WO2014153884A1 - 液晶显示面板及液晶显示器 - Google Patents

液晶显示面板及液晶显示器 Download PDF

Info

Publication number
WO2014153884A1
WO2014153884A1 PCT/CN2013/078173 CN2013078173W WO2014153884A1 WO 2014153884 A1 WO2014153884 A1 WO 2014153884A1 CN 2013078173 W CN2013078173 W CN 2013078173W WO 2014153884 A1 WO2014153884 A1 WO 2014153884A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display panel
polarizer
wave plate
Prior art date
Application number
PCT/CN2013/078173
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to GB1515578.1A priority Critical patent/GB2525809B/en
Priority to KR1020157029648A priority patent/KR101708592B1/ko
Priority to DE112013006896.6T priority patent/DE112013006896T5/de
Priority to JP2016504447A priority patent/JP6180616B2/ja
Priority to US13/981,100 priority patent/US9213200B2/en
Publication of WO2014153884A1 publication Critical patent/WO2014153884A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133531Polarisers characterised by the arrangement of polariser or analyser axes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators

Definitions

  • This invention relates to the field of liquid crystal displays. More specifically, it relates to a liquid crystal display panel and a liquid crystal display.
  • Background Art In a liquid crystal display panel, if there is no polarizing effect of the polarizer, the liquid crystal display panel cannot display the screen normally.
  • the polarizer absorbs light perpendicular to the polarization axis and transmits only light along the direction of the polarization axis, which converts natural light into linearly polarized light.
  • the vertical alignment mode of the VA (Vertical Alignment) display mode refers to a display mode in which liquid crystal molecules are vertically aligned with the substrate.
  • the VA display mode is a display mode commonly used in large-size liquid crystal display panels due to its wide viewing angle, high contrast ratio, and no need for friction alignment.
  • the upper and lower polarizers disposed outside the liquid crystal display unit are vertically offset when no voltage is applied (ie, the upper and lower polarized lights are vertically polarized).
  • the absorption axis of the sheet is vertical or parallel (ie, the absorption axes of the upper and lower polarizers are parallel).
  • the normally black mode or the normally white mode of the liquid crystal display panel is determined.
  • the upper and lower polarizers are normally white when they are placed in parallel.
  • the upper and lower polarizers are normally black when they are vertically offset.
  • the VA display mode uses the normally black mode without applying a voltage, that is, the upper and lower polarizers are vertically offset. In this way, the brightness is very low in the dark state, and high contrast can be achieved, and when the pixel is damaged, it is dark, and it appears as a dark point, which has less influence on the display of the picture.
  • the polarizer web cannot be cut into polarizers of the same size and absorbing the axis perpendicular. Therefore, the large-size liquid crystal display panel exceeding the width of the polarizer cannot normally realize the normally black mode according to the existing architecture.
  • an object of the present invention is to provide a liquid crystal display panel in which two polarizers are parallel-biased and can realize a normally black mode when no voltage is applied, and the liquid crystal display panel is provided. LCD monitor.
  • a liquid crystal display panel provided by the present invention includes: a liquid crystal display unit including a light incident side and a light exiting side; a first polarizer disposed on a light incident side of the liquid crystal display unit; and a second polarizer disposed a light-emitting side of the liquid crystal display unit; a half-wave plate disposed between the first polarizer and the liquid crystal display unit; wherein the absorption axis of the first polarizer is parallel to the absorption axis of the second polarizer, and the half-wave plate is slow The angle between the shaft and the absorption axis of the first polarizer is 45 degrees or 135 degrees.
  • the liquid crystal display panel further includes two biaxial compensation films, each of which is disposed between the first polarizer or the half wave plate and the liquid crystal display unit.
  • the angle between the slow axis of the biaxial compensation film and the absorption axis of the polarizer on the same side is 90 degrees
  • the brightness of the center point of the liquid crystal display panel increases with the compensation value of the half wave plate at a predetermined wavelength.
  • the size of the half wave plate at a certain predetermined wavelength is equal to half of the preset wavelength, the brightness of the center point of the liquid crystal display panel is the smallest.
  • the brightness of the center point of the liquid crystal display panel is compensated with the half wave plate at a predetermined wavelength.
  • the value is increased from the sum of the compensation values of the two biaxial compensation films at the preset wavelength from large to small, and then increased from small to large, and when the half wave plate is compensated at a certain predetermined wavelength with two pairs
  • the predetermined wavelength is 380 nm to 780 nm.
  • the liquid crystal display of the present invention further includes a liquid crystal display panel and a backlight module.
  • the backlight module is disposed opposite to the liquid crystal display panel, and the backlight module provides a light source to the liquid crystal display panel, and the liquid crystal display panel is the liquid crystal display panel.
  • FIG. 1a and FIG. 1b respectively show an architectural diagram of a conventional black liquid crystal display panel in a normally black mode and a normally white mode when no voltage is applied.
  • 2 illustrates an architectural diagram of a liquid crystal display panel implementing a normally black mode when no voltage is applied, in accordance with an embodiment of the present invention.
  • 3 is a graph showing a trend of a change in luminance at a center point of a wavelength of 450 nm with a compensation value of a half-wave plate of a liquid crystal display panel according to an embodiment of the present invention.
  • 4 is a graph showing a trend of a change in luminance of a center point of a liquid crystal display panel at a wavelength of 550 nm with a compensation value of a half-wave plate according to an embodiment of the present invention.
  • 5 is a graph showing a trend of a luminance of a center point of a liquid crystal display panel at a wavelength of 650 nm as a compensation value of a half-wave plate according to an embodiment of the present invention.
  • 6 is a graph showing the relationship between the compensation value of a half wave plate and the compensation value of two biaxial compensation films and the wavelength of visible light according to an embodiment of the present invention.
  • FIG. 7 shows a schematic diagram of a liquid crystal display according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) The present invention is described in detail with reference to the accompanying drawings. The embodiments are described below to explain the present invention by referring to the figures. In the following description, unnecessary details of well-known structures and/or functions may be omitted in order to avoid obscuring the present inventive concept in order to avoid unnecessary details of the structure and/or function.
  • 2 illustrates an architectural diagram of a liquid crystal display panel implementing a normally black mode when no voltage is applied, in accordance with an embodiment of the present invention. As shown in FIG.
