WO2014156350A1 - 硫化鉱物からの金の回収方法 - Google Patents

硫化鉱物からの金の回収方法 Download PDF

Info

Publication number
WO2014156350A1
WO2014156350A1 PCT/JP2014/053193 JP2014053193W WO2014156350A1 WO 2014156350 A1 WO2014156350 A1 WO 2014156350A1 JP 2014053193 W JP2014053193 W JP 2014053193W WO 2014156350 A1 WO2014156350 A1 WO 2014156350A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
leaching
solution
ions
copper
Prior art date
Application number
PCT/JP2014/053193
Other languages
English (en)
French (fr)
Inventor
和浩 波多野
浩至 勝川
佐野 正樹
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to AU2014245390A priority Critical patent/AU2014245390B2/en
Priority to CA2908364A priority patent/CA2908364C/en
Publication of WO2014156350A1 publication Critical patent/WO2014156350A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering gold from sulfide minerals.
  • alkali metal or alkaline earth metal chlorides and bromides and copper and iron chlorides or bromides are used, and the gold leaching process is performed on the residue after the copper leaching process.
  • An implementation method is known (Japanese Patent Laid-Open No. 2009-235519). According to this method, it is said that copper and gold in copper sulfide ore can be leached and recovered at a high leaching rate only by using air without using a special oxidizing agent.
  • Japanese Patent Application Laid-Open No. 2009-235525 states that “an appropriate oxidizing agent for leaching gold present in copper concentrate and the leached gold are reduced again and do not precipitate as metallic gold.
  • gold is stably eluted by producing gold chloride using chlorine ions, but when bromine ions are used in combination, gold bromide is produced. Gold leaching can be further facilitated ”(paragraph 0014).
  • the bromine ion concentration for use in the gold leaching reaction is necessary to form gold bromide and elute gold to form a complex.
  • solubility there is an upper limit of solubility because it is also affected by the concentration, and it is 1 to 80 g / L in consideration of solubility, but it is described that about 10 to 26 g / L is desirable in view of economical use of chemicals. (Paragraph 0017).
  • bromine ions in the leachate are added in the form of sodium bromide, and the higher the concentration, the better.
  • the solubility changes due to the influence of chlorine ion concentration and temperature at the same time, It is also described that the bromine ion concentration may be practically 1 to 50 g / L, preferably 10 to 26 g / L (paragraph 0025).
  • alkali bromide in the leaching solution is reduced to 0. It is proposed to be 5-30 g / L.
  • the halogen ions in the leachate used for gold leaching are mainly chlorine ions, and bromine ions are supplementarily added to the method to recover gold from the sulfide ore by a wet method. It proposes a commercially feasible technology.
  • gold leaching is performed using the conventional technique, gold exists in a high concentration in the solution after gold leaching immediately after leaching gold.
  • the conventional technique has a problem that the gold concentration in the solution after leaching of gold rapidly decreases with time.
  • the gold recovery process is not always performed immediately after the gold leaching process, and the gold leaching is performed for about 1 to 3 days due to the solid-liquid separation operation and operation schedule.
  • the gold recovery process may be performed after storing the post-solution. Therefore, a method capable of maintaining the dissolved gold concentration as much as possible while storing the solution after gold leaching is desired.
  • the gold complex contained in the solution after leaching after the gold leaching process is adsorbed on the activated carbon.
  • the activated carbon is incinerated, the amount of adsorption per unit activated carbon weight has a direct impact on the production cost and has a large effect. Therefore, development of a method for increasing the unit adsorption amount is desired. In any case, no study has been made on improving the adsorptivity of gold to activated carbon, and generally, there are problems such as the type of activated carbon and the contamination of the liquid after leaching, and an appropriate method has not been known.
  • the present invention provides a method for recovering gold from sulfide minerals that can suppress a decrease in gold concentration in the solution after gold leaching with time and can improve the amount of gold adsorbed on activated carbon.
  • the present inventor has found that by increasing the bromine ion concentration in a gold leaching solution based on an aqueous alkali chloride solution extremely high, the state in which the gold in the leaching solution is dissolved can be stably maintained. . And, when adsorbing the gold complex in the liquid after leaching with activated carbon, the amount of gold adsorbed on the activated carbon is reduced by reducing the concentration of monovalent copper ions in the liquid after leaching which becomes an adsorption competing substance in advance. We found that it can be significantly improved.
  • the leaching residue after leaching treatment of sulfide mineral or sulfide mineral is performed under the supply of an acidic aqueous solution containing chlorine ions, bromine ions, copper ions, and iron ions and an oxidizing agent.
  • Step 1 for leaching the gold component in the leaching residue by contact, and the bromine ion concentration in the gold leached solution after leaching the gold to 40 g / L or more and the oxidation-reduction potential to 500 mV (reference electrode, silver / silver chloride) )
  • Step 2 to preserve while maintaining the above, and after adding cuprous chloride to the gold leaching solution obtained in step 2, adding an oxidizing agent to adjust the oxidation-reduction potential to 520 mV or more and after gold leaching
  • It is a method for recovering gold from sulfide minerals which includes Step 3 for reducing monovalent copper ions in the liquid and Step 4 for adsorbing gold in the liquid after gold leaching obtained in Step 3 to activated carbon.
  • the leaching residue after the leaching treatment of sulfide mineral or sulfide mineral is performed by supplying an acidic aqueous solution containing chlorine ions, bromine ions, copper ions, and iron ions and an oxidizing agent.
  • step 3 includes adjusting the oxidation-reduction potential (reference electrode, silver / silver chloride) to 520 mV to 570 mV.
  • step 3 includes adjusting the redox potential by blowing air.
  • the present invention it is possible to provide a method for recovering gold from sulfide minerals that can suppress a decrease in gold concentration in the solution after gold leaching with time and can improve the amount of gold adsorbed on activated carbon.
  • an acidic aqueous solution (gold leaching solution) containing chlorine ions, bromine ions, copper ions, and iron ions is brought into contact with the raw material while supplying an oxidizing agent, and the gold component in the raw material is leached. It is possible to adjust the chlorine ion concentration in the acidic aqueous solution to 40 to 200 g / L, the bromine ion concentration to 20 to 100 g / L, the copper ion concentration to 5 to 25 g / L, and the iron ion concentration to 0.01 to 10 g / L. preferable.
