冷媒圧力が低下してしまう。このような圧力低下は、圧縮機のエネルギ損失を増加させてしまう原因となる。 However, in the comparative compressor, since the circumferential suction passage 22c is not formed, the rotor-side suction passage 22b does not communicate with the compression chamber V in the suction stroke until the rotation angle θ increases to about 30 °. For this reason, as shown in FIG. 9, in the suction stroke of the comparative compressor, the refrigerant pressure in the compression chamber V decreases until the rotation angle θ increases to about 30 °. Such a pressure drop causes the energy loss of the compressor to increase.
 これに対して、本実施形態の圧縮機1では、周方向吸入通路22cが形成されているので、吸入行程となった圧縮室Vへ速やかに圧縮対象流体を流入させることができる。従って、吸入行程となった直後の圧縮室V内に圧力低下が生じてしまうことを抑制し、シリンダ回転型圧縮機のエネルギ損失の増加を抑制することができる。 On the other hand, in the compressor 1 of the present embodiment, the circumferential suction passage 22c is formed, so that the fluid to be compressed can be quickly flowed into the compression chamber V that has become the suction stroke. Therefore, it is possible to suppress a pressure drop from occurring in the compression chamber V immediately after the intake stroke, and to suppress an increase in energy loss of the cylinder rotary compressor.
 また、本実施形態の圧縮機1では、ロータ22の外周面を切り欠くことによって形成された切り欠きが周方向吸入通路22cの一例として機能しているので、極めて容易に周方向吸入通路22cを形成することができる。なお、周方向吸入通路22cは、ロータ側吸入通路22bの出口側から、加工可能な範囲で、回転後方に向かって、溝部22aに極力近い位置まで形成されていることが望ましい。
(第2実施形態)
 本実施形態では、図10に示すように、第1実施形態に対して、周方向吸入通路21aを変更した例を説明する。
Further, in the compressor 1 of the present embodiment, the notch formed by notching the outer peripheral surface of the rotor 22 functions as an example of the circumferential suction passage 22c. Can be formed. It is desirable that the circumferential suction passage 22c be formed as close as possible to the groove portion 22a from the outlet side of the rotor side suction passage 22b to the rear of the rotation within a processable range.
(Second Embodiment)
In the present embodiment, as shown in FIG. 10, an example in which the circumferential suction passage 21a is changed with respect to the first embodiment will be described.
 具体的には、本実施形態では、ロータ22に形成された周方向吸入通路22cを廃止して、シリンダ21の内周面の軸方向中央部を周方向(回転方向)に切り欠く(削り落とす)ことによって形成された切り欠きが、周方向吸入通路21aの一例として機能している。なお、図10は、第1実施形態の図3に対応する図面であって、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。 Specifically, in the present embodiment, the circumferential suction passage 22c formed in the rotor 22 is abolished, and the axially central portion of the inner circumferential surface of the cylinder 21 is cut away (scraped off) in the circumferential direction (rotation direction). The notch formed by the above functions as an example of the circumferential suction passage 21a. FIG. 10 is a drawing corresponding to FIG. 3 of the first embodiment, and the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 さらに、周方向吸入通路21aは、径方向から見たときに、第1実施形態の周方向吸入通路22cと重合する範囲に形成されている。その他の構成および作動は、第1実施形態と同様である。従って、本実施形態のように、シリンダ21側に周方向吸入通路21aを形成した圧縮機1であっても、第1実施形態と同様の効果を得ることができる。
(第3実施形態)
 本実施形態では、図11の断面図に示すように、第1実施形態に対して、ロータ22に形成された溝部22dおよびロータ側吸入通路22b、並びに、ベーン23bを変更した例を説明する。
Furthermore, the circumferential suction passage 21a is formed in a range overlapping with the circumferential suction passage 22c of the first embodiment when viewed from the radial direction. Other configurations and operations are the same as those in the first embodiment. Therefore, even in the compressor 1 in which the circumferential suction passage 21a is formed on the cylinder 21 side as in the present embodiment, the same effects as in the first embodiment can be obtained.
(Third embodiment)
In the present embodiment, as shown in the cross-sectional view of FIG. 11, an example will be described in which the groove 22d, the rotor-side suction passage 22b, and the vane 23b formed in the rotor 22 are changed with respect to the first embodiment.
