WO2014148507A1 - 細胞培養容器 - Google Patents

細胞培養容器 Download PDF

Info

Publication number
WO2014148507A1
WO2014148507A1 PCT/JP2014/057389 JP2014057389W WO2014148507A1 WO 2014148507 A1 WO2014148507 A1 WO 2014148507A1 JP 2014057389 W JP2014057389 W JP 2014057389W WO 2014148507 A1 WO2014148507 A1 WO 2014148507A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
container
culture container
film body
cells
Prior art date
Application number
PCT/JP2014/057389
Other languages
English (en)
French (fr)
Inventor
聖真 田中
健一 森井
裕美 河原
弓削 類
Original Assignee
株式会社ジェイ・エム・エス
株式会社スペース・バイオ・ラボラトリーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイ・エム・エス, 株式会社スペース・バイオ・ラボラトリーズ filed Critical 株式会社ジェイ・エム・エス
Publication of WO2014148507A1 publication Critical patent/WO2014148507A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/24Gas permeable parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/38Caps; Covers; Plugs; Pouring means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel

Definitions

  • the present invention relates to a cell culture vessel capable of efficiently culturing cells such as somatic stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells) and the like.
  • cells such as somatic stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells) and the like.
  • a sterilized resin cell culture vessel is used (for example, Patent Documents). 1). More specifically, the cell culture is performed by filling a liquid culture medium together with the cells to be cultured in the cell culture container, and allowing the cell culture container filled with the cells and the medium to stand in a predetermined environment.
  • cells grow by adhering to the inner surface of the cell culture container.
  • a cell peeling agent such as trypsin is added to the cell culture container to detach the cells from the cell culture container.
  • the cells detached from the cell culture container are transferred to a container (tube) for centrifugation using a pipette or the like together with the medium, and then centrifuged to sediment the cells. Thereby, cells are collected.
  • an object of the present invention is to provide a cell culture vessel that can culture cells more efficiently.
  • the present invention is a cylindrical container body having an opening formed on one end side, a cap detachably attached to the opening of the container body, the cap is provided with liquid-tightness, and A gas permeation region that allows gas flow; and a film body that is disposed inside the container body and to which cultured cells can adhere.
  • the film body has a surface that is the surface of the container body.
  • the present invention relates to a cell culture container arranged along the longitudinal direction.
  • the container main body includes a cylindrical portion disposed on one end side of the container main body, and a reduced diameter portion disposed on the distal end side of the cylindrical portion and reducing in diameter from the proximal end side toward the distal end side. It is preferable.
  • the film body is folded in a pleated shape by a plurality of fold lines extending in parallel with each other at a predetermined interval, and the plurality of fold lines are arranged along the longitudinal direction of the container body.
  • the film body is accommodated in the container body in a state of being rolled into a cylindrical shape.
  • the plurality of broken lines are parallel to a direction in which gravity is applied when the cell culture container is centrifuged.
  • the length between the two broken lines arranged adjacent to each other is equal to or less than the radius of the cylindrical portion.
  • the film body is preferably composed of a polyethylene terephthalate film.
  • the surface of the film body is preferably subjected to charge treatment.
  • cells can be cultured more efficiently.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1. It is a figure which shows the state which expand
  • FIG. 3 is a sectional view taken along line BB in FIG. It is a figure which shows typically the state which is culturing the cell with the cell culture container of 1st Embodiment. It is the figure which showed typically the state which has collected the cells cultured with the cell culture container of 1st Embodiment.
  • FIG. 1 It is a perspective view which shows the cell culture container which concerns on 2nd Embodiment of this invention. It is a disassembled perspective view which shows the cell culture container of 2nd Embodiment. It is sectional drawing of the cell culture container of 2nd Embodiment, and is a figure corresponding to FIG. It is a figure which shows the simulation microgravity apparatus. It is a disassembled perspective view which shows the modification of a cell culture container. It is sectional drawing which shows the other modification of a cell culture container, and is a figure corresponding to FIG.
  • the cell culture container 1 of the first embodiment includes a container body 10, a cap 20 that is detachably attached to the container body 10, and a film that is accommodated in the container body 10.
  • a body 30 As shown in FIGS. 1 to 3, the cell culture container 1 of the first embodiment includes a container body 10, a cap 20 that is detachably attached to the container body 10, and a film that is accommodated in the container body 10.
  • a body 30 As shown in FIGS. 1 to 3, the cell culture container 1 of the first embodiment includes a container body 10, a cap 20 that is detachably attached to the container body 10, and a film that is accommodated in the container body 10.
  • the container body 10 is formed in a cylindrical shape in which an opening 11 is formed on one end side and the other end side is closed.
  • the container body 10 includes a cylindrical portion 12 and a reduced diameter portion 13.
  • the cylindrical portion 12 is disposed on one end side of the container body 10, that is, on the side where the opening 11 is formed.
  • a thread 121 is formed on the outer peripheral surface in the vicinity of the end of the cylindrical portion 12 on the opening 11 side.
  • the reduced diameter portion 13 is disposed at the end portion on the opposite side (tip side) to the side where the opening portion 11 is formed in the cylindrical portion 12.
  • the reduced diameter portion 13 is formed in a conical shape with a reduced diameter from the proximal end side toward the distal end side.
  • the container body 10 described above is made of a synthetic resin or glass having transparency.
