WO2014156415A1 - ポンプ制御装置 - Google Patents

ポンプ制御装置 Download PDF

Info

Publication number
WO2014156415A1
WO2014156415A1 PCT/JP2014/054303 JP2014054303W WO2014156415A1 WO 2014156415 A1 WO2014156415 A1 WO 2014156415A1 JP 2014054303 W JP2014054303 W JP 2014054303W WO 2014156415 A1 WO2014156415 A1 WO 2014156415A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
spool
discharge
signal
pump
Prior art date
Application number
PCT/JP2014/054303
Other languages
English (en)
French (fr)
Inventor
碧 長島
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to CN201480001233.1A priority Critical patent/CN104302910B/zh
Priority to US14/407,989 priority patent/US20150139824A1/en
Priority to KR1020147032165A priority patent/KR101675659B1/ko
Priority to EP14773145.9A priority patent/EP2878816B1/en
Publication of WO2014156415A1 publication Critical patent/WO2014156415A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/306Control of machines or pumps with rotary cylinder blocks by turning the swash plate, e.g. with fixed inclination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves

Definitions

  • the present invention relates to a pump control device that controls the discharge capacity of a pump.
  • a swash plate type multiple piston pump rotated by an engine is used as a driving pressure source of hydraulic equipment mounted on a working machine such as a hydraulic excavator.
  • This piston pump includes two sets of suction ports and discharge ports, and discharges hydraulic oil from the discharge ports.
  • JP 2008-291732A discloses a pump control device for controlling the discharge capacity of a swash plate type multiple piston pump.
  • This pump control device is equipped with a regulator that controls the tilt angle of the swash plate so as to make the work rate of the piston pump constant, and the discharge pressure introduced from each discharge port is averaged as the original pressure led to this regulator. An average discharge pressure is used.
  • JP 2008-240518A discloses a regulator that controls the discharge capacity of a pump in accordance with a signal pressure introduced when a device such as an air conditioner operates in a piston pump driven by an engine.
  • An object of the present invention is to provide a pump control device that controls the discharge capacity of a pump using a regulator having a simple structure even when the number of signal pressures increases.
  • a pump control device that controls a discharge capacity of a pump that discharges a working fluid from a plurality of discharge ports.
  • This pump control device includes an actuator that changes the discharge capacity of the pump, and a regulator that adjusts a control pressure guided to the actuator.
  • the regulator has a driving pressure port that leads an average discharge pressure that is an average of the discharge pressures of the working fluid discharged from the plurality of discharge ports, and the highest high-pressure side discharge pressure of the working fluid discharged from the plurality of discharge ports.
  • FIG. 1 is a hydraulic circuit diagram of a pump control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a regulator according to an embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing the relationship between the signal pressure and the discharge capacity of the pump control apparatus according to one embodiment of the present invention.
  • FIG. 1 is a hydraulic circuit diagram of a pump control device 1 according to an embodiment of the present invention.
  • the pump control device 1 is a device for driving hydraulic equipment mounted on work equipment such as a hydraulic excavator, for example, and controls the discharge capacity (pump displacement) of the variable capacity pump 11.
  • variable displacement pump 11 is, for example, a swash plate type multiple piston pump, and includes one suction port and two discharge ports.
  • variable displacement pump 11 is driven by the engine 10 and sucks hydraulic oil from a suction port 20 through a suction passage 20 from a tank port 30 connected to the tank, and is pressurized by a piston that reciprocates following the swash plate 15. From each outlet.
  • each discharge port drives the boom, arm, and bucket of the hydraulic excavator through the first discharge passage 21, the second discharge passage 22, the pump ports 31, 32, and a control valve (not shown), respectively. It is distributed to each hydraulic cylinder and left and right traveling motors.
  • a part of the hydraulic oil having the pressure P1 discharged from one discharge port is supplied to the left travel motor through the first discharge passage 21.
  • a part of the hydraulic oil having the pressure P ⁇ b> 2 discharged from the other discharge port is supplied to the right travel motor through the second discharge passage 22.
  • the pump control device 1 includes a first constant displacement pump 12 and a second constant displacement pump 13 that are arranged coaxially with the variable displacement pump 11.
  • the first constant capacity pump 12 and the second constant capacity pump 13 are pumps having a constant discharge capacity, and are driven by the engine 10 which is a common drive source with the variable capacity pump 11.
  • gear pumps are used as the first constant capacity pump 12 and the second constant capacity pump 13, but the present invention is not limited to this.
  • the first constant capacity pump 12 sucks the working oil through the suction passage 25 branched from the suction passage 20 and sends the pressurized working oil to the pump port 39 through the third discharge passage 23.
  • This hydraulic oil is supplied to a turning motor or the like that turns the cab (driver's seat) of the excavator by a control valve connected to the pump port 39.
  • the second constant capacity pump 13 sucks the working oil through the suction passage 26 branched from the suction passage 25 and sends the pressurized working oil to the signal pressure port 34 through the signal pressure passage 24.
  • This hydraulic oil is supplied to a hydraulic drive unit that switches each control valve through a signal pressure passage (not shown) connected to the signal pressure port 34.
  • hydraulic fluid (oil) is used as the working fluid supplied to and discharged from the variable displacement pump 11, the first constant displacement pump 12, and the second constant displacement pump 13.
  • a working fluid such as a sex alternative liquid may be used.
  • the variable displacement pump 11 which is a swash plate type piston type, includes a cylinder block that is rotationally driven by the engine 10, a piston that reciprocates in a cylinder of the cylinder block, and discharges hydraulic oil that is sucked in, and a slant that this piston follows.
  • variable displacement pump 11 which is a multiple connection type, includes one suction port and two discharge ports, and communicates with the cylinder block that communicates with the first discharge passage 21 and with the second discharge passage 22.
  • a cylinder A cylinder.
  • variable displacement pump 11 The discharge capacity of the variable displacement pump 11 is changed by driving the large-diameter actuator 16 to change the tilt angle of the swash plate 15 and changing the piston stroke of the piston that reciprocates following the swash plate 15. .
  • the large-diameter actuator 16 reduces the tilt angle of the swash plate 15 as the control pressure Pcg guided thereby increases.
  • the discharge capacity of the variable capacity pump 11 decreases as the tilt angle of the swash plate 15 decreases.
  • the pump control device 1 includes a load sensing regulator 60 (hereinafter referred to as “LS regulator 60”) that adjusts a control pressure Pcg guided to the large-diameter actuator 16, and a working hydraulic pressure (control pressure) Pc that is guided to the LS regulator 60. And a horsepower control regulator 40 to be adjusted.
  • LS regulator 60 load sensing regulator 60
  • a throttle 57 is interposed in the second control pressure passage 56.
  • the restrictor 57 reduces the pressure fluctuation of the control pressure Pcg guided to the large diameter actuator 16.
  • the control pressure Pcg generated in the second control pressure passage 56 is taken out from the control pressure port 35 and detected by the pressure sensor.
  • the horsepower control regulator 40 is a 3-port 2-position switching valve and includes a spool 70 (see FIG. 2) for switching the position of the horsepower control regulator 40 to the position a or the position b.
  • the spool 70 is provided with spring force of the horsepower control springs 48 and 49, and discharge pressure P1 and discharge pressure P2 of hydraulic oil discharged from each discharge port as signal pressure (drive pressure) against the spring force.
  • the average discharge pressure Pave obtained by averaging the above is guided through the discharge pressure signal passage 63.
  • the spool 70 moves to a position where the average discharge pressure Pave and the spring force of the horsepower control springs 48 and 49 are balanced. As a result, the position of the horsepower control regulator 40 is switched to position a or position b.
  • the discharge pressure signal passage 63 includes a first discharge pressure signal passage 61 and a second discharge pressure signal passage 62 that branch from the first discharge passage 21 and the second discharge passage 22, respectively.
  • a throttle 64 is provided in the first discharge pressure signal passage 61.
  • a throttle 65 is provided in the second discharge pressure signal passage 62.
  • the discharge pressure P1 generated in the first discharge passage 21 is guided to the discharge pressure signal passage 63 through the throttle 64, and the discharge pressure P2 generated in the second discharge passage 22 is guided through the throttle 65.
  • an average discharge pressure Pave obtained by averaging the discharge pressure P1 and the discharge pressure P2 is generated in the discharge pressure signal passage 63.
  • the average discharge pressure Pave is also taken out from the average discharge pressure port 32.
  • the horsepower control springs 48 and 49 have one end connected to the spool 70 and the other end linked to the swash plate 15.
  • the spring length of the horsepower control spring 49 is shorter than the spring length of the horsepower control spring 48 so that the spring force of the horsepower control springs 48 and 49 increases stepwise according to the tilt angle of the swash plate 15 and the stroke of the spool 70. It has become.
  • the horsepower control regulator 40 includes a main pressure guided from the main pressure passage 53 to the first control pressure passage 55 and an operating hydraulic pressure (control) led to the LS regulator 60 by being discharged from the first control pressure passage 55 to the low pressure passage 59. Pressure) Pc.
  • the original pressure passage 53 includes a first original pressure passage 51 and a second original pressure passage 52 that branch from the first discharge passage 21 and the second discharge passage 22, respectively, and a working oil pressure P 1 and a second oil pressure that are generated in the first original pressure passage 51.
  • a high pressure selection valve 50 that selectively causes the higher one of the hydraulic pressure P2 generated in the main pressure passage 52 to be generated in the main pressure passage 53.
  • the horsepower control regulator 40 adjusts the operating oil pressure Pc so that the signal pressure based on the average discharge pressure Pave and the spring force of the horsepower control springs 48 and 49 are balanced.