  • a liquid crystal display panel includes a liquid crystal display unit 10, a half-wave plate 20, two biaxial compensation films 31, 32, and first and second polarizers 41, 42.
  • the liquid crystal display unit 10 has a VA (Vertical Alignment) display mode and includes liquid crystal molecules.
  • VA Vertical Alignment
  • the side where light is incident on the liquid crystal display unit 10 is defined as the light incident side, and the side where light is emitted after passing through the liquid crystal display unit 10 is defined as the light exiting side.
  • the first polarizer 41 is disposed on the light incident side of the liquid crystal display unit 10, and the second polarizer 42 is disposed on the liquid crystal.
  • the second polarizer 42 may be disposed on the light incident side of the liquid crystal display unit 10, and the first polarizer 41 may be disposed on the light exit side of the liquid crystal display unit.
  • the absorption axis of the first polarizer 41 is disposed in parallel with the absorption axis of the second polarizer 42.
  • the half wave plate 20 is disposed between the first polarizer 41 and the liquid crystal display unit 10.
  • the half-wave plate 20 can also be replaced by other devices having the function of: light passing through the device can produce a half-wavelength optical path difference or a phase difference of 180 degrees.
  • the biaxial compensation film 31 is disposed between the half wave plate 20 and the first polarizer 41, and the biaxial compensation film 32 is disposed between the second polarizer 42 and the liquid crystal display unit 10. It should be understood that the biaxial compensation film 32 may be disposed between the half wave plate 20 and the first polarizer 41, and the biaxial compensation film 31 is disposed between the second polarizer 42 and the liquid crystal display unit 10.
  • the biaxial compensation films 31 and 32 are arranged to correct the phase difference generated by the liquid crystal display panel at different viewing angles, so that the birefringence of the liquid crystal molecules is compensated for symmetry, and the liquid crystal display can be effectively improved. Light leakage and color shift of the large viewing angle of the panel.
  • two biaxial compensation films 31, 32 may not be provided.
  • it is necessary to find a suitable parameter of the half wave plate 20 and the angle between the slow axis of the half wave plate 20 and the absorption axis of the first polarizer 41, and also The parameters of the two suitable biaxial compensation films 31, 32 and the angles of the slow axes of the two biaxial compensation films 31, 32 and the absorption axes of the first polarizer 41 and the second polarizer 42 are found.
  • a liquid crystal display panel according to an embodiment of the present invention will be described in detail in realizing a normally black mode when no voltage is applied.
  • Embodiments of the present invention simulate using LCD Master software. The simulation settings are as follows:
  • Pretilt angle 89 degrees
  • Pretilt angle is the inclination of the liquid crystal at the boundary pair perpendicular to the normal vector of the liquid crystal display panel
  • 2 Each pixel of the liquid crystal display unit 10 is divided into four regions, four regions (domain) liquid crystal
  • the axial angles are 45 degrees, 135 degrees, 225 degrees, and 315 degrees.
  • Light source setting 1 : Spectrum of Blue-YAG LED; 2: Central brightness is defined as lOOnit; 3: Light source distribution is Lambert's distribution.
  • the dark state luminance (unit: nit) refers to the brightness of the above liquid crystal display panel 10 when no voltage (0 V) is applied; the bright state brightness (unit: nit) refers to the above liquid crystal display surface.
  • Table 1 shows the dark state brightness, bright state light J, and contrast of the liquid crystal display panel shown in Fig. 1 in the normally black mode.
  • the half-wave plate 20 of the present embodiment is shown at wavelengths of 450 nm, 550 nm, and 650 nm, respectively.
  • Nx is the refractive index of the half-wave plate 20 on the X-axis
  • Ny is the refractive index of the half-wave plate 20 on the y-axis
  • d is the thickness of the half-wave plate 20 (unit: nm)
  • R0 is a half-wave plate. 20 at a predetermined wavelength of the compensation value, which can satisfy the formula (1),
  • R0 (Nx - Ny)x d ( 1 )
  • Table 3 shows simulation results of realizing a normally black mode when a voltage is applied without a voltage and a normally white mode when a voltage is applied, according to an embodiment of the present invention.
  • the angles of the slow axes of the biaxial compensation films 31, 32 and the absorption axes of the first polarizer 41 and the second polarizer 42 are set to be 90 degrees.
  • the liquid crystal display panel when the slow axis of the half-wave plate 20 is parallel or perpendicular to the absorption axis of the first polarizer 41, the liquid crystal display panel is in a bright state when no voltage is applied, and the normally white mode is exhibited.
  • the angle between the slow axis of the half wave plate 20 and the absorption axis of the first polarizer 41 is 45 degrees or 135 degrees, the liquid crystal display panel is not powered.
  • the pressing time is dark, the normal black mode is present, but the dark state of the liquid crystal display panel is high when no voltage is applied, resulting in a low contrast of the liquid crystal display panel. Therefore, it is necessary to redesign the parameters of the appropriate half-wave plate 20 to reduce the dark state brightness.
  • the parameters of the appropriate half-wave plate 20 will be simulated with the wavelengths of the incident light of 450 nm, 550 nm, and 650 nm as an example, so that the contrast of the liquid crystal display panel according to the embodiment of the present invention is equivalent to that in Table [1].
  • the contrast of the liquid crystal display panel with the existing architecture is shown. Since the parameter Nx and the parameter Ny of the half-wave plate 20 at a certain predetermined wavelength are constant values, the magnitude of the compensation value R0 of the half-wave plate 20 at the predetermined wavelength can only be redesigned to reduce the embodiment of the present invention.
  • the contrast of the liquid crystal display panel, that is, the thickness d of the half-wave plate 20 is changed. Two schemes are designed to simulate the magnitude of the appropriate compensation value R0 for the half-wave plate 20.
  • Solution 1 The angle between the slow axis of the half-wave plate 20 and the absorption axis of the first polarizer 41 is set to 45 degrees or 135 degrees, and the slow axis of the biaxial compensation film 31 and the absorption axis of the first polarizer 41 are clamped. The angle is 90 degrees, the angle between the slow axis of the biaxial compensation film 32 and the absorption axis of the second polarizer 42 is 90 degrees, and the sum of the compensation values R0 of the biaxial compensation films 31, 32 is 112 nm, and the half wave plate 20 is changed.
  • the magnitude of the compensation value R0 simulates the change tendency of the center point luminance (unit: nit) of the liquid crystal display panel of the embodiment of the present invention.
  • the center point brightness of the liquid crystal display panel refers to the brightness at the center of the liquid crystal display panel when the liquid crystal display panel is viewed.
  • Option 2 setting the angle between the slow axis of the half-wave plate 20 and the absorption axis of the first polarizer 41 to be 45 degrees or 135 degrees, and the slow axis of the biaxial compensation film 31 and the absorption axis of the first polarizer 41