  • the material of the container body 10 is usually made of polystyrene from the viewpoints of the above-described transparency and cell adhesion, but PP (polypropylene) is generally used to improve the strength during centrifugation. Alternatively, it may be made of PET (polyethylene terephthalate).
  • the inner surface of the container body 10 is preferably subjected to charge treatment such as plasma discharge in order to improve cell adhesion.
  • the container body 10 is formed in the same shape and size as a centrifuge tube that can be used in a centrifuge (for example, the same shape and size as a centrifuge tube (conical tube) having a capacity of 50 ml).
  • the cap 20 includes a cap body 21, a gas permeable region 22 provided in the cap body 21, and an O-ring 23 (see FIG. 4).
  • the cap main body 21 includes a cylindrical fitting portion 211 that is fitted on the outer peripheral surface of the container main body 10, and an end surface portion 212 that closes one end side of the fitting portion 211.
  • a thread groove 213 having a shape corresponding to the thread 121 formed in the container main body 10 (cylindrical portion 12) is formed on the inner surface of the fitted portion 211.
  • the gas permeable region 22 is a region having liquid-tightness and allowing a gas flow.
  • the gas permeable region 22 is provided on the end surface portion 212 of the cap body 21.
  • the gas permeable region 22 includes a plurality of through holes 221 formed in the end surface portion 212 and a gas permeable film 222 disposed on the inner surface side of the end surface portion 212 in the cap body 21.
  • the gas permeable membrane 222 allows a gas such as carbon dioxide or oxygen to flow without passing a liquid.
  • a film of polytetrafluoroethylene (PTFE), polyethylene, silicone resin, poly-4-methylpentene-1, polyisoprene, polybutadiene, ethylene vinyl acetate copolymer, polystyrene, and the like is about 100 ⁇ m thick.
  • PTFE polytetrafluoroethylene
  • silicone resin silicone resin
  • poly-4-methylpentene-1 polyisoprene
  • polybutadiene ethylene vinyl acetate copolymer
  • polystyrene polystyrene
  • the O-ring 23 is disposed on the inner surface side of the cap body 21.
  • the O-ring 23 maintains the liquid tightness between the cap 20 and the container body 10 when the cap 20 is attached to the container body 10.
  • the film body 30 is composed of a polyethylene terephthalate film (hereinafter also referred to as a PET film).
  • the film body 30 has a pleated shape, in which rectangular PET films are alternately folded at a plurality of fold lines 31 formed in parallel to each other at a predetermined interval. It is folded and configured. And the folded film body 30 is accommodated in the inside of the container main body 10 so that the folding line 31 may follow the longitudinal direction of the container main body 10, as shown in FIG.1 and FIG.3. That is, the surface of the film body 30 is disposed along the longitudinal direction of the container body 10.
  • the surface (both sides) of the film body 30 is preferably subjected to charge treatment such as plasma discharge in order to improve cell adhesion.
  • the charge treatment on the surface of the film body 30 is performed on the PET film in a state before the folding line 31 is formed. Thereby, the charge process to the film body 30 can be performed easily and uniformly.
  • the thickness of the film body 30 is preferably 30 ⁇ m to 150 ⁇ m, more preferably 50 ⁇ m to 100 ⁇ m, from the viewpoint of maintaining good foldability.
  • the contact angle of water on the surface of the film body 30 subjected to the charge treatment is preferably 50 ° to 70 ° at room temperature (25 ° C.) from the viewpoint of improving cell adhesion.
  • the above cell culture container 1 is used as follows. First, the cap 20 of the sterilized cell culture container 1 is removed, the container body 10 in which the film body 30 is accommodated is filled with a liquid medium, and then the cells are seeded. Thereafter, the cap 20 is attached to the container body 10 filled with the liquid medium and seeded with the cells. Next, as shown in FIG. 7, the cell culture container 1 is accommodated in an incubator with the container body 10 lying so that at least a part of the surface of the film body 30 is substantially along the horizontal direction, and the cells are cultured. Thereby, a cell adhere
  • the cells cultured in the cell culture vessel 1 include somatic stem cells, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic germ cells (EG cells), mesenchymal stem cells,
  • stem cells such as neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, hepatic stem cells, bone cells, chondrocytes, muscle cells, cardiomyocytes, nerve cells, tendon cells, fat cells, pancreatic cells, hepatocytes, kidney cells
  • stem cells such as neural stem cells, vascular endothelial stem cells, hematopoietic stem cells, hepatic stem cells, bone cells, chondrocytes, muscle cells, cardiomyocytes, nerve cells, tendon cells, fat cells, pancreatic cells, hepatocytes, kidney cells
  • differentiated cells such as hair matrix cells and blood cells, or precursor cells thereof.
  • liquid medium those usually used for cell culture can be used without particular limitation. Specific examples include alpha ⁇ -MEM medium, RPMI-1640 medium, and MEM basic medium.
  • these liquid media contain serum and A biological component such as a cell growth factor (cytokine) may be contained.
  • a biological component such as a cell growth factor (cytokine) may be contained.
  • cytokine cytokine
  • the liquid medium filled in the cell culture container 1 is removed, and then a cell peeling agent such as trypsin is added to the container body 10, so that the container body 10 and the film body 30 are added. Peel off the cells attached to the.
  • the cell culture vessel 1 is placed in a centrifuge as it is and centrifuged (for example, 1000 rpm, 4 ° C., 5 min).
  • the detached cells are collected in the reduced diameter portion 13 of the container body 10 as shown in FIG.
  • FIG. thereby, in the case of performing centrifugation, the surface of the film body 30 can be aligned in the separation direction by centrifugation, so that the cultured cells can be easily separated and collected in the reduced diameter portion 13 of the cylindrical container body 10.