  • the raw material to be treated in the present invention is sulfide mineral or leaching residue after leaching treatment is performed on sulfide mineral.
  • a sulfide mineral typically, the primary copper sulfide ore (example: chalcopyrite) containing gold, the copper sulfide ore containing the silicate ore containing gold, and the pyrite containing gold are mentioned.
  • intermediate products generated in various processes of sulfide minerals are also handled as sulfide minerals.
  • Gold leaching proceeds when the eluted gold reacts with chlorine ions or bromine ions to form gold chloride complexes or gold bromide complexes.
  • bromine ions in combination, the complex is formed at a lower potential, so that the leaching time can be shortened and the gold leaching efficiency can be improved, that is, the gold concentration in the liquid after leaching can be increased.
  • the bromine ion concentration in the gold leaching solution is remarkably increased, so that the leached gold can exist stably for a long time in a dissolved state.
  • the redox potential of the leachate also depends on the temperature, and when the liquid temperature is lowered by about 10 ° C., the redox potential is also lowered by about 10 mV. Therefore, if it is left as it is from a general leaching temperature of about 80 ° C., the temperature of the leaching solution is lowered, the oxidation-reduction potential is also lowered, and it becomes difficult to maintain the dissolution of gold.
  • the concentration of bromide ions in the gold leaching solution may be about 5 g / L only from the viewpoint of reaction rate and solubility, but the gold concentration in the leaching solution is stably dissolved at 2 mg / L or more.
  • the temperature of the solution after leaching is lowered from about 80 ° C. which is a general leaching temperature to room temperature, it is necessary to be 40 g / L or more.
  • 80 g / L or more more preferably 100 g / L or more, and still more preferably 120 g / L or more.
  • the bromine ion concentration in the gold leachate is generally low, and is preferably 80 to 100 g / L.
  • the concentration of chlorine ions in the gold leachate is preferably 5 g / L or more, and more preferably 15 g / L or more, from the viewpoint of Cu (I) production.
  • the chlorine ion concentration is too high, the ion concentration in the bath will increase and problems of precipitation will occur during operation, so it should be 200 g / L or less, and 20-40 g / L. preferable.
  • Iron ions which are trivalent iron ions oxidized under the supply of an oxidizing agent or trivalent iron ions from the beginning, function to oxidize gold.
  • concentration of iron ions in the gold leaching solution is preferably 0.01 g / L or more, and more preferably 3 g / L or more.
  • Copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions.
  • divalent copper ions function as oxidation.
  • the concentration of copper ions in the leachate is preferably 5 g / L or more, and more preferably 20 g / L or more.
  • the supply source of chlorine ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, and chlorine gas. In consideration of economy and safety, supply in the form of metal chloride is preferable.
  • the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability.
  • it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.
  • the bromine ion supply source is not particularly limited, and examples thereof include hydrogen bromide, hydrobromic acid, metal bromide, bromine gas, and the like. In consideration of economy and safety, it is in the form of metal bromide. It is preferable to supply.
  • the metal bromide include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), alkali metals (lithium, sodium, potassium, Examples thereof include bromides of rubidium, cesium, and francium) and bromides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, and radium), and sodium bromide is preferable from the viewpoint of economy and availability.
  • it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.
  • the supply source of copper ions and iron ions is usually supplied in the form of these salts.
  • it can be supplied in the form of a halide salt.
  • copper ions are preferably supplied as copper chloride and / or copper bromide
  • iron ions are preferably supplied as iron chloride and / or iron bromide.
  • copper chloride and iron chloride it is preferable to use cupric chloride (CuCl 2 ) and ferric chloride (FeCl 3 ) from the viewpoint of oxidizing power, respectively, but cuprous chloride (CuCl) and ferrous chloride are preferable.
  • At least one of hydrochloric acid and bromic acid, cupric chloride, and copper chloride are selected on the condition that the gold leaching solution is selected to contain both chlorine ions and bromine ions.
  • a mixed solution containing at least one of cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide can be used.
  • the pH of the gold leaching solution is preferably about 0 to 3 and more preferably about 0.5 to 2.0 for ensuring the dissolution of trivalent iron ions.
  • the redox potential (reference electrode, silver / silver chloride) of the leaching solution at the start of the gold leaching process is preferably 500 mV or more, more preferably 550 mV or more because of the effect of bromine ions.
  • the temperature of the gold leaching solution is preferably 60 ° C. or more from the viewpoint of leaching efficiency and material of the apparatus, and more preferably 70 to 90 ° C. from the viewpoint of leaching speed.
  • the gold leaching process is carried out while supplying the oxidizing agent, thereby managing the redox potential.
  • an oxidizing agent For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient. Air is also preferable from the viewpoint of economy and safety.
  • the bromine ion concentration in the solution after gold leaching is adjusted during the storage period. Specifically, when the bromine ion concentration in the acidic aqueous solution leached with gold is 40 g / L or more, the oxidation-reduction potential of the solution after leaching with gold is 500 mV or more (reference electrode, silver / silver chloride) at room temperature or higher (25 ° C. It is possible to maintain the dissolution of gold by managing the above. This is a value 40 mV or more lower than the redox potential immediately after leaching.
  • the redox potential of the solution after gold leaching is controlled at 480 mV or more (reference electrode, silver / silver chloride) at room temperature or higher (25 ° C. or higher). It is also possible to do. Further, the higher the control temperature, the higher the solubility of gold, but the higher the cost for heat retention, it is preferable to store at room temperature (20 to 60 ° C., typically 25 to 40 ° C.).
  • the stability of the gold dissolved in the solution after leaching after gold leaching is high, so that after the gold leaching process is finished, the storage period until the gold recovery process is started can be extended. it can.
  • the storage period can be 5 days or more, and can be 1 week or more. However, since there are few merits even if it preserve