 具体的には、本実施形態の溝部22dは、偏心軸C2の軸方向から見たときに、ベーン23bの摺動する面(ベーン23との摩擦面)が、ロータ22の径方向に対して傾斜している。より詳細には、溝部22dは、ベーン23bの摺動する面が、内周側から外周側へ向かって回転方向へ傾斜している。このため、溝部22dに嵌め込まれたベーン23bも、ロータ22の径方向に対して傾斜した方向に変位する。 Specifically, the groove portion 22d of the present embodiment has a sliding surface of the vane 23b (friction surface with the vane 23) with respect to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2. It is inclined. More specifically, in the groove 22d, the sliding surface of the vane 23b is inclined in the rotational direction from the inner peripheral side toward the outer peripheral side. For this reason, the vane 23 b fitted in the groove 22 d is also displaced in a direction inclined with respect to the radial direction of the rotor 22.
 さらに、ロータ側吸入通路22bも、偏心軸C2の軸方向から見たときに、溝部22dと同様に、ロータ22の径方向に対して傾斜している。また、本実施形態のベーン23bには、第1実施形態のヒンジ部23aに対応する構成が形成されていない。このため、ベーン23bは、外周側先端部がシリンダ21の内周面に対して摺動可能に配置されている。その他の構成は、第1実施形態と同様である。 Furthermore, the rotor-side suction passage 22b is also inclined with respect to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2, similarly to the groove portion 22d. Moreover, the structure corresponding to the hinge part 23a of 1st Embodiment is not formed in the vane 23b of this embodiment. For this reason, the vane 23 b is disposed so that the outer peripheral end portion is slidable with respect to the inner peripheral surface of the cylinder 21. Other configurations are the same as those of the first embodiment.
 次に、図12を用いて、本実施形態の圧縮機1の作動について説明する。図12は、第1実施形態の図5に対応する図面であって、回転角θが0°(360°)、90°(450°)、180°(540°)、270°(630°)となった際の状態を図示している。 Next, the operation of the compressor 1 of this embodiment will be described with reference to FIG. FIG. 12 is a drawing corresponding to FIG. 5 of the first embodiment, and the rotation angle θ is 0 ° (360 °), 90 ° (450 °), 180 ° (540 °), 270 ° (630 °). The state at the time of becoming is illustrated.
 まず、回転角θが0°になっている際には、接触点C3とベーン23bの外周側先端部が重なっている。この状態では、ベーン23bの殆どがロータ22の溝部22d内に収容されている。さらに、第1実施形態と同様に、ベーン23bの回転方向前方側に最大容積の吸入行程の圧縮室Vsが形成され、ベーン23の回転方向後方側に最小容積(すなわち、容積が0)の吸入行程の圧縮室Vsが形成されている。 First, when the rotation angle θ is 0 °, the contact point C3 and the outer peripheral end of the vane 23b overlap. In this state, most of the vane 23 b is accommodated in the groove 22 d of the rotor 22. Further, similarly to the first embodiment, a compression chamber Vs having a maximum volume suction stroke is formed on the front side in the rotation direction of the vane 23b, and a minimum volume (that is, the volume is 0) is suctioned on the rear side in the rotation direction of the vane 23. A compression chamber Vs for the stroke is formed.
 回転角θが0°から増加するに伴って、図12の回転角θ=90°~270°に示すように、シリンダ21、ロータ22、およびベーン23bが変位して、ベーン23の回転方向後方側に形成される吸入行程の圧縮室Vsの容積が増加する。そして、シャフト側吸入通路24bから流出した低圧冷媒が、ロータ側吸入通路22bおよび周方向吸入通路22cを介して、吸入行程の圧縮室Vs内へ流入する。 As the rotation angle θ increases from 0 °, the cylinder 21, the rotor 22, and the vane 23b are displaced as shown in the rotation angle θ = 90 ° to 270 ° in FIG. The volume of the compression chamber Vs in the suction stroke formed on the side increases. Then, the low-pressure refrigerant that has flowed out of the shaft-side suction passage 24b flows into the compression chamber Vs of the suction stroke through the rotor-side suction passage 22b and the circumferential suction passage 22c.
 この際、ベーン23bには、ロータ22の回転に伴う遠心力が作用するので、ベーン23bの外周側先端部がシリンダ21の内周面に押しつけられる。これにより、シリンダ21の内周面とロータ22の外周面との間に形成される圧縮室V(Vs、Vd)が、ベーン23bによって仕切られる。 At this time, since the centrifugal force accompanying the rotation of the rotor 22 acts on the vane 23b, the outer peripheral end of the vane 23b is pressed against the inner peripheral surface of the cylinder 21. Thereby, the compression chamber V (Vs, Vd) formed between the inner peripheral surface of the cylinder 21 and the outer peripheral surface of the rotor 22 is partitioned by the vane 23b.