  • the film body 30 folded into a pleated shape is restricted from moving downward by the reduced diameter portion 13. As a result, the cells are collected in the reduced diameter portion 13 while preventing the film body 30 from moving to the distal end side of the container body 10.
  • the container body 10 was formed in a cylindrical shape, and the film body 30 was disposed inside the container body 10. Thereby, in addition to the inner surface of the container main body 10 by using the cell culture container 1 in a state where the container main body 10 is laid so that at least a part of the surface of the film body 30 is in the horizontal direction, Cells can be attached to the surface.
  • the cells cultured on the surfaces of the container body 10 and the film body 30 are peeled off, and then the cell culture container 1 is centrifuged. Therefore, the film body 30 is arranged inside the container body 10 so that the surface of the film body 30 is along the longitudinal direction of the container body 10.
  • the surface of the film body 30 can be aligned in the separation direction by centrifugation (the direction in which gravity is applied), so that the cultured cells can be easily separated and the bottom of the cylindrical container body 10 To be collected. Therefore, the area of the region to which the cells can adhere can be increased, and the cultured cells can be easily collected, so that the efficiency of cell culture can be further improved. In addition, since the cultured cells can be collected without being transferred to another container, it is difficult to cause contamination during cell collection.
  • the container body 10 is configured to include the cylindrical portion 12 and the reduced diameter portion 13.
  • the film body 30 was folded in a pleated shape at a plurality of fold lines 31 and accommodated in the container body 10 so that the fold lines 31 were along the longitudinal direction of the container body 10.
  • the surface area of the film body 30 accommodated in the container main body 10 can be increased, the area of the area
  • the broken line 31 is arranged along the longitudinal direction of the container main body 10, the separability of cells in the case of centrifugation is further improved.
  • the cell culture container 1 is mainly manufactured from polystyrene from the viewpoints of cell adhesion, ease of processing, and the like.
  • the film body is made of polystyrene, the film body is easily broken when the film body is folded, and it is difficult to process the film body into a pleated shape.
  • the film body 30 was comprised with the polyethylene terephthalate film. Thereby, generation
  • the surface of the film body 30 was subjected to charge treatment. Thereby, a functional group can be provided to the surface of the film body 30, and the hydrophilicity of the film body 30 can be enhanced. Therefore, the adhesiveness of the cells to the surface of the film body 30 can be further improved.
  • the cell culture container 1 of the second embodiment differs from the first embodiment in the arrangement of the film body 30 inside the container body 10.
  • the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the film body 30 is rolled into a cylindrical shape so that the extending direction of the fold line 31 becomes the height direction in a folded state in a pleated shape.
  • the height H of the folds that is, the length between the two folding lines 31 arranged adjacent to each other is equal to or less than the radius r of the cylindrical portion 12, and more preferably, the radius of the cylindrical portion 12. 70% to 90% of r.
  • the cell culture container 1 of the second embodiment is particularly preferably used in a microgravity environment.
  • the microgravity environment refers to a very gravity smaller environment than on the ground, for example, and the environment (10 -3 G) in the space station, gravity distributed simulated microgravity device (e.g., JP 2003-9852 An environment that can be realized using a gazette).
  • the above-mentioned cell culture vessel can be suitably used for a Rotary Cell Culture System (RCCS; Synthecon), which is a three-dimensional culture system.
  • RCCS Rotary Cell Culture System
  • cells can reduce the influence of gravity. Therefore, the cells can grow by adhering not only to the upper surface of the horizontal plane but also to all surfaces inside the cell culture container 1. Therefore, by using the cell culture container 1 of the second embodiment in a microgravity environment or RCCS, cells can be grown on the entire surface of the film body 30 folded in a pleat shape. Thereby, the efficiency of cell culture in the cell culture vessel 1 can be greatly improved.
  • the gravity-dispersed simulated microgravity device 100 includes a container housing part 110 that can house a plurality of or a single cell culture container 1, and the container housing part 110 as a first shaft.
  • a first support part 120 that rotatably supports 125 with a rotation axis; a second support part 130 that rotatably supports the container housing part 110 with a second axis 135 orthogonal to the first axis 125 as a rotation axis;
  • a control unit (not shown) for controlling the rotation of the container housing unit 110.
  • the simulated microgravity device 100 disperses the gravity applied to the container housing portion 110 by rotating the container housing portion 110 about two orthogonal axes 125 and 135, thereby simulating a microgravity environment. Realize.
  • the film body 30 was accommodated in the container body 10 in a state of being rounded into a cylindrical shape. Thereby, the film body 30 folded in a pleat shape can be accommodated in the container body 10 with a larger surface area. Moreover, since the film body 30 can be arrange
  • the arrangement of the film body 30 inside the container body 10 is not limited to the arrangement of the first embodiment and the second embodiment. That is, as shown in FIG. 13, a plate-like PET film 32 smaller than the inner diameter of the container body 10 is arranged in a plurality of layers at predetermined intervals in the thickness direction, and the plurality of PET films 32 are arranged.
  • the film body 30 may be configured by being integrated by a disk-like support plate 33 that is substantially equal to the inner diameter of the container body 10.
  • the film body 30 is made of a PET film, but the present invention is not limited to this. That is, you may comprise a film body with other synthetic resin films, such as a polystyrene film and a polypropylene film.

