WO2014003060A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2014003060A1
WO2014003060A1 PCT/JP2013/067528 JP2013067528W WO2014003060A1 WO 2014003060 A1 WO2014003060 A1 WO 2014003060A1 JP 2013067528 W JP2013067528 W JP 2013067528W WO 2014003060 A1 WO2014003060 A1 WO 2014003060A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cylinder
drive plate
shaft
drive
Prior art date
Application number
PCT/JP2013/067528
Other languages
French (fr)
Japanese (ja)
Inventor
善則 村瀬
章 稲垣
石井 弘樹
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US14/409,289 priority Critical patent/US20150176583A1/en
Priority to DE112013003254.6T priority patent/DE112013003254T5/en
Priority to CN201380033782.2A priority patent/CN104471250A/en
Publication of WO2014003060A1 publication Critical patent/WO2014003060A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/22Rotary-piston pumps specially adapted for elastic fluids of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/332Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a rotary compressor, and is particularly efficient and reliable in compressing a refrigerant such as an air conditioner, and can be miniaturized by combining these.
  • Patent Document 1 discloses a configuration in which a compression unit is arranged inside such a motor.
  • the elliptic cylinder 8 integral with the rotor of the motor is configured to rotate with respect to the piston 17 in a stationary state, as opposed to a normal rolling piston. This is basically a normal rolling piston, so there is a vane nose.
  • Patent Document 2 a compression chamber is formed by a vane portion 13 (partition plate) between a cylinder 8 integrated with a rotor of an electric motor and a stationary piston 11 installed at an eccentric position.
  • a vane portion 13 partition plate
  • the present invention provides a rotary compressor that is highly efficient and reliable, and that can achieve both reductions in size.
  • the invention of claim 1 is directed to a rotor (11) rotatable around an axis (O1) of a shaft (12) mounted on a casing (1), and the shaft (12). Is swingable with respect to one of the cylinder (8) and the cylinder (8) or the rotor (11), which is rotatable at an eccentric rotation center (O2), and is slid with respect to the other.
  • a rotary compression mechanism that is movably installed and includes a drive plate (13) that rotationally connects the cylinder (8) and the rotor (11), the inner surface of the cylinder (8) and the rotor (11).
  • a rotary type compression mechanism is a working chamber (9, 10) for compressing or inhalation.
  • the stator 2 of the electric motor is fitted and fixed to the inner surface of the casing 1.
  • the lid 1 is attached to the casing 1 with fastening bolts or the like. Since the rotor 3 of the electric motor is fixed to the outer periphery of the drive cylinder 8 (cylinder 8), the drive cylinder 8 is rotated around the shaft 12 by the rotor 3 of the electric motor.
  • the drive cylinder 8 has side plates 27 and 27 attached to both sides of the cylindrical cylinder with fastening bolts 41 and the like, and the cylindrical cylinder and the side plate constitute the drive cylinder 8.
  • the shaft 12 is press-fitted into the casing 1 at the right end of FIG.
  • the left end portion of the shaft 12 is inserted or press-fitted into the lid 4 so that the shaft 12 does not rotate.
  • the motor rotor 3 and the drive cylinder 8 are integrated with the stationary shaft 12 and are rotatable with respect to the eccentric portion 12 ′ of the shaft 12 via a bearing 42.
  • the rotor 11 as a compressor is rotated around the drive cylinder 8 by a drive plate 13.
  • the axis O1 of the shaft 12 is eccentric with respect to the rotation center O2 of the rotor 3 of the electric motor.
  • the rotation center O2 and the axis O1 are fixed points.
  • the rotor 11 is rotatably fitted to the shaft 12.
  • the rotor 11 is rotatable around a stationary axis O ⁇ b> 1 and is rotated around the drive cylinder 8 by the drive plate 13.
  • the electric motor is used as a drive motor of this embodiment, it is also possible to apply in the case of belt transmission.
  • One end of the drive plate 13 is installed so as to be swingable with respect to the drive cylinder 8, and the other end of the drive plate 13 is inserted into the sliding groove 24 of the rotor 11. 13 is transmitted to the rotor 11, and the rotor 11 rotates.
  • the drive cylinder 8 and the rotor 11 are always in contact at a partition point (contact point) C during rotation.
  • One end of the drive plate 13 may be installed so as to be swingable with respect to the rotor 11, and the other end of the drive plate 13 may be inserted into the sliding groove 24 of the drive cylinder 8.
  • a compression medium such as a refrigerant gas to be compressed is introduced from the suction port 16, passed through the suction passage 17, and from the shaft opening 18 and the rotor passage 20 to the suction side working chamber (suction chamber). ) 10.
  • the shaft opening 18 and the rotor passage 20 always communicate with each other at all angles.
  • a groove 19 is formed at the outlet of the shaft opening 18 over the entire circumference in the circumferential direction of a part of the shaft 12.
  • the side plate 27 fixed to one side of the drive cylinder 8 is provided with a compression chamber discharge port 21, and a reed valve 22 (discharge valve portion) is provided outside.
  • Other valves such as a poppet valve
  • the compression chamber discharge port 21 and the reed valve 22 discharge the compressed gas into the space inside the casing while rotating as the drive cylinder 8 rotates. Then, it discharges outside from the casing discharge port 23.