 回転角θが360°に達すると(すなわち、回転角θ=0°に戻ると)、ベーン23の回転方向前方側の吸入行程の圧縮室Vsが最大容積となる。さらに、回転角θが360°から増加すると、回転角θ=0°~360°で容積を増加させた吸入行程の圧縮室Vsとロータ側吸入通路22bとの連通、並びに、吸入行程の圧縮室Vsと周方向吸入通路22cとの連通が遮断される。これにより、ベーン23の回転方向前方側に、圧縮行程の圧縮室Vdが形成される。 When the rotation angle θ reaches 360 ° (that is, when the rotation angle θ returns to 0 °), the compression chamber Vs in the suction stroke on the front side in the rotation direction of the vane 23 becomes the maximum volume. Further, when the rotation angle θ increases from 360 °, the communication between the compression chamber Vs of the suction stroke and the rotor side suction passage 22b whose volume is increased at the rotation angle θ = 0 ° to 360 °, and the compression chamber of the suction stroke Communication between Vs and the circumferential suction passage 22c is blocked. Thereby, the compression chamber Vd of the compression stroke is formed on the front side in the rotation direction of the vane 23.
 さらに、回転角θが360°から増加するに伴って、図12の回転角θ=450°~630°に点ハッチングで示すように、ベーン23bの回転方向前方側に形成された圧縮行程の圧縮室Vdの容積が縮小する。そして、第1実施形態と同様に、圧縮行程の圧縮室Vdにて圧縮された高圧冷媒が、ハウジング10の吐出ポート11aから吐出される。 Further, as the rotation angle θ increases from 360 °, compression of the compression stroke formed on the front side in the rotation direction of the vane 23b as shown by the point hatching at the rotation angle θ = 450 ° to 630 ° in FIG. The volume of the chamber Vd is reduced. As in the first embodiment, the high-pressure refrigerant compressed in the compression chamber Vd in the compression stroke is discharged from the discharge port 11a of the housing 10.
 以上の如く、本実施形態の圧縮機1によれば、冷媒(流体)を吸入し、圧縮して吐出することができる。さらに、本実施形態の圧縮機1によれば、周方向吸入通路22cが形成されているので、第1実施形態と同様に、シリンダ回転型圧縮機のエネルギ損失の増加を抑制することができる。 As described above, according to the compressor 1 of the present embodiment, the refrigerant (fluid) can be sucked, compressed, and discharged. Furthermore, according to the compressor 1 of the present embodiment, since the circumferential suction passage 22c is formed, an increase in energy loss of the cylinder rotary compressor can be suppressed as in the first embodiment.
 また、本実施形態の圧縮機1では、ベーン23bの外周側先端部をシリンダ21の内周面に摺動させる構成となっている。これによれば、ベーン23のヒンジ部23aをシリンダ21の溝部に揺動可能に支持する構成のように、ベーン23とシリンダ21との焼き付き等が生じてしまうおそれがない。従って、圧縮機1全体としての信頼性を向上させることができる。 In the compressor 1 of the present embodiment, the outer peripheral side tip of the vane 23b is slid on the inner peripheral surface of the cylinder 21. According to this, unlike the configuration in which the hinge portion 23a of the vane 23 is swingably supported in the groove portion of the cylinder 21, there is no possibility that the vane 23 and the cylinder 21 are seized. Therefore, the reliability of the compressor 1 as a whole can be improved.
 また、本実施形態の圧縮機1では、偏心軸C2の軸方向から見たときに、溝部22dのうちベーン23bの摺動する面が、ロータ22の径方向に対して傾斜している。これによれば、ベーン23bの摺動する面が径方向と平行に形成されている場合に対して、ベーン23bのストローク量(可動範囲)を拡大することができる。従って、圧縮機1の圧縮比を高くすることができる。 Further, in the compressor 1 of the present embodiment, the surface on which the vane 23b slides in the groove 22d is inclined with respect to the radial direction of the rotor 22 when viewed from the axial direction of the eccentric shaft C2. According to this, the stroke amount (movable range) of the vane 23b can be increased as compared with the case where the sliding surface of the vane 23b is formed in parallel with the radial direction. Therefore, the compression ratio of the compressor 1 can be increased.
 ところが、本実施形態のように、溝部22dのうちベーン23bの摺動する面が、ロータ22の径方向に対して傾斜していると、ロータ側吸入通路22bの出口と、最小容積の吸入行程の圧縮室Vとの距離が離れてしまいやすい。そのため、本実施形態の圧縮機1では、第1実施形態の図8および図9で説明した、吸入行程の圧縮室Vの圧力低下が生じやすい。 However, as in this embodiment, if the surface of the groove 22d on which the vane 23b slides is inclined with respect to the radial direction of the rotor 22, the outlet of the rotor-side suction passage 22b and the suction stroke with the minimum volume are performed. The distance from the compression chamber V tends to be increased. Therefore, in the compressor 1 of the present embodiment, the pressure drop in the compression chamber V during the suction stroke, which has been described with reference to FIGS. 8 and 9 of the first embodiment, is likely to occur.