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 より効率的に細胞を培養できる細胞培養容器を提供すること。 細胞培養容器1は、一端側に開口部11が形成された筒状の容器本体10と、容器本体10の開口部11に着脱可能に取り付けられるキャップ20と、キャップ20に設けられ、液密性を有し、かつ、気体の流通を許容するガス透過領域22と、容器本体10の内部に配置され、培養細胞が接着可能なフィルム体30と、を備え、フィルム体30は、フィルム体30の表面が容器本体10の長手方向に沿うように配置される。

Description

細胞培養容器
 本発明は、体性幹細胞、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の細胞を効率的に培養できる細胞培養容器に関する。
 従来、体性幹細胞、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)等の細胞を培養する場合には、滅菌された樹脂製の細胞培養容器が用いられる(例えば、特許文献1参照)。より具体的には、細胞の培養は、細胞培養容器に培養する細胞と共に液体の培地を充填し、この細胞及び培地が充填された細胞培養容器を所定の環境下に静置して行われる。
特開平10-179137号公報
 ところで、細胞は、多くの場合、細胞培養容器の内面に接着して増殖する。特許文献1で提案されたような細胞培養容器を用いて細胞を培養した場合、細胞は、細胞培養容器の底面に接着して増殖していく。
 そして、増殖させた細胞を採取する場合には、まず、細胞培養容器にトリプシン等の細胞剥離剤を添加して細胞を細胞培養容器から剥離させる。次いで、細胞培養容器から剥離された細胞を培地と共にピペット等を用いて遠心分離用の容器(チューブ)に移した後、遠心分離を行って細胞を沈降させる。これにより、細胞が採取される。
 このように、従来の手法では、培養した細胞を採取するために、ピペット等を用いて細胞を他の容器に移す手順が必要であった。また、細胞培養容器の底面によってしか細胞