  • the drive plate 13 is a member corresponding to a vane in a conventional rolling piston. That is, in the present embodiment, the drive plate 13 is a member that partitions the compression chamber (compression side working chamber) 9 and the suction chamber 10, and as a connecting member that rotates the rotor 11 with the drive cylinder 8. It has the function of In order to fulfill the function as a connecting member, the head 131 of the drive plate 13 has a cylindrical surface, and the drive plate 13 is provided with a gap 132 in the drive cylinder 8 with respect to the central axis of the head 131. And can be swung. As the driving cylinder 8 rotates, the driving plate 13 slides in the sliding groove 24 on the rotor 11. Thereby, at the time of accompanying, it can rotate without being restricted by the eccentricity between the rotation center O2 of the drive cylinder 8 and the axis O1 of the rotor 11.
  • the compression mechanism includes a rotor 11 that is rotatable around an axis O1 of a shaft 12 fixed to the casing 1, a drive cylinder 8 that is rotatable at a rotation center O2 that is eccentric from the shaft 12, and a drive cylinder 8 and a rotor. 11 and a drive plate 13 that connects the two.
  • a space between the rotor 11 and the drive cylinder 8 is a working chamber. This working chamber is divided into two by the drive plate 13 to form a compression chamber 9 and a suction chamber 10.
  • the drive cylinder 8 is rotated by the electric motors 2 and 3 that rotationally drive the drive cylinder 8, and among the working chambers formed between the drive cylinder 8 and the rotor 11, in the compression chamber 9 in the forward direction of the drive plate 13 in the rotation direction. Compress the intake gas.
  • the working chamber formed between the drive cylinder 8 and the rotor 11 is partitioned by a drive plate 13 and a partition point C that is a contact point between the drive cylinder 8 and the rotor 11.
  • a compression chamber 9 is formed in front of the drive plate 13 in the rotational direction, and a suction chamber 10 is formed in the rear.
  • the drive cylinder 8 is disposed in the rotor 3 of the electric motor, so that the compressor can be downsized. Since the shaft 12 does not rotate, a suction port 16 can be installed in the shaft 12 to suck gas. Further, a compression chamber discharge port 21 and a reed valve 22 are provided on a side plate 27 that is not easily affected by centrifugal force during rotation. In this embodiment, since there is no vane nose sliding portion, there is no separation or seizure of the vane nose sliding portion as in the prior art, and both performance and reliability can be ensured from low rotation to high rotation. It is possible to provide a small compressor built in the motor rotor.
  • the rotor 11 has a fixed axis O1. Since only the self-rotating motion in the compressor, the deterioration of the compressor vibration can be prevented.
  • the head 131 of the drive plate 13 has a cylindrical surface, and the drive plate 13 can swing with respect to the central axis of the head 131.
  • a flat drive plate 13 without a head may be used.
  • two shoes 133 having a cylindrical surface on one side are installed so as to sandwich the end portion of the drive plate 13.
  • the rest of the configuration is the same as in FIGS.
  • the corner portion of the front end surface of the drive plate 13 inserted in the sliding groove 24 formed in the rotor 11 has an R shape (roundness, round-cornered).
  • An R shape is formed at the corner of the opening of the sliding groove 24 formed on the peripheral surface of the rotor 11.
  • the head 131 of the drive plate 13 can be implemented by being provided on the drive cylinder 8 as shown in FIGS.
  • the shaft 12 (axial center O ⁇ b> 1) is mounted so as to rotate with respect to the casing 1, and the cylinder 8 is connected via the drive plate 13 from the rotor 11 side. This is the case when it is rotationally driven.
  • the rotor 3 of the electric motor is connected to the shaft 12, and the rotor 11 and the shaft 12 are integrated in this embodiment. Since the shaft 12 is provided with an eccentric part 12 ′, the cylinder 8 can be rotated by the drive plate 13 around the rotation center O 2 of the eccentric part 12. Others are the same as the first embodiment.
  • the shaft 12 (axial center O ⁇ b> 1) is mounted so as to rotate with respect to the casing 1, and the cylinder 8 is driven to rotate from the rotor 11 side via the drive plate 13.
  • the rotor 3 is integrated with the shaft 12 (axial center O1) together with the rotor 11. Since the shaft 12 is provided with an eccentric part 12 ′, the cylinder 8 can be rotated by the drive plate 13 around the rotation center O ⁇ b> 2 of the eccentric part 12. Others are the same as the first embodiment.
  • the fourth embodiment is an embodiment in which the suction and discharge of the first embodiment are reversed.
  • the suction port 16 is installed at a position indicated by reference numeral 23 in FIG. 1, and the side 21 of the side plate 27 becomes the compression chamber suction port 21 ′ (reed valve is not required).
  • the compression chamber 9 is formed in the front of the drive plate 13 in the rotation direction, and the suction chamber 10 is formed in the rear, so that a part of the discharge passage is formed in the front of the drive plate 13 in the rotation direction.
  • a rotor passage 20 is formed, and a compression chamber suction port 21 ′ is provided behind the drive plate 13 in the rotation direction.
  • a discharge valve portion (such as a reed valve) is installed at any position.
  • a discharge valve portion such as a reed valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