  • a signal pressure passage 29 branched from the third discharge passage 23 is connected to the horsepower control regulator 40, and the discharge pressure (hereinafter referred to as “second signal pressure”) of the first constant capacity pump 12 guided to the spool 70 by the signal pressure passage 29. .) P3 acts in a direction against the spring force. The second signal pressure P3 is also taken out from the second signal pressure port 39.
  • an external signal pressure passage 28 is connected to the horsepower control regulator 40, and the horsepower control signal pressure Pi guided by the external signal pressure passage 28 acts on the spool 70 in the same direction as the spring force.
  • the horsepower control signal pressure Pi increases, the spool 70 of the horsepower control regulator 40 moves in a direction to switch to the position b, thereby lowering the operating oil pressure Pc.
  • the LS regulator 60 is a 3-port 2-position switching valve and includes a spool for switching the position of the LS regulator 60 to the position c or the position d.
  • the signal pressure Pps generated on the upstream side of the control valve is guided from the signal port 36 through the signal passage 43 to one end of the spool of the LS regulator 60.
  • the signal pressure Pls generated on the downstream side of the control valve is guided from the signal pressure port 37 to the other end of the spool of the LS regulator 60 through the signal passage 44. Further, the spring force of the LS spring 14 is applied to the other end of the spool of the LS regulator 60.
  • the spool of the LS regulator 60 moves to a position where the LS differential pressure (Pps-Pls) generated before and after the control valve balances with the spring force of the LS spring 14 acting on the other end. As a result, the position of the LS regulator 60 is switched to the position c or the position d.
  • the LS differential pressure (Pps ⁇ Pls) decreases, the spool of the LS regulator 60 is held at the position c by the spring force of the LS spring 14 as shown in FIG. In this position c, the first control pressure passage 55 connected to the horsepower control regulator 40 and the second control pressure passage 56 connected to the large diameter actuator 16 are communicated with each other, and are led from the LS regulator 60 to the large diameter actuator 16.
  • the control pressure Pcg applied is a value based on the value Pc adjusted by the horsepower control regulator 40.
  • the LS regulator 60 adjusts the control pressure Pcg guided to the large-diameter actuator 16 so that the LS differential pressure and the spring force of the LS spring 14 are balanced.
  • the discharge capacity of the variable displacement pump 11 is controlled so that the LS differential pressure (Pps-Pls) becomes substantially constant even when the load on the hydraulic cylinder increases or decreases.
  • a throttle 66 is provided in the first control pressure passage 55, and a throttle 67 is provided in the original pressure passage 54. Thereby, the pressure fluctuation of the original pressure led to the LS regulator 60 is alleviated.
  • the control pressure communication passage 69 communicates with the first control pressure passage 55 and the second control pressure passage 56.
  • the control pressure communication passage 69 is provided with a throttle 18 and a check valve 17.
  • the check valve 17 is closed in a normal state where the control pressure Pcg of the second control pressure passage 56 is higher than the operating oil pressure Pc of the first control pressure passage 55.
  • the check valve 17 opens, and the second control pressure at which the operating oil pressure Pc in the first control pressure passage 55 bypasses the LS regulator 60. It is guided to the large diameter actuator 16 through the passage 56.
  • the pump control device 1 includes an adjustment mechanism that increases the discharge flow rate of the variable displacement pump 11 as the pump rotation speed of the second constant displacement pump 13 increases.
  • This adjustment mechanism drives the spool 27 of the LS regulator 60 according to the throttle 27 interposed in the signal pressure passage 24 that guides the hydraulic oil discharged from the second constant capacity pump 13 and the differential pressure across the throttle 27.
  • a control pressure actuator 90 is included in the signal pressure passage 24 that guides the hydraulic oil discharged from the second constant capacity pump 13 and the differential pressure across the throttle 27.
  • the upstream pressure P4 of the throttle 27 in the signal pressure passage 24 is guided to the control pressure actuator 90 through the upstream control pressure communication passage 94, and the downstream pressure P5 of the throttle 27 is guided through the downstream control pressure communication passage 95.
  • FIG. 2 is a cross-sectional view of a horsepower control regulator 40 according to an embodiment of the present invention.
  • the horsepower control regulator 40 includes a cylindrical housing 100 having a spool accommodation hole 110 and a columnar spool 70 slidably accommodated in the spool accommodation hole 110.
  • the housing 100 is attached to the casing of the variable displacement pump 11.
  • the spool 70 has a tip portion protruding from the opening end of the spool accommodation hole 110, and a spring receiver is attached to the tip portion.
  • Horsepower control springs 48 and 49 are interposed between the spring receiver and a feedback pin interlocked with the swash plate 15 of the variable displacement pump 11.
  • the plug 140 is screwed onto the base end of the housing 100.
  • the spool 70 is urged in a direction toward the plug 140 (left direction in FIG. 2) by the horsepower control springs 48 and 49, and the stroke of the spool 70 is restricted when the proximal end abuts against the plug 140.
  • a back pressure chamber 130 is formed between the housing 100 and the base end of the spool 70 and the plug 140.
  • the back pressure chamber 130 communicates with the inside (tank side) of the variable displacement pump 11 through the through hole.
  • the shaft 70 is formed with a shaft hole 79 that opens in the base end and extends in the axial direction.
  • a stepped cylindrical pin 96 is slidably accommodated in the shaft hole 79.
  • the pin 96 is restricted from moving in the left direction in FIG.
  • the pin 96 includes a large-diameter pin portion 98 that contacts the plug 140, a small-diameter pin portion 97 that is thinner than the large-diameter pin portion 98, and a pin outer peripheral step portion formed between the large-diameter pin portion 98 and the small-diameter pin portion 97. 99.
  • the housing 100 includes five ports 101-105. These ports 101 to 105 extend in the radial direction of the spool 70 and open to the spool accommodation hole 110.
  • the ports 101 to 105 communicate with the respective passages 55, 53, 63, 29, and 28 (see FIG. 1) through the respective annular grooves formed on the outer periphery of the spool 70.
  • the control pressure port 101 constitutes a first control pressure passage 55.
  • an operating hydraulic pressure (control pressure) Pc that is guided to the large-diameter actuator 16 through the LS regulator 60 is generated by the operation of the spool 70.
  • the original pressure port 102 constitutes an original pressure passage 53.
  • the higher one of the discharge pressures P ⁇ b> 1 and P ⁇ b> 2 of the first discharge passage 21 and the second discharge passage 22 is guided to the original pressure port 102.
  • the driving pressure port 103 constitutes a discharge pressure signal passage 63.
  • An average discharge pressure Pave obtained by averaging the discharge pressures P1 and P2 of the working fluid discharged from the discharge ports of the variable displacement pump 11 is guided to the drive pressure port 103.
  • the second signal pressure port 104 constitutes a signal pressure passage 29.
  • the second signal pressure port 104 is guided with the hydraulic oil pressure P3 supplied from the first constant displacement pump 12 to the swing motor.
  • the first signal pressure port 105 constitutes an external signal pressure passage 28.
  • a horsepower control signal pressure Pi for switching the operation mode is guided to the first signal pressure port 105.
  • a tank pressure port communication hole 71 In the spool 70, a tank pressure port communication hole 71, a drive pressure port communication hole 72, and a second signal pressure port communication hole 73 are formed. These port communication holes 71 to 73 extend in the radial direction of the spool 70, and both ends of the port communication holes 71 to 73 open in annular grooves formed on the outer periphery of the spool 70.
  • a tank pressure port 74 is formed at the tip of the spool 70.
  • the tank pressure port 74 extends in the axial direction of the spool 70, and one end thereof opens to the tank pressure port communication hole 71, and the other end opens to the tip of the spool 70. ).
  • the tank pressure port 74 discharges the hydraulic pressure Pc into the casing.
  • the outer periphery of the spool 70 is formed with six land portions 81 to 86 protruding in an annular shape. Each of the land portions 81 to 86 is in sliding contact with the inner periphery of the spool housing hole 110.
  • the land portions 81 and 82 When the spool 70 moves in the axial direction and switches between the position a and the position b, the land portions 81 and 82 selectively open the tank pressure port communication hole 71 and the original pressure port 102 with respect to the spool accommodation hole 110. Thus, the hydraulic pressure (control pressure) Pc generated at the control pressure port 101 is adjusted.
  • the land portion 81 blocks between the tank pressure port communication hole 71 and the control pressure port 101, and the land portion 82 includes the original pressure port 102 and the control pressure port. 101 is blocked.
  • the tank pressure port communication hole 71 and the control pressure port 101 communicate with each other, and the operating oil pressure Pc is discharged into the case and decreases.
  • the land portion 82 blocks between the source pressure port 102 and the control pressure port 101.
  • the drive pressure port communication hole 72 and the drive pressure port 103 are always in communication regardless of the position of the spool 70.
  • the land portion 83 blocks communication between the drive pressure port 103 and the original pressure port 102, and the land portion 84 blocks between the drive pressure port 103 and the second signal pressure port 104.
  • the tip 95A of the pin 96 protruding from the opening end of the shaft hole 79 faces.
  • a portion of the inner wall surface of the driving pressure port communication hole 72 facing the tip 95A of the pin 96 constitutes the driving pressure receiving surface 72A.
  • the driving pressure receiving surface 72 ⁇ / b> A has a receiving surface area corresponding to the cross-sectional area of the small diameter pin portion 97.
  • a recess 89 is formed in a portion of the inner wall surface of the driving pressure port communication hole 72 facing the tip 95A of the pin 96.
  • the recess 89 is formed coaxially with the shaft hole 79 so that the tip 95 ⁇ / b> A of the pin 96 does not interfere with the spool 70.
  • a second signal pressure chamber 121 is defined between the shaft hole 79 and the pin 96.
  • the second signal pressure chamber 121, the second signal pressure port communication hole 73, and the second signal pressure port 104 are always in communication regardless of the position of the spool 70.
  • the land portion 85 blocks communication between the second signal pressure port 104 and the first signal pressure port 105.
