WO2014153270A1 - Treatment of cancer using humanized anti-cd19 chimeric antigen receptor - Google Patents
Treatment of cancer using humanized anti-cd19 chimeric antigen receptor Download PDFInfo
- Publication number
- WO2014153270A1 WO2014153270A1 PCT/US2014/029943 US2014029943W WO2014153270A1 WO 2014153270 A1 WO2014153270 A1 WO 2014153270A1 US 2014029943 W US2014029943 W US 2014029943W WO 2014153270 A1 WO2014153270 A1 WO 2014153270A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- sequence
- cell
- amino acid
- acid sequence
- Prior art date
Links
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 title claims abstract description 408
- 206010028980 Neoplasm Diseases 0.000 title claims description 126
- 201000011510 cancer Diseases 0.000 title claims description 67
- 238000011282 treatment Methods 0.000 title claims description 52
- 230000027455 binding Effects 0.000 claims abstract description 264
- 210000001744 T-lymphocyte Anatomy 0.000 claims abstract description 196
- 238000000034 method Methods 0.000 claims abstract description 121
- 239000013598 vector Substances 0.000 claims abstract description 109
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims abstract description 84
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims abstract description 84
- 230000014509 gene expression Effects 0.000 claims abstract description 80
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 67
- 201000010099 disease Diseases 0.000 claims abstract description 54
- 210000004027 cell Anatomy 0.000 claims description 423
- 150000007523 nucleic acids Chemical class 0.000 claims description 179
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 159
- 230000004068 intracellular signaling Effects 0.000 claims description 135
- 102000039446 nucleic acids Human genes 0.000 claims description 114
- 108020004707 nucleic acids Proteins 0.000 claims description 114
- 108090000623 proteins and genes Proteins 0.000 claims description 108
- 230000011664 signaling Effects 0.000 claims description 108
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 105
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 93
- 229920001184 polypeptide Polymers 0.000 claims description 89
- 230000000139 costimulatory effect Effects 0.000 claims description 79
- 230000004048 modification Effects 0.000 claims description 79
- 238000012986 modification Methods 0.000 claims description 79
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 78
- 241000282414 Homo sapiens Species 0.000 claims description 75
- 102000004169 proteins and genes Human genes 0.000 claims description 71
- 230000000295 complement effect Effects 0.000 claims description 66
- 239000003795 chemical substances by application Substances 0.000 claims description 62
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 60
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 59
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 claims description 57
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 claims description 57
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 claims description 53
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 claims description 53
- 108020004414 DNA Proteins 0.000 claims description 50
- 230000004936 stimulating effect Effects 0.000 claims description 40
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 33
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 33
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 33
- 230000002401 inhibitory effect Effects 0.000 claims description 33
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 32
- 238000000338 in vitro Methods 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 27
- 102100027207 CD27 antigen Human genes 0.000 claims description 24
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 claims description 24
- 108091008874 T cell receptors Proteins 0.000 claims description 23
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 23
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 claims description 22
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 claims description 22
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 claims description 20
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 claims description 20
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 20
- -1 CD86 Proteins 0.000 claims description 19
- 230000036210 malignancy Effects 0.000 claims description 18
- 241000124008 Mammalia Species 0.000 claims description 17
- 108020005345 3' Untranslated Regions Proteins 0.000 claims description 16
- 230000002489 hematologic effect Effects 0.000 claims description 16
- 239000013612 plasmid Substances 0.000 claims description 15
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 claims description 14
- 241000713666 Lentivirus Species 0.000 claims description 13
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 12
- 201000003444 follicular lymphoma Diseases 0.000 claims description 12
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 11
- 108010064548 Lymphocyte Function-Associated Antigen-1 Proteins 0.000 claims description 11
- 208000007541 Preleukemia Diseases 0.000 claims description 11
- 201000005787 hematologic cancer Diseases 0.000 claims description 11
- 230000002062 proliferating effect Effects 0.000 claims description 11
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 10
- 102100038080 B-cell receptor CD22 Human genes 0.000 claims description 10
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 claims description 10
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 claims description 10
- 108091036407 Polyadenylation Proteins 0.000 claims description 10
- 208000006994 Precancerous Conditions Diseases 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 102100025390 Integrin beta-2 Human genes 0.000 claims description 9
- 208000034578 Multiple myelomas Diseases 0.000 claims description 9
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 9
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 claims description 9
- 206010000830 Acute leukaemia Diseases 0.000 claims description 8
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 claims description 8
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 claims description 8
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 claims description 8
- 210000000601 blood cell Anatomy 0.000 claims description 8
- 208000024207 chronic leukemia Diseases 0.000 claims description 8
- 230000003211 malignant effect Effects 0.000 claims description 8
- 102100037904 CD9 antigen Human genes 0.000 claims description 7
- 206010058314 Dysplasia Diseases 0.000 claims description 7
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 claims description 7
- 101000738354 Homo sapiens CD9 antigen Proteins 0.000 claims description 7
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 claims description 7
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 claims description 7
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 claims description 7
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 claims description 7
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 7
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 claims description 7
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 claims description 7
- 108010064593 Intercellular Adhesion Molecule-1 Proteins 0.000 claims description 7
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 claims description 7
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 claims description 7
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 claims description 7
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 7
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 claims description 7
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 claims description 7
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 claims description 7
- 230000000735 allogeneic effect Effects 0.000 claims description 7
- 230000001589 lymphoproliferative effect Effects 0.000 claims description 7
- 208000007525 plasmablastic lymphoma Diseases 0.000 claims description 7
- 241001430294 unidentified retrovirus Species 0.000 claims description 7
- 208000036170 B-Cell Marginal Zone Lymphoma Diseases 0.000 claims description 6
- 208000011691 Burkitt lymphomas Diseases 0.000 claims description 6
- 208000016778 CD4+/CD56+ hematodermic neoplasm Diseases 0.000 claims description 6
- 206010061850 Extranodal marginal zone B-cell lymphoma (MALT type) Diseases 0.000 claims description 6
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 claims description 6
- 201000003791 MALT lymphoma Diseases 0.000 claims description 6
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 claims description 6
- 208000016025 Waldenstroem macroglobulinemia Diseases 0.000 claims description 6
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 claims description 6
- 208000035269 cancer or benign tumor Diseases 0.000 claims description 6
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 claims description 6
- 201000009277 hairy cell leukemia Diseases 0.000 claims description 6
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 claims description 6
- 208000021937 marginal zone lymphoma Diseases 0.000 claims description 6
- 210000005134 plasmacytoid dendritic cell Anatomy 0.000 claims description 6
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 208000032568 B-cell prolymphocytic leukaemia Diseases 0.000 claims description 4
- 208000035416 Prolymphocytic B-Cell Leukemia Diseases 0.000 claims description 4
- 230000005809 anti-tumor immunity Effects 0.000 claims description 3
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims description 2
- 230000002463 transducing effect Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 48
- 239000000427 antigen Substances 0.000 description 102
- 108091007433 antigens Proteins 0.000 description 102
- 102000036639 antigens Human genes 0.000 description 102
- 238000002983 circular dichroism Methods 0.000 description 101
- 238000006467 substitution reaction Methods 0.000 description 71
- 235000018102 proteins Nutrition 0.000 description 67
- 102000053602 DNA Human genes 0.000 description 49
- 125000003729 nucleotide group Chemical group 0.000 description 48
- 229920002477 rna polymer Polymers 0.000 description 45
- 239000011324 bead Substances 0.000 description 43
- 235000001014 amino acid Nutrition 0.000 description 42
- 102100035932 Cocaine- and amphetamine-regulated transcript protein Human genes 0.000 description 39
- 101000715592 Homo sapiens Cocaine- and amphetamine-regulated transcript protein Proteins 0.000 description 39
- 229940024606 amino acid Drugs 0.000 description 38
- 150000001413 amino acids Chemical class 0.000 description 38
- 108020004999 messenger RNA Proteins 0.000 description 38
- 239000002773 nucleotide Substances 0.000 description 34
- 239000002245 particle Substances 0.000 description 28
- 239000012634 fragment Substances 0.000 description 25
- 150000002632 lipids Chemical class 0.000 description 25
- 238000013518 transcription Methods 0.000 description 25
- 230000035897 transcription Effects 0.000 description 25
- 230000000638 stimulation Effects 0.000 description 23
- 241000699670 Mus sp. Species 0.000 description 21
- 238000003752 polymerase chain reaction Methods 0.000 description 20
- 125000000539 amino acid group Chemical group 0.000 description 19
- 230000001086 cytosolic effect Effects 0.000 description 19
- 108060003951 Immunoglobulin Proteins 0.000 description 18
- 230000004913 activation Effects 0.000 description 18
- 102000018358 immunoglobulin Human genes 0.000 description 18
- 102000040430 polynucleotide Human genes 0.000 description 18
- 108091033319 polynucleotide Proteins 0.000 description 18
- 239000002157 polynucleotide Substances 0.000 description 18
- 101100519207 Mus musculus Pdcd1 gene Proteins 0.000 description 17
- 230000006870 function Effects 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- 241001529936 Murinae Species 0.000 description 16
- 238000003556 assay Methods 0.000 description 16
- 208000032839 leukemia Diseases 0.000 description 16
- 108020003589 5' Untranslated Regions Proteins 0.000 description 15
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 15
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 15
- 239000003446 ligand Substances 0.000 description 15
- 239000002502 liposome Substances 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 238000013519 translation Methods 0.000 description 14
- 210000004881 tumor cell Anatomy 0.000 description 14
- 102100025278 Coxsackievirus and adenovirus receptor Human genes 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- 208000035475 disorder Diseases 0.000 description 13
- 230000028993 immune response Effects 0.000 description 13
- 230000003834 intracellular effect Effects 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 12
- 230000010261 cell growth Effects 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 241000283984 Rodentia Species 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 239000013604 expression vector Substances 0.000 description 11
- 210000004602 germ cell Anatomy 0.000 description 11
- 230000001976 improved effect Effects 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 10
- 108020004705 Codon Proteins 0.000 description 10
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 10
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 10
- 108020001507 fusion proteins Proteins 0.000 description 10
- 102000037865 fusion proteins Human genes 0.000 description 10
- 230000035755 proliferation Effects 0.000 description 10
- 239000013603 viral vector Substances 0.000 description 10
- 102100024263 CD160 antigen Human genes 0.000 description 9
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 101000761938 Homo sapiens CD160 antigen Proteins 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000012636 effector Substances 0.000 description 9
- 238000004611 spectroscopical analysis Methods 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 238000002560 therapeutic procedure Methods 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- 102000004127 Cytokines Human genes 0.000 description 8
- 108090000695 Cytokines Proteins 0.000 description 8
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 8
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 8
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 description 8
- 102000017578 LAG3 Human genes 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 108700008625 Reporter Genes Proteins 0.000 description 8
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 description 8
- 238000002617 apheresis Methods 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 210000004698 lymphocyte Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000009126 molecular therapy Methods 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000001177 retroviral effect Effects 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 241000282693 Cercopithecidae Species 0.000 description 7
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 7
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 7
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 7
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 7
- 108700019146 Transgenes Proteins 0.000 description 7
- 230000000259 anti-tumor effect Effects 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000000684 flow cytometry Methods 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 229940090044 injection Drugs 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 6
- 239000004471 Glycine Substances 0.000 description 6
- 101001138062 Homo sapiens Leukocyte-associated immunoglobulin-like receptor 1 Proteins 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 6
- 102100020943 Leukocyte-associated immunoglobulin-like receptor 1 Human genes 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 6
- 239000005090 green fluorescent protein Substances 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 210000005259 peripheral blood Anatomy 0.000 description 6
- 239000011886 peripheral blood Substances 0.000 description 6
- 239000002953 phosphate buffered saline Substances 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 6
- 239000004474 valine Substances 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- 208000023275 Autoimmune disease Diseases 0.000 description 5
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 5
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 5
- 108010002350 Interleukin-2 Proteins 0.000 description 5
- 102000000588 Interleukin-2 Human genes 0.000 description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 5
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 5
- 238000007792 addition Methods 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 238000002659 cell therapy Methods 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 5
- 238000001476 gene delivery Methods 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 230000008488 polyadenylation Effects 0.000 description 5
- 208000011580 syndromic disease Diseases 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 241000701161 unidentified adenovirus Species 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010074708 B7-H1 Antigen Proteins 0.000 description 4
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 108091033380 Coding strand Proteins 0.000 description 4
- 241000702421 Dependoparvovirus Species 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 4
- 102000015636 Oligopeptides Human genes 0.000 description 4
- 108010038807 Oligopeptides Proteins 0.000 description 4
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 4
- 108091034057 RNA (poly(A)) Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000004473 Threonine Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 230000003463 hyperproliferative effect Effects 0.000 description 4
- 239000012642 immune effector Substances 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 229940121354 immunomodulator Drugs 0.000 description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 4
- 229960000310 isoleucine Drugs 0.000 description 4
- 229920002521 macromolecule Polymers 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 4
- 239000000693 micelle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- 102000006306 Antigen Receptors Human genes 0.000 description 3
- 108010083359 Antigen Receptors Proteins 0.000 description 3
- 208000025321 B-lymphoblastic leukemia/lymphoma Diseases 0.000 description 3
- 108010024755 CTL019 chimeric antigen receptor Proteins 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 102100025466 Carcinoembryonic antigen-related cell adhesion molecule 3 Human genes 0.000 description 3
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 3
- 229930105110 Cyclosporin A Natural products 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 3
- 101000914337 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 3 Proteins 0.000 description 3
- 108091006905 Human Serum Albumin Proteins 0.000 description 3
- 102000008100 Human Serum Albumin Human genes 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 239000000232 Lipid Bilayer Substances 0.000 description 3
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 3
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 3
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 230000006044 T cell activation Effects 0.000 description 3
- 230000006052 T cell proliferation Effects 0.000 description 3
- 108091023045 Untranslated Region Proteins 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 208000006673 asthma Diseases 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229960001265 ciclosporin Drugs 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 230000001461 cytolytic effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- 239000008121 dextrose Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 229940072221 immunoglobulins Drugs 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 208000027866 inflammatory disease Diseases 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229960004942 lenalidomide Drugs 0.000 description 3
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 3
- 206010025135 lupus erythematosus Diseases 0.000 description 3
- FVVLHONNBARESJ-NTOWJWGLSA-H magnesium;potassium;trisodium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;acetate;tetrachloride;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Na+].[Na+].[Na+].[Mg+2].[Cl-].[Cl-].[Cl-].[Cl-].[K+].CC([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O FVVLHONNBARESJ-NTOWJWGLSA-H 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 230000002688 persistence Effects 0.000 description 3
- 208000017426 precursor B-cell acute lymphoblastic leukemia Diseases 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000001542 size-exclusion chromatography Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 238000011476 stem cell transplantation Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- 108010005327 CD19-specific chimeric antigen receptor Proteins 0.000 description 2
- 102100038078 CD276 antigen Human genes 0.000 description 2
- 101710185679 CD276 antigen Proteins 0.000 description 2
- 101150013553 CD40 gene Proteins 0.000 description 2
- 102100035793 CD83 antigen Human genes 0.000 description 2
- 101100228196 Caenorhabditis elegans gly-4 gene Proteins 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 206010008342 Cervix carcinoma Diseases 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108060002716 Exonuclease Proteins 0.000 description 2
- 108090000331 Firefly luciferases Proteins 0.000 description 2
- 102000050627 Glucocorticoid-Induced TNFR-Related Human genes 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 2
- 101100383038 Homo sapiens CD19 gene Proteins 0.000 description 2
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 2
- 101001109503 Homo sapiens NKG2-C type II integral membrane protein Proteins 0.000 description 2
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 description 2
- 206010061598 Immunodeficiency Diseases 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 102100039064 Interleukin-3 Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 102100022683 NKG2-C type II integral membrane protein Human genes 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 2
- 101710124239 Poly(A) polymerase Proteins 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 206010060862 Prostate cancer Diseases 0.000 description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 206010038389 Renal cancer Diseases 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 230000005867 T cell response Effects 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- 101710187882 Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 2
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 2
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 150000003838 adenosines Chemical class 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 108091008324 binding proteins Proteins 0.000 description 2
- 238000010256 biochemical assay Methods 0.000 description 2
- 238000002306 biochemical method Methods 0.000 description 2
- 239000012472 biological sample Substances 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 201000010881 cervical cancer Diseases 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000001142 circular dichroism spectrum Methods 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229940119744 dextran 40 Drugs 0.000 description 2
- RNPXCFINMKSQPQ-UHFFFAOYSA-N dicetyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCC RNPXCFINMKSQPQ-UHFFFAOYSA-N 0.000 description 2
- 230000006806 disease prevention Effects 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 102000013165 exonuclease Human genes 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 201000010982 kidney cancer Diseases 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000001638 lipofection Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000001325 log-rank test Methods 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 210000004324 lymphatic system Anatomy 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 108091005763 multidomain proteins Proteins 0.000 description 2
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 108091027963 non-coding RNA Proteins 0.000 description 2
- 102000042567 non-coding RNA Human genes 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000003289 regulatory T cell Anatomy 0.000 description 2
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 2
- 230000010512 thermal transition Effects 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 2
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 108010065816 zeta chain antigen T cell receptor Proteins 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- VGONTNSXDCQUGY-RRKCRQDMSA-N 2'-deoxyinosine Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC2=O)=C2N=C1 VGONTNSXDCQUGY-RRKCRQDMSA-N 0.000 description 1
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 1
- 108010082808 4-1BB Ligand Proteins 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 description 1
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 description 1
- 108020005176 AU Rich Elements Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000714230 Avian leukemia virus Species 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 108010087504 Beta-Globulins Proteins 0.000 description 1
- 102000006734 Beta-Globulins Human genes 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 108091033409 CRISPR Proteins 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 102000004420 Creatine Kinase Human genes 0.000 description 1
- 108010042126 Creatine kinase Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 206010011968 Decreased immune responsiveness Diseases 0.000 description 1
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000701867 Enterobacteria phage T7 Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 102000016359 Fibronectins Human genes 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108060005986 Granzyme Proteins 0.000 description 1
- 102000001398 Granzyme Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 102100029360 Hematopoietic cell signal transducer Human genes 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101100005238 Homo sapiens CARTPT gene Proteins 0.000 description 1
- 101000990188 Homo sapiens Hematopoietic cell signal transducer Proteins 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 1
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 1
- 101000971538 Homo sapiens Killer cell lectin-like receptor subfamily F member 1 Proteins 0.000 description 1
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 1
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000633784 Homo sapiens SLAM family member 7 Proteins 0.000 description 1
- 101000809875 Homo sapiens TYRO protein tyrosine kinase-binding protein Proteins 0.000 description 1
- 101000795169 Homo sapiens Tumor necrosis factor receptor superfamily member 13C Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 101150102264 IE gene Proteins 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 102100021458 Killer cell lectin-like receptor subfamily F member 1 Human genes 0.000 description 1
- 102100020880 Kit ligand Human genes 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241000254158 Lampyridae Species 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241000714177 Murine leukemia virus Species 0.000 description 1
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- 108091008877 NK cell receptors Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 102000010648 Natural Killer Cell Receptors Human genes 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 240000007019 Oxalis corniculata Species 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000004503 Perforin Human genes 0.000 description 1
- 108010056995 Perforin Proteins 0.000 description 1
- KHGNFPUMBJSZSM-UHFFFAOYSA-N Perforine Natural products COC1=C2CCC(O)C(CCC(C)(C)O)(OC)C2=NC2=C1C=CO2 KHGNFPUMBJSZSM-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 102000015623 Polynucleotide Adenylyltransferase Human genes 0.000 description 1
- 108010024055 Polynucleotide adenylyltransferase Proteins 0.000 description 1
- 102100037935 Polyubiquitin-C Human genes 0.000 description 1
- 208000008691 Precursor B-Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 1
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 1
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 1
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000003923 Protein Kinase C Human genes 0.000 description 1
- 108090000315 Protein Kinase C Proteins 0.000 description 1
- 108020005161 RNA Caps Proteins 0.000 description 1
- 108010065868 RNA polymerase SP6 Proteins 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 102100029198 SLAM family member 7 Human genes 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 108010062314 Signaling Lymphocytic Activation Molecule Family Proteins 0.000 description 1
- 102000010841 Signaling Lymphocytic Activation Molecule Family Human genes 0.000 description 1
- 108010074687 Signaling Lymphocytic Activation Molecule Family Member 1 Proteins 0.000 description 1
- 102000008115 Signaling Lymphocytic Activation Molecule Family Member 1 Human genes 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108010039445 Stem Cell Factor Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 102100038717 TYRO protein tyrosine kinase-binding protein Human genes 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102100037116 Transcription elongation factor 1 homolog Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 description 1
- 102100029690 Tumor necrosis factor receptor superfamily member 13C Human genes 0.000 description 1
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 description 1
- 108010056354 Ubiquitin C Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 1
- ATBOMIWRCZXYSZ-XZBBILGWSA-N [1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] (9e,12e)-octadeca-9,12-dienoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC ATBOMIWRCZXYSZ-XZBBILGWSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 108010028263 bacteriophage T3 RNA polymerase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 239000003012 bilayer membrane Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 210000003969 blast cell Anatomy 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- MJQUEDHRCUIRLF-TVIXENOKSA-N bryostatin 1 Chemical compound C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)[C@H]([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-TVIXENOKSA-N 0.000 description 1
- MUIWQCKLQMOUAT-AKUNNTHJSA-N bryostatin 20 Natural products COC(=O)C=C1C[C@@]2(C)C[C@]3(O)O[C@](C)(C[C@@H](O)CC(=O)O[C@](C)(C[C@@]4(C)O[C@](O)(CC5=CC(=O)O[C@]45C)C(C)(C)C=C[C@@](C)(C1)O2)[C@@H](C)O)C[C@H](OC(=O)C(C)(C)C)C3(C)C MUIWQCKLQMOUAT-AKUNNTHJSA-N 0.000 description 1
- 230000000981 bystander Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000003710 calcium ionophore Substances 0.000 description 1
- 229940112129 campath Drugs 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 229940030156 cell vaccine Drugs 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 208000018805 childhood acute lymphoblastic leukemia Diseases 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000000978 circular dichroism spectroscopy Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 108700032673 cocaine- and amphetamine-regulated transcript Proteins 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 239000013632 covalent dimer Substances 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940093541 dicetylphosphate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000002022 differential scanning fluorescence spectroscopy Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- BPHQZTVXXXJVHI-UHFFFAOYSA-N dimyristoyl phosphatidylglycerol Chemical compound CCCCCCCCCCCCCC(=O)OCC(COP(O)(=O)OCC(O)CO)OC(=O)CCCCCCCCCCCCC BPHQZTVXXXJVHI-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 229960000284 efalizumab Drugs 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- CJAONIOAQZUHPN-KKLWWLSJSA-N ethyl 12-[[2-[(2r,3r)-3-[2-[(12-ethoxy-12-oxododecyl)-methylamino]-2-oxoethoxy]butan-2-yl]oxyacetyl]-methylamino]dodecanoate Chemical compound CCOC(=O)CCCCCCCCCCCN(C)C(=O)CO[C@H](C)[C@@H](C)OCC(=O)N(C)CCCCCCCCCCCC(=O)OCC CJAONIOAQZUHPN-KKLWWLSJSA-N 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000011124 ex vivo culture Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000004700 fetal blood Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 239000012595 freezing medium Substances 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 108010033706 glycylserine Proteins 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229940064366 hespan Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000008004 immune attack Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940014456 mycophenolate Drugs 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229960005027 natalizumab Drugs 0.000 description 1
- 108010069768 negative elongation factor Proteins 0.000 description 1
- 230000011234 negative regulation of signal transduction Effects 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229930192851 perforin Natural products 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 108010058237 plasma protein fraction Proteins 0.000 description 1
- 229940081858 plasmalyte a Drugs 0.000 description 1
- 229940002993 plasmanate Drugs 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 229960003452 romidepsin Drugs 0.000 description 1
- OHRURASPPZQGQM-GCCNXGTGSA-N romidepsin Chemical compound O1C(=O)[C@H](C(C)C)NC(=O)C(=C/C)/NC(=O)[C@H]2CSSCC\C=C\[C@@H]1CC(=O)N[C@H](C(C)C)C(=O)N2 OHRURASPPZQGQM-GCCNXGTGSA-N 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 229960003433 thalidomide Drugs 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 208000008732 thymoma Diseases 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 108010078373 tisagenlecleucel Proteins 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3061—Blood cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K39/46
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
- A61K2239/48—Blood cells, e.g. leukemia or lymphoma
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/463—Cellular immunotherapy characterised by recombinant expression
- A61K39/4631—Chimeric Antigen Receptors [CAR]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/464402—Receptors, cell surface antigens or cell surface determinants
- A61K39/464411—Immunoglobulin superfamily
- A61K39/464412—CD19 or B4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70578—NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/94—Stability, e.g. half-life, pH, temperature or enzyme-resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/02—Cells for production
Definitions
- the present invention relates generally to the use of T cells engineered to express a Chimeric Antigen Receptor (CAR) to treat a disease associated with expression of the Cluster of Differentiation 19 protein (CD 19).
- CAR Chimeric Antigen Receptor
- tumors use several mechanisms to render themselves hostile to the initiation and propagation of immune attack.
- CAR chimeric antigen receptor
- CART modified autologous T cell
- CTL019 The clinical results of the murine derived CART19 (i.e., "CTL019") have shown promise in establishing complete remissions in patients suffering with CLL as well as in childhood ALL (see, e.g., Kalos et al., Sci Transl Med 3:95ra73 (2011), Porter et al., NEJM 365:725-733 (2011), Grupp et al., NEJM 368: 1509-1518 (2013)).
- a successful therapeutic T cell therapy needs to have the ability to proliferate and persist over time, and to further monitor for leukemic cell escapees.
- CAR transformed patient T cells need to persist and maintain the ability to proliferate in response to the CAR's antigen. It has been shown that ALL patient T cells perform can do this with CART 19 comprising a murine scFv (see, e.g., Grupp et al., NEJM 368: 1509-1518 (2013)).
- the invention addresses controlling an immune response in patients by providing optimized and humanized antibody fragments (e.g., scFv) that bind the Cluster of
- CD 19 Differentiation 19 protein integrated into a Chimeric Antigen Receptor (CAR) construct that will not elicit an immune response in patients, is safe to use long term, and maintains or has better clinical effectiveness as compared to known CART therapy for treatment of B cell derived cancers.
- the invention further pertains to the use of T cells engineered to express a humanized antibody fragment that binds CD 19 integrated into a CAR to treat a hematologic cancer associated with expression of CD19 (OMIM Acc. No. 107265, Swiss Prot. Acc No. P15391).
- the invention pertains to an isolated nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises an antibody or antibody fragment which includes a humanized anti-CD 19 binding domain, a transmembrane domain, and an intracellular signaling domain (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain).
- the CAR comprises an antibody or antibody fragment which includes a humanized anti-CD 19 binding domain described herein, a transmembrane domain described herein, and an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain).
- the encoded humanized anti-CD 19 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDRl), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a humanized anti-CD 19 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a humanized anti-CD 19 binding domain described herein, e.g., a humanized anti-CD19 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
- LC CDRl light chain complementary determining region 1
- HC CDR2 light chain complementary determining region 2
- HC CDR3 light chain complementary determining region 3
- the humanized anti-CD 19 binding domain comprises at least HC CDR2.
- the encoded humanized anti-CD19 binding domain comprises one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a humanized anti-CD19 binding domain described herein, e.g., the encoded humanized anti-CD 19 binding domain has two variable heavy chain regions, each comprising a HC CDRl, a HC CDR2 and a HC CDR3 described herein.
- the humanized anti-CD 19 binding domain comprises at least HC CDR2.
- the encoded light chain variable region comprises one, two, three or all four framework regions of
- the encoded light chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the light chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71 and 87).
- the encoded heavy chain variable region comprises one, two, three or all four framework regions of VH4_4-59 germline sequence.
- the encoded heavy chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the heavy chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71, 73 and 78).
- the encoded humanized anti-CD19 binding domain comprises a humanized light chain variable region described herein (e.g., in Table 3) and/or a humanized heavy chain variable region described herein (e.g., in Table 3).
- the encoded humanized anti-CD 19 binding domain comprises a humanized heavy chain variable region described herein (e.g., in Table 3), e.g., at least two humanized heavy chain variable regions described herein (e.g., in Table 3).
- the encoded anti-CD 19 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 3.
- the anti-CD 19 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a light chain variable region provided in Table 3, or a sequence with 95-99% identity with an amino acid sequence of Table 3; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 3, or a sequence with 95-99% identity to an amino acid sequence of Table 3.
- a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 3,
- the encoded humanized anti-CD 19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12, or a sequence with 95-99% identify thereof.
- SEQ ID NO: l SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12, or a sequence with 95-99% identify thereof.
- the nucleic acid sequence encoding the humanized anti-CD 19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:71 and SEQ ID NO:72, or a sequence with 95-99% identify thereof.
- the encoded humanized anti-CD 19 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 3, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 3, via a linker, e.g., a linker described herein.
- the encoded humanized anti-CD 19 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:53).
- the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
- the encoded transmembrane domain is a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T- cell receptor, CD27, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD154.
- the encoded transmembrane domain comprises a sequence of SEQ ID NO: 15.
- the encoded transmembrane domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO: 15, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 15.
- the nucleic acid sequence encoding the transmembrane domain comprises a sequence of SEQ ID NO:56, or a sequence with 95-99% identify thereof.
- the encoded anti-CD 19 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge region described herein.
- the encoded hinge region comprises SEQ ID NO: 14 or SEQ ID NO:45 or SEQ ID NO:47, or a sequence with 95-99% identity thereof.
- the nucleic acid sequence encoding the hinge region comprises a sequence of SEQ ID NO:55 or SEQ ID NO:46 or SEQ ID NO:48, or a sequence with 95-99% identify thereof.
- the isolated nucleic acid molecule further comprises a sequence encoding a costimulatory domain.
- the costimulatory domain is a functional signaling domain obtained from a protein selected from the group consisting of OX40, CD2, CD27, CD28, CDS, ICAM-1, LFA-1 (CDl la/CD18), ICOS (CD278), and 4-1BB (CD137).
- the encoded costimulatory domain comprises a sequence of SEQ ID NO: 16.
- the encoded costimulatory domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO: 16, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 16.
- the nucleic acid sequence encoding the costimulatory domain comprises a sequence of SEQ ID NO:60, or a sequence with 95-99% identify thereof.
- the isolated nucleic acid molecule further comprises a sequence encoding an intracellular signaling domain, e.g., an intracellular signaling domain described herein.
- the encoded intracellular signaling domain comprises a functional signaling domain of 4- IBB and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded intracellular signaling domain comprises a functional signaling domain of CD27 and/or a functional signaling domain of CD3 zeta. In one embodiment, the encoded
- intracellular signaling domain comprises the sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or the sequence of SEQ ID NO: 17 or SEQ ID NO:43.
- the sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or the sequence of SEQ ID NO: 17 or SEQ ID NO:43 comprises the sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or the sequence of SEQ ID NO: 17 or SEQ ID NO:43.
- intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or an amino acid sequence of SEQ ID NO: 17 or SEQ ID NO:43, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or an amino acid sequence of SEQ ID NO: 17 or SEQ ID NO:43.
- the encoded intracellular signaling domain comprises the sequence of SEQ ID NO: 16 or SEQ ID NO:51 and the sequence of SEQ ID NO: 17 or SEQ ID NO:43, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
- the nucleic acid sequence encoding the intracellular signaling domain comprises a sequence of SEQ ID NO:60, or a sequence with 95-99% identity thereof, and/or a sequence of SEQ ID NO: 101 or SEQ ID NO:44, or a sequence with 95-99% identity thereof.
- the nucleic acid sequence encoding the intracellular signaling domain comprises a sequence of SEQ ID NO:52, or a sequence with 95-99% identity thereof, and/or a sequence of SEQ ID NO: 101 or SEQ D NO:44, or a sequence with 95-99% identity thereof.
- the invention pertains to an isolated nucleic acid molecule encoding a CAR constuct comprising a leader sequence, e.g., a leader sequence described herein, e.g., of SEQ ID NO: 13; a humanized anti-CD19 binding domain described herein, e.g., a humanized anti-CD 19 binding domain comprising a LC CDR1, a LC CDR2, a LC CDR3, a HC CDR1, a HC CDR2 and a HC CDR3 described herein, e.g., a humanized anti-CD19 binding domain described in Table 3, or a sequence with 95-99% identify thereof; a hinge region described herein, e.g., of SEQ ID NO: 14 or SEQ ID NO:45; a transmembrane domain described herein, e.g., a transmembrane domain comprising SEQ ID NO: 15; and an
- the encoded intracellular signaling domain comprises a costimulatory domain, e.g., a co stimulatory domain described herein, e.g., a 4-1BB costimulatory domain having a sequence of SEQ ID NO: 16 or SEQ ID NO:51, and/or a primary signaling domain, e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO: 17 or SEQ ID NO:43.
- a costimulatory domain e.g., a co stimulatory domain described herein, e.g., a 4-1BB costimulatory domain having a sequence of SEQ ID NO: 16 or SEQ ID NO:51
- a primary signaling domain e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO: 17 or SEQ ID NO:43.
- the isolated nucleic acid molecule encoding the CAR construct includes a leader sequence encoded by the nucleic acid sequence of SEQ ID NO:54, or a sequence with 95-99% identity thereto.
- the isolated nucleic acid molecule encoding the CAR construct includes a humanized anti- CD ⁇ binding domain sequence encoded by the nucleic acid sequence of SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, and SEQ ID NO:72, or a sequence with 95- 99% identity thereto.
- the isolated nucleic acid molecule encoding the CAR construct includes a transmembrane sequence encoded by the nucleic acid sequence of SEQ ID NO:56, or a sequence with 95-99% identity thereto. In one embodiment, the isolated nucleic acid molecule encoding the CAR construct includes an intracellular signaling domain sequence encoded by the nucleic acid sequence of SEQ ID NO:60, or a sequence with 95-99% identity thereto and/or a nucleic acid sequence of SEQ ID NO: 101 or SEQ ID NO:44, or a sequence with 95-99% identity thereto.
- the isolated nucleic acid molecule comprises (e.g., consists of) a nucleic acid encoding a CAR amino acid sequence of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO: 33, SEQ ID NO:34, SEQ ID NO: 35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 or SEQ ID NO:42, or an amino acid sequence having at least one, two, three, four, five, 10, 15, 20 or 30 modifications (e.g., substitutions) but not more than 60, 50 or 40 modifications (e.g., substitutions) of an amino acid sequence of, or an amino acid sequence having 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO: 33, SEQ ID NO:34, SEQ ID NO: 35, SEQ ID NO:31, S
- the isolated nucleic acid molecule comprises (e.g., consists of) a nucleic acid sequence of SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, or SEQ ID NO:96 or a nucleic acid sequence having 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to a nucleic acid sequence of SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, or SEQ ID NO:96.
- the invention pertains to an isolated nucleic acid molecule encoding a humanized anti-CD 19 binding domain, wherein the anti-CD 19 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CD 19 binding domain described herein, and one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of an anti-CD19 binding domain described herein, e.g., a humanized anti-CD19 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
- LC CDR1 light chain complementary determining region 1
- HC CDR2 light chain complementary determining region 2
- the humanized anti-CD19 binding domain comprises at least HC CDR2.
- the light chain variable region comprises one, two, three or all four framework regions of VK3_L25 germline sequence.
- the light chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the murine light chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71 and 87).
- the heavy chain variable region comprises one, two, three or all four framework regions of VH4_4-59 germline sequence.
- the heavy chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the murine heavy chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71, 73 and 78).
- the encoded humanized anti-CD 19 binding domain comprises a light chain variable region described herein (e.g., in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12) and/or a heavy chain variable region described herein (e.g., in SEQ ID NO: l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12).
- the encoded humanized anti-CD 19 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of in SEQ ID NO: l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12.
- the humanized anti-CD19 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a light chain variable region provided in SEQ ID NO: l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, or a sequence with 95-99% identity with an amino acid sequence of SEQ ID NO: l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g.,
- the humanized anti-CD19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO: l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12, or a sequence with 95-99% identify thereof.
- the nucleic acid sequence encoding the humanized anti-CD 19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71 and SEQ ID NO:72, or a sequence with 95-99% identify thereof.
- the invention pertains to an isolated polypeptide molecule encoded by the nucleic acid sequence.
- the isolated polypeptide molecule comprises a sequence selected from the group consisting of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, and SEQ ID NO:42.
- the isolated polypeptide comprises a sequence of SEQ ID NO:31.
- the isolated polypeptide comprises a sequence of SEQ ID NO:32.
- the isolated polypeptide molecule comprises a sequence of SEQ ID NO: 35. In one embodiment, the isolated polypeptide molecule comprises a sequence of SEQ ID NO:36. In one embodiment, the isolated polypeptide molecule comprises a sequence of SEQ ID NO:37.
- the invention pertains to an isolated chimeric antigen receptor (CAR) molecule comprising a humanized anti-CD 19 binding domain (e.g., a humanized antibody or antibody fragment that specifically binds to CD 19), a transmembrane domain, and an intracellular signaling domain (e.g., an intracellular signaling domain comprising a co stimulatory domain and/or a primary signaling domain).
- CAR chimeric antigen receptor
- the CAR comprises an antibody or antibody fragment which includes a humanized anti-CD 19 binding domain described herein (e.g., a humanized antibody or antibody fragment that specifically binds to CD 19 as described herein), a transmembrane domain described herein, and an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain described herein).
- a humanized anti-CD 19 binding domain described herein e.g., a humanized antibody or antibody fragment that specifically binds to CD 19 as described herein
- a transmembrane domain described herein e.g., a transmembrane domain described herein
- an intracellular signaling domain described herein e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain described herein.
- the humanized anti-CD19 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDRl), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a humanized anti-CD19 binding domain described herein, and one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDRl), heavy chain
- HC CDR2 complementary determining region 2
- determining region 3 of a humanized anti-CD 19 binding domain described herein, e.g., a humanized anti-CD19 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
- the humanized anti-CD19 binding domain comprises at least HC CDR2.
- the humanized anti-CD 19 binding domain comprises one or more (e.g., all three) heavy chain complementary
- the humanized anti-CD 19 binding domain has two variable heavy chain regions, each comprising a HC CDRl, a HC CDR2 and a HC CDR3 described herein.
- the humanized anti-CD 19 binding domain comprises at least HC CDR2.
- the light chain variable region comprises one, two, three or all four framework regions of VK3_L25 germline sequence.
- the light chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the murine light chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71 and 87).
- the heavy chain variable region comprises one, two, three or all four framework regions of VH4_4-59 germline sequence.
- the heavy chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the murine heavy chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71, 73 and 78).
- the humanized anti-CD 19 binding domain comprises a light chain variable region described herein (e.g., in Table 3) and/or a heavy chain variable region described herein (e.g., in Table 3).
- the humanized anti-CD 19 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 3.
- the humanized anti-CD19 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a light chain variable region provided in Table 3, or a sequence with 95-99% identity with an amino acid sequence of Table 3; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a heavy chain variable region provided in Table 3, or a sequence with 95-99% identity to an amino acid sequence of Table 3.
- a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a heavy chain variable region provided in
- the humanized anti-CD 19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO: 4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12, or a sequence with 95-99% identify thereof.
- the humanized anti-CD 19 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 3, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 3, via a linker, e.g., a linker described herein.
- a linker e.g., a linker described herein.
- the humanized anti-CD 19 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO: 53).
- the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker- light chain variable region.
- the isolated CAR molecule comprises a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T- cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD 134, CD 137 and CD 154.
- the transmembrane domain comprises a sequence of SEQ ID NO: 15.
- the transmembrane domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO: 15, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 15.
- the humanized anti-CD19 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge region described herein.
- the encoded hinge region comprises SEQ ID NO: 14 or SEQ ID NO:45, or a sequence with 95-99% identity thereof.
- the isolated CAR molecule further comprises a sequence encoding a costimulatory domain, e.g., a costimulatory domain described herein.
- the costimulatory domain comprises a functional signaling domain of a protein selected from the group consisting of OX40, CD2, CD27, CD28, CDS, ICAM-1, LFA-1 (CDl la/CD18) and 4-1BB (CD137).
- the costimulatory domain comprises a sequence of SEQ ID NO: 16.
- the costimulatory domain comprises a sequence of SEQ ID NO:51.
- the costimulatory domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO: 16 or SEQ ID NO:51, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 16 or SEQ ID NO:51.
- the isolated CAR molecule further comprises a sequence encoding an intracellular signaling domain, e.g., an intracellular signaling domain described herein.
- the intracellular signaling domain comprises a functional signaling domain of 4- IBB and/or a functional signaling domain of CD3 zeta.
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 16 and/or the sequence of SEQ ID NO: 17.
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 16 and/or the sequence of SEQ ID NO:43.
- the intracellular signaling domain comprises a functional signaling domain of
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 51 and/or the sequence of SEQ ID
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 17.
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 17.
- the intracellular signaling domain comprises an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 20, 10 or 5 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or an amino acid sequence of SEQ ID NO: 17 or SEQ ID NO:43, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 16 or SEQ ID NO:51 and/or an amino acid sequence of SEQ ID NO: 17 or SEQ ID NO:43.
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 16 or SEQ ID NO:51 and the sequence of SEQ ID NO: 17 or SEQ ID NO:43, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
- the isolated CAR molecule further comprises a leader sequence, e.g., a leader sequence described herein.
- the leader sequence comprises an amino acid sequence of SEQ ID NO: 13, or a sequence with 95-99% identity to an amino acid sequence of SEQ ID NO: 13.
- the invention pertains to an isolated CAR molecule comprising a leader sequence, e.g., a leader sequence described herein, e.g., a leader sequence of SEQ ID NO: 1
- a humanized anti-CD19 binding domain described herein e.g., a humanized anti-CD19 binding domain comprising a LC CDR1, a LC CDR2, a
- the intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein, e.g., a 4- IBB costimulatory domain having a sequence of SEQ ID NO: 14 or having 95-99% identity thereof; a transmembrane domain, e.g., a transmembrane domain described herein, e.g., a transmembrane domain having a sequence of SEQ ID NO: 15 or a sequence having 95-99% identity thereof; an intracellular signaling domain, e.g., an intracellular signaling domain described herein (e.g., an intracellular signaling domain comprising a costimulatory domain and/or a primary signaling domain).
- the intracellular signaling domain comprises a costimulatory domain, e.g., a costimulatory domain described herein, e.g., a 4- IBB costimulatory domain having a sequence of SEQ ID NO: 14 or having 95-99% identity thereof; a
- a primary signaling domain e.g., a primary signaling domain described herein, e.g., a CD3 zeta stimulatory domain having a sequence of SEQ ID NO: 17 or SEQ ID NO:43, or having 95-99% identity thereof.
- the isolated CAR molecule comprises (e.g., consists of) an amino acid sequence of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 or SEQ ID NO:42, or an amino acid sequence having at least one, two, three, four, five, 10, 15, 20 or 30 modifications (e.g., substitutions) but not more than 60, 50 or 40 modifications (e.g., substitutions) of an amino acid sequence of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 or SEQ ID NO:42
- the invention pertains to a humanized anti-CD 19 binding domain comprising one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of an anti-CD 19 binding domain described herein, and one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a humanized anti-CD 19 binding domain described herein, e.g., a humanized anti-CD19 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
- LC CDR1 light chain complementary determining region 1
- HC CDR2 light chain complementary determining region 2
- HC CDR3 light chain complementary determining region 3
- the light chain variable region comprises one, two, three or all four framework regions of VK3_L25 germline sequence.
- the light chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the murine light chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71 and 87).
- the heavy chain variable region comprises one, two, three or all four framework regions of VH4_4-59 germline sequence.
- the heavy chain variable region has a modification (e.g., substitution, e.g., a substitution of one or more amino acid found in the corresponding position in the heavy chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71, 73 and 78).
- substitution e.g., a substitution of one or more amino acid found in the corresponding position in the heavy chain variable region of SEQ ID NO: 58, e.g., a substitution at one or more of positions 71, 73 and 78.
- the humanized anti-CD19 binding domain comprises a light chain variable region described herein (e.g., in SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12) and/or a heavy chain variable region described herein (e.g.
- SEQ ID NO: 12 in SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12).
- the humanized anti-CD19 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of in SEQ ID NO:l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12.
- the humanized anti-CD19 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a light chain variable region provided, in SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12 or a sequence with 95-99% identity with an amino acid sequence in SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO
- the invention pertains to a vector comprising a nucleic acid sequence encoding a CAR.
- the vector is selected from the group consisting of a DNA, a RNA, a plasmid, a lentivirus vector, adenoviral vector, or a retrovirus vector.
- the vector is a lentivirus vector.
- the vector further comprises a promoter.
- the promoter is an EF-1 promoter.
- the EF-1 promoter comprises a sequence of SEQ ID NO: 100.
- the vector is an in vitro transcribed vector, e.g., a vector that transcribes RNA of a nucleic acid molecule described herein.
- the nucleic acid sequence in the vector further comprises a poly(A) tail, e.g., a poly A tail described herein, e.g., comprising about 150 adenosine bases (SEQ ID NO: 104).
- the nucleic acid sequence in the vector further comprises a 3'UTR, e.g., a 3' UTR described herein, e.g., comprising at least one repeat of a 3'UTR derived from human beta-globulin.
- the nucleic acid sequence in the vector further comprises promoter, e.g., a T2A promoter.
- the invention pertains to a cell comprising the vector.
- the cell is a human T cell.
- the cell is a cell described herein, e.g., a human T cell, e.g., a human T cell described herein.
- the human T cell is a CD8+ T cell.
- the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
- the agent can be an agent which inhibits an inhibitory molecule.
- inhibitory molecules include PDl, PD-Ll, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGFR beta.
- the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
- the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, LAG3, CTLA4, CD160, BTLA, LAIR1, TEVI3, 2B4 and TIGIT, or a fragment of any of these (e.g., at least a portion of the extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 4 IBB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein).
- an inhibitory molecule such as PDl, LAG3, CTLA4, CD160, BTLA, LAIR1, TEVI3, 2B4 and TIGIT
- a fragment of any of these e.g., at least a portion of the extracellular domain of any of these
- a second polypeptide which is
- the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of the extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
- a first polypeptide of PDl or a fragment thereof e.g., at least a portion of the extracellular domain of PDl
- a second polypeptide of an intracellular signaling domain described herein e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein.
- the invention pertains to a method of making a cell comprising transducing a T cell with a vector of comprising a nucleic acid encoding a CAR, e.g., a CAR described herein.
- the present invention also provides a method of generating a population of RNA- engineered cells, e.g., cells described herein, e.g., T cells, transiently expressing exogenous RNA.
- the method comprises introducing an in vitro transcribed RNA or synthetic RNA into a cell, where the RNA comprises a nucleic acid encoding a CAR molecule described herein.
- the invention pertains to a method of providing an anti-tumor immunity in a mammal comprising administering to the mammal an effective amount of a cell comprising a CAR molecule, e.g., a cell expressing a CAR molecule described herein.
- a cell comprising a CAR molecule, e.g., a cell expressing a CAR molecule described herein.
- the cell is an autologous T cell.
- the cell is an allogeneic T cell.
- the mammal is a human.
- the invention pertains to a method of treating a mammal having a disease associated with expression of CD 19 comprising administering to the mammal an effective amount of the cell of comprising a CAR molecule, e.g., a CAR molecule described herein.
- a CAR molecule e.g., a CAR molecule described herein.
- the disease associated with CD 19 expression is selected from a proliferative disease such as a cancer or malignancy or a precancerous condition such as a myelodysplasia, a myelodysplasia syndrome or a preleukemia, or is a non-cancer related indication associated with expression of CD19.
- the disease is a hematologic cancer.
- the hematologic cancer is leukemia.
- the cancer is selected from the group consisting of one or more acute leukemias including but not limited to B-cell acute lymphoid leukemia ("BALL”), T-cell acute lymphoid leukemia (“TALL”), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL); additional hematologic cancers or hematologic conditions including, but not limited to B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma, hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelody
- lymphocyte infusion for example allogeneic lymphocyte infusion, is used in the treatment of the cancer, wherein the lymphocyte infusion comprises at least one CD 19 CAR-expressing cell.
- autologous lymphocyte infusion is used in the treatment of the cancer, wherein the autologous lymphocyte infusion comprises at least one CD19-expressing cell.
- the CD 19 CAR expressing cell e.g., T cell
- a subject that has received a previous stem cell transplantation e.g., autologous stem cell transplantation.
- the CD 19 CAR expressing cell e.g., T cell
- the CD 19 CAR expressing cell is administered to a subject that has received a previus dose of melphalan.
- the cells expressing a CAR molecule are administered in combination with an agent that increases the efficacy of a cell expressing a CAR molecule, e.g., an agent described herein.
- the cells expressing a CAR molecule are administered in combination with an agent that ameliorates one or more side effect associated with administration of a cell expressing a CAR molecule, e.g., an agent described herein.
- the cells expressing a CAR molecule are administered in combination with an agent that treats the disease associated with CD19, e.g., an agent described herein.
- the cells expressing a CAR molecule are administered at a dose and/or dosing schedule described herein.
- the CAR molecule is introduced into T cells, e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of cells comprising a CAR molecule, and one or more subsequent administrations of cells comprising a CAR molecule, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration.
- more than one administration of cells comprising a CAR molecule are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of cells comprising a CAR molecule are administered per week.
- the subject receives more than one administration of cells comprising a CAR molecule per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no administration of cells comprising a CAR molecule, and then one or more additional administration of cells comprising a CAR molecule (e.g., more than one
- the administration of the cells comprising a CAR molecule per week is administered to the subject.
- the subject e.g., human subject
- the cells comprising a CAR molecule are administered every other day for 3 administrations per week.
- the cells comprising a CAR molecule are administered for at least two, three, four, five, six, seven, eight or more weeks.
- the cells expressing a CAR molecule are administered as a first line treatment for the disease, e.g., the cancer, e.g., the cancer described herein.
- the cells expressing a CAR molecule are administered as a second, third, fourth line treatment for the disease, e.g., the cancer, e.g., the cancer described herein.
- a population of cells described herein is administered.
- the invention pertains to the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CARof the invention, and the cell comprising a CAR of the invention for use as a medicament.
- the invention pertains to a the isolated nucleic acid molecule encoding a CAR of the invention, the isolated polypeptide molecule of a CAR of the invention, the vector comprising a CAR of the invention, and the cell comprising a CAR of the invention for use in the treatment of a disease expressing CD 19.
- the invention includes a population of autologous cells that are transfected or transduced with a vector comprising a nucleic acid molecule encoding a CD 19- CAR molecule, e.g., as described herein.
- the vector is a retroviral vector.
- the vector is a self-inactivating lentiviral vector as described elsewhere herein.
- the vector is delivered (e.g., by transfecting or electroporating) to a cell, e.g., a T cell, wherein the vector comprises a nucleic acid molecule encoding a CD 19 CAR molecule as described herein, which is transcribed as an mRNA molecule, and the CD 19 CAR molecule is translated from the RNA molecule and expressed on the surface of the cell.
- a cell e.g., a T cell
- the vector comprises a nucleic acid molecule encoding a CD 19 CAR molecule as described herein, which is transcribed as an mRNA molecule, and the CD 19 CAR molecule is translated from the RNA molecule and expressed on the surface of the cell.
- the present invention provides a population of CAR-expressing cells, e.g., CART cells.
- the population of CAR-expressing cells comprises a mixture of cells expressing different CARs.
- the population of CART cells can include a first cell expressing a CAR having an anti-CD 19 binding domain described herein, and a second cell expressing a CAR having a different anti- CD ⁇ binding domain, e.g., an anti-CD 19 binding domain described herein that differs from the anti-CD 19 binding domain in the CAR expressed by the first cell.
- the population of CAR-expressing cells can include a first cell expressing a CAR that includes an anti- CD19 binding domain, e.g., as described herein, and a second cell expressing a CAR that includes an antigen binding domain to a target other than CD19 (e.g., CD123).
- the population of CAR-expressing cells includes, e.g., a first cell expressing a CAR that includes a primary intracellular signaling domain, and a second cell expressing a CAR that includes a secondary signaling domain.
- the present invention provides a population of cells wherein at least one cell in the population expresses a CAR having an anti- CD 19 domain described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
- the agent can be an agent which inhibits an inhibitory molecule.
- inhibitory molecules include PDl, PD-L1, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGFR beta.
- the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
- the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, LAG3, CTLA4, CD160, BTLA, LAIR1, TIM3, 2B4 and TIGIT, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein).
- an inhibitory molecule such as PDl, LAG3, CTLA4, CD160, BTLA, LAIR1, TIM3, 2B4 and TIGIT
- a fragment of any of these e.g., at least a portion of an extracellular domain of any of these
- a second polypeptide which is an intracellular
- the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of the extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
- a first polypeptide of PDl or a fragment thereof e.g., at least a portion of the extracellular domain of PDl
- a second polypeptide of an intracellular signaling domain described herein e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein.
- the nucleic acid molecule encoding a CD 19 CAR molecule is expressed as an mRNA molecule.
- the genetically modified CD 19 CAR-expressing cells e.g., T cells, can be generated by
- RNA molecule encoding the desired CARs (e.g., without a vector sequence) into the cell.
- a CD 19 CAR molecule is translated from the RNA molecule once it is incorporated and expressed on the surface of the recombinant cell.
- FIG. 1A, IB and 1C are graphic representations of cytotoxicity as assayed in ND317 (normal donor) T cell transduced with mouse anti-CD 19 CAR or the humanized anti- CD ⁇ CARs of the invention and cultured with either control K562 cells that do not express CD19 (K562cc) as shown in FIG. 1A, K562 cells transformed with CD19 (K562.CD19) as shown in FIG. IB or malignant B cells isolated from a CLL patient (Pt 14 B cell isolate) as shown in FIG. 1C.
- FIG. 2A and 2B are graphs showing the proliferative response of humanized and mouse anti-CD 19CAR-expressing cells to CD 19+ cells, where higher number of viable CAR+ T cells correlates with populations showing maximal CD4+ and CD8+ T cell proliferation to primary CLL cells.
- FIG. 3 is a graphic representation of the deconvoluted HPLC mass spectra for scFvs of the invention, where the top row depicts untreated scFv and the bottom row depicts the cognate deglycosylated scFv.
- FIG. 4 is a graphic representation of the conformation stability as measured by Differential Scanning Fluorimetry.
- the Tm of mouse scFv was 57 °C (thick line). All humanized scFv variants show higher Tm at around 70°C as compared to the parental mouse scFv. The residues introduced by humanization have improved the Tm by more than 10° C.
- FIG. 5 is a graphic representation of CD 19 CAR transduced T cell proliferation, wherein the CART 19 cells are directed either towards (a) a chronic myelogenous leukemia (“CML") cell line that is negative for the expression of CD 19, and hence used as a negative control; (b) recombinant K562 cells positive for expression of CD 19, and hence used as a positive control; or (c) to Ptl4 B cells isolated from a CLL patient and which expresses CD19 on the cell surface.
- CML chronic myelogenous leukemia
- FIG. 6A and 6B are schematics of representative CARs.
- FIG. 7 depicts HALLX5447 primary ALL disease progression in NSG mice after treatment with CD 19 transduced CAR T cells.
- the growth of primary human ALL cells in NSG mice after treatment with CAR T cells specific for CD 19 demonstrated control of disease progression.
- Mean percentage of CD19 + human ALL cells was an indicator of disease burden in the peripheral blood in NSG mice to day 65 post tumor implant.
- Black circles mice treated with lOOul of PBS via the tail vein; red squares: mice treated with mock transduced T cells; blue triangles: mice treated with murine CD 19 CAR transduced T cells; and inverted purple triangles: mice treated with humanized CD19 CAR transduced T cells. Significance calculated by ANOVA; * denotes P ⁇ 0.01.
- FIG. 8 depicts CD19 expression in a patient's tumor cells.
- CD138 + CD45 dim tumor cells were stained for CD 19 (x-axis) and CD38 (y-axis).
- an element means one element or more than one element.
- CAR Chimeric Antigen Receptor
- a cytoplasmic signaling domain also referred to herein as "an intracellular signaling domain” comprising a functional signaling domain derived from a stimulatory molecule as defined below.
- the stimulatory molecule is the zeta chain associated with the T cell receptor complex.
- the cytoplasmic signaling domain further comprises one or more functional signaling domains derived from at least one costimulatory molecule as defined below.
- the costimulatory molecule is chosen from 4-1BB (i.e., CD137), CD27 and/or CD28.
- the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a stimulatory molecule.
- the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a co- stimulatory molecule and a functional signaling domain derived from a stimulatory molecule.
- the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising two functional signaling domains derived from one or more co- stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule.
- the CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising at least two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule.
- the CAR comprises an optional leader sequence at the amino-terminus (N-ter) of the CAR fusion protein.
- the CAR further comprises a leader sequence at the N-terminus of the
- the leader sequence is optionally cleaved from the antigen recognition domain (e.g., aa scFv) during cellular processing and localization of the CAR to the cellular membrane.
- the antigen recognition domain e.g., aa scFv
- signaling domain refers to the functional portion of a protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers.
- CD 19 refers to the Cluster of Differentiation 19 protein, which is an antigenic determinant detectable on leukemia precursor cells.
- the human and murine amino acid and nucleic acid sequences can be found in a public database, such as GenBank, UniProt and Swiss-Prot.
- the amino acid sequence of human CD 19 can be found as UniProt/Swiss-Prot Accession No. P15391 and the nucleotide sequence encoding of the human CD19 can be found at Accession No. NM_001178098.
- CD19 is expressed on most B lineage cancers, including, e.g., acute lymphoblastic leukaemia, chronic lymphocyte leukaemia and non-Hodgkin's lymphoma. Other cells with express CD 19 are provided below in the definition of "disease associated with expression of CD19.” It is also an early marker of B cell progenitors. See, e.g., Nicholson et al. Mol. Immun. 34 (16-17): 1157-1165 (1997).
- the antigen-binding portion of the CART recognizes and binds an antigen within the extracellular domain of the CD 19 protein.
- the CD 19 protein is expressed on a cancer cell.
- antibody refers to a protein, or polypeptide sequence derived from an immunoglobulin molecule which specifically binds with an antigen.
- Antibodies can be polyclonal or monoclonal, multiple or single chain, or intact
- immunoglobulins may be derived from natural sources or from recombinant sources.
- Antibodies can be tetramers of immunoglobulin molecules.
- antibody fragment refers to at least one portion of an intact antibody, or recombinant variants thereof, and refers to the antigen binding domain, e.g., an antigenic determining variable region of an intact antibody, that is sufficient to confer recognition and specific binding of the antibody fragment to a target, such as an antigen.
- antibody fragments include, but are not limited to, Fab, Fab', F(ab') 2 , and Fv fragments, scFv antibody fragments, linear antibodies, single domain antibodies such as sdAb (either VL or VH), camelid VHH domains, and multi- specific antibodies formed from antibody fragments.
- scFv refers to a fusion protein comprising at least one antibody fragment comprising a variable region of a light chain and at least one antibody fragment comprising a variable region of a heavy chain, wherein the light and heavy chain variable regions are contiguously linked via a short flexible polypeptide linker, and capable of being expressed as a single chain
- an scFv may have the VL and VH variable regions in either order, e.g., with respect to the N-terminal and C-terminal ends of the polypeptide, the scFv may comprise VL-linker-VH or may comprise VH-linker-VL.
- the portion of the CAR composition of the invention comprising an antibody or antibody fragment thereof may exist in a variety of forms where the antigen binding domain is expressed as part of a contiguous polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv) and a humanized antibody (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al, 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426).
- the antigen binding domain of a CAR composition of the invention comprises an antibody fragment.
- the CAR comprises an antibody fragment that comprises a scFv.
- antibody heavy chain refers to the larger of the two types of
- polypeptide chains present in antibody molecules in their naturally occurring conformations, and which normally determines the class to which the antibody belongs.
- antibody light chain refers to the smaller of the two types of
- Kappa (K) and lambda ( ⁇ ) light chains refer to the two major antibody light chain isotypes.
- recombinant antibody refers to an antibody which is generated using recombinant DNA technology, such as, for example, an antibody expressed by a bacteriophage or yeast expression system.
- the term should also be construed to mean an antibody which has been generated by the synthesis of a DNA molecule encoding the antibody and which DNA molecule expresses an antibody protein, or an amino acid sequence specifying the antibody, wherein the DNA or amino acid sequence has been obtained using recombinant DNA or amino acid sequence technology which is available and well known in the art.
- antigen or "Ag” refers to a molecule that provokes an immune response. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells, or both.
- antibody production or the activation of specific immunologically-competent cells, or both.
- any macromolecule including virtually all proteins or peptides, can serve as an antigen.
- antigens can be derived from recombinant or genomic DNA.
- any DNA which comprises a nucleotide sequences or a partial nucleotide sequence encoding a protein that elicits an immune response therefore encodes an "antigen" as that term is used herein.
- an antigen need not be encoded solely by a full length nucleotide sequence of a gene. It is readily apparent that the present invention includes, but is not limited to, the use of partial nucleotide sequences of more than one gene and that these nucleotide sequences are arranged in various combinations to encode polypeptides that elicit the desired immune response.
- an antigen need not be encoded by a "gene” at all. It is readily apparent that an antigen can be generated synthesized or can be derived from a biological sample, or might be macromolecule besides a polypeptide. Such a biological sample can include, but is not limited to a tissue sample, a tumor sample, a cell or a fluid with other biological components.
- anti-tumor effect refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, decrease in tumor cell proliferation, decrease in tumor cell survival, or amelioration of various physiological symptoms associated with the cancerous condition.
- An "anti-tumor effect” can also be manifested by the ability of the peptides, polynucleotides, cells and antibodies of the invention in prevention of the occurrence of tumor in the first place.
- autologous refers to any material derived from the same individual to whom it is later to be re-introduced into the individual.
- allogeneic refers to any material derived from a different animal of the same species as the individual to whom the material is introduced. Two or more individuals are said to be allogeneic to one another when the genes at one or more loci are not identical. In some aspects, allogeneic material from individuals of the same species may be sufficiently unlike genetically to interact antigenically
- xenogeneic refers to a graft derived from an animal of a different species.
- cancer refers to a disease characterized by the rapid and uncontrolled growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer and the like.
- disease associated with expression of CD 19 includes, but is not limited to, a disease associated with expression of CD 19 or condition associated with cells which express CD19 including, e.g., proliferative diseases such as a cancer or malignancy or a precancerous condition such as a myelodysplasia, a myelodysplasia syndrome or a preleukemia; or a noncancer related indication associated with cells which express CD19.
- a cancer associated with expression of CD 19 is a hematolical cancer.
- the hematolical cancer is a leukemia or a lymphoma.
- a cancer associated with expression of CD19 includes cancers and malignancies including, but not limited to, e.g., one or more acute leukemias including but not limited to, e.g., B-cell acute Lymphoid Leukemia ("BALL”), T-cell acute Lymphoid Leukemia (“TALL”), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), Chronic Lymphoid Leukemia (CLL).
- BALL B-cell acute Lymphoid Leukemia
- TALL T-cell acute Lymphoid Leukemia
- ALL acute lymphoid leukemia
- chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), Chronic Lymphoid Leukemia (CLL).
- Additional cancers or hematologic conditions associated with expression of CD 19 comprise, but are not limited to,
- prolymphocytic leukemia blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and
- myelodysplasia syndrome non-Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and "preleukemia” which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells, and the like. Further diseases associated with expression of
- CD19expression include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases associated with expression of CD19.
- Non-cancer related indications associated with expression of CD19 include, but are not limited to, e.g., autoimmune disease, (e.g., lupus), inflammatory disorders (allergy and asthma) and transplantation.
- conservative sequence modifications refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody or antibody fragment containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody or antibody fragment of the invention by standard techniques known in the art, such as site- directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
- one or more amino acid residues within a CAR of the invention can be replaced with other amino acid residues from the same side chain family and the altered CAR can be tested using the functional assays described herein.
- stimulation refers to a primary response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex) with its cognate ligand thereby mediating a signal transduction event, such as, but not limited to, signal transduction via the TCR/CD3 complex.
- a stimulatory molecule e.g., a TCR/CD3 complex
- signal transduction event such as, but not limited to, signal transduction via the TCR/CD3 complex.
- Stimulation can mediate altered expression of certain molecules, such as
- the term "stimulatory molecule,” refers to a molecule expressed by a T cell that provides the primary cytoplasmic signaling sequence(s) that regulate primary activation of the TCR complex in a stimulatory way for at least some aspect of the T cell signaling pathway.
- the primary signal is initiated by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, and which leads to mediation of a T cell response, including, but not limited to, proliferation, activation, differentiation, and the like.
- a primary cytoplasmic signaling sequence (also referred to as a "primary signaling domain") that acts in a stimulatory manner may contain a signaling motif which is known as immunoreceptor tyrosine- based activation motif or IT AM.
- IT AM immunoreceptor tyrosine- based activation motif
- the intracellular signaling domain in any one or more CARS of the invention comprises an intracellular signaling sequence, e.g., a primary signaling sequence of CD3-zeta.
- the primary signaling sequence of CD3-zeta is the sequence provided as SEQ ID NO: 17, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
- the primary signaling sequence of CD3-zeta is the sequence as provided in SEQ ID NO:43, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
- the term "antigen presenting cell” or “APC” refers to an immune system cell such as an accessory cell (e.g., a B-cell, a dendritic cell, and the like) that displays a foreign antigen complexed with major histocompatibility complexes (MHC's) on its surface.
- T-cells may recognize these complexes using their T-cell receptors (TCRs).
- APCs process antigens and present them to T-cells.
- intracellular signaling domain refers to an intracellular portion of a molecule.
- the intracellular signaling domain generates a signal that promotes an immune effector function of the CAR containing cell, e.g., a CART cell.
- immune effector function examples include cytolytic activity and helper activity, including the secretion of cytokines.
- the intracellular signaling domain can comprise a primary intracellular signaling domain.
- Exemplary primary intracellular signaling domains include those derived from the molecules responsible for primary stimulation, or antigen dependent simulation.
- the intracellular signaling domain can comprise a costimulatory intracellular domain.
- Exemplary costimulatory intracellular signaling domains include those derived from molecules responsible for costimulatory signals, or antigen independent stimulation.
- a primary intracellular signaling domain can comprise a cytoplasmic sequence of a T cell receptor
- a costimulatory intracellular signaling domain can comprise cytoplasmic sequence from co-receptor or costimulatory molecule.
- a primary intracellular signaling domain can comprise a signaling motif which is known as an immunoreceptor tyrosine-based activation motif or IT AM.
- IT AM immunoreceptor tyrosine-based activation motif
- ⁇ containing primary cytoplasmic signaling sequences include, but are not limited to, those derived from CD3 zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, and CD66d DAP10 and DAP12.
- zeta or alternatively “zeta chain”, “CD3-zeta” or “TCR-zeta” is defined as the protein provided as GenBan Acc. No. BAG36664.1, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like, and a "zeta stimulatory domain” or alternatively a "CD3-zeta stimulatory domain” or a “TCR-zeta stimulatory domain” is defined as the amino acid residues from the cytoplasmic domain of the zeta chain that are sufficient to functionally transmit an initial signal necessary for T cell activation.
- the cytoplasmic domain of zeta comprises residues 52 through 164 of GenBank Acc. No.
- the "zeta stimulatory domain” or a "CD3-zeta stimulatory domain” is the sequence provided as SEQ ID NO: 17.
- the "zeta stimulatory domain” or a "CD3-zeta stimulatory domain” is the sequence provided as SEQ ID NO:43.
- costimulatory molecule refers to the cognate binding partner on a T cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T cell, such as, but not limited to, proliferation.
- Costimulatory molecules are cell surface molecules other than antigen receptors or their ligands that are required for an efficient immune response.
- Costimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and a Toll ligand receptor, as well as OX40, CD2, CD27, CD28, CDS, ICAM-1, LFA-1 (CDl la/CD18) and 4- IBB (CD137).
- a costimulatory intracellular signaling domain can be the intracellular portion of a costimulatory molecule.
- a costimulatory molecule can be represented in the following protein families: TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), and activating NK cell receptors.
- Examples of such molecules include CD27, CD28, 4-1BB (CD137), OX40, GITR, CD30, CD40, ICOS, BAFFR, HVEM, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7-H3, and a ligand that specifically binds with CD83, and the like.
- the intracellular signaling domain can comprise the entire intracellular portion, or the entire native intracellular signaling domain, of the molecule from which it is derived, or a functional fragment thereof.
- 4-1BB refers to a member of the TNFR superfamily with an amino acid sequence provided as GenBank Acc. No. AAA62478.2, or the equivalent residues from a non- human species, e.g., mouse, rodent, monkey, ape and the like; and a "4-1BB costimulatory domain” is defined as amino acid residues 214-255 of GenBank accno. AAA62478.2, or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
- the "4- IBB costimulatory domain” is the sequence provided as SEQ ID NO: 16 or the equivalent residues from a non-human species, e.g., mouse, rodent, monkey, ape and the like.
- the term "encoding" refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom.
- a gene, cDNA, or RNA encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system.
- Both the coding strand the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.
- nucleotide sequence encoding an amino acid sequence includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence.
- the phrase nucleotide sequence that encodes a protein or a RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).
- an effective amount or “therapeutically effective amount” are used interchangeably herein, and refer to an amount of a compound, formulation, material, or composition, as described herein effective to achieve a particular biological result.
- endogenous refers to any material from or produced inside an organism, cell, tissue or system.
- exogenous refers to any material introduced from or produced outside an organism, cell, tissue or system.
- transfer vector refers to a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear
- transfer vector includes an autonomously replicating plasmid or a virus.
- the term should also be construed to further include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, a polylysine compound, liposome, and the like.
- viral transfer vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, lenti viral vectors, and the like.
- expression vector refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed.
- An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system.
- Expression vectors include all those known in the art, including cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.
- lentivirus refers to a genus of the Retroviridae family. Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses.
- lentiviral vector refers to a vector derived from at least a portion of a lentivirus genome, including especially a self-inactivating lentiviral vector as provided in Milone et al., Mol. Ther. 17(8): 1453-1464 (2009).
- Other examples of lentivirus vectors that may be used in the clinic include but are not limited to, e.g., the LENTIVECTOR® gene delivery technology from Oxford BioMedica, the LENTIMAXTM vector system from Lentigen and the like. Nonclinical types of lentiviral vectors are also available and would be known to one skilled in the art.
- homologous refers to the subunit sequence identity between two polymeric molecules, e.g., between two nucleic acid molecules, such as, two DNA molecules or two RNA molecules, or between two polypeptide molecules.
- two nucleic acid molecules such as, two DNA molecules or two RNA molecules
- polypeptide molecules between two polypeptide molecules.
- a subunit position in both of the two molecules is occupied by the same monomeric subunit; e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous or identical at that position.
- the homology between two sequences is a direct function of the number of matching or homologous positions; e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two sequences are homologous, the two sequences are 50% homologous; if 90% of the positions (e.g., 9 of 10), are matched or homologous, the two sequences are 90% homologous.
- Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin.
- humanized antibodies and antibody fragments thereof are human immunoglobulins (recipient antibody or antibody fragment) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity.
- CDR complementary-determining region
- Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding non-human residues.
- a humanized antibody/antibody fragment can comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences.
- the humanized antibody or antibody fragment thereof will comprise substantially all of at least one, and typically two, variable domains, in which all or
- substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or a significant portion of the FR regions are those of a human immunoglobulin sequence.
- the humanized antibody or antibody fragment can also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.
- Fc immunoglobulin constant region
- Fc immunoglobulin constant region
- isolated means altered or removed from the natural state.
- a nucleic acid or a peptide naturally present in a living animal is not “isolated,” but the same nucleic acid or peptide partially or completely separated from the coexisting materials of its natural state is “isolated.”
- An isolated nucleic acid or protein can exist in substantially purified form, or can exist in a non-native environment such as, for example, a host cell.
- A refers to adenosine
- C refers to cytosine
- G refers to guanosine
- T refers to thymidine
- U refers to uridine.
- operably linked refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter.
- a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- Operably linked DNA sequences can be contiguous with each other and, e.g., where necessary to join two protein coding regions, are in the same reading frame.
- parenteral administration of an immunogenic composition includes, e.g., subcutaneous (s.c), intravenous (i.v.), intramuscular (i.m.), or intrasternal injection,
- nucleic acid refers to deoxyribonucleic acids (DNA) or ribonucleic acids (RNA) and polymers thereof in either single- or double- stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated.
- DNA deoxyribonucleic acids
- RNA ribonucleic acids
- degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (Batzer et al, Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).
- peptide refers to a compound comprised of amino acid residues covalently linked by peptide bonds.
- a protein or peptide must contain at least two amino acids, and no limitation is placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence.
- Polypeptides include any peptide or protein comprising two or more amino acids joined to each other by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the art as peptides, oligopeptides and oligomers, for example, and to longer chains, which generally are referred to in the art as proteins, of which there are many types. "Polypeptides" include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. A polypeptide includes a natural peptide, a recombinant peptide, or a combination thereof.
- promoter refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence.
- promoter/regulatory sequence refers to a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulatory sequence.
- this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product.
- the promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
- constitutive promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell under most or all physiological conditions of the cell.
- inducible promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell substantially only when an inducer which corresponds to the promoter is present in the cell.
- tissue-specific promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide encodes or specified by a gene, causes the gene product to be produced in a cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.
- flexible polypeptide linker or "linker” as used in the context of a scFv refers to a peptide linker that consists of amino acids such as glycine and/or serine residues used alone or in combination, to link variable heavy and variable light chain regions together.
- the flexible polypeptide linkers include, but are not limited to, (Gly4 Ser) 4 (SEQ ID NO: 106) or (Gly4 Ser) 3 (SEQ ID NO: 107).
- the linkers include multiple repeats of (GlyiSer), (GlySer) or (GlysSer) (SEQ ID NO: 108). Also included within the scope of the invention are linkers described in WO2012/138475, incorporated herein by reference).
- a 5' cap (also termed an RNA cap, an RNA 7-methylguanosine cap or an RNA m G cap) is a modified guanine nucleotide that has been added to the "front" or 5' end of a eukaryotic messenger RNA shortly after the start of transcription.
- the 5' cap consists of a terminal group which is linked to the first transcribed nucleotide. Its presence is critical for recognition by the ribosome and protection from RNases. Cap addition is coupled to transcription, and occurs co-transcriptionally, such that each influences the other.
- RNA polymerase Shortly after the start of transcription, the 5' end of the mRNA being synthesized is bound by a cap- synthesizing complex associated with RNA polymerase. This enzymatic complex catalyzes the chemical reactions that are required for mRNA capping. Synthesis proceeds as a multi-step biochemical reaction.
- the capping moiety can be modified to modulate functionality of mRNA such as its stability or efficiency of translation.
- in vitro transcribed RNA refers to RNA, preferably mRNA, that has been synthesized in vitro.
- the in vitro transcribed RNA is generated from an in vitro transcription vector.
- the in vitro transcription vector comprises a template that is used to generate the in vitro transcribed RNA.
- a "poly(A)” is a series of adenosines attached by polyadenylation to the mRNA.
- the polyA is between 50 and 5000 (SEQ ID NO: 109), preferably greater than 64, more preferably greater than 100, most preferably greater than 300 or 400.
- poly(A) sequences can be modified chemically or enzymatically to modulate mRNA functionality such as localization, stability or efficiency of translation.
- polyadenylation refers to the covalent linkage of a polyadenylyl moiety, or its modified variant, to a messenger RNA molecule.
- mRNA messenger RNA
- the 3' poly(A) tail is a long sequence of adenine nucleotides (often several hundred) added to the pre-mRNA through the action of an enzyme, polyadenylate polymerase.
- poly(A) tail is added onto transcripts that contain a specific sequence, the polyadenylation signal.
- Polyadenylation is also important for transcription termination, export of the mRNA from the nucleus, and translation. Polyadenylation occurs in the nucleus immediately after transcription of DNA into RNA, but additionally can also occur later in the cytoplasm.
- the mRNA chain is cleaved through the action of an endonuclease complex associated with RNA polymerase.
- the cleavage site is usually characterized by the presence of the base sequence AAUAAA near the cleavage site.
- adenosine residues are added to the free 3' end at the cleavage site.
- transient refers to expression of a non-integrated transgene for a period of hours, days or weeks, wherein the period of time of expression is less than the period of time for expression of the gene if integrated into the genome or contained within a stable plasmid replicon in the host cell.
- signal transduction pathway refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell.
- cell surface receptor includes molecules and complexes of molecules capable of receiving a signal and transmitting signal across the membrane of a cell.
- subject is intended to include living organisms in which an immune response can be elicited (e.g., mammals, human).
- substantially purified cell refers to a cell that is essentially free of other cell types.
- a substantially purified cell also refers to a cell which has been separated from other cell types with which it is normally associated in its naturally occurring state.
- a population of substantially purified cells refers to a homogenous population of cells. In other instances, this term refers simply to cell that have been separated from the cells with which they are naturally associated in their natural state.
- the cells are cultured in vitro. In other aspects, the cells are not cultured in vitro.
- terapéutica means a treatment.
- a therapeutic effect is obtained by reduction, suppression, remission, or eradication of a disease state.
- prophylaxis means the prevention of or protective treatment for a disease or disease state.
- tumor antigen or “hyperproliferative disorder antigen” or “antigen associated with a hyperproliferative disorder” refers to antigens that are common to specific hyperproliferative disorders.
- the hyperproliferative disorder or “antigen associated with a hyperproliferative disorder” refers to antigens that are common to specific hyperproliferative disorders.
- hyperproliferative disorder antigens of the present invention are derived from, cancers including but not limited to primary or metastatic melanoma, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkin's lymphoma, non-Hodgkins lymphoma, leukemias, uterine cancer, cervical cancer, bladder cancer, kidney cancer and adenocarcinomas such as breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, and the like.
- cancers including but not limited to primary or metastatic melanoma, thymoma, lymphoma, sarcoma, lung cancer, liver cancer, non-Hodgkin's lymphoma, non-Hodgkins lymphoma, leukemias, uterine cancer, cervical cancer, bladder cancer, kidney cancer and adenocarcinomas such as breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, and the like.
- transfected or “transformed” or “transduced” refers to a process by which exogenous nucleic acid is transferred or introduced into the host cell.
- a “transfected” or “transformed” or “transduced” cell is one which has been transfected, transformed or transduced with exogenous nucleic acid.
- the cell includes the primary subject cell and its progeny.
- the term "specifically binds,” refers to an antibody, or a ligand, which recognizes and binds with a cognate binding partner (e.g., a stimulatory and/or costimulatory molecule present on a T cell) protein present in a sample, but which antibody or ligand does not substantially recognize or bind other molecules in the sample.
- a cognate binding partner e.g., a stimulatory and/or costimulatory molecule present on a T cell
- Ranges throughout this disclosure, various aspects of the invention can be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, and 6.
- a range such as 95-99% identity includes something with 95%, 96%, 97%, 98% or 99% identity, and includes subranges such as 96-99%, 96-98%, 96-97%, 97-99%, 97-98% and 98-99% identity. This applies regardless of the breadth of the range.
- compositions of matter and methods of use for the treatment of a disease such as cancer using humanized anti-CD 19 chimeric antigen receptors (CAR).
- CAR humanized anti-CD 19 chimeric antigen receptors
- the invention provides a number of chimeric antigen receptors (CAR) comprising an antibody or antibody fragment engineered for enhanced binding to a CD 19 protein.
- CAR chimeric antigen receptors
- the invention provides a cell (e.g., T cell) engineered to express a CAR, wherein the CAR T cell ("CART") exhibits an antitumor property.
- a cell is transformed with the CAR and the CAR is expressed on the cell surface.
- the cell e.g., T cell
- the cell is transduced with a viral vector encoding a CAR.
- the viral vector is a retroviral vector.
- the viral vector is a lentiviral vector.
- the cell may stably express the CAR.
- the cell e.g., T cell
- the cell is transfected with a nucleic acid, e.g., mRNA, cDNA, DNA, encoding a CAR.
- the cell may transiently express the CAR.
- the anti-CD 19 protein binding portion of the CAR is a scFv antibody fragment.
- such antibody fragments are functional in that they retain the equivalent binding affinity, e.g., they bind the same antigen with comparable efficacy, as the IgG antibody from which it is derived.
- such antibody fragments are functional in that they provide a biological response that can include, but is not limited to, activation of an immune response, inhibition of signal-transduction origination from its target antigen, inhibition of kinase activity, and the like, as will be understood by a skilled artisan.
- the anti-CD 19 antigen binding domain of the CAR is a scFv antibody fragment that is humanized compared to the murine sequence of the scFv from which it is derived.
- the parental murine scFv sequence is the CAR 19 construct provided in PCT publication WO2012/079000 and provided herein as SEQ ID NO:58.
- the antibodies of the invention are incorporated into a chimeric antigen receptor (CAR).
- the CAR comprises the polypeptide sequence provided as SEQ ID NO: 12 in PCT publication WO2012/079000, and provided herein as SEQ ID NO: 58, wherein the scFv domain is substituted by one or more sequences selected from SEQ ID NOS: 1-12.
- the scFv domains of SEQ ID NOS: l-12 are humanized variants of the scFv domain of SEQ ID NO:59, which is an scFv fragment of murine origin that specifically binds to human CD 19.
- mouse-specific residues may induce a human-anti-mouse antigen (HAMA) response in patients who receive CART 19 treatment, e.g., treatment with T cells transduced with the CAR 19 construct.
- HAMA human-anti-mouse antigen
- the anti-CD 19 binding domain, e.g., humanized scFv, portion of a CAR of the invention is encoded by a transgene whose sequence has been codon optimized for expression in a mammalian cell.
- entire CAR construct of the invention is encoded by a transgene whose entire sequence has been codon optimized for expression in a mammalian cell. Codon optimization refers to the discovery that the frequency of occurrence of synonymous codons (i.e., codons that code for the same amino acid) in coding DNA is biased in different species. Such codon degeneracy allows an identical polypeptide to be encoded by a variety of nucleotide sequences.
- the humanized CAR19 comprises the scFv portion provided in SEQ ID NO: 1
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO: l.
- the humanized CAR 19 comprises the scFv portion provided in SEQ
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:2.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:3.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:4.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:5.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:6.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:7.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:8.
- the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO:9.
- the humanized CAR19 comprises the scFv portion provided in SEQ ID NO: 11. In one aspect, the humanized CAR 19 comprises the scFv portion provided in SEQ ID NO: 12.
- the CARs of the invention combine an antigen binding domain of a specific antibody with an intracellular signaling molecule.
- the intracellular signaling molecule includes, but is not limited to, CD3-zeta chain, 4- IBB and CD28 signaling modules and combinations thereof.
- the antigen binding domain binds to CD 19.
- the CD 19 CAR comprises a CAR selected from the sequence provided in one or more of SEQ ID NOS: 31 - 42.
- the CD 19 CAR comprises the sequence provided in SEQ ID NO:31.
- the CD19 CAR comprises the sequence provided in SEQ ID NO:32.
- the CD19 CAR comprises the sequence provided in SEQ ID NO: 33.
- the CD 19 CAR comprises the sequence provided in SEQ ID NO:34. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:35. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:36. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:37. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:38. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:39. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:40. In one aspect, the CD19 CAR comprises the sequence provided in SEQ ID NO:41. In one aspect, the CD 19 CAR comprises the sequence provided in SEQ ID NO:42. [00135] Furthermore, the present invention provides CD 19 CAR compositions and their use in medicaments or methods for treating, among other diseases, cancer or any malignancy or autoimmune diseases involving cells or tissues which express CD19.
- the CAR of the invention can be used to eradicate CD19-expressing normal cells, thereby applicable for use as a cellular conditioning therapy prior to cell transplantation.
- the CD19-expressing normal cell is a CD19-expressing normal stem cell and the cell transplantation is a stem cell transplantation.
- the invention provides a cell (e.g., T cell) engineered to express a chimeric antigen receptor (CAR), wherein the CAR T cell ("CART") exhibits an antitumor property.
- a preferred antigen is CD 19.
- the antigen binding domain of the CAR comprises a partially humanized anti-CD 19 antibody fragment.
- the antigen binding domain of the CAR comprises a partially humanized anti-CD 19 antibody fragment comprising an scFv. Accordingly, the invention provides a CD19-CAR that comprises a humanized anti-CD 19 binding domain and is engineered into a T cell and methods of their use for adoptive therapy.
- the CD19-CAR comprises at least one intracellular domain selected from the group of a CD 137 (4- IBB) signaling domain, a CD28 signaling domain, a CD3zeta signal domain, and any combination thereof.
- the CD19-CAR comprises at least one intracellular signaling domain is from one or more co- stimulatory molecule(s) other than a CD137 (4-1BB) or CD28.
- the present invention encompasses a recombinant DNA construct comprising sequences encoding a CAR, wherein the CAR comprises a humanized antibody fragment that binds specifically to CD 19, e.g., human CD 19, wherein the sequence of the antibody fragment is contiguous with and in the same reading frame as a nucleic acid sequence encoding an intracellular signaling domain.
- the intracellular signaling domain can comprise a
- costimulatory signaling domain and/or a primary signaling domain, e.g., a zeta chain.
- the costimulatory signaling domain refers to a portion of the CAR comprising at least a portion of the intracellular domain of a costimulatory molecule.
- a CAR construct of the invention comprises a scFv domain selected from the group consisting of SEQ ID NOS: l-12, wherein the scFv may be preceded by an optional leader sequence such as provided in SEQ ID NO: 13, and followed by an optional hinge sequence such as provided in SEQ ID NO: 14 or SEQ ID NO:45 or SEQ ID NO:47 or SEQ ID NO:49, a transmembrane region such as provided in SEQ ID NO: 15, an intracellular signalling domain that includes SEQ ID NO: 16 or SEQ ID NO:51 and a CD3 zeta sequence that includes SEQ ID NO: 17 or SEQ ID NO:43, wherein the domains are contiguous with and in the same reading frame to form a single fusion protein.
- nucleotide sequence that encodes the polypeptide of each of the scFv fratgments selected from the group consisting of SEQ IS NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ IS NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12.
- nucleotide sequence that encodes the polypeptide of each of the scFv fragments selected from the group consisting of SEQ IS NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ IS NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12, and each of the domains of SEQ ID NOS: 13-17, plus the encoded CD19CAR fusion protein of the invention.
- an exemplary CD19CAR constructs comprise an optional leader sequence, an extracellular antigen binding domain, a hinge, a transmembrane domain, and an intracellular stimulatory domain.
- an exemplary CD19CAR construct comprises an optional leader sequence, an extracellular antigen binding domain, a hinge, a transmembrane domain, an intracellular costimulatory domain and an intracellular stimulatory domain.
- Specific CD 19 CAR constructs containing humanized scFv domains of the invention are provided as SEQ ID NOS: 31-42.
- An exemplary leader sequence is provided as SEQ ID NO: 13.
- An exemplary hinge/spacer sequence is provided as SEQ ID NO: 14 or SEQ ID NO:45 or SEQ ID NO:47 or SEQ ID NO:49.
- An exemplary transmembrane domain sequence is provided as SEQ ID NO: 15.
- An exemplary sequence of the intracellular signaling domain of the 4- IBB protein is provided as SEQ ID NO: 16.
- An exemplary sequence of the intracellular signaling domain of CD27 is provided as SEQ ID NO:51.
- An exemplary CD3zeta domain sequence is provided as SEQ ID NO: 17 or SEQ ID NO:43.
- the present invention encompasses a recombinant nucleic acid construct comprising a nucleic acid molecule encoding a CAR, wherein the nucleic acid molecule comprises the nucleic acid sequence encoding an anti-CD19 binding domain, e.g., described herein, that is contiguous with and in the same reading frame as a nucleic acid sequence encoding an intracellular signaling domain.
- the anti-CD 19 binding domain is selected from one or more of SEQ ID NOS: l-12.
- the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of the sequence provided in one or more of SEQ ID NOS:61-72.
- the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:61. In one aspect, the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:62. In one aspect, the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:63. In one aspect, the anti-CD 19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:64. In one aspect, the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:65.
- the anti-CD 19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:66. In one aspect, the anti-CD 19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:67. In one aspect, the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:68. In one aspect, the anti-CD 19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:69. In one aspect, the anti-CD19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:70.
- the anti-CD 19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:71. In one aspect, the anti-CD 19 binding domain is encoded by a nucleotide residues 64 to 813 of SEQ ID NO:72.
- the present invention encompasses a recombinant nucleic acid construct comprising a transgene encoding a CAR, wherein the nucleic acid molecule comprises a nucleic acid sequence encoding an anti-CD 19 binding domain selected from one or more of SEQ ID NOS:61-72, wherein the sequence is contiguous with and in the same reading frame as the nucleic acid sequence encoding an intracellular signaling domain.
- An exemplary intracellular signaling domain that can be used in the CAR includes, but is not limited to, one or more intracellular signaling domains of, e.g., CD3-zeta, CD28, 4-1BB, and the like.
- the CAR can comprise any combination of CD3-zeta, CD28, 4- IBB, and the like.
- the nucleic acid sequence of a CAR construct of the invention is selected from one or more of SEQ ID NOS:85-96.
- the nucleic acid sequence of a CAR construct is SEQ ID NO:85.
- the nucleic acid sequence of a CAR construct is SEQ ID NO:86.
- the nucleic acid sequence of a CAR construct is SEQ ID NO: 87.
- the nucleic acid sequence of a CAR construct is SEQ ID NO:88.
- the nucleic acid sequence of a CAR construct is SEQ ID NO:89.
- nucleic acid sequence of a CAR construct is SEQ ID NO:90. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:91. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:92. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:93. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:94. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:95. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:96. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:97. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:98. In one aspect the nucleic acid sequence of a CAR construct is SEQ ID NO:99.
- nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the gene, by deriving the gene from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques.
- nucleic acid of interest can be produced synthetically, rather than cloned.
- the present invention includes retroviral and lentiviral vector constructs expressing a CAR that can be directly transduced into a cell.
- the present invention also includes an RNA construct that can be directly transfected into a cell.
- a method for generating mRNA for use in transfection involves in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3' and 5' untranslated sequence ("UTR"), a 5' cap and/or
- RNA so produced can efficiently transfect different kinds of cells.
- the template includes sequences for the CAR.
- an RNA CAR vector is transduced into a T cell by electroporation. Antigen binding domain
- the CAR of the invention comprises a target- specific binding element otherwise referred to as an antigen binding domain.
- the choice of moiety depends upon the type and number of ligands that define the surface of a target cell.
- the antigen binding domain may be chosen to recognize a ligand that acts as a cell surface marker on target cells associated with a particular disease state.
- cell surface markers that may act as ligands for the antigen binding domain in a CAR of the invention include those associated with viral, bacterial and parasitic infections, autoimmune disease and cancer cells.
- the CAR-mediated T-cell response can be directed to an antigen of interest by way of engineering an antigen binding domain that specifically binds a desired antigen into the CAR.
- the portion of the CAR comprising the antigen binding domain comprises an antigen binding domain that targets CD 19.
- the antigen binding domain targets human CD 19.
- the antigen binding domain of the CAR has the same or a similar binding specificity as the FMC63 scFv fragment described in Nicholson et al. Mol. Immun. 34 (16-17): 1157-1165 (1997).
- the antigen binding domain can be any domain that binds to the antigen including but not limited to a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof, including but not limited to a single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody, and to an alternative scaffold known in the art to function as antigen binding domain, such as a recombinant fibronectin domain, and the like.
- VH heavy chain variable domain
- VL light chain variable domain
- VHH variable domain
- it is beneficial for the antigen binding domain to be derived from the same species in which the CAR will ultimately be used in.
- the antigen binding domain comprises a humanized antibody or an antibody fragment.
- the humanized anti-CD 19 binding domain comprises one or more (e.g., all three) light chain complementary determining region 1 (LC CDR1), light chain complementary determining region 2 (LC CDR2), and light chain complementary determining region 3 (LC CDR3) of a humanized anti-CD 19 binding domain described herein, and/or one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a humanized anti-CD 19 binding domain described herein, e.g., a humanized anti-CD19 binding domain comprising one or more, e.g., all three, LC CDRs and one or more, e.g., all three, HC CDRs.
- LC CDR1 light chain complementary determining region 1
- HC CDR2 light chain complementary determining region 2
- HC CDR3
- the humanized anti-CD 19 binding domain comprises one or more (e.g., all three) heavy chain complementary determining region 1 (HC CDR1), heavy chain complementary determining region 2 (HC CDR2), and heavy chain complementary determining region 3 (HC CDR3) of a humanized anti-CD19 binding domain described herein, e.g., the humanized anti- CD ⁇ binding domain has two variable heavy chain regions, each comprising a HC CDR1, a HC CDR2 and a HC CDR3 described herein.
- the humanized anti-CD 19 binding domain comprises a humanized light chain variable region described herein (e.g., in Table 3) and/or a humanized heavy chain variable region described herein (e.g., in Table 3).
- the humanized anti-CD 19 binding domain comprises a humanized heavy chain variable region described herein (e.g., in Table 3), e.g., at least two humanized heavy chain variable regions described herein (e.g., in Table 3).
- the anti-CD19 binding domain is a scFv comprising a light chain and a heavy chain of an amino acid sequence of Table 3.
- the anti-CD 19 binding domain (e.g., an scFv) comprises: a light chain variable region comprising an amino acid sequence having at least one, two or three modifications (e.g., substitutions) but not more than 30, 20 or 10 modifications (e.g., substitutions) of an amino acid sequence of a light chain variable region provided in Table 3, or a sequence with 95-99% identity with an amino acid sequence of Table 3; and/or a heavy chain variable region comprising an amino acid sequence having at least one, two or three
- the humanized anti-CD 19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID N0:9, SEQ ID NO: 10, SEQ ID N0:11, and SEQ ID NO: 12, or a sequence with 95-99% identify thereof.
- the nucleic acid sequence encoding the humanized anti-CD 19 binding domain comprises a sequence selected from a group consisting of SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:71 and SEQ ID NO:72, or a sequence with 95-99% identify thereof.
- the humanized anti-CD 19 binding domain is a scFv, and a light chain variable region comprising an amino acid sequence described herein, e.g., in Table 3, is attached to a heavy chain variable region comprising an amino acid sequence described herein, e.g., in Table 3, via a linker, e.g., a linker described herein.
- the humanized anti-CD19 binding domain includes a (Gly 4 -Ser)n linker, wherein n is 1, 2, 3, 4, 5, or 6, preferably 3 or 4 (SEQ ID NO:53).
- the light chain variable region and heavy chain variable region of a scFv can be, e.g., in any of the following orientations: light chain variable region-linker-heavy chain variable region or heavy chain variable region-linker-light chain variable region.
- the antigen binding domain portion comprises one or more sequence selected from SEQ ID NOS: l-12.
- the humanized CAR is selected from one or more sequence selected from SEQ ID NOS: 31-42.
- a non-human antibody is humanized, where specific sequences or regions of the antibody are modified to increase similarity to an antibody naturally produced in a human or fragment thereof.
- the antigen binding domain is humanized.
- a humanized antibody can be produced using a variety of techniques known in the art, including but not limited to, CDR-grafting (see, e.g., European Patent No. EP 239,400; International Publication No. WO 91/09967; and U.S. Pat. Nos. 5,225,539, 5,530,101, and 5,585,089, each of which is incorporated herein in its entirety by reference), veneering or resurfacing (see, e.g., European Patent Nos.
- framework substitutions are identified by methods well-known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Pat. No. 5,585,089; and Riechmann et al., 1988, Nature, 332:323, which are incorporated herein by reference in their entireties.)
- a humanized antibody or antibody fragment has one or more amino acid residues remaining in it from a source which is nonhuman. These nonhuman amino acid residues are often referred to as "import" residues, which are typically taken from an "import” variable domain.
- humanized antibodies or antibody fragments comprise one or more CDRs from nonhuman immunoglobulin molecules and framework regions wherein the amino acid residues comprising the framework are derived completely or mostly from human germline.
- Humanized antibodies are often human antibodies in which some CDR residues and possibly some framework (FR) residues are substituted by residues from analogous sites in rodent antibodies.
- Humanization of antibodies and antibody fragments can also be achieved by veneering or resurfacing (EP 592,106; EP 519,596; Padlan, 1991, Molecular Immunology, 28(4/5):489-498; Studnicka et al., Protein Engineering, 7(6):805-814 (1994); and Roguska et al, PNAS, 91:969-973 (1994)) or chain shuffling (U.S. Pat. No. 5,565,332), the contents of which are incorporated herein by reference herein in their entirety.
- variable domains both light and heavy
- the choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is to reduce antigenicity.
- sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences.
- the human sequence which is closest to that of the rodent is then accepted as the human framework (FR) for the humanized antibody (Sims et al., J. Immunol., 151:2296 (1993); Chothia et al., J. Mol. Biol., 196:901 (1987), the contents of which are incorporated herein by reference herein in their entirety).
- Another method uses a particular framework derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains.
- the same framework may be used for several different humanized antibodies (see, e.g., Nicholson et al. Mol. Immun. 34 (16-17): 1157-1165 (1997); Carter et al., Proc. Natl. Acad. Sci. USA, 89:4285 (1992); Presta et al., J. Immunol., 151:2623 (1993), the contents of which are incorporated herein by reference herein in their entirety).
- the framework region e.g., all four framework regions, of the heavy chain variable region are derived from a VH4_4-59 germline sequence.
- the framework region can comprise, one, two, three, four or five modifications, e.g., substitutions, e.g., from the amino acid at the corresponding murine sequence (e.g., of SEQ ID NO:58).
- the framework region e.g., all four framework regions of the light chain variable region are derived from a VK3_1.25 germline sequence.
- the framework region can comprise, one, two, three, four or five modifications, e.g., substitutions, e.g., from the amino acid at the corresponding murine sequence (e.g., of SEQ ID NO:58).
- the portion of a CAR composition of the invention that comprises an antibody fragment is humanized with retention of high affinity for the target antigen and other favorable biological properties.
- humanized antibodies and antibody fragments are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences.
- Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, e.g., the analysis of residues that influence the ability of the candidate immunoglobulin to bind the target antigen.
- FR residues can be selected and combined from the recipient and import sequences so that the desired antibody or antibody fragment characteristic, such as increased affinity for the target antigen, is achieved.
- the CDR residues are directly and most substantially involved in influencing antigen binding.
- a humanized antibody or antibody fragment may retain a similar antigenic specificity as the original antibody, e.g., in the present invention, the ability to bind human CD19.
- a humanized antibody or antibody fragment may have improved affinity and/or specificity of binding to human CD 19.
- the anti-CD 19 binding domain is characterized by particular functional features or properties of an antibody or antibody fragment.
- the portion of a CAR composition of the invention that comprises an antigen binding domain specifically binds human CD 19.
- the antigen binding domain has the same or a similar binding specificity to human CD 19 as the FMC63 scFv described in
- the invention relates to an antigen binding domain comprising an antibody or antibody fragment, wherein the antibody binding domain specifically binds to a CD 19 protein or fragment thereof, wherein the antibody or antibody fragment comprises a variable light chain and/or a variable heavy chain that includes an amino acid sequence of SEQ ID NO: 1-12.
- the antigen binding domain comprises an amino acid sequence of an scFv selected from SEQ ID NOs: 1-12.
- the scFv is contiguous with and in the same reading frame as a leader sequence.
- the leader sequence is the polypeptide sequence provided as SEQ ID NO: 13.
- the anti-CD19 binding domain is a fragment, e.g., a single chain variable fragment (scFv).
- the anti-CD 19 binding domain is a Fv, a Fab, a (Fab')2, or a bi-functional (e.g. bi-specific) hybrid antibody (e.g., Lanzavecchia et al., Eur. J. Immunol. 17, 105 (1987)).
- the antibodies and fragments thereof of the invention binds a CD 19 protein with wild- type or enhanced affinity.
- scFvs can be prepared according to method known in the art (see, for example, Bird et al., (1988) Science 242:423-426 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883).
- ScFv molecules can be produced by linking VH and VL regions together using flexible polypeptide linkers.
- the scFv molecules comprise a linker (e.g., a Ser-Gly linker) with an optimized length and/or amino acid composition. The linker length can greatly affect how the variable regions of a scFv fold and interact.
- a short polypeptide linker e.g., between 5-10 amino acids
- intrachain folding is prevented.
- Interchain folding is also required to bring the two variable regions together to form a functional epitope binding site.
- linker orientation and size see, e.g., Hollinger et al. 1993 Proc Natl Acad. Sci. U.S.A. 90:6444-6448, U.S. Patent Application Publication Nos. 2005/0100543, 2005/0175606, 2007/0014794, and PCT publication Nos.
- An scFv can comprise a linker of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more amino acid residues between its VL and VH regions.
- the linker sequence may comprise any naturally occurring amino acid.
- the linker sequence comprises amino acids glycine and serine.
- the linker sequence comprises sets of glycine and serine repeats such as
- the linker can be (Gly 4 Ser) 4 (SEQ ID NO: 106) or (Gly 4 Ser) 3 (SEQ ID NO: 107). Variation in the linker length may retain or enhance activity, giving rise to superior efficacy in activity studies.
- an anti-CD 19 binding domain e.g., scFv molecules (e.g., soluble scFv)
- scFv molecules e.g., soluble scFv
- biophysical properties e.g., thermal stability
- the humanized scFv has a thermal stability that is greater than about 0.1, about 0.25, about 0.5, about 0.75, about 1, about 1.25, about 1.5, about 1.75, about 2, about 2.5, about 3, about 3.5, about 4, about 4.5, about 5, about 5.5, about 6, about 6.5, about 7, about 7.5, about 8, about 8.5, about 9, about 9.5, about 10 degrees, about 11 degrees, about 12 degrees, about 13 degrees, about 14 degrees, or about 15 degrees Celsius than a control binding molecule (e.g. a conventional scFv molecule) in the described assays.
- a control binding molecule e.g. a conventional scFv molecule
- the improved thermal stability of the anti-CD19 binding domain, e.g., scFv is subsequently conferred to the entire CART 19 construct, leading to improved therapeutic properties of the CART 19 construct.
- the thermal stability of the anti-CD 19 binding domain, e.g., scFv can be improved by at least about 2°C or 3°C as compared to a conventional antibody.
- the anti-CD19 binding domain, e.g., scFv has a 1°C improved thermal stability as compared to a conventional antibody.
- the anti- CD ⁇ binding domain, e.g., scFv has a 2°C improved thermal stability as compared to a conventional antibody.
- the scFv has a 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15°C improved thermal stability as compared to a conventional antibody. Comparisons can be made, for example, between the scFv molecules disclosed herein and scFv molecules or Fab fragments of an antibody from which the scFv VH and VL were derived.
- Thermal stability can be measured using methods known in the art. For example, in one embodiment, Tm can be measured. Methods for measuring Tm and other methods of determining protein stability are described in more detail below.
- the binding capacity of the mutant scFvs can be determined using assays described in the Examples.
- the anti-CD19 binding domain e.g., scFv comprises at least one mutation arising from the humanization process such that the mutated scFv confers improved stability to the CART 19 construct.
- the anti-CD 19 binding domain e.g., scFv comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 mutations arising from the humanization process such that the mutated scFv confers improved stability to the CART19 construct.
- the stability of an antigen binding domain may be assessed using, e.g., the methods described below. Such methods allow for the determination of multiple thermal unfolding transitions where the least stable domain either unfolds first or limits the overall stability threshold of a multidomain unit that unfolds cooperatively (e.g., a multidomain protein which exhibits a single unfolding transition).
- the least stable domain can be identified in a number of additional ways. Mutagenesis can be performed to probe which domain limits the overall stability. Additionally, protease resistance of a multidomain protein can be performed under conditions where the least stable domain is known to be intrinsically unfolded via DSC or other spectroscopic methods (Fontana, et al., (1997) Fold.
- thermal stability of the compositions may be analyzed using a number of non- limiting biophysical or biochemical techniques known in the art. In certain embodiments, thermal stability is evaluated by analytical spectroscopy.
- DSC Differential Scanning Calorimetry
- Calorimeter which is sensitive to the heat absorbances that accompany the unfolding of most proteins or protein domains (see, e.g. Sanchez-Ruiz, et al., Biochemistry, 27: 1648-52, 1988).
- To determine the thermal stability of a protein a sample of the protein is inserted into the calorimeter and the temperature is raised until the Fab or scFv unfolds. The temperature at which the protein unfolds is indicative of overall protein stability.
- CD Circular Dichroism
- CD spectrometry measures the optical activity of a composition as a function of increasing temperature.
- Circular dichroism (CD) spectroscopy measures differences in the absorption of left-handed polarized light versus right-handed polarized light which arise due to structural asymmetry.
- a disordered or unfolded structure results in a CD spectrum very different from that of an ordered or folded structure.
- the CD spectrum reflects the sensitivity of the proteins to the denaturing effects of increasing temperature and is therefore indicative of a protein's thermal stability (see van Mierlo and Steemsma, J. Biotechnol., 79(3):281-98, 2000).
- Another exemplary analytical spectroscopy method for measuring thermal stability is Fluorescence Emission Spectroscopy (see van Mierlo and Steemsma, supra).
- Yet another exemplary analytical spectroscopy method for measuring thermal stability is Nuclear Magnetic Resonance (NMR) spectroscopy (see, e.g. van Mierlo and Steemsma, supra).
- NMR Nuclear Magnetic Resonance
- the thermal stability of a composition can be measured biochemically.
- An exemplary biochemical method for assessing thermal stability is a thermal challenge assay.
- a composition is subjected to a range of elevated temperatures for a set period of time.
- test scFv molecules or molecules comprising scFv molecules are subject to a range of increasing temperatures, e.g., for 1-1.5 hours.
- the activity of the protein is then assayed by a relevant biochemical assay.
- the protein is a binding protein (e.g. an scFv or scFv-containing polypeptide ) the binding activity of the binding protein may be determined by a functional or quantitative ELISA.
- Such an assay may be done in a high-throughput format and those disclosed in the Examples using E. coli and high throughput screening.
- a library of anti-CD 19 binding domain, e.g., scFv variants may be created using methods known in the art.
- Anti-CD19 binding domain, e.g., scFv expression may be induced and the anti-CD19 binding domain, e.g., scFv may be subjected to thermal challenge.
- the challenged test samples may be assayed for binding and those anti-CD 19 binding domain, e.g., scFvs which are stable may be scaled up and further characterized.
- Thermal stability is evaluated by measuring the melting temperature (Tm) of a composition using any of the above techniques (e.g. analytical spectroscopy techniques).
- Tm melting temperature
- the melting temperature is the temperature at the midpoint of a thermal transition curve wherein
- Tm values for an anti-CD19 binding domain are about 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C,
- Tm values for an IgG is about 40°C, 41°C,
- Tm values for an multivalent antibody is about 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C, 65°C, 66°C, 67°C, 68°C, 69°C, 70°C, 71°C, 72°C, 73°C, 74°C, 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, 81°C, 82°C, 83°C, 84°C, 85°C, 86°C, 87°C, 88°C, 89°C, 90°C, 91°C, 92°C, 93
- Thermal stability is also evaluated by measuring the specific heat or heat capacity (Cp) of a composition using an analytical calorimetric technique (e.g. DSC).
- the specific heat of a composition is the energy (e.g. in kcal/mol) is required to rise by 1°C, the temperature of 1 mol of water.
- the change in heat capacity (ACp) of a composition is measured by determining the specific heat of a composition before and after its thermal transition.
- Thermal stability may also be evaluated by measuring or determining other parameters of thermodynamic stability including Gibbs free energy of unfolding (AG), enthalpy of unfolding ( ⁇ ), or entropy of unfolding (AS).
- One or more of the above biochemical assays e.g. a thermal challenge assay
- the temperature i.e. the Tc value
- 50% of the composition retains its activity e.g. binding activity
- mutations to the anti-CD19 binding domain alter the thermal stability of the anti-CD 19 binding domain, e.g., scFv compared with the unmutated anti-CD 19 binding domain, e.g., scFv.
- the anti-CD19 binding domain e.g., humanized scFv confers thermal stability to the overall anti-CD 19 CART construct.
- the anti-CD19 binding domain e.g., scFv comprises a single mutation that confers thermal stability to the anti-CD19 binding domain, e.g., scFv.
- the anti-CD19 binding domain, e.g., scFv comprises multiple mutations that confer thermal stability to the anti-CD19 binding domain, e.g., scFv.
- the multiple mutations in the anti-CD 19 binding domain, e.g., scFv have an additive effect on thermal stability of the anti-CD 19 binding domain, e.g., scFv.
- b) % Aggregation [00178] The stability of a composition can be determined by measuring its propensity to aggregate.
- Aggregation can be measured by a number of non-limiting biochemical or biophysical techniques.
- the aggregation of a composition may be evaluated using chromatography, e.g. Size-Exclusion Chromatography (SEC).
- SEC Size-Exclusion Chromatography
- a column is filled with semi-solid beads of a polymeric gel that will admit ions and small molecules into their interior but not large ones.
- the compact folded proteins i.e. non-aggregated proteins
- the large aggregates move more rapidly through the column, and in this way the mixture can be separated or fractionated into its components.
- Each fraction can be separately quantified (e.g.
- the % aggregation of a composition can be determined by comparing the concentration of a fraction with the total concentration of protein applied to the gel. Stable compositions elute from the column as essentially a single fraction and appear as essentially a single peak in the elution profile or chromatogram.
- the stability of a composition can be assessed by determining its target binding affinity.
- a wide variety of methods for determining binding affinity are known in the art.
- An exemplary method for determining binding affinity employs surface plasmon resonance.
- Surface plasmon resonance is an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.).
- BIAcore Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, N.J.
- the antigen binding domain of the CAR comprises an amino acid sequence that is homologous to an antigen binding domain amino acid sequence described herein, and the antigen binding domain retains the desired functional properties of the anti- CD ⁇ antibody fragments described herein.
- the CAR composition of the invention comprises an antibody fragment.
- that antibody fragment comprises an scFv.
- the antigen binding domain of the CAR is engineered by modifying one or more amino acids within one or both variable regions (e.g., VH and/or VL), for example within one or more CDR regions and/or within one or more framework regions.
- the CAR composition of the invention comprises an antibody fragment. In a further aspect, that antibody fragment comprises an scFv.
- the antibody or antibody fragment of the invention may further be modified such that they vary in amino acid sequence (e.g., from wild-type), but not in desired activity.
- additional nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues may be made to the protein
- a nonessential amino acid residue in a molecule may be replaced with another amino acid residue from the same side chain family.
- a string of amino acids can be replaced with a structurally similar string that differs in order and/or composition of side chain family members, e.g., a conservative substitution, in which an amino acid residue is replaced with an amino acid residue having a similar side chain, may be made.
- Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
- basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid
- Percent identity in the context of two or more nucleic acids or polypeptide sequences refers to two or more sequences that are the same. Two sequences are "substantially identical" if two sequences have a specified percentage of amino acid residues or nucleotides that are the same (e.g., 60% identity, optionally 70%, 71%. 72%. 73%, 74%, 75%, 76%, 77%,
- the identity exists over a region that is at least about 50 nucleotides (or 10 amino acids) in length, or more preferably over a region that is 100 to 500 or 1000 or more nucleotides (or 20, 50, 200 or more amino acids) in length.
- sequence comparison typically one sequence acts as a reference sequence, to which test sequences are compared.
- test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated.
- sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters. Methods of alignment of sequences for comparison are well known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman, (1970) Adv. Appl. Math.
- BLAST and BLAST 2.0 algorithms Two examples of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., (1977) Nuc. Acids Res. 25:3389-3402; and Altschul et al., (1990) J. Mol. Biol. 215:403-410, respectively.
- Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information.
- the percent identity between two amino acid sequences can also be determined using the algorithm of E. Meyers and W. Miller, (1988) Comput. Appl. Biosci. 4: 11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- the percent identity between two amino acid sequences can be determined using the Needleman and Wunsch (1970) J. Mol. Biol.
- the present invention contemplates modifications of the starting antibody or fragment (e.g., scFv) amino acid sequence that generate functionally equivalent molecules.
- the VH or VL of an anti-CD19 binding domain, e.g., scFv, comprised in the CAR can be modified to retain at least about 70%, 71%. 72%.
- the present invention contemplates modifications of the entire CAR construct, e.g., modifications in one or more amino acid sequences of the various domains of the CAR construct in order to generate functionally equivalent molecules.
- the CAR construct can be modified to retain at least about 70%, 71%. 72%.
- a CAR can be designed to comprise a transmembrane domain that is attached to the extracellular domain of the CAR.
- a transmembrane domain can include one or more additional amino acids adjacent to the transmembrane region, e.g., one or more amino acid associated with the extracellular region of the protein from which the transmembrane was derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the extracellular region) and/or one or more additional amino acids associated with the intracellular region of the protein from which the transmembrane protein is derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the intracellular region).
- the transmembrane domain is one that is associated with one of the otherdomains of the CAR is used.
- the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins, e.g., to minimize interactions with other members of the receptor complex.
- the transmembrane domain is capable of
- amino acid sequence of the transmembrane domain may be modified or substituted so as to minimize interactions with the binding domains of the native binding partner present in the same CART.
- the transmembrane domain may be derived either from a natural or from a recombinant source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one aspect the transmembrane domain is capable of signaling to the intracellular domain(s) whenever the CAR has bound to a target.
- a transmembrane domain of particular use in this invention may include at least the
- the transmembrane domain can be attached to the extracellular region of the CAR, e.g., the antigen binding domain of the CAR, via a hinge, e.g., a hinge from a human protein.
- a hinge e.g., a hinge from a human protein.
- the hinge can be a human Ig
- the hinge or spacer comprises (e.g., consists of) the amino acid sequence of SEQ ID NO: 14.
- the transmembrane domain comprises (e.g., consists of) a transmembrane domain of SEQ ID NO: 15.
- the hinge or spacer comprises an IgG4 hinge.
- the hinge or spacer comprises a hinge of the amino acid sequence
- the hinge or spacer comprises a hinge encoded by a nucleotide sequence of
- the hinge or spacer comprises an IgD hinge.
- the hinge or spacer comprises a hinge of the amino acid sequence
- the hinge or spacer comprises a hinge encoded by a nucleotide sequence of
- the transmembrane domain may be recombinant, in which case it will comprise predominantly hydrophobic residues such as leucine and valine.
- a triplet of phenylalanine, tryptophan and valine can be found at each end of a recombinant
- a short oligo- or polypeptide linker may form the linkage between the transmembrane domain and the cytoplasmic region of the CAR.
- a glycine-serine doublet provides a particularly suitable linker.
- the linker comprises the amino acid sequence of GGGGSGGGGS (SEQ ID NO:49).
- the linker is encoded by a nucleotide sequence of
- the cytoplasmic domain or region of the CAR includes an intracellular signaling domain.
- An intracellular signaling domain is generally responsible for activation of at least one of the normal effector functions of the immune cell in which the CAR has been introduced.
- effector function refers to a specialized function of a cell. Effector function of a T cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines.
- intracellular signaling domain refers to the portion of a protein which transduces the effector function signal and directs the cell to perform a specialized function. While usually the entire intracellular signaling domain can be employed, in many cases it is not necessary to use the entire chain.
- intracellular signaling domain is thus meant to include any truncated portion of the intracellular signaling domain sufficient to transduce the effector function signal.
- intracellular signaling domains for use in the CAR of the invention include the cytoplasmic sequences of the T cell receptor (TCR) and co-receptors that act in concert to initiate signal transduction following antigen receptor engagement, as well as any derivative or variant of these sequences and any recombinant sequence that has the same functional capability.
- TCR T cell receptor
- co-receptors that act in concert to initiate signal transduction following antigen receptor engagement
- T cell activation can be said to be mediated by two distinct classes of cytoplasmic signaling sequences: those that initiate antigen-dependent primary activation through the TCR (primary intracellular signaling domains) and those that act in an antigen-independent manner to provide a secondary or costimulatory signal (secondary cytoplasmic domain, e.g., a costimulatory domain).
- a primary signaling domain regulates primary activation of the TCR complex either in a stimulatory way, or in an inhibitory way.
- Primary intracellular signaling domains that act in a stimulatory manner may contain signaling motifs which are known as immunoreceptor tyrosine-based activation motifs or ITAMs.
- Examples of ITAM containing primary intracellular signaling domains that are of particular use in the invention include those of TCR zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta , CD3 epsilon, CD5, CD22, CD79a, CD79b, and CD66d.
- a CAR of the invention comprises an intracellular signaling domain, e.g., a primary signaling domain of CD3-zeta.
- a primary signaling domain comprises a modified ITAM domain, e.g., a mutated ITAM domain which has altered (e.g., increased or decreased) activity as compared to the native ⁇ domain.
- a primary signaling domain comprises a modified ITAM-containing primary intracellular signaling domain, e.g., an optimized and/or truncated ITAM-containing primary intracellular signaling domain.
- a primary signaling domain comprises one, two, three, four or more ITAM motifs.
- the intracellular signalling domain of the CAR can comprise the CD3-zeta signaling domain by itself or it can be combined with any other desired intracellular signaling domain(s) useful in the context of a CAR of the invention.
- the intracellular signaling domain of the CAR can comprise a CD3 zeta chain portion and a costimulatory signaling domain.
- the costimulatory signaling domain refers to a portion of the CAR comprising the intracellular domain of a costimulatory molecule.
- a costimulatory molecule is a cell surface molecule other than an antigen receptor or its ligands that is required for an efficient response of lymphocytes to an antigen.
- CD27 costimulation has been demonstrated to enhance expansion, effector function, and survival of human CART cells in vitro and augments human T cell persistence and antitumor activity in vivo (Song et al. Blood. 2012; 119(3):696-706).
- the intracellular signaling sequences within the cytoplasmic portion of the CAR of the invention may be linked to each other in a random or specified order.
- a short oligo- or polypeptide linker for example, between 2 and 10 amino acids (e.g., 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids) in length may form the linkage between intracellular signaling sequence.
- a glycine- serine doublet can be used as a suitable linker.
- a single amino acid e.g., an alanine, a glycine, can be used as a suitable linker.
- the intracellular signaling domain is designed to comprise two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains.
- the two or more, e.g., 2, 3, 4, 5, or more, costimulatory signaling domains are separated by a linker molecule, e.g., a linker molecule described herein.
- the intracellular signaling domain comprises two costimulatory signaling domains.
- the linker molecule is a glycine residue.
- the linker is an alanine residue.
- the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD28. In one aspect, the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of 4-1BB. In one aspect, the signaling domain of 4-1BB is a signaling domain of SEQ ID NO: 16. In one aspect, the signaling domain of CD3-zeta is a signaling domain of SEQ ID NO: 17.
- the intracellular signaling domain is designed to comprise the signaling domain of CD3-zeta and the signaling domain of CD27.
- the signaling domain of CD27 comprises an amino acid sequence of
- the signalling domain of CD27 is encoded by a nucleic acid sequence of AGGAGTAAGAGGAGCAGGCTCCTGCACAGTGACTACATGAACATGACTCCCCGCC GCCCCGGGCCCACCCGCAAGCATTACCAGCCCTATGCCCCACCACGCGACTTCGCA GCCTATCGCTCC (SEQ ID NO:52).
- the CAR-expressing cell described herein can further comprise a second CAR, e.g., a second CAR that includes a different antigen binding domain, e.g., to the same target (CD19) or a different target (e.g., CD123).
- a second CAR e.g., a second CAR that includes a different antigen binding domain, e.g., to the same target (CD19) or a different target (e.g., CD123).
- the antigen binding domains of the different CARs can be such that the antigen binding domains do not interact with one another.
- a cell expressing a first and second CAR can have an antigen binding domain of the first CAR, e.g., as a fragment, e.g., an scFv, that does not form an association with the antigen binding domain of the second CAR, e.g., the antigen binding domain of the second CAR is a VHH.
- the CAR-expressing cell described herein can further express another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
- the agent can be an agent which inhibits an inhibitory molecule.
- Inhibitory molecules e.g., PDl
- PDl can, in some embodiments, decrease the ability of a CAR- expressing cell to mount an immune effector response.
- inhibitory molecules include PDl, PD-L1, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIRl, CD160, 2B4 and TGFR beta.
- the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
- the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, LAG3, CTLA4, CD160, BTLA, LAIRl, TIM3, 2B4 and TIGIT, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein).
- an inhibitory molecule such as PDl, LAG3, CTLA4, CD160, BTLA, LAIRl, TIM3, 2B4 and TIGIT
- a fragment of any of these e.g., at least a portion of an extracellular domain of any of these
- a second polypeptide which is an
- the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of an extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
- PD1 is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA.
- PD-1 is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75).
- PD-L1 Two ligands for PD1, PD- Ll and PD-L2 have been shown to downregulate T cell activation upon binding to PD1 (Freeman et a. 2000 J Exp Med 192: 1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J Immunol 32:634-43).
- PD-L1 is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol. Immunother 54:307-314; Konishi et al. 2004 Clin Cancer Res 10:5094). Immune suppression can be reversed by inhibiting the local interaction of PD1 with PD-L1.
- the agent comprises the extracellular domain (ECD) of an inhibitory molecule, e.g., Programmed Death 1 (PD1), can be fused to a transmembrane domain and intracellular signaling domains such as 4 IBB and CD3 zeta (also referred to herein as a PD1 CAR).
- the PD1 CAR when used incombinations with a CD 19 CAR described herein, improves the persistence of the T cell.
- the CAR is a PD1 CAR comprising the extracellular domain of PD1 indicated as underlined in SEQ ID NO: 121.
- the PD1 CAR comprises the amino acid sequence of SEQ ID NO: 121.
- the PD1 CAR comprises the amino acid sequence provided below (SEQ ID NO: 119).
- the agent comprises a nucleic acid sequence encoding the PD1 CAR, e.g., the PD1 CAR described herein.
- the nucleic acid sequence for the PD1 CAR is shown below, with the PD1 ECD underlined below in SEQ ID NO: 120
- the present invention provides a population of CAR-expressing cells, e.g., CART cells.
- the population of CAR-expressing cells comprises a mixture of cells expressing different CARs.
- the population of CART cells can include a first cell expressing a CAR having an anti-CD 19 binding domain described herein, and a second cell expressing a CAR having a different anti- CD 19 binding domain, e.g., an anti-CD 19 binding domain described herein that differs from the anti-CD 19 binding domain in the CAR expressed by the first cell.
- the population of CAR-expressing cells can include a first cell expressing a CAR that includes an anti- CD19 binding domain, e.g., as described herein, and a second cell expressing a CAR that includes an antigen binding domain to a target other than CD19 (e.g., CD123).
- the population of CAR-expressing cells includes, e.g., a first cell expressing a CAR that includes a primary intracellular signaling domain, and a second cell expressing a CAR that includes a secondary signaling domain.
- the present invention provides a population of cells wherein at least one cell in the population expresses a CAR having an anti- CD 19 domain described herein, and a second cell expressing another agent, e.g., an agent which enhances the activity of a CAR-expressing cell.
- the agent can be an agent which inhibits an inhibitory molecule.
- Inhibitory molecules e.g., can, in some embodiments, decrease the ability of a CAR-expressing cell to mount an immune effector response.
- inhibitory molecules examples include PDl, PD-Ll, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGFR beta.
- the agent which inhibits an inhibitory molecule comprises a first polypeptide, e.g., an inhibitory molecule, associated with a second polypeptide that provides a positive signal to the cell, e.g., an intracellular signaling domain described herein.
- the agent comprises a first polypeptide, e.g., of an inhibitory molecule such as PDl, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGFR beta, or a fragment of any of these (e.g., at least a portion of an extracellular domain of any of these), and a second polypeptide which is an intracellular signaling domain described herein (e.g., comprising a costimulatory domain (e.g., 41BB, CD27 or CD28, e.g., as described herein) and/or a primary signaling domain (e.g., a CD3 zeta signaling domain described herein).
- an inhibitory molecule such as PDl, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGFR beta
- a fragment of any of these e.g., at least a portion of an extracellular
- the agent comprises a first polypeptide of PDl or a fragment thereof (e.g., at least a portion of the extracellular domain of PDl), and a second polypeptide of an intracellular signaling domain described herein (e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein).
- a first polypeptide of PDl or a fragment thereof e.g., at least a portion of the extracellular domain of PDl
- a second polypeptide of an intracellular signaling domain described herein e.g., a CD28 signaling domain described herein and/or a CD3 zeta signaling domain described herein.
- the present invention also includes a CAR encoding RNA construct that can be directly transfected into a cell.
- a method for generating mRNA for use in transfection can involve in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3' and 5' untranslated sequence ("UTR"), a 5' cap and/or Internal Ribosome Entry Site (IRES), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length (SEQ ID NO: 118).
- RNA so produced can efficiently transfect different kinds of cells.
- the template includes sequences for the CAR.
- the anti-CD 19 CAR is encoded by a messenger RNA (mRNA).
- mRNA encoding the anti-CD 19 CAR is introduced into a T cell for production of a CART cell.
- the in vitro transcribed RNA CAR can be introduced to a cell as a form of transient transfection.
- the RNA is produced by in vitro transcription using a polymerase chain reaction (PCR)-generated template.
- DNA of interest from any source can be directly converted by PCR into a template for in vitro mRNA synthesis using appropriate primers and RNA polymerase.
- the source of the DNA can be, for example, genomic DNA, plasmid DNA, phage DNA, cDNA, synthetic DNA sequence or any other appropriate source of DNA.
- the desired temple for in vitro transcription is a CAR of the present invention.
- the template for the RNA CAR comprises an extracellular region comprising a single chain variable domain of an anti-tumor antibody; a hinge region, a transmembrane domain (e.g., a transmembrane domain of CD8a); and a cytoplasmic region that includes an
- intracellular signaling domain e.g., comprising the signaling domain of CD3-zeta and the signaling domain of 4- IBB.
- the DNA to be used for PCR contains an open reading frame.
- the DNA can be from a naturally occurring DNA sequence from the genome of an organism.
- the nucleic acid can include some or all of the 5' and/or 3' untranslated regions (UTRs).
- the nucleic acid can include exons and introns.
- the DNA to be used for PCR is a human nucleic acid sequence.
- the DNA to be used for PCR is a human nucleic acid sequence including the 5' and 3' UTRs.
- the DNA can alternatively be an artificial DNA sequence that is not normally expressed in a naturally occurring organism.
- An exemplary artificial DNA sequence is one that contains portions of genes that are ligated together to form an open reading frame that encodes a fusion protein. The portions of DNA that are ligated together can be from a single organism or from more than one organism.
- PCR is used to generate a template for in vitro transcription of mRNA which is used for transfection. Methods for performing PCR are well known in the art. Primers for use in
- PCR are designed to have regions that are substantially complementary to regions of the DNA to be used as a template for the PCR.
- substantially complementary refers to sequences of nucleotides where a majority or all of the bases in the primer sequence are complementary, or one or more bases are non-complementary, or mismatched. Substantially complementary sequences are able to anneal or hybridize with the intended DNA target under annealing conditions used for PCR.
- the primers can be designed to be substantially
- the primers can be designed to amplify the portion of a nucleic acid that is normally transcribed in cells (the open reading frame), including 5' and 3' UTRs.
- the primers can also be designed to amplify a portion of a nucleic acid that encodes a particular domain of interest.
- the primers are designed to amplify the coding region of a human cDNA, including all or portions of the 5' and 3' UTRs. Primers useful for PCR can be generated by synthetic methods that are well known in the art.
- Forward primers are primers that contain a region of nucleotides that are substantially complementary to nucleotides on the DNA template that are upstream of the DNA sequence that is to be amplified.
- Upstream is used herein to refer to a location 5, to the DNA sequence to be amplified relative to the coding strand.
- reverse primers are primers that contain a region of nucleotides that are substantially complementary to a double- stranded DNA template that are downstream of the DNA sequence that is to be amplified.
- Downstream is used herein to refer to a location 3' to the DNA sequence to be amplified relative to the coding strand.
- Any DNA polymerase useful for PCR can be used in the methods disclosed herein.
- the reagents and polymerase are commercially available from a number of sources.
- the RNA preferably has 5' and 3' UTRs.
- the 5' UTR is between one and 3000 nucleotides in length.
- the length of 5' and 3' UTR sequences to be added to the coding region can be altered by different methods, including, but not limited to, designing primers for PCR that anneal to different regions of the UTRs. Using this approach, one of ordinary skill in the art can modify the 5' and 3' UTR lengths required to achieve optimal translation efficiency following transfection of the transcribed RNA.
- the 5' and 3' UTRs can be the naturally occurring, endogenous 5' and 3' UTRs for the nucleic acid of interest.
- UTR sequences that are not endogenous to the nucleic acid of interest can be added by incorporating the UTR sequences into the forward and reverse primers or by any other modifications of the template.
- the use of UTR sequences that are not endogenous to the nucleic acid of interest can be useful for modifying the stability and/or translation efficiency of the RNA. For example, it is known that AU-rich elements in 3' UTR sequences can decrease the stability of mRNA. Therefore, 3' UTRs can be selected or designed to increase the stability of the transcribed RNA based on properties of UTRs that are well known in the art.
- the 5' UTR can contain the Kozak sequence of the endogenous nucleic acid.
- a consensus Kozak sequence can be redesigned by adding the 5' UTR sequence.
- Kozak sequences can increase the efficiency of translation of some RNA transcripts, but does not appear to be required for all RNAs to enable efficient translation. The requirement for Kozak sequences for many mRNAs is known in the art.
- the 5' UTR can be 5'UTR of an RNA virus whose RNA genome is stable in cells.
- various nucleotide analogues can be used in the 3' or 5' UTR to impede exonuclease degradation of the mRNA.
- a promoter of transcription should be attached to the DNA template upstream of the sequence to be transcribed.
- the RNA polymerase promoter becomes incorporated into the PCR product upstream of the open reading frame that is to be transcribed.
- the promoter is a T7 polymerase promoter, as described elsewhere herein.
- Other useful promoters include, but are not limited to, T3 and SP6 RNA polymerase promoters. Consensus nucleotide sequences for T7, T3 and SP6 promoters are known in the art.
- the mRNA has both a cap on the 5' end and a 3' poly(A) tail which determine ribosome binding, initiation of translation and stability mRNA in the cell.
- a circular DNA template for instance, plasmid DNA
- RNA polymerase produces a long concatameric product which is not suitable for expression in eukaryotic cells.
- the transcription of plasmid DNA linearized at the end of the 3' UTR results in normal sized mRNA which is not effective in eukaryotic transfection even if it is polyadenylated after transcription.
- phage T7 RNA polymerase can extend the 3' end of the transcript beyond the last base of the template (Schenborn and Mierendorf, Nuc Acids Res., 13:6223-36 (1985); Nacheva and Berzal-Herranz, Eur. J. Biochem., 270: 1485-65 (2003).
- the conventional method of integration of polyA/T stretches into a DNA template is molecular cloning.
- polyA/T sequence integrated into plasmid DNA can cause plasmid instability, which is why plasmid DNA templates obtained from bacterial cells are often highly contaminated with deletions and other aberrations. This makes cloning procedures not only laborious and time consuming but often not reliable. That is why a method which allows construction of DNA templates with polyA/T 3' stretch without cloning highly desirable.
- the polyA/T segment of the transcriptional DNA template can be produced during PCR by using a reverse primer containing a polyT tail, such as 100T tail (SEQ ID NO: 110) (size can be 50-5000 T (SEQ ID NO: 111)), or after PCR by any other method, including, but not limited to, DNA ligation or in vitro recombination.
- Poly(A) tails also provide stability to RNAs and reduce their degradation. Generally, the length of a poly(A) tail positively correlates with the stability of the transcribed RNA. In one embodiment, the poly(A) tail is between 100 and 5000 adenosines (SEQ ID NO: 112).
- Poly(A) tails of RNAs can be further extended following in vitro transcription with the use of a poly(A) polymerase, such as E. coli polyA polymerase (E-PAP).
- E-PAP E. coli polyA polymerase
- increasing the length of a poly(A) tail from 100 nucleotides to between 300 and 400 nucleotides (SEQ ID NO: 113) results in about a two-fold increase in the translation efficiency of the RNA.
- the attachment of different chemical groups to the 3' end can increase mRNA stability. Such attachment can contain modified/artificial nucleotides, aptamers and other compounds.
- ATP analogs can be incorporated into the poly(A) tail using poly(A) polymerase. ATP analogs can further increase the stability of the RNA.
- RNAs produced by the methods disclosed herein include a 5' cap.
- the 5' cap is provided using techniques known in the art and described herein (Cougot, et al., Trends in Biochem. Sci., 29:436-444 (2001); Stepinski, et al., RNA, 7: 1468-95 (2001); Elango, et al., Biochim. Biophys. Res. Commun., 330:958-966 (2005)).
- RNAs produced by the methods disclosed herein can also contain an internal ribosome entry site (IRES) sequence.
- IRES sequence may be any viral, chromosomal or artificially designed sequence which initiates cap-independent ribosome binding to mRNA and facilitates the initiation of translation. Any solutes suitable for cell electroporation, which can contain factors facilitating cellular permeability and viability such as sugars, peptides, lipids, proteins, antioxidants, and surfactants can be included.
- RNA can be introduced into target cells using any of a number of different methods, for instance, commercially available methods which include, but are not limited to,
- the present invention also provides nucleic acid molecules encoding one or more CAR constructs described herein.
- the nucleic acid molecule is provided as a messenger RNA transcript.
- the nucleic acid molecule is provided as a DNA construct.
- the invention pertains to an isolated nucleic acid molecule encoding a chimeric antigen receptor (CAR), wherein the CAR comprises a anti- CD19 binding domain (e.g., a humanized anti-CD19 binding domain), a transmembrane domain, and an intracellular signaling domain comprising a stimulatory domain, e.g., a costimulatory signaling domain and/or a primary signaling domain, e.g., zeta chain.
- a chimeric antigen receptor e.g., a humanized anti-CD19 binding domain
- an intracellular signaling domain comprising a stimulatory domain, e.g., a costimulatory signaling domain and/or a primary signaling domain, e.g., zeta chain.
- the anti-CD 19 binding domain is an anti-CD 19 binding domain described herein, e.g., an anti-CD19 binding domain which comprises a sequence selected from a group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO:l l, and SEQ ID NO: 12, or a sequence with 95-99% identify thereof.
- the transmembrane domain is transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD 154.
- the transmembrane domain comprises a sequence of SEQ ID NO: 15, or a sequence with 95-99% identity thereof.
- the anti-CD19 binding domain is connected to the transmembrane domain by a hinge region, e.g., a hinge described herein.
- the hinge region comprises SEQ ID NO: 14 or SEQ ID NO:45 or SEQ ID NO:47 or SEQ ID NO:49, or a sequence with 95-99% identity thereof.
- the isolated nucleic acid molecule further comprises a sequence encoding a costimulatory domain.
- the costimulatory domain is a functional signaling domain of a protein selected from the group consisting of OX40, CD27, CD28, CDS, ICAM-1, LFA-1 (CDl la/CD18), ICOS (CD278), and 4-1BB (CD137).
- the costimulatory domain comprises a sequence of SEQ ID NO: 16, or a sequence with 95-99% identity thereof.
- the intracellular signaling domain comprises a functional signaling domain of 4- IBB and a functional signaling domain of CD3 zeta.
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 16 or SEQ ID NO:51, or a sequence with 95-99% identity thereof, and the sequence of SEQ ID NO: 17 or SEQ ID NO:43, or a sequence with 95-99% identity thereof, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
- the invention pertains to an isolated nucleic acid molecule encoding a CAR construct comprising a leader sequence of SEQ ID NO: 13, a scFv domain having a sequence selected from the group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12, (or a sequence with 95-99% identify thereof), a hinge region of SEQ ID NO: 14 or SEQ ID NO:45 or SEQ ID NO:47 or SEQ ID NO:49 (or a sequence with 95-99% identity thereof), a transmembrane domain having a sequence of SEQ ID NO: 15 (or a sequence with 95-99% identity thereof), a 4- IBB costimulatory domain having a sequence of SEQ ID NO: 16 or a CD27 costimul
- the invention pertains to an isolated polypeptide molecule encoded by the nucleic acid molecule.
- the isolated polypeptide molecule comprises a sequence selected from the group consisting of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:42 or a sequence with 95-99% identify thereof.
- the invention pertains to a nucleic acid molecule encoding a chimeric antigen receptor (CAR) molecule that comprises an anti-CD 19 binding domain, a transmembrane domain, and an intracellular signaling domain comprising a stimulatory domain, and wherein said anti-CD 19 binding domain comprises a sequence selected from the group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO: 10, SEQ ID NO: 11, and SEQ ID NO: 12, or a sequence with 95-99% identify thereof.
- CAR chimeric antigen receptor
- the encoded CAR molecule further comprises a sequence encoding a costimulatory domain.
- the costimulatory domain is a functional signaling domain of a protein selected from the group consisting of OX40, CD27, CD28, CDS, ICAM-1, LFA-1 (CDl la/CD18) and 4-1BB (CD137).
- the costimulatory domain comprises a sequence of SEQ ID NO: 16.
- the transmembrane domain is a transmembrane domain of a protein selected from the group consisting of the alpha, beta or zeta chain of the T-cell receptor, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 and CD 154.
- the transmembrane domain comprises a sequence of SEQ ID NO: 15.
- the intracellular signaling domain comprises a functional signaling domain of 4- IBB and a functional signaling domain of zeta.
- the intracellular signaling domain comprises the sequence of SEQ ID NO: 16 and the sequence of SEQ ID NO: 17, wherein the sequences comprising the intracellular signaling domain are expressed in the same frame and as a single polypeptide chain.
- the anti- CD ⁇ binding domain is connected to the transmembrane domain by a hinge region.
- the hinge region comprises SEQ ID NO: 14.
- the hinge region comprises SEQ ID NO:45 or SEQ ID NO:47 or SEQ ID NO:49.
- the invention pertains to an encoded CAR molecule comprising a leader sequence of SEQ ID NO: 13, a scFv domain having a sequence selected from the group consisting of SEQ ID NO: l, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID N0:9, SEQ ID NO: 10, SEQ ID N0:11, and SEQ ID NO: 12, or a sequence with 95-99% identify thereof, a hinge region of SEQ ID NO: 14 or SEQ ID NO:45 or SEQ ID NO:47 or SEQ ID NO:49, a transmembrane domain having a sequence of SEQ ID NO: 15, a 4-1BB costimulatory domain having a sequence of SEQ ID NO: 16 or a CD27 costimulatory domain having a sequence of SEQ ID NO:51, and a CD3 zeta stimulatory domain having a sequence
- the encoded CAR molecule comprises a sequence selected from a group consisting of SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:42, or a sequence with 95-99% identify thereof.
- nucleic acid sequences coding for the desired molecules can be obtained using recombinant methods known in the art, such as, for example by screening libraries from cells expressing the gene, by deriving the gene from a vector known to include the same, or by isolating directly from cells and tissues containing the same, using standard techniques.
- the gene of interest can be produced synthetically, rather than cloned.
- the present invention also provides vectors in which a DNA of the present invention is inserted.
- Vectors derived from retroviruses such as the lentivirus are suitable tools to achieve long-term gene transfer since they allow long-term, stable integration of a transgene and its propagation in daughter cells.
- Lenti viral vectors have the added advantage over vectors derived from onco-retroviruses such as murine leukemia viruses in that they can transduce non- proliferating cells, such as hepatocytes. They also have the added advantage of low
- the vector comprising the nucleic acid encoding the desired CAR of the invention is an adenoviral vector (A5/35).
- the expression of nucleic acids encoding CARs can be accomplished using of transposons such as sleeping beauty, crisper, CAS9, and zinc finger nucleases. See below June et al. 2009Nature Reviews Immunology 9.10: 704-716, is incorporated herein by reference.
- the expression of natural or synthetic nucleic acids encoding CARs is typically achieved by operably linking a nucleic acid encoding the CAR polypeptide or portions thereof to a promoter, and incorporating the construct into an expression vector.
- the vectors can be suitable for replication and integration eukaryotes.
- Typical cloning vectors contain transcription and translation terminators, initiation sequences, and promoters useful for regulation of the expression of the desired nucleic acid sequence.
- the expression constructs of the present invention may also be used for nucleic acid immunization and gene therapy, using standard gene delivery protocols. Methods for gene delivery are known in the art. See, e.g., U.S. Pat. Nos. 5,399,346, 5,580,859, 5,589,466, incorporated by reference herein in their entireties.
- the invention provides a gene therapy vector.
- the nucleic acid can be cloned into a number of types of vectors.
- the nucleic acid can be cloned into a vector including, but not limited to a plasmid, a phagemid, a phage derivative, an animal virus, and a cosmid.
- Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors.
- the expression vector may be provided to a cell in the form of a viral vector.
- Viral vector technology is well known in the art and is described, for example, in Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1 -4, Cold Spring Harbor Press, NY), and in other virology and molecular biology manuals.
- Viruses, which are useful as vectors include, but are not limited to, retroviruses, adenoviruses, adeno- associated viruses, herpes viruses, and lentiviruses.
- a suitable vector contains an origin of replication functional in at least one organism, a promoter sequence, convenient restriction endonuclease sites, and one or more selectable markers, (e.g., WO 01/96584; WO 01/29058; and U.S. Pat. No. 6,326,193).
- retroviruses provide a convenient platform for gene delivery systems.
- a selected gene can be inserted into a vector and packaged in retroviral particles using techniques known in the art.
- the recombinant virus can then be isolated and delivered to cells of the subject either in vivo or ex vivo.
- retroviral systems are known in the art.
- adenovirus vectors are used.
- a number of adenovirus vectors are known in the art.
- lentivirus vectors are used.
- Additional promoter elements e.g., enhancers, regulate the frequency of
- transcriptional initiation typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have been shown to contain functional elements downstream of the start site as well.
- the spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another.
- tk thymidine kinase
- the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline.
- individual elements can function either cooperatively or independently to activate transcription.
- EFla promoter An example of a promoter that is capable of expressing a CAR transgene in a mammalian T cell is the EFla promoter.
- the native EFla promoter drives expression of the alpha subunit of the elongation factor- 1 complex, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome.
- the EFla promoter has been extensively used in mammalian expression plasmids and has been shown to be effective in driving CAR expression from transgenes cloned into a lentiviral vector. See, e.g., Milone et al., Mol. Ther. 17(8): 1453-1464 (2009).
- the EFla promoter comprises the sequence provided as SEQ ID NO: 100.
- CMV immediate early cytomegalovirus
- constitutive promoter sequences may also be used, including, but not limited to the simian virus 40 (SV40) early promoter, mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV) long terminal repeat (LTR) promoter, MoMuLV promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter, as well as human gene promoters such as, but not limited to, the actin promoter, the myosin promoter, the elongation factor- la promoter, the hemoglobin promoter, and the creatine kinase promoter. Further, the invention should not be limited to the use of constitutive promoters.
- inducible promoters are also contemplated as part of the invention.
- the use of an inducible promoter provides a molecular switch capable of turning on expression of the polynucleotide sequence which it is operatively linked when such expression is desired, or turning off the expression when expression is not desired.
- inducible promoters include, but are not limited to a metallothionine promoter, a glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter.
- the expression vector to be introduced into a cell can also contain either a selectable marker gene or a reporter gene or both to facilitate identification and selection of expressing cells from the population of cells sought to be transfected or infected through viral vectors.
- the selectable marker may be carried on a separate piece of DNA and used in a co- transfection procedure. Both selectable markers and reporter genes may be flanked with appropriate regulatory sequences to enable expression in the host cells.
- Useful selectable markers include, for example, antibiotic-resistance genes, such as neo and the like.
- Reporter genes are used for identifying potentially transfected cells and for evaluating the functionality of regulatory sequences.
- a reporter gene is a gene that is not present in or expressed by the recipient organism or tissue and that encodes a polypeptide whose expression is manifested by some easily detectable property, e.g., enzymatic activity. Expression of the reporter gene is assayed at a suitable time after the DNA has been introduced into the recipient cells.
- Suitable reporter genes may include genes encoding luciferase, beta- galactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the green fluorescent protein gene (e.g., Ui-Tei et al., 2000 FEBS Letters 479: 79-82).
- Suitable expression systems are well known and may be prepared using known techniques or obtained commercially.
- the construct with the minimal 5' flanking region showing the highest level of expression of reporter gene is identified as the promoter.
- Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter- driven transcription.
- the vector can be readily introduced into a host cell, e.g., mammalian, bacterial, yeast, or insect cell by any method in the art.
- the expression vector can be transferred into a host cell by physical, chemical, or biological means.
- Physical methods for introducing a polynucleotide into a host cell include calcium phosphate precipitation, lipofection, particle bombardment, microinjection, electroporation, and the like. Methods for producing cells comprising vectors and/or exogenous nucleic acids are well-known in the art. See, for example, Sambrook et al., 2012, MOLECULAR CLONING: A LABORATORY MANUAL, volumes 1 -4, Cold Spring Harbor Press, NY). A preferred method for the introduction of a polynucleotide into a host cell is calcium phosphate transfection
- Biological methods for introducing a polynucleotide of interest into a host cell include the use of DNA and RNA vectors.
- Viral vectors, and especially retroviral vectors have become the most widely used method for inserting genes into mammalian, e.g., human cells.
- Other viral vectors can be derived from lentivirus, poxviruses, herpes simplex virus I, adenoviruses and adeno-associated viruses, and the like. See, for example, U.S. Pat. Nos.
- Chemical means for introducing a polynucleotide into a host cell include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.
- An exemplary colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (e.g. , an artificial membrane vesicle).
- Other methods of state-of-the-art targeted delivery of nucleic acids are available, such as delivery of polynucleotides with targeted nanoparticles or other suitable sub-micron sized delivery system.
- an exemplary delivery vehicle is a liposome.
- lipid formulations is contemplated for the introduction of the nucleic acids into a host cell (in vitro, ex vivo or in vivo).
- the nucleic acid may be associated with a lipid.
- the nucleic acid associated with a lipid may be encapsulated in the aqueous interior of a liposome, interspersed within the lipid bilayer of a liposome, attached to a liposome via a linking molecule that is associated with both the liposome and the oligonucleotide, entrapped in a liposome, complexed with a liposome, dispersed in a solution containing a lipid, mixed with a lipid, combined with a lipid, contained as a suspension in a lipid, contained or complexed with a micelle, or otherwise associated with a lipid.
- Lipid, lipid/DNA or lipid/expression vector associated compositions are not limited to any particular structure in solution.
- Lipids are fatty substances which may be naturally occurring or synthetic lipids.
- lipids include the fatty droplets that naturally occur in the cytoplasm as well as the class of compounds which contain long-chain aliphatic hydrocarbons and their derivatives, such as fatty acids, alcohols, amines, amino alcohols, and aldehydes.
- Lipids suitable for use can be obtained from commercial sources.
- DMPC dimyristyl phosphatidylcholine
- DCP dicetyl phosphate
- Choi cholesterol
- DMPG DMPG
- other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, AL.). Stock solutions of lipids in chloroform or chloroform/methanol can be stored at about - 20°C. Chloroform is used as the only solvent since it is more readily evaporated than methanol.
- "Liposome” is a generic term encompassing a variety of single and multilamellar lipid vehicles formed by the generation of enclosed lipid bilayers or aggregates. Liposomes can be characterized as having vesicular structures with a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium.
- compositions that have different structures in solution than the normal vesicular structure are also encompassed.
- the lipids may assume a micellar structure or merely exist as nonuniform aggregates of lipid molecules.
- lipofectamine-nucleic acid complexes are also contemplated.
- assays include, for example, "molecular biological” assays well known to those of skill in the art, such as Southern and Northern blotting, RT-PCR and PCR;
- biochemical assays such as detecting the presence or absence of a particular peptide, e.g., by immunological means (ELISAs and Western blots) or by assays described herein to identify agents falling within the scope of the invention.
- the present invention further provides a vector comprising a CAR encoding nucleic acid molecule.
- a CAR vector can be directly transduced into a cell, e.g., a T cell.
- the vector is a cloning or expression vector, e.g., a vector including, but not limited to, one or more plasmids (e.g., expression plasmids, cloning vectors, minicircles, minivectors, double minute chromosomes), retroviral and lentiviral vector constructs.
- the vector is capable of expressing the CAR construct in mammalian T cells.
- the mammalian T cell is a human T cell.
- a source of T cells is obtained from a subject.
- the term "subject” is intended to include living organisms in which an immune response can be elicited (e.g., mammals). Examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof.
- T cells can be obtained from a number of sources, including peripheral blood mononuclear cells, bone marrow, lymph node tissue, cord blood, thymus tissue, tissue from a site of infection, ascites, pleural effusion, spleen tissue, and tumors. In certain aspects of the present invention, any number of T cell lines available in the art, may be used.
- T cells can be obtained from a unit of blood collected from a subject using any number of techniques known to the skilled artisan, such as FicollTM separation.
- cells from the circulating blood of an individual are obtained by apheresis.
- the apheresis product typically contains lymphocytes, including T cells, monocytes, granulocytes, B cells, other nucleated white blood cells, red blood cells, and platelets.
- the cells collected by apheresis may be washed to remove the plasma fraction and to place the cells in an appropriate buffer or media for subsequent processing steps.
- the cells are washed with phosphate buffered saline (PBS).
- PBS phosphate buffered saline
- the wash solution lacks calcium and may lack magnesium or may lack many if not all divalent cations. Initial activation steps in the absence of calcium can lead to magnified activation.
- a washing step may be accomplished by methods known to those in the art, such as by using a semi- automated "flow-through" centrifuge (for example, the Cobe 2991 cell processor, the Baxter CytoMate, or the Haemonetics Cell Saver 5) according to the
- T cells are isolated from peripheral blood lymphocytes by lysing the red blood cells and depleting the monocytes, for example, by centrifugation through a
- T cells such as CD3+, CD28+, CD4+, CD8+, CD45RA+, and CD45RO+T cells
- T cells are isolated by incubation with anti-CD3/anti-CD28 (e.g., 3x28)-conjugated beads, such as DYNABEADS® M-450 CD3/CD28 T, for a time period sufficient for positive selection of the desired T cells.
- the time period is about 30 minutes. In a further aspect, the time period ranges from 30 minutes to 36 hours or longer and all integer values there between.
- the time period is at least 1, 2, 3, 4, 5, or 6 hours. In yet another preferred aspect, the time period is 10 to 24 hours. In one aspect, the incubation time period is 24 hours. Longer incubation times may be used to isolate T cells in any situation where there are few T cells as compared to other cell types, such in isolating tumor infiltrating lymphocytes (TIL) from tumor tissue or from immunocompromised individuals. Further, use of longer incubation times can increase the efficiency of capture of CD8+ T cells.
- TIL tumor infiltrating lymphocytes
- subpopulations of T cells can be preferentially selected for or against at culture initiation or at other time points during the process.
- subpopulations of T cells can be preferentially selected for or against at culture initiation or at other desired time points.
- multiple rounds of selection can also be used in the context of this invention. In certain aspects, it may be desirable to perform the selection procedure and use the "unselected" cells in the activation and expansion process. "Unselected" cells can also be subjected to further rounds of selection.
- Enrichment of a T cell population by negative selection can be accomplished with a combination of antibodies directed to surface markers unique to the negatively selected cells.
- One method is cell sorting and/or selection via negative magnetic immunoadherence or flow cytometry that uses a cocktail of monoclonal antibodies directed to cell surface markers present on the cells negatively selected.
- a monoclonal antibody cocktail typically includes antibodies to CD14, CD20, CDl lb, CD16, HLA-DR, and CD8.
- it may be desirable to enrich for or positively select for regulatory T cells which typically express CD4+, CD25+, CD62Lhi, GITR+, and FoxP3+.
- T regulatory cells are depleted by anti-C25 conjugated beads or other similar method of selection.
- a T cell population can be selected that expresses one or more of IFN- ⁇ , TNFa, IL-17A, IL-2, IL-3, IL-4, GM-CSF, IL-10, IL-13, granzyme B, and perforin, or other appropriate molecules, e.g., other cytokines.
- Methods for screening for cell expression can be determined, e.g., by the methods described in PCT Publication No.: WO 2013/126712.
- the concentration of cells and surface can be varied.
- it may be desirable to significantly decrease the volume in which beads and cells are mixed together e.g., increase the concentration of cells, to ensure maximum contact of cells and beads.
- a concentration of 2 billion cells/ml is used.
- a concentration of 1 billion cells/ml is used.
- greater than 100 million cells/ml is used.
- a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used.
- a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used.
- concentrations of 125 or 150 million cells/ml can be used.
- Using high concentrations can result in increased cell yield, cell activation, and cell expansion.
- use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells, or from samples where there are many tumor cells present (e.g., leukemic blood, tumor tissue, etc.). Such populations of cells may have therapeutic value and would be desirable to obtain.
- using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.
- the mixture of T cells and surface e.g., particles such as beads
- interactions between the particles and cells is minimized.
- This selects for cells that express high amounts of desired antigens to be bound to the particles.
- CD4+ T cells express higher levels of CD28 and are more efficiently captured than CD8+ T cells in dilute
- the concentration of cells used is 5 X 10e6/ml. In other aspects, the concentration used can be from about 1 X 10 5 /ml to 1 X 10 6 /ml, and any integer value in between.
- the cells may be incubated on a rotator for varying lengths of time at varying speeds at either 2-10°C or at room temperature.
- T cells for stimulation can also be frozen after a washing step.
- the freeze and subsequent thaw step provides a more uniform product by removing granulocytes and to some extent monocytes in the cell population.
- the cells may be suspended in a freezing solution.
- one method involves using PBS containing 20% DMSO and 8% human serum albumin, or culture media containing 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin and 7.5% DMSO, or 31.25% Plasmalyte-A, 31.25% Dextrose 5%, 0.45% NaCl, 10% Dextran 40 and 5% Dextrose, 20% Human Serum Albumin, and 7.5% DMSO or other suitable cell freezing media containing for example, Hespan and PlasmaLyte A, the cells then are frozen to -80°C at a rate of 1° per minute and stored in the vapor phase of a liquid nitrogen storage tank. Other methods of controlled freezing may be used as well as uncontrolled freezing immediately at -20° C or in liquid nitrogen.
- cryopreserved cells are thawed and washed as described herein and allowed to rest for one hour at room temperature prior to activation using the methods of the present invention.
- Also contemplated in the context of the invention is the collection of blood samples or apheresis product from a subject at a time period prior to when the expanded cells as described herein might be needed.
- the source of the cells to be expanded can be collected at any time point necessary, and desired cells, such as T cells, isolated and frozen for later use in T cell therapy for any number of diseases or conditions that would benefit from T cell therapy, such as those described herein.
- a blood sample or an apheresis is taken from a generally healthy subject.
- a blood sample or an apheresis is taken from a generally healthy subject who is at risk of developing a disease, but who has not yet developed a disease, and the cells of interest are isolated and frozen for later use.
- the T cells may be expanded, frozen, and used at a later time.
- samples are collected from a patient shortly after diagnosis of a particular disease as described herein but prior to any treatments.
- the cells are isolated from a blood sample or an apheresis from a subject prior to any number of relevant treatment modalities, including but not limited to treatment with agents such as natalizumab, efalizumab, antiviral agents, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies, Cytoxan, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, and irradiation.
- agents such as natalizumab, efalizumab, antiviral agents, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3
- T cells are obtained from a patient directly following treatment that leaves the subject with functional T cells.
- the quality of T cells obtained may be optimal or improved for their ability to expand ex vivo.
- these cells may be in a preferred state for enhanced engraftment and in vivo expansion.
- mobilization for example, mobilization with GM-CSF
- conditioning regimens can be used to create a condition in a subject wherein repopulation, recirculation, regeneration, and/or expansion of particular cell types is favored, especially during a defined window of time following therapy.
- Illustrative cell types include T cells, B cells, dendritic cells, and other cells of the immune system.
- T cells may be activated and expanded generally using methods as described, for example, in U.S. Patents 6,352,694; 6,534,055; 6,905,680; 6,692,964; 5,858,358; 6,887,466; 6,905,681; 7,144,575; 7,067,318; 7,172,869; 7,232,566; 7,175,843; 5,883,223; 6,905,874; 6,797,514; 6,867,041; and U.S. Patent Application Publication No. 20060121005.
- the T cells of the invention may be expanded by contact with a surface having attached thereto an agent that stimulates a CD3/TCR complex associated signal and a ligand that stimulates a costimulatory molecule on the surface of the T cells.
- T cell populations may be stimulated as described herein, such as by contact with an anti-CD3 antibody, or antigen-binding fragment thereof, or an anti-CD2 antibody immobilized on a surface, or by contact with a protein kinase C activator (e.g., bryostatin) in conjunction with a calcium ionophore.
- a ligand that binds the accessory molecule is used for co- stimulation of an accessory molecule on the surface of the T cells.
- a population of T cells can be contacted with an anti-CD3 antibody and an anti-CD28 antibody, under conditions appropriate for stimulating proliferation of the T cells.
- an anti-CD3 antibody and an anti-CD28 antibody can be used as can other methods commonly known in the art (Berg et al., Transplant Proc. 30(8):3975-3977, 1998; Haanen et al., J. Exp. Med. 190(9): 13191328, 1999; Garland et al., J. Immunol Meth. 227(1- 2):53-63, 1999).
- the primary stimulatory signal and the costimulatory signal for the T cell may be provided by different protocols.
- the agents providing each signal may be in solution or coupled to a surface.
- the agents When coupled to a surface, the agents may be coupled to the same surface (i.e., in "cis” formation) or to separate surfaces (i.e., in "trans” formation).
- one agent may be coupled to a surface and the other agent in solution.
- the agent providing the costimulatory signal is bound to a cell surface and the agent providing the primary activation signal is in solution or coupled to a surface. In certain aspects, both agents can be in solution.
- the agents may be in soluble form, and then cross-linked to a surface, such as a cell expressing Fc receptors or an antibody or other binding agent which will bind to the agents.
- a surface such as a cell expressing Fc receptors or an antibody or other binding agent which will bind to the agents.
- aAPCs artificial antigen presenting cells
- the two agents are immobilized on beads, either on the same bead, i.e., "cis," or to separate beads, i.e., "trans.”
- the agent providing the primary activation signal is an anti-CD3 antibody or an antigen-binding fragment thereof and the agent providing the costimulatory signal is an anti-CD28 antibody or antigen-binding fragment thereof; and both agents are co-immobilized to the same bead in equivalent molecular amounts.
- a 1: 1 ratio of each antibody bound to the beads for CD4+ T cell expansion and T cell growth is used.
- a ratio of anti CD3:CD28 antibodies bound to the beads is used such that an increase in T cell expansion is observed as compared to the expansion observed using a ratio of 1: 1. In one particular aspect an increase of from about 1 to about 3 fold is observed as compared to the expansion observed using a ratio of 1: 1.
- the ratio of CD3:CD28 antibody bound to the beads ranges from 100: 1 to 1: 100 and all integer values there between.
- more anti-CD28 antibody is bound to the particles than anti-CD3 antibody, i.e., the ratio of CD3:CD28 is less than one.
- the ratio of anti CD28 antibody to anti CD3 antibody bound to the beads is greater than 2: 1.
- a 1: 100 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:75 CD3:CD28 ratio of antibody bound to beads is used. In a further aspect, a 1:50 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:30 CD3:CD28 ratio of antibody bound to beads is used. In one preferred aspect, a 1: 10 CD3:CD28 ratio of antibody bound to beads is used. In one aspect, a 1:3 CD3:CD28 ratio of antibody bound to the beads is used. In yet one aspect, a 3: 1
- CD3:CD28 ratio of antibody bound to the beads is used.
- Ratios of particles to cells from 1:500 to 500: 1 and any integer values in between may be used to stimulate T cells or other target cells.
- the ratio of particles to cells may depend on particle size relative to the target cell. For example, small sized beads could only bind a few cells, while larger beads could bind many.
- the ratio of cells to particles ranges from 1: 100 to 100: 1 and any integer values in-between and in further aspects the ratio comprises 1:9 to 9: 1 and any integer values in between, can also be used to stimulate T cells.
- the ratio of anti-CD3- and anti-CD28- coupled particles to T cells that result in T cell stimulation can vary as noted above, however certain preferred values include 1: 100, 1:50, 1:40, 1:30, 1:20, 1: 10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, and 15: 1 with one preferred ratio being at least 1: 1 particles per T cell.
- a ratio of particles to cells of 1: 1 or less is used.
- a preferred particle: cell ratio is 1:5.
- the ratio of particles to cells can be varied depending on the day of stimulation.
- the ratio of particles to cells is from 1: 1 to 10: 1 on the first day and additional particles are added to the cells every day or every other day thereafter for up to 10 days, at final ratios of from 1: 1 to 1: 10 (based on cell counts on the day of addition).
- the ratio of particles to cells is 1: 1 on the first day of stimulation and adjusted to 1:5 on the third and fifth days of stimulation.
- particles are added on a daily or every other day basis to a final ratio of 1: 1 on the first day, and 1:5 on the third and fifth days of stimulation.
- the ratio of particles to cells is 2: 1 on the first day of stimulation and adjusted to 1: 10 on the third and fifth days of stimulation.
- particles are added on a daily or every other day basis to a final ratio of 1: 1 on the first day, and 1: 10 on the third and fifth days of stimulation.
- ratios will vary depending on particle size and on cell size and type.
- the most typical ratios for use are in the neighborhood of 1: 1, 2: 1 and 3: 1 on the first day.
- the cells such as T cells
- the beads and the cells are subsequently separated, and then the cells are cultured.
- the agent-coated beads and cells prior to culture, are not separated but are cultured together.
- the beads and cells are first concentrated by application of a force, such as a magnetic force, resulting in increased ligation of cell surface markers, thereby inducing cell stimulation.
- cell surface proteins may be ligated by allowing paramagnetic beads to which anti-CD3 and anti-CD28 are attached (3x28 beads) to contact the T cells.
- the cells for example, 10 4 to 10 9 T cells
- beads for example, DYNABEADS® M- 450 CD3/CD28 T paramagnetic beads at a ratio of 1: 1
- PBS without divalent cations such as, calcium and magnesium
- the target cell may be very rare in the sample and comprise only 0.01 of the sample or the entire sample (i.e., 100%) may comprise the target cell of interest.
- any cell number is within the context of the present invention.
- it may be desirable to significantly decrease the volume in which particles and cells are mixed together i.e., increase the concentration of cells), to ensure maximum contact of cells and particles.
- a concentration of about 2 billion cells/ml is used. In one aspect, greater than 100 million cells/ml is used. In a further aspect, a concentration of cells of 10, 15, 20, 25, 30, 35, 40, 45, or 50 million cells/ml is used. In yet one aspect, a concentration of cells from 75, 80, 85, 90, 95, or 100 million cells/ml is used. In further aspects, concentrations of 125 or 150 million cells/ml can be used.
- Using high concentrations can result in increased cell yield, cell activation, and cell expansion. Further, use of high cell concentrations allows more efficient capture of cells that may weakly express target antigens of interest, such as CD28-negative T cells. Such populations of cells may have therapeutic value and would be desirable to obtain in certain aspects. For example, using high concentration of cells allows more efficient selection of CD8+ T cells that normally have weaker CD28 expression.
- the mixture may be cultured for several hours (about 3 hours) to about 14 days or any hourly integer value in between. In one aspect, the mixture may be cultured for 21 days. In one aspect of the invention the beads and the T cells are cultured together for about eight days. In one aspect, the beads and T cells are cultured together for 2-3 days. Several cycles of stimulation may also be desired such that culture time of T cells can be 60 days or more.
- Conditions appropriate for T cell culture include an appropriate media (e.g., Minimal Essential Media or RPMI Media 1640 or, X-vivo 15, (Lonza)) that may contain factors necessary for proliferation and viability, including serum (e.g., fetal bovine or human serum), interleukin-2 (IL-2), insulin, IFN- ⁇ , IL-4, IL-7, GM-CSF, IL-10, IL- 12, IL-15, TGFp, and TNF-a or any other additives for the growth of cells known to the skilled artisan.
- Other additives for the growth of cells include, but are not limited to, surfactant, plasmanate, and reducing agents such as N-acetyl-cysteine and 2-mercaptoethanol.
- Media can include RPMI 1640, AIM-V, DMEM, MEM, a-MEM, F-12, X-Vivo 15, and X-Vivo 20, Optimizer, with added amino acids, sodium pyruvate, and vitamins, either serum-free or supplemented with an appropriate amount of serum (or plasma) or a defined set of hormones, and/or an amount of cytokine(s) sufficient for the growth and expansion of T cells.
- Antibiotics e.g., penicillin and streptomycin, are included only in experimental cultures, not in cultures of cells that are to be infused into a subject.
- the target cells are maintained under conditions necessary to support growth, for example, an appropriate temperature (e.g., 37° C) and atmosphere (e.g., air plus 5% C0 2 ).
- T cells that have been exposed to varied stimulation times may exhibit different characteristics.
- typical blood or apheresed peripheral blood mononuclear cell products have a helper T cell population (TH, CD4+) that is greater than the cytotoxic or suppressor T cell population (TC, CD8+).
- TH, CD4+ helper T cell population
- TC cytotoxic or suppressor T cell population
- Ex vivo expansion of T cells by stimulating CD3 and CD28 receptors produces a population of T cells that prior to about days 8-9 consists predominately of TH cells, while after about days 8-9, the population of T cells comprises an increasingly greater population of TC cells.
- infusing a subject with a T cell population comprising predominately of TH cells may be advantageous.
- an antigen- specific subset of TC cells has been isolated it may be beneficial to expand this subset to a greater degree.
- CD 19 CAR Once a CD 19 CAR is constructed, various assays can be used to evaluate the activity of the molecule, such as but not limited to, the ability to expand T cells following antigen stimulation, sustain T cell expansion in the absence of re- stimulation, and anti-cancer activities in appropriate in vitro and animal models. Assays to evaluate the effects of a CD 19 CAR are described in further detail below
- T cells (1: 1 mixture of CD4 + and CD8 + T cells) expressing the CARs are expanded in vitro for more than 10 days followed by lysis and SDS-PAGE under reducing conditions.
- CARs containing the full length TCR- ⁇ cytoplasmic domain and the endogenous TCR- ⁇ chain are detected by western blotting using an antibody to the TCR- ⁇ chain.
- the same T cell subsets are used for SDS-PAGE analysis under non-reducing conditions to permit evaluation of covalent dimer formation.
- CAR + T cells following antigen stimulation can be measured by flow cytometry.
- a mixture of CD4 + and CD8 + T cells are stimulated with aCD3/aCD28 aAPCs followed by transduction with lentiviral vectors expressing GFP under the control of the promoters to be analyzed.
- exemplary promoters include the CMV IE gene, EF-l , ubiquitin C, or phosphoglycerokinase (PGK) promoters.
- GFP fluorescence is evaluated on day 6 of culture in the CD4 + and/or CD8 + T cell subsets by flow cytometry.
- a mixture of CD4 + and CD8 + T cells are stimulated with aCD3/aCD28 coated magnetic beads on day 0, and transduced with CAR on day 1 using a bicistronic lentiviral vector expressing CAR along with eGFP using a 2A ribosomal skipping sequence.
- Cultures are re-stimulated with either CD19 + K562 cells (K562-CD19), wild-type K562 cells (K562 wild type) or K562 cells expressing hCD32 and 4-1BBL in the presence of antiCD3 and anti-CD28 antibody (K562-BBL-3/28) following washing.
- Exogenous IL-2 is added to the cultures every other day at 100 IU/ml.
- GFP + T cells are enumerated by flow cytometry using bead-based counting. See, e.g., Milone et al, Molecular Therapy 17(8): 1453-1464 (2009).
- Sustained CAR + T cell expansion in the absence of re- stimulation can also be measured. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009). Briefly, mean T cell volume (fl) is measured on day 8 of culture using a Coulter Multisizer III particle counter following stimulation with aCD3/aCD28 coated magnetic beads on day 0, and transduction with the indicated CAR on day 1.
- Animal models can also be used to measure a CART activity.
- xenograft model using human CD 19- specific CAR + T cells to treat a primary human pre-B ALL in immunodeficient mice can be used. See, e.g., Milone et al., Molecular Therapy 17(8): 1453-1464 (2009).
- mice are randomized as to treatment groups. Different numbers of ⁇ )19- ⁇ and ⁇ )19- ⁇ - ⁇ engineered T cells are coinjected at a 1: 1 ratio into NOD-SCID- ⁇ -7- mice bearing B-ALL.
- mice The number of copies of ⁇ )19- ⁇ and ⁇ )19- ⁇ - ⁇ vector in spleen DNA from mice is evaluated at various times following T cell injection. Animals are assessed for leukemia at weekly intervals. Peripheral blood CD19 + B-ALL blast cell counts are measured in mice that are injected with ⁇ )19- ⁇ CAR + T cells or mock-transduced T cells. Survival curves for the groups are compared using the log-rank test. In addition, absolute peripheral blood CD4 + and CD8 + T cell counts 4 weeks following T cell injection in NOD-SCID- ⁇ -7- mice can also be analyzed.
- mice are injected with leukemic cells and 3 weeks later are injected with T cells engineered to express CAR by a bicistronic lentiviral vector that encodes the CAR linked to eGFP.
- T cells are normalized to 45-50% input GFP + T cells by mixing with mock-transduced cells prior to injection, and confirmed by flow cytometry. Animals are assessed for leukemia at 1-week intervals. Survival curves for the CAR + T cell groups are compared using the log-rank test.
- Dose dependent CAR treatment response can be evaluated. See, e.g., Milone et al, Molecular Therapy 17(8): 1453-1464 (2009).
- peripheral blood is obtained 35-70 days after establishing leukemia in mice injected on day 21 with CAR T cells, an equivalent number of mock-transduced T cells, or no T cells. Mice from each group are randomly bled for determination of peripheral blood CD19 + ALL blast counts and then killed on days 35 and 49. The remaining animals are evaluated on days 57 and 70.
- Anti-CD3 (clone OKT3) and anti- CD28 (clone 9.3) monoclonal antibodies are added to cultures with KT32-BBL cells to serve as a positive control for stimulating T-cell proliferation since these signals support long-term CD8 + T cell expansion ex vivo.
- T cells are enumerated in cultures using CountBrightTM fluorescent beads (Invitrogen, Carlsbad, CA) and flow cytometry as described by the manufacturer.
- CAR + T cells are identified by GFP expression using T cells that are engineered with eGFP-2A linked CAR-expressing lentiviral vectors.
- CAR+ T cells not expressing GFP the CAR+ T cells are detected with biotinylated recombinant CD 19 protein and a secondary avidin-PE conjugate.
- CD4+ and CD8 + expression on T cells are also simultaneously detected with specific monoclonal antibodies (BD Biosciences). Cytokine measurements are performed on supernatants collected 24 hours following re- stimulation using the human TH1/TH2 cytokine cytometric bead array kit (BD Biosciences, San Diego, CA) according the manufacturer's instructions. Fluorescence is assessed using a FACScalibur flow cytometer, and data is analyzed according to the manufacturer's instructions.
- Cytotoxicity can be assessed by a standard 51Cr-release assay. See, e.g., Milone et al, Molecular Therapy 17(8): 1453-1464 (2009). Briefly, target cells (K562 lines and primary pro-B-ALL cells) are loaded with 51Cr (as NaCr04, New England Nuclear, Boston, MA) at 37°C for 2 hours with frequent agitation, washed twice in complete RPMI and plated into microtiter plates. Effector T cells are mixed with target cells in the wells in complete RPMI at varying ratios of effector celktarget cell (E:T). Additional wells containing media only
- SR spontaneous release
- TR total release
- % Lysis (ER- SR) / (TR - SR), where ER represents the average 51Cr released for each experimental condition.
- Imaging technologies can be used to evaluate specific trafficking and proliferation of CARs in tumor-bearing animal models. Such assays have been described, for example, in Barrett et al., Human Gene Therapy 22: 1575-1586 (2011). Briefly, NOD/SCID/yc 7 (NSG) mice are injected IV with Nalm-6 cells followed 7 days later with T cells 4 hour after electroporation with the CAR constructs. The T cells are stably transfected with a lenti viral construct to express firefly luciferase, and mice are imaged for bioluminescence.
- therapeutic efficacy and specificity of a single injection of CAR + T cells in Nalm-6 xenograft model can be measured as the following: NSG mice are injected with Nalm-6 transduced to stably express firefly luciferase, followed by a single tail-vein injection of T cells
- the invention provides methods for treating a disease associated with CD 19 expression.
- the invention provides methods for treating a disease wherein part of the tumor is negative for CD19 and part of the tumor is positive for CD19.
- the CAR of the invention is useful for treating subjects that have undergone treatment for a disease associated with elevated expression of CD 19, wherein the subject that has undergone treatment for elevated levels of CD 19 exhibits a disease associated with elevated levels of CD19.
- the invention pertains to a vector comprising CD 19 CAR operably linked to promoter for expression in mammalian T cells.
- the invention provides a recombinant T cell expressing the CD 19 CAR for use in treating CD19-expressing tumors, wherein the recombinant T cell expressing the CD 19 CAR is termed a CD 19 CART.
- the CD 19 CART of the invention is capable of contacting a tumor cell with at least one CD 19 CAR of the invention expressed on its surface such that the CART targets the tumor cell and growth of the tumor is inhibited.
- the invention pertains to a method of inhibiting growth of a CD 19- expressing tumor cell, comprising contacting the tumor cell with a CD 19 CAR T cell of the present invention such that the CART is activated in response to the antigen and targets the cancer cell, wherein the growth of the tumor is inhibited.
- the invention pertains to a method of treating cancer in a subject.
- the method comprises administering to the subject a CD 19 CAR T cell of the present invention such that the cancer is treated in the subject.
- a cancer that is treatable by the method
- CD19 CAR T cell of the invention is a cancer associated with expression of CD19.
- the cancer associated with expression of CD 19 is a hematological cancer.
- the hematolical cancer is a leukemia or a lymphoma.
- a cancer associated with expression of CD19 includes cancers and malignancies including, but not limited to, e.g., one or more acute leukemias including but not limited to, e.g., B-cell acute Lymphoid Leukemia
- BALL T-cell acute Lymphoid Leukemia
- ALL acute lymphoid leukemia
- chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia
- CD 19 Chronic Lymphoid Leukemia
- Additional cancers or hematologic conditions associated with expression of CD 19 include, but are not limited to, e.g., B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and "preleukemia" which are a diverse collection of hematological conditions united by ineffective production (
- a cancer that can be treated with a CD19 CAR e.g., described herein, is multiple myeloma.
- Multiple myeloma is a cancer of the blood,
- a plasma cell clone in the bone marrow characterized by accumulation of a plasma cell clone in the bone marrow.
- Current therapies for multiple myeloma include, but are not limited to, treatment with lenalidomide, which is an analog of thalidomide. Lenalidomide has activities which include anti-tumor activity, angiogenesis inhibition, and immunomodulation. Generally, myeloma cells are thought to be negative for CD 19 expression by flow cytometry. The present invention encompasses the recognition that a small percent of myeloma tumor cells express CD 19, as demonstrated in Example 6.
- a C19 CAR e.g., as described herein, may be used to target myeloma cells.
- CD 19 CAR therapy can be used in combination with one or more additional therapies, e.g., lenalidomide treatment.
- the invention includes a type of cellular therapy where T cells are genetically modified to express a chimeric antigen receptor (CAR) and the CAR T cell is infused to a recipient in need thereof.
- the infused cell is able to kill tumor cells in the recipient.
- CAR-modified T cells are able to replicate in vivo resulting in long-term persistence that can lead to sustained tumor control.
- the T cells administered to the patient, or their progeny persist in the patient for at least four months, five months, six months, seven months, eight months, nine months, ten months, eleven months, twelve months, thirteen months, fourteen month, fifteen months, sixteen months, seventeen months, eighteen months, nineteen months, twenty months, twenty-one months, twenty-two months, twenty- three months, two years, three years, four years, or five years after administration of the T cell to the patient.
- the invention also includes a type of cellular therapy where T cells are modified, e.g., by in vitro transcribed RNA, to transiently express a chimeric antigen receptor (CAR) and the CAR T cell is infused to a recipient in need thereof.
- the infused cell is able to kill tumor cells in the recipient.
- the T cells administered to the patient is present for less than one month, e.g., three weeks, two weeks, one week, after administration of the T cell to the patient.
- the anti-tumor immunity response elicited by the CAR-modified T cells may be an active or a passive immune response, or alternatively may be due to a direct vs indirect immune response.
- the CAR transduced T cells exhibit specific proinflammatory cytokine secretion and potent cytolytic activity in response to human cancer cells expressing the CD 19, resist soluble CD 19 inhibition, mediate bystander killing and mediate regression of an established human tumor.
- antigen-less tumor cells within a heterogeneous field of CD19-expressing tumor may be susceptible to indirect destruction by CD19-redirected T cells that has previously reacted against adjacent antigen-positive cancer cells.
- the fully-human CAR-modified T cells of the invention may be a type of vaccine for ex vivo immunization and/or in vivo therapy in a mammal.
- the mammal is a human.
- cells are isolated from a mammal (e.g., a human) and genetically modified (i.e., transduced or transfected in vitro) with a vector expressing a CAR disclosed herein.
- the CAR- modified cell can be administered to a mammalian recipient to provide a therapeutic benefit.
- the mammalian recipient may be a human and the CAR-modified cell can be autologous with respect to the recipient.
- the cells can be allogeneic, syngeneic or xenogeneic with respect to the recipient.
- ex vivo culture and expansion of T cells comprises: (1) collecting CD34+ hematopoietic stem and progenitor cells from a mammal from peripheral blood harvest or bone marrow explants; and (2) expanding such cells ex vivo.
- other factors such as flt3-L, IL-1, IL-3 and c-kit ligand, can be used for culturing and expansion of the cells.
- the present invention also provides compositions and methods for in vivo immunization to elicit an immune response directed against an antigen in a patient.
- the cells activated and expanded as described herein may be utilized in the treatment and prevention of diseases that arise in individuals who are
- the CAR-modified T cells of the invention are used in the treatment of diseases, disorders and conditions associated with expression of CD 19.
- the cells of the invention are used in the treatment of patients at risk for developing diseases, disorders and conditions associated with expression of CD19.
- the present invention provides methods for the treatment or prevention of diseases, disorders and conditions associated with expression of CD 19 comprising administering to a subject in need thereof, a therapeutically effective amount of the CAR-modified T cells of the invention.
- the CART cells of the inventions may be used to treat a proliferative disease such as a cancer or malignancy or is a precancerous condition such as a
- the cancer is a hematolical cancer.
- the hematolical cancer is a leukemia or a lymphoma.
- the CART cells of the invention may be used to treat cancers and malignancies such as, but not limited to, e.g., acute leukemias including but not limited to, e.g., B-cell acute lymphoid leukemia ("BALL”), T-cell acute lymphoid leukemia (“TALL”), acute lymphoid leukemia
- BALL B-cell acute lymphoid leukemia
- TALL T-cell acute lymphoid leukemia
- ALL chronic leukemia
- CML chronic myelogenous leukemia
- CLL chronic lymphocytic leukemia
- additional hematologic cancers or hematologic conditions including, but not limited to, e.g., B cell prolymphocytic leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkitt's lymphoma, diffuse large B cell lymphoma, Follicular lymphoma, Hairy cell leukemia, small cell- or a large cell-follicular lymphoma, malignant lymphoproliferative conditions, MALT lymphoma, mantle cell lymphoma, Marginal zone lymphoma, multiple myeloma, myelodysplasia and myelodysplastic syndrome, non-Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobin, a, Waldenstrom macroglobulfollib
- a disease associated with CD 19 expression include, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing CD19.
- Non-cancer related indications associated with expression of CD19 include, but are not limited to, e.g., autoimmune disease, (e.g., lupus), inflammatory disorders (allergy and asthma) and transplantation.
- the CAR-modified T cells of the present invention may be administered either alone, or as a pharmaceutical composition in combination with diluents and/or with other components such as IL-2 or other cytokines or cell populations.
- Hematological cancer conditions are the types of cancer such as leukemia and malignant lymphoproliferative conditions that affect blood, bone marrow and the lymphatic system.
- Leukemia can be classified as acute leukemia and chronic leukemia.
- Acute leukemia can be further classified as acute myelogenous leukemia (AML) and acute lymphoid leukemia (ALL).
- Chronic leukemia includes chronic myelogenous leukemia (CML) and chronic lymphoid leukemia (CLL).
- MDS myelodysplastic syndromes
- preleukemia myelodysplastic syndromes
- the present invention provides for compositions and methods for treating cancer.
- the cancer is a hematologic cancer including but is not limited to hematolical cancer is a leukemia or a lymphoma.
- the CART cells of the invention may be used to treat cancers and malignancies such as, but not limited to, e.g., acute leukemias including but not limited to, e.g., B-cell acute lymphoid leukemia ("BALL”), T-cell acute lymphoid leukemia (“TALL”), acute lymphoid leukemia (ALL); one or more chronic leukemias including but not limited to, e.g., chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL); additional hematologic cancers or hematologic conditions including, but not limited to, e.g., B cell prolymphocyte leukemia, blastic plasmacytoid dendritic cell neoplasm, Burkit
- myelodysplasia and myelodysplasia syndrome non-Hodgkin's lymphoma, plasmablastic lymphoma, plasmacytoid dendritic cell neoplasm, Waldenstrom macroglobulinemia, and "preleukemia” which are a diverse collection of hematological conditions united by ineffective production (or dysplasia) of myeloid blood cells, and the like.
- a disease associated with CD19 expression includes, but not limited to, e.g., atypical and/or non-classical cancers, malignancies, precancerous conditions or proliferative diseases expressing CD19.
- the present invention also provides methods for inhibiting the proliferation or reducing a CD19-expressing cell population, the methods comprising contacting a population of cells comprising a CD19-expressing cell with an anti-CD 19 CART cell of the invention that binds to the CD19-expressing cell.
- the present invention provides methods for inhibiting the proliferation or reducing the population of cancer cells expressing CD 19, the methods comprising contacting the CD19-expressing cancer cell population with an anti-CD 19 CART cell of the invention that binds to the CD19-expressing cell.
- the present invention provides methods for inhibiting the proliferation or reducing the population of cancer cells expressing CD 19, the methods comprising contacting the CD19-expressing cancer cell population with an anti-CD 19 CART cell of the invention that binds to the CD19-expressing cell.
- the anti-CD 19 CART cell of the invention reduces the quantity, number, amount or percentage of cells and/or cancer cells by at least 25%, at least 30%, at least 40%, at least 50%, at least 65%, at least 75%, at least 85%, at least 95%, or at least 99% in a subject with or animal model for myeloid leukemia or another cancer associated with CD19-expressing cells relative to a negative control.
- the subject is a human.
- the present invention also provides methods for preventing, treating and/or managing a disease associated with CD19-expressing cells (e.g., a hematologic cancer or atypical cancer expessing CD 19), the methods comprising administering to a subject in need an anti-CD 19 CART cell of the invention that binds to the CD19-expressing cell.
- the subject is a human.
- disorders associated with CD19-expressing cells include autoimmune disorders (such as lupus), inflammatory disorders (such as allergies and asthma) and cancers (such as hematological cancers or atypical cancers expessing CD19).
- the present invention also provides methods for preventing, treating and/or managing a disease associated with CD19-expressing cells, the methods comprising
- the subject is a human.
- the present invention provides methods for preventing relapse of cancer associated with CD19-expressing cells, the methods comprising administering to a subject in need thereof an anti-CD 19 CART cell of the invention that binds to the CD19-expressing cell.
- the methods comprise administering to the subject in need thereof an effective amount of an anti-CD 19 CART cell described herein that binds to the CD19-expressing cell in combination with an effective amount of another therapy.
- a CAR-expressing cell described herein may be used in combination with other known agents and therapies.
- Administered "in combination”, as used herein, means that two (or more) different treatments are delivered to the subject during the course of the subject's affliction with the disorder, e.g., the two or more treatments are delivered after the subject has been diagnosed with the disorder and before the disorder has been cured or eliminated or treatment has ceased for other reasons.
- the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as “simultaneous" or “concurrent delivery”.
- the delivery of one treatment ends before the delivery of the other treatment begins.
- the treatment is more effective because of combined administration.
- the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment.
- delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other.
- the effect of the two treatments can be partially additive, wholly additive, or greater than additive.
- the delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.
- a CAR-expressing cell described herein and the at least one additional therapeutic agent can be administered simultaneously, in the same or in separate compositions, or sequentially.
- the CAR-expressing cell described herein can be administered first, and the additional agent can be administered second, or the order of administration can be reversed.
- a CAR-expressing cell described herein may be used in a treatment regimen in combination with surgery, chemotherapy, radiation, immunosuppressive agents, such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies, or other immunoablative agents such as CAMPATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludarabine, cyclosporin, FK506, rapamycin, mycophenolic acid, steroids, FR901228, cytokines, and irradiation, peptide vaccine, such as that described in Izumoto et al. 2008 J Neurosurg 108:963-971.
- immunosuppressive agents such as cyclosporin, azathioprine, methotrexate, mycophenolate, and FK506, antibodies
- immunoablative agents such as CAMPATH, anti-CD3 antibodies or other antibody therapies, cytoxin, fludarabine, cyclosporin, FK506, rapa
- a CAR-expressing cell described herein can be used in combination with a chemotherapeutic agent.
- chemotherapeutic agents include an anthracycline (e.g., doxorubicin (e.g., liposomal doxorubicin)), a vinca alkaloid (e.g., vinblastine, vincristine, vindesine, vinorelbine), an alkylating agent (e.g., cyclophosphamide, decarbazine, melphalan, ifosfamide, temozolomide), an immune cell antibody (e.g., alemtuzamab, gemtuzumab, rituximab, tositumomab), an antimetabolite (including, e.g., folic acid antagonists, pyrimidine analogs, purine analogs and adenosine deaminase inhibitors (e.g., fludarabine
- General Chemotherapeutic agents considered for use in combination therapies include anastrozole (Arimidex®), bicalutamide (Casodex®), bleomycin sulfate (Blenoxane®), busulfan (Myleran®), busulfan injection (Busulfex®), capecitabine (Xeloda®), N4- pentoxycarbonyl-5-deoxy-5-fluorocytidine, carboplatin (Paraplatin®), carmustine (BiCNU®), chlorambucil (Leukeran®), cisplatin (Platinol®), cladribine (Leustatin®), cyclophosphamide (Cytoxan® or Neosar®), cytarabine, cytosine arabinoside (Cytosar-U®), cytarabine liposome injection (DepoCyt®), dacarbazine (DTIC-Dome®),
- Daunorubicin hydrochloride (Cerubidine®), daunorubicin citrate liposome injection (DaunoXome®), dexamethasone, docetaxel (Taxotere®), doxorubicin hydrochloride (Adriamycin®, Rubex®), etoposide (Vepesid®), fludarabine phosphate (Fludara®), 5- fluorouracil (Adrucil®, Efudex®), flutamide (Eulexin®), tezacitibine, Gemcitabine
- IFEX® irinotecan
- Camptosar® L-asparaginase
- ESPAR® leucovorin calcium
- melphalan Alkeran®
- 6-mercaptopurine Purinethol®
- methotrexate Folex®
- mitoxantrone Novantrone®
- mylotarg paclitaxel
- phoenix Yttrium90/MX-DTPA
- pentostatin polifeprosan 20 with carmustine implant (Gliadel®), tamoxifen citrate (Nolvadex®), teniposide (Vumon®), 6-thioguanine, thiotepa, tirapazamine (Tirazone®), topotecan hydrochloride for injection (Hycamptin®), vinblastine (Velban®), vincristine (Oncovin®), and vinorelbine (Navelbine®).
- alkylating agents include, without limitation, nitrogen mustards, ethylenimine derivatives, alkyl sulfonates, nitrosoureas and triazenes): uracil mustard
- Oxaliplatin (Eloxatin®); Temozolomide (Temodar® and Temodal®); Dactinomycin (also known as actinomycin-D, Cosmegen®); Melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, Alkeran®); Altretamine (also known as hexamethylmelamine (HMM), Hexalen®); Carmustine (BiCNU®); Bendamustine (Treanda®); Busulfan (Busulfex® and Myleran®); Carboplatin (Paraplatin®); Lomustine (also known as CCNU, CeeNU®);
- Cisplatin also known as CDDP, Platinol® and Platinol®-AQ
- Chlorambucil Leukeran®
- Cyclophosphamide Cytoxan® and Neosar®
- dacarbazine also known as DTIC, DIC and imidazole carboxamide, DTIC-Dome®
- Altretamine also known as hexamethylmelamine (HMM), Hexalen®
- Ifosfamide Ifex®
- Prednumustine Procarbazine (Matulane®)
- Mechlorethamine also known as nitrogen mustard, mustine and mechloroethamine
- Exemplary mTOR inhibitors include, e.g., temsirolimus; ridaforolimus (formally known as deferolimus, (lR,2R,45)-4-[(2R)-2 [(1R,95,125,15R,16E,18R,19R,21R,
- immunomodulators include, e.g., afutuzumab (available from Roche®); pegfilgrastim (Neulasta®); lenalidomide (CC-5013, Revlimid®); thalidomide (Thalomid®), actimid (CC4047); and IRX-2 (mixture of human cytokines including interleukin 1, interleukin 2, and interferon ⁇ , CAS 951209-71-5, available from IRX Therapeutics).
- anthracyclines include, e.g., doxorubicin (Adriamycin® and Rubex®); bleomycin (lenoxane®); daunorubicin (dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, Cerubidine®); daunorubicin liposomal (daunorubicin citrate liposome, DaunoXome®); mitoxantrone (DHAD, Novantrone®); epirubicin (EllenceTM); idarubicin (Idamycin®, Idamycin PFS®); mitomycin C (Mutamycin®); geldanamycin;
- vinca alkaloids include, e.g., vinorelbine tartrate (Navelbine®),
- Vincristine Oncovin®
- Vindesine Eldisine®
- vinblastine also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®
- vinorelbine also known as vinblastine sulfate, vincaleukoblastine and VLB, Alkaban-AQ® and Velban®
- Exemplary proteosome inhibitors include bortezomib (Velcade®); carfilzomib (PX- 171-007, (5)-4-Methyl-N-(( ⁇ )-l-(((5)-4-methyl-l-((R)-2-methyloxiran-2-yl)- l-oxopentan- 2-yl)amino)- l-oxo-3-phenylpropan-2-yl)-2-(( l S')-2-(2-morpholinoacetamido)-4- phenylbutanamido)-pentanamide); marizomib (NPI-0052); ixazomib citrate (MLN-9708); delanzomib (CEP- 18770); and O-Methyl-N-[(2-methyl-5-thiazolyl)carbonyl]-L-seryl-O- methyl-/V-[( 1 S)-2-[(2R)-2-
- Exemplary GITR agonists include, e.g., GITR fusion proteins and anti-GITR antibodies (e.g., bivalent anti-GITR antibodies) such as, e.g., a GITR fusion protein described in U.S. Patent No.: 6, 111,090, European Patent No.: 090505B 1, U.S Patent No.: 8,586,023, PCT Publication Nos.: WO 2010/003118 and 2011/090754, or an anti-GITR antibody described, e.g., in U.S. Patent No.: 7,025,962, European Patent No.: 1947183B 1, U.S. Patent No.: 7,812, 135, U.S.
- anti-GITR antibodies e.g., bivalent anti-GITR antibodies
- Patent No.: 8,388,967 U.S. Patent No.: 8,591,886, European Patent No.: EP 1866339, PCT Publication No.: WO 2011/028683, PCT Publication No.:WO 2013/039954, PCT Publication No.: WO2005/007190, PCT Publication No.: WO 2007/133822, PCT
- a CAR expressing cell described herein is administered to a subject in combination with an mTOR inhibitor, e.g., an mTOR inhibitor described herein, e.g., a rapalog such as everolimus.
- an mTOR inhibitor e.g., an mTOR inhibitor described herein, e.g., a rapalog such as everolimus.
- the mTOR inhibitor is administered prior to the CAR-expressing cell.
- the mTOR inhibitor can be administered prior to apheresis of the cells.
- the subject has CLL.
- a CAR expressing cell described herein is administered to a subject in combination with a GITR agonist, e.g., a GITR agonist described herein.
- a GITR agonist e.g., a GITR agonist described herein.
- the GITR agonist is administered prior to the CAR-expressing cell.
- the GITR agonist can be administered prior to apheresis of the cells.
- the subject has CLL.
- the cell compositions of the present invention may be administered to a patient in conjunction with (e.g., before, simultaneously or following) bone marrow transplantation, T cell ablative therapy using chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, and/or antibodies such as OKT3 or CAMPATH.
- chemotherapy agents such as, fludarabine, external-beam radiation therapy (XRT), cyclophosphamide, and/or antibodies such as OKT3 or CAMPATH.
- the cell compositions of the present invention are administered following B-cell ablative therapy such as agents that react with CD20, e.g., Rituxan.
- subjects may undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation.
- subjects receive an infusion of the expanded immune cells of the present invention.
- expanded cells are administered before or following surgery.
- the subject can be administered an agent which reduces or ameliorates a side effect associated with the administration of a CAR-expressing cell.
- Side effects associated with the administration of a CAR-expressing cell include, but are not limited to CRS, and hemophagocytic lymphohistiocytosis (HLH), also termed Macrophage Activation Syndrome (MAS).
- HHL hemophagocytic lymphohistiocytosis
- MAS Macrophage Activation Syndrome
- Symptoms of CRS include high fevers, nausea, transient hypotension, hypoxia, and the like.
- the methods described herein can comprise administering a CAR-expressing cell described herein to a subject and further administering an agent to manage elevated levels of a soluble factor resulting from treatment with a CAR-expressing cell.
- the soluble factor elevated in the subject is one or more of IFN- ⁇ , TNFa, IL-2 and IL-6. Therefore, an agent administered to treat this side effect can be an agent that neutralizes one or more of these soluble factors.
- agents include, but are not limited to a steroid, an inhibitor of TNFa, and an inhibitor of IL-6.
- An example of a TNFa inhibitor is entanercept.
- An example of an IL-6 inhibitor is Tocilizumab (toe).
- the subject can be administered an agent which enhances the activity of a CAR-expressing cell.
- the agent can be an agent which inhibits an inhibitory molecule.
- Inhibitory molecules e.g., Programmed Death 1 (PDl)
- PDl Programmed Death 1
- Examples of inhibitory molecules include PDl, PD-Ll, CTLA4, TIM3, LAG3, VISTA, BTLA, TIGIT, LAIR1, CD160, 2B4 and TGFR beta.
- Inhibition of an inhibitory molecule e.g., by inhibition at the DNA, RNA or protein level, can optimize a CAR- expressing cell performance.
- an inhibitory nucleic acid e.g., an inhibitory nucleic acid, e.g., a dsRNA, e.g., an siRNA or shRNA
- an inhibitory nucleic acid e.g., an inhibitory nucleic acid, e.g., a dsRNA, e.g., an siRNA or shRNA
- the inhibitor is an shRNA.
- the inhibitory molecule is inhibited within a CAR-expressing cell.
- a dsRNA molecule that inhibits expression of the inhibitory molecule is linked to the nucleic acid that encodes a component, e.g., all of the components, of the CAR.
- the inhibitor of an inhibitory signal can be, e.g., an antibody or antibody fragment that binds to an inhibitory molecule.
- the agent can be an antibody or antibody fragment that binds to PDl, PD-Ll, PD-L2 or CTLA4 (e.g., ipilimumab (also referred to as MDX-010 and MDX-101, and marketed as Yervoy®; Bristol-Myers Squibb; Tremelimumab (IgG2 monoclonal antibody available from Pfizer, formerly known as ticilimumab, CP- 675,206).).
- the agent is an antibody or antibody fragment that binds to TIM3.
- the agent is an antibody or antibody fragment that binds to LAG3.
- PDl is an inhibitory member of the CD28 family of receptors that also includes CD28, CTLA-4, ICOS, and BTLA. PDl is expressed on activated B cells, T cells and myeloid cells (Agata et al. 1996 Int. Immunol 8:765-75). Two ligands for PDl, PD-Ll and PD-L2 have been shown to downregulate T cell activation upon binding to PDl (Freeman et a. 2000 J Exp Med 192: 1027-34; Latchman et al. 2001 Nat Immunol 2:261-8; Carter et al. 2002 Eur J Immunol 32:634-43).
- PD-Ll is abundant in human cancers (Dong et al. 2003 J Mol Med 81:281-7; Blank et al. 2005 Cancer Immunol. Immunother 54:307-314; Konishi et al. 2004 Clin Cancer Res 10:5094). Immune suppression can be reversed by inhibiting the local interaction of PDl with PD-Ll.
- Antibodies, antibody fragments, and other inhibitors of PDl, PD-Ll and PD-L2 are available in the art and may be used combination with a CD 19 CAR described herein.
- nivolumab also referred to as BMS-936558 or MDX1106; Bristol-Myers Squibb
- Nivolumab (clone 5C4) and other human monoclonal antibodies that specifically bind to PDl are disclosed in US 8,008,449 and WO2006/121168.
- Pidilizumab (CT-011; Cure Tech) is a humanized IgGlk monoclonal antibody that binds to PDl
- Pidilizumab and other humanized anti-PDl monoclonal antibodies are disclosed in WO2009/101611.
- Lambrolizumab (also referred to as MK03475; Merck) is a humanized IgG4 monoclonal antibody that binds to PDl.
- Lambrolizumab and other humanized anti-PDl antibodies are disclosed in US 8,354,509 and WO2009/114335.
- MDPL3280A (Genentech / Roche) is a human Fc optimized IgGl monoclonal antibody that binds to PD-L1.
- MDPL3280A and other human monoclonal antibodies to PD-L1 are disclosed in U.S. Patent No.: 7,943,743 and U.S Publication No.: 20120039906.
- Other anti-PD-Ll binding agents include YW243.55.S70 (heavy and light chain variable regions are shown in SEQ ID NOs 20 and 21 in WO2010/077634) and MDX-1 105 (also referred to as BMS-936559, and, e.g., anti-PD-Ll binding agents disclosed in
- AMP-224 (B7-DCIg; Amplimmune; e.g., disclosed in WO2010/027827 and WO2011/066342), is a PD-L2 Fc fusion soluble receptor that blocks the interaction between PDl and B7-H1.
- Other anti-PDl antibodies include AMP 514 (Amplimmune), among others, e.g., anti-PDl antibodies disclosed in US 8,609,089, US 2010028330, and/or US 20120114649.
- the agent which enhances the activity of a CAR-expressing cell can be, e.g., a fusion protein comprising a first domain and a second domain, wherein the first domain is an inhibitory molecule, or fragment thereof, and the second domain is a polypeptide that is associated with a positive signal, e.g., a polypeptide comrpsing an antracellular signaling domain as described herein.
- the polypeptide that is associated with a positive signal can include a costimulatory domain of CD28, CD27, ICOS, e.g., an intracellular signaling domain of CD28, CD27 and/or ICOS, and/or a primary signaling domain, e.g., of CD3 zeta, e.g., described herein.
- the fusion protein is expressed by the same cell that expressed the CAR.
- the fusion protein is expressed by a cell, e.g., a T cell that does not express an anti-CD19 CAR.
- the agent which enhances activity of a CAR-expressing cell described herein is miR- 17-92.
- compositions of the present invention may comprise a CAR- expressing cell, e.g., a plurality of CAR-expressing cells, as described herein, in combination with one or more pharmaceutically or physiologically acceptable carriers, diluents or excipients.
- Such compositions may comprise buffers such as neutral buffered saline, phosphate buffered saline and the like; carbohydrates such as glucose, mannose, sucrose or dextrans, mannitol; proteins; polypeptides or amino acids such as glycine; antioxidants; chelating agents such as EDTA or glutathione; adjuvants (e.g., aluminum hydroxide); and preservatives.
- compositions of the present invention are in one aspect formulated for intravenous
- compositions of the present invention may be administered in a manner appropriate to the disease to be treated (or prevented).
- the quantity and frequency of administration will be determined by such factors as the condition of the patient, and the type and severity of the patient's disease, although appropriate dosages may be determined by clinical trials.
- the pharmaceutical composition is substantially free of, e.g., there are no detectable levels of a contaminant, e.g., selected from the group consisting of endotoxin, mycoplasma, replication competent lenti virus (RCL), p24, VSV-G nucleic acid, HIV gag, residual anti-CD3/anti-CD28 coated beads, mouse antibodies, pooled human serum, bovine serum albumin, bovine serum, culture media components, vector packaging cell or plasmid components, a bacterium and a fungus.
- a contaminant e.g., selected from the group consisting of endotoxin, mycoplasma, replication competent lenti virus (RCL), p24, VSV-G nucleic acid, HIV gag, residual anti-CD3/anti-CD28 coated beads, mouse antibodies, pooled human serum, bovine serum albumin, bovine serum, culture media components, vector packaging cell or plasmid components, a bacterium and a fungus.
- the bacterium is at least one selected from the group consisting of Alcaligenes faecalis, Candida albicans, Escherichia coli, Haemophilus influenza, Neisseria meningitides, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumonia, and Streptococcus pyogenes group A.
- an immunologically effective amount When “an immunologically effective amount,” “an anti-tumor effective amount,” “a tumor-inhibiting effective amount,” or “therapeutic amount” is indicated, the precise amount of the compositions of the present invention to be administered can be determined by a physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject). It can generally be stated that a
- compositions comprising the T cells described herein may be administered at a dosage of 10 4 to 10 9 cells/kg body weight, in some instances 10 5 to 10 6 cells/kg body weight, including all integer values within those ranges. T cell compositions may also be administered multiple times at these dosages.
- the cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319: 1676, 1988)..
- T cells can be activated from blood draws of from lOcc to 400cc.
- T cells are activated from blood draws of 20cc, 30cc, 40cc, 50cc, 60cc, 70cc, 80cc, 90cc, or lOOcc.
- compositions described herein may be administered to a patient trans arterially, subcutaneously, intradermally, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous (i.v.) injection, or intraperitoneally.
- the T cell compositions of the present invention are administered to a patient by intradermal or subcutaneous injection.
- the T cell compositions of the present invention are administered by i.v. injection.
- the compositions of T cells may be injected directly into a tumor, lymph node, or site of infection.
- subjects may undergo leukapheresis, wherein leukocytes are collected, enriched, or depleted ex vivo to select and/or isolate the cells of interest, e.g., T cells.
- T cell isolates may be expanded by methods known in the art and treated such that one or more CAR constructs of the invention may be introduced, thereby creating a CAR T cell of the invention.
- Subjects in need thereof may subsequently undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation.
- subjects receive an infusion of the expanded CAR T cells of the present invention.
- expanded cells are administered before or following surgery.
- the dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment.
- the scaling of dosages for human administration can be performed according to art-accepted practices.
- the dose for CAMPATH for example, will generally be in the range 1 to about 100 mg for an adult patient, usually administered daily for a period between 1 and 30 days.
- the preferred daily dose is 1 to 10 mg per day although in some instances larger doses of up to 40 mg per day may be used (described in U.S. Patent No. 6,120,766).
- the CAR is introduced into T cells, e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of CAR T cells of the invention, and one or more subsequent administrations of the CAR T cells of the invention, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of the CAR T cells of the invention are
- the subject e.g., human
- administrations of the CAR T cells of the invention are administered per week.
- the subject e.g., human subject
- receives more than one administration of the CAR T cells per week e.g., 2, 3 or 4 administrations per week
- one or more additional administration of the CAR T cells e.g., more than one administration of the CAR T cells per week
- the subject receives more than one cycle of CAR T cells, and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days.
- the CAR T cells are administered every other day for 3 administrations per week.
- the CAR T cells of the invention are administered for at least two, three, four, five, six, seven, eight or more weeks.
- CD 19 CARTs are generated using lentiviral viral vectors, such as lentivirus. CARTs generated that way will have stable CAR expression.
- CARTs transiently express CAR vectors for 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 days after transduction.
- Transient expression of CARs can be effected by RNA CAR vector delivery.
- the CAR RNA is transduced into the T cell by electroporation.
- a potential issue that can arise in patients being treated using transiently expressing CAR T cells is anaphylaxis after multiple treatments.
- anaphylactic response might be caused by a patient developing humoral anti-CAR response, i.e., anti-CAR antibodies having an anti-IgE isotype. It is thought that a patient's antibody producing cells undergo a class switch from IgG isotype (that does not cause anaphylaxis) to IgE isotype when there is a ten to fourteen day break in exposure to antigen.
- CART infusion breaks should not last more than ten to fourteen days.
- Humanization of murine CD 19 antibody is desired for the clinical setting, where the mouse- specific residues may induce a human-anti-mouse antigen (HAMA) response in patients who receive CART19 treatment, i.e., treatment with T cells transduced with the CAR19 construct.
- HAMA human-anti-mouse antigen
- VH and VL sequences of hybridoma derived murine CD 19 antibody were extracted from published literature (Nicholson et al, 1997, supra). Humanization was accomplished by grafting CDR regions from murine CD 19 antibody onto human germline acceptor frameworks VH4_4-59 and VK3_L25 (vBASE database). In addition to the CDR regions, five framework residues, i.e.
- Table 1 Amino acid sequences of humanized CD19 variable domains (SEQ ID NOs: 114-117, respectively, in order of appearance).
- FMC63_VH_hz2 N60S
- FMC63_VH_hz2 N60Q
- VL and VH domain were subcloned from the cloning vectors into expression vectors suitable for secretion in mammalian cells.
- the heavy and light chains were cloned into individual expression vectors to allow co-transfection.
- Elements of the expression vector include a promoter (Cytomegalovirus (CMV) enhancer-promoter), a signal sequence to facilitate secretion, a polyadenylation signal and transcription terminator (Bovine Growth Hormone (BGH) gene), an element allowing episomal replication and replication in prokaryotes (e.g. SV40 origin and ColEl or others known in the art) and elements to allow selection (ampicillin resistance gene and zeocin marker).
- CMV Cytomegalovirus
- BGH Bovine Growth Hormone
- HEK293F mammalian cells were expressed in HEK293F mammalian cells at 1ml scale. Cleared supernatants were used for FACS binding studies. More precisely, HEK293F cells were diluted to 5E5 cells/ml in FreeStyle medium supplemented with Pen/Strep and 1 ml transferred into 24 round bottom deep well plate. 0.5 ⁇ g of light and 0.5 ⁇ g of heavy chain mammalian expression plasmids were diluted in the same medium together with 4 ⁇ of FuGENE HD (Roche REF 04709705001).
- the binding assay could be performed directly with the serum free culture media containing the expressed IgG. All evaluated IgGs were normalized to the same concentration (85nM), before to be diluted by a 3 fold serial dilution down to 1.4pM. Then, in a 96-well plate, aliquots of 5xl0 5 cells/well were incubated for 30 min at 4°C with diluted IgGs. Cells were washed twice with FACS buffer (0.5% BSA in PBS) before addition of the detection antibody, an APC conjugated goat anti-hu IgG, Fc fragment specific (Dianova #109- 136-098), diluted 1 : 1000 in FACS buffer.
- Example 2 Characterization of anti-CD19 soluble scFv fragments derived from humanized CD19 IgG Antibodies
- Soluble scFv fragments were generated from the humanized CD 19 IgGs described in Example 1 using standard molecule biology techniques. These soluble scFvs were used in characterization studies to examine the stability, cell surface expression, and binding properties of the scFvs. Additionally, experiments were also conducted to investigate the impact of the potential PTM introduced during the humanization process.
- each scFv construct around 3e8 293F cells were transfected with 100 ⁇ g of plasmid using PEI as the transfection reagent at the ratio of 3: 1 (PELDNA).
- the cells were grown in 100ml ⁇ 293 Expression media (Invitrogen) in a shaker flask at 37°C, 125 rpm, 8% C0 2 . The culture was harvested after six days and used for protein purification.
- 293F cells were harvested by spinning down at 3500g for 20 minutes. The supernatant was collected and filtered through VacuCap90 PF Filter Unit (w/0.8/0 ⁇ m Super Membrane, PALL). Around 400 ⁇ 400ul of Ni-NTA agarose beads (Qiagen) were added to the supernatant. The mixture was rotated and incubated for 4 hrs at 4°C. It was loaded onto a purification column and washed with washing buffer with 20mM Histidine. The protein was eluted with 500 ⁇ 1 elution buffer with 300mM Histidine. The samples were dialyzed against PBS buffer at 4C overnight. Protein samples were quantified using nanodrop 2000c.
- Thermostability of the scFv was determined by DSF : mix 10-20 ⁇ of protein sample with the dye Sypro Orange (Invitrogen Cat#S6650) of a final dilution at 1: 1000, in a total volume of 25 ⁇ in PBS, run BioRad CFX1000 (25 C for 2 min, then increment 0.5° C for 30 second, 25 to 95° C).
- Mouse cell line 300.CD19 were grown in RPMI 1640 with 0.5 mg/ml Zeocin.
- HEK293F suspension cells transiently transfected with different anti-hCD19 CARTs were harvested 2 days after the transfection. Around le6 cells were placed into each well of a V-shape 96 well plate (Greiner Bio-One, Germany) and washed three times with 0.2 ml FACS buffer (1XPBS containing 4% bovine serum albumin (BSA) (BSA fraction V, Roche Diagnostics, Indianapolis, IN).
- FACS buffer (1XPBS containing 4% bovine serum albumin (BSA) (BSA fraction V, Roche Diagnostics, Indianapolis, IN).
- Cells were resuspended in 0.2 ml of the FCAS buffer with either 0.2 ⁇ g of biotinylated protein L (GenScript, Piscataway, NJ) or 100 nM of hCD19(AA 1-291)- hlgGl Fc (Generated in NIBRI) and incubated at 4°C for 30 minutes.
- biotinylated protein L GenScript, Piscataway, NJ
- 100 nM of hCD19(AA 1-291)- hlgGl Fc Generated in NIBRI
- position 62 in the CDRH2 region prefers to be a serine residue rather than the alanine present in the murine CDRH2 as described in Example 1. Whether the PTM site generated during humanization process was actually a "true" PTM site or merely a theoretical one was tested.
- Two IgG variants were generated in which the asparagine at position 60 (known to be a glycosylation site) was mutated to serine, or glutamine and designated FMC63_VH_hz2 (N60S) and FMC63_VH_hz2 (N60Q), respectively. These constructs were generated in order to eliminate the potential post-translational modification site (PTM) and test for retained activity.
- Anti-CD 19 humanized scFvs and mouse scFv were expressed in 293F cells and purified through His tag. The expression and yield of all humanized scFvs was much higher than the original mouse scFv (data not shown).
- PNGaseF N-glycanase F
- HPLC-MS high-performance liquid chromatography mass spectrometry
- SDS-PAGE SDS-PAGE
- the samples are diluted in water to 0.1 ⁇ g/ ⁇ L and either left untreated or incubated with PNGaseF at a 1:2 (w/w) PNGaseF: scFV ratio for 3 hours at 37°C.
- SDS-PAGE analysis is performed using a NuPAGE 4-12% Bis-Tris gel from Novex. Approximately 2 ⁇ g scFV are loaded into each lane and the electrophoresis is conducted at 200 V constant for 40 minutes. Following electrophoresis, the gel is stained using PhastGel Blue R 250 stain (Amersham Pharmacia) and destained with 10% acetic acid, 30% methanol.
- HPLC-MS analysis is performed on the Water's Acquity UPLC system coupled to a Xevo-Tof mass spectrometer. Approximately 1 ⁇ g of each sample is loaded onto a R 1/10 2.1 x 100 mm 10 ⁇ POROS column (Applied Biosciences) set to 60°C at a flow rate of 0.5 mL/min. Mobile phases are composed of 0.1% formic acid (A) and 0.1% formic acid, 75% isopropanol, 25% acetonitrile (B). Protein is eluted from the column with a reverse phase gradient from 25%-90% B in 12 minutes. The acquisition is performed using electrospray positive scan at the m/z range of 600-4000 Da with a source cone voltage ramp 20-50V. The resulting spectra are deconvoluted using MaxEntl.
- the glycosylation site was introduced during the process of humanization.
- the non- PTM variants (VH: N60S or N60Q) were without this additional form.
- the construct was the only one with a consensus site of N-linked glycosylation in HC CDR2. From the SDS-PAGE analysis, the untreated samples migrated as single bands consistent with the approximate molecular weights of the sequences for all constructs except 103101-WT (S/N) for which doublet is observed. This construct is the only one with a consensus site of N-linked glycosylation in H-CDR2. When treated with PNGaseF, the higher molecular weight band of the doublet is no longer present suggesting partial occupancy of the site.
- the conformation stability was measured by Differential Scanning Fluorimetry (DSF). As shown in Fig. 4, the Tm of mouse scFv was 57 °C, while the human variants showed higher Tm at around 70°C. The Tm for all the humanized scFv is much better than the murine scFv, clearly showing that all the humanized scFv are more stable than the murine scFv. This stability will likely translate to the CART 19 construct, likely leading to improved therapeutic properties. [00376] The activity of the purified scFv was measure by binding to hCD19 expression cells as well as by binding to hCD19 antigen using SPR based detection method.
- Mouse cell line 300 was used to determine the binding of scFvs.
- the EC 50 of mouse scFv for hCD19 was around 06-1.6 nM.
- the humanized variants showed EC 50 of the same range in the low or sub nM EC 50 S range.
- ScFv to be used in the final CAR construct were derived from the humanized IgG described in Example 1.
- the order in which the VL and VH domains appear in the scFv was varied (i.e., VL-VH, or VH-VL orientation), and where either three or four copies of the "G4S" (SEQ ID NO: 18) subunit, in which each subunit comprises the sequence GGGGS (SEQ ID NO: 18) (e.g., (G4S) 3 (SEQ ID NO: 107) or (G4S) 4 (SEQ ID NO: 106)), connect the variable domains to create the entirety of the scFv domain, as shown in Table 2.
- CD8 hinge amino acid sequence
- CD8 hinge nucleic acid sequence
- CD3 zeta nucleic acid sequence
- CD3 zeta domain (amino acid sequence; NCBI Reference Sequence NM_000734.3) (SEQ ID NO:43)
- CD3 zeta nucleic acid sequence; NCBI Reference Sequence NM_000734.3); (SEQ ID NO:44)
- IgG4 Hinge amino acid sequence (SEQ ID NO: 102)
- Table 6 is an identification key correlating the CD 19 constructs numerical names to the specific orientation of the light and heavy chains of the scFv, the number of linker units (i.e., (G4S) 3 (SEQ ID NO: 107) or (G4S) 4 (SEQ ID NO: 106)), separating the heavy and light chains, and the distinguishing amino acid sequences in the heavy chain CDR2.
- linker units i.e., (G4S) 3 (SEQ ID NO: 107) or (G4S) 4 (SEQ ID NO: 106)
- the single chain variable fragments for an anti-CD 19 antibody is cloned into a lentiviral CAR expression vector with the CD3zeta chain and the 4- IBB costimulatory molecule in four different configurations and the optimal construct is selected based on the quantity and quality of the effector T cell response of CD19 CAR transduced T cells ("CART 19" or "CART 19 T cells”) in response to CD19+ targets.
- Effector T cell responses include, but are not limited to, cellular expansion, proliferation, doubling, cytokine production and target cell killing or cytolytic activity
- the humanized CART19 lentiviral transfer vectors are used to produce the genomic material packaged into the VSVg psuedotyped lentiviral particles.
- Lentiviral transfer vector DNA is mixed with the three packaging components of VSVg, gag/pol and rev in combination with lipofectamine reagent to transfect them together in to 293T cells. After 24 and 48hr, the media is collected, filtered and concentrated by ultracentrifugation. The resulting viral preparation is stored at -80C. The number of transducing units is determined by titration on SupTl cells.
- Redirected CART19 T cells are produced by activating fresh naive T cells by engaging with CD3x28 beads for 24hrs and then adding the appropriate number of transducing units to obtain the desired percentage of transduced T cells. These modified T cells are allowed to expand until they become rested and come down in size at which point they are
- cryopreserved for later analysis.
- the cell numbers and sizes are measured using a coulter multisizer III.
- percentage of cells transduced (expressing the CART19 on the cell surface) and their relative fluorescence intensity of that expression are determined by flow cytometric analysis on an LSRII. From the histogram plots, the relative expression levels of the CARs can be examined by comparing percentage transduced with their relative fluorescent intensity. Evaluating cytolytic activity, proliferation capabilities and cytokine secretion of humanized CART19 redirected T cells.
- GS CART19 T cells to kill, proliferate and secrete cytokines
- the cells are thawed and allowed to recover overnight.
- the murine CART19 was used for comparative purposes while SS l-BBz was used as non-targeting expressed CAR for background CAR/T cell effect.
- the "control" gold standard (GS) CART19 was used in all assays to compare assay variation.
- the GS CART 19 are cells produced in research grade (i.e., not clinical grade) manufacturing conditions and include the addition of IL-2 to the growth culture.
- the T cell killing was directed towards K562, a chronic myelogenous leukemia cell line expressing or not expressing CD19 or Ptl4, B cells isolated from CLL patients.
- K562 a chronic myelogenous leukemia cell line expressing or not expressing CD19 or Ptl4, B cells isolated from CLL patients.
- the target cells are stained with CSFE to quantitate their presence.
- the target cells were stained for CD 19 expression to confirm similar target antigens levels.
- the cytolytic activities of CAR19 T cells are measured at a titration of effector: target cell ratios of 10: 1, 3: 1, 1 : 1, 0.3: 1 and 0: 1 where effectors were defined as T cells expressing the anti-CD19 chimeric receptor.
- Assays were initiated by mixing an appropriate number of T cells with a constant number of targets cells. After 16hrs, total volume of each mixture was removed and each well washed combining appropriately. The T cells were stained for CD2 and all cells stained with live/dead marker 7AAD. After the final wash, the pelleted cells were re- suspended in a specific volume with a predetermined number of counting beads. Cell staining data was collected by LSRII flow cytometry and analyzed with FloJo software using beads to quantitate results.
- the murine CART19 was used for comparative purposes while SS l-BBz was used as a non-targeting expressed CAR for background CAR/T cell effect.
- the "control" gold standard (GS) CART 19 was used in all assays to compare assay variation.
- the T cells were directed either towards K562, a chronic myelogenous leukemia cell line expressing or not expressing CD19 or Ptl4, B cells isolated from CLL patients.
- CD3x28 beads were used to evaluate the potential of T cells to respond to the endogenous immunological signals.
- T cells were stained with CSFE. The proliferation is the dilution of the CSFE stain reflecting the separation of the parental markings now into two daughter cells.
- the assay tests only an effector: target ratios of 1: 1 and 1:0 where effectors were defined as T cells expressing the anti-CD 19 chimeric receptor.
- the assay is done in duplicate and 24hrs after mixing of the cells, 50% of the media is removed/replaced for cytokine analysis using the Luminex 10-plex panel of human cytokines detection. After 5 days, T cells were stained for CAR expression, phenotyped as either CD4 or CD8 cells and stained for live/dead with 7AAD. After the final wash, the pelleted cells were re-suspended in a specific volume with a predetermined number of BD counting beads.
- Cell staining data was collected by LSRII flow cytometry and analyzed with Flo Jo software using beads to quantitate results. Total cell counts were determined by number of cells counted relative to a specific number of beads multiplied by the fraction of beads yet to be counted.
- the therapeutic CAR19 T cells are generated by starting with the blood from a normal apheresed donor whose naive T cells are obtained by negative selection for T cells, CD4+ and CD8+ lymphocytes. These cells are activated by CD3x28 beads in 10% RPMI at 37C, 5% C0 2 .
- the T cells are blasting and the normalized amount of virus is added.
- the T cells begin to divide into a logarithmic growth pattern which is monitored by measuring the cell counts per ml and cell size. As the T cells begin to rest down, the logarithmic growth wanes and the cell size shrinks. The combination of slowing growth rate and T cell size approaching -300 fl determines the state for T cells to be cryopreserved or restimulated.
- SSl-BBz is used to define unwanted antigen independent CAR activity.
- the expansion profile in total cell numbers shows the differences in the actual numbers in the individual expansions are likely due mainly to different starting number of cells. By normalizing starting T cell numbers, a tight cluster is seen for all the CART19 cells. In addition, the unwanted effect of antigen independent CAR activation is detected in the line running lower and away from the group.
- Targeting Ptl4 CLL cells appear to indicate a slightly greater proliferation rate with scFvs with a light to heavy chain orientation with no bias seen when having a 3x or 4x GGGGS linkage (SEQ ID NOS 107 and 106, respectively).
- proliferative results reflect the total number of cells accumulated over the 5 days, indicating that the humanized CART19s, 2146, 2144, 2136, 2141 and 2137 drive a more proliferative signal to the T cells. Impressively, this was detected in the humanized CART19 cells targeting Ptl4 CLL cells.
- humanized CART 19 constructs exhibit very similar characteristics to the current murine CART 19 in cytolytic activity, proliferative response and cytokine secretion to antigen specific targets.
- the potential of humanized CART19 cells, (2146, 2144, 2136, 2141 and 2137), to drive a more proliferative signal to the T cells upon target activation would seem to be an extra benefit of these new constructs to potentially enhance therapeutic response.
- ND317 cells transduced with humanized CD19CAR constructs (a.k.a.
- huCART19 of the invention were analyzed. There was a tight similarity in size of the T cells during their expansions after CD3x28 activation and transduction with the humanized CART19 candidates relative to the murine CART19 and unmodified (UTD) T cells.
- the humanized CART 19 have similar specific cytotoxic activities in targeting CD 19 expressing target cells and comparable to murine CART 19. Plots from 16 hr- flow-based killing assays using titrating Effector to Target (E:T) ratios with effector humanized CART 19 cells targeting CSFE labeled K562cc (FIG. 1A. non-expressing CD19 controls), K562.CD19 (FIG. IB, K562 cells transduced to express CD19) or Ptl4 (FIG. 1C, B cells from CLL patient).
- the cytolytic activities of all the humanized CART 19 cells are similar and comparable to the murine CART 19. The differences in the cytolytic activity between different targets is similar and comparable indicating the murine CART19's activity is preserved in the humanized form of CART 19.
- Histogram overlays of CFSE marked humanized CART 19 cells 6 days after being mixed with target cells show their proliferative capacity (FIG. 5).
- the proliferative response delivered from the CAR19 is a necessary response after engagement with and killing of target cells to develop a positive clinical response.
- the dilution of SSl-BBz CSFE staining, an indicator of dividing daughter cells diluting out the parental cell's stain, is a result of unrested T cells maintaining divisions in a targeting independent mechanism.
- the cell populations overall ability to proliferate is evaluated with CD3x28 beads which mimics the endogenous engagement of the TCR and the co-stimulator CD28. Data indicates each cell population has a comparable proliferation potential. All humanized and murine CART19 cells proliferate strongly and comparably upon engagement with K562 cells expressing CD 19. Humanized CART 19 cells also responded well to B cells obtained from a CLL patient though some seem to respond slightly less. As shown in FIG. 2A and 2B, the humanized CART 19 cells 2136, 2137, 2140, 2141, 2144 and 2146 can be seen to have a slightly more robust proliferation as evidenced by the greater dilution of CSFE staining.
- constructs all have the same variable chain orientation of light to heavy, indicating that this is the orientation of choice.
- a closer look at the amino acid changes in the heavy CDR2 site (Table 1) reveals that each of the three variations YSSSL, YQSSL and YNSSL (SEQ ID NOS:28, 29 and 30, respectively) are represented in the constructs that appeared to have the more robust proliferations after seeing targets.
- these observed constructs have both the G4S linker containing 3 copies of the subunit (3G4S) (SEQ ID NO: 107) and the G4S linker containing 4 copies of the subunit (4G4S) (SEQ ID NO: 106), indicating the linker size did not influence function.
- Total cell numbers were also analyzed 6 days after exposure to B cells from Patient 14 (ptl4), and interestingly shows that the previously selected out humanized CART 19 constructs 2146, 2144, 2136, 2141 and 2137, all of which have the light to heavy chain orientation and represent the three amino acid variations YSSSL, YQSSL and YNSSL (SEQ ID NOS: 28, 29 and 30, respectively), resulted in higher total cell numbers, higher than the murine CART 19s.
- This unexpected differentiation between the various humanized anti-CD 19CAR clones may translate to better clinical efficacy of CART cells transduced with these constructs.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hospice & Palliative Care (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES14722469T ES2734549T3 (en) | 2013-03-16 | 2014-03-15 | Cancer treatment using a humanized anti-CD19 chimeric antigen receptor |
CA2907100A CA2907100C (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
EP14722469.5A EP2970482B1 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
BR112015021819A BR112015021819A2 (en) | 2013-03-16 | 2014-03-15 | CANCER TREATMENT USING ANTI-CD19 HUMANIZED CHIMER ANTIGEN RECEPTOR |
EP22159001.1A EP4067382A1 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
PL14722469T PL2970482T3 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
EP19158368.1A EP3539986B1 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
RU2015144332A RU2711975C2 (en) | 2013-03-16 | 2014-03-15 | Treating cancer by humanised anti-cd19 chimeric antigen receptor |
KR1020157029649A KR102293062B1 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
JP2016503288A JP6466401B2 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using a humanized anti-CD19 chimeric antigen receptor |
CN202210634273.6A CN115287292A (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-CD 19 chimeric antigen receptor |
AU2014236098A AU2014236098B8 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-CD19 chimeric antigen receptor |
MX2015013194A MX2015013194A (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor. |
CN201480027401.4A CN105392888B (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-CD 19 chimeric antigen receptor |
SG11201506603PA SG11201506603PA (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
LTEP14722469.5T LT2970482T (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
DK14722469.5T DK2970482T3 (en) | 2013-03-16 | 2014-03-15 | CANCER TREATMENT USING HUMANIZED CHEMICAL ANTI-CD19 ANTIGEN RECEPTOR |
IL241261A IL241261B (en) | 2013-03-16 | 2015-09-07 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
HK16106845.6A HK1218922A1 (en) | 2013-03-16 | 2016-06-14 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor cd19 |
AU2019216689A AU2019216689C1 (en) | 2013-03-16 | 2019-08-15 | Treatment of cancer using humanized anti-CD19 chimeric antigen receptor |
AU2022202024A AU2022202024A1 (en) | 2013-03-16 | 2022-03-23 | Treatment of cancer using humanized anti cd19 chimeric antigen receptor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361802629P | 2013-03-16 | 2013-03-16 | |
US61/802,629 | 2013-03-16 | ||
US201361838537P | 2013-06-24 | 2013-06-24 | |
US61/838,537 | 2013-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014153270A1 true WO2014153270A1 (en) | 2014-09-25 |
Family
ID=50680172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/029943 WO2014153270A1 (en) | 2013-03-16 | 2014-03-15 | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor |
Country Status (25)
Country | Link |
---|---|
US (3) | US10221245B2 (en) |
EP (3) | EP3539986B1 (en) |
JP (4) | JP6466401B2 (en) |
KR (1) | KR102293062B1 (en) |
CN (2) | CN115287292A (en) |
AU (3) | AU2014236098B8 (en) |
BR (1) | BR112015021819A2 (en) |
CA (1) | CA2907100C (en) |
DK (2) | DK3539986T3 (en) |
ES (2) | ES2923397T3 (en) |
HK (1) | HK1218922A1 (en) |
HR (1) | HRP20220767T1 (en) |
HU (2) | HUE058832T2 (en) |
IL (1) | IL241261B (en) |
LT (2) | LT3539986T (en) |
MX (2) | MX2015013194A (en) |
MY (1) | MY187624A (en) |
PL (2) | PL3539986T3 (en) |
PT (2) | PT3539986T (en) |
RU (2) | RU2711975C2 (en) |
SG (2) | SG10201806293WA (en) |
SI (1) | SI3539986T1 (en) |
TW (1) | TWI654206B (en) |
UY (1) | UY35468A (en) |
WO (1) | WO2014153270A1 (en) |
Cited By (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015157252A1 (en) | 2014-04-07 | 2015-10-15 | BROGDON, Jennifer | Treatment of cancer using anti-cd19 chimeric antigen receptor |
WO2015187528A1 (en) * | 2014-06-02 | 2015-12-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric antigen receptors targeting cd-19 |
WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
CN105384825A (en) * | 2015-08-11 | 2016-03-09 | 南京传奇生物科技有限公司 | Bispecific chimeric antigen receptor based on variable domains of heavy chain of heavy-chain antibody and application thereof |
WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
WO2016057705A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
WO2016113203A1 (en) * | 2015-01-12 | 2016-07-21 | Pieris Ag | Engineered t cells and uses therefor |
WO2016120216A1 (en) | 2015-01-26 | 2016-08-04 | Cellectis | mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS |
WO2016123143A1 (en) | 2015-01-26 | 2016-08-04 | The University Of Chicago | CAR T-CELLS RECOGNIZING CANCER-SPECIFIC IL 13Rα2 |
WO2016126608A1 (en) | 2015-02-02 | 2016-08-11 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
WO2016097231A3 (en) * | 2014-12-17 | 2016-08-18 | Cellectis | INHIBITORY CHIMERIC ANTIGEN RECEPTOR (iCAR OR N-CAR) EXPRESSING NON-T CELL TRANSDUCTION DOMAIN |
CN105950664A (en) * | 2016-05-17 | 2016-09-21 | 上海优卡迪生物医药科技有限公司 | CD 123-targeting replication-defective recombinant lentivirus CAR-T transgenic vector as well as construction method and applications thereof |
CN105950645A (en) * | 2016-01-11 | 2016-09-21 | 灏灵赛奥(天津)生物科技有限公司 | Humanized fusion gene segment of CAR-CD19 antigen receptor, construction method and application thereof |
CN105950663A (en) * | 2016-05-17 | 2016-09-21 | 上海优卡迪生物医药科技有限公司 | CD 30-targeting replication-defective recombinant lentivirus CAR-T transgenic vector as well as construction method and applications thereof |
CN105950662A (en) * | 2016-05-17 | 2016-09-21 | 上海优卡迪生物医药科技有限公司 | CD22-taregted replication-defective recombinant lentivirus CAR-T transgenic vector as well as construction method and application thereof |
CN105969805A (en) * | 2016-05-17 | 2016-09-28 | 上海优卡迪生物医药科技有限公司 | Mesothelin-targeted replication-defective recombinant lentivirus CAR-T transgenic carrier as well as establishment method and application thereof |
WO2016164580A1 (en) | 2015-04-07 | 2016-10-13 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
WO2016164731A2 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
WO2016168595A1 (en) | 2015-04-17 | 2016-10-20 | Barrett David Maxwell | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
WO2017015427A1 (en) | 2015-07-21 | 2017-01-26 | Novartis Ag | Methods for improving the efficacy and expansion of immune cells |
JP2017504601A (en) * | 2013-12-20 | 2017-02-09 | セレクティスCellectis | Method for manipulating multi-input signal sensitive T cells for immunotherapy |
US9573988B2 (en) | 2013-02-20 | 2017-02-21 | Novartis Ag | Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells |
WO2017028374A1 (en) * | 2015-08-20 | 2017-02-23 | Beijing Marino Biotechnology Pty Ltd. | Construct, genetically modified lymphocyte, preparation method and usage thereof |
WO2017040930A2 (en) | 2015-09-03 | 2017-03-09 | The Trustees Of The University Of Pennsylvania | Biomarkers predictive of cytokine release syndrome |
WO2017046747A1 (en) * | 2015-09-15 | 2017-03-23 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
WO2017093969A1 (en) | 2015-12-04 | 2017-06-08 | Novartis Ag | Compositions and methods for immunooncology |
WO2017112741A1 (en) | 2015-12-22 | 2017-06-29 | Novartis Ag | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
WO2017114497A1 (en) | 2015-12-30 | 2017-07-06 | Novartis Ag | Immune effector cell therapies with enhanced efficacy |
WO2017096327A3 (en) * | 2015-12-03 | 2017-07-13 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against chimeric antigen receptors |
WO2017133174A1 (en) * | 2016-02-03 | 2017-08-10 | 北京马力喏生物科技有限公司 | Therapeutic composition for treatment of b-cell leukemia and b-cell lymphoma |
US9745368B2 (en) | 2013-03-15 | 2017-08-29 | The Trustees Of The University Of Pennsylvania | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
EP3149046A4 (en) * | 2015-07-24 | 2017-08-30 | Innovative Cellular Therapeutics Co., Ltd. | Humanized anti-cd19 antibody and use thereof |
WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
WO2017165683A1 (en) | 2016-03-23 | 2017-09-28 | Novartis Ag | Cell secreted minibodies and uses thereof |
WO2017181119A2 (en) | 2016-04-15 | 2017-10-19 | Novartis Ag | Compositions and methods for selective protein expression |
JP2017531430A (en) * | 2014-10-07 | 2017-10-26 | セレクティスCellectis | Method for modulating the activity of immune cells induced by CAR |
US9815901B2 (en) | 2014-08-19 | 2017-11-14 | Novartis Ag | Treatment of cancer using a CD123 chimeric antigen receptor |
WO2017210617A2 (en) | 2016-06-02 | 2017-12-07 | Porter, David, L. | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
WO2018013918A2 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
JP2018500944A (en) * | 2014-12-29 | 2018-01-18 | ノバルティス アーゲー | Method for producing chimeric antigen receptor-expressing cells |
WO2018023025A1 (en) | 2016-07-28 | 2018-02-01 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
WO2018026819A2 (en) | 2016-08-01 | 2018-02-08 | Novartis Ag | Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule |
JP2018505174A (en) * | 2015-01-29 | 2018-02-22 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Chimeric antigen receptor, composition and method |
WO2018064523A1 (en) * | 2016-09-30 | 2018-04-05 | Genvec, Inc. | Adenovectors for delivery of therapeutic genetic material into t cells |
WO2018064387A1 (en) | 2016-09-28 | 2018-04-05 | Novartis Ag | Porous membrane-based macromolecule delivery system |
WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
JP2018514204A (en) * | 2015-04-30 | 2018-06-07 | ユーシーエル ビジネス ピーエルシー | T cells expressing gamma delta T cell receptor (TCR) and chimeric antigen receptor (CAR) |
CN108174604A (en) * | 2015-08-07 | 2018-06-15 | 西雅图儿童医院(Dba西雅图儿童研究所) | For the bispecific CAR T cells of solid tumor targeting |
WO2018126369A1 (en) * | 2017-01-05 | 2018-07-12 | Shanghai Sidansai Biotechnology Co., Ltd | Humanized anti-cd19 antibody and use thereof with chimeric antigen receptor |
JP2018518978A (en) * | 2015-07-08 | 2018-07-19 | ザ・ジョンズ・ホプキンス・ユニバーシティー | Bone marrow infiltrating lymphocytes (MIL) as a source of T cells for chimeric antigen receptor (CAR) therapy |
WO2018140725A1 (en) | 2017-01-26 | 2018-08-02 | Novartis Ag | Cd28 compositions and methods for chimeric antigen receptor therapy |
WO2018144535A1 (en) | 2017-01-31 | 2018-08-09 | Novartis Ag | Treatment of cancer using chimeric t cell receptor proteins having multiple specificities |
WO2018160731A1 (en) | 2017-02-28 | 2018-09-07 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
WO2018188331A1 (en) * | 2017-04-12 | 2018-10-18 | 上海优卡迪生物医药科技有限公司 | Car-t cell with inhibited sterol o-acyltransferase 1 (soat1), preparation method therefor and application thereof |
JP2018531015A (en) * | 2015-10-13 | 2018-10-25 | シティ・オブ・ホープCity of Hope | Chimeric antigen receptor containing chlorotoxin domain |
WO2018200496A1 (en) * | 2017-04-24 | 2018-11-01 | Kite Pharma, Inc. | Humanized antigen-binding domains against cd19 and methods of use |
WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
JP2018534264A (en) * | 2015-09-28 | 2018-11-22 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Chimeric antigen receptor (CAR) T cells as therapeutic intervention for autoimmunity and alloimmunity |
JP2018537088A (en) * | 2015-11-13 | 2018-12-20 | 科済生物医薬(上海)有限公司 | Chimeric antigen receptor-modified immune effector cells with PD-L1 blockers |
WO2019002633A1 (en) | 2017-06-30 | 2019-01-03 | Cellectis | Cellular immunotherapy for repetitive administration |
US10189908B2 (en) | 2014-02-05 | 2019-01-29 | The University Of Chicago | Chimeric antigen receptors recognizing cancer-specific TN glycopeptide variants |
US10221245B2 (en) | 2013-03-16 | 2019-03-05 | Novartis Ag | Treatment of cancer using humanized anti-CD19 chimeric antigen receptor |
WO2019067015A1 (en) * | 2017-09-29 | 2019-04-04 | City Of Hope | Chimeric antigen receptors and bispecific antibodies for treatment of mantle cell lymphoma |
WO2019079569A1 (en) | 2017-10-18 | 2019-04-25 | Novartis Ag | Compositions and methods for selective protein degradation |
WO2019084288A1 (en) | 2017-10-25 | 2019-05-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2019089798A1 (en) | 2017-10-31 | 2019-05-09 | Novartis Ag | Anti-car compositions and methods |
US10287354B2 (en) | 2013-12-20 | 2019-05-14 | Novartis Ag | Regulatable chimeric antigen receptor |
WO2019099639A1 (en) | 2017-11-15 | 2019-05-23 | Navartis Ag | Bcma-targeting chimeric antigen receptor, cd19-targeting chimeric antigen receptor, and combination therapies |
US10308719B2 (en) | 2015-01-26 | 2019-06-04 | The University Of Chicago | IL13Rα2 binding agents and use thereof in cancer treatment |
WO2019108900A1 (en) | 2017-11-30 | 2019-06-06 | Novartis Ag | Bcma-targeting chimeric antigen receptor, and uses thereof |
WO2019136432A1 (en) | 2018-01-08 | 2019-07-11 | Novartis Ag | Immune-enhancing rnas for combination with chimeric antigen receptor therapy |
US10358474B2 (en) | 2015-05-18 | 2019-07-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
WO2019160956A1 (en) | 2018-02-13 | 2019-08-22 | Novartis Ag | Chimeric antigen receptor therapy in combination with il-15r and il15 |
WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
WO2019232510A1 (en) * | 2018-06-01 | 2019-12-05 | Kite Pharma, Inc. | Chimeric antigen receptor t cell therapy |
WO2019237035A1 (en) | 2018-06-08 | 2019-12-12 | Intellia Therapeutics, Inc. | Compositions and methods for immunooncology |
US10507219B2 (en) | 2014-10-20 | 2019-12-17 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
WO2020012337A1 (en) | 2018-07-10 | 2020-01-16 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases |
US10568947B2 (en) | 2014-07-21 | 2020-02-25 | Novartis Ag | Treatment of cancer using a CLL-1 chimeric antigen receptor |
WO2020047452A2 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2020047449A2 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
RU2716716C2 (en) * | 2014-10-27 | 2020-03-16 | Фред Хатчинсон Кэнсер Рисёрч Сентер | Compositions and methods for boosting the effectiveness of adoptive cell immunotherapy |
WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
WO2020069405A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
WO2020128972A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
WO2020165833A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2020165834A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2020176397A1 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Mesoporous silica particles compositions for viral delivery |
EP3556772A4 (en) * | 2016-12-13 | 2020-09-09 | Carsgen Therapeutics Ltd | Anti-cd19 humanized antibody and immune effector cell targeting cd19 |
WO2020185632A1 (en) | 2019-03-08 | 2020-09-17 | Obsidian Therapeutics, Inc. | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
WO2020191316A1 (en) | 2019-03-21 | 2020-09-24 | Novartis Ag | Car-t cell therapies with enhanced efficacy |
WO2020210719A1 (en) | 2019-04-10 | 2020-10-15 | Elevatebio Management, Inc. | Flt3-specific chimeric antigen receptors and methods of using the same |
WO2020210678A1 (en) | 2019-04-12 | 2020-10-15 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
US10808031B2 (en) | 2015-01-21 | 2020-10-20 | Cancer Research Technology Limited | Inhibitors of the interaction between CLEC14A and multimerin-2 for inhibition of angiogenesis |
WO2020219742A1 (en) | 2019-04-24 | 2020-10-29 | Novartis Ag | Compositions and methods for selective protein degradation |
CN111936510A (en) * | 2017-09-15 | 2020-11-13 | 莱蒂恩技术公司 | Compositions and methods for treating cancer with anti-CD 19 immunotherapy |
US11008294B2 (en) | 2017-10-30 | 2021-05-18 | Neuropore Therapies, Inc. | Substituted phenyl sulfonyl phenyl triazole thiones and uses thereof |
WO2021108661A2 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Chimeric antigen receptors and uses thereof |
WO2021123996A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases |
US11085021B2 (en) | 2016-10-07 | 2021-08-10 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2021163618A1 (en) | 2020-02-14 | 2021-08-19 | Novartis Ag | Method of predicting response to chimeric antigen receptor therapy |
WO2021173985A2 (en) | 2020-02-27 | 2021-09-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2021173995A2 (en) | 2020-02-27 | 2021-09-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2021174004A1 (en) | 2020-02-28 | 2021-09-02 | Millennium Pharmaceuticals, Inc. | Method for producing natural killer cells from pluripotent stem cells |
CN113736828A (en) * | 2014-11-05 | 2021-12-03 | 朱诺治疗学股份有限公司 | Methods for transduction and cell processing |
WO2021252920A1 (en) | 2020-06-11 | 2021-12-16 | Novartis Ag | Zbtb32 inhibitors and uses thereof |
WO2021260528A1 (en) | 2020-06-23 | 2021-12-30 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
WO2022010847A1 (en) | 2020-07-07 | 2022-01-13 | Cancure, Llc | Mic antibodies and binding agents and methods of using the same |
WO2022016119A1 (en) | 2020-07-17 | 2022-01-20 | Simurx, Inc. | Chimeric myd88 receptors for redirecting immunosuppressive signaling and related compositions and methods |
US11242376B2 (en) | 2016-08-02 | 2022-02-08 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2022029573A1 (en) | 2020-08-03 | 2022-02-10 | Novartis Ag | Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2022040586A2 (en) | 2020-08-21 | 2022-02-24 | Novartis Ag | Compositions and methods for in vivo generation of car expressing cells |
US11266739B2 (en) | 2014-12-03 | 2022-03-08 | Juno Therapeutics, Inc. | Methods and compositions for adoptive cell therapy |
WO2022074464A2 (en) | 2020-03-05 | 2022-04-14 | Neotx Therapeutics Ltd. | Methods and compositions for treating cancer with immune cells |
WO2022097061A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
WO2022104061A1 (en) | 2020-11-13 | 2022-05-19 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
US11351236B2 (en) | 2014-12-12 | 2022-06-07 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
US11364289B2 (en) | 2015-07-24 | 2022-06-21 | Innovative Cellular Therapeutics Holdings, Ltd. | Humanized anti-CD19 antibody and use thereof with chimeric antigen receptor |
WO2022147444A2 (en) | 2020-12-30 | 2022-07-07 | Alaunos Therapeutics, Inc. | Recombinant vectors comprising polycistronic expression cassettes and methods of use thereof |
US11408005B2 (en) | 2016-12-12 | 2022-08-09 | Seattle Children's Hospital | Chimeric transcription factor variants with augmented sensitivity to drug ligand induction of transgene expression in mammalian cells |
WO2022180586A1 (en) * | 2021-02-25 | 2022-09-01 | Senthil Natesan | Car t-cell product and method of preparation thereof |
WO2022215011A1 (en) | 2021-04-07 | 2022-10-13 | Novartis Ag | USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES |
WO2022229853A1 (en) | 2021-04-27 | 2022-11-03 | Novartis Ag | Viral vector production system |
WO2022264033A1 (en) | 2021-06-15 | 2022-12-22 | Takeda Pharmaceutical Company Limited | Method for producing natural killer cells from pluripotent stem cells |
WO2023021477A1 (en) | 2021-08-20 | 2023-02-23 | Novartis Ag | Methods of making chimeric antigen receptor–expressing cells |
US11590167B2 (en) | 2016-12-03 | 2023-02-28 | Juno Therapeutic, Inc. | Methods and compositions for use of therapeutic T cells in combination with kinase inhibitors |
WO2023081715A1 (en) | 2021-11-03 | 2023-05-11 | Viracta Therapeutics, Inc. | Combination of car t-cell therapy with btk inhibitors and methods of use thereof |
EP3517125B1 (en) * | 2018-01-24 | 2023-05-31 | Xuanwu Hospital of Capital Medical University | Chimeric antigen receptor for efficient targeted proliferation in vitro and uses thereof |
US11723962B2 (en) | 2016-05-04 | 2023-08-15 | Fred Hutchinson Cancer Center | Cell-based neoantigen vaccines and uses thereof |
US11793834B2 (en) | 2018-12-12 | 2023-10-24 | Kite Pharma, Inc. | Chimeric antigen and T cell receptors and methods of use |
US11807692B2 (en) | 2018-09-25 | 2023-11-07 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
WO2023214325A1 (en) | 2022-05-05 | 2023-11-09 | Novartis Ag | Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors |
RU2809160C2 (en) * | 2016-07-28 | 2023-12-07 | Новартис Аг | Types of combination therapy using chimeric antigen receptors and pd-1 inhibitors |
US11851659B2 (en) | 2017-03-22 | 2023-12-26 | Novartis Ag | Compositions and methods for immunooncology |
US11851491B2 (en) | 2016-11-22 | 2023-12-26 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11883432B2 (en) | 2020-12-18 | 2024-01-30 | Century Therapeutics, Inc. | Chimeric antigen receptor system with adaptable receptor specificity |
WO2024056809A1 (en) | 2022-09-15 | 2024-03-21 | Novartis Ag | Treatment of autoimmune disorders using chimeric antigen receptor therapy |
US11944647B2 (en) | 2017-06-02 | 2024-04-02 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
WO2024089639A1 (en) | 2022-10-26 | 2024-05-02 | Novartis Ag | Lentiviral formulations |
US11976125B2 (en) | 2017-10-13 | 2024-05-07 | Harpoon Therapeutics, Inc. | B cell maturation antigen binding proteins |
US12006369B2 (en) | 2014-07-24 | 2024-06-11 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
WO2024133052A1 (en) * | 2022-12-19 | 2024-06-27 | Universität Basel Vizerektorat Forschung | T-cell receptor fusion protein |
US12031975B2 (en) | 2017-11-01 | 2024-07-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
US12084518B2 (en) | 2015-05-21 | 2024-09-10 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
US12109234B2 (en) | 2016-11-04 | 2024-10-08 | 2Seventy Bio, Inc. | Anti-BCMA CAR T cell compositions |
Families Citing this family (246)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130266551A1 (en) * | 2003-11-05 | 2013-10-10 | St. Jude Children's Research Hospital, Inc. | Chimeric receptors with 4-1bb stimulatory signaling domain |
US7435596B2 (en) | 2004-11-04 | 2008-10-14 | St. Jude Children's Research Hospital, Inc. | Modified cell line and method for expansion of NK cell |
US9476095B2 (en) | 2011-04-15 | 2016-10-25 | The Johns Hopkins University | Safe sequencing system |
WO2013126712A1 (en) | 2012-02-22 | 2013-08-29 | The Trustees Of The University Of Pennsylvania | Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer |
EP3447495B2 (en) | 2012-10-29 | 2024-03-13 | The Johns Hopkins University | Papanicolaou test for ovarian and endometrial cancers |
KR102313997B1 (en) | 2013-02-20 | 2021-10-20 | 노파르티스 아게 | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
US9657105B2 (en) | 2013-03-15 | 2017-05-23 | City Of Hope | CD123-specific chimeric antigen receptor redirected T cells and methods of their use |
AU2014366047B2 (en) | 2013-12-19 | 2021-03-25 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
ES2963718T3 (en) | 2014-01-21 | 2024-04-01 | Novartis Ag | Antigen-presenting capacity of CAR-T cells enhanced by co-introduction of co-stimulatory molecules |
US10323077B2 (en) | 2014-02-10 | 2019-06-18 | Emory University | Expression of chimeric polypeptide with variable lymphocyte receptors on immune cells and uses for treating cancer |
ES2740903T3 (en) | 2014-03-19 | 2020-02-07 | Cellectis | CD123 specific chimeric antigenic receptors for cancer immunotherapy |
SG10201808825XA (en) | 2014-04-10 | 2018-11-29 | Seattle Childrens Hospital Dba Seattle Childrens Res Inst | Defined composition gene modified t-cell products |
CN106459173A (en) | 2014-05-02 | 2017-02-22 | 爱默蕾大学 | Humanized variable lymphocyte receptors (vlr) and compositions and uses related thereto |
AU2015259877B2 (en) | 2014-05-15 | 2021-02-25 | National University Of Singapore | Modified natural killer cells and uses thereof |
EP3169773B1 (en) | 2014-07-15 | 2023-07-12 | Juno Therapeutics, Inc. | Engineered cells for adoptive cell therapy |
CA2955154C (en) | 2014-07-21 | 2023-10-31 | Novartis Ag | Treatment of cancer using a cd33 chimeric antigen receptor |
TWI751102B (en) | 2014-08-28 | 2022-01-01 | 美商奇諾治療有限公司 | Antibodies and chimeric antigen receptors specific for cd19 |
US20170239294A1 (en) * | 2014-10-15 | 2017-08-24 | Novartis Ag | Compositions and methods for treating b-lymphoid malignancies |
US11459390B2 (en) | 2015-01-16 | 2022-10-04 | Novartis Ag | Phosphoglycerate kinase 1 (PGK) promoters and methods of use for expressing chimeric antigen receptor |
US10722523B2 (en) | 2015-03-17 | 2020-07-28 | The Regents Of The University Of California | Chemoimmunotherapy for epithelial cancer |
GB201507111D0 (en) * | 2015-04-27 | 2015-06-10 | Ucl Business Plc | Nucleic acid construct |
RU2754661C2 (en) | 2015-05-01 | 2021-09-06 | Дзе Реджентс Оф Дзе Юниверсити Оф Калифорния | Glycan-dependent immunotherapy molecules |
US20180161369A1 (en) | 2015-05-29 | 2018-06-14 | Fred Hutchinson Cancer Research Center | Compositions for cellular immunotherapy |
HUE054201T2 (en) | 2015-06-19 | 2021-08-30 | Endres Stefan Prof Dr | Pd-1-cd28 fusion proteins and their use in medicine |
MA42895A (en) | 2015-07-15 | 2018-05-23 | Juno Therapeutics Inc | MODIFIED CELLS FOR ADOPTIVE CELL THERAPY |
US10786547B2 (en) | 2015-07-16 | 2020-09-29 | Biokine Therapeutics Ltd. | Compositions, articles of manufacture and methods for treating cancer |
WO2017027392A1 (en) | 2015-08-07 | 2017-02-16 | Novartis Ag | Treatment of cancer using chimeric cd3 receptor proteins |
WO2017027653A1 (en) | 2015-08-11 | 2017-02-16 | The Johns Hopkins University | Assaying ovarian cyst fluid |
US11034752B2 (en) | 2015-08-12 | 2021-06-15 | Massachusetts Institute Of Technology | Cell surface coupling of nanoparticles |
US20180243340A1 (en) * | 2015-08-24 | 2018-08-30 | University Of Houston System | Combination therapy combining car + t cells with appropriately timed immunodulatory antibodies |
US10265379B2 (en) * | 2015-09-16 | 2019-04-23 | Annabelle Rodriguez Oquendo | Use of recombinant lymphocyte activation gene-3 as a companion therapeutic for patients at risk for cardiovascular disease and other chronic inflammatory diseases |
US10738099B2 (en) | 2015-09-22 | 2020-08-11 | The Trustees Of The University Of Pennsylvania | Method of redirecting T cells to treat HIV infection |
KR20180053744A (en) * | 2015-09-23 | 2018-05-23 | 사이토이뮨 테라퓨틱스 엘엘씨 | FLT3-induced CAR cells for immunotherapy |
AU2016335848B2 (en) | 2015-10-09 | 2020-12-17 | Miltenyi Biotec Technology, Inc. | Chimeric antigen receptors and methods of use |
CA3001910A1 (en) | 2015-10-13 | 2017-04-20 | Eureka Therapeutics, Inc. | Antibody agents specific for human cd19 and uses thereof |
US20180303935A1 (en) * | 2015-10-16 | 2018-10-25 | University Of Utah Research Foundation | A nanomaterial complex comprising graphene oxide associated with a therapeutic agent and methods of use |
WO2017064222A1 (en) | 2015-10-16 | 2017-04-20 | Ludwig-Maximilians-Universität München | Cxcr6-transduced t cells for targeted tumor therapy |
MA44314A (en) | 2015-11-05 | 2018-09-12 | Juno Therapeutics Inc | CHEMERICAL RECEPTORS CONTAINING TRAF-INDUCING DOMAINS, AND ASSOCIATED COMPOSITIONS AND METHODS |
US11020429B2 (en) | 2015-11-05 | 2021-06-01 | Juno Therapeutics, Inc. | Vectors and genetically engineered immune cells expressing metabolic pathway modulators and uses in adoptive cell therapy |
KR102220275B1 (en) | 2015-11-18 | 2021-02-26 | 머크 샤프 앤드 돔 코포레이션 | Pd1 and/or lag3 binders |
CA3007262A1 (en) | 2015-12-03 | 2017-06-08 | Lucas James Thompson | Modified chimeric receptors and related compositions and methods |
EP3384294B1 (en) * | 2015-12-04 | 2021-10-13 | Juno Therapeutics, Inc. | Methods and compositions related to toxicity associated with cell therapy |
EP3402494B1 (en) | 2016-01-11 | 2021-04-07 | The Board of Trustees of the Leland Stanford Junior University | Chimeric proteins and methods of immunotherapy |
KR20180096800A (en) | 2016-01-11 | 2018-08-29 | 더 보드 어브 트러스티스 어브 더 리랜드 스탠포드 주니어 유니버시티 | Methods of modulating chimeric proteins and gene expression |
WO2017161208A1 (en) | 2016-03-16 | 2017-09-21 | Juno Therapeutics, Inc. | Methods for determining dosing of a therapeutic agent and related treatments |
US20190355459A1 (en) | 2016-03-16 | 2019-11-21 | Juno Therapeutics, Inc. | Methods for adaptive design of a treatment regimen and related treatments |
IL261316B2 (en) | 2016-03-18 | 2024-05-01 | Hutchinson Fred Cancer Res | Compositions and methods for cd20 immunotherapy |
MA44486A (en) | 2016-03-22 | 2019-01-30 | Seattle Childrens Hospital Dba Seattle Childrens Res Inst | EARLY INTERVENTION METHODS TO PREVENT OR MITIGATE TOXICITY |
EP4286522A3 (en) * | 2016-03-23 | 2024-02-28 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Fusion proteins of pd-1 and 4-1bb |
KR20230148844A (en) * | 2016-03-29 | 2023-10-25 | 유니버시티 오브 써던 캘리포니아 | Chimeric Antigen Receptors Targeting Cancer |
WO2017176525A1 (en) * | 2016-04-04 | 2017-10-12 | Promab Biotechnologies, Inc. | Car having replicated binding motifs in a co-stimulatory domain |
US11446398B2 (en) | 2016-04-11 | 2022-09-20 | Obsidian Therapeutics, Inc. | Regulated biocircuit systems |
CN109562127A (en) * | 2016-06-03 | 2019-04-02 | 纪念斯隆-凯特琳癌症中心 | Adoptive cellular therapy as early treatment selection |
MA45341A (en) | 2016-06-06 | 2019-04-10 | Hutchinson Fred Cancer Res | METHODS FOR TREATING B-LYMPHOCYTE MALIGNITIES USING ADOPTIVE CELL THERAPY |
KR20190017985A (en) * | 2016-06-14 | 2019-02-20 | 리전츠 오브 더 유니버스티 오브 미네소타 | Genetically modified cells, tissues, and organs for treating diseases |
CN107523549A (en) * | 2016-06-20 | 2017-12-29 | 上海细胞治疗研究院 | A kind of CAR T cells of high efficiency stable expression activated form antibody and application thereof |
CN107523548A (en) * | 2016-06-20 | 2017-12-29 | 上海细胞治疗研究院 | A kind of T cell of high efficiency stable expression antibody and application thereof |
CN106117366A (en) * | 2016-06-24 | 2016-11-16 | 安徽未名细胞治疗有限公司 | A kind of CD19 specific chimeric antigen receptor and encoding gene, application |
MA45491A (en) | 2016-06-27 | 2019-05-01 | Juno Therapeutics Inc | CMH-E RESTRICTED EPITOPES, BINDING MOLECULES AND RELATED METHODS AND USES |
EP3475446A1 (en) | 2016-06-27 | 2019-05-01 | Juno Therapeutics, Inc. | Method of identifying peptide epitopes, molecules that bind such epitopes and related uses |
WO2018002358A1 (en) | 2016-06-30 | 2018-01-04 | F. Hoffmann-La Roche Ag | Improved adoptive t-cell therapy |
CN106178163B (en) * | 2016-07-01 | 2019-02-01 | 翁炳焕 | AIDS biological cell immunization therapy instrument |
CN106267409B (en) * | 2016-07-01 | 2019-02-01 | 翁炳焕 | AIDS biological therapy reactor |
CN107586342A (en) * | 2016-07-08 | 2018-01-16 | 生命序有限公司 | Recombinant immune checkpoint acceptor and its application |
CN107586341A (en) * | 2016-07-08 | 2018-01-16 | 生命序有限公司 | Recombinant immune checkpoint acceptor and immunologic test point suppress coexpression and the application of molecule |
CN106011174B (en) * | 2016-07-26 | 2019-12-13 | 天晴干细胞股份有限公司 | Universal lentivirus vector and preparation method thereof |
MX2019001184A (en) | 2016-07-29 | 2019-09-26 | Juno Therapeutics Inc | Anti-idiotypic antibodies against anti-cd19 antibodies. |
CN106350487B (en) * | 2016-09-13 | 2019-01-25 | 北京多赢时代转化医学研究院 | Combine the method for preparing CAR-NK cell and CAR-NKT cell |
CN106399242B (en) * | 2016-09-13 | 2019-01-22 | 北京多赢时代转化医学研究院 | Combine the method for preparing CAR-V γ 9V δ 2T cell and CAR-NKT cell |
WO2018057585A1 (en) | 2016-09-21 | 2018-03-29 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric antigen receptor (car) that targets chemokine receptor ccr4 and its use |
US20190298771A1 (en) | 2016-09-28 | 2019-10-03 | Atossa Genetics Inc. | Methods of adoptive cell therapy |
CN106317228A (en) * | 2016-09-28 | 2017-01-11 | 李华顺 | Chimeric antigen receptor molecule and application thereof |
AU2017343780B2 (en) | 2016-10-13 | 2023-08-31 | Juno Therapeutics, Inc. | Immunotherapy methods and compositions involving tryptophan metabolic pathway modulators |
CN107988164B (en) | 2016-10-26 | 2020-07-07 | 阿思科力(苏州)生物科技有限公司 | PD-1CAR NK-92 cell and preparation method and application thereof |
CA3040914A1 (en) | 2016-11-03 | 2018-05-24 | Juno Therapeutics, Inc. | Combination therapy of a cell based therapy and a microglia inhibitor |
WO2018085731A2 (en) | 2016-11-03 | 2018-05-11 | Juno Therapeutics, Inc. | Combination therapy of a t cell therapy and a btk inhibitor |
WO2018102612A1 (en) | 2016-12-02 | 2018-06-07 | Juno Therapeutics, Inc. | Engineered b cells and related compositions and methods |
CN110248678A (en) | 2016-12-03 | 2019-09-17 | 朱诺治疗学股份有限公司 | The method for adjusting CAR-T cell |
KR20190104528A (en) | 2016-12-03 | 2019-09-10 | 주노 쎄러퓨티크스 인코퍼레이티드 | How to Determine CAR-T Cells Administration |
CN108250301A (en) | 2016-12-29 | 2018-07-06 | 天津天锐生物科技有限公司 | A kind of multiple target point Chimeric antigen receptor |
EP3346001A1 (en) * | 2017-01-06 | 2018-07-11 | TXCell | Monospecific regulatory t cell population with cytotoxicity for b cells |
AU2018207305A1 (en) | 2017-01-10 | 2019-07-25 | Juno Therapeutics, Inc. | Epigenetic analysis of cell therapy and related methods |
CA3048648A1 (en) * | 2017-01-10 | 2018-07-19 | The General Hospital Corporation | T cells expressing a chimeric antigen receptor |
CN107058390A (en) * | 2017-01-17 | 2017-08-18 | 上海交通大学医学院附属第九人民医院 | A kind of slow virus carrier, recombinant slow virus plasmid, virus and viral application |
AU2018219226A1 (en) | 2017-02-07 | 2019-08-15 | Seattle Children's Hospital (dba Seattle Children's Research Institute) | Phospholipid ether (PLE) CAR T cell tumor targeting (CTCT) agents |
WO2018151836A1 (en) | 2017-02-17 | 2018-08-23 | Fred Hutchinson Cancer Research Center | Combination therapies for treatment of bcma-related cancers and autoimmune disorders |
US20200191774A1 (en) | 2017-02-27 | 2020-06-18 | Juno Therapeutics, Inc. | Compositions, articles of manufacture and methods related to dosing in cell therapy |
WO2018160622A1 (en) | 2017-02-28 | 2018-09-07 | Endocyte, Inc. | Compositions and methods for car t cell therapy |
BR112019019005A2 (en) | 2017-03-14 | 2020-04-14 | Sara Elizabeth Church | methods for cryogenic storage |
CN117384929A (en) | 2017-03-27 | 2024-01-12 | 新加坡国立大学 | Polynucleotide encoding chimeric receptor expressed by cell |
WO2018182511A1 (en) | 2017-03-27 | 2018-10-04 | National University Of Singapore | Stimulatory cell lines for ex vivo expansion and activation of natural killer cells |
JP7355650B2 (en) | 2017-04-14 | 2023-10-03 | ジュノー セラピューティクス インコーポレイテッド | Methods for assessing cell surface glycosylation |
CN108728459B (en) * | 2017-04-24 | 2023-08-04 | 上海恒润达生生物科技股份有限公司 | Method and use of chimeric antigen receptor targeting CD19 and co-expressing IL-15 |
PT3618842T (en) | 2017-05-01 | 2024-01-12 | Juno Therapeutics Inc | Combination of a cell therapy and an immunomodulatory compound |
EP3630108A1 (en) | 2017-05-24 | 2020-04-08 | Effector Therapeutics Inc. | Compositions and methods for an improved antitumor immune response |
CN108977453A (en) | 2017-06-02 | 2018-12-11 | 阿思科力(苏州)生物科技有限公司 | It is a kind of using ROBO1 as the Chimeric antigen receptor cell of target spot and its preparation and application |
JP7362596B2 (en) | 2017-06-12 | 2023-10-17 | オブシディアン セラピューティクス, インコーポレイテッド | PDE5 compositions and methods for immunotherapy |
WO2019006427A1 (en) | 2017-06-29 | 2019-01-03 | Juno Therapeutics, Inc. | Mouse model for assessing toxicities associated with immunotherapies |
CN111164203A (en) * | 2017-08-02 | 2020-05-15 | 奥托路斯有限公司 | Cells expressing chimeric antigen receptors or engineered TCRs and comprising selectively expressed nucleotide sequences |
CA3072195A1 (en) | 2017-08-07 | 2019-04-04 | The Johns Hopkins University | Methods and materials for assessing and treating cancer |
CN107383196B (en) * | 2017-08-30 | 2019-12-17 | 广州百暨基因科技有限公司 | Humanized anti-CD 19 antigen-binding fragments |
US20210071258A1 (en) | 2017-09-01 | 2021-03-11 | Juno Therapeutics, Inc. | Gene expression and assessment of risk of developing toxicity following cell therapy |
TW201920661A (en) | 2017-09-18 | 2019-06-01 | 大陸商博雅輯因(北京)生物科技有限公司 | Gene editing T cell and use thereof |
KR20200055037A (en) | 2017-09-19 | 2020-05-20 | 메사추세츠 인스티튜트 오브 테크놀로지 | Compositions and uses for chimeric antigen receptor T cell therapy |
PE20211266A1 (en) * | 2017-10-31 | 2021-07-19 | Allogene Therapeutics Inc | METHODS AND COMPOSITIONS FOR THE DOSAGE OF T-CELLS WITH ALOGENIC CHIMERIC ANTIGEN RECEPTOR |
WO2019089848A1 (en) | 2017-11-01 | 2019-05-09 | Juno Therapeutics, Inc. | Methods associated with tumor burden for assessing response to a cell therapy |
US11851679B2 (en) | 2017-11-01 | 2023-12-26 | Juno Therapeutics, Inc. | Method of assessing activity of recombinant antigen receptors |
CN111902159A (en) | 2017-11-01 | 2020-11-06 | 朱诺治疗学股份有限公司 | Chimeric antigen receptor specific for B Cell Maturation Antigen (BCMA) |
AU2018360801A1 (en) | 2017-11-01 | 2020-05-14 | Celgene Corporation | Process for producing a T cell composition |
KR20200099132A (en) | 2017-11-01 | 2020-08-21 | 주노 쎄러퓨티크스 인코퍼레이티드 | Process for producing a therapeutic composition of engineered cells |
BR112020008812A2 (en) | 2017-11-06 | 2020-10-27 | Juno Therapeutics Inc | combination of cell therapy and a gamma secretase inhibitor |
EP3707246B1 (en) * | 2017-11-07 | 2023-06-07 | City of Hope | Treatment of cns lymphoma and systemic lymphoma with intracerebroventricularly administered cd19 car |
US12024715B2 (en) | 2017-11-07 | 2024-07-02 | Temple University-Of The Commonwealth System Of Higher Education | Compositions and methods for improved T cells |
EP3707160A1 (en) | 2017-11-10 | 2020-09-16 | The U.S.A. as represented by the Secretary, Department of Health and Human Services | Chimeric antigen receptors targeting tumor antigens |
CA3082334A1 (en) * | 2017-11-20 | 2019-05-23 | Julius-Maximilians-Universitat Wurzburg | Cd19cart cells eliminate myeloma cells that express very low levels of cd19 |
CN109836493A (en) * | 2017-11-25 | 2019-06-04 | 深圳宾德生物技术有限公司 | It is a kind of to target the single-chain antibody of CD19, Chimeric antigen receptor T cell and its preparation method and application |
CN111989106A (en) | 2017-12-01 | 2020-11-24 | 朱诺治疗学股份有限公司 | Methods of administering and regulating genetically engineered cells |
JP7089806B2 (en) | 2017-12-06 | 2022-06-23 | アブクロン・インコーポレイテッド | Antibodies that specifically recognize malignant B cells or antigen-binding fragments thereof, chimeric antigen receptors containing them and their uses |
MX2020005907A (en) | 2017-12-08 | 2020-10-19 | Juno Therapeutics Inc | Serum-free media formulation for culturing cells and methods of use thereof. |
BR112020011215A2 (en) | 2017-12-08 | 2020-11-17 | Juno Therapeutics Inc | process for producing a modified t-cell composition |
CN107880128B (en) * | 2017-12-21 | 2021-03-02 | 常州费洛斯药业科技有限公司 | Fully human antibody or antibody fragment for resisting CD19, and method and application thereof |
CN109053899B (en) * | 2017-12-22 | 2021-11-16 | 湖南远泰生物技术有限公司 | Chimeric antigen receptor containing human transferrin antigen epitope sequence |
US11672827B2 (en) * | 2017-12-23 | 2023-06-13 | Uwell Biopharma Inc. | Pharmaceutical chimeric receptor composition and method thereof |
US10561686B2 (en) | 2018-01-12 | 2020-02-18 | Innovative Cellular Therapeutics CO., LTD. | Modified cell expansion and uses thereof |
JP2021510540A (en) * | 2018-01-11 | 2021-04-30 | イノベイティブ セルラー セラピューティクス インク.Innovative Cellular Therapeutics Inc. | Amplification of modified cells and their applications |
EP4006153B1 (en) * | 2018-01-12 | 2024-07-03 | Curocell Inc. | Enhanced immune cells using dual shrna and composition including the same |
CA3089319A1 (en) | 2018-01-22 | 2019-07-25 | Seattle Children's Hospital (dba Seattle Children's Research Institute) | Methods of use for car t cells |
CN110093359B (en) * | 2018-01-29 | 2023-10-13 | 华南生物医药研究院 | Separable nucleic acid containing CD3 promoter sequence and CAR sequence and application thereof |
CN111801104A (en) * | 2018-02-06 | 2020-10-20 | 西雅图儿童医院(Dba西雅图儿童研究所) | Closed system manufacturing process for CAR-T cells |
US20230183313A1 (en) * | 2018-02-11 | 2023-06-15 | Jiangsu Hengrui Medicine Co., Ltd. | Isolated chimeric antigen receptor, modified t cell comprising same and use thereof |
WO2019159193A1 (en) * | 2018-02-13 | 2019-08-22 | Indian Institute Of Technology Bombay | Novel humanized anti-cd19 chimeric antigen receptor, its nucelic acid sequence and its preparation |
WO2019170845A1 (en) | 2018-03-09 | 2019-09-12 | Ospedale San Raffaele S.R.L. | Il-1 antagonist and toxicity induced by cell therapy |
WO2019178382A1 (en) * | 2018-03-14 | 2019-09-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-cd33 chimeric antigen receptors and their uses |
US10751399B2 (en) * | 2018-03-20 | 2020-08-25 | Cho Pharma Usa, Inc. | Chimeric antigen receptors that bind to SSEA4 and uses thereof |
US20210155986A1 (en) | 2018-04-13 | 2021-05-27 | The Johns Hopkins University | Non-invasive detection of response to immunotherapy |
US20210079384A1 (en) | 2018-04-13 | 2021-03-18 | The Johns Hopkins University | Non-invasive detection of response to a targeted therapy |
US10869888B2 (en) | 2018-04-17 | 2020-12-22 | Innovative Cellular Therapeutics CO., LTD. | Modified cell expansion and uses thereof |
KR20210009308A (en) | 2018-05-09 | 2021-01-26 | 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. | Antibodies specific to human Nectin 4 |
CA3100345A1 (en) | 2018-05-18 | 2019-11-21 | The Johns Hopkins University | Cell-free dna for assessing and/or treating cancer |
BR112020024601A2 (en) * | 2018-06-01 | 2021-04-06 | Mayo Foundation For Medical Education And Research | MATERIALS AND METHODS FOR TREATMENT OF CANCER |
KR20190141511A (en) * | 2018-06-14 | 2019-12-24 | 주식회사 녹십자랩셀 | New peptide, chemeric antigen receptor and immune cell expressing the same |
WO2019246546A1 (en) * | 2018-06-22 | 2019-12-26 | The General Hospital Corporation | Chimeric antigen receptors targeting cd37 and cd19 |
CA3107383A1 (en) | 2018-07-23 | 2020-01-30 | Magenta Therapeutics, Inc. | Use of anti-cd5 antibody drug conjugate (adc) in allogeneic cell therapy |
CN110819679A (en) * | 2018-08-07 | 2020-02-21 | 上海恒润达生生物科技有限公司 | Method for evaluating CART cell in vivo metabolism |
JP7538109B2 (en) | 2018-08-09 | 2024-08-21 | ジュノー セラピューティクス インコーポレイテッド | Methods for assessing integrated nucleic acid |
US20220348682A1 (en) | 2018-08-30 | 2022-11-03 | Innovative Cellular Therapeutics Holdings, Ltd. | Chimeric antigen receptor cells for treating solid tumor |
US20210253666A1 (en) * | 2018-08-30 | 2021-08-19 | TCR2 Therapeutics Inc. | Compositions and methods for tcr reprogramming using fusion proteins |
CA3110905A1 (en) | 2018-08-31 | 2020-03-05 | Invectys SA | Chimeric antigen receptors against multiple hla-g isoforms |
JP7557882B2 (en) | 2018-09-28 | 2024-09-30 | マサチューセッツ インスティテュート オブ テクノロジー | Collagen-localized immunomodulatory molecules and methods thereof |
KR20210098450A (en) | 2018-10-31 | 2021-08-10 | 주노 테라퓨틱스 게엠베하 | Method for cell selection and stimulation and device therefor |
WO2020097132A1 (en) | 2018-11-06 | 2020-05-14 | Juno Therapeutics, Inc. | Process for producing genetically engineered t cells |
AU2019377854A1 (en) | 2018-11-08 | 2021-05-27 | Juno Therapeutics, Inc. | Methods and combinations for treatment and T cell modulation |
WO2020102770A1 (en) | 2018-11-16 | 2020-05-22 | Juno Therapeutics, Inc. | Methods of dosing engineered t cells for the treatment of b cell malignancies |
US10918667B2 (en) | 2018-11-20 | 2021-02-16 | Innovative Cellular Therapeutics CO., LTD. | Modified cell expressing therapeutic agent and uses thereof |
JP7232547B2 (en) * | 2018-11-29 | 2023-03-03 | ジョージアン ルイジアメイ バイオテック カンパニー リミテッド | CAR-T cells with humanized CD19 scFv mutated in the CDR1 region |
PT3886894T (en) | 2018-11-30 | 2024-05-02 | Juno Therapeutics Inc | Methods for dosing and treatment of b cell malignancies in adoptive cell therapy |
SG11202105502RA (en) | 2018-11-30 | 2021-06-29 | Juno Therapeutics Inc | Methods for treatment using adoptive cell therapy |
WO2020124021A1 (en) * | 2018-12-13 | 2020-06-18 | The General Hospital Corporation | Chimeric antigen receptors targeting cd79b and cd19 |
CN113286875B (en) | 2018-12-19 | 2024-08-09 | Inserm(法国国家健康医学研究院) | Mucosal Associated Invariant T (MAIT) cells expressing chimeric antigen receptors |
JP2022518150A (en) * | 2019-01-07 | 2022-03-14 | マジェンタ セラピューティクス インコーポレイテッド | Experience with anti-CD45 antibody-drug conjugate (ADC) in cell therapy |
CN109734813B (en) | 2019-01-28 | 2022-06-17 | 广东昭泰体内生物医药科技有限公司 | Chimeric antigen receptor and application thereof |
WO2020163222A1 (en) * | 2019-02-04 | 2020-08-13 | Promab Biotechnologies, Inc. | Nucleic acid sequence encoding chimeric antigen receptor and a short hairpin rna sequence for il-6 or a checkpoint inhibitor |
EP3920975A4 (en) | 2019-02-06 | 2022-09-21 | The Regents of The University of Michigan | Chimeric antigen receptors targeting abnormal glycobiology |
CN113710705B (en) | 2019-03-05 | 2023-07-21 | 湖南远泰生物技术有限公司 | CAR-T cells with humanized CD19SCFV |
CN113766956B (en) * | 2019-03-05 | 2024-05-07 | 恩卡尔塔公司 | CD 19-directed chimeric antigen receptor and use thereof in immunotherapy |
AU2020287882A1 (en) | 2019-06-07 | 2022-01-20 | Juno Therapeutics, Inc. | Automated T cell culture |
WO2020252218A1 (en) | 2019-06-12 | 2020-12-17 | Juno Therapeutics, Inc. | Combination therapy of a cell-mediated cytotoxic therapy and an inhibitor of a prosurvival bcl2 family protein |
EP3990491A1 (en) | 2019-06-26 | 2022-05-04 | Massachusetts Institute of Technology | Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof |
CN112390891B (en) * | 2019-08-14 | 2022-06-03 | 苏州方德门达新药开发有限公司 | Chimeric antigen receptor and construction method and application thereof |
CN114555112A (en) | 2019-08-22 | 2022-05-27 | 朱诺治疗学股份有限公司 | Combination therapy of T cell therapy and ZESTE enhancer homolog 2(EZH2) inhibitors and related methods |
MX2022002747A (en) | 2019-09-10 | 2022-04-06 | Obsidian Therapeutics Inc | Ca2-il15 fusion proteins for tunable regulation. |
WO2021061648A1 (en) | 2019-09-23 | 2021-04-01 | Massachusetts Institute Of Technology | Methods and compositions for stimulation of endogenous t cell responses |
KR20220101641A (en) | 2019-10-30 | 2022-07-19 | 주노 테라퓨틱스 게엠베하 | Cell selection and/or stimulation devices and methods of use |
US11975026B2 (en) | 2019-11-26 | 2024-05-07 | Novartis Ag | CD19 and CD22 chimeric antigen receptors and uses thereof |
AU2020395318A1 (en) | 2019-12-06 | 2022-06-09 | Juno Therapeutics, Inc. | Methods related to toxicity and response associated with cell therapy for treating B cell malignancies |
EP4069742A1 (en) | 2019-12-06 | 2022-10-12 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to gprc5d-targeted binding domains and related compositions and methods |
CN115916817A (en) | 2019-12-06 | 2023-04-04 | 朱诺治疗学股份有限公司 | Anti-idiotypic antibodies directed against BCMA-targeting binding domains and related compositions and methods |
US20230054266A1 (en) | 2019-12-30 | 2023-02-23 | Edigene Biotechnology Inc. | Method for purifying ucart cell and use thereof |
CN114901813A (en) | 2019-12-30 | 2022-08-12 | 博雅缉因(北京)生物科技有限公司 | Universal CAR-T of targeted T cell lymphoma cell and preparation method and application thereof |
CA3165346A1 (en) | 2020-01-23 | 2021-07-29 | George Q. Daley | Stroma-free t cell differentiation from human pluripotent stem cells |
US12076343B2 (en) | 2020-02-19 | 2024-09-03 | Innovative Cellular Therapeutics Holdings, Ltd. | Engineered safety in cell therapy |
WO2021173674A1 (en) | 2020-02-26 | 2021-09-02 | A2 Biotherapeutics, Inc. | Polypeptides targeting mage-a3 peptide-mhc complexes and methods of use thereof |
EP4117716A2 (en) | 2020-03-10 | 2023-01-18 | Massachusetts Institute of Technology | Methods for generating engineered memory-like nk cells and compositions thereof |
KR20220167276A (en) | 2020-03-10 | 2022-12-20 | 매사추세츠 인스티튜트 오브 테크놀로지 | Compositions and methods for immunotherapy of NPM1c-positive cancers |
CN113402612A (en) | 2020-03-17 | 2021-09-17 | 西比曼生物科技(香港)有限公司 | Combined chimeric antigen receptor targeting CD19 and CD20 and application thereof |
CN111484561A (en) * | 2020-04-07 | 2020-08-04 | 北京荣瑷医学生物科技有限责任公司 | Chimeric antigen receptor targeting CD19 molecule |
CN111411085A (en) * | 2020-04-10 | 2020-07-14 | 格源致善(上海)生物科技有限公司 | Chimeric antigen receptor T cell and application thereof |
AU2021263765A1 (en) | 2020-04-28 | 2022-12-01 | Juno Therapeutics, Inc. | Combination of BCMA-directed T cell therapy and an immunomodulatory compound |
WO2021221782A1 (en) | 2020-05-01 | 2021-11-04 | Massachusetts Institute Of Technology | Chimeric antigen receptor-targeting ligands and uses thereof |
US20210340524A1 (en) | 2020-05-01 | 2021-11-04 | Massachusetts Institute Of Technology | Methods for identifying chimeric antigen receptor-targeting ligands and uses thereof |
CN115835873A (en) | 2020-05-13 | 2023-03-21 | 朱诺治疗学股份有限公司 | Method for generating donor batch cells expressing recombinant receptor |
CN115803824A (en) | 2020-05-13 | 2023-03-14 | 朱诺治疗学股份有限公司 | Methods of identifying characteristics associated with clinical response and uses thereof |
US12043654B2 (en) | 2020-06-02 | 2024-07-23 | Innovative Cellular Therapeutics Holdings, Ltd. | Anti-GCC antibody and CAR thereof for treating digestive system cancer |
CN111733186A (en) * | 2020-07-03 | 2020-10-02 | 天津英科赛奥科技有限公司 | Preparation and application of humanized chimeric antigen receptor targeting CD19 |
US20220031751A1 (en) | 2020-08-03 | 2022-02-03 | Kyverna Therapeutics, Inc. | Methods of producing t regulatory cells, methods of transducing t cells, and uses of the same |
WO2022029660A1 (en) | 2020-08-05 | 2022-02-10 | Juno Therapeutics, Inc. | Anti-idiotypic antibodies to ror1-targeted binding domains and related compositions and methods |
WO2022035794A1 (en) | 2020-08-13 | 2022-02-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Igg4 hinge-containing chimeric antigen receptors targeting glypican-1 (gpc1) for treating solid tumors |
CN114438034A (en) * | 2020-11-06 | 2022-05-06 | 上海赛比曼生物科技有限公司 | Preparation method of genetically modified cell |
CN116848147A (en) * | 2020-11-20 | 2023-10-03 | 先声再明医药有限公司 | CD19 humanized antibody and application thereof |
WO2022111562A1 (en) * | 2020-11-26 | 2022-06-02 | 上海医药集团生物治疗技术有限公司 | Modified immune cell and use thereof |
US11661459B2 (en) | 2020-12-03 | 2023-05-30 | Century Therapeutics, Inc. | Artificial cell death polypeptide for chimeric antigen receptor and uses thereof |
WO2022133030A1 (en) | 2020-12-16 | 2022-06-23 | Juno Therapeutics, Inc. | Combination therapy of a cell therapy and a bcl2 inhibitor |
CA3204161A1 (en) | 2021-01-11 | 2022-07-14 | Jagesh Vijaykumar SHAH | Use of cd8-targeted viral vectors |
WO2022155375A2 (en) * | 2021-01-13 | 2022-07-21 | Washington University | MHC-INDEPENDENT TCRs AND METHODS OF MAKING AND USING SAME |
EP4284394A1 (en) | 2021-01-26 | 2023-12-06 | Cytocares (Shanghai) Inc. | Chimeric antigen receptor (car) constructs and nk cells expressing car constructs |
WO2022165419A1 (en) | 2021-02-01 | 2022-08-04 | Kyverna Therapeutics, Inc. | Methods for increasing t-cell function |
WO2022187406A1 (en) | 2021-03-03 | 2022-09-09 | Juno Therapeutics, Inc. | Combination of a t cell therapy and a dgk inhibitor |
JP2024511418A (en) | 2021-03-22 | 2024-03-13 | ジュノー セラピューティクス インコーポレイテッド | Methods for determining efficacy of therapeutic cell compositions |
KR20240005700A (en) | 2021-03-29 | 2024-01-12 | 주노 쎄러퓨티크스 인코퍼레이티드 | Dosing and Treatment Methods Using Combination of Checkpoint Inhibitor Therapy and CAR T Cell Therapy |
AU2022257093A1 (en) | 2021-04-16 | 2023-11-02 | Celgene Corporation | T cell therapy in patients who have had prior stem cell transplant |
CN118201618A (en) | 2021-04-16 | 2024-06-14 | 细胞基因公司 | Combination therapy with BCMA-directed T cell therapy |
WO2022234158A1 (en) * | 2021-05-06 | 2022-11-10 | Institut D'investigacions Biomèdiques August Pi I Sunyer (Idibaps) | Cd19-specific chimeric antigen receptor t-cell therapy |
EP4334341A2 (en) | 2021-05-06 | 2024-03-13 | Juno Therapeutics GmbH | Methods for stimulating and transducing t cells |
EP4346912A1 (en) | 2021-05-25 | 2024-04-10 | Institut Curie | Myeloid cells overexpressing bcl2 |
US20240277842A1 (en) | 2021-06-07 | 2024-08-22 | Providence Health & Services - Oregon | Cxcr5, pd-1, and icos expressing tumor reactive cd4 t cells and their use |
CN113549600B (en) * | 2021-06-30 | 2022-08-30 | 徐州医科大学 | CAR-iNKT cell having specific resistance to CD19 |
JP2024528981A (en) | 2021-08-04 | 2024-08-01 | サナ バイオテクノロジー,インコーポレイテッド | Use of CD4-targeted viral vectors |
WO2023019128A1 (en) * | 2021-08-09 | 2023-02-16 | The Trustees Of The University Of Pennyslvania | Optimizing t cell differentiation state with micrornas |
KR20240112994A (en) | 2021-11-03 | 2024-07-19 | 셀진 코포레이션 | Chimeric antigen receptor specific for B-cell maturation antigen for use in treating myeloma |
KR20240099402A (en) | 2021-11-09 | 2024-06-28 | 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 | IGG4 hinge-containing chimeric antigen receptor targeting glypican-3 (GPC3) and uses thereof |
EP4448549A2 (en) | 2021-12-17 | 2024-10-23 | Sana Biotechnology, Inc. | Modified paramyxoviridae fusion glycoproteins |
WO2023115041A1 (en) | 2021-12-17 | 2023-06-22 | Sana Biotechnology, Inc. | Modified paramyxoviridae attachment glycoproteins |
WO2023150518A1 (en) | 2022-02-01 | 2023-08-10 | Sana Biotechnology, Inc. | Cd3-targeted lentiviral vectors and uses thereof |
WO2023158986A1 (en) | 2022-02-15 | 2023-08-24 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Cd28 hinge and transmembrane containing chimeric antigen receptors targeting gpc2 and use thereof |
WO2023156587A1 (en) | 2022-02-18 | 2023-08-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of tcr-deficient car-tregs in combination with anti-tcr complex monoclonal antibodies for inducing durable tolerance |
WO2023193015A1 (en) | 2022-04-01 | 2023-10-05 | Sana Biotechnology, Inc. | Cytokine receptor agonist and viral vector combination therapies |
WO2023208157A1 (en) * | 2022-04-29 | 2023-11-02 | 上海先博生物科技有限公司 | Cd19-targeting chimeric antigen receptor and use thereof |
WO2023215738A1 (en) | 2022-05-02 | 2023-11-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Compositions targeting gpc2 and gpc3 and their use for treating solid tumors |
WO2023213969A1 (en) | 2022-05-05 | 2023-11-09 | Juno Therapeutics Gmbh | Viral-binding protein and related reagents, articles, and methods of use |
WO2023220655A1 (en) | 2022-05-11 | 2023-11-16 | Celgene Corporation | Methods to overcome drug resistance by re-sensitizing cancer cells to treatment with a prior therapy via treatment with a t cell therapy |
WO2023220641A2 (en) | 2022-05-11 | 2023-11-16 | Juno Therapeutics, Inc. | Methods and uses related to t cell therapy and production of same |
WO2023230581A1 (en) | 2022-05-25 | 2023-11-30 | Celgene Corporation | Methods of manufacturing t cell therapies |
WO2023230548A1 (en) | 2022-05-25 | 2023-11-30 | Celgene Corporation | Method for predicting response to a t cell therapy |
WO2023237663A1 (en) | 2022-06-09 | 2023-12-14 | Institut National de la Santé et de la Recherche Médicale | Use of the f359l missense irf4 variant for increasing the stability of regulatory t cells |
WO2023250400A1 (en) | 2022-06-22 | 2023-12-28 | Juno Therapeutics, Inc. | Treatment methods for second line therapy of cd19-targeted car t cells |
WO2024015995A2 (en) * | 2022-07-15 | 2024-01-18 | Albert Einstein College Of Medicine | Chimeric antigen receptors comprising a tmigd2 costimulatory domain and associated methods of using the same |
WO2024047110A1 (en) | 2022-08-31 | 2024-03-07 | Institut National de la Santé et de la Recherche Médicale | Method to generate more efficient car-t cells |
WO2024054944A1 (en) | 2022-09-08 | 2024-03-14 | Juno Therapeutics, Inc. | Combination of a t cell therapy and continuous or intermittent dgk inhibitor dosing |
WO2024074713A1 (en) | 2022-10-07 | 2024-04-11 | Institut National de la Santé et de la Recherche Médicale | Method to generate improving car-t cells |
WO2024081820A1 (en) | 2022-10-13 | 2024-04-18 | Sana Biotechnology, Inc. | Viral particles targeting hematopoietic stem cells |
WO2024086191A2 (en) * | 2022-10-18 | 2024-04-25 | Kite Pharma, Inc. | Car-t constructs comprising a novel cd19 binder combined with il18 and methods of using the same |
WO2024097905A1 (en) | 2022-11-02 | 2024-05-10 | Celgene Corporation | Methods of treatment with t cell therapy and immunomodulatory agent maintenance therapy |
WO2024100604A1 (en) | 2022-11-09 | 2024-05-16 | Juno Therapeutics Gmbh | Methods for manufacturing engineered immune cells |
CN116063575A (en) * | 2022-11-15 | 2023-05-05 | 北京瑜阳科技有限公司 | Chimeric Antigen Receptor (CAR) and application thereof in treating tumors |
WO2024124132A1 (en) | 2022-12-09 | 2024-06-13 | Juno Therapeutics, Inc. | Machine learning methods for predicting cell phenotype using holographic imaging |
WO2024161021A1 (en) | 2023-02-03 | 2024-08-08 | Juno Therapeutics Gmbh | Methods for non-viral manufacturing of engineered immune cells |
Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
EP0090505B1 (en) | 1982-03-03 | 1990-08-08 | Genentech, Inc. | Human antithrombin iii, dna sequences therefor, expression vehicles and cloning vectors containing such sequences and cell cultures transformed thereby, a process for expressing human antithrombin iii, and pharmaceutical compositions comprising it |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5199942A (en) | 1991-06-07 | 1993-04-06 | Immunex Corporation | Method for improving autologous transplantation |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
WO1993017105A1 (en) | 1992-02-19 | 1993-09-02 | Scotgen Limited | Altered antibodies, products and processes relating thereto |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
US5350674A (en) | 1992-09-04 | 1994-09-27 | Becton, Dickinson And Company | Intrinsic factor - horse peroxidase conjugates and a method for increasing the stability thereof |
US5399346A (en) | 1989-06-14 | 1995-03-21 | The United States Of America As Represented By The Department Of Health And Human Services | Gene therapy |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5585362A (en) | 1989-08-22 | 1996-12-17 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy |
US5766886A (en) | 1991-12-13 | 1998-06-16 | Xoma Corporation | Modified antibody variable domains |
US5786464A (en) | 1994-09-19 | 1998-07-28 | The General Hospital Corporation | Overexpression of mammalian and viral proteins |
US5858358A (en) | 1992-04-07 | 1999-01-12 | The United States Of America As Represented By The Secretary Of The Navy | Methods for selectively stimulating proliferation of T cells |
WO1999020758A1 (en) | 1997-10-21 | 1999-04-29 | Human Genome Sciences, Inc. | Human tumor necrosis factor receptor-like proteins tr11, tr11sv1, and tr11sv2 |
WO1999040196A1 (en) | 1998-02-09 | 1999-08-12 | Genentech, Inc. | Novel tumor necrosis factor receptor homolog and nucleic acids encoding the same |
US6111090A (en) | 1996-08-16 | 2000-08-29 | Schering Corporation | Mammalian cell surface antigens; related reagents |
US6114148A (en) | 1996-09-20 | 2000-09-05 | The General Hospital Corporation | High level expression of proteins |
US6120766A (en) | 1991-12-04 | 2000-09-19 | Hale; Geoffrey | CDW52-specific antibody for treatment of multiple sclerosis |
WO2001003720A2 (en) | 1999-07-12 | 2001-01-18 | Genentech, Inc. | Promotion or inhibition of angiogenesis and cardiovascularization by tumor necrosis factor ligand/receptor homologs |
WO2001029058A1 (en) | 1999-10-15 | 2001-04-26 | University Of Massachusetts | Rna interference pathway genes as tools for targeted genetic interference |
US6326193B1 (en) | 1999-11-05 | 2001-12-04 | Cambria Biosciences, Llc | Insect control agent |
WO2001096584A2 (en) | 2000-06-12 | 2001-12-20 | Akkadix Corporation | Materials and methods for the control of nematodes |
US6352694B1 (en) | 1994-06-03 | 2002-03-05 | Genetics Institute, Inc. | Methods for inducing a population of T cells to proliferate using agents which recognize TCR/CD3 and ligands which stimulate an accessory molecule on the surface of the T cells |
US6407213B1 (en) | 1991-06-14 | 2002-06-18 | Genentech, Inc. | Method for making humanized antibodies |
US6534055B1 (en) | 1988-11-23 | 2003-03-18 | Genetics Institute, Inc. | Methods for selectively stimulating proliferation of T cells |
US6548640B1 (en) | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
WO2003064383A2 (en) | 2002-02-01 | 2003-08-07 | Ariad Gene Therapeutics, Inc. | Phosphorus-containing compounds & uses thereof |
US6692964B1 (en) | 1995-05-04 | 2004-02-17 | The United States Of America As Represented By The Secretary Of The Navy | Methods for transfecting T cells |
US20040101519A1 (en) | 2002-01-03 | 2004-05-27 | The Trustees Of The University Of Pennsylvania | Activation and expansion of T-cells using an engineered multivalent signaling platform as a research tool |
US6797514B2 (en) | 2000-02-24 | 2004-09-28 | Xcyte Therapies, Inc. | Simultaneous stimulation and concentration of cells |
WO2005007190A1 (en) | 2003-07-11 | 2005-01-27 | Schering Corporation | Agonists or antagonists of the clucocorticoid-induced tumour necrosis factor receptor (gitr) or its ligand for the treatment of immune disorders, infections and cancer |
US20050042664A1 (en) | 2003-08-22 | 2005-02-24 | Medimmune, Inc. | Humanization of antibodies |
US20050048617A1 (en) | 2003-08-18 | 2005-03-03 | Medimmune, Inc. | Humanization of antibodies |
US6867041B2 (en) | 2000-02-24 | 2005-03-15 | Xcyte Therapies, Inc. | Simultaneous stimulation and concentration of cells |
US20050100543A1 (en) | 2003-07-01 | 2005-05-12 | Immunomedics, Inc. | Multivalent carriers of bi-specific antibodies |
US6905874B2 (en) | 2000-02-24 | 2005-06-14 | Xcyte Therapies, Inc. | Simultaneous stimulation and concentration of cells |
US6905680B2 (en) | 1988-11-23 | 2005-06-14 | Genetics Institute, Inc. | Methods of treating HIV infected subjects |
WO2005055808A2 (en) | 2003-12-02 | 2005-06-23 | Genzyme Corporation | Compositions and methods to diagnose and treat lung cancer |
US20050175606A1 (en) | 2001-04-11 | 2005-08-11 | Hua-Liang Huang | Cyclic single-chain trispecific antibody |
WO2005115451A2 (en) | 2004-04-30 | 2005-12-08 | Isis Innovation Limited | Methods for generating improved immune response |
US20060034810A1 (en) | 2004-05-27 | 2006-02-16 | The Trustees Of The University Of Pennsylvania | Novel artificial antigen presenting cells and uses therefor |
WO2006020258A2 (en) | 2004-07-17 | 2006-02-23 | Imclone Systems Incorporated | Novel tetravalent bispecific antibody |
US20060121005A1 (en) | 2000-02-24 | 2006-06-08 | Xcyte Therapies, Inc. | Activation and expansion of cells |
US7067318B2 (en) | 1995-06-07 | 2006-06-27 | The Regents Of The University Of Michigan | Methods for transfecting T cells |
WO2006083289A2 (en) | 2004-06-04 | 2006-08-10 | Duke University | Methods and compositions for enhancement of immunity by in vivo depletion of immunosuppressive cell activity |
WO2006121168A1 (en) | 2005-05-09 | 2006-11-16 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
WO2007005874A2 (en) | 2005-07-01 | 2007-01-11 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
US20070014794A1 (en) | 1995-03-01 | 2007-01-18 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US7175843B2 (en) | 1994-06-03 | 2007-02-13 | Genetics Institute, Llc | Methods for selectively stimulating proliferation of T cells |
WO2007024715A2 (en) | 2005-08-19 | 2007-03-01 | Abbott Laboratories | Dual variable domain immunoglobin and uses thereof |
WO2007133822A1 (en) | 2006-01-19 | 2007-11-22 | Genzyme Corporation | Gitr antibodies for the treatment of cancer |
EP1866339A2 (en) | 2005-03-25 | 2007-12-19 | TolerRx, Inc | Gitr binding molecules and uses therefor |
WO2009091826A2 (en) * | 2008-01-14 | 2009-07-23 | The Board Of Regents Of The University Of Texas System | Compositions and methods related to a human cd19-specific chimeric antigen receptor (h-car) |
WO2009101611A1 (en) | 2008-02-11 | 2009-08-20 | Curetech Ltd. | Monoclonal antibodies for tumor treatment |
WO2009114335A2 (en) | 2008-03-12 | 2009-09-17 | Merck & Co., Inc. | Pd-1 binding proteins |
US7618632B2 (en) | 2003-05-23 | 2009-11-17 | Wyeth | Method of treating or ameliorating an immune cell associated pathology using GITR ligand antibodies |
WO2010003118A1 (en) | 2008-07-02 | 2010-01-07 | Trubion Pharmaceuticals, Inc. | Tgf-b antagonist multi-target binding proteins |
US20100028330A1 (en) | 2002-12-23 | 2010-02-04 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-pd1 antibodies |
WO2010027827A2 (en) | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Targeted costimulatory polypeptides and methods of use to treat cancer |
WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
WO2010095031A2 (en) * | 2009-02-23 | 2010-08-26 | Glenmark Pharmaceuticals S.A. | Humanized antibodies that bind to cd19 and their uses |
WO2011028683A1 (en) | 2009-09-03 | 2011-03-10 | Schering Corporation | Anti-gitr antibodies |
WO2011051726A2 (en) | 2009-10-30 | 2011-05-05 | Isis Innovation Ltd | Treatment of obesity |
WO2011066342A2 (en) | 2009-11-24 | 2011-06-03 | Amplimmune, Inc. | Simultaneous inhibition of pd-l1/pd-l2 |
WO2011090754A1 (en) | 2009-12-29 | 2011-07-28 | Emergent Product Development Seattle, Llc | Polypeptide heterodimers and uses thereof |
US20120039906A1 (en) | 2009-02-09 | 2012-02-16 | INSER (Institut National de la Recherche Medicale) | PD-1 Antibodies and PD-L1 Antibodies and Uses Thereof |
US20120114649A1 (en) | 2008-08-25 | 2012-05-10 | Amplimmune, Inc. Delaware | Compositions of pd-1 antagonists and methods of use |
WO2012079000A1 (en) | 2010-12-09 | 2012-06-14 | The Trustees Of The University Of Pennsylvania | Use of chimeric antigen receptor-modified t cells to treat cancer |
WO2012138475A1 (en) | 2011-04-08 | 2012-10-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-epidermal growth factor receptor variant iii chimeric antigen receptors and use of same for the treatment of cancer |
US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
WO2013039954A1 (en) | 2011-09-14 | 2013-03-21 | Sanofi | Anti-gitr antibodies |
EP1947183B1 (en) | 1996-08-16 | 2013-07-17 | Merck Sharp & Dohme Corp. | Mammalian cell surface antigens; related reagents |
WO2013126712A1 (en) | 2012-02-22 | 2013-08-29 | The Trustees Of The University Of Pennsylvania | Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer |
US8586023B2 (en) | 2008-09-12 | 2013-11-19 | Mie University | Cell capable of expressing exogenous GITR ligand |
US8591886B2 (en) | 2007-07-12 | 2013-11-26 | Gitr, Inc. | Combination therapies employing GITR binding molecules |
Family Cites Families (153)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4882282A (en) | 1985-08-16 | 1989-11-21 | Immunex Corporation | DNA sequences encoding bovine interleukin-2 |
US5906936A (en) | 1988-05-04 | 1999-05-25 | Yeda Research And Development Co. Ltd. | Endowing lymphocytes with antibody specificity |
US6303121B1 (en) | 1992-07-30 | 2001-10-16 | Advanced Research And Technology | Method of using human receptor protein 4-1BB |
ES2096749T3 (en) | 1990-12-14 | 1997-03-16 | Cell Genesys Inc | CHEMICAL CHAINS FOR SIGNAL TRANSDUCTION ROADS ASSOCIATED WITH A RECEIVER. |
US6319494B1 (en) | 1990-12-14 | 2001-11-20 | Cell Genesys, Inc. | Chimeric chains for receptor-associated signal transduction pathways |
US6004811A (en) | 1991-03-07 | 1999-12-21 | The Massachussetts General Hospital | Redirection of cellular immunity by protein tyrosine kinase chimeras |
IL101147A (en) | 1991-03-07 | 2004-06-20 | Gen Hospital Corp | Redirection of cellular immunity by receptor chimeras |
US7049136B2 (en) | 1991-03-07 | 2006-05-23 | The General Hospital Corporation | Redirection of cellular immunity by receptor chimeras |
US8211422B2 (en) | 1992-03-18 | 2012-07-03 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric receptor genes and cells transformed therewith |
IL104570A0 (en) | 1992-03-18 | 1993-05-13 | Yeda Res & Dev | Chimeric genes and cells transformed therewith |
US7211259B1 (en) | 1993-05-07 | 2007-05-01 | Immunex Corporation | 4-1BB polypeptides and DNA encoding 4-1BB polypeptides |
ES2341631T3 (en) | 1993-09-16 | 2010-06-23 | Indiana University Research And Technology Corporation | H4-1BB HUMAN RECEIVER. |
WO1995030014A1 (en) | 1994-05-02 | 1995-11-09 | Ciba-Geigy Ag | Bifunctional protein, preparation and use |
US5712149A (en) | 1995-02-03 | 1998-01-27 | Cell Genesys, Inc. | Chimeric receptor molecules for delivery of co-stimulatory signals |
US6103521A (en) | 1995-02-06 | 2000-08-15 | Cell Genesys, Inc. | Multispecific chimeric receptors |
JP4170390B2 (en) | 1995-02-24 | 2008-10-22 | ザ ジェネラル ホスピタル コーポレーション | Redirection of cellular immunity by receptor chimeras |
GB9526131D0 (en) | 1995-12-21 | 1996-02-21 | Celltech Therapeutics Ltd | Recombinant chimeric receptors |
US5874240A (en) | 1996-03-15 | 1999-02-23 | Human Genome Sciences, Inc. | Human 4-1BB receptor splicing variant |
CA2269738A1 (en) | 1996-10-25 | 1998-05-07 | Mitchell H. Finer | Targeted cytolysis of cancer cells |
GB9713473D0 (en) | 1997-06-25 | 1997-09-03 | Celltech Therapeutics Ltd | Biological products |
US20030060444A1 (en) | 1997-06-25 | 2003-03-27 | Celltech Therapeutics, Ltd. | Cell activation process and reagents therefor |
WO1999015555A1 (en) | 1997-09-19 | 1999-04-01 | The General Hospital Corporation | Car receptors and related molecules and methods |
WO1999021581A1 (en) | 1997-10-28 | 1999-05-06 | Steeves John D | Immunological compositions and methods of use to transiently alter mammalian central nervous system myelin to promote neuronal regeneration |
DE69925909T2 (en) | 1998-04-15 | 2006-05-11 | Brigham & Women's Hospital, Inc., Boston | T-cell inhibiting receptor compositions and their use |
GB9809658D0 (en) | 1998-05-06 | 1998-07-01 | Celltech Therapeutics Ltd | Biological products |
WO2000014257A1 (en) | 1998-09-04 | 2000-03-16 | Sloan-Kettering Institute For Cancer Research | Fusion receptors specific for prostate-specific membrane antigen and uses thereof |
AU2472400A (en) | 1998-10-20 | 2000-05-08 | City Of Hope | CD20-specific redirected T cells and their use in cellular immunotherapy of CD20+ malignancies |
EP1171596A1 (en) | 1999-04-16 | 2002-01-16 | Celltech Therapeutics Limited | Synthetic transmembrane components |
GB9925848D0 (en) | 1999-11-01 | 1999-12-29 | Celltech Therapeutics Ltd | Biological products |
CA2391129A1 (en) | 1999-11-10 | 2001-05-17 | The Uab Research Foundation | Lentiviral vector transduction of hematopoietic stem cells |
IL136511A0 (en) | 2000-06-01 | 2001-06-14 | Gavish Galilee Bio Appl Ltd | Genetically engineered mhc molecules |
GB0025307D0 (en) | 2000-10-16 | 2000-11-29 | Celltech Chiroscience Ltd | Biological products |
EP1334188B1 (en) | 2000-11-07 | 2006-08-30 | City of Hope | Cd19-specific redirected immune cells |
US7070995B2 (en) | 2001-04-11 | 2006-07-04 | City Of Hope | CE7-specific redirected immune cells |
US20090257994A1 (en) | 2001-04-30 | 2009-10-15 | City Of Hope | Chimeric immunoreceptor useful in treating human cancers |
US7514537B2 (en) | 2001-04-30 | 2009-04-07 | City Of Hope | Chimeric immunoreceptor useful in treating human gliomas |
US20030171546A1 (en) | 2001-04-30 | 2003-09-11 | City Of Hope | Chimeric immunoreceptor useful in treating human cancers |
US20030148982A1 (en) | 2001-11-13 | 2003-08-07 | Brenner Malcolm K. | Bi-spcific chimeric T cells |
US7638325B2 (en) | 2002-01-03 | 2009-12-29 | The Trustees Of The University Of Pennsylvania | Activation and expansion of T-cells using an engineered multivalent signaling platform |
US7638326B2 (en) | 2002-01-03 | 2009-12-29 | The Trustees Of The University Of Pennsylvania | Activation and expansion of T-cells using an engineered multivalent signaling platform |
US7446190B2 (en) | 2002-05-28 | 2008-11-04 | Sloan-Kettering Institute For Cancer Research | Nucleic acids encoding chimeric T cell receptors |
EP2135879A3 (en) | 2002-06-28 | 2010-06-23 | Domantis Limited | Ligand |
US20050129671A1 (en) | 2003-03-11 | 2005-06-16 | City Of Hope | Mammalian antigen-presenting T cells and bi-specific T cells |
US7402431B2 (en) | 2004-03-01 | 2008-07-22 | Immunovative Therapies, Ltd. | T-cell therapy formulation |
WO2005019429A2 (en) | 2003-08-22 | 2005-03-03 | Potentia Pharmaceuticals, Inc. | Compositions and methods for enhancing phagocytosis or phagocyte activity |
US20050113564A1 (en) | 2003-11-05 | 2005-05-26 | St. Jude Children's Research Hospital | Chimeric receptors with 4-1BB stimulatory signaling domain |
US7435596B2 (en) | 2004-11-04 | 2008-10-14 | St. Jude Children's Research Hospital, Inc. | Modified cell line and method for expansion of NK cell |
WO2006036445A2 (en) | 2004-09-24 | 2006-04-06 | Trustees Of Dartmouth College | Chimeric nk receptor and methods for treating cancer |
US7462697B2 (en) * | 2004-11-08 | 2008-12-09 | Epitomics, Inc. | Methods for antibody engineering |
WO2006060878A1 (en) | 2004-12-10 | 2006-06-15 | Peter Maccallum Cancer Institute | Methods and compositions for adoptive immunotherapy |
PL3263581T3 (en) | 2005-05-17 | 2021-05-04 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US20070036773A1 (en) | 2005-08-09 | 2007-02-15 | City Of Hope | Generation and application of universal T cells for B-ALL |
AU2007207785B2 (en) | 2006-01-13 | 2013-11-14 | The Government Of The United States, As Represented By The Secretary Of The Department Of Health And Human Services, National Institutes Of Health | Codon optimized IL- 15 and IL- 15R-alpha genes for expression in mammalian cells |
EP2532235A1 (en) | 2006-09-22 | 2012-12-12 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
WO2008045437A2 (en) | 2006-10-09 | 2008-04-17 | The General Hospital Corporation | Chimeric t-cell receptors and t-cells targeting egfrviii on tumors |
US9382327B2 (en) * | 2006-10-10 | 2016-07-05 | Vaccinex, Inc. | Anti-CD20 antibodies and methods of use |
EP1916259A1 (en) | 2006-10-26 | 2008-04-30 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Anti-glycoprotein VI SCFV fragment for treatment of thrombosis |
US20080131415A1 (en) | 2006-11-30 | 2008-06-05 | Riddell Stanley R | Adoptive transfer of cd8 + t cell clones derived from central memory cells |
CA2584494A1 (en) | 2007-03-27 | 2008-09-27 | Jeffrey A. Medin | Vector encoding therapeutic polypeptide and safety elements to clear transduced cells |
WO2008121420A1 (en) | 2007-03-30 | 2008-10-09 | Memorial Sloan-Kettering Cancer Center | Constitutive expression of costimulatory ligands on adoptively transferred t lymphocytes |
NZ599338A (en) | 2007-06-27 | 2013-11-29 | Marinepolymer Tech Inc | Complexes of il-15 and il-15ralpha and uses thereof |
WO2009052431A2 (en) * | 2007-10-19 | 2009-04-23 | Seattle Genetics, Inc. | Cd19 binding agents and uses thereof |
WO2009052623A1 (en) | 2007-10-26 | 2009-04-30 | Governing Council Of The University Of Toronto | Therapeutic and diagnostic methods using tim-3 |
WO2009097140A1 (en) | 2008-01-30 | 2009-08-06 | Memorial Sloan-Kettering Cancer Center | Methods for off -the -shelf tumor immunotherapy using allogeneic t-cell precursors |
US8379824B2 (en) | 2008-03-06 | 2013-02-19 | At&T Intellectual Property I, Lp | Methods and apparatus to provide a network-based caller identification service in a voice over internet protocol network |
AR072999A1 (en) | 2008-08-11 | 2010-10-06 | Medarex Inc | HUMAN ANTIBODIES THAT JOIN GEN 3 OF LYMPHOCYTARY ACTIVATION (LAG-3) AND THE USES OF THESE |
JP2012501180A (en) * | 2008-08-26 | 2012-01-19 | シティ・オブ・ホープ | Methods and compositions for enhancing anti-tumor effector function of T cells |
EP2389443B1 (en) | 2009-01-23 | 2018-11-14 | Roger Williams Hospital | Retroviral vectors encoding multiple highly homologous non-viral polypeptides and the use of same |
JP2012516153A (en) * | 2009-01-29 | 2012-07-19 | アボット・ラボラトリーズ | IL-1 binding protein |
AU2010282280B2 (en) | 2009-08-14 | 2016-06-09 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Use of IL-15 to increase thymic output and to treat lymphopenia |
US8465743B2 (en) | 2009-10-01 | 2013-06-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer |
WO2011059836A2 (en) | 2009-10-29 | 2011-05-19 | Trustees Of Dartmouth College | T cell receptor-deficient t cell compositions |
EP2531216B1 (en) | 2010-02-04 | 2019-03-27 | The Trustees Of The University Of Pennsylvania | Icos critically regulates the expansion and function of inflammatory human th17 cells |
WO2012050374A2 (en) * | 2010-10-13 | 2012-04-19 | Innocell, Inc. | Immunotherapy for solid tumors |
EP2632482A4 (en) | 2010-10-27 | 2015-05-27 | Baylor College Medicine | Chimeric cd27 receptors for redirecting t cells to cd70-positive malignancies |
EP2651442B1 (en) | 2010-12-14 | 2020-04-22 | University of Maryland, Baltimore | Universal anti-tag chimeric antigen receptor-expressing t cells and methods of treating cancer |
BR112013018311A2 (en) | 2011-01-18 | 2017-03-21 | Univ Pennsylvania | isolated nucleic acid sequence, isolated chimeric antigen receptor, genetically modified t cell, vector, and use of a genetically modified t cell. |
MX359513B (en) | 2011-03-23 | 2018-10-01 | Hutchinson Fred Cancer Res | METHOD and COMPOSITIONS FOR CELLULAR IMMUNOTHERAPY. |
WO2012127464A2 (en) | 2011-03-23 | 2012-09-27 | Gavish-Galilee Bio Applications Ltd | Constitutively activated t cells for use in adoptive cell therapy |
EA201391449A1 (en) | 2011-04-01 | 2014-03-31 | Мемориал Слоан-Кеттеринг Кэнсер Сентер | ANTIBODIES AGAINST CYTOSOL PEPTIDES |
CN107164330A (en) | 2011-04-08 | 2017-09-15 | 贝勒医学院 | Use the influence of chimeric cell factor acceptor reversing tumor microenvironment |
US20130071414A1 (en) | 2011-04-27 | 2013-03-21 | Gianpietro Dotti | Engineered cd19-specific t lymphocytes that coexpress il-15 and an inducible caspase-9 based suicide gene for the treatment of b-cell malignancies |
WO2013016352A1 (en) | 2011-07-25 | 2013-01-31 | Nationwide Children's Hospital, Inc. | Recombinant virus products and methods for inhibition of expression of dux4 |
EA201490364A1 (en) | 2011-07-29 | 2014-08-29 | Дзе Трастиз Оф Дзе Юниверсити Оф Пенсильвания | COSTIMULATING SWITCHING RECEPTORS |
WO2013033626A2 (en) | 2011-08-31 | 2013-03-07 | Trustees Of Dartmouth College | Nkp30 receptor targeted therapeutics |
AU2012308205A1 (en) | 2011-09-16 | 2014-03-13 | The Trustees Of The University Of Pennsylvania | RNA engineered T cells for the treatment of cancer |
DK2755487T3 (en) | 2011-09-16 | 2019-04-08 | Baylor College Medicine | TARGETATION OF THE TUMORMICROMY ENVIRONMENT USING MANIPULATED NKT CELLS |
CN109485730A (en) | 2011-10-20 | 2019-03-19 | 美国卫生和人力服务部 | Anti- CD22 Chimeric antigen receptor |
MX2014010185A (en) | 2012-02-22 | 2014-11-14 | Univ Pennsylvania | Use of the cd2 signaling domain in second-generation chimeric antigen receptors. |
CA2864688C (en) | 2012-02-22 | 2023-09-05 | The Trustees Of The University Of Pennsylvania | Use of icos-based cars to enhance antitumor activity and car persistence |
ES2786263T3 (en) * | 2012-07-13 | 2020-10-09 | Univ Pennsylvania | Enhancement of T-lymphocyte CAR activity by co-introduction of a bispecific antibody |
KR102216083B1 (en) | 2012-07-13 | 2021-02-17 | 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 | Use of cart19 to deplete normal b cells to induce tolerance |
EP2872617A4 (en) | 2012-07-13 | 2015-12-09 | Univ Pennsylvania | Epitope spreading associated with car t-cells |
SG11201408398UA (en) | 2012-07-13 | 2015-02-27 | Univ Pennsylvania | Compositions and methods for regulating car t cells |
ES2859522T3 (en) | 2012-07-13 | 2021-10-04 | Univ Pennsylvania | Control of toxicity for antitumor activity of CAR |
ES2733525T3 (en) | 2012-07-13 | 2019-11-29 | Univ Pennsylvania | Methods to assess the adequacy of transduced T lymphocytes for administration |
RS61345B1 (en) | 2012-08-20 | 2021-02-26 | Hutchinson Fred Cancer Res | Method and compositions for cellular immunotherapy |
US9937205B2 (en) | 2012-09-04 | 2018-04-10 | The Trustees Of The University Of Pennsylvania | Inhibition of diacylglycerol kinase to augment adoptive T cell transfer |
WO2014055442A2 (en) | 2012-10-01 | 2014-04-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for targeting stromal cells for the treatment of cancer |
US10117896B2 (en) | 2012-10-05 | 2018-11-06 | The Trustees Of The University Of Pennsylvania | Use of a trans-signaling approach in chimeric antigen receptors |
EP3744736A1 (en) | 2013-02-20 | 2020-12-02 | Novartis AG | Effective targeting of primary human leukemia using anti-cd123 chimeric antigen receptor engineered t cells |
KR102313997B1 (en) | 2013-02-20 | 2021-10-20 | 노파르티스 아게 | Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor |
US9657105B2 (en) | 2013-03-15 | 2017-05-23 | City Of Hope | CD123-specific chimeric antigen receptor redirected T cells and methods of their use |
WO2014145252A2 (en) * | 2013-03-15 | 2014-09-18 | Milone Michael C | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
TWI654206B (en) | 2013-03-16 | 2019-03-21 | 諾華公司 | Treatment of cancer with a humanized anti-CD19 chimeric antigen receptor |
WO2015057852A1 (en) | 2013-10-15 | 2015-04-23 | The California Institute For Biomedical Research | Chimeric antigen receptor t cell switches and uses thereof |
US9512084B2 (en) | 2013-11-29 | 2016-12-06 | Novartis Ag | Amino pyrimidine derivatives |
MX2016007958A (en) | 2013-12-17 | 2016-08-03 | Genentech Inc | Anti-cd3 antibodies and methods of use. |
AU2014366047B2 (en) | 2013-12-19 | 2021-03-25 | Novartis Ag | Human mesothelin chimeric antigen receptors and uses thereof |
US10287354B2 (en) | 2013-12-20 | 2019-05-14 | Novartis Ag | Regulatable chimeric antigen receptor |
ES2963718T3 (en) | 2014-01-21 | 2024-04-01 | Novartis Ag | Antigen-presenting capacity of CAR-T cells enhanced by co-introduction of co-stimulatory molecules |
JP2017513818A (en) | 2014-03-15 | 2017-06-01 | ノバルティス アーゲー | Treatment of cancer using chimeric antigen receptors |
WO2015142661A1 (en) | 2014-03-15 | 2015-09-24 | Novartis Ag | Regulatable chimeric antigen receptor |
JP6701088B2 (en) | 2014-03-19 | 2020-05-27 | インフィニティー ファーマシューティカルズ, インコーポレイテッド | Heterocyclic compounds for use in the treatment of PI3K-gamma mediated disorders |
HRP20240874T1 (en) | 2014-04-07 | 2024-10-11 | Novartis Ag | Treatment of cancer using anti-cd19 chimeric antigen receptor |
US20170274014A1 (en) | 2014-07-21 | 2017-09-28 | Jennifer Brogdon | Combinations of low, immune enhancing, doses of mtor inhibitors and cars |
WO2016014501A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase molecules and uses thereof |
MX2017001011A (en) | 2014-07-21 | 2018-05-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor. |
WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
AU2015292811B2 (en) | 2014-07-21 | 2019-12-19 | Novartis Ag | Treatment of cancer using a CLL-1 chimeric antigen receptor |
CA2955154C (en) | 2014-07-21 | 2023-10-31 | Novartis Ag | Treatment of cancer using a cd33 chimeric antigen receptor |
EP3193915A1 (en) | 2014-07-21 | 2017-07-26 | Novartis AG | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
US20170209492A1 (en) | 2014-07-31 | 2017-07-27 | Novartis Ag | Subset-optimized chimeric antigen receptor-containing t-cells |
EP3180359A1 (en) | 2014-08-14 | 2017-06-21 | Novartis AG | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
ES2791248T3 (en) | 2014-08-19 | 2020-11-03 | Novartis Ag | Anti-CD123 chimeric antigen receptor (CAR) for use in cancer treatment |
AU2015317608B2 (en) | 2014-09-17 | 2021-03-11 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
RU2743657C2 (en) | 2014-10-08 | 2021-02-20 | Новартис Аг | Biomarkers predicting a therapeutic response to therapy with a chimeric antigen receptor, and use thereof |
US20170239294A1 (en) | 2014-10-15 | 2017-08-24 | Novartis Ag | Compositions and methods for treating b-lymphoid malignancies |
WO2016109410A2 (en) | 2014-12-29 | 2016-07-07 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
US11459390B2 (en) | 2015-01-16 | 2022-10-04 | Novartis Ag | Phosphoglycerate kinase 1 (PGK) promoters and methods of use for expressing chimeric antigen receptor |
US11161907B2 (en) | 2015-02-02 | 2021-11-02 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
US20180140602A1 (en) | 2015-04-07 | 2018-05-24 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
RU2752918C2 (en) | 2015-04-08 | 2021-08-11 | Новартис Аг | Cd20 therapy, cd22 therapy and combination therapy with cells expressing chimeric antigen receptor (car) k cd19 |
EP3283619B1 (en) | 2015-04-17 | 2023-04-05 | Novartis AG | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
CN109476722A (en) | 2015-07-21 | 2019-03-15 | 诺华股份有限公司 | The method of the effect of for improving immunocyte and expansion |
WO2017027392A1 (en) | 2015-08-07 | 2017-02-16 | Novartis Ag | Treatment of cancer using chimeric cd3 receptor proteins |
JP6905163B2 (en) | 2015-09-03 | 2021-07-21 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | Biomarkers that predict cytokine release syndrome |
AU2016323985B2 (en) | 2015-09-17 | 2022-12-15 | Novartis Ag | CAR T cell therapies with enhanced efficacy |
JP7082055B2 (en) | 2015-12-22 | 2022-06-07 | ノバルティス アーゲー | Antibodies to Mesothelin Chimeric Antigen Receptor (CAR) and PD-L1 Inhibitors for Combined Use in Anticancer Treatment |
EP4219689A3 (en) | 2015-12-30 | 2023-12-20 | Novartis AG | Immune effector cell therapies with enhanced efficacy |
AU2017295886C1 (en) | 2016-07-15 | 2024-05-16 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
SG11201900677SA (en) | 2016-07-28 | 2019-02-27 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
CN110267677A (en) | 2016-08-01 | 2019-09-20 | 诺华股份有限公司 | Use the Chimeric antigen receptor treating cancer combined with former M2 macrophage molecule inhibitor |
US20190298715A1 (en) | 2016-09-30 | 2019-10-03 | Novartis Ag | Immune effector cell therapies with enhanced efficacy |
TW202340473A (en) | 2016-10-07 | 2023-10-16 | 瑞士商諾華公司 | Treatment of cancer using chimeric antigen receptors |
ES2912408T3 (en) | 2017-01-26 | 2022-05-25 | Novartis Ag | CD28 compositions and methods for therapy with chimeric receptors for antigens |
WO2018144535A1 (en) | 2017-01-31 | 2018-08-09 | Novartis Ag | Treatment of cancer using chimeric t cell receptor proteins having multiple specificities |
WO2018160731A1 (en) | 2017-02-28 | 2018-09-07 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
BR112019019426A2 (en) | 2017-03-22 | 2020-05-26 | Novartis Ag | BIOMARKERS AND THERAPIES WITH T CAR CELLS WITH INTENSIFIED EFFICACY |
US20200055948A1 (en) | 2017-04-28 | 2020-02-20 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
US20200061113A1 (en) | 2018-04-12 | 2020-02-27 | Novartis Ag | Chimeric antigen receptor therapy characterization assays and uses thereof |
US20200085869A1 (en) | 2018-05-16 | 2020-03-19 | Novartis Ag | Therapeutic regimens for chimeric antigen receptor therapies |
SG11202011830SA (en) | 2018-06-13 | 2020-12-30 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
-
2014
- 2014-03-14 TW TW103109821A patent/TWI654206B/en active
- 2014-03-14 UY UY0001035468A patent/UY35468A/en not_active Application Discontinuation
- 2014-03-15 EP EP19158368.1A patent/EP3539986B1/en active Active
- 2014-03-15 EP EP22159001.1A patent/EP4067382A1/en active Pending
- 2014-03-15 RU RU2015144332A patent/RU2711975C2/en active
- 2014-03-15 ES ES19158368T patent/ES2923397T3/en active Active
- 2014-03-15 US US14/214,728 patent/US10221245B2/en active Active
- 2014-03-15 HU HUE19158368A patent/HUE058832T2/en unknown
- 2014-03-15 LT LTEP19158368.1T patent/LT3539986T/en unknown
- 2014-03-15 HU HUE14722469A patent/HUE042803T2/en unknown
- 2014-03-15 PT PT191583681T patent/PT3539986T/en unknown
- 2014-03-15 PT PT14722469T patent/PT2970482T/en unknown
- 2014-03-15 SG SG10201806293WA patent/SG10201806293WA/en unknown
- 2014-03-15 MY MYPI2015702773A patent/MY187624A/en unknown
- 2014-03-15 CN CN202210634273.6A patent/CN115287292A/en active Pending
- 2014-03-15 ES ES14722469T patent/ES2734549T3/en active Active
- 2014-03-15 DK DK19158368.1T patent/DK3539986T3/en active
- 2014-03-15 KR KR1020157029649A patent/KR102293062B1/en active IP Right Grant
- 2014-03-15 RU RU2020100865A patent/RU2020100865A/en unknown
- 2014-03-15 BR BR112015021819A patent/BR112015021819A2/en not_active Application Discontinuation
- 2014-03-15 EP EP14722469.5A patent/EP2970482B1/en active Active
- 2014-03-15 AU AU2014236098A patent/AU2014236098B8/en active Active
- 2014-03-15 HR HRP20220767TT patent/HRP20220767T1/en unknown
- 2014-03-15 MX MX2015013194A patent/MX2015013194A/en active IP Right Grant
- 2014-03-15 CA CA2907100A patent/CA2907100C/en active Active
- 2014-03-15 SI SI201431971T patent/SI3539986T1/en unknown
- 2014-03-15 LT LTEP14722469.5T patent/LT2970482T/en unknown
- 2014-03-15 DK DK14722469.5T patent/DK2970482T3/en active
- 2014-03-15 CN CN201480027401.4A patent/CN105392888B/en active Active
- 2014-03-15 PL PL19158368.1T patent/PL3539986T3/en unknown
- 2014-03-15 SG SG11201506603PA patent/SG11201506603PA/en unknown
- 2014-03-15 PL PL14722469T patent/PL2970482T3/en unknown
- 2014-03-15 JP JP2016503288A patent/JP6466401B2/en active Active
- 2014-03-15 WO PCT/US2014/029943 patent/WO2014153270A1/en active Application Filing
-
2015
- 2015-09-07 IL IL241261A patent/IL241261B/en active IP Right Grant
- 2015-09-15 MX MX2020007021A patent/MX2020007021A/en unknown
-
2016
- 2016-06-14 HK HK16106845.6A patent/HK1218922A1/en unknown
-
2018
- 2018-11-15 US US16/192,375 patent/US10927184B2/en active Active
-
2019
- 2019-01-09 JP JP2019001925A patent/JP7187327B2/en active Active
- 2019-08-15 AU AU2019216689A patent/AU2019216689C1/en active Active
-
2020
- 2020-12-23 US US17/132,674 patent/US20210284752A1/en active Pending
-
2021
- 2021-02-22 JP JP2021026430A patent/JP7439002B2/en active Active
-
2022
- 2022-03-23 AU AU2022202024A patent/AU2022202024A1/en active Pending
-
2024
- 2024-02-14 JP JP2024020429A patent/JP2024056877A/en active Pending
Patent Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0090505B1 (en) | 1982-03-03 | 1990-08-08 | Genentech, Inc. | Human antithrombin iii, dna sequences therefor, expression vehicles and cloning vectors containing such sequences and cell cultures transformed thereby, a process for expressing human antithrombin iii, and pharmaceutical compositions comprising it |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US6331415B1 (en) | 1983-04-08 | 2001-12-18 | Genentech, Inc. | Methods of producing immunoglobulins, vectors and transformed host cells for use therein |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US6548640B1 (en) | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
US6534055B1 (en) | 1988-11-23 | 2003-03-18 | Genetics Institute, Inc. | Methods for selectively stimulating proliferation of T cells |
US7232566B2 (en) | 1988-11-23 | 2007-06-19 | The United States As Represented By The Secretary Of The Navy | Methods for treating HIV infected subjects |
US6887466B2 (en) | 1988-11-23 | 2005-05-03 | Genetics Institute, Inc. | Methods for selectively stimulating proliferation of T cells |
US6905680B2 (en) | 1988-11-23 | 2005-06-14 | Genetics Institute, Inc. | Methods of treating HIV infected subjects |
US5883223A (en) | 1988-11-23 | 1999-03-16 | Gray; Gary S. | CD9 antigen peptides and antibodies thereto |
US7144575B2 (en) | 1988-11-23 | 2006-12-05 | The Regents Of The University Of Michigan | Methods for selectively stimulating proliferation of T cells |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5589466A (en) | 1989-03-21 | 1996-12-31 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
US5580859A (en) | 1989-03-21 | 1996-12-03 | Vical Incorporated | Delivery of exogenous DNA sequences in a mammal |
US5399346A (en) | 1989-06-14 | 1995-03-21 | The United States Of America As Represented By The Department Of Health And Human Services | Gene therapy |
US5585362A (en) | 1989-08-22 | 1996-12-17 | The Regents Of The University Of Michigan | Adenovirus vectors for gene therapy |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5199942A (en) | 1991-06-07 | 1993-04-06 | Immunex Corporation | Method for improving autologous transplantation |
US6407213B1 (en) | 1991-06-14 | 2002-06-18 | Genentech, Inc. | Method for making humanized antibodies |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US6120766A (en) | 1991-12-04 | 2000-09-19 | Hale; Geoffrey | CDW52-specific antibody for treatment of multiple sclerosis |
US5766886A (en) | 1991-12-13 | 1998-06-16 | Xoma Corporation | Modified antibody variable domains |
WO1993017105A1 (en) | 1992-02-19 | 1993-09-02 | Scotgen Limited | Altered antibodies, products and processes relating thereto |
US5858358A (en) | 1992-04-07 | 1999-01-12 | The United States Of America As Represented By The Secretary Of The Navy | Methods for selectively stimulating proliferation of T cells |
US5350674A (en) | 1992-09-04 | 1994-09-27 | Becton, Dickinson And Company | Intrinsic factor - horse peroxidase conjugates and a method for increasing the stability thereof |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
US7175843B2 (en) | 1994-06-03 | 2007-02-13 | Genetics Institute, Llc | Methods for selectively stimulating proliferation of T cells |
US6905681B1 (en) | 1994-06-03 | 2005-06-14 | Genetics Institute, Inc. | Methods for selectively stimulating proliferation of T cells |
US6352694B1 (en) | 1994-06-03 | 2002-03-05 | Genetics Institute, Inc. | Methods for inducing a population of T cells to proliferate using agents which recognize TCR/CD3 and ligands which stimulate an accessory molecule on the surface of the T cells |
US5786464C1 (en) | 1994-09-19 | 2012-04-24 | Gen Hospital Corp | Overexpression of mammalian and viral proteins |
US5786464A (en) | 1994-09-19 | 1998-07-28 | The General Hospital Corporation | Overexpression of mammalian and viral proteins |
US20070014794A1 (en) | 1995-03-01 | 2007-01-18 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
US7172869B2 (en) | 1995-05-04 | 2007-02-06 | The United States Of America As Represented By The Secretary Of The Navy | Methods for transfecting T cells |
US6692964B1 (en) | 1995-05-04 | 2004-02-17 | The United States Of America As Represented By The Secretary Of The Navy | Methods for transfecting T cells |
US7067318B2 (en) | 1995-06-07 | 2006-06-27 | The Regents Of The University Of Michigan | Methods for transfecting T cells |
EP1947183B1 (en) | 1996-08-16 | 2013-07-17 | Merck Sharp & Dohme Corp. | Mammalian cell surface antigens; related reagents |
US7025962B1 (en) | 1996-08-16 | 2006-04-11 | Schering Corporation | Mammalian cell surface antigens; related reagents |
US6111090A (en) | 1996-08-16 | 2000-08-29 | Schering Corporation | Mammalian cell surface antigens; related reagents |
US6114148A (en) | 1996-09-20 | 2000-09-05 | The General Hospital Corporation | High level expression of proteins |
US6114148C1 (en) | 1996-09-20 | 2012-05-01 | Gen Hospital Corp | High level expression of proteins |
WO1999020758A1 (en) | 1997-10-21 | 1999-04-29 | Human Genome Sciences, Inc. | Human tumor necrosis factor receptor-like proteins tr11, tr11sv1, and tr11sv2 |
WO1999040196A1 (en) | 1998-02-09 | 1999-08-12 | Genentech, Inc. | Novel tumor necrosis factor receptor homolog and nucleic acids encoding the same |
WO2001003720A2 (en) | 1999-07-12 | 2001-01-18 | Genentech, Inc. | Promotion or inhibition of angiogenesis and cardiovascularization by tumor necrosis factor ligand/receptor homologs |
WO2001029058A1 (en) | 1999-10-15 | 2001-04-26 | University Of Massachusetts | Rna interference pathway genes as tools for targeted genetic interference |
US6326193B1 (en) | 1999-11-05 | 2001-12-04 | Cambria Biosciences, Llc | Insect control agent |
US6867041B2 (en) | 2000-02-24 | 2005-03-15 | Xcyte Therapies, Inc. | Simultaneous stimulation and concentration of cells |
US6905874B2 (en) | 2000-02-24 | 2005-06-14 | Xcyte Therapies, Inc. | Simultaneous stimulation and concentration of cells |
US6797514B2 (en) | 2000-02-24 | 2004-09-28 | Xcyte Therapies, Inc. | Simultaneous stimulation and concentration of cells |
US20060121005A1 (en) | 2000-02-24 | 2006-06-08 | Xcyte Therapies, Inc. | Activation and expansion of cells |
WO2001096584A2 (en) | 2000-06-12 | 2001-12-20 | Akkadix Corporation | Materials and methods for the control of nematodes |
US20050175606A1 (en) | 2001-04-11 | 2005-08-11 | Hua-Liang Huang | Cyclic single-chain trispecific antibody |
US20040101519A1 (en) | 2002-01-03 | 2004-05-27 | The Trustees Of The University Of Pennsylvania | Activation and expansion of T-cells using an engineered multivalent signaling platform as a research tool |
WO2003064383A2 (en) | 2002-02-01 | 2003-08-07 | Ariad Gene Therapeutics, Inc. | Phosphorus-containing compounds & uses thereof |
US20100028330A1 (en) | 2002-12-23 | 2010-02-04 | Medimmune Limited | Methods of upmodulating adaptive immune response using anti-pd1 antibodies |
US7618632B2 (en) | 2003-05-23 | 2009-11-17 | Wyeth | Method of treating or ameliorating an immune cell associated pathology using GITR ligand antibodies |
US20050100543A1 (en) | 2003-07-01 | 2005-05-12 | Immunomedics, Inc. | Multivalent carriers of bi-specific antibodies |
WO2005007190A1 (en) | 2003-07-11 | 2005-01-27 | Schering Corporation | Agonists or antagonists of the clucocorticoid-induced tumour necrosis factor receptor (gitr) or its ligand for the treatment of immune disorders, infections and cancer |
US20050048617A1 (en) | 2003-08-18 | 2005-03-03 | Medimmune, Inc. | Humanization of antibodies |
US20050042664A1 (en) | 2003-08-22 | 2005-02-24 | Medimmune, Inc. | Humanization of antibodies |
WO2005055808A2 (en) | 2003-12-02 | 2005-06-23 | Genzyme Corporation | Compositions and methods to diagnose and treat lung cancer |
WO2005115451A2 (en) | 2004-04-30 | 2005-12-08 | Isis Innovation Limited | Methods for generating improved immune response |
US20060034810A1 (en) | 2004-05-27 | 2006-02-16 | The Trustees Of The University Of Pennsylvania | Novel artificial antigen presenting cells and uses therefor |
WO2006083289A2 (en) | 2004-06-04 | 2006-08-10 | Duke University | Methods and compositions for enhancement of immunity by in vivo depletion of immunosuppressive cell activity |
WO2006020258A2 (en) | 2004-07-17 | 2006-02-23 | Imclone Systems Incorporated | Novel tetravalent bispecific antibody |
EP1866339A2 (en) | 2005-03-25 | 2007-12-19 | TolerRx, Inc | Gitr binding molecules and uses therefor |
US7812135B2 (en) | 2005-03-25 | 2010-10-12 | Tolerrx, Inc. | GITR-binding antibodies |
US8388967B2 (en) | 2005-03-25 | 2013-03-05 | Gitr, Inc. | Methods for inducing or enhancing an immune response by administering agonistic GITR-binding antibodies |
WO2006121168A1 (en) | 2005-05-09 | 2006-11-16 | Ono Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
US8008449B2 (en) | 2005-05-09 | 2011-08-30 | Medarex, Inc. | Human monoclonal antibodies to programmed death 1 (PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
US7943743B2 (en) | 2005-07-01 | 2011-05-17 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (PD-L1) |
WO2007005874A2 (en) | 2005-07-01 | 2007-01-11 | Medarex, Inc. | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
WO2007024715A2 (en) | 2005-08-19 | 2007-03-01 | Abbott Laboratories | Dual variable domain immunoglobin and uses thereof |
WO2007133822A1 (en) | 2006-01-19 | 2007-11-22 | Genzyme Corporation | Gitr antibodies for the treatment of cancer |
US8354509B2 (en) | 2007-06-18 | 2013-01-15 | Msd Oss B.V. | Antibodies to human programmed death receptor PD-1 |
US8591886B2 (en) | 2007-07-12 | 2013-11-26 | Gitr, Inc. | Combination therapies employing GITR binding molecules |
WO2009091826A2 (en) * | 2008-01-14 | 2009-07-23 | The Board Of Regents Of The University Of Texas System | Compositions and methods related to a human cd19-specific chimeric antigen receptor (h-car) |
WO2009101611A1 (en) | 2008-02-11 | 2009-08-20 | Curetech Ltd. | Monoclonal antibodies for tumor treatment |
WO2009114335A2 (en) | 2008-03-12 | 2009-09-17 | Merck & Co., Inc. | Pd-1 binding proteins |
WO2010003118A1 (en) | 2008-07-02 | 2010-01-07 | Trubion Pharmaceuticals, Inc. | Tgf-b antagonist multi-target binding proteins |
US20120114649A1 (en) | 2008-08-25 | 2012-05-10 | Amplimmune, Inc. Delaware | Compositions of pd-1 antagonists and methods of use |
US8609089B2 (en) | 2008-08-25 | 2013-12-17 | Amplimmune, Inc. | Compositions of PD-1 antagonists and methods of use |
WO2010027827A2 (en) | 2008-08-25 | 2010-03-11 | Amplimmune, Inc. | Targeted costimulatory polypeptides and methods of use to treat cancer |
US8586023B2 (en) | 2008-09-12 | 2013-11-19 | Mie University | Cell capable of expressing exogenous GITR ligand |
WO2010077634A1 (en) | 2008-12-09 | 2010-07-08 | Genentech, Inc. | Anti-pd-l1 antibodies and their use to enhance t-cell function |
US20120039906A1 (en) | 2009-02-09 | 2012-02-16 | INSER (Institut National de la Recherche Medicale) | PD-1 Antibodies and PD-L1 Antibodies and Uses Thereof |
WO2010095031A2 (en) * | 2009-02-23 | 2010-08-26 | Glenmark Pharmaceuticals S.A. | Humanized antibodies that bind to cd19 and their uses |
WO2011028683A1 (en) | 2009-09-03 | 2011-03-10 | Schering Corporation | Anti-gitr antibodies |
WO2011051726A2 (en) | 2009-10-30 | 2011-05-05 | Isis Innovation Ltd | Treatment of obesity |
WO2011066342A2 (en) | 2009-11-24 | 2011-06-03 | Amplimmune, Inc. | Simultaneous inhibition of pd-l1/pd-l2 |
WO2011090754A1 (en) | 2009-12-29 | 2011-07-28 | Emergent Product Development Seattle, Llc | Polypeptide heterodimers and uses thereof |
WO2012079000A1 (en) | 2010-12-09 | 2012-06-14 | The Trustees Of The University Of Pennsylvania | Use of chimeric antigen receptor-modified t cells to treat cancer |
WO2012138475A1 (en) | 2011-04-08 | 2012-10-11 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Anti-epidermal growth factor receptor variant iii chimeric antigen receptors and use of same for the treatment of cancer |
WO2013039954A1 (en) | 2011-09-14 | 2013-03-21 | Sanofi | Anti-gitr antibodies |
WO2013126712A1 (en) | 2012-02-22 | 2013-08-29 | The Trustees Of The University Of Pennsylvania | Compositions and methods for generating a persisting population of t cells useful for the treatment of cancer |
Non-Patent Citations (87)
Title |
---|
AGATA ET AL., INT. IMMUNOL, vol. 8, 1996, pages 765 - 75 |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410 |
ALTSCHUL ET AL., NUC. ACIDS RES., vol. 25, 1977, pages 3389 - 3402 |
BACA ET AL., J. BIOL. CHEM., vol. 272, no. 16, 1997, pages 10678 - 84 |
BARRETT ET AL., HUMAN GENE THERAPY, vol. 22, 2011, pages 1575 - 1586 |
BATZER ET AL., NUCLEIC ACID RES., vol. 19, 1991, pages 5081 |
BERG ET AL., TRANSPLANT PROC., vol. 30, no. 8, 1998, pages 3975 - 3977 |
BIERER ET AL., CURR. OPIN. IMMUN., vol. 5, 1993, pages 763 - 773 |
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 - 426 |
BLANK ET AL., CANCER IMMUNOL. IMMUNOTHER, vol. 54, 2005, pages 307 - 314 |
BRENT ET AL., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, 2003 |
CALDAS ET AL., PROTEIN ENG., vol. 13, no. 5, 2000, pages 353 - 60 |
CARTER ET AL., EUR J IMMUNOL, vol. 32, 2002, pages 634 - 43 |
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285 |
CHOTHIA ET AL., J. MOL. BIOL., vol. 196, 1987, pages 901 |
COUGOT ET AL., TRENDS IN BIOCHEM. SCI., vol. 29, 2001, pages 436 - 444 |
COUTO ET AL., CANCER RES., vol. 55, no. 23, 1995, pages 5973S - 5977S |
COUTO ET AL., CANCER RES., vol. 55, no. 8, 1995, pages 1717 - 22 |
CRUZ ET AL., CYTOTHERAPY, vol. 12, no. 6, 2010, pages 743 - 749 |
DIMASI ET AL., J. MOL BIOL., vol. 393, 2009, pages 672 - 692 |
DIMASI ET AL., J. MOL. BIOL., vol. 393, 2009, pages 672 - 692 |
DONG ET AL., J MOL MED, vol. 81, 2003, pages 281 - 7 |
DURIE ET AL., LEUKEMIA, vol. 20, no. 9, 2006, pages 1467 - 1473 |
E. MEYERS; W. MILLER, COMPUT. APPL. BIOSCI., vol. 4, 1988, pages 11 - 17 |
ELANGO ET AL., BIOCHIM. BIOPHYS. RES. COMMUN., vol. 330, 2005, pages 958 - 966 |
FONTANA ET AL., FOLD. DES., vol. 2, 1997, pages R17 - 26 |
FREEMAN, J EXP MED, vol. 192, 2000, pages 1027 - 34 |
GARLAND ET AL., J. IMMUNOL METH., vol. 227, no. 1-2, 1999, pages 53 - 63 |
GHOSH ET AL., GLYCOBIOLOGY, vol. 5, 1991, pages 505 - 10 |
GRUPP ET AL., NEJM, vol. 368, 2013, pages 1509 - 1518 |
HAANEN ET AL., J. EXP. MED., vol. 190, no. 9, 1999, pages 13191328 |
HARLOW ET AL.: "Antibodies: A Laboratory Manual", 1989, COLD SPRING HARBOR |
HARLOW ET AL.: "Using Antibodies: A Laboratory Manual", 1999, COLD SPRING HARBOR LABORATORY PRESS |
HENDERSON ET AL., IMMUN., vol. 73, 1991, pages 316 - 321 |
HOLLINGER ET AL., PROC NATL ACAD. SCI. U.S.A., vol. 90, 1993, pages 6444 - 6448 |
HOUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883 |
HUSTON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 5879 - 5883 |
IZUMOTO ET AL., J NEUROSURG, vol. 108, 2008, pages 963 - 971 |
JOHNNSON, B. ET AL., ANAL. BIOCHEM., vol. 198, 1991, pages 268 - 277 |
JOHNSSON, B. ET AL., J. MOL. RECOGNIT., vol. 8, 1995, pages 125 - 131 |
JONES ET AL., NATURE, vol. 321, 1986, pages 522 - 525 |
JONSSON, U. ET AL., ANN. BIOL. CLIN., vol. 51, 1993, pages 19 - 26 |
JONSSON, U., I, BIOTECHNIQUES, vol. 11, 1991, pages 620 - 627 |
JUNE ET AL., NATURE REVIEWS IMMUNOLOGY, vol. 9.10, 2009, pages 704 - 716 |
KALOS ET AL., SCI TRANSL MED, vol. 3, 2011, pages 95RA73 |
KONISHI ET AL., CLIN CANCER RES, vol. 10, 2004, pages 5094 |
LANZAVECCHIA ET AL., EUR. J. IMMUNOL., vol. 17, 1987, pages 105 |
LATCHMAN ET AL., NAT IMMUNOL, vol. 2, 2001, pages 261 - 8 |
LIU ET AL., CELL, vol. 66, 1991, pages 807 - 815 |
MILONE ET AL., MOL. THER., vol. 17, no. 8, 2009, pages 1453 - 1464 |
MILONE ET AL., MOLECULAR THERAPY, vol. 17, no. 8, 2009, pages 1453 - 1464 |
MOREA ET AL., METHODS, vol. 20, no. 3, 2000, pages 267 - 79 |
NACHEVA; BERZAL-HERRANZ, EUR. J. BIOCHEM., vol. 270, 2003, pages 1485 - 65 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 444 - 453 |
NICHOLSON ET AL., MOL. IMMUN., vol. 34, no. 16-17, 1997, pages 1157 - 1165 |
NISHIKAWA ET AL., HUM GENE THER., vol. 12, no. 8, 2001, pages 861 - 70 |
OHTSUKA ET AL., J. BIOL. CHEM., vol. 260, 1985, pages 2605 - 2608 |
PADLAN, MOLECULAR IMMUNOLOGY, vol. 28, no. 4/5, 1991, pages 489 - 498 |
PEARSON; LIPMAN, PROC. NAT'1. ACAD. SCI. USA, vol. 85, 1988, pages 2444 |
PEDERSEN ET AL., J. MOL. BIOL., vol. 235, no. 3, 1994, pages 959 - 73 |
PORTER ET AL., NEJM, vol. 365, 2011, pages 725 - 733 |
PRESTA ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623 |
PRESTA, CURR. OP. STRUCT. BIOL., vol. 2, 1992, pages 593 - 596 |
R. BRENTJENS ET AL.: "Novel cellular therapies for leukemia: CAR-modified T cells targeted to the CD19 antigen.", HEMATOLOGY, vol. 2012, 2012, USA, pages 143 - 151, XP002727327 * |
REICHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 329 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327 |
ROGUSKA ET AL., PNAS, vol. 91, 1994, pages 969 - 973 |
ROGUSKA ET AL., PROTEIN ENG., vol. 9, no. 10, 1996, pages 895 - 904 |
ROSENBERG ET AL., NEW ENG. J. OF MED., vol. 319, 1988, pages 1676 |
ROSSOLINI ET AL., MOL. CELL. PROBES, vol. 8, 1994, pages 91 - 98 |
SADELAIN ET AL., CANCER DISCOVERY, vol. 3, 2013, pages 388 - 398 |
SAMBROOK ET AL.: "MOLECULAR CLONING: A LABORATORY MANUAL", vol. 1 -4, 2012, COLD SPRING HARBOR PRESS |
SANCHEZ-RUIZ ET AL., BIOCHEMISTRY, vol. 27, 1988, pages 1648 - 52 |
SANDHU J S, GENE, vol. 150, no. 2, 1994, pages 409 - 10 |
SCHENBORN; MIERENDORF, NUC ACIDS RES., vol. 13, 1985, pages 6223 - 36 |
SIMS ET AL., J. IMMUNOL., vol. 151, 1993, pages 2296 |
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1970, pages 482C |
SONG ET AL., BLOOD, vol. 119, no. 3, 2012, pages 696 - 706 |
STEPINSKI ET AL., RNA, vol. 7, 2001, pages 1468 - 95 |
STUDNICKA ET AL., PROTEIN ENGINEERING, vol. 7, no. 6, 1994, pages 805 - 814 |
TAN ET AL., J. IMMUNOL., vol. 169, 2002, pages 1119 - 25 |
UI-TEI ET AL., FEBS LETTERS, vol. 479, 2000, pages 79 - 82 |
VAN MIERLO; STEEMSMA, J. BIOTECHNOL., vol. 79, no. 3, 2000, pages 281 - 98 |
VERHOEYEN ET AL., SCIENCE, vol. 239, 1988, pages 1534 - 1536 |
Y. ZHAO ET AL.: "A Herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity.", THE JOURNAL OF IMMUNOLOGY, vol. 183, 2009, Baltimore, USA, pages 5563 - 5574, XP055081967 * |
Cited By (243)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11028177B2 (en) | 2013-02-20 | 2021-06-08 | Novartis Ag | Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells |
US9573988B2 (en) | 2013-02-20 | 2017-02-21 | Novartis Ag | Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells |
US10640553B2 (en) | 2013-03-15 | 2020-05-05 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US9745368B2 (en) | 2013-03-15 | 2017-08-29 | The Trustees Of The University Of Pennsylvania | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US11919946B2 (en) | 2013-03-15 | 2024-03-05 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US10927184B2 (en) | 2013-03-16 | 2021-02-23 | Novartis Ag | Treatment of cancer using humanized anti-CD19 chimeric antigen receptor |
US10221245B2 (en) | 2013-03-16 | 2019-03-05 | Novartis Ag | Treatment of cancer using humanized anti-CD19 chimeric antigen receptor |
US11578130B2 (en) | 2013-12-20 | 2023-02-14 | Novartis Ag | Regulatable chimeric antigen receptor |
US10287354B2 (en) | 2013-12-20 | 2019-05-14 | Novartis Ag | Regulatable chimeric antigen receptor |
JP2017504601A (en) * | 2013-12-20 | 2017-02-09 | セレクティスCellectis | Method for manipulating multi-input signal sensitive T cells for immunotherapy |
US10239948B2 (en) | 2013-12-20 | 2019-03-26 | Cellectis | Method of engineering multi-input signal sensitive T cell for immunotherapy |
US10189908B2 (en) | 2014-02-05 | 2019-01-29 | The University Of Chicago | Chimeric antigen receptors recognizing cancer-specific TN glycopeptide variants |
US10357514B2 (en) | 2014-04-07 | 2019-07-23 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using anti-CD19 Chimeric Antigen Receptor |
EP4406610A2 (en) | 2014-04-07 | 2024-07-31 | Novartis AG | Treatment of cancer using anti-cd19 chimeric antigen receptor |
WO2015157252A1 (en) | 2014-04-07 | 2015-10-15 | BROGDON, Jennifer | Treatment of cancer using anti-cd19 chimeric antigen receptor |
EP3888674A1 (en) | 2014-04-07 | 2021-10-06 | Novartis AG | Treatment of cancer using anti-cd19 chimeric antigen receptor |
US11236161B2 (en) | 2014-06-02 | 2022-02-01 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric antigen receptors targeting CD-19 |
US10287350B2 (en) | 2014-06-02 | 2019-05-14 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric antigen receptors targeting CD-19 |
EP3798233A1 (en) * | 2014-06-02 | 2021-03-31 | The United States of America, as represented by the Secretary, Department of Health and Human Services | Chimeric antigen receptors targeting cd-19 |
WO2015187528A1 (en) * | 2014-06-02 | 2015-12-10 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Chimeric antigen receptors targeting cd-19 |
WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
US11084880B2 (en) | 2014-07-21 | 2021-08-10 | Novartis Ag | Anti-BCMA chimeric antigen receptor |
US10568947B2 (en) | 2014-07-21 | 2020-02-25 | Novartis Ag | Treatment of cancer using a CLL-1 chimeric antigen receptor |
WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
US10174095B2 (en) | 2014-07-21 | 2019-01-08 | Novartis Ag | Nucleic acid encoding a humanized anti-BCMA chimeric antigen receptor |
WO2016014565A2 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor |
US12006369B2 (en) | 2014-07-24 | 2024-06-11 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
EP3660042A1 (en) | 2014-07-31 | 2020-06-03 | Novartis AG | Subset-optimized chimeric antigen receptor-containing t-cells |
EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
US10703819B2 (en) | 2014-08-09 | 2020-07-07 | The Trustees Of The University Of Pennsylvania | Treatment of cancer using a CD123 chimeric antigen receptor |
US11591404B2 (en) | 2014-08-19 | 2023-02-28 | Novartis Ag | Treatment of cancer using a CD123 chimeric antigen receptor |
EP3712171A1 (en) | 2014-08-19 | 2020-09-23 | Novartis AG | Treatment of cancer using a cd123 chimeric antigen receptor |
US9815901B2 (en) | 2014-08-19 | 2017-11-14 | Novartis Ag | Treatment of cancer using a CD123 chimeric antigen receptor |
US11981731B2 (en) | 2014-09-17 | 2024-05-14 | The Trustees Of The University Of Pennsylvania | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
US10577417B2 (en) | 2014-09-17 | 2020-03-03 | Novartis Ag | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
EP3967709A1 (en) | 2014-09-17 | 2022-03-16 | Novartis AG | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
WO2016044605A1 (en) | 2014-09-17 | 2016-03-24 | Beatty, Gregory | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
JP2017531430A (en) * | 2014-10-07 | 2017-10-26 | セレクティスCellectis | Method for modulating the activity of immune cells induced by CAR |
WO2016057705A1 (en) | 2014-10-08 | 2016-04-14 | Novartis Ag | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
US10774388B2 (en) | 2014-10-08 | 2020-09-15 | Novartis Ag | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
JP2018501463A (en) * | 2014-10-08 | 2018-01-18 | ノバルティス アーゲー | Biomarker for predicting therapeutic response to chimeric antigen receptor therapy and use thereof |
JP2021073440A (en) * | 2014-10-08 | 2021-05-13 | ノバルティス アーゲー | Biomarkers predictive of therapeutic responsiveness to chimeric antigen receptor therapy and uses thereof |
US11633426B2 (en) | 2014-10-20 | 2023-04-25 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
US10507219B2 (en) | 2014-10-20 | 2019-12-17 | Juno Therapeutics, Inc. | Methods and compositions for dosing in adoptive cell therapy |
RU2716716C2 (en) * | 2014-10-27 | 2020-03-16 | Фред Хатчинсон Кэнсер Рисёрч Сентер | Compositions and methods for boosting the effectiveness of adoptive cell immunotherapy |
US10828352B2 (en) | 2014-10-27 | 2020-11-10 | Fred Hutchinson Cancer Research Center | Compositions and methods for boosting the efficacy of adoptive cellular immunotherapy |
CN113736828A (en) * | 2014-11-05 | 2021-12-03 | 朱诺治疗学股份有限公司 | Methods for transduction and cell processing |
WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
US11266739B2 (en) | 2014-12-03 | 2022-03-08 | Juno Therapeutics, Inc. | Methods and compositions for adoptive cell therapy |
US11382965B2 (en) | 2014-12-12 | 2022-07-12 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
US12029784B2 (en) | 2014-12-12 | 2024-07-09 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
US11351236B2 (en) | 2014-12-12 | 2022-06-07 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
US11633463B2 (en) | 2014-12-12 | 2023-04-25 | 2Seventy Bio, Inc. | BCMA chimeric antigen receptors |
WO2016097231A3 (en) * | 2014-12-17 | 2016-08-18 | Cellectis | INHIBITORY CHIMERIC ANTIGEN RECEPTOR (iCAR OR N-CAR) EXPRESSING NON-T CELL TRANSDUCTION DOMAIN |
JP2018500944A (en) * | 2014-12-29 | 2018-01-18 | ノバルティス アーゲー | Method for producing chimeric antigen receptor-expressing cells |
EP4036109A2 (en) | 2014-12-29 | 2022-08-03 | Novartis AG | Methods of making chimeric antigen receptor-expressing cells |
JP2022050420A (en) * | 2014-12-29 | 2022-03-30 | ノバルティス アーゲー | Methods of making chimeric antigen receptor-expressing cells |
US11382963B2 (en) | 2015-01-12 | 2022-07-12 | Pieris Pharmaceuticals Gmbh | Engineered T cells and uses therefor |
WO2016113203A1 (en) * | 2015-01-12 | 2016-07-21 | Pieris Ag | Engineered t cells and uses therefor |
US10808031B2 (en) | 2015-01-21 | 2020-10-20 | Cancer Research Technology Limited | Inhibitors of the interaction between CLEC14A and multimerin-2 for inhibition of angiogenesis |
US11919959B2 (en) | 2015-01-21 | 2024-03-05 | Cancer Research Technology Limited | Inhibitors of the interaction between CLEC14A and multimerin-2 for inhibition of angiogenesis |
US11014989B2 (en) | 2015-01-26 | 2021-05-25 | Cellectis | Anti-CLL1 specific single-chain chimeric antigen receptors (scCARs) for cancer immunotherapy |
US10308719B2 (en) | 2015-01-26 | 2019-06-04 | The University Of Chicago | IL13Rα2 binding agents and use thereof in cancer treatment |
US11827712B2 (en) | 2015-01-26 | 2023-11-28 | The University Of Chicago | IL13Rα2 binding agents and use thereof |
US11673935B2 (en) | 2015-01-26 | 2023-06-13 | The University Of Chicago | Car T-cells recognizing cancer-specific IL 13Ra2 |
WO2016120216A1 (en) | 2015-01-26 | 2016-08-04 | Cellectis | mAb-DRIVEN CHIMERIC ANTIGEN RECEPTOR SYSTEMS FOR SORTING/DEPLETING ENGINEERED IMMUNE CELLS |
WO2016123143A1 (en) | 2015-01-26 | 2016-08-04 | The University Of Chicago | CAR T-CELLS RECOGNIZING CANCER-SPECIFIC IL 13Rα2 |
US10851169B2 (en) | 2015-01-26 | 2020-12-01 | The University Of Chicago | Conjugates of IL13Rα2 binding agents and use thereof in cancer treatment |
US12030953B2 (en) | 2015-01-29 | 2024-07-09 | Regents Of The University Of Minnesota | Chimeric antigen receptors, compositions, and methods |
US10640570B2 (en) | 2015-01-29 | 2020-05-05 | Regents Of The University Of Minnesota | Chimeric antigen receptors, compositions, and methods |
JP2021087452A (en) * | 2015-01-29 | 2021-06-10 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Chimeric antigen receptors, compositions, and methods |
JP2018505174A (en) * | 2015-01-29 | 2018-02-22 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Chimeric antigen receptor, composition and method |
JP7227290B2 (en) | 2015-01-29 | 2023-02-21 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Chimeric Antigen Receptors, Compositions and Methods |
WO2016126608A1 (en) | 2015-02-02 | 2016-08-11 | Novartis Ag | Car-expressing cells against multiple tumor antigens and uses thereof |
WO2016164580A1 (en) | 2015-04-07 | 2016-10-13 | Novartis Ag | Combination of chimeric antigen receptor therapy and amino pyrimidine derivatives |
WO2016164731A2 (en) | 2015-04-08 | 2016-10-13 | Novartis Ag | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell |
JP2018518939A (en) * | 2015-04-08 | 2018-07-19 | ノバルティス アーゲー | CD20 therapy, CD22 therapy, and combination therapy with CD19 chimeric antigen receptor (CAR) expressing cells |
US10253086B2 (en) | 2015-04-08 | 2019-04-09 | Novartis Ag | CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell |
EP4056588A1 (en) | 2015-04-08 | 2022-09-14 | Novartis AG | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
US11149076B2 (en) | 2015-04-08 | 2021-10-19 | Novartis Ag | CD20 therapies, CD22 therapies, and combination therapies with a CD19 chimeric antigen receptor (CAR)-expressing cell |
US11896614B2 (en) | 2015-04-17 | 2024-02-13 | Novartis Ag | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
WO2016168595A1 (en) | 2015-04-17 | 2016-10-20 | Barrett David Maxwell | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
EP4234685A2 (en) | 2015-04-17 | 2023-08-30 | Novartis AG | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells |
JP2018514204A (en) * | 2015-04-30 | 2018-06-07 | ユーシーエル ビジネス ピーエルシー | T cells expressing gamma delta T cell receptor (TCR) and chimeric antigen receptor (CAR) |
US10358473B2 (en) | 2015-05-18 | 2019-07-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11028142B2 (en) | 2015-05-18 | 2021-06-08 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US10358474B2 (en) | 2015-05-18 | 2019-07-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11965012B2 (en) | 2015-05-18 | 2024-04-23 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US10442849B2 (en) | 2015-05-18 | 2019-10-15 | Tcr2 Therabeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US12084518B2 (en) | 2015-05-21 | 2024-09-10 | Harpoon Therapeutics, Inc. | Trispecific binding proteins and methods of use |
JP2018518978A (en) * | 2015-07-08 | 2018-07-19 | ザ・ジョンズ・ホプキンス・ユニバーシティー | Bone marrow infiltrating lymphocytes (MIL) as a source of T cells for chimeric antigen receptor (CAR) therapy |
US11478548B2 (en) | 2015-07-08 | 2022-10-25 | The Johns Hopkins University | Marrow infiltrating lymphocytes (MILs) as a source of T-cells for chimeric antigen receptor (CAR) therapy |
CN109476722A (en) * | 2015-07-21 | 2019-03-15 | 诺华股份有限公司 | The method of the effect of for improving immunocyte and expansion |
WO2017015427A1 (en) | 2015-07-21 | 2017-01-26 | Novartis Ag | Methods for improving the efficacy and expansion of immune cells |
US11364289B2 (en) | 2015-07-24 | 2022-06-21 | Innovative Cellular Therapeutics Holdings, Ltd. | Humanized anti-CD19 antibody and use thereof with chimeric antigen receptor |
EP3149046A4 (en) * | 2015-07-24 | 2017-08-30 | Innovative Cellular Therapeutics Co., Ltd. | Humanized anti-cd19 antibody and use thereof |
US11123369B2 (en) | 2015-08-07 | 2021-09-21 | Seattle Children's Hospital | Bispecific CAR T-cells for solid tumor targeting |
US11458167B2 (en) | 2015-08-07 | 2022-10-04 | Seattle Children's Hospital | Bispecific CAR T-cells for solid tumor targeting |
CN108174604A (en) * | 2015-08-07 | 2018-06-15 | 西雅图儿童医院(Dba西雅图儿童研究所) | For the bispecific CAR T cells of solid tumor targeting |
US11186647B2 (en) | 2015-08-11 | 2021-11-30 | Legend Biotech Usa Inc. | Chimeric antigen receptors targeting BCMA and methods of use thereof |
US11535677B2 (en) | 2015-08-11 | 2022-12-27 | Legend Biotech Usa Inc. | Chimeric antigen receptors targeting BCMA and methods of use thereof |
CN105384825A (en) * | 2015-08-11 | 2016-03-09 | 南京传奇生物科技有限公司 | Bispecific chimeric antigen receptor based on variable domains of heavy chain of heavy-chain antibody and application thereof |
CN109311999A (en) * | 2015-08-11 | 2019-02-05 | 南京传奇生物科技有限公司 | Chimeric antigen receptor and its application method based on single domain antibody |
US10934363B2 (en) | 2015-08-11 | 2021-03-02 | Legend Biotech Usa Inc. | Chimeric antigen receptors based on single domain antibodies and methods of use thereof |
WO2017028374A1 (en) * | 2015-08-20 | 2017-02-23 | Beijing Marino Biotechnology Pty Ltd. | Construct, genetically modified lymphocyte, preparation method and usage thereof |
US11747346B2 (en) | 2015-09-03 | 2023-09-05 | Novartis Ag | Biomarkers predictive of cytokine release syndrome |
WO2017040930A2 (en) | 2015-09-03 | 2017-03-09 | The Trustees Of The University Of Pennsylvania | Biomarkers predictive of cytokine release syndrome |
EP3747472A1 (en) * | 2015-09-15 | 2020-12-09 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
WO2017046747A1 (en) * | 2015-09-15 | 2017-03-23 | Acerta Pharma B.V. | Therapeutic combinations of a cd19 inhibitor and a btk inhibitor |
JP2018534264A (en) * | 2015-09-28 | 2018-11-22 | リージェンツ オブ ザ ユニバーシティ オブ ミネソタ | Chimeric antigen receptor (CAR) T cells as therapeutic intervention for autoimmunity and alloimmunity |
US11230577B2 (en) | 2015-10-13 | 2022-01-25 | City Of Hope | Chimeric antigen receptors containing a chlorotoxin domain |
JP2018531015A (en) * | 2015-10-13 | 2018-10-25 | シティ・オブ・ホープCity of Hope | Chimeric antigen receptor containing chlorotoxin domain |
JP2018537088A (en) * | 2015-11-13 | 2018-12-20 | 科済生物医薬(上海)有限公司 | Chimeric antigen receptor-modified immune effector cells with PD-L1 blockers |
US11299525B2 (en) | 2015-11-13 | 2022-04-12 | Crage Medical Co., Limited | Chimeric antigen receptor-modified immune effector cell carrying PD-L1 blocking agent |
WO2017096327A3 (en) * | 2015-12-03 | 2017-07-13 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against chimeric antigen receptors |
EP4212166A1 (en) * | 2015-12-03 | 2023-07-19 | Juno Therapeutics, Inc. | Compositions and methods for reducing immune responses against cell therapies |
US12037583B2 (en) | 2015-12-04 | 2024-07-16 | Novartis Ag | Compositions and methods for immunooncology |
WO2017093969A1 (en) | 2015-12-04 | 2017-06-08 | Novartis Ag | Compositions and methods for immunooncology |
WO2017112741A1 (en) | 2015-12-22 | 2017-06-29 | Novartis Ag | Mesothelin chimeric antigen receptor (car) and antibody against pd-l1 inhibitor for combined use in anticancer therapy |
EP4219689A2 (en) | 2015-12-30 | 2023-08-02 | Novartis AG | Immune effector cell therapies with enhanced efficacy |
WO2017114497A1 (en) | 2015-12-30 | 2017-07-06 | Novartis Ag | Immune effector cell therapies with enhanced efficacy |
CN105950645A (en) * | 2016-01-11 | 2016-09-21 | 灏灵赛奥(天津)生物科技有限公司 | Humanized fusion gene segment of CAR-CD19 antigen receptor, construction method and application thereof |
WO2017133174A1 (en) * | 2016-02-03 | 2017-08-10 | 北京马力喏生物科技有限公司 | Therapeutic composition for treatment of b-cell leukemia and b-cell lymphoma |
WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
WO2017165683A1 (en) | 2016-03-23 | 2017-09-28 | Novartis Ag | Cell secreted minibodies and uses thereof |
WO2017181119A2 (en) | 2016-04-15 | 2017-10-19 | Novartis Ag | Compositions and methods for selective protein expression |
EP4219721A2 (en) | 2016-04-15 | 2023-08-02 | Novartis AG | Compositions and methods for selective protein expression |
US11723962B2 (en) | 2016-05-04 | 2023-08-15 | Fred Hutchinson Cancer Center | Cell-based neoantigen vaccines and uses thereof |
CN105950663B (en) * | 2016-05-17 | 2019-04-02 | 上海优卡迪生物医药科技有限公司 | A kind of replication defective recombinant slow virus CAR-T transgene carrier targeting CD30 and its construction method and application |
CN105950662A (en) * | 2016-05-17 | 2016-09-21 | 上海优卡迪生物医药科技有限公司 | CD22-taregted replication-defective recombinant lentivirus CAR-T transgenic vector as well as construction method and application thereof |
CN105969805A (en) * | 2016-05-17 | 2016-09-28 | 上海优卡迪生物医药科技有限公司 | Mesothelin-targeted replication-defective recombinant lentivirus CAR-T transgenic carrier as well as establishment method and application thereof |
CN105950663A (en) * | 2016-05-17 | 2016-09-21 | 上海优卡迪生物医药科技有限公司 | CD 30-targeting replication-defective recombinant lentivirus CAR-T transgenic vector as well as construction method and applications thereof |
CN105950662B (en) * | 2016-05-17 | 2019-04-30 | 上海优卡迪生物医药科技有限公司 | A kind of replication defective recombinant slow virus CAR-T transgene carrier targeting CD22 and its construction method and application |
CN105969805B (en) * | 2016-05-17 | 2019-03-29 | 上海优卡迪生物医药科技有限公司 | A kind of replication defective recombinant slow virus CAR-T transgene carrier targeting Mesothelin and its construction method and application |
CN105950664A (en) * | 2016-05-17 | 2016-09-21 | 上海优卡迪生物医药科技有限公司 | CD 123-targeting replication-defective recombinant lentivirus CAR-T transgenic vector as well as construction method and applications thereof |
WO2017210617A2 (en) | 2016-06-02 | 2017-12-07 | Porter, David, L. | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
WO2018013918A2 (en) | 2016-07-15 | 2018-01-18 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
RU2809160C2 (en) * | 2016-07-28 | 2023-12-07 | Новартис Аг | Types of combination therapy using chimeric antigen receptors and pd-1 inhibitors |
WO2018023025A1 (en) | 2016-07-28 | 2018-02-01 | Novartis Ag | Combination therapies of chimeric antigen receptors adn pd-1 inhibitors |
WO2018026819A2 (en) | 2016-08-01 | 2018-02-08 | Novartis Ag | Treatment of cancer using a chimeric antigen receptor in combination with an inhibitor of a pro-m2 macrophage molecule |
US11242376B2 (en) | 2016-08-02 | 2022-02-08 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
WO2018064387A1 (en) | 2016-09-28 | 2018-04-05 | Novartis Ag | Porous membrane-based macromolecule delivery system |
US11155832B2 (en) | 2016-09-30 | 2021-10-26 | Genvec, Inc. | Adenovectors for delivery of therapeutic genetic material into T cells |
WO2018064523A1 (en) * | 2016-09-30 | 2018-04-05 | Genvec, Inc. | Adenovectors for delivery of therapeutic genetic material into t cells |
US11026976B2 (en) | 2016-10-07 | 2021-06-08 | Novartis Ag | Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain |
USRE49847E1 (en) | 2016-10-07 | 2024-02-27 | Novartis Ag | Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain |
US11085021B2 (en) | 2016-10-07 | 2021-08-10 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11377638B2 (en) | 2016-10-07 | 2022-07-05 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11872249B2 (en) | 2016-10-07 | 2024-01-16 | Novartis Ag | Method of treating cancer by administering immune effector cells expressing a chimeric antigen receptor comprising a CD20 binding domain |
WO2018067992A1 (en) | 2016-10-07 | 2018-04-12 | Novartis Ag | Chimeric antigen receptors for the treatment of cancer |
US10525083B2 (en) | 2016-10-07 | 2020-01-07 | Novartis Ag | Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain |
US12109234B2 (en) | 2016-11-04 | 2024-10-08 | 2Seventy Bio, Inc. | Anti-BCMA CAR T cell compositions |
US11851491B2 (en) | 2016-11-22 | 2023-12-26 | TCR2 Therapeutics Inc. | Compositions and methods for TCR reprogramming using fusion proteins |
US11590167B2 (en) | 2016-12-03 | 2023-02-28 | Juno Therapeutic, Inc. | Methods and compositions for use of therapeutic T cells in combination with kinase inhibitors |
US11408005B2 (en) | 2016-12-12 | 2022-08-09 | Seattle Children's Hospital | Chimeric transcription factor variants with augmented sensitivity to drug ligand induction of transgene expression in mammalian cells |
EP3556772A4 (en) * | 2016-12-13 | 2020-09-09 | Carsgen Therapeutics Ltd | Anti-cd19 humanized antibody and immune effector cell targeting cd19 |
WO2018126369A1 (en) * | 2017-01-05 | 2018-07-12 | Shanghai Sidansai Biotechnology Co., Ltd | Humanized anti-cd19 antibody and use thereof with chimeric antigen receptor |
EP4043485A1 (en) | 2017-01-26 | 2022-08-17 | Novartis AG | Cd28 compositions and methods for chimeric antigen receptor therapy |
WO2018140725A1 (en) | 2017-01-26 | 2018-08-02 | Novartis Ag | Cd28 compositions and methods for chimeric antigen receptor therapy |
WO2018144535A1 (en) | 2017-01-31 | 2018-08-09 | Novartis Ag | Treatment of cancer using chimeric t cell receptor proteins having multiple specificities |
WO2018160731A1 (en) | 2017-02-28 | 2018-09-07 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
US11851659B2 (en) | 2017-03-22 | 2023-12-26 | Novartis Ag | Compositions and methods for immunooncology |
WO2018188331A1 (en) * | 2017-04-12 | 2018-10-18 | 上海优卡迪生物医药科技有限公司 | Car-t cell with inhibited sterol o-acyltransferase 1 (soat1), preparation method therefor and application thereof |
WO2018200496A1 (en) * | 2017-04-24 | 2018-11-01 | Kite Pharma, Inc. | Humanized antigen-binding domains against cd19 and methods of use |
KR20190141211A (en) * | 2017-04-24 | 2019-12-23 | 카이트 파마 인코포레이티드 | Humanized Antigen-Binding Domain for CD19 and Methods of Use |
KR20220025904A (en) * | 2017-04-24 | 2022-03-03 | 카이트 파마 인코포레이티드 | Humanized antigen-binding domains against cd19 and methods of use |
KR102363742B1 (en) * | 2017-04-24 | 2022-02-17 | 카이트 파마 인코포레이티드 | Humanized antigen-binding domains for CD19 and methods of use |
EP4286415A3 (en) * | 2017-04-24 | 2024-06-12 | Kite Pharma, Inc. | Humanized antigen-binding domains against cd19 and methods of use |
US10844120B2 (en) | 2017-04-24 | 2020-11-24 | Kite Pharma, Inc. | Humanized antigen-binding domains and methods of use |
KR102481262B1 (en) | 2017-04-24 | 2022-12-26 | 카이트 파마 인코포레이티드 | Humanized antigen-binding domains against cd19 and methods of use |
WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
US11944647B2 (en) | 2017-06-02 | 2024-04-02 | Juno Therapeutics, Inc. | Articles of manufacture and methods for treatment using adoptive cell therapy |
WO2019002633A1 (en) | 2017-06-30 | 2019-01-03 | Cellectis | Cellular immunotherapy for repetitive administration |
CN111936510A (en) * | 2017-09-15 | 2020-11-13 | 莱蒂恩技术公司 | Compositions and methods for treating cancer with anti-CD 19 immunotherapy |
CN111936510B (en) * | 2017-09-15 | 2024-09-27 | 莱蒂恩技术公司 | Compositions and methods for treating cancer with anti-CD 19 immunotherapy |
WO2019067015A1 (en) * | 2017-09-29 | 2019-04-04 | City Of Hope | Chimeric antigen receptors and bispecific antibodies for treatment of mantle cell lymphoma |
US11976125B2 (en) | 2017-10-13 | 2024-05-07 | Harpoon Therapeutics, Inc. | B cell maturation antigen binding proteins |
WO2019079569A1 (en) | 2017-10-18 | 2019-04-25 | Novartis Ag | Compositions and methods for selective protein degradation |
WO2019084288A1 (en) | 2017-10-25 | 2019-05-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
US11008294B2 (en) | 2017-10-30 | 2021-05-18 | Neuropore Therapies, Inc. | Substituted phenyl sulfonyl phenyl triazole thiones and uses thereof |
US11708338B2 (en) | 2017-10-30 | 2023-07-25 | Neuropore Therapies, Inc. | Substituted phenyl sulfonyl phenyl triazole thiones and uses thereof |
WO2019089798A1 (en) | 2017-10-31 | 2019-05-09 | Novartis Ag | Anti-car compositions and methods |
US12031975B2 (en) | 2017-11-01 | 2024-07-09 | Juno Therapeutics, Inc. | Methods of assessing or monitoring a response to a cell therapy |
WO2019099639A1 (en) | 2017-11-15 | 2019-05-23 | Navartis Ag | Bcma-targeting chimeric antigen receptor, cd19-targeting chimeric antigen receptor, and combination therapies |
WO2019108900A1 (en) | 2017-11-30 | 2019-06-06 | Novartis Ag | Bcma-targeting chimeric antigen receptor, and uses thereof |
WO2019136432A1 (en) | 2018-01-08 | 2019-07-11 | Novartis Ag | Immune-enhancing rnas for combination with chimeric antigen receptor therapy |
EP3517125B1 (en) * | 2018-01-24 | 2023-05-31 | Xuanwu Hospital of Capital Medical University | Chimeric antigen receptor for efficient targeted proliferation in vitro and uses thereof |
WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
WO2019160956A1 (en) | 2018-02-13 | 2019-08-22 | Novartis Ag | Chimeric antigen receptor therapy in combination with il-15r and il15 |
WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
WO2019213282A1 (en) | 2018-05-01 | 2019-11-07 | Novartis Ag | Biomarkers for evaluating car-t cells to predict clinical outcome |
WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
WO2019232510A1 (en) * | 2018-06-01 | 2019-12-05 | Kite Pharma, Inc. | Chimeric antigen receptor t cell therapy |
WO2019229701A2 (en) | 2018-06-01 | 2019-12-05 | Novartis Ag | Binding molecules against bcma and uses thereof |
EP4403224A3 (en) * | 2018-06-01 | 2024-07-31 | Kite Pharma, Inc. | Chimeric antigen receptor t cell therapy |
WO2019237035A1 (en) | 2018-06-08 | 2019-12-12 | Intellia Therapeutics, Inc. | Compositions and methods for immunooncology |
WO2019241426A1 (en) | 2018-06-13 | 2019-12-19 | Novartis Ag | Bcma chimeric antigen receptors and uses thereof |
US11952428B2 (en) | 2018-06-13 | 2024-04-09 | Novartis Ag | BCMA chimeric antigen receptors and uses thereof |
US11939389B2 (en) | 2018-06-13 | 2024-03-26 | Novartis Ag | BCMA chimeric antigen receptors and uses thereof |
WO2020012337A1 (en) | 2018-07-10 | 2020-01-16 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and their use in the treatment of i karos family zinc finger 2 (ikzf2)-dependent diseases |
WO2020047452A2 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2020047449A2 (en) | 2018-08-31 | 2020-03-05 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
US11807692B2 (en) | 2018-09-25 | 2023-11-07 | Harpoon Therapeutics, Inc. | DLL3 binding proteins and methods of use |
WO2020069405A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
US11793834B2 (en) | 2018-12-12 | 2023-10-24 | Kite Pharma, Inc. | Chimeric antigen and T cell receptors and methods of use |
WO2020128972A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
WO2020165834A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2020165833A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2020176397A1 (en) | 2019-02-25 | 2020-09-03 | Novartis Ag | Mesoporous silica particles compositions for viral delivery |
WO2020185632A1 (en) | 2019-03-08 | 2020-09-17 | Obsidian Therapeutics, Inc. | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
WO2020191316A1 (en) | 2019-03-21 | 2020-09-24 | Novartis Ag | Car-t cell therapies with enhanced efficacy |
WO2020210719A1 (en) | 2019-04-10 | 2020-10-15 | Elevatebio Management, Inc. | Flt3-specific chimeric antigen receptors and methods of using the same |
WO2020210678A1 (en) | 2019-04-12 | 2020-10-15 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2020219742A1 (en) | 2019-04-24 | 2020-10-29 | Novartis Ag | Compositions and methods for selective protein degradation |
WO2021108661A2 (en) | 2019-11-26 | 2021-06-03 | Novartis Ag | Chimeric antigen receptors and uses thereof |
WO2021123996A1 (en) | 2019-12-20 | 2021-06-24 | Novartis Ag | Uses of anti-tgf-beta antibodies and checkpoint inhibitors for the treatment of proliferative diseases |
WO2021163618A1 (en) | 2020-02-14 | 2021-08-19 | Novartis Ag | Method of predicting response to chimeric antigen receptor therapy |
WO2021173995A2 (en) | 2020-02-27 | 2021-09-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2021173985A2 (en) | 2020-02-27 | 2021-09-02 | Novartis Ag | Methods of making chimeric antigen receptor-expressing cells |
WO2021174004A1 (en) | 2020-02-28 | 2021-09-02 | Millennium Pharmaceuticals, Inc. | Method for producing natural killer cells from pluripotent stem cells |
WO2022074464A2 (en) | 2020-03-05 | 2022-04-14 | Neotx Therapeutics Ltd. | Methods and compositions for treating cancer with immune cells |
WO2021252920A1 (en) | 2020-06-11 | 2021-12-16 | Novartis Ag | Zbtb32 inhibitors and uses thereof |
WO2021260528A1 (en) | 2020-06-23 | 2021-12-30 | Novartis Ag | Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives |
WO2022010847A1 (en) | 2020-07-07 | 2022-01-13 | Cancure, Llc | Mic antibodies and binding agents and methods of using the same |
WO2022016119A1 (en) | 2020-07-17 | 2022-01-20 | Simurx, Inc. | Chimeric myd88 receptors for redirecting immunosuppressive signaling and related compositions and methods |
WO2022029573A1 (en) | 2020-08-03 | 2022-02-10 | Novartis Ag | Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
WO2022040586A2 (en) | 2020-08-21 | 2022-02-24 | Novartis Ag | Compositions and methods for in vivo generation of car expressing cells |
WO2022097061A1 (en) | 2020-11-06 | 2022-05-12 | Novartis Ag | Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies |
WO2022104061A1 (en) | 2020-11-13 | 2022-05-19 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
US11883432B2 (en) | 2020-12-18 | 2024-01-30 | Century Therapeutics, Inc. | Chimeric antigen receptor system with adaptable receptor specificity |
WO2022147444A2 (en) | 2020-12-30 | 2022-07-07 | Alaunos Therapeutics, Inc. | Recombinant vectors comprising polycistronic expression cassettes and methods of use thereof |
WO2022180586A1 (en) * | 2021-02-25 | 2022-09-01 | Senthil Natesan | Car t-cell product and method of preparation thereof |
WO2022215011A1 (en) | 2021-04-07 | 2022-10-13 | Novartis Ag | USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES |
WO2022229853A1 (en) | 2021-04-27 | 2022-11-03 | Novartis Ag | Viral vector production system |
WO2022264033A1 (en) | 2021-06-15 | 2022-12-22 | Takeda Pharmaceutical Company Limited | Method for producing natural killer cells from pluripotent stem cells |
WO2023021477A1 (en) | 2021-08-20 | 2023-02-23 | Novartis Ag | Methods of making chimeric antigen receptor–expressing cells |
WO2023081715A1 (en) | 2021-11-03 | 2023-05-11 | Viracta Therapeutics, Inc. | Combination of car t-cell therapy with btk inhibitors and methods of use thereof |
WO2023214325A1 (en) | 2022-05-05 | 2023-11-09 | Novartis Ag | Pyrazolopyrimidine derivatives and uses thereof as tet2 inhibitors |
WO2024056809A1 (en) | 2022-09-15 | 2024-03-21 | Novartis Ag | Treatment of autoimmune disorders using chimeric antigen receptor therapy |
WO2024089639A1 (en) | 2022-10-26 | 2024-05-02 | Novartis Ag | Lentiviral formulations |
WO2024133052A1 (en) * | 2022-12-19 | 2024-06-27 | Universität Basel Vizerektorat Forschung | T-cell receptor fusion protein |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210284752A1 (en) | Treatment of cancer using humanized anti-cd19 chimeric antigen receptor | |
US11028177B2 (en) | Effective targeting of primary human leukemia using anti-CD123 chimeric antigen receptor engineered T cells | |
US20210347851A1 (en) | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies | |
US20220047633A1 (en) | Cd22 chimeric antigen receptor (car) therapies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480027401.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14722469 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 241261 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 2907100 Country of ref document: CA Ref document number: 2016503288 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/013194 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014236098 Country of ref document: AU Date of ref document: 20140315 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15224030 Country of ref document: CO |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014722469 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157029649 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015144332 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015021819 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015021819 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150904 |