  • a bromine ion source can be added to the leached solution within 1 day, preferably within half a day, more preferably within 6 hours, and even more preferably within 1 hour.
  • the bromine ion supply source include the compounds described above, and sodium bromide is preferred from the viewpoints of economy and availability.
  • the oxidizing agent is not particularly limited, but air is used from the viewpoint of cost.
  • the liquid temperature is not particularly limited, but considering the fact that gold leaching is warm leaching and the aspect of oxidation efficiency, the liquid temperature of the liquid after gold leaching is preferably maintained at 45 ° C. or more, more preferably It is 50 ° C. or higher.
  • An increase in ORP indicates a decrease in monovalent copper ions in the solution after gold leaching.
  • Monovalent copper is known as a very soft element, has a high affinity for activated carbon, and competes with the adsorption of gold complexes. By reducing the monovalent copper, the adsorption active sites in the activated carbon are increased in selectivity to gold, thereby achieving efficient recovery of gold.
  • the ORP can be adjusted to 520 mV or more, thereby reducing the monovalent copper concentration in the liquid and improving the adsorption rate of gold on activated carbon.
  • the upper limit is not particularly limited, but considering the time required for adjustment and the reduction efficiency of monovalent copper, it is preferably 570 mV or less, more preferably 530 to 560 mV.
  • step 4 is performed in which gold is recovered by activated carbon adsorption from a gold solution obtained by solid-liquid separation.
  • the contact of gold with activated carbon may be carried out by batch feeding or by continuously passing an acidic leachate through an adsorption tower packed with activated carbon.
  • the stirring speed is not specified.
  • the amount of activated carbon added is 50 to 10,000 times the weight of gold.
  • the flow rate is not particularly limited (generally, SV1 to 25), but when the gold adsorption amount per unit weight of the activated carbon reaches 20000 to 30000 g / t, the activated carbon does not satisfy the required capacity. . Therefore, gold strips from activated carbon and regeneration are performed based on this amount of adsorption.
  • the method for regenerating activated carbon is carried out with a generally known sulfur compound, nitrogen compound, or acid, and is not particularly limited.
  • ⁇ Other processes> (Copper recovery) Since the liquid after leaching obtained by the copper leaching step contains a large amount of copper component, copper can be recovered from the liquid after leaching. Although there is no restriction
  • recovery method For example, solvent extraction, ion exchange, substitution precipitation with a base metal, electrowinning, etc. can be utilized.
  • the copper in the solution after leaching contains both monovalent and divalent states, but in order to perform solvent extraction and ion exchange smoothly, all of them should be oxidized beforehand to be divalent copper ions. Is preferred.
  • the method of oxidation is not particularly limited, but a method of leaching air or oxygen into the liquid after leaching is simple.
  • Example 1 In the test, gold was leached to the residue after leaching the copper in the copper sulfide concentrate containing gold. The gold quality in the residue was 26 g / t, and the copper quality was 1.2%.
  • the Cl ion concentration was adjusted to 40 g / L
  • the Cu ion concentration was adjusted to 20 g / L
  • the Fe ion concentration was adjusted to 2 g / L
  • the Br ion concentration was adjusted to 20 to 120 g / L. went.
  • the oxidation-reduction potential at 80 ° C. was 537 to 557 mV (reference electrode, silver / silver chloride).
  • the solution after leaching was allowed to stand at room temperature (15 to 25 ° C.), and the concentration of gold dissolved in the leaching solution after 1 to 7 days was measured.
  • the sampled leachate was filtered through a 0.1 ⁇ m membrane filter and then subjected to ICP analysis. The oxidation-reduction potential during the storage period was measured after the temperature of the solution after leaching dropped to 25 ° C.
  • Example 2 In a gold leaching solution obtained after the gold leaching step using a gold leaching solution containing 50 g / L chloride ion, 80 g / L bromide ion, 18 g / L copper, and 0.2 g / L iron. Leached gold.
  • the solution after gold leaching contained NaCl: 84 g / L, NaBr: 103 g / L, Cu: 20 g / L, Fe: 2 g / L, Au: 8 mg / L, and pH was 1.2.
  • CuCl was added to adjust the ORP to 510 mV. After leaching, the liquid was heated to 55 ° C. and stirred while blowing 0.4 L of air per minute.
  • This gold leaching solution was passed through a glass column filled with approximately 14 ml of coconut shell-derived activated carbon (Yaikol MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon.
  • the column diameter was 11 mm and the height was 150 mm.
  • the liquid supply rate was 11.9 ml / min, and the space velocity was 50 (1 / h).
  • Gold in the discharged solution after adsorption was diluted with hydrochloric acid and quantified by ICP-AES. The relationship between the ORP and the post-adsorption liquid is shown in FIG.
  • the gold concentration contained in the post-adsorption liquid is significantly reduced in the liquid in which the ORP is adjusted to 520 mV or more.
  • the upper limit of ORP is not set, it is understood that even if the potential is raised excessively, the gold concentration in the solution after adsorption does not drop dramatically, and it is sufficient to oxidize to at least 520 mV, but it does not prevent excessive oxidation. .
  • Example 3 While continuously supplying liquid using the post-gold leaching solution and the activated carbon packed column used in Example 2, the gold concentration of the post-adsorption solution was measured by changing the ORP by adding CuCl and blowing air. The results are shown in FIG.
  • FIG. 3 also shows that the relationship between the adsorption of ORP and gold on activated carbon is clear, and gold can be recovered well when the gold leaching solution is ORP 520 mV or higher and brought into contact with activated carbon. It can also be seen that it is Cu (I) that affects the ORP.
  • Cu (I) tends to be oxidized to Cu (II) in an aqueous solution, but exists relatively stably in an aqueous solution containing a high-concentration halide as in this system. Therefore, it is presumed that the same result can be obtained by oxidizing Cu (I) with an oxidizing agent such as hydrogen peroxide or hypochlorous acid in addition to air blowing. preferable.
  • an oxidizing agent such as hydrogen peroxide or hypochlorous acid in addition to air blowing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 硫化鉱物又は硫化鉱物に対して浸出処理を行った後の浸出残渣を、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液と酸化剤の供給下で接触させて、浸出残渣中の金成分を浸出する工程1と、金を浸出した金浸出後液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(参照電極、銀/塩化銀)以上に保持しながら保存する工程2と、工程2で得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程3と、工程3で得られた金浸出後液中の金を活性炭に吸着させる工程4とを含む硫化鉱物からの金の回収方法である。