  • the pin outer peripheral step portion 99 of the pin 96 faces the second signal pressure chamber 121, and the portion of the inner surface of the second signal pressure port communication hole 73 that faces the pin outer peripheral step portion 99 of the pin 96 is the second signal pressure receiving surface 73A.
  • the second signal pressure receiving surface 73A has a receiving surface area corresponding to a cross-sectional area difference between the small diameter pin portion 97 and the large diameter pin portion 98.
  • the spool 70 moves to the right in FIG. 2 by the second signal pressure P3 received by the second signal pressure receiving surface 73A, and the tip of the spool 70 is pushed out of the housing 100.
  • the spool 70 has a small-diameter spool portion 77, a large-diameter spool portion 76 that is thicker than the small-diameter spool portion 77, and an outer peripheral step portion 78 formed in the middle thereof.
  • the spool housing hole 110 of the housing 100 has a small diameter hole portion 111 into which the small diameter spool portion 77 is inserted, and a large diameter hole portion 112 into which the large diameter spool portion 76 is inserted.
  • a first signal pressure chamber 120 is defined between the large-diameter hole 112 of the housing 100 and the spool 70.
  • the first signal pressure chamber 120 and the first signal pressure port 105 are always in communication regardless of the position of the spool 70.
  • the land portion 86 blocks communication between the first signal pressure chamber 120 and the back pressure chamber 130.
  • the outer circumferential step portion 78 of the spool 70 faces the first signal pressure chamber 120, and a portion corresponding to the cross-sectional area difference between the small diameter spool portion 77 and the large diameter spool portion 76 constitutes the first signal pressure receiving surface 78A.
  • the spool 70 moves to the left in FIG. 2 by the horsepower control signal pressure Pi received on the first signal pressure receiving surface 78A.
  • the horsepower control regulator 40 When the force due to the average discharge pressure Pave received on the driving pressure receiving surface 72A of the spool 70 is smaller than the spring force of the horsepower control springs 48 and 49, the horsepower control regulator 40 is positioned at the position b as shown in FIG. The spool 70 moves. At the position b, the hydraulic pressure Pc is discharged from the control pressure port 101 to the tank pressure port 74 and decreases.
  • the horsepower control regulator 40 adjusts the operating oil pressure Pc so that the signal pressure based on the average discharge pressure Pave and the spring force of the horsepower control springs 48 and 49 are balanced. Even if the rotational speed of the variable displacement pump 11 is increased, when the average discharge pressure Pave is increased, the control pressure Pcg introduced through the LS regulator 60 is increased by the operation of the horsepower control regulator 40, and the discharge capacity of the variable displacement pump 11 is increased. Decrease.
  • the control system of the hydraulic excavator includes a high load mode (normal operation mode) in which the engine 10 is operated at a predetermined rated rotational speed and a low load mode (fuel saving) in which the engine 10 is operated at a rotational speed lower than the rated rotational speed. Operation mode).
  • the horsepower control signal pressure Pi is increased in the high load mode while being switched low in the low load mode. This mode switching is performed by a driver's switch operation or the like, but is not limited thereto, and may be configured to be performed automatically according to the operation or stop of an air conditioner (air conditioner) or the like.
  • the horsepower control regulator 40 When the operation is switched from the high load mode to the low load mode, the horsepower control regulator 40 reduces the force due to the horsepower control signal pressure Pi received on the first signal pressure receiving surface 78A as the horsepower control signal pressure Pi is switched low. As a result, the spool 70 moves in the direction in which the horsepower control regulator 40 switches to the position a. As a result, the operating oil pressure Pc of the control pressure port 101 is increased, and the discharge capacity of the variable displacement pump 11 is decreased.
  • FIG. 3 is a characteristic diagram showing the relationship between the signal pressures Pave, Pi, P3 and the discharge capacity of the variable capacity pump 11.
  • the discharge capacity of the variable displacement pump 11 decreases.
  • the work rate (horsepower) of the variable displacement pump 11 is adjusted to be substantially constant, and the operation is smoothly performed even if the rotational speed of the engine 10 increases or decreases.
  • the discharge capacity of the variable displacement pump 11 is reduced compared to the high load mode due to the operation of the horsepower control regulator 40 by the horsepower control signal pressure Pi.
  • the work rate of the variable displacement pump 11 is reduced, and the load applied to the engine 10 that drives the variable displacement pump 11 is reduced.
  • the discharge capacity of the variable capacity pump 11 is decreased by the operation of the horsepower control regulator 40 from the first constant capacity pump 12 by the second signal pressure P3. Thereby, the work rate of the variable displacement pump 11 is further reduced, and the load applied to the engine 10 that drives the variable displacement pump 11 is reduced.
  • the horsepower control regulator 40 includes a drive pressure port 103 to which an average discharge pressure Pave obtained by averaging discharge pressures P1 and P2 of working fluid discharged from a plurality of discharge ports is guided, and an operation discharged from the plurality of discharge ports.
  • the main pressure port 102 through which the highest high-pressure side discharge pressures P1 and P2 of the fluid are guided, the signal pressure port 105 through which the horsepower control signal pressure Pi is guided, and the average discharge pressure Pave and the horsepower control signal pressure Pi move.
  • a spool 70 that adjusts the control pressure Pc using the high-pressure side discharge pressures P1 and P2 as original pressures, and a drive pressure receiving surface 72A that receives the average discharge pressure Pave is formed inside the spool 70.
  • a signal pressure receiving surface 78A for receiving the horsepower control signal pressure Pi is formed in the portion 78.
  • the spool 70 of the horsepower control regulator 40 has a drive in which an average discharge pressure Pave obtained by averaging the discharge pressures P1 and P2 of the working fluid discharged from the plurality of discharge ports of the variable displacement pump 11 is formed inside the spool 70.
  • the control pressure Pc guided to the large-diameter actuator 16 is adjusted using the highest discharge pressures P1 and P2 among the discharge pressures of the working fluid discharged from the plurality of discharge ports as the original pressure.
  • the spool 70 also adjusts the control pressure Pc by receiving and moving the horsepower control signal pressure Pi on the signal pressure receiving surface 78A of the outer peripheral step 78.
  • the pump control device 1 has a configuration in which the driving pressure receiving surface 72A is provided inside the spool 70, and without using the horsepower control regulator 40 having a simple structure without increasing the size of the spool 70, the power of the variable displacement pump 11 is improved. Can be controlled according to the discharge pressures P1 and P2 of the variable displacement pump 11 and the horsepower control signal pressure Pi.
  • a regulator in which a plurality of outer circumferential step portions are formed on the spool and a driving pressure receiving surface that receives the discharge pressures P1 and P2 is provided on each outer circumferential step portion.
  • a regulator in which a plurality of pin members interlocking with the spool are provided and each pin member is provided with a driving pressure receiving surface that receives the discharge pressures P1 and P2.
  • the spool 70 is provided with a driving pressure receiving surface 72A that receives an average discharge pressure Pave obtained by averaging the discharge pressures P1 and P2, and thus has a plurality of outer peripheral step portions that receive the discharge pressures P1 and P2. It is not necessary to form the film, and the increase in size can be suppressed. Further, the horsepower control regulator 40 does not need to be provided with a plurality of pin members interlocked with the spool 70, and can realize a simple structure.
  • the horsepower control regulator 40 includes a driving pressure port communication hole 72 communicating with the driving pressure port 103 formed inside the spool 70 and a shaft formed inside the spool 70 and connected to the driving pressure port communication hole 72.
  • a hole 96 and a pin 96 that is slidably inserted into the shaft hole 79 are provided, and a portion of the inner wall surface of the driving pressure port communication hole 72 that faces the pin 96 constitutes the driving pressure receiving surface 72A.
  • the pin 96 is accommodated in the spool 70 and the driving pressure receiving surface 72A is provided so as to face the pin 96, so that the horsepower control regulator 40 is provided in the axial direction of the spool 70 by providing the driving pressure receiving surface 72A.
  • the increase in size can be suppressed.
  • the horsepower control regulator 40 includes a second signal pressure port 104 through which a second signal pressure P3 different from the horsepower control signal pressure Pi is guided, a shaft hole 79 formed in the spool 70, and a second signal pressure port 104.
  • a second signal pressure port communication hole 73 communicating with the pin 96, and a pin outer peripheral step 99 is formed in the middle of the pin 96, and the pin outer peripheral step 99 is formed on the inner wall surface of the second signal pressure port communication hole 73.
  • the opposing portion constitutes the second signal pressure receiving surface 73A that receives the second signal pressure P3.
  • the horsepower control regulator 40 is provided with the spool 70 by providing the second signal pressure receiving surface 73A. An increase in size in the axial direction can be suppressed.
  • the pump control device 1 increases the horsepower control signal pressure Pi received by the outer peripheral step 78 of the spool 70 to increase the spool 70. Is moved in the direction in which the discharge capacity of the variable displacement pump 11 is increased, and when the load of the engine 10 is low, the horsepower control signal pressure Pi received by the outer peripheral step 78 of the spool 70 is reduced to reduce the spool 70 The variable displacement pump 11 is moved in the direction in which the discharge capacity decreases.
  • the spool 70 is moved by the horsepower control signal pressure Pi that decreases as the high load mode is switched to the low load mode, and the discharge capacity of the variable displacement pump 11 is reduced. Since the horsepower control signal pressure Pi decreases in the low load mode, the driving load of the second constant capacity pump 12 is reduced, and the energy consumption of the pump control device 1 is reduced.
  • the pump control device 1 can be used not only for a working machine such as a hydraulic excavator but also for a fluid pressure supply source provided in another machine or facility.