  • the angle is 45 degrees or 135 degrees
  • the angle between the slow axis of the biaxial compensation film 32 and the absorption axis of the second polarizer 42 is 45 degrees or 135 degrees
  • the sum of the compensation values R0 of the biaxial compensation films 31, 32 is 112 nm.
  • the magnitude of the compensation value R0 of the half-wave plate 20 is changed to simulate the change tendency of the center point luminance (unit: nit) of the liquid crystal display panel of the embodiment of the present invention.
  • the center point brightness of the liquid crystal display panel refers to the brightness at the center of the liquid crystal display panel when the liquid crystal display panel is viewed.
  • Fig. 3 is a graph showing a trend of a change in the central illuminance of a liquid crystal display panel at a wavelength of 450 nm with a compensation value of a half-wave plate according to an embodiment of the present invention.
  • the conclusion of the scheme 1 is that when the slow axis of the biaxial compensation film 31 and the absorption axis of the first polarizer 41 are at an angle of 90 degrees and the slow axis of the biaxial compensation film 32 and the second polarizer 42 When the angle of the absorption axis is 90 degrees, the brightness of the center point of the liquid crystal display panel according to the embodiment of the present invention becomes larger and smaller as the compensation value R0 of the half-wave plate 20 increases, and then becomes smaller and larger. And when the compensation value R0 of the half-wave plate 20 is half of the wavelength of 450 nm (that is, the compensation value R0 of the half-wave plate 20 is 225 nm), the center point luminance is the smallest.
  • the center point brightness of the liquid crystal display panel according to the embodiment of the present invention is the sum of the compensation value R0 of the half-wave plate 20 and the compensation value R0 of the biaxial compensation films 31, 32.
  • FIG. 4 is a graph showing a trend of a change in luminance of a center point of a liquid crystal display panel at a wavelength of 550 nm with a compensation value of a half-wave plate according to an embodiment of the present invention.
  • the conclusion of the scheme 1 is that when the slow axis of the biaxial compensation film 31 and the absorption axis of the first polarizer 41 are at an angle of 90 degrees and the slow axis of the biaxial compensation film 32 and the second polarizer 42
  • the angle of the absorption axis is 90 degrees
  • the brightness of the center point of the liquid crystal display panel according to the embodiment of the present invention becomes larger and smaller as the compensation value R0 of the half-wave plate 20 increases, and then becomes smaller and larger.
  • the compensation value R0 of the half-wave plate 20 is half of the wavelength 550 nm (that is, the compensation value R0 of the half-wave plate 20 is 275 nm)
  • the center point luminance is the smallest.
  • the center point brightness of the liquid crystal display panel according to the embodiment of the present invention is the sum of the compensation value R0 of the half-wave plate 20 and the compensation value R0 of the biaxial compensation films 31, 32.
  • the center point brightness is the smallest.
  • Fig. 5 is a graph showing a trend of a change in the central illuminance of a liquid crystal display panel at a wavelength of 650 nm with a compensation value of a half-wave plate according to an embodiment of the present invention.
  • the conclusion of the scheme 1 is that when the slow axis of the biaxial compensation film 31 and the absorption axis of the first polarizer 41 are at an angle of 90 degrees and the slow axis of the biaxial compensation film 32 and the second polarizer 42 When the angle of the absorption axis is 90 degrees, the brightness of the center point of the liquid crystal display panel according to the embodiment of the present invention becomes larger and smaller as the compensation value R0 of the half-wave plate 20 increases, and then becomes smaller and larger. And when the compensation value R0 of the half-wave plate 20 is half of the wavelength 650 nm (that is, the compensation value R0 of the half-wave plate 20 is 325 nm), the center point luminance is the smallest.
  • the center point brightness of the liquid crystal display panel according to the embodiment of the present invention is the sum of the compensation value R0 of the half-wave plate 20 and the compensation value R0 of the biaxial compensation films 31, 32.
  • the center point brightness is the smallest.
  • the sum of the compensation values R0 of the biaxial compensation films 31, 32 is set to 112 nm, but not limited thereto, and the compensation values of the biaxial compensation films 31, 32 can be arbitrarily set.
  • the sum of R0 is as long as it satisfies when the angle between the slow axis of the biaxial compensation film 31 and the absorption axis of the first polarizer 41 is 45 degrees or 135 degrees and the slow axis of the biaxial compensation film 32 and the second polarizer
  • the sum of the compensation value R0 of the half-wave plate 20 and the compensation value R0 of the biaxial compensation films 31, 32 may be half of the preset wavelength.
  • Fig. 6 is a graph showing the relationship between the compensation value of the half-wave plate and the compensation value of the two biaxial compensation films and the wavelength of visible light according to an embodiment of the present invention.
  • the sum of the compensation value R0 of the half-wave plate 20 and the compensation value R0 of the two biaxial compensation films 31, 32 is half of the corresponding visible light wavelength.
  • Table 4 shows simulation results of dark state brightness, bright state brightness, and contrast of the liquid crystal display panel in the normally black mode according to an embodiment of the present invention.
  • the angle between the slow axis of the half-wave plate 20 and the absorption axis of the first polarizer 41 is 45 degrees or 135 degrees
  • the biaxial compensation film 31 The angle between the slow axis and the absorption axis of the first polarizer 41 is 45 degrees or 135 degrees and the angle between the slow axis of the biaxial compensation film 32 and the absorption axis of the second polarizer 42 is 45 degrees or 135 degrees
  • half The sum of the compensation value R0 of the wave plate 20 and the compensation value R0 of the two biaxial compensation films 31, 32 is half of the corresponding visible light wavelength.
  • the liquid crystal display panel according to the embodiment of the present invention effectively reduces the dark state brightness while reducing the brightness of the bright state, and the contrast is effectively improved.
  • the contrast of the liquid crystal display panel according to the embodiment of the present invention corresponds to the contrast of the liquid crystal display panel having the conventional structure in Table 1 (the value is 1720).
  • FIG. 7 shows a schematic diagram of a liquid crystal display according to an embodiment of the present invention.
  • a liquid crystal display 1 includes a liquid crystal display panel 2 and a backlight module 3 .
  • the backlight module 3 is disposed opposite to the liquid crystal display panel 2 , and the backlight module 3 provides a light source to the liquid crystal display panel 2 .
  • the liquid crystal display panel 2 is the liquid crystal display panel described above.
  • the liquid crystal display panel according to the embodiment of the present invention can realize the normally black mode when the two polarizers are aligned in parallel and without applying voltage, and the contrast thereof is effectively improved.