 従って、本実施形態の圧縮機1において、周方向吸入通路22cを形成することは、シリンダ回転型圧縮機のエネルギ損失の増加を抑制するために極めて有効である。さらに、本実施形態では、ロータ側吸入通路22bについても、溝部22dと同様に、ロータ22の径方向に対して傾斜させているので、ロータ側吸入通路22bの出口と、最小容積の吸入行程の圧縮室Vとを近づけることができる。その結果、より一層速やかに、吸入行程となった圧縮室Vへ冷媒を流入させることができる。 Therefore, in the compressor 1 of the present embodiment, the formation of the circumferential suction passage 22c is extremely effective for suppressing an increase in energy loss of the cylinder rotary compressor. Further, in the present embodiment, the rotor-side suction passage 22b is also inclined with respect to the radial direction of the rotor 22 in the same manner as the groove portion 22d, so that the outlet of the rotor-side suction passage 22b and the suction stroke of the minimum volume are reduced. The compression chamber V can be brought closer. As a result, it is possible to cause the refrigerant to flow into the compression chamber V that has become the suction stroke even more quickly.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、本開示に係るシリンダ回転型圧縮機1を車両用空調装置の冷凍サイクル装置に適用した例を説明したが、本開示に係るシリンダ回転型圧縮機1の適用はこれに限定されない。つまり、本開示に係るシリンダ回転型圧縮機1は、種々の流体を圧縮する圧縮機として幅広い用途に適用可能である。 In the above-described embodiment, the example in which the cylinder rotary compressor 1 according to the present disclosure is applied to the refrigeration cycle device of the vehicle air conditioner has been described. However, the application of the cylinder rotary compressor 1 according to the present disclosure is limited to this. Not. That is, the cylinder rotary compressor 1 according to the present disclosure can be applied to a wide range of uses as a compressor that compresses various fluids.
 上述の実施形態では、シリンダ回転型圧縮機1の動力伝達部として、ピン-ホール式の自転防止機構と同様の構成のものを採用した例を説明したが、動力伝達部はこれに限定されない。例えば、オルダムリング式の自転防止機構と同様の構成のもの等を採用してもよい。 In the above-described embodiment, the example in which the same structure as the pin-hole type rotation prevention mechanism is adopted as the power transmission unit of the cylinder rotary compressor 1 is described, but the power transmission unit is not limited to this. For example, you may employ | adopt the thing similar to the Oldham ring type rotation prevention mechanism.
 上述の実施形態では、ロータ22の外周面あるいはシリンダ21の内周面を切り欠くことによって形成された切り欠きが、周方向吸入通路21a、22cとして機能する例を説明したが、周方向吸入通路21a、22cは、これに限定されない。例えば、ロータ22、シリンダ21の内部に穴開け加工を施し、この穴によって周方向吸入通路を形成してもよい。 In the above-described embodiment, the example in which the notch formed by cutting out the outer peripheral surface of the rotor 22 or the inner peripheral surface of the cylinder 21 functions as the circumferential suction passages 21a and 22c has been described. 21a and 22c are not limited to this. For example, the rotor 22 and the cylinder 21 may be bored to form a circumferential suction passage.
 上述の実施形態では、1枚のベーン23、23bを備えるシリンダ回転型圧縮機1について説明したが、複数のベーン23、23bを備えるシリンダ回転型圧縮機1であってもよい。この場合は、複数の圧縮室Vが形成されるので、それぞれの圧縮室Vに速やかに圧縮対象流体を導くための複数の周方向吸入通路21a、22cを形成すればよい。 In the above-described embodiment, the cylinder rotary compressor 1 including one vane 23, 23b has been described, but the cylinder rotary compressor 1 including a plurality of vanes 23, 23b may be used. In this case, since a plurality of compression chambers V are formed, a plurality of circumferential suction passages 21a, 22c for promptly introducing the fluid to be compressed into each compression chamber V may be formed.
 また、上記各実施形態に開示された構成要素は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2実施形態で説明した周方向吸入通路21aを、第3実施形態の圧縮機1に適用してもよい。さらに、第1、第3実施形態で説明した圧縮機1において、シリンダ21およびロータ22の双方に、周方向吸入通路21aを形成してもよい。 In addition, the constituent elements disclosed in the above embodiments may be appropriately combined within a practicable range. For example, the circumferential suction passage 21a described in the second embodiment may be applied to the compressor 1 of the third embodiment. Furthermore, in the compressor 1 described in the first and third embodiments, a circumferential suction passage 21 a may be formed in both the cylinder 21 and the rotor 22.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (4)