Abstract

 ポンプ制御装置は、ポンプの吐出容量を変えるアクチュエータと、アクチュエータに導かれる制御圧を調節するレギュレータと、を備える。レギュレータは、複数の吐出口から吐出される作動流体の吐出圧を平均した平均吐出圧が導かれる駆動圧ポートと、複数の吐出口から吐出される作動流体のうち最も高い高圧側吐出圧が導かれる元圧ポートと、信号圧が導かれる信号圧ポートと、平均吐出圧及び信号圧を受けて移動することにより高圧側吐出圧を元圧として制御圧を調節するスプールと、を備え、スプールの内部に平均吐出圧を受ける駆動圧受面が形成され、スプールの外周段部に信号圧を受ける信号圧受面が形成される。

Description

ポンプ制御装置
 本発明は、ポンプの吐出容量を制御するポンプ制御装置に関するものである。
 従来から、例えば油圧ショベル等の作業機に搭載される油圧機器の駆動圧源として、エンジンによって回転駆動される斜板式多連ピストンポンプを使用したものがある。このピストンポンプは、2組の吸入口と吐出口を備え、各吐出口から作動油を吐出する。
 JP2008-291732Aには、斜板式多連ピストンポンプの吐出容量を制御するポンプ制御装置が開示されている。このポンプ制御装置は、ピストンポンプの仕事率を一定化するように斜板の傾転角を制御するレギュレータを備え、このレギュレータに導かれる元圧として、各吐出口から導かれる吐出圧を平均した平均吐出圧が用いられる。
 JP2008-240518Aには、エンジンによって駆動されるピストンポンプにおいて、エアコンディショナ等の機器が動作する場合に導かれる信号圧に応じてポンプの吐出容量を制御するレギュレータが開示されている。
 しかしながら、このような従来のポンプ制御装置にあっては、信号圧の数が増えるのに伴って、レギュレータを構成するスプールの大型化を招いたり、レギュレータの構造が複雑化するという問題点があった。
 本発明は、信号圧の数が増えても、簡便な構造のレギュレータを使用してポンプの吐出容量を制御するポンプ制御装置を提供することを目的とする。
 本発明のある態様によれば、複数の吐出口から作動流体を吐出するポンプの吐出容量を制御するポンプ制御装置が提供される。このポンプ制御装置は、ポンプの吐出容量を変えるアクチュエータと、アクチュエータに導かれる制御圧を調節するレギュレータと、を備える。そしてレギュレータは、複数の吐出口から吐出される作動流体の吐出圧を平均した平均吐出圧が導かれる駆動圧ポートと、複数の吐出口から吐出される作動流体のうち最も高い高圧側吐出圧が導かれる元圧ポートと、信号圧が導かれる信号圧ポートと、平均吐出圧及び信号圧を受けて移動することにより高圧側吐出圧を元圧として制御圧を調節するスプールと、を備え、スプールの内部に平均吐出圧を受ける駆動圧受面が形成され、スプールの外周段部に信号圧を受ける信号圧受面が形成される。
図1は、本発明の一実施形態によるポンプ制御装置の油圧回路図である。 図2は、本発明の一実施形態によるレギュレータの断面図である。 図3は、本発明の一実施形態によるポンプ制御装置の信号圧と吐出容量の関係を示す特性図である。
 以下、図面等を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態によるポンプ制御装置1の油圧回路図である。
 ポンプ制御装置1は、例えば油圧ショベル等の作業機器に搭載される油圧機器を駆動するための装置であって、可変容量ポンプ11の吐出容量(ポンプ押しのけ容積)を制御する。
 可変容量ポンプ11は、例えば斜板式多連ピストンポンプであり、1個の吸入口と2個の吐出口を備える。
 可変容量ポンプ11は、エンジン10によって駆動され、タンクに接続されるタンクポート30から吸込通路20を通じて吸入口から作動油を吸い込み、斜板15に追従して往復動するピストンによって加圧した作動油を各吐出口から吐出する。
 各吐出口から吐出される作動油は、それぞれ第1吐出通路21、第2吐出通路22、ポンプポート31、32、及びコントロールバルブ(図示省略)を通じて油圧ショベルのブーム、アーム、バケットをそれぞれ駆動する各油圧シリンダ、及び左右の走行モータ等に分配される。
 一方の吐出口から吐出される圧力P1の作動油の一部は、第1吐出通路21を通じて左の走行モータに供給される。他方の吐出口から吐出される圧力P2の作動油の一部は、第2吐出通路22を通じて右の走行モータに供給される。左右の走行モータに供給される作動油の流量を、左右の走行モータ用の各コントロールバルブで調整することにより、車両の停止、直進走行、旋回走行が行われる。
 ポンプ制御装置1は、可変容量ポンプ11と同軸上に配置された第1定容量ポンプ12と第2定容量ポンプ13とを備える。第1定容量ポンプ12及び第2定容量ポンプ13は、吐出容量が一定のポンプであって、可変容量ポンプ11と共通の駆動源であるエンジン10によって駆動される。本実施形態では、第1定容量ポンプ12及び第2定容量ポンプ13としてギアポンプを用いるが、これに限られるものではない。
 第1定容量ポンプ12は、吸込通路20から分岐した吸込通路25を通じて作動油を吸込み、加圧した作動油を第3吐出通路23を通じてポンプポート39へと送る。この作動油は、ポンプポート39に接続されたコントロールバルブによって油圧ショベルのキャブ(運転席)を旋回させる旋回モータ等に供給される。
 第2定容量ポンプ13は、吸込通路25から分岐した吸込通路26を通じて作動油を吸込み、加圧した作動油を信号圧通路24を通じて信号圧ポート34へと送る。この作動油は、信号圧ポート34に接続された信号圧通路(図示省略)を通じて各コントロールバルブを切り換える油圧駆動部等に供給される。
 本実施形態では、可変容量ポンプ11、第1定容量ポンプ12及び第2定容量ポンプ13に給排される作動流体として作動油(オイル)を使用しているが、作動油の他に例えば水溶性代替液等の作動流体を用いてもよい。
 次に、可変容量ポンプ11の吐出容量を制御する構成について説明する。
 斜板式ピストンタイプである可変容量ポンプ11は、エンジン10によって回転駆動されるシリンダブロックと、このシリンダブロックのシリンダ内を往復動して吸い込んだ作動油を吐出するピストンと、このピストンが追従する斜板15と、この斜板15の傾転角度を大きくする方向に付勢する馬力制御スプリング48、49と、この馬力制御スプリング48、49のバネ力と同じ方向に斜板15を駆動する小径アクチュエータ47と、馬力制御スプリング48、49のバネ力及び小径アクチュエータ47の駆動力に抗して斜板15を駆動する大径アクチュエータ16と、これらを収容するケーシングと、を備える。
 また、多連式である可変容量ポンプ11は、1個の吸入口と2個の吐出口とを備え、シリンダブロックに第1吐出通路21に連通するシリンダと、第2吐出通路22に連通するシリンダと、を備える。
 可変容量ポンプ11の吐出容量は、大径アクチュエータ16を駆動して斜板15の傾転角度を変化させ、斜板15に追従して往復動するピストンのピストンストロークを変化させることによって、変化する。
 大径アクチュエータ16は、これに導かれる制御圧Pcgが高まるのに応じて斜板15の傾転角度を小さくする。斜板15の傾転角度が小さくなるほど、可変容量ポンプ11の吐出容量は減少する。
 ポンプ制御装置1は、大径アクチュエータ16に導かれる制御圧Pcgを調整するロードセンシングレギュレータ60(以下「LSレギュレータ60」という。)と、このLSレギュレータ60に導かれる作動油圧(制御圧)Pcを調整する馬力制御レギュレータ40と、を備える。
 第2制御圧通路56には、絞り57が介装される。絞り57は、大径アクチュエータ16に導かれる制御圧Pcgの圧力変動を緩和させる。第2制御圧通路56に生じる制御圧Pcgは、制御圧ポート35から取り出され、圧力センサによって検知される。
 馬力制御レギュレータ40は、3ポート2位置切換弁であって、馬力制御レギュレータ40のポジションをポジションa又はポジションbに切り替えるためのスプール70(図2参照)を備える。