Description

硫化鉱物からの金の回収方法
 本発明は硫化鉱物からの金の回収方法に関する。
 近年、従来の乾式法に替わり、硫化鉱から湿式法によって銅を回収する技術が注目されている。そして、硫化鉱には微量ながら金などの貴金属を含有する場合も多く、銅に加えて貴金属を経済的に回収する方法が求められている。
 このような問題に取り組んだ技術として、アルカリ金属又はアルカリ土類金属の塩化物及び臭化物と、銅及び鉄の塩化物又は臭化物とを使用し、銅浸出工程後の残渣に対して金浸出工程を実施する方法が知られている(特開2009-235519号公報)。この方法によれば、特別な酸化剤を使用することなく、空気を使用するだけで、硫化銅鉱中の銅及び金を高い浸出率で浸出し、回収することができるとされている。
 上記技術に関連して、特開2009-235525号公報には、「銅精鉱中に存在する金を浸出するには適切な酸化剤と、浸出した金が再び還元されて金属金として沈殿しないための安定化剤が必要である。本発明では塩素イオンを利用して塩化金を生成することで安定的に金を溶出するが、臭素イオンを併用する場合、臭化金を生成することで金浸出をさらに容易することができる」と記載されている(段落0014)。また、金浸出反応に使用するための臭素イオン濃度は、臭化金を生成するとともに溶出した金が錯体を形成するために必要であり、溶出する金濃度にも依存するが、共存する塩化ナトリウム濃度の影響も受けるため溶解度の上限が存在するとされ、溶解度を考慮すると1~80g/Lとなるが、薬品の経済的な使用量を考えると10~26g/L程度が望ましいと記載されている(段落0017)。同公報には、浸出液中の臭素イオンは臭化ナトリウムのような形態で添加し、その濃度は高いほど望ましいが、同時に添加する塩素イオン濃度の影響と温度の影響をうけ溶解度が変化するため、実用的には臭素イオン濃度で1~50g/L、好ましくは10~26g/Lでよいことも記載されている(段落0025)。
 更に、特表2009-526912号公報では、硫化銅原材料を大気塩化物浸出処理した後の浸出残留物又は中間生成物から金を回収するにあたって、浸出を促進するため、浸出液中のアルカリ臭化物を0.5~30g/Lとすることを提案している。
特開2009-235519号公報 特開2009-235525号公報 特表2009-526912号公報
 上記文献に記載の技術では、金浸出に用いる浸出液中のハロゲンイオンは、塩素イオンが主体であり、それに臭素イオンを補助的に添加することで、硫化鉱からの湿式法による金の回収方法に関して商業上実施可能な技術を提案するものである。そして、従来技術を用いて金浸出を行った場合、金を浸出した直後の金浸出後液中には高濃度で金が存在する。しかしながら、従来技術では金浸出後液中の金濃度が時間の経過と共に急速に低下してしまう問題がある。
 銅鉱石から金を回収するための実操業においては、金浸出工程の後、金回収工程が必ずしも直ちに実施されるわけではなく、固液分離操作や操業のスケジュール上、1~3日間程度金浸出後液を保管した後に金回収工程を実施することもある。そのため、金浸出後液を保管している間に、溶解していた金濃度をできるだけ保持することのできる方法が望まれる。
 金回収に際し、金浸出工程後の浸出後液に含まれる金錯体を活性炭に吸着することが行われるが、その吸着量が多ければ多いほど歩留まりが大きくなる。特に活性炭を焼却処理する場合には、単位活性炭重量あたりの吸着量が生産コストに直結して大きな影響を及ぼすため、単位吸着量を増加させる方法の開発が望まれるが、特許文献1及び2のいずれも、金の活性炭への吸着性向上に対する検討はなされておらず、また一般的にも活性炭の種類や浸出後液の共雑物等の問題もあり適当な方法は知られていなかった。
 そこで、本発明は、時間経過による金浸出後液中の金濃度の低下を抑制するとともに、金の活性炭への吸着量を向上させることが可能な硫化鉱物からの金の回収方法を提供する。
 本発明者は鋭意研究の結果、塩化アルカリ水溶液を基本とする金浸出液中の臭素イオン濃度を極端に高くすることで、浸出後液中の金が溶解した状態を安定して保持できることを見出した。そして、この浸出後液中の金錯体を活性炭で吸着するに際し、吸着競合物質となる浸出後液中の一価の銅イオン濃度を予め低減させておくことで、活性炭への金の吸着量を有意に向上できることを見出した。
 本発明は一側面において、硫化鉱物又は硫化鉱物に対して浸出処理を行った後の浸出残渣を、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液と酸化剤の供給下で接触させて、浸出残渣中の金成分を浸出する工程1と、金を浸出した金浸出後液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(参照電極、銀/塩化銀)以上に保持しながら保存する工程2と、工程2で得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程3と、工程3で得られた金浸出後液中の金を活性炭に吸着させる工程4とを含む硫化鉱物からの金の回収方法である。
 本発明は別の一側面において、硫化鉱物又は硫化鉱物に対して浸出処理を行った後の浸出残渣を、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液と酸化剤の供給下で接触させて、浸出残渣中の金成分を浸出する工程1と、金を浸出した金浸出後液中の臭素イオン濃度を80g/L以上に、酸化還元電位を480mV(参照電極、銀/塩化銀)以上に保持しながら保存する工程2と、工程2で得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程3と、工程3で得られた金浸出後液中の金を活性炭に吸着させる工程4とを含む硫化鉱物からの金の回収方法である。
 本発明に係る硫化鉱物からの金の回収方法の別の一実施形態においては、工程3が、酸化還元電位(参照電極、銀/塩化銀)を520mV~570mVに調整することを含む。
 本発明に係る硫化鉱物からの金の回収方法の別の一実施形態においては、工程3が、空気の吹き込みにより酸化還元電位を調整することを含む。
 本発明によれば、時間経過による金浸出後液中の金濃度の低下を抑制するとともに、金の活性炭への吸着量を向上させることが可能な硫化鉱物からの金の回収方法が提供できる。
浸出後液中に溶解している金の濃度の推移を示すグラフである。 金浸出後液の酸化還元電位と吸着後液中の金濃度との関係を表すグラフである。 金浸出後液を活性炭充填カラムに連続的に給液した場合において、CuClの添加と空気の吹き込みを行った場合の、酸化還元電位及び金濃度の変化の関係を表すグラフである。