  1.  中心軸(C1)周りに回転する円筒状のシリンダ(21)と、
     前記シリンダ(21)の内部に配置されて、前記シリンダ(21)の中心軸(C1)に対して偏心した偏心軸(C2)周りに回転する円筒状のロータ(22)と、
     前記ロータ(22)を回転可能に支持するシャフト(24)と、
     前記ロータ(22)に設けられた溝部(22a、22d)に摺動可能に嵌め込まれて、前記ロータ(22)の外周面と前記シリンダ(21)の内周面との間に設けられる圧縮室(V)を仕切るベーン(23、23b)と、を備え、
     前記シャフト(24)は内部に、外部から流入した圧縮対象流体を流通させるシャフト側吸入通路(24b)有し、
     前記ロータ(22)は内部に、前記シャフト側吸入通路(24b)から流出した圧縮対象流体を、前記圧縮室(V)へ導くロータ側吸入通路(22b)を有し、
     前記ロータ(22)および前記シリンダ(21)の少なくとも一方は、前記ロータ側吸入通路(22b)から流出した圧縮対象流体を、前記ロータ側吸入通路(22b)の出口から吸入行程となった前記圧縮室(V)へ導く、周方向吸入通路(21a、22c)を有しているシリンダ回転型圧縮機。
    A cylindrical cylinder (21) rotating around a central axis (C1);
    A cylindrical rotor (22) disposed inside the cylinder (21) and rotating about an eccentric shaft (C2) eccentric with respect to a central axis (C1) of the cylinder (21);
    A shaft (24) rotatably supporting the rotor (22);
    A compression chamber provided between the outer peripheral surface of the rotor (22) and the inner peripheral surface of the cylinder (21), which is slidably fitted into grooves (22a, 22d) provided in the rotor (22). (V) and vanes (23, 23b) for partitioning,
    The shaft (24) has a shaft side suction passage (24b) through which a fluid to be compressed flowing from outside flows.
    The rotor (22) has a rotor side suction passage (22b) for guiding the compression target fluid flowing out from the shaft side suction passage (24b) to the compression chamber (V).
    At least one of the rotor (22) and the cylinder (21) causes the compression target fluid that has flowed out of the rotor side suction passage (22b) to enter the suction stroke from the outlet of the rotor side suction passage (22b). A cylinder rotary compressor having circumferential suction passages (21a, 22c) leading to the chamber (V).
  2.  前記周方向吸入通路(21a、22c)は、前記ロータ(22)の外周面および前記シリンダ(21)の内周面のうち、少なくとも一方に設けられた切り欠きを含む請求項1に記載のシリンダ回転型圧縮機。 The cylinder according to claim 1, wherein the circumferential suction passage (21a, 22c) includes a notch provided in at least one of an outer peripheral surface of the rotor (22) and an inner peripheral surface of the cylinder (21). Rotary compressor.
  3.  前記偏心軸(C2)の軸方向から見たときに、前記溝部(22d)のうち前記ベーン(23b)が摺動する面は、前記ロータ(22)の径方向に対して傾斜している請求項1または2に記載のシリンダ回転型圧縮機。 When viewed from the axial direction of the eccentric shaft (C2), the surface of the groove (22d) on which the vane (23b) slides is inclined with respect to the radial direction of the rotor (22). Item 3. The cylinder rotary compressor according to Item 1 or 2.
  4.  さらに、前記シリンダ(21)の回転を前記ロータ(22)へ伝達する動力伝達部(221、251)を備え、
     前記偏心軸(C2)の軸方向から見たときに、前記ベーン(23、23b)は、その外周側先端部が前記シリンダ(21)の内周面に対して摺動可能に配置されている請求項1ないし3のいずれか1つに記載のシリンダ回転型圧縮機。
    Furthermore, a power transmission unit (221, 251) for transmitting the rotation of the cylinder (21) to the rotor (22) is provided,
    When viewed from the axial direction of the eccentric shaft (C2), the vane (23, 23b) is arranged such that its outer peripheral tip is slidable with respect to the inner peripheral surface of the cylinder (21). The cylinder rotation type compressor according to any one of claims 1 to 3.
PCT/JP2015/005817 2014-12-02 2015-11-23 Cylinder rotary compressor WO2016088326A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014244132A JP2016108955A (en) 2014-12-02 2014-12-02 Cylinder rotation type compressor
JP2014-244132 2014-12-02