 スプール70には、馬力制御スプリング48、49のバネ力が付与されるとともに、このバネ力に対抗する信号圧(駆動圧)として各吐出口から吐出される作動油の吐出圧P1及び吐出圧P2を平均した平均吐出圧Paveが、吐出圧信号通路63を通じて導かれる。スプール70は、平均吐出圧Paveと馬力制御スプリング48、49のバネ力とが釣り合う位置に移動する。これにより、馬力制御レギュレータ40のポジションがポジションa又はポジションbに切り替わる。
 吐出圧信号通路63は、第1吐出通路21及び第2吐出通路22からそれぞれ分岐する第1吐出圧信号通路61及び第2吐出圧信号通路62を備える。第1吐出圧信号通路61には、絞り64が設けられる。第2吐出圧信号通路62には、絞り65が設けられる。
 吐出圧信号通路63には、第1吐出通路21に生じる吐出圧P1が絞り64を介して導かれるとともに、第2吐出通路22に生じる吐出圧P2が絞り65を介して導かれる。これにより、吐出圧信号通路63には、吐出圧P1及び吐出圧P2を平均した平均吐出圧Paveが生じる。平均吐出圧Paveは、平均吐出圧ポート32からも取り出されるようになっている。
 馬力制御スプリング48、49は、一端がスプール70に連結され、他端が斜板15と連係している。馬力制御スプリング49のバネ長は、馬力制御スプリング48のバネ長よりも短く、馬力制御スプリング48、49のバネ力が斜板15の傾転角度及びスプール70のストロークに応じて段階的に高まるようになっている。
 馬力制御レギュレータ40は、元圧通路53から第1制御圧通路55へ導かれる元圧と、第1制御圧通路55から低圧通路59へ排出されることによってLSレギュレータ60に導かれる作動油圧(制御圧)Pcと、を調整する。
 元圧通路53は、第1吐出通路21及び第2吐出通路22からそれぞれ分岐する第1元圧通路51及び第2元圧通路52と、第1元圧通路51に生じる作動油圧P1及び第2元圧通路52に生じる作動油圧P2の高い方を選択的に元圧通路53に生じさせる高圧選択弁50と、を備える。
 これにより、第1吐出通路21から第1元圧通路51に導かれる作動油圧P1、及び、第2吐出通路22から第2元圧通路52に導かれる作動油圧P2の高い方が高圧選択弁50によって取り出され、元圧通路53を通じて馬力制御レギュレータ40及び小径アクチュエータ47に導かれる。
 馬力制御レギュレータ40は、平均吐出圧Paveに基づく信号圧と、馬力制御スプリング48、49のバネ力と、が釣り合うように作動油圧Pcを調整する。
 馬力制御レギュレータ40には第3吐出通路23から分岐する信号圧通路29が接続され、信号圧通路29によってスプール70に導かれる第1定容量ポンプ12の吐出圧(以下「第2信号圧」という。)P3がバネ力に対抗する方向に作用する。第2信号圧P3は第2信号圧ポート39からも取り出されるようになっている。
 これにより、旋回モータを駆動する第1定容量ポンプ12の負荷が高まると、第2信号圧P3が上昇するのに伴って、馬力制御レギュレータ40のスプール70がポジションaに切り換わる方向に移動して作動油圧Pcを高められる。
 さらに、馬力制御レギュレータ40には外部信号圧通路28が接続され、この外部信号圧通路28によって導かれる馬力制御信号圧Piがスプール70にバネ力と同一方向に作用する。これにより、馬力制御信号圧Piが上昇すると、馬力制御レギュレータ40のスプール70がポジションbに切り換わる方向に移動して作動油圧Pcを低くする。
 LSレギュレータ60は、3ポート2位置切換弁であって、LSレギュレータ60のポジションをポジションc又はポジションdに切り替えるためのスプールを備える。
 LSレギュレータ60のスプールの一端には、コントロールバルブの上流側に生じる信号圧Ppsが信号ポート36から信号通路43を通じて導かれる。
 LSレギュレータ60のスプールの他端にはコントロールバルブの下流側に生じる信号圧Plsが信号圧ポート37から信号通路44を通じて導かれる。さらに、LSレギュレータ60のスプールの他端には、LSスプリング14のバネ力が与えられる。
 LSレギュレータ60のスプールは、コントロールバルブの前後に生じるLS差圧(Pps-Pls)と他端に作用するLSスプリング14のバネ力とが釣り合う位置に移動する。これにより、LSレギュレータ60のポジションが、ポジションc又はポジションdに切り替わる。
 例えばブーム、アーム、バケットを駆動する各油圧シリンダ等の負荷が大きい場合には、コントロールバルブの下流側(負荷側)から信号圧ポート37に導かれる信号圧(負荷圧)Plsが上昇する。これによりLS差圧(Pps-Pls)が低下すると、図1に示すようにLSレギュレータ60のスプールがLSスプリング14のバネ力によってポジションcに保持される。このポジションcでは、馬力制御レギュレータ40に接続される第1制御圧通路55と、大径アクチュエータ16に接続される第2制御圧通路56とが連通され、LSレギュレータ60から大径アクチュエータ16に導かれる制御圧Pcgが馬力制御レギュレータ40によって調整される値Pcに基づく値になる。
 一方、ブーム、アーム、バケットを駆動する各油圧シリンダ等の負荷が小さい場合には、信号圧(負荷圧)Plsが低くなる。これによりLS差圧(Pps-Pls)が上昇すると、LSレギュレータ60のスプールがLSスプリング14のバネ力に抗してポジションdに切り換わる方向に移動する。このポジションdでは、第2吐出通路22から分岐して吐出圧P2が導かれる元圧通路54と、大径アクチュエータ16に接続される第2制御圧通路56とが連通され、制御圧Pcgが上昇する。
 こうしてLSレギュレータ60は、LS差圧とLSスプリング14のバネ力が釣り合うように大径アクチュエータ16に導かれる制御圧Pcgを調整する。これにより、油圧シリンダの負荷が増減してもLS差圧(Pps-Pls)が略一定になるように可変容量ポンプ11の吐出容量が制御される。
 第1制御圧通路55には絞り66が設けられ、元圧通路54には絞り67が設けられる。これにより、LSレギュレータ60に導かれる元圧の圧力変動が緩和される。
 制御圧連通路69は、第1制御圧通路55と第2制御圧通路56とに連通している。制御圧連通路69には、絞り18と逆止弁17とが設けられる。
 逆止弁17は、第2制御圧通路56の制御圧Pcgが第1制御圧通路55の作動油圧Pcより高い通常の状態では閉弁している。一方で、制御圧Pcgが作動油圧Pcより所定値を越えて低下すると、逆止弁17が開弁して、第1制御圧通路55の作動油圧PcがLSレギュレータ60を迂回する第2制御圧通路56を通じて大径アクチュエータ16に導かれる。
 ポンプ制御装置1は、第2定容量ポンプ13のポンプ回転速度が上昇するのに応じて可変容量ポンプ11の吐出流量を高める調整機構を備える。この調整機構は、第2定容量ポンプ13から吐出される作動油を導く信号圧通路24に介装される絞り27と、この絞り27の前後差圧に応じてLSレギュレータ60のスプールを駆動する制御圧アクチュエータ90と、によって構成される。
 制御圧アクチュエータ90には、信号圧通路24の絞り27の上流圧P4が上流側制御圧連通路94を通じて導かれるとともに、絞り27の下流圧P5が下流側制御圧連通路95を通じて導かれる。
 第2定容量ポンプ13のポンプ回転速度が上昇するのに応じて絞り27の前後差圧(P4-P5)が高まると、この前後差圧を受ける制御圧アクチュエータ90のピストンが、LSレギュレータ60のスプールをポジションcの開度が大きくなる方向に移動する。これにより、LSレギュレータ60から大径アクチュエータ16に導かれる制御圧Pcgが低下し、大径アクチュエータ16の作動によって可変容量ポンプ11の吐出容量が増大する。
 次に、馬力制御レギュレータ40の具体的な構成について説明する。
 図2は、本発明の一実施形態による馬力制御レギュレータ40の断面図である。
 図2に示すように、馬力制御レギュレータ40は、スプール収容孔110を有する筒状のハウジング100と、スプール収容孔110に摺動自在に収容される円柱状のスプール70と、を備える。ハウジング100は、可変容量ポンプ11のケーシングに取り付けられる。