Abstract

一种液晶显示面板包括:液晶显示单元(10),包括入光侧及出光侧;第一偏光片(41),其设于液晶显示单元(10)的入光侧;以及第二偏光片(42),其设于液晶显示单元(10)的出光侧;半波片(20),其设于第一偏光片(41)与液晶显示单元(10)之间;其中,第一偏光片(41)的吸收轴平行于第二偏光片(42)的吸收轴,半波片(20)的慢轴与第一偏光片(41)的吸收轴的夹角为45度或135度。还披露了一种液晶显示器(1)。该液晶显示面板在两个偏光片(41,42)平行偏贴并且不加电压时也能实现常黑模式,而且其对比度得到有效地提高。

Description

说 明 4
液晶显示面板及液 技术领域
本发明涉及液晶显示领域。 更具体地讲, 是涉及一种液晶显示面板及液晶 显不器。 背景技术 在液晶显示面板中, 如果没有偏光片的偏光作用, 液晶显示面板就不能正 常地显示画面。偏光片吸收方向与偏光轴垂直的光, 只让沿着偏光轴方向的光 透过, 这样可把自然光转变成线偏振光。
VA(Vertical Alignment)显示模式即垂直取向模式, 是指液晶分子与基板垂 直取向的显示模式。 VA 显示模式以其宽视角、 高对比度和无须摩擦配向等优 势, 成为大尺寸的液晶显示面板常采用的显示模式。 当不加电压时, 入射光通过具有 VA显示模式的液晶显示面板的液晶显示 单元后不会发生偏转, 所以在不加电压时设于液晶显示单元外侧的上下偏光片 垂直偏贴(即上下偏光片的吸收轴垂直)或者平行偏贴(即上下偏光片的吸收 轴平行) 决定液晶显示面板的常黑模式或常白模式。 如图 la、 图 lb所示, 通 常上下偏光片平行偏贴时为常白模式: 上下偏光片垂直偏贴时为常黑模式。 一般来讲, VA显示模式在不加电压的情况下采用常黑模式, 即上下偏光 片垂直偏贴。 这样在暗态下亮度很低, 能够实现高对比度, 而且在像素受损时 呈暗态, 表现为一个暗点, 对画面的显示影响较小。 但是在生产大尺寸液晶显示面板的过程中, 当液晶显示面板超过偏光片卷 材的幅宽时, 偏光片卷材不能裁切成同样尺寸且吸收轴垂直的偏光片。 所以超 过偏光片幅宽的大尺寸液晶显示面板按照现有的架构已经不能正常实现常黑 模式。
当然, 我们可以采用偏光片拼接的方式来实现上下偏光片垂直偏贴, 但是在拼 接处会有亮线产生, 这在液晶显示面板生产制造中是不可接受的现象。 发明内容 为了解决上述现有技术存在的问题, 本发明的目的在于提供一种两个偏光 片平行偏贴并且在不加电压时也能实现常黑模式的液晶显示面板, 以及具有该 液晶显示面板的液晶显示器。 为了实现上述目的, 本发明提供的液晶显示面板包括: 液晶显示单元, 包 括入光侧及出光侧; 第一偏光片, 其设于液晶显示单元的入光侧; 以及第二偏 光片, 其设于液晶显示单元的出光侧; 半波片, 其设于第一偏光片与液晶显示 单元之间; 其中, 第一偏光片的吸收轴平行于第二偏光片的吸收轴, 半波片的 慢轴与第一偏光片的吸收轴的夹角为 45度或 135度。 此外, 所述液晶显示面板还包括两个双轴补偿膜, 其各设于第一偏光片或 半波片与液晶显示单元之间。 此外, 双轴补偿膜的慢轴与同侧的偏光片的吸收轴的夹角为 90度时, 液 晶显示面板的中心点的亮度随着半波片在某一预设波长的补偿值的增加而由 大变小, 再由小变大, 并且当半波片在某一预设波长的补偿值的大小等于该预 设波长的一半时, 液晶显示面板的中心点的亮度最小。 此外, 双轴补偿膜的慢轴与同侧的偏光片的吸收轴的夹角为 45度或 135 度时, 液晶显示面板的中心点的亮度随着半波片在某一预设波长的补偿值与两 个双轴补偿膜在该预设波长的补偿值的和的增加而由大变小, 再由小变大, 并 且当半波片在某一预设波长的补偿值与两个双轴补偿膜在该预设波长的补偿 值之和等于该预设波长的一半时, 液晶显示面板的中心点的亮度最小。 此外, 所述预设波长为 380nm〜780nm。 进一歩地, 所述预设波长为 450nm〜650nm。 本发明还提供的液晶显示器, 包括液晶显示面板及背光模组, 背光模组与 液晶显示面板相对设置, 背光模组提供光源给液晶显示面板, 所述液晶显示面 板为上述的液晶显示面板。
本发明的液晶显示面板在两个偏光片平行偏贴并且不加电压时也能实现 常黑模式, 而且其对比度得到有效地提高。 附图说明 图 l a、图 lb分别示出了现有的液晶显示面板在不加电压时实现常黑模式、 常白模式的架构图。 图 2示出了根据本发明的实施例的液晶显示面板在不加电压时实现常黑模 式的架构图。 图 3示出了根据本发明的实施例的液晶显示面板在波长 450nm的中心点亮 度随半波片的补偿值的变化趋势图。 图 4示出了根据本发明的实施例的液晶显示面板在波长 550nm的中心点亮 度随半波片的补偿值的变化趋势图。 图 5示出了根据本发明的实施例的液晶显示面板在波长 650nm的中心点亮 度随半波片的补偿值的变化趋势图。 图 6示出了根据本发明的实施例的半波片的补偿值与两个双轴补偿膜的补 偿值之和与可见光波长的关系图。
图 7示出了根据本发明的实施例的液晶显示器的示意图。 具体实施方式 在对本发明实施例进行详细的描述, 其示例表示在附图中, 其中, 相同的 标号始终表示相同部件。 下面通过参照附图对实施例进行描述以解释本发明。 在下面的描述中,为了避免公知结构和 /或功能的不必要的详细描述所导致的本 发明构思的混淆, 可省略公知结构和 /或功能的不必要的详细描述。 图 2示出了根据本发明的实施例的液晶显示面板在不加电压时实现常黑模 式的架构图。 如图 2所示,根据本发明的实施例的液晶显示面板包括:液晶显示单元 10、 半波片 20、 两个双轴补偿膜 31、 32以及第一、 第二偏光片 41、 42。 液晶显示单元 10具有 VA(Vertical Alignment)显示模式, 并包含有液晶分 子。 将光射入液晶显示单元 10的一侧定义为入光侧, 光通过液晶显示单元 10 后出射的一侧定义为出光侧。 第一偏光片 41设于液晶显示单元 10的入光侧, 第二偏光片 42设于液晶 显示单元的出光侧。 应该理解, 也可将第二偏光片 42设于液晶显示单元 10的 入光侧, 第一偏光片 41设于液晶显示单元的出光侧。 第一偏光片 41的吸收轴 与第二偏光片 42的吸收轴平行设置。 半波片 20设于第一偏光片 41与液晶显示单元 10之间。 此处, 半波片 20 也可以被其它的器件代替, 该器件具有的功能是: 光通过该器件后能够产生半 波长的光程差或 180度的相位差。 双轴补偿膜 31设于半波片 20和第一偏光片 41之间, 双轴补偿膜 32设于 第二偏光片 42与液晶显示单元 10之间。 应该理解, 也可将双轴补偿膜 32设 于半波片 20和第一偏光片 41之间,双轴补偿膜 31设于第二偏光片 42与液晶 显示单元 10之间。 在本实施例中, 双轴补偿膜 31、 32的设置是为了将液晶显示面板在不同 的视角产生的相位差进行修正, 让液晶分子的双折射得到对称性的补偿, 可以 有效地改善液晶显示面板的大视角的漏光和色偏现象。 应该理解, 也可以不设 两个双轴补偿膜 31、 32。 为了使上述的液晶显示面板在不加电压时实现常黑模式, 需要找到合适的 半波片 20的参数以及半波片 20的慢轴与第一偏光片 41的吸收轴的夹角, 还 需要找到合适的两个双轴补偿膜 31、 32的参数以及两个双轴补偿膜 31、 32的 慢轴分别与第一偏光片 41、 第二偏光片 42的吸收轴的夹角。 以下文中,将对根据本发明的实施例的液晶显示面板在不加电压时实现常 黑模式进行详细地描述。 本发明的实施例采用 LCD Master软件进行模拟。 模拟设定如下:
液晶设定: 1 : Pretilt angle =89度; Pretilt angle为液晶在边界对垂直于液 晶显示面板法向量的倾角; 2: 液晶显示单元 10的每一像素区分为四区域, 四 区域 (domain) 液晶的轴向角分别为 45度, 135度, 225度, 315度。
光源设定: 1 : 使用 Blue-YAG LED的光谱; 2: 中央亮度定义为 lOOnit; 3: 光源分布为朗伯特分布 (Lambert's distribution )。
接下来的描述中, 暗态亮度 (单位: nit) 指的是上述的液晶显示面板 10 在未加电压(0V) 时的亮度; 亮态亮度(单位: nit)指的是上述的液晶显示面 板 10在加上电压 (7V ) 时的亮度; 对比度为亮态亮度与暗态亮度的比率。 表 1示出了图 1所示的液晶显示面板在常黑模式时的暗态亮度、亮态亮 J 和对比度。
[表 1 ]
Figure imgf000007_0002
示出本实施例的半波片 20分别在波长 450nm、 550nm、 650nm的各
Figure imgf000007_0001
[表 2]
Figure imgf000007_0003
在表 2中, Nx为半波片 20在 X轴的折射率, Ny为半波片 20在 y轴的 折射率, d为半波片 20的厚度 (单位: nm), R0为半波片 20在某一预设波长 的补偿值, 其可满足式子 (1 ),
R0 = (Nx - Ny)x d ( 1 )
从式(1 )可以看出, 通过调节半波片的厚度 d的大小或者折射率 Nx, Ny 的大小, 则可以调节半波片 20在某一预设波长的补偿值的大小。
表 3示出根据本发明的实施例的液晶显示面板在不加电压时实现常黑模式 和在加电压时实现常白模式的模拟结果。 其中, 设定双轴补偿膜 31、 32的慢 轴分别与第一偏光片 41、 第二偏光片 42的吸收轴的夹角为 90度。
[表 3]
Figure imgf000007_0004
从表 3中可知, 当半波片 20的慢轴与第一偏光片 41的吸收轴平行或垂直 时, 液晶显示面板在不加电压时为亮态, 呈现常白模式。 当半波片 20的慢轴 与第一偏光片 41的吸收轴的夹角为 45度或 135度时, 液晶显示面板在不加电 压时为暗态, 呈现常黑模式, 但是液晶显示面板在不加电压时暗态亮度偏高, 导致液晶显示面板的对比度很低。 因此, 需要重新设计合适的半波片 20的参 数来降低暗态亮度。
在下文中, 将以入射光的波长 450nm、 550nm和 650nm为例来对合适的 半波片 20的参数进行模拟, 以使根据本发明的实施例的液晶显示面板的对比 度相当于表 [1]中示出的具有现有架构的液晶显示面板的对比度。 由于半波片 20在某一预设波长的参数 Nx及参数 Ny为定值, 因此, 只能重新设计半波片 20在该预设波长的补偿值 R0的大小来降低本发明的实施例的液晶显示面板的 对比度, 即改变半波片 20的厚度 d的大小。 设计两种方案来对半波片 20合适 的补偿值 R0的大小进行模拟。
方案 1 :设定半波片 20的慢轴与第一偏光片 41的吸收轴的夹角为 45度或 135度,双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹角为 90度,双轴 补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹角为 90度, 双轴补偿膜 31、 32的补偿值 R0之和为 112nm,改变半波片 20的补偿值 R0的大小来模拟出本 发明的实施例的液晶显示面板的中心点亮度 (单位: nit) 的变化趋势。 其中, 液晶显示面板的中心点亮度指的是正视该液晶显示面板时的液晶显示面板的 中心处的亮度。
方案 2:设定半波片 20的慢轴与第一偏光片 41的吸收轴的夹角为 45度或 135度, 双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹角为 45度或 135 度, 双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹角为 45度或 135度, 双轴补偿膜 31、 32的补偿值 R0之和为 112nm, 改变半波片 20的补偿值 R0 的大小来模拟出本发明的实施例的液晶显示面板的中心点亮度(单位: nit) 的 变化趋势。 其中, 液晶显示面板的中心点亮度指的是正视该液晶显示面板时的 液晶显示面板的中心处的亮度。
图 3示出了根据本发明的实施例的液晶显示面板在波长 450nm的中心点亮 度随半波片的补偿值的变化趋势图。
如图 3所示, 方案 1的结论: 当双轴补偿膜 31的慢轴与第一偏光片 41的 吸收轴的夹角为 90度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的 夹角为 90度时, 根据本发明的实施例的液晶显示面板的中心点亮度随着半波 片 20的补偿值 R0的增大而由大变小, 再由小变大, 并且当半波片 20的补偿 值 R0为波长 450nm的一半 (即半波片 20的补偿值 R0为 225nm)时, 中心点 亮度最小。
方案 2的结论: 当双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹角 为 45度或 135度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹角 为 45度或 135度时, 根据本发明的实施例的液晶显示面板的中心点亮度随着 半波片 20的补偿值 R0与双轴补偿膜 31、 32的补偿值 R0之和的增大而由大 变小, 再由小变大, 并且当半波片 20的补偿值 R0与双轴补偿膜 31、 32的补 偿值 R0之和为波长 450nm的一半 (即半波片 20的补偿值 R0为 113nm) 时, 中心点亮度最小。 图 4示出了根据本发明的实施例的液晶显示面板在波长 550nm的中心点亮 度随半波片的补偿值的变化趋势图。
如图 4所示, 方案 1的结论: 当双轴补偿膜 31的慢轴与第一偏光片 41的 吸收轴的夹角为 90度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的 夹角为 90度时, 根据本发明的实施例的液晶显示面板的中心点亮度随着半波 片 20的补偿值 R0的增大而由大变小, 再由小变大, 并且当半波片 20的补偿 值 R0为波长 550nm的一半(即半波片 20的补偿值 R0为 275nm)时, 中心点 亮度最小。
方案 2的结论: 当双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹角 为 45度或 135度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹角 为 45度或 135度时, 根据本发明的实施例的液晶显示面板的中心点亮度随着 半波片 20的补偿值 R0与双轴补偿膜 31、 32的补偿值 R0之和的增大而由大 变小, 再由小变大, 并且当半波片 20的补偿值 R0与双轴补偿膜 31、 32的补 偿值 R0之和为波长 550nm的一半 (即半波片 20的补偿值 R0为 163nm) 时, 中心点亮度最小。
图 5示出了根据本发明的实施例的液晶显示面板在波长 650nm的中心点亮 度随半波片的补偿值的变化趋势图。
如图 5所示, 方案 1的结论: 当双轴补偿膜 31的慢轴与第一偏光片 41的 吸收轴的夹角为 90度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的 夹角为 90度时, 根据本发明的实施例的液晶显示面板的中心点亮度随着半波 片 20的补偿值 R0的增大而由大变小, 再由小变大, 并且当半波片 20的补偿 值 R0为波长 650nm的一半(即半波片 20的补偿值 R0为 325nm)时, 中心点 亮度最小。
方案 2的结论: 当双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹角 为 45度或 135度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹角 为 45度或 135度时, 根据本发明的实施例的液晶显示面板的中心点亮度随着 半波片 20的补偿值 R0与双轴补偿膜 31、 32的补偿值 R0之和的增大而由大 变小, 再由小变大, 并且当半波片 20的补偿值 R0与双轴补偿膜 31、 32的补 偿值 R0之和为波长 650nm的一半 (即半波片 20的补偿值 R0为 213nm) 时, 中心点亮度最小。
应当理解, 在上述的模拟中, 将双轴补偿膜 31、 32的补偿值 R0之和设定 为 112nm, 但并不以此为限, 可以任意设定双轴补偿膜 31、 32的补偿值 R0之 和的大小, 只要其满足当双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹 角为 45度或 135度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹 角为 45度或 135度时, 半波片 20的补偿值 R0与双轴补偿膜 31、 32的补偿值 R0之和为预设波长的一半即可。
由上述的模拟结果可知, 关于波长 450nm、 550nm和 650nm的方案 1、 方 案 2的结论可拓展到整个可见光波段 (即波长为 380nm〜780nm的光)。
作为一种优选, 我们给出了半波片 20的补偿值 R0与双轴补偿膜 31、 32 的补偿值 R0之和与可见光波长的关系。
图 6示出了根据本发明的实施例的半波片的补偿值与两个双轴补偿膜的补 偿值之和与可见光波长的关系图。
如图 6所示, 半波片 20的补偿值 R0与两个双轴补偿膜 31、 32的补偿值 R0的和为对应的可见光波长的一半。
表 4 示出了根据本发明的实施例的液晶显示面板在常黑模式时的暗态亮 度、 亮态亮度和对比度的模拟结果。 优选地, 表 4中的根据本发明的实施例的 液晶显示面板, 其半波片 20的慢轴与第一偏光片 41的吸收轴的夹角为 45度 或 135度, 双轴补偿膜 31的慢轴与第一偏光片 41的吸收轴的夹角为 45度或 135度并且双轴补偿膜 32的慢轴与第二偏光片 42的吸收轴的夹角为 45度或 135度, 半波片 20的补偿值 R0与两个双轴补偿膜 31、 32的补偿值 R0的和为 对应的可见光波长的一半。
[表 ]
Figure imgf000010_0001
从表 4中可知,根据本发明的实施例的液晶显示面板在不会降低亮态亮度 的同时, 有效地降低了暗态亮度, 并且对比度得到有效地提高。 根据本发明的 实施例的液晶显示面板的对比度(其值为 1718 )相当于表 1中的具有现有架构 的液晶显示面板的对比度 (其值为 1720)。
图 7示出了根据本发明的实施例的液晶显示器的示意图。
如图 7所示,根据本发明的实施例的液晶显示器 1包括液晶显示面板 2及 背光模组 3, 背光模组 3与液晶显示面板 2相对设置, 背光模组 3提供光源给 液晶显示面板 2, 其中, 液晶显示面板 2为上述的液晶显示面板。
根据本发明的实施例的液晶显示面板在两个偏光片平行偏贴并且不加电 压时也能实现常黑模式, 而且其对比度得到有效地提高。
尽管已经参照其示例性实施例具体显示和描述了本发明,但是本领域的技 术人员应该理解, 在不脱离权利要求所限定的本发明的精神和范围的情况下, 可以对其进行形式和细节上的各种改变。

Claims

权利要求书
1、 一种液晶显示面板, 其中, 包括: 液晶显示单元, 包括入光侧及出光侧; 第一偏光片, 其设于液晶显示单元的入光侧; 以及 第二偏光片, 其设于液晶显示单元的出光侧; 半波片, 其设于第一偏光片与液晶显示单元之间; 其中, 第一偏光片的吸收轴平行于第二偏光片的吸收轴, 半波片的慢轴与 第一偏光片的吸收轴的夹角为 45度。
2、 根据权利要求 1所述的液晶显示面板, 其中, 还包括两个双轴补偿膜, 分别设于第一偏光片与所述液晶显示单元之间、 以及半波片与液晶显示单元之 间。
3、 根据权利要求 2所述的液晶显示面板, 其中, 双轴补偿膜的慢轴与同 侧的偏光片的吸收轴的夹角为 90度时, 液晶显示面板的中心点的亮度随着半 波片在某一预设波长的补偿值的增加而由大变小, 再由小变大。
4、 根据权利要求 3所述的液晶显示面板, 其中, 当半波片在某一预设波 长的补偿值的大小等于该预设波长的一半时, 液晶显示面板的中心点的亮度最 小。
5、 根据权利要求 2所述的液晶显示面板, 其中, 双轴补偿膜的慢轴与同 侧的偏光片的吸收轴的夹角为 45度时, 液晶显示面板的中心点的亮度随着半 波片在某一预设波长的补偿值与两个双轴补偿膜在该预设波长的补偿值的和 的增加而由大变小, 再由小变大。
6、 根据权利要求 2所述的液晶显示面板, 其中, 双轴补偿膜的慢轴与同 侧的偏光片的吸收轴的夹角为 135度时, 液晶显示面板的中心点的亮度随着半 波片在某一预设波长的补偿值与两个双轴补偿膜在该预设波长的补偿值的和 的增加而由大变小, 再由小变大。
7、 根据权利要求 5所述的液晶显示面板, 其中, 当半波片在某一预设波 长的补偿值与两个双轴补偿膜在该预设波长的补偿值之和等于该预设波长的 一半时, 液晶显示面板的中心点的亮度最小。
8、 根据权利要求 3 所述的液晶显示面板, 其中, 所述预设波长为 380謹〜 780謹。
9、 根据权利要求 8 所述的液晶显示面板, 其中, 所述预设波长为 450nm〜650nm。
10、 一种液晶显示面板, 其中, 包括: 液晶显示单元, 包括入光侧及出光侧; 第一偏光片, 其设于液晶显示单元的入光侧; 以及 第二偏光片, 其设于液晶显示单元的出光侧; 半波片, 其设于第一偏光片与液晶显示单元之间; 其中, 第一偏光片的吸收轴平行于第二偏光片的吸收轴, 半波片的慢轴与 第一偏光片的吸收轴的夹角为 135度。
11、 根据权利要求 10所述的液晶显示面板, 其中, 还包括两个双轴补偿 膜, 分别设于第一偏光片与所述液晶显示单元之间、 以及半波片与液晶显示单 元之间。
12、 根据权利要求 11 所述的液晶显示面板, 其中, 双轴补偿膜的慢轴与 同侧的偏光片的吸收轴的夹角为 90度时, 液晶显示面板的中心点的亮度随着 半波片在某一预设波长的补偿值的增加而由大变小, 再由小变大。
13、 根据权利要求 12所述的液晶显示面板, 其中, 当半波片在某一预设 波长的补偿值的大小等于该预设波长的一半时, 液晶显示面板的中心点的亮度 最小。
14、 根据权利要求 11 所述的液晶显示面板, 其中, 双轴补偿膜的慢轴与 同侧的偏光片的吸收轴的夹角为 45度时, 液晶显示面板的中心点的亮度随着 半波片在某一预设波长的补偿值与两个双轴补偿膜在该预设波长的补偿值的 和的增加而由大变小, 再由小变大。
15、 根据权利要求 11 所述的液晶显示面板, 其中, 双轴补偿膜的慢轴与 同侧的偏光片的吸收轴的夹角为 135 度时, 液晶显示面板的中心点的亮度 随着半波片在某一预设波长的补偿值与两个双轴补偿膜在该预设波长的补偿 值的和的增加而由大变小, 再由小变大。
16、 根据权利要求 14所述的液晶显示面板, 其中, 当半波片在某一预设 波长的补偿值与两个双轴补偿膜在该预设波长的补偿值之和等于该预设波长 的一半时, 液晶显示面板的中心点的亮度最小。
17、 根据权利要求 12 所述的液晶显示面板, 其中, 所述预设波长为 380謹〜 780謹。
18、 根据权利要求 15 所述的液晶显示面板, 其中, 所述预设波长为 450nm〜650nm。
19、 一种液晶显示器, 包括液晶显示面板及背光模组, 背光模组与液晶显 示面板相对设置, 背光模组提供光源给液晶显示面板, 其中, 所述液晶显示面 板为权利要求 1所述的液晶显示面板。
20、 一种液晶显示器, 包括液晶显示面板及背光模组, 背光模组与液晶显 示面板相对设置, 背光模组提供光源给液晶显示面板, 其中, 所述液晶显示面 板为权利要求 10所述的液晶显示面板。
PCT/CN2013/078173 2013-03-29 2013-06-27 液晶显示面板及液晶显示器 WO2014153884A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB1515578.1A GB2525809B (en) 2013-03-29 2013-06-27 Liquid crystal display panel and the liquid crystal display
KR1020157029648A KR101708592B1 (ko) 2013-03-29 2013-06-27 액정 표시 패널 및 액정 표시 장치
DE112013006896.6T DE112013006896T5 (de) 2013-03-29 2013-06-27 Flüssigkristallanzeige und der Flüssigkristallbildschirm
JP2016504447A JP6180616B2 (ja) 2013-03-29 2013-06-27 液晶表示パネル及び液晶ディスプレイ
US13/981,100 US9213200B2 (en) 2013-03-29 2013-06-27 Liquid crystal panel and the liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310108793.4 2013-03-29
CN201310108793.4A CN103197464B (zh) 2013-03-29 2013-03-29 液晶显示面板及液晶显示器

Publications (1)

Publication Number Publication Date
WO2014153884A1 true WO2014153884A1 (zh) 2014-10-02

Family

ID=48720137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078173 WO2014153884A1 (zh) 2013-03-29 2013-06-27 液晶显示面板及液晶显示器

Country Status (7)

Country Link
US (2) US9213200B2 (zh)
JP (1) JP6180616B2 (zh)
KR (1) KR101708592B1 (zh)
CN (1) CN103197464B (zh)
DE (1) DE112013006896T5 (zh)
GB (1) GB2525809B (zh)
WO (1) WO2014153884A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090863A (ja) * 2014-11-06 2016-05-23 スタンレー電気株式会社 液晶表示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN105301845A (zh) * 2015-11-24 2016-02-03 深圳市华星光电技术有限公司 液晶面板
US11428990B2 (en) 2018-01-04 2022-08-30 Lg Chem, Ltd. Liquid crystal display device and manufacturing method thereof
US11573456B2 (en) 2018-06-05 2023-02-07 Lg Chem, Ltd. Liquid crystal display device
KR102143271B1 (ko) * 2018-06-05 2020-08-10 주식회사 엘지화학 적층체 및 이를 포함하는 액정 표시 장치
US11679649B2 (en) * 2018-10-04 2023-06-20 Acr Ii Glass America Inc. Multifunctional switchable film and constructions including such a film
CN109298561A (zh) * 2018-11-12 2019-02-01 惠州市华星光电技术有限公司 一种透明显示面板及显示装置
CN111812881A (zh) * 2020-07-02 2020-10-23 惠州市华星光电技术有限公司 一种偏光片、显示面板及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114075A (zh) * 2006-07-25 2008-01-30 日东电工株式会社 液晶面板和液晶显示装置
JP2008058912A (ja) * 2006-09-04 2008-03-13 Nec Corp 半透過型液晶表示装置
CN101576685A (zh) * 2008-05-05 2009-11-11 奇美电子股份有限公司 液晶显示面板及包括其的液晶显示装置
KR101159327B1 (ko) * 2005-06-24 2012-06-22 엘지디스플레이 주식회사 반투과 액정표시장치
CN102707491A (zh) * 2011-11-30 2012-10-03 京东方科技集团股份有限公司 液晶显示器和其视角补偿方法
CN103076695A (zh) * 2013-01-21 2013-05-01 深圳市华星光电技术有限公司 一种液晶显示装置及其偏光片设置方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006643B2 (ja) * 1992-10-05 2000-02-07 富士通株式会社 液晶表示装置
TWI240119B (en) * 2003-08-06 2005-09-21 Optimax Tech Corp Polarizer for multi-domain vertical alignment liquid crystal display
KR101386565B1 (ko) * 2006-06-30 2014-04-18 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP2009031402A (ja) * 2007-07-25 2009-02-12 Sumitomo Chemical Co Ltd 液晶表示装置
JP5274929B2 (ja) * 2008-08-05 2013-08-28 日東電工株式会社 液晶パネル及び液晶表示装置
JP2010054895A (ja) * 2008-08-29 2010-03-11 Citizen Holdings Co Ltd 液晶装置
CN102830540B (zh) * 2012-09-07 2015-07-15 京东方科技集团股份有限公司 蓝相液晶显示面板及应用其的液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159327B1 (ko) * 2005-06-24 2012-06-22 엘지디스플레이 주식회사 반투과 액정표시장치
CN101114075A (zh) * 2006-07-25 2008-01-30 日东电工株式会社 液晶面板和液晶显示装置
JP2008058912A (ja) * 2006-09-04 2008-03-13 Nec Corp 半透過型液晶表示装置
CN101576685A (zh) * 2008-05-05 2009-11-11 奇美电子股份有限公司 液晶显示面板及包括其的液晶显示装置
CN102707491A (zh) * 2011-11-30 2012-10-03 京东方科技集团股份有限公司 液晶显示器和其视角补偿方法
CN103076695A (zh) * 2013-01-21 2013-05-01 深圳市华星光电技术有限公司 一种液晶显示装置及其偏光片设置方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090863A (ja) * 2014-11-06 2016-05-23 スタンレー電気株式会社 液晶表示装置

Also Published As

Publication number Publication date
GB2525809B (en) 2020-01-08
US20160062167A1 (en) 2016-03-03
GB2525809A (en) 2015-11-04
US9213200B2 (en) 2015-12-15
JP2016514853A (ja) 2016-05-23
US9632360B2 (en) 2017-04-25
GB201515578D0 (en) 2015-10-21
DE112013006896T5 (de) 2015-12-24
KR101708592B1 (ko) 2017-02-20
CN103197464B (zh) 2015-10-21
KR20150130549A (ko) 2015-11-23
JP6180616B2 (ja) 2017-08-16
CN103197464A (zh) 2013-07-10
US20140293194A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
WO2014153884A1 (zh) 液晶显示面板及液晶显示器
JPWO2018221413A1 (ja) 表示装置
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
TWI728296B (zh) 液晶顯示器及其製造彼之方法
TWI690414B (zh) 層壓板及含彼之液晶顯示器
WO2018032572A1 (zh) 液晶面板及具有该液晶面板的液晶显示器
WO2014056245A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2015003460A1 (zh) 显示面板及透明显示装置
JP2010015150A (ja) 高次波長板を含むマイクロディスプレイ・パネルのコントラスト補償
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
TWI698688B (zh) 液晶顯示器
WO2014110857A1 (zh) 一种液晶显示装置及其偏光片设置方法
US8922740B2 (en) Light efficiency enhancing optical devices
TW201816476A (zh) 顯示裝置
WO2016101339A1 (zh) 液晶显示器
CN104317104A (zh) 液晶面板补偿架构及液晶显示装置
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
WO2014056246A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2016101338A1 (zh) 液晶显示器
CN104317105A (zh) 液晶面板补偿架构及液晶显示装置
KR20060045621A (ko) 편광자
WO2022000694A1 (zh) 显示装置及电子设备
US20150286099A1 (en) Compensation Architecture of Liquid Crystal Panel and Liquid Crystal Display Device
JP2006163065A (ja) 偏光板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13981100

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1515578

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130627

WWE Wipo information: entry into national phase

Ref document number: 1515578.1

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2016504447

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013006896

Country of ref document: DE

Ref document number: 1120130068966

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20157029648

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13880467

Country of ref document: EP

Kind code of ref document: A1