A rotary compression mechanism is provided with a rotor (11) which can rotate about the axis (O1) of a shaft (12) mounted to a casing (1), a cylinder (8) which can rotate about a rotation center (O2) eccentric from the shaft (12), and a drive plate (13) which is installed so as to be capable of swinging relative to one of the cylinder (8) and the rotor (11) and to be capable of sliding relative to the other of the cylinder (8) and the rotor (11) and which rotationally connects the cylinder (8) and the rotor (11). Spaces which are separated from each other by both a partition point (C) and the drive plate (13) and which are located between the inner surface of the cylinder (8) and the outer periphery of the rotor (11) are operating chambers (9, 10) for performing compression or suction.

Description

回転型圧縮機Rotary compressor
 本発明は、回転型圧縮機に関するもので、特にエアコンなどの冷媒圧縮において、効率及び信頼性が高く、これらを両立させて小型化を図ることができるものである。 The present invention relates to a rotary compressor, and is particularly efficient and reliable in compressing a refrigerant such as an air conditioner, and can be miniaturized by combining these.
 低コスト、車両などへの搭載性の面から、圧縮機の小型化が必要となっている。小型化の手段として駆動用のモータ内部に圧縮部を配置することは、小型化の有用な手段である。このようなモータ内部に圧縮部を配置したものが、特許文献1に開示されている。この従来技術では、モータの回転子と一体の楕円形シリンダ8の方を、静止状態にあるピストン17に対して、通常のローリングピストンとは逆に、回転するように構成している。これは、基本的には通常のローリングピストンといえるものなので、ベーンノーズがある。そして、バネとベーンが、回転するシリンダ部に配置されているため、高回転時に遠心力が作用し、バネ力に打ち勝つとベーンノーズとロータとの間に、隙間(ベーンの離脱)が発生して圧縮作動をしないため、性能低下が問題となり、高回転に不向きなものであった。また、遠心力に打ち勝つようバネ力を増加させると、ベーンノーズとロータ間の押し付け力が過大な状態で摺動することになり、ベーンノーズ部が焼き付くなど信頼性に問題があった。 Compressor needs to be downsized from the viewpoint of low cost and mountability to vehicles. Arranging the compression section inside the driving motor as a means for miniaturization is a useful means for miniaturization. Patent Document 1 discloses a configuration in which a compression unit is arranged inside such a motor. In this prior art, the elliptic cylinder 8 integral with the rotor of the motor is configured to rotate with respect to the piston 17 in a stationary state, as opposed to a normal rolling piston. This is basically a normal rolling piston, so there is a vane nose. And since the spring and vane are arranged in the rotating cylinder part, centrifugal force acts at the time of high rotation, and when the spring force is overcome, a gap (detachment of the vane) occurs between the vane nose and the rotor. Since the compression operation is not performed, the performance degradation becomes a problem and it is not suitable for high rotation. Further, when the spring force is increased so as to overcome the centrifugal force, the pressing force between the vane nose and the rotor slides in an excessively large state, and there is a problem in reliability such that the vane nose portion is seized.
 一方、特許文献2においては、電動モータの回転子に一体化したシリンダ8に対して、偏心位置に設置した静止形ピストン11との間を、ベーン部13(仕切板)で圧縮室を形成したものが、開示されている。この従来技術も、基本的には通常のローリングピストンといえるものなので、上述の問題が生じていた。 On the other hand, in Patent Document 2, a compression chamber is formed by a vane portion 13 (partition plate) between a cylinder 8 integrated with a rotor of an electric motor and a stationary piston 11 installed at an eccentric position. Have been disclosed. Since this prior art is basically a normal rolling piston, the above-mentioned problem has occurred.
特公昭53-043682号公報Japanese Examined Patent Publication No. 53-033682 特公平01-054560号公報Japanese Patent Publication No. 01-05560
 本発明は、上記問題に鑑み、効率及び信頼性が高く、両者が両立して小型化を図ることができる回転型圧縮機を提供するものである。 In view of the above problems, the present invention provides a rotary compressor that is highly efficient and reliable, and that can achieve both reductions in size.
 上記課題を解決するために、請求項1の発明は、ケーシング(1)に装着されたシャフト(12)の軸心(O1)周りに、回転自在なロータ(11)と、前記シャフト(12)とは偏心した回転中心(O2)で回転自在なシリンダ(8)と、前記シリンダ(8)又は前記ロータ(11)のいずれか一方に対して揺動可能であって、他方に対しては摺動可能に設置され、前記シリンダ(8)と前記ロータ(11)とを回転連結する駆動プレート(13)とを具備する回転型圧縮機構であって、前記シリンダ(8)内面と前記ロータ(11)外周が仕切り点(C)で接するように、前記シャフト(12)の軸心(O1)に対して前記シリンダ(8)の回転中心(O2)を偏心させ、前記仕切り点(C)と前記駆動プレート(13)で仕切られた、前記シリンダ(8)内面と前記ロータ(11)外周との間の空間が、圧縮又は吸入を行う作動室(9、10)である回転型圧縮機構である。 In order to solve the above-mentioned problems, the invention of claim 1 is directed to a rotor (11) rotatable around an axis (O1) of a shaft (12) mounted on a casing (1), and the shaft (12). Is swingable with respect to one of the cylinder (8) and the cylinder (8) or the rotor (11), which is rotatable at an eccentric rotation center (O2), and is slid with respect to the other. A rotary compression mechanism that is movably installed and includes a drive plate (13) that rotationally connects the cylinder (8) and the rotor (11), the inner surface of the cylinder (8) and the rotor (11). ) The rotation center (O2) of the cylinder (8) is decentered with respect to the axis (O1) of the shaft (12) so that the outer periphery is in contact with the partition point (C), and the partition point (C) and the Partitioned by drive plate (13) Space between the rotor (11) periphery and the cylinder (8) inner surface, a rotary type compression mechanism is a working chamber (9, 10) for compressing or inhalation.
 なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。 In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.
本発明の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of this invention. 本発明の第1実施形態を示す詳細部分断面図である。It is a detailed fragmentary sectional view which shows 1st Embodiment of this invention. 本発明の第1実施形態の作動を示す説明図である。It is explanatory drawing which shows the action | operation of 1st Embodiment of this invention. 本発明の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of this invention. 本発明の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of this invention. 本発明の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of this invention.