 スプール70は、スプール収容孔110の開口端から突出する先端部を有し、この先端部にバネ受けが取り付けられる。このバネ受けと可変容量ポンプ11の斜板15に連動するフィードバックピンとの間に馬力制御スプリング48、49(図1参照)が介装される。
 ハウジング100の基端部にはプラグ140が螺合して取り付けられる。スプール70は、馬力制御スプリング48、49によってプラグ140に向かう方向(図2の左方向)に付勢され、その基端がプラグ140に当接することによってそのストロークが規制される。
 ハウジング100とスプール70の基端部とプラグ140との間には背圧室130が形成される。この背圧室130は貫通孔を通じて可変容量ポンプ11のケーシング内(タンク側)に連通される。
 スプール70にはその基端に開口して軸方向に延びる軸孔79が形成される。この軸孔79には段付き円柱状のピン96が摺動自在に収容される。
 ピン96は、その基端がプラグ140に当接することによって、図2の左方向に移動することが規制される。ピン96は、プラグ140に当接する大径ピン部98と、この大径ピン部98より細い小径ピン部97と、大径ピン部98及び小径ピン部97の間に形成されるピン外周段部99と、を有する。
 ハウジング100は、5つのポート101~105を備える。これらのポート101~105は、スプール70の径方向に延びてスプール収容孔110に開口している。ポート101~105は、スプール70の外周に形成される各環状溝を介して前述した各通路55、53、63、29、28(図1参照)とそれぞれ連通する。
 制御圧ポート101は第1制御圧通路55を構成する。この制御圧ポート101にはスプール70の作動によってLSレギュレータ60を経て大径アクチュエータ16に導かれる作動油圧(制御圧)Pcが生じる。
 元圧ポート102は元圧通路53を構成する。この元圧ポート102には第1吐出通路21、第2吐出通路22の吐出圧P1、P2のうち高い方が導かれる。
 駆動圧ポート103は吐出圧信号通路63を構成する。この駆動圧ポート103には可変容量ポンプ11の各吐出口から吐出された作動流体の吐出圧P1、P2を平均した平均吐出圧Paveが導かれる。
 第2信号圧ポート104は信号圧通路29を構成する。この第2信号圧ポート104には第1定容量ポンプ12から旋回モータに供給される作動油の圧力P3が導かれる。
 第1信号圧ポート105は外部信号圧通路28を構成する。この第1信号圧ポート105には運転モードを切り換える馬力制御信号圧Piが導かれる。
 スプール70には、タンク圧ポート連通孔71、駆動圧ポート連通孔72及び第2信号圧ポート連通孔73が形成される。これらのポート連通孔71~73は、スプール70の径方向に延び、それぞれの両端がスプール70の外周に形成された環状溝に開口している。
 スプール70の先端部には、タンク圧ポート74が形成される。このタンク圧ポート74は、スプール70の軸方向に延び、その一端がタンク圧ポート連通孔71に開口し、その他端がスプール70の先端に開口して、可変容量ポンプ11のケーシング内(タンク側)に連通する。タンク圧ポート74は、作動油圧Pcをケーシング内に排出する。
 スプール70の外周には環状に突出した6つのランド部81~86が形成される。このランド部81~86はそれぞれの外周がスプール収容孔110の内周に摺接する。
 スプール70が軸方向に移動してポジションaとポジションbに切り換わることによって、ランド部81、82がスプール収容孔110に対してタンク圧ポート連通孔71と元圧ポート102とを選択的に開通させ、制御圧ポート101に生じる作動油圧(制御圧)Pcが調整される。
 スプール70がポジションaとポジションbの間にある状態では、ランド部81がタンク圧ポート連通孔71と制御圧ポート101との間を遮断するとともに、ランド部82が元圧ポート102と制御圧ポート101との間を遮断している。
 スプール70が図2に示すようにポジションbにある状態では、タンク圧ポート連通孔71と制御圧ポート101とが連通し、作動油圧Pcはケース内に排出され低下する。このとき、ランド部82が元圧ポート102と制御圧ポート101の間を遮断している。
 スプール70が図2において右方向に移動してポジションaに切り換わると、元圧ポート102と制御圧ポート101とが連通し、元圧通路53に導かれる吐出圧P1、P2のうち高い方の圧力が第1制御圧通路55を通じてLSレギュレータ60に導かれ、作動油圧Pcが上昇する。このとき、ランド部81がタンク圧ポート連通孔71と制御圧ポート101との間を遮断している。
 駆動圧ポート連通孔72と駆動圧ポート103は、スプール70の位置によらず常に連通している。ランド部83が駆動圧ポート103と元圧ポート102間の連通を遮断するとともに、ランド部84が駆動圧ポート103と第2信号圧ポート104間の間を遮断している。
 駆動圧ポート連通孔72の中程には、軸孔79の開口端から突出するピン96の先端95Aが臨む。駆動圧ポート連通孔72の内壁面においてピン96の先端95Aに対向する部位が駆動圧受面72Aを構成する。駆動圧受面72Aは、小径ピン部97の断面積に相当する受面面積を有する。駆動圧受面72Aに受ける平均吐出圧Paveによってスプール70が図2において右方向に移動し、スプール70の先端部がハウジング100から押し出される。
 駆動圧ポート連通孔72の内壁面においてピン96の先端95Aに対向する部位には、凹部89が形成される。凹部89は軸孔79と同軸上に形成され、ピン96の先端95Aがスプール70に干渉しないようになっている。
 軸孔79とピン96の間には、第2信号圧室121が画成される。この第2信号圧室121と第2信号圧ポート連通孔73と第2信号圧ポート104は、スプール70の位置によらず常に連通している。ランド部85が第2信号圧ポート104と第1信号圧ポート105間の連通を遮断している。
 ピン96のピン外周段部99は第2信号圧室121に面し、第2信号圧ポート連通孔73の内壁面においてピン96のピン外周段部99に対向する部位が第2信号圧受面73Aを構成する。第2信号圧受面73Aは、小径ピン部97と大径ピン部98の断面積差に相当する受面面積を有する。第2信号圧受面73Aに受ける第2信号圧P3によってスプール70が図2において右方向に移動し、スプール70の先端部がハウジング100から押し出される。
 スプール70は、小径スプール部77と、この小径スプール部77より太い大径スプール部76と、その中程に形成される外周段部78と、を有する。
 ハウジング100のスプール収容孔110は、小径スプール部77が挿入される小径孔部111と、大径スプール部76が挿入される大径孔部112と、を有する。
 ハウジング100の大径孔部112とスプール70の間には、第1信号圧室120が画成される。この第1信号圧室120と第1信号圧ポート105は、スプール70の位置によらず常に連通している。ランド部86が第1信号圧室120と背圧室130の連通を遮断している。
 スプール70の外周段部78は第1信号圧室120に面し、小径スプール部77と大径スプール部76の断面積差に相当する部位が第1信号圧受面78Aを構成する。第1信号圧受面78Aに受ける馬力制御信号圧Piによってスプール70が図2において左方向に移動する。
 次に、馬力制御レギュレータ40の動作について説明する。
 スプール70の駆動圧受面72Aに受ける平均吐出圧Paveによる力が馬力制御スプリング48、49のバネ力より小さい場合は、図2に示すように、馬力制御レギュレータ40がポジションbの位置となるようにスプール70が移動する。ポジションbでは、作動油圧Pcは制御圧ポート101からタンク圧ポート74へ排出され低下する。
 一方、スプール70の駆動圧受面72Aに受ける平均吐出圧Paveによる力が馬力制御スプリング48、49のバネ力より大きくなった場合は、スプール70が図2において右方向に移動し、馬力制御レギュレータ40がポジションaの位置に切り換わる。ポジションaでは、元圧ポート102から制御圧ポート101に対して作動油圧P1、P2のうちの高い方の油圧が導かれ、制御圧ポート101の作動油圧Pcが上昇する。