Publications (1)

Publication Number Publication Date
WO2016088326A1 true WO2016088326A1 (en) 2016-06-09

Family

ID=56091291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005817 WO2016088326A1 (en) 2014-12-02 2015-11-23 Cylinder rotary compressor

Country Status (2)

Country Link
JP (1) JP2016108955A (en)
WO (1) WO2016088326A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443942A (en) * 2002-03-13 2003-09-24 付云树 Single cylinder double rolling rotor revolving cylinder compressor
JP2011511198A (en) * 2008-01-29 2011-04-07 大▲豊▼▲豊▼泰流体▲機▼械科技有限公司 Rotary compressor
WO2014003060A1 (en) * 2012-06-26 2014-01-03 株式会社デンソー Rotary compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443942A (en) * 2002-03-13 2003-09-24 付云树 Single cylinder double rolling rotor revolving cylinder compressor
JP2011511198A (en) * 2008-01-29 2011-04-07 大▲豊▼▲豊▼泰流体▲機▼械科技有限公司 Rotary compressor
WO2014003060A1 (en) * 2012-06-26 2014-01-03 株式会社デンソー Rotary compressor

Also Published As

Publication number Publication date
JP2016108955A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US10781817B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
KR20200064608A (en) Motor driven compressor apparatus
WO2018163233A1 (en) Scroll compressor and refrigeration cycle device
WO2016189801A1 (en) Cylinder-rotation-type compressor
EP3343065A1 (en) Inertia adjuster and rotary compressor
EP3922854A1 (en) Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle device
WO2016157688A1 (en) Rotating cylinder type compressor
EP3842641A1 (en) Screw compressor
JP2016079809A (en) Compressor
WO2016088326A1 (en) Cylinder rotary compressor
WO2015025449A1 (en) Multi-stage compressor and refrigeration cycle device
JP2020045778A (en) Compressor
JP6271246B2 (en) Cylinder rotary compressor
JP6374737B2 (en) Cylinder rotary compressor
JP6349248B2 (en) Cylinder rotary compressor
JP6673099B2 (en) Compressor and method of manufacturing compressor
US20190085845A1 (en) Oscillating piston-type compressor
JP7139718B2 (en) compressor
JP5921456B2 (en) Vane type compressor
JP6510864B2 (en) Cylinder rotary compressor
WO2017187816A1 (en) Rotary cylinder type compressor
JP2023077785A (en) Motor compressor and manufacturing method
JP2017203404A (en) Compressor
JP2019113015A (en) Motor compressor
JP2013217347A (en) Vane type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866315

Country of ref document: EP

Kind code of ref document: A1