 以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。以下の実施形態の説明においては、車両用エアコンの冷媒圧縮を例示として説明するが、必ずしもこれに限定されるものではなく、本発明は、広く家庭用や産業用の圧縮機に適用可能なものである。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted. In the following description of the embodiment, refrigerant compression of a vehicle air conditioner will be described as an example. However, the present invention is not necessarily limited to this, and the present invention is widely applicable to household and industrial compressors. It is.
 (第1実施形態)
 図1、2に示すように、ケーシング1の内面には、電動モータの固定子2がはめ込まれて固定されている。ケーシング1は、締結ボルトなどで蓋4が取り付けられている。電動モータの回転子3は、駆動シリンダ8(シリンダ8)の外周に固定されているので、駆動シリンダ8は、シャフト12回りに、電動モータの回転子3によって回転させられるようになっている。駆動シリンダ8は、円筒状のシリンダの両側に、サイドプレート27、27が、締結ボルト41などで取り付けられていて、円筒状のシリンダとサイドプレートとをあわせて駆動シリンダ8を構成する。シャフト12は、図1の右端でケーシング1に圧入されている。シャフト12の左端部は蓋4に挿入や圧入されており、シャフト12は回転しないようになっている。
(First embodiment)
As shown in FIGS. 1 and 2, the stator 2 of the electric motor is fitted and fixed to the inner surface of the casing 1. The lid 1 is attached to the casing 1 with fastening bolts or the like. Since the rotor 3 of the electric motor is fixed to the outer periphery of the drive cylinder 8 (cylinder 8), the drive cylinder 8 is rotated around the shaft 12 by the rotor 3 of the electric motor. The drive cylinder 8 has side plates 27 and 27 attached to both sides of the cylindrical cylinder with fastening bolts 41 and the like, and the cylindrical cylinder and the side plate constitute the drive cylinder 8. The shaft 12 is press-fitted into the casing 1 at the right end of FIG. The left end portion of the shaft 12 is inserted or press-fitted into the lid 4 so that the shaft 12 does not rotate.
 この静止したシャフト12に対して、モータの回転子3と駆動シリンダ8は一体化されて、シャフト12の偏心部12’に対して、ベアリング42を介して、回転可能になっている。図2に示すように、圧縮機としてのロータ11は、駆動プレート13によって、駆動シリンダ8に連れ回りするようになっている。ここで、電動モータの回転子3の回転中心O2に対して、シャフト12の軸心O1は偏心している。これら回転中心O2と軸心O1は、不動点である。ロータ11は、シャフト12に回転可能に嵌装されている。ロータ11は、不動の軸心O1回りに、回転可能で、駆動プレート13によって、駆動シリンダ8に連れ回りする。なお、本実施形態の駆動モータとしては、電動モータを使用しているが、ベルト伝動の場合に適用することも可能である。 The motor rotor 3 and the drive cylinder 8 are integrated with the stationary shaft 12 and are rotatable with respect to the eccentric portion 12 ′ of the shaft 12 via a bearing 42. As shown in FIG. 2, the rotor 11 as a compressor is rotated around the drive cylinder 8 by a drive plate 13. Here, the axis O1 of the shaft 12 is eccentric with respect to the rotation center O2 of the rotor 3 of the electric motor. The rotation center O2 and the axis O1 are fixed points. The rotor 11 is rotatably fitted to the shaft 12. The rotor 11 is rotatable around a stationary axis O <b> 1 and is rotated around the drive cylinder 8 by the drive plate 13. In addition, although the electric motor is used as a drive motor of this embodiment, it is also possible to apply in the case of belt transmission.
 駆動プレート13の一端は、駆動シリンダ8に揺動自在となるように設置され、駆動プレート13の他端は、ロータ11の摺動溝24に挿入されており、駆動シリンダ8の回転を駆動プレート13によりロータ11に伝達し、ロータ11が回転を行う。駆動シリンダ8とロータ11は、回転中常に仕切り点(接点)Cで接している。なお、駆動プレート13の一端は、ロータ11に揺動自在となるように設置され、駆動プレート13の他端は、駆動シリンダ8の摺動溝24に挿入されていても良い。 One end of the drive plate 13 is installed so as to be swingable with respect to the drive cylinder 8, and the other end of the drive plate 13 is inserted into the sliding groove 24 of the rotor 11. 13 is transmitted to the rotor 11, and the rotor 11 rotates. The drive cylinder 8 and the rotor 11 are always in contact at a partition point (contact point) C during rotation. One end of the drive plate 13 may be installed so as to be swingable with respect to the rotor 11, and the other end of the drive plate 13 may be inserted into the sliding groove 24 of the drive cylinder 8.
 圧縮すべき冷媒ガスなどの圧縮媒体は、図1、2に示すように、吸入口16から導入され、吸入通路17を経て、シャフト開口18、ロータ通路20から、吸入側の作動室(吸入室)10に導入される。シャフト開口18とロータ通路20は、常に全角度で連通している。シャフト開口18の出口には、シャフト12の一部の円周方向に、全周に亘って溝19が形成されている。 As shown in FIGS. 1 and 2, a compression medium such as a refrigerant gas to be compressed is introduced from the suction port 16, passed through the suction passage 17, and from the shaft opening 18 and the rotor passage 20 to the suction side working chamber (suction chamber). ) 10. The shaft opening 18 and the rotor passage 20 always communicate with each other at all angles. A groove 19 is formed at the outlet of the shaft opening 18 over the entire circumference in the circumferential direction of a part of the shaft 12.
 駆動シリンダ8の一方側に固着されたサイドプレート27には、圧縮室吐出口21が設けられており、外側にはリードバルブ22(吐出弁部)が設置されている。リードバルブの代わりにその他のバルブ(ポペットバルブなど)であっても良い。もちろん、駆動シリンダ8の円筒状シリンダ外周に設けても良いが、遠心力の影響について配慮する必要がある。圧縮室吐出口21とリードバルブ22は、駆動シリンダ8の回転とともに、回転しながら圧縮ガスをケーシング内部の空間に吐出する。その後、ケーシング吐出口23から外部に吐出する。 The side plate 27 fixed to one side of the drive cylinder 8 is provided with a compression chamber discharge port 21, and a reed valve 22 (discharge valve portion) is provided outside. Other valves (such as a poppet valve) may be used instead of the reed valve. Of course, it may be provided on the outer periphery of the cylindrical cylinder of the drive cylinder 8, but it is necessary to consider the influence of centrifugal force. The compression chamber discharge port 21 and the reed valve 22 discharge the compressed gas into the space inside the casing while rotating as the drive cylinder 8 rotates. Then, it discharges outside from the casing discharge port 23.
 次に、駆動プレート13について説明する。駆動プレート13は、従来技術のローリングピストンにおける、ベーンに相当する部材である。すなわち、本実施形態では、駆動プレート13は、圧縮室(圧縮側の作動室)9と吸入室10とを仕切る部材であり、かつ、ロータ11を駆動シリンダ8に連れ回りさせるための連結部材としての機能を有している。連結部材としての機能を果たすために、駆動プレート13の頭部131は、円筒面になっており、頭部131の中心軸に対して、駆動プレート13は、駆動シリンダ8に隙間132が設けられて、揺動することができるようになっている。ロータ11には、駆動シリンダ8の回転につれ、駆動プレート13が摺動溝24内を摺動する。これにより、連れまわり時に、駆動シリンダ8の回転中心O2と、ロータ11の軸心O1との偏心によって制約を受けることなく回転することができる。 Next, the drive plate 13 will be described. The drive plate 13 is a member corresponding to a vane in a conventional rolling piston. That is, in the present embodiment, the drive plate 13 is a member that partitions the compression chamber (compression side working chamber) 9 and the suction chamber 10, and as a connecting member that rotates the rotor 11 with the drive cylinder 8. It has the function of In order to fulfill the function as a connecting member, the head 131 of the drive plate 13 has a cylindrical surface, and the drive plate 13 is provided with a gap 132 in the drive cylinder 8 with respect to the central axis of the head 131. And can be swung. As the driving cylinder 8 rotates, the driving plate 13 slides in the sliding groove 24 on the rotor 11. Thereby, at the time of accompanying, it can rotate without being restricted by the eccentricity between the rotation center O2 of the drive cylinder 8 and the axis O1 of the rotor 11.
 圧縮機構部は、ケーシング1に固定されたシャフト12の軸心O1周りに、回転自在なロータ11と、シャフト12とは偏心した回転中心O2で回転自在な駆動シリンダ8と、駆動シリンダ8とロータ11との間を連結する駆動プレート13とから構成される。ロータ11と駆動シリンダ8間の空間が、作動室となっている。この作動室は、駆動プレート13により2分され、圧縮室9と吸入室10とを形成する。駆動シリンダ8を回転駆動する電動モータ2、3により、駆動シリンダ8を回転させて、駆動シリンダ8とロータ11間に形成された作動室のうち、駆動プレート13の回転方向前方の圧縮室9で、吸入ガスを圧縮する。駆動シリンダ8とロータ11間に形成された作動室は、駆動プレート13と、駆動シリンダ8とロータ11の接点である仕切り点Cで、仕切られている。駆動プレート13の回転方向前方には、圧縮室9が形成され、後方には吸入室10が形成される。 The compression mechanism includes a rotor 11 that is rotatable around an axis O1 of a shaft 12 fixed to the casing 1, a drive cylinder 8 that is rotatable at a rotation center O2 that is eccentric from the shaft 12, and a drive cylinder 8 and a rotor. 11 and a drive plate 13 that connects the two. A space between the rotor 11 and the drive cylinder 8 is a working chamber. This working chamber is divided into two by the drive plate 13 to form a compression chamber 9 and a suction chamber 10. The drive cylinder 8 is rotated by the electric motors 2 and 3 that rotationally drive the drive cylinder 8, and among the working chambers formed between the drive cylinder 8 and the rotor 11, in the compression chamber 9 in the forward direction of the drive plate 13 in the rotation direction. Compress the intake gas. The working chamber formed between the drive cylinder 8 and the rotor 11 is partitioned by a drive plate 13 and a partition point C that is a contact point between the drive cylinder 8 and the rotor 11. A compression chamber 9 is formed in front of the drive plate 13 in the rotational direction, and a suction chamber 10 is formed in the rear.
 次に、上述の圧縮工程と吸引工程について、駆動シリンダの回転角θ(駆動プレート13の位置)が90°毎に、図3を参照して説明する。ここでは、分かりやすくするために、720°にして説明する。図3の(1)θ=0°から再度(1)θ=720°に至る順に説明する。(1)θ=0°では、吸入が完了した状態である。駆動プレート13と仕切り点Cとが一致するので、吸入室10と圧縮室9が合体する。θ=0°から駆動シリンダ8の回転角θが増大するにつれ、(2)~(4)に見られるように、駆動プレート13の回転方向前方側と仕切り点Cとの間が閉鎖されて、圧縮室9での圧縮が進行する。 Next, the above-described compression step and suction step will be described with reference to FIG. 3 for each rotation angle θ of the drive cylinder (position of the drive plate 13) of 90 °. Here, in order to make it easy to understand, 720 ° will be described. Description will be made in the order from (1) θ = 0 ° to (1) θ = 720 ° in FIG. (1) At θ = 0 °, the inhalation is completed. Since the drive plate 13 and the partition point C coincide with each other, the suction chamber 10 and the compression chamber 9 are combined. As the rotational angle θ of the drive cylinder 8 increases from θ = 0 °, as seen in (2) to (4), the front side in the rotational direction of the drive plate 13 and the partition point C are closed, Compression in the compression chamber 9 proceeds.
 (5)θ=360°で圧縮室9は消滅して、今度は、吸入室10が、駆動プレート13の回転方向後方と、仕切り点Cとの間に形成されて、(5)→(1)に至るまで吸入が進行して、圧縮工程と吸引工程が繰り返されて行く。以上720°にして説明したが、実際の圧縮工程と吸引工程は360°の1回転で同時に行われる。図3の(1)~(5)において、駆動プレート13の回転方向前方側と、仕切り点Cとの間の圧縮室9で、圧縮が進行すると同時に、駆動プレート13の回転方向後方と、仕切り点Cとの間の吸入室10で、吸入が進行していることが分かる。(1)や(5)では、駆動プレート13と仕切り点Cとが一致するので、吸入室10と圧縮室9が合体する。 (5) When θ = 360 °, the compression chamber 9 disappears, and this time, the suction chamber 10 is formed between the rear side in the rotational direction of the drive plate 13 and the partition point C, and (5) → (1 ), And the compression process and the suction process are repeated. Although the above description has been made at 720 °, the actual compression step and suction step are simultaneously performed in one rotation of 360 °. 3 (1) to (5), in the compression chamber 9 between the front side in the rotational direction of the drive plate 13 and the partition point C, the compression progresses and at the same time the rear in the rotational direction of the drive plate 13 and the partition. It can be seen that inhalation proceeds in the suction chamber 10 between the point C and the point C. In (1) and (5), since the drive plate 13 and the partition point C coincide with each other, the suction chamber 10 and the compression chamber 9 are combined.