 こうして馬力制御レギュレータ40は、平均吐出圧Paveに基づく信号圧と馬力制御スプリング48、49のバネ力とが釣り合うように作動油圧Pcを調整する。可変容量ポンプ11の回転速度が高まっても、平均吐出圧Paveが高まると、馬力制御レギュレータ40の作動によってLSレギュレータ60を介して導かれる制御圧Pcgが高められ、可変容量ポンプ11の吐出容量が減少する。
 油圧ショベルの制御系は、所定の定格回転速度でエンジン10が運転される高負荷モード(通常運転モード)と、この定格回転速度より低い回転速度でエンジン10が運転される低負荷モード(省燃費運転モード)と、に切り換えられる。馬力制御信号圧Piは、高負荷モードで高められる一方、低負荷モードで低く切り換えられる。このモードの切り換えは、運転者のスイッチ操作等によって行われるが、これに限らずエアコンディショナ(空調装置)等の作動、停止に応じて自動的に行われる構成としてもよい。
 高負荷モードから低負荷モードに切り換えられる運転時に、馬力制御レギュレータ40では、馬力制御信号圧Piが低く切り換えられるのに伴って第1信号圧受面78Aに受ける馬力制御信号圧Piによる力が減少することによって、馬力制御レギュレータ40がポジションaの位置に切り換わる方向にスプール70が移動する。これによって制御圧ポート101の作動油圧Pcが高められ、可変容量ポンプ11の吐出容量が減少する。
 また、旋回モータがキャブを旋回させる作動時に、第1定容量ポンプ12から旋回モータに供給される作動油圧P3が上昇する。このときに、馬力制御レギュレータ40では、第2信号圧受面73Aに受ける第2信号圧P3が上昇することによって、馬力制御レギュレータ40がポジションaの位置に切り換わる方向にスプール70が移動する。これによって制御圧ポート101作動油圧Pcが高められ、可変容量ポンプ11の吐出容量が減少する。
 図3は信号圧Pave、Pi、P3と可変容量ポンプ11の吐出容量との関係を示す特性図である。
 馬力制御レギュレータ40の作動により平均吐出圧Paveが高まるのに応じて可変容量ポンプ11の吐出容量が減少する。これにより、可変容量ポンプ11の仕事率(馬力)が略一定となるように調整され、エンジン10の回転数が増減しても運転が円滑に行われる。低負荷モードでは、馬力制御信号圧Piによる馬力制御レギュレータ40の作動により高負荷モードに比べて可変容量ポンプ11の吐出容量が減少する。これにより、可変容量ポンプ11の仕事率が低くなり、可変容量ポンプ11を駆動するエンジン10にかかる負荷が減らされる。旋回モータの作動時には、第1定容量ポンプ12から第2信号圧P3による馬力制御レギュレータ40の作動により可変容量ポンプ11の吐出容量が減少する。これにより、可変容量ポンプ11の仕事率がさらに低くなり、可変容量ポンプ11を駆動するエンジン10にかかる負荷が減らされる。
 以上の実施形態によれば、以下に示す作用効果を奏する。
 〔1〕馬力制御レギュレータ40は、複数の吐出口から吐出される作動流体の吐出圧P1、P2を平均した平均吐出圧Paveが導かれる駆動圧ポート103と、複数の吐出口から吐出される作動流体のうち最も高い高圧側吐出圧P1、P2が導かれる元圧ポート102と、馬力制御信号圧Piが導かれる信号圧ポート105と、平均吐出圧Pave及び馬力制御信号圧Piを受けて移動することにより高圧側吐出圧P1、P2を元圧として制御圧Pcを調節するスプール70と、を備え、スプール70の内部に平均吐出圧Paveを受ける駆動圧受面72Aが形成され、スプール70の外周段部78に馬力制御信号圧Piを受ける信号圧受面78Aが形成されるものとした。
 これにより、馬力制御レギュレータ40のスプール70は、可変容量ポンプ11の複数の吐出口から吐出される作動流体の吐出圧P1、P2を平均した平均吐出圧Paveをスプール70の内部に形成された駆動圧受面72Aに受けて移動し、複数の吐出口から吐出される作動流体の吐出圧のうち最も高い吐出圧P1、P2を元圧として大径アクチュエータ16に導かれる制御圧Pcを調節する。さらに、スプール70は、馬力制御信号圧Piを外周段部78の信号圧受面78Aに受けて移動することによっても制御圧Pcを調節する。こうしてポンプ制御装置1は、スプール70の内部に駆動圧受面72Aを有する構成により、スプール70の大型化を招くことなく、簡便な構造の馬力制御レギュレータ40を使用して可変容量ポンプ11の仕事率を可変容量ポンプ11の吐出圧P1、P2及び馬力制御信号圧Piに応じて制御することができる。
 なお、比較例として、スプールに複数の外周段部を形成し、各外周段部に吐出圧P1、P2をそれぞれ受ける駆動圧受面を設けるレギュレータを使用することが考えられる。また、他の比較例として、スプールに連動する複数のピン部材を設け、各ピン部材に吐出圧P1、P2を受ける駆動圧受面を設けるレギュレータを使用することが考えられる。これらの比較例に対して、スプール70は、その内部に吐出圧P1、P2を平均した平均吐出圧Paveを受ける駆動圧受面72Aが設けられるため、吐出圧P1、P2を受ける複数の外周段部を形成する必要がなく、その大型化が抑えられる。また、馬力制御レギュレータ40は、スプール70に連動する複数のピン部材を設ける必要もなく、簡便な構造を実現できる。
 〔2〕馬力制御レギュレータ40は、スプール70の内部に形成される駆動圧ポート103に連通する駆動圧ポート連通孔72と、スプール70の内部に形成され駆動圧ポート連通孔72に接続される軸孔79と、軸孔79に摺動自在に挿入されるピン96と、を備え、駆動圧ポート連通孔72の内壁面においてピン96に対向する部位が駆動圧受面72Aを構成するものした。
 これにより、スプール70の内部にピン96が収容されるとともに、駆動圧受面72Aがピン96に対向するように設けられるため、駆動圧受面72Aを設けることによって馬力制御レギュレータ40がスプール70の軸方向に大型化することを抑えられる。
 〔3〕馬力制御レギュレータ40は、馬力制御信号圧Piと異なる第2信号圧P3が導かれる第2信号圧ポート104と、スプール70の内部に形成され軸孔79及び第2信号圧ポート104に連通する第2信号圧ポート連通孔73と、をさらに備え、ピン96はその中程にピン外周段部99が形成され、第2信号圧ポート連通孔73の内壁面においてピン外周段部99に対向する部位が第2信号圧P3を受ける第2信号圧受面73Aを構成するものとした。
 これにより、第2信号圧P3を受ける第2信号圧受面73Aがピン96のピン外周段部99に対向して設けられるため、第2信号圧受面73Aを設けることによって馬力制御レギュレータ40がスプール70の軸方向に大型化することを抑えられる。
 〔4〕ポンプ制御装置1は、可変容量ポンプ11を駆動するエンジン10の負荷が高い高負荷モードのときは、スプール70の外周段部78が受ける馬力制御信号圧Piを上昇させて、スプール70を可変容量ポンプ11の吐出容量が増す方向に移動させ、エンジン10の負荷が低い低負荷モードのときは、スプール70の外周段部78が受ける馬力制御信号圧Piを低下させて、スプール70を可変容量ポンプ11の吐出容量が減る方向に移動させる。
 これにより、高負荷モードから低負荷モードに切り換えられるのに伴って、低下する馬力制御信号圧Piによってスプール70が移動して、可変容量ポンプ11の吐出容量が減らされる。低負荷モードで馬力制御信号圧Piが低下するため、第2定容量ポンプ12の駆動負荷が減らされ、ポンプ制御装置1の消費エネルギが低減される。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したのに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、ポンプ制御装置1は、油圧ショベル等の作業機に限らず、他の機械、設備に設けられる流体圧供給源にも利用できる。
 本願は、2013年3月27日に日本国特許庁に出願された特願2013-66851号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
 