(工程1)
 金浸出工程では、塩素イオン、臭素イオン、銅イオン及び鉄イオンを含有する酸性水溶液(金浸出液)を酸化剤の供給下で原料に接触させて、原料中の金成分を浸出する。酸性水溶液中の塩素イオン濃度を40~200g/L、臭素イオン濃度を20~100g/L、銅イオン濃度を5~25g/L、鉄イオン濃度を0.01~10g/Lに調整することが好ましい。本発明の処理対象となる原料は、硫化鉱物、又は硫化鉱物に対して浸出処理を行った後の浸出残渣である。硫化鉱物としては特に制限はないが、典型的には金を含有する一次硫化銅鉱(例:黄銅鉱)、金を含むケイ酸鉱を含有する硫化銅鉱、金を含有する黄鉄鉱が挙げられる。また、硫化鉱物の様々な処理過程で生じる中間生成物も硫化鉱物として取り扱う。
 金の浸出は、溶出した金が塩素イオン又は臭素イオンと反応し、金の塩化錯体又は金の臭化錯体を生成することにより進行する。臭素イオンを併用することで、より低電位の状態で錯体を形成するため、浸出時間を短縮できると共に、金の浸出効率の向上、すなわち浸出後液中の金濃度の上昇を図ることができる。本発明においては、金浸出液中の臭素イオン濃度を著しく高めたことで、浸出した金が溶解した状態で長期間安定的に存在することができる。
 浸出液の酸化還元電位は温度にも依存し、概ね液温が10℃低下すると酸化還元電位も約10mV低下する。したがって一般的な浸出温度である80℃程度からそのまま放置すると、浸出液の温度が低下し、酸化還元電位も低下して金の溶解を維持できにくくなる。
 金浸出液中の臭素イオンの濃度は、反応速度や溶解度の観点からだけみれば5g/L程度でも十分であるが、浸出後液中の金濃度を2mg/L以上で安定して溶解した状態を数日間保持、あるいは浸出後液の液温が一般的な浸出温度である80℃程度から室温に低下しても溶解した状態を保持するためには、40g/L以上とすることが必要であり、80g/L以上とすることが好ましく、100g/L以上とすることがより好ましく、120g/L以上とすることが更により好ましい。ただし、コストの観点からは金浸出液中の臭素イオン濃度は低くするのが一般的であり、80~100g/Lとするのが好ましい。
 金浸出液中の塩素イオンの濃度は、Cu(I)の生成の観点から、5g/L以上とするのが好ましく、15g/L以上とするのがより好ましい。ただし、塩素イオン濃度を高くし過ぎると浴のイオン濃度が高くなり、操業中に析出の問題も発生してくるため、200g/L以下とすべきであり、20~40g/Lとするのが好ましい。
 鉄イオンは、これは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンを示すが、金を酸化する働きをする。金浸出液中の鉄イオンの濃度は0.01g/L以上とするのが好ましく、3g/L以上とするのがより好ましい。
 銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなる。銅イオンも2価の銅イオンが酸化の働きをする。浸出液中の銅イオンの濃度は5g/L以上とするのが好ましく、20g/L以上とするのがより好ましい。
 塩素イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。
 臭素イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属の形態で供給するのが好ましい。臭化金属としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。
 銅イオン及び鉄イオンの供給源としては、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩素イオン及び/又は臭素イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては酸化力の観点から塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)を使用するのがそれぞれ望ましいが、塩化第一銅(CuCl)及び塩化第一鉄(FeCl2)を使用しても浸出液に酸化剤を供給することで、塩化第二銅(CuCl2)及び塩化第二鉄(FeCl3)にそれぞれ酸化されるため、大差はない。
 従って、金浸出工程の好適な実施形態においては、金浸出液として、塩素イオン及び臭素イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。
 金浸出液のpHは3価の鉄イオンの溶解を確保する理由から、0~3程度とするのが好ましく、0.5~2.0程度とするのがより好ましい。金浸出工程の開始時における浸出液の酸化還元電位(参照電極、銀/塩化銀)は、臭素イオンの効果もあり500mV以上とするのが好ましく、550mV以上とするのがより好ましい。金浸出液の温度は浸出効率や装置の材質の観点から、60℃以上とするのが好ましく、浸出速度の観点から70~90℃とするのがより好ましい。
 金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。経済性や安全性の観点からも空気が好ましい。
 金浸出液と原料の接触方法としては特に制限はなく、噴霧や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。
(工程2)
 金浸出工程終了後の金浸出後液中で金が安定して溶解している状態を長期間保持するために、保存期間中に金浸出後液中の臭素イオン濃度を調整する。具体的には、金を浸出した酸性水溶液中の臭素イオン濃度が40g/L以上のとき、金浸出後液の酸化還元電位を500mV以上(参照電極、銀/塩化銀)で室温以上(25℃以上)で管理することにより金の溶解を維持可能である。これは浸出直後の酸化還元電位よりも40mV以上低い値である。金を浸出した酸性水溶液中の臭素イオン濃度が80g/L以上であれば、金浸出後液の酸化還元電位を480mV以上(参照電極、銀/塩化銀)で室温以上(25℃以上)で管理することも可能である。また、管理温度が高いほうが金の溶解性は高くなるが、保温のための費用がかかるため、室温(20~60℃、典型的には25~40℃)で保存することが好ましい。
 本発明によれば、金浸出後に浸出後液中に溶解している金の安定性が高いため、金浸出工程を終えた後、金の回収工程を開始するまでの保存期間を長くすることができる。例えば、保存期間を5日間以上とすることができ、1週間以上とすることもできる。ただし、あまり長期間保存してもメリットは少ないことから、2日間以内とするのが好ましい。
 金浸出工程が終了後、1日以内、好ましくは半日、より好ましくは6時間以内、更により好ましくは1時間以内に浸出後液に臭素イオンの供給源を添加することができる。臭素イオンの供給源としては、先述した化合物が挙げられ、経済性や入手の容易さの観点から、臭化ナトリウムが好ましい。
(工程3)
 保存工程を経た金浸出後液に対して、CuClを加えて撹拌し、一度酸化還元電位(ORP)を520mV以下に、より好ましくは500mV以下に下げた後に、酸化剤を加えて再度ORPを520mV以上に調整する。これにより、金の活性炭吸着を阻害する金浸出後液中の一価の銅イオンが二価の銅イオンに酸化されて減少し、金浸出後液中の活性炭への吸着競合物が少なくなるため、活性炭への金の吸着率がより向上する。
 酸化剤は、特に限定されないがコストの面から空気が使用される。また液温も特に限定されないが、金浸出が加温浸出であることと、酸化効率の面を考慮すると、金浸出後液の液温は45℃以上に維持されるのが好ましく、より好ましくは50℃以上である。
 ORPの上昇は、金浸出後液中の一価の銅イオンの減少を示す。一価銅は非常にソフトな元素として知られ活性炭に対する親和性が高く、金錯体の吸着と競合する。この一価銅の減少により活性炭中の吸着活性点は金に対する選択性が増すことで金の効率的な回収が達成される。
 ORPの調整は、520mV以上に調整することで、液中の一価銅濃度を低減させて金の活性炭への吸着率を向上させることができる。上限に特に制限はないが、調整に必要な時間及び一価銅の低減効率を考慮すると、570mV以下とするのが好ましく、より好ましくは530~560mVに調整することが好ましい。
金回収(工程4)
 金の浸出反応後、固液分離することによって得られた金溶解液から、活性炭吸着により金を回収する工程4を実施する。金の活性炭への接触はバッチ回分式もしくは活性炭を充填した吸着塔に酸性浸出液を連続通液することで行ってもよい。
 バッチ式の場合、攪拌速度は指定されない。添加の活性炭量は金重量の50倍~10000倍となるように添加する。
 連続通液法式では特に通液速度は限定されない(一般的にはSV1~25)が活性炭の単位重量あたりの金吸着量が20000~30000g/tとなった時点で、活性炭は要求能力を満たさなくなる。そのため活性炭からの金のストリップや再生はこの吸着量を目安に行う。活性炭の再生方法は一般的に知られる硫黄化合物や窒素化合物、もしくは酸により行われ、特に限定されない。
<その他の工程>
(銅回収)
 銅浸出工程によって得られた浸出後液は銅成分を多量に含んでいるので、浸出後液から銅を回収することができる。銅の回収方法としては特に制限はないが、例えば溶媒抽出、イオン交換、卑な金属との置換析出及び電解採取などを利用することができる。浸出後液中の銅は1価及び2価の状態が混在しているが、溶媒抽出やイオン交換を円滑に行うために、全部が2価の銅イオンとなるように予め酸化しておくことが好ましい。酸化の方法は特に制限はないが空気や酸素を浸出後液中に吹き込む方法が簡便である。
<実施例1>
 試験では、金を含有する硫化銅精鉱中の銅を浸出した後の残渣に対して金浸出した。残渣中の金品位は26g/tで、銅品位は1.2%であった。金浸出は、Clイオン濃度を40g/L、Cuイオン濃度を20g/L、Feイオン濃度を2g/L、Brイオン濃度を20~120g/Lに調整し、空気を吹き込みながら液温80℃で行った。80℃での酸化還元電位は537~557mV(参照電極、銀/塩化銀)であった。
 浸出後液を室温(15~25℃)で放置し、1日~7日後の浸出液中に溶解している金濃度を測定した。微細な析出物の影響を排除するため、サンプリングした浸出液は、0.1μmのメンブランフィルターでろ過した後、ICP分析を行った。保存期間中の酸化還元電位は浸出後液の液温が25℃に低下してから測定した。
 分析結果を図1に示す。Br濃度が20g/Lの浸出液の場合、1日後には1mg/L以下まで低下したが、40g/L以上の浸出液は酸化還元電位が500mVならば、7日後までほぼ最初の濃度を維持した。
 また、酸化還元電位を480mVにした場合、Br濃度が60g/Lの浸出液の金濃度は1日後には半分以下に低下したが、Br濃度が80g/Lの浸出液の金濃度は5日後でも当初の金濃度を保持していた。
<実施例2>
 50g/Lの塩化物イオン、80g/Lの臭化物イオン、18g/Lの銅、及び0.2g/Lの鉄を含む金浸出液を用いて、金浸出工程後に得られた金浸出後液中の金を浸出した。金浸出後液は、NaCl:84g/L、NaBr:103g/L、Cu:20g/L、Fe:2g/L、Au:8mg/L含有し、pHは1.2であった。CuClを添加してORPを510mVに調整した。浸出後液を55℃に加温し、空気を1分当たり0.4L吹き込みながら攪拌した。この金浸出後液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)およそ14mlを充填したガラス製カラムに通し、金を活性炭に吸着させた。カラムの直径は11mm、高さ150mmとした。液の供給速度は11.9ml/分、空間速度は50(1/h)とした。排出される吸着後液中の金を塩酸で希釈しICP-AESにより定量した。ORPと吸着後液の関係を図2に示す。
 ORPを520mV以上に調整した液では吸着後液に含まれる金濃度が著しく低下していることがわかる。ORPの上限は定めないものの過度に電位を上げても吸着後液の金の濃度は劇的に低下することはなく、少なくとも520mVまで酸化すれば良いが過度の酸化を妨げるものではないことが分かる。
<実施例3>
 実施例2で使用した金浸出後液と活性炭充填カラムとを用いて連続的に給液する中で、CuClの添加と空気吹き込みによりORPを変化させて吸着後液の金濃度を測定した。結果を図3に示す。
 図3からもORPと金の活性炭への吸着の関係は明らかであり、金浸出後液はORP520mV以上として活性炭と接触させると良好な金の回収が可能である。また、ORPに影響を与えているのはCu(I)であることが分かる。
 Cu(I)は水溶液中では酸化を受けてCu(II)になりやすいが本系のような高濃度のハロゲン化物を含む水溶液では比較的安定に存在する。そのため空気吹き込み以外にも過酸化水素や次亜塩素酸といった酸化剤でCu(I)を酸化しても同様の結果が得られると推定されるがコストや取り扱いの利便性を考慮すると空気吹き込みが好ましい。

Claims (4)

  1.  硫化鉱物又は硫化鉱物に対して浸出処理を行った後の浸出残渣を、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液と酸化剤の供給下で接触させて、浸出残渣中の金成分を浸出する工程1と、
     金を浸出した金浸出後液中の臭素イオン濃度を40g/L以上に、酸化還元電位を500mV(参照電極、銀/塩化銀)以上に保持しながら保存する工程2と、
     工程2で得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程3と、
     工程3で得られた金浸出後液中の金を活性炭に吸着させる工程4と
    を含むことを特徴とする硫化鉱物からの金の回収方法。
  2.  硫化鉱物又は硫化鉱物に対して浸出処理を行った後の浸出残渣を、塩素イオン、臭素イオン、銅イオン、及び鉄イオンを含有する酸性水溶液と酸化剤の供給下で接触させて、浸出残渣中の金成分を浸出する工程1と、
     金を浸出した金浸出後液中の臭素イオン濃度を80g/L以上に、酸化還元電位を480mV(参照電極、銀/塩化銀)以上に保持しながら保存する工程2と、
     工程2で得られた金浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程3と、
     工程3で得られた金浸出後液中の金を活性炭に吸着させる工程4と
    を含むことを特徴とする硫化鉱物からの金の回収方法。
  3.  工程3が、酸化還元電位(参照電極、銀/塩化銀)を520mV~570mVに調整することを含む、請求項1又2に記載の硫化鉱物からの金の回収方法。
  4.  工程3が、空気の吹き込みにより酸化還元電位を調整することを含む請求項1~3のいずれか1項に記載の硫化鉱物からの金の回収方法。
PCT/JP2014/053193 2013-03-29 2014-02-12 硫化鉱物からの金の回収方法 WO2014156350A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2014245390A AU2014245390B2 (en) 2013-03-29 2014-02-12 Method for recovering gold from sulfide ore
CA2908364A CA2908364C (en) 2013-03-29 2014-02-12 Method of recovering gold from sulfide ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-075230 2013-03-29
JP2013075230A JP5840643B2 (ja) 2013-03-29 2013-03-29 硫化鉱物からの金の回収方法

Publications (1)

Publication Number Publication Date
WO2014156350A1 true WO2014156350A1 (ja) 2014-10-02

Family

ID=51623351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053193 WO2014156350A1 (ja) 2013-03-29 2014-02-12 硫化鉱物からの金の回収方法

Country Status (5)

Country Link
JP (1) JP5840643B2 (ja)
CA (1) CA2908364C (ja)
CL (1) CL2015002902A1 (ja)
PE (1) PE20151820A1 (ja)
WO (1) WO2014156350A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789791A (zh) * 2015-04-14 2015-07-22 吉林省有色金属地质勘查局研究所 泡沫吸附金的自动解脱装置
CN107109528A (zh) * 2014-10-29 2017-08-29 奥图泰(芬兰)公司 用于回收金的工艺
US20180298465A1 (en) * 2016-03-31 2018-10-18 Jx Nippon Mining & Metals Corporation Method for recovering gold from an ore or a refining intermediate containing gold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899672B2 (ja) * 2017-03-14 2021-07-07 Jx金属株式会社 鉱石もしくは精錬中間物からの金の回収方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235525A (ja) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd 金の浸出方法
JP2012184462A (ja) * 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp 硫化鉱からの銅及び金の浸出方法
JP2013112879A (ja) * 2011-11-30 2013-06-10 Jx Nippon Mining & Metals Corp 硫化鉱からの金の浸出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235525A (ja) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd 金の浸出方法
JP2012184462A (ja) * 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp 硫化鉱からの銅及び金の浸出方法
JP2013112879A (ja) * 2011-11-30 2013-06-10 Jx Nippon Mining & Metals Corp 硫化鉱からの金の浸出方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109528A (zh) * 2014-10-29 2017-08-29 奥图泰(芬兰)公司 用于回收金的工艺
US10669608B2 (en) 2014-10-29 2020-06-02 Outotec (Finland) Oy Process for recovering gold
CN104789791A (zh) * 2015-04-14 2015-07-22 吉林省有色金属地质勘查局研究所 泡沫吸附金的自动解脱装置
CN104789791B (zh) * 2015-04-14 2017-06-23 吉林省有色金属地质勘查局研究所 泡沫吸附金的自动解脱装置
US20180298465A1 (en) * 2016-03-31 2018-10-18 Jx Nippon Mining & Metals Corporation Method for recovering gold from an ore or a refining intermediate containing gold
US10883155B2 (en) 2016-03-31 2021-01-05 Jx Nippon Mining & Metals Corporation Method for recovering gold from an ore or a refining intermediate containing gold

Also Published As

Publication number Publication date
CA2908364A1 (en) 2014-10-02
JP5840643B2 (ja) 2016-01-06
CL2015002902A1 (es) 2016-06-10
PE20151820A1 (es) 2015-12-16
JP2014198888A (ja) 2014-10-23
CA2908364C (en) 2017-11-21
AU2014245390A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
AU2014245391B2 (en) Method for recovering gold from gold ore containing pyrite
JP5319718B2 (ja) 硫化鉱からの銅及び金の浸出方法
JP5571416B2 (ja) 硫化銅鉱の浸出方法
WO2013108478A1 (ja) 金の回収方法及びそれを用いた金の製造方法
JP5840643B2 (ja) 硫化鉱物からの金の回収方法
JP2014055311A (ja) 金の回収方法
EP2992119B1 (en) Method of preparing a gold-containing solution and process arrangement for recovering gold and silver
JP5840642B2 (ja) 硫化鉱物からの金の回収方法
JP5792043B2 (ja) 硫化鉱からの金の浸出方法
JP6034433B2 (ja) 硫化鉱からの金の浸出方法
JP2013163868A (ja) 硫化鉱からの銅及び金の浸出方法
JP6195536B2 (ja) 鉄の除去方法及び鉄の浸出方法、並びに金の回収方法
JP6899672B2 (ja) 鉱石もしくは精錬中間物からの金の回収方法
JP6849482B2 (ja) 金を含む鉱石もしくは精錬中間物からの金の回収方法
JP7153599B2 (ja) 鉱石の処理方法
JP5790408B2 (ja) ハロゲン化物水溶液から銀を回収する方法
JP2019116670A (ja) 銅の回収方法、及び電気銅の製造方法
JP2014194049A (ja) 硝石浸出液を用いて硫化銅鉱から銅を浸出する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2908364

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 002097-2015

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2014245390

Country of ref document: AU

Date of ref document: 20140212

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14772995

Country of ref document: EP

Kind code of ref document: A1