 以上説明したように、駆動シリンダ8の回転により圧縮作動を行うため、駆動シリンダ8を、電動モータの回転子3内に配置しているので、圧縮機として小型にすることができる。シャフト12は回転しないので、シャフト12に吸入口16を設置して、ガスを吸入することができる。また、回転時に遠心力の影響を受けにくいサイドプレート27に、圧縮室吐出口21とリードバルブ22が設けられている。本実施形態では、ベーンノーズ摺動部を持たないため、従来技術のようなベーンノーズ摺動部の離脱や焼き付きがなく、低回転から高回転まで、性能と信頼性を両立確保することができ、電動モータ回転子に内蔵した、小型な圧縮機を提供することができるものである。さらに、従来技術では圧縮室を形成するためにロータを偏心運動させる必要があって、高速回転時は圧縮機の振動悪化を招いていたが、本実施形態ではロータ11は、不動の軸心O1において自転運動をするだけなので、圧縮機の振動悪化を防止できる。 As described above, since the compression operation is performed by the rotation of the drive cylinder 8, the drive cylinder 8 is disposed in the rotor 3 of the electric motor, so that the compressor can be downsized. Since the shaft 12 does not rotate, a suction port 16 can be installed in the shaft 12 to suck gas. Further, a compression chamber discharge port 21 and a reed valve 22 are provided on a side plate 27 that is not easily affected by centrifugal force during rotation. In this embodiment, since there is no vane nose sliding portion, there is no separation or seizure of the vane nose sliding portion as in the prior art, and both performance and reliability can be ensured from low rotation to high rotation. It is possible to provide a small compressor built in the motor rotor. Further, in the prior art, it is necessary to eccentrically move the rotor in order to form the compression chamber, and the vibration of the compressor is deteriorated during high-speed rotation. However, in this embodiment, the rotor 11 has a fixed axis O1. Since only the self-rotating motion in the compressor, the deterioration of the compressor vibration can be prevented.
 本実施形態では、駆動プレート13の頭部131は、円筒面になっており、頭部131の中心軸に対して、駆動プレート13は、揺動することができるようになっている。これに対して、図4に示すように、頭部のない平板の駆動プレート13にしても良い。この場合は、片側に円筒面を持つ2枚のシュー133が、駆動プレート13の端部を挟むように設置されている。その他は、図1、2と同じ構成となっている。ロータ11に形成された摺動溝24に挿入された駆動プレート13の先端面の角部はR形状(roundness, round-cornered)が形成されている。また、ロータ11の周面に形成された摺動溝24の開口部の角部にはR形状が形成されている。
 駆動プレート13の頭部131は、図1、2のように駆動シリンダ8に設けても、ロータ11に設置しても実施可能である。
In this embodiment, the head 131 of the drive plate 13 has a cylindrical surface, and the drive plate 13 can swing with respect to the central axis of the head 131. On the other hand, as shown in FIG. 4, a flat drive plate 13 without a head may be used. In this case, two shoes 133 having a cylindrical surface on one side are installed so as to sandwich the end portion of the drive plate 13. The rest of the configuration is the same as in FIGS. The corner portion of the front end surface of the drive plate 13 inserted in the sliding groove 24 formed in the rotor 11 has an R shape (roundness, round-cornered). An R shape is formed at the corner of the opening of the sliding groove 24 formed on the peripheral surface of the rotor 11.
The head 131 of the drive plate 13 can be implemented by being provided on the drive cylinder 8 as shown in FIGS.
 (第2、3実施形態)
 本発明の第2実施形態は、図5に示すように、シャフト12(軸心O1)がケーシング1に対して回転するように装着し、ロータ11側から、駆動プレート13を介してシリンダ8を回転駆動した場合である。電動モータの回転子3がシャフト12に連結しており、さらに、本実施形態ではロータ11とシャフト12は一体化されている。シャフト12には偏心した偏心部12’が設置されているので、この偏心部12の回転中心O2の周りを駆動プレート13によってシリンダ8が回転できるようになっている。その他は、第1実施形態と同じである。
(Second and third embodiments)
In the second embodiment of the present invention, as shown in FIG. 5, the shaft 12 (axial center O <b> 1) is mounted so as to rotate with respect to the casing 1, and the cylinder 8 is connected via the drive plate 13 from the rotor 11 side. This is the case when it is rotationally driven. The rotor 3 of the electric motor is connected to the shaft 12, and the rotor 11 and the shaft 12 are integrated in this embodiment. Since the shaft 12 is provided with an eccentric part 12 ′, the cylinder 8 can be rotated by the drive plate 13 around the rotation center O 2 of the eccentric part 12. Others are the same as the first embodiment.
 第3実施形態についても、図6に示すように、シャフト12(軸心O1)がケーシング1に対して回転するように装着し、ロータ11側から、駆動プレート13を介してシリンダ8を回転駆動した場合である。この場合は、電動モータの固定子2が、通常のモータとは異なり、内側にある場合のタイプを使用したものである。回転子3は、ロータ11とともにシャフト12(軸心O1)と一体化している。シャフト12には偏心した偏心部12’が設置されているので、この偏心部12の回転中心O2の周りを駆動プレート13によってシリンダ8が回転できるようになっている。その他は、第1実施形態と同じである。 Also in the third embodiment, as shown in FIG. 6, the shaft 12 (axial center O <b> 1) is mounted so as to rotate with respect to the casing 1, and the cylinder 8 is driven to rotate from the rotor 11 side via the drive plate 13. This is the case. In this case, a type in which the stator 2 of the electric motor is inside is used unlike a normal motor. The rotor 3 is integrated with the shaft 12 (axial center O1) together with the rotor 11. Since the shaft 12 is provided with an eccentric part 12 ′, the cylinder 8 can be rotated by the drive plate 13 around the rotation center O <b> 2 of the eccentric part 12. Others are the same as the first embodiment.
 (第4実施形態)
 第4実施形態は、第1実施形態の吸入と吐出を逆にした実施形態である。この場合は、図1の符号23の位置に、吸入口16が設置され、サイドプレート27の21のところが、圧縮室吸入口21’(リードバルブは不要)となる。図7のように、駆動プレート13の回転方向前方には、圧縮室9が形成され、後方には吸入室10が形成されるので、駆動プレート13の回転方向前方に、吐出通路の一部のロータ通路20が形成され、駆動プレート13の回転方向後方に、圧縮室吸入口21’が設けられている。図1の符号17、16は吐出通路を構成し、いずれかの位置に吐出弁部(リードバルブなど)が設置されている。この実施形態では、ケーシング1の内部が、吸入室になるので、低温となって電動モータのモータ効率が向上する。その他の効果は、第1実施形態と同じである。
(Fourth embodiment)
The fourth embodiment is an embodiment in which the suction and discharge of the first embodiment are reversed. In this case, the suction port 16 is installed at a position indicated by reference numeral 23 in FIG. 1, and the side 21 of the side plate 27 becomes the compression chamber suction port 21 ′ (reed valve is not required). As shown in FIG. 7, the compression chamber 9 is formed in the front of the drive plate 13 in the rotation direction, and the suction chamber 10 is formed in the rear, so that a part of the discharge passage is formed in the front of the drive plate 13 in the rotation direction. A rotor passage 20 is formed, and a compression chamber suction port 21 ′ is provided behind the drive plate 13 in the rotation direction. Reference numerals 17 and 16 in FIG. 1 constitute a discharge passage, and a discharge valve portion (such as a reed valve) is installed at any position. In this embodiment, since the inside of the casing 1 becomes the suction chamber, the temperature becomes low and the motor efficiency of the electric motor is improved. Other effects are the same as those of the first embodiment.
 1  ケーシング
 8  駆動シリンダ、シリンダ
 11  ロータ
 12  シャフト
 13  駆動プレート
DESCRIPTION OF SYMBOLS 1 Casing 8 Drive cylinder, cylinder 11 Rotor 12 Shaft 13 Drive plate

Claims (8)

  1.  ケーシング(1)に装着されたシャフト(12)の軸心(O1)周りに、回転自在なロータ(11)と、前記シャフト(12)とは偏心した回転中心(O2)で回転自在なシリンダ(8)と、前記シリンダ(8)又は前記ロータ(11)のいずれか一方に対して揺動可能であって、他方に対しては摺動可能に設置され、前記シリンダ(8)と前記ロータ(11)とを回転連結する駆動プレート(13)とを具備する回転型圧縮機構であって、
     前記シリンダ(8)内面と前記ロータ(11)外周が仕切り点(C)で接するように、前記シャフト(12)の軸心(O1)に対して前記シリンダ(8)の回転中心(O2)を偏心させ、
     前記仕切り点(C)と前記駆動プレート(13)で仕切られた、前記シリンダ(8)内面と前記ロータ(11)外周との間の空間が、圧縮又は吸入を行う作動室(9、10)である回転型圧縮機構。
    Around the axis (O1) of the shaft (12) mounted on the casing (1), a rotatable rotor (11) and a cylinder (O2) that is rotatable with an eccentric rotation center (O2). 8) and the cylinder (8) or the rotor (11), and is slidable with respect to the other. The cylinder (8) and the rotor ( 11) a rotary compression mechanism comprising a drive plate (13) for rotationally connecting
    The rotation center (O2) of the cylinder (8) is set to the axis (O1) of the shaft (12) so that the inner surface of the cylinder (8) and the outer periphery of the rotor (11) are in contact with each other at a partition point (C). Eccentric,
    A working chamber (9, 10) in which the space between the inner surface of the cylinder (8) and the outer periphery of the rotor (11), partitioned by the partition point (C) and the drive plate (13), compresses or sucks. Is a rotary compression mechanism.
  2.  前記シリンダ(8)を回転駆動したことを特徴とする請求項1に記載の回転型圧縮機構。 The rotary compression mechanism according to claim 1, wherein the cylinder (8) is driven to rotate.
  3.  前記シリンダ(8)の外周に電動モータの回転子(3)を連結したことを特徴とする請求項2に記載の回転型圧縮機構。 The rotary compression mechanism according to claim 2, wherein a rotor (3) of an electric motor is connected to an outer periphery of the cylinder (8).
  4.  前記ロータ(11)を回転駆動したことを特徴とする請求項1に記載の回転型圧縮機構。 The rotary compression mechanism according to claim 1, wherein the rotor (11) is rotationally driven.
  5.  前記シャフト(12)と前記ロータ(11)に吸入通路(17、20)を設け吸入を行う作動室(10)内に吸入を行い、前記シリンダ(8)の側面部を構成するサイドプレート(27)に吐出弁部を設けて吐出を行うようにしたことを特徴とする請求項1から4のいずれか1項に記載の圧縮機。 Side plates (27) constituting the side portions of the cylinder (8) are provided with suction passages (17, 20) provided in the shaft (12) and the rotor (11) to perform suction into the working chamber (10). The compressor according to any one of claims 1 to 4, wherein a discharge valve portion is provided in the discharge valve portion to perform discharge.
  6.  前記サイドプレート(27)又は前記シリンダ(8)の外周に吸入口を設置して、前記ロータ(11)と前記シャフトに吐出通路(20、17)を設けて吐出を行うようにしたことを特徴とする請求項1から4のいずれか1項に記載の圧縮機。 A suction port is provided on the outer periphery of the side plate (27) or the cylinder (8), and discharge is performed by providing discharge passages (20, 17) in the rotor (11) and the shaft. The compressor according to any one of claims 1 to 4.
  7.  前記駆動プレート(13)の揺動側が円筒面で構成されていることを特徴とする請求項1から6のいずれか1項に記載の圧縮機。 The compressor according to any one of claims 1 to 6, wherein the drive plate (13) has a swinging side formed of a cylindrical surface.
  8.  前記駆動プレート(13)が平板で構成され、前記駆動プレート(13)の揺動側を、片側が円筒面で構成された2つのシュー(133)で挟み込んでいることを特徴とする請求項1から6のいずれか1項に記載の圧縮機。 The drive plate (13) is formed of a flat plate, and the swinging side of the drive plate (13) is sandwiched between two shoes (133) each having a cylindrical surface. The compressor according to any one of 6 to 6.
PCT/JP2013/067528 2012-06-26 2013-06-26 Rotary compressor WO2014003060A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/409,289 US20150176583A1 (en) 2012-06-26 2013-06-26 Rotary compressor
DE112013003254.6T DE112013003254T5 (en) 2012-06-26 2013-06-26 rotary compressor
CN201380033782.2A CN104471250A (en) 2012-06-26 2013-06-26 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142867A JP5901446B2 (en) 2012-06-26 2012-06-26 Rotary compressor
JP2012-142867 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014003060A1 true WO2014003060A1 (en) 2014-01-03

Family

ID=49783201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067528 WO2014003060A1 (en) 2012-06-26 2013-06-26 Rotary compressor

Country Status (5)

Country Link
US (1) US20150176583A1 (en)
JP (1) JP5901446B2 (en)
CN (1) CN104471250A (en)
DE (1) DE112013003254T5 (en)
WO (1) WO2014003060A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088326A1 (en) * 2014-12-02 2016-06-09 株式会社デンソー Cylinder rotary compressor
WO2016189801A1 (en) * 2015-05-26 2016-12-01 株式会社デンソー Cylinder-rotation-type compressor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108967B2 (en) 2013-06-06 2017-04-05 株式会社デンソー Rotary compression mechanism
JP6271246B2 (en) 2013-12-25 2018-01-31 株式会社Soken Cylinder rotary compressor
JP6204867B2 (en) * 2014-04-07 2017-09-27 株式会社Soken Electric compressor
US9915319B2 (en) * 2014-09-29 2018-03-13 Delbert Tesar Compact parallel eccentric rotary actuator
US10502284B2 (en) * 2014-09-29 2019-12-10 Delbert Tesar Spring augmented orthotic or prosthetic equipped with a compact parallel eccentric actuator
JP6331938B2 (en) * 2014-10-02 2018-05-30 株式会社Soken Laminated core, synchronous motor, and electric compressor
JP6349248B2 (en) 2014-12-23 2018-06-27 株式会社Soken Cylinder rotary compressor
JP2016186235A (en) * 2015-03-27 2016-10-27 株式会社日本自動車部品総合研究所 Cylinder rotation type compressor
JP6836831B2 (en) 2015-11-12 2021-03-03 株式会社デンソー Electric compressor
KR101982437B1 (en) * 2018-02-07 2019-05-27 조성엽 A hollowness pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261384A (en) * 1988-08-25 1990-03-01 Yoshio Takeuchi Swingable vane type rotary compressor
JPH05215087A (en) * 1992-02-05 1993-08-24 Shingo Saida Rotary compressor
JP2011511198A (en) * 2008-01-29 2011-04-07 大▲豊▼▲豊▼泰流体▲機▼械科技有限公司 Rotary compressor
WO2011114750A1 (en) * 2010-03-19 2011-09-22 ダイキン工業株式会社 Rotary compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2440593A (en) * 1946-10-23 1948-04-27 Harry B Miller Radial vane pump mechanism
US4568257A (en) * 1984-04-13 1986-02-04 Moore Jesse C Rotary pump
JPH029982A (en) * 1988-06-27 1990-01-12 Matsushita Electric Ind Co Ltd Rotary compressor
CN1264792A (en) * 2000-03-17 2000-08-30 李辛沫 Blade-type rotary compressor
CA2532045C (en) * 2005-01-18 2009-09-01 Tecumseh Products Company Rotary compressor having a discharge valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261384A (en) * 1988-08-25 1990-03-01 Yoshio Takeuchi Swingable vane type rotary compressor
JPH05215087A (en) * 1992-02-05 1993-08-24 Shingo Saida Rotary compressor
JP2011511198A (en) * 2008-01-29 2011-04-07 大▲豊▼▲豊▼泰流体▲機▼械科技有限公司 Rotary compressor
WO2011114750A1 (en) * 2010-03-19 2011-09-22 ダイキン工業株式会社 Rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088326A1 (en) * 2014-12-02 2016-06-09 株式会社デンソー Cylinder rotary compressor
JP2016108955A (en) * 2014-12-02 2016-06-20 株式会社デンソー Cylinder rotation type compressor
WO2016189801A1 (en) * 2015-05-26 2016-12-01 株式会社デンソー Cylinder-rotation-type compressor
JP2016217325A (en) * 2015-05-26 2016-12-22 株式会社日本自動車部品総合研究所 Cylinder rotation type compressor

Also Published As

Publication number Publication date
US20150176583A1 (en) 2015-06-25
CN104471250A (en) 2015-03-25
DE112013003254T5 (en) 2015-04-02
JP5901446B2 (en) 2016-04-13
JP2014005795A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2014003060A1 (en) Rotary compressor
JP5826692B2 (en) Gas compressor
WO2014030436A1 (en) Gas compressor
US20150198161A1 (en) Scroll type compressor
CN110121596B (en) Double-rotation scroll compressor
WO2015104930A1 (en) Gas compressor
JP5781019B2 (en) Rotary compressor
US20080193301A1 (en) Composite fluid machine
WO2013183436A1 (en) Gas compressor
JP6108967B2 (en) Rotary compression mechanism
JP2015178866A (en) turbo type fluid machine
JP2013241851A (en) Gas compressor
WO2016129242A1 (en) Compressor
JP2014040797A (en) Gas compressor
JP2012122347A (en) Gas compressor
CN109729720B (en) Double-rotation scroll compressor
CN110300853B (en) Double-rotation scroll compressor
JP5843729B2 (en) Gas compressor
KR101954533B1 (en) Rotary compressor
KR101954534B1 (en) Rotary compressor
KR20100118362A (en) Scroll compressor
JP5826708B2 (en) Gas compressor
JP5826709B2 (en) Gas compressor
JP2014005775A (en) Compressor
JP2020193567A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14409289

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130032546

Country of ref document: DE

Ref document number: 112013003254

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13809111

Country of ref document: EP

Kind code of ref document: A1