 
 
 

Claims (4)

  1.  複数の吐出口から作動流体を吐出するポンプの吐出容量を制御するポンプ制御装置であって、
     ポンプの吐出容量を変えるアクチュエータと、
     前記アクチュエータに導かれる制御圧を調節するレギュレータと、
    を備え、
     前記レギュレータは、
      複数の吐出口から吐出される作動流体の吐出圧を平均した平均吐出圧が導かれる駆動圧ポートと、
      前記複数の吐出口から吐出される作動流体のうち最も高い高圧側吐出圧が導かれる元圧ポートと、
      信号圧が導かれる信号圧ポートと、
      前記平均吐出圧及び前記信号圧を受けて移動することにより前記高圧側吐出圧を元圧として前記制御圧を調節するスプールと、
    を備え、
      前記スプールの内部に前記平均吐出圧を受ける駆動圧受面が形成され、
      前記スプールの外周段部に前記信号圧を受ける信号圧受面が形成される、
    ポンプ制御装置。
  2.  前記レギュレータは、
      前記スプールの内部に形成され前記駆動圧ポートに連通する駆動圧ポート連通孔と、
      前記スプールの内部に形成され前記駆動圧ポート連通孔に接続される軸孔と、
      前記軸孔に摺動自在に挿入されるピンと、
    をさらに備え、
     前記駆動圧ポート連通孔の内壁面において前記ピンに対向する部位が前記駆動圧受面を構成する、
    請求項1に記載のポンプ制御装置。
  3.  前記レギュレータは、
      前記信号圧と異なる第2信号圧が導かれる第2信号圧ポートと、
      前記スプールの内部に形成され前記軸孔及び前記第2信号圧ポートに連通する第2信号圧ポート連通孔と、
    をさらに備え、
     前記ピンはその中程にピン外周段部が形成され、
     前記第2信号圧ポート連通孔の内壁面において前記ピン外周段部に対向する部位が前記第2信号圧Pを受ける第2信号圧受面を構成する、
    請求項1に記載のポンプ制御装置。
  4.  前記ポンプ制御装置は、
      前記ポンプを駆動する駆動源の負荷が高い高負荷モードのときは、前記スプールの外周段部が受ける信号圧を上昇させて、前記スプールを前記ポンプの吐出容量が増す方向に移動させ、
      前記駆動源の負荷が低い低負荷モードのときは、前記スプールの外周段部が受ける信号圧を低下させて、前記スプールを前記ポンプの吐出容量が減る方向に移動させる、
    請求項1に記載のポンプ制御装置。
     
     
PCT/JP2014/054303 2013-03-27 2014-02-24 ポンプ制御装置 WO2014156415A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480001233.1A CN104302910B (zh) 2013-03-27 2014-02-24 泵控制装置
US14/407,989 US20150139824A1 (en) 2013-03-27 2014-02-24 Pump control apparatus
KR1020147032165A KR101675659B1 (ko) 2013-03-27 2014-02-24 펌프 제어 장치
EP14773145.9A EP2878816B1 (en) 2013-03-27 2014-02-24 Pump control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-066851 2013-03-27
JP2013066851A JP6075866B2 (ja) 2013-03-27 2013-03-27 ポンプ制御装置

Publications (1)

Publication Number Publication Date
WO2014156415A1 true WO2014156415A1 (ja) 2014-10-02

Family

ID=51623412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054303 WO2014156415A1 (ja) 2013-03-27 2014-02-24 ポンプ制御装置

Country Status (6)

Country Link
US (1) US20150139824A1 (ja)
EP (1) EP2878816B1 (ja)
JP (1) JP6075866B2 (ja)
KR (1) KR101675659B1 (ja)
CN (1) CN104302910B (ja)
WO (1) WO2014156415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107781126A (zh) * 2017-11-22 2018-03-09 江苏恒立液压科技有限公司 液压泵控制阀

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702253B1 (ko) * 2013-03-27 2017-02-03 케이와이비 가부시키가이샤 펌프 토출 유량 제어 장치
JP6248144B2 (ja) * 2016-06-08 2017-12-13 Kyb株式会社 ポンプ装置
DE102016119310A1 (de) 2016-10-11 2018-04-12 Danfoss Power Solution a.s. Verbessertes Fluidsteuerventil
JP7471901B2 (ja) 2020-04-28 2024-04-22 ナブテスコ株式会社 流体圧駆動装置
CN112523728B (zh) * 2021-02-09 2021-04-27 山东鼎点环保科技有限公司 一种套管气回收装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240518A (ja) 2007-03-23 2008-10-09 Kayaba Ind Co Ltd 馬力制御レギュレータ、馬力制御装置、及び、ピストンポンプ
JP2008280942A (ja) * 2007-05-11 2008-11-20 Kayaba Ind Co Ltd 油圧回路
JP2008291732A (ja) 2007-05-24 2008-12-04 Kayaba Ind Co Ltd 斜板式2連ピストンポンプの油圧回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7408167L (ja) * 1973-06-22 1974-12-23 Robert Cecil Clerk
DE2813486C2 (de) * 1977-03-31 1986-06-26 Kabushiki Kaisha Komatsu Seisakusho, Tokio/Tokyo Steuervorrichtung für Hydraulikpumpen
JPS57501395A (ja) * 1980-09-12 1982-08-05
JP3758399B2 (ja) * 1999-01-18 2006-03-22 株式会社豊田自動織機 可変容量型圧縮機における容量制御弁取り付け構造
US7076946B2 (en) * 2004-08-16 2006-07-18 Eaton Corporation Hydraulic kicker control piston
US7484939B2 (en) * 2004-12-17 2009-02-03 Eaton Corporation Variable displacement radial piston pump
JP5004665B2 (ja) * 2007-05-24 2012-08-22 カヤバ工業株式会社 ピストンポンプの油圧回路
JP4976920B2 (ja) * 2007-05-24 2012-07-18 カヤバ工業株式会社 ポンプ吐出量制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240518A (ja) 2007-03-23 2008-10-09 Kayaba Ind Co Ltd 馬力制御レギュレータ、馬力制御装置、及び、ピストンポンプ
JP2008280942A (ja) * 2007-05-11 2008-11-20 Kayaba Ind Co Ltd 油圧回路
JP2008291732A (ja) 2007-05-24 2008-12-04 Kayaba Ind Co Ltd 斜板式2連ピストンポンプの油圧回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107781126A (zh) * 2017-11-22 2018-03-09 江苏恒立液压科技有限公司 液压泵控制阀
CN107781126B (zh) * 2017-11-22 2023-12-05 江苏恒立液压科技有限公司 液压泵控制阀

Also Published As

Publication number Publication date
EP2878816A4 (en) 2016-05-04
JP2014190255A (ja) 2014-10-06
EP2878816A1 (en) 2015-06-03
JP6075866B2 (ja) 2017-02-08
CN104302910B (zh) 2016-05-25
US20150139824A1 (en) 2015-05-21
KR101675659B1 (ko) 2016-11-22
KR20150002840A (ko) 2015-01-07
CN104302910A (zh) 2015-01-21
EP2878816B1 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
WO2014156415A1 (ja) ポンプ制御装置
EP1106833B1 (en) Volume control valve of variable displacement hydraulic rotating machine
JP4976920B2 (ja) ポンプ吐出量制御装置
KR101702253B1 (ko) 펌프 토출 유량 제어 장치
CN109154290B (zh) 泵装置
JP5870334B2 (ja) ポンプシステム
US10794380B2 (en) Pump device
JP3974076B2 (ja) 液圧駆動装置
JP4933299B2 (ja) 建設機械の油圧制御装置
WO2018008209A1 (ja) 斜板式ピストンポンプ
JP2004316839A (ja) 液圧駆動装置
WO2019058711A1 (ja) 液圧モータ制御装置
JP4922068B2 (ja) 斜板式2連ピストンポンプの油圧回路
KR20190020367A (ko) 정유압 변속장치용 복합 밸브
JP5945742B2 (ja) ポンプユニットの斜板角制御システム
KR101902697B1 (ko) 압력 보상형 유량 제어 기능을 갖는 정유압 무단 변속기용 중립밸브 및, 중립밸브에 구비되는 스풀 시트 설계방법
JP2008215504A (ja) 作業機械の油圧駆動装置
JP2019056436A (ja) 制御弁
JP2013221344A (ja) ポンプユニット

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20147032165

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014773145

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773145

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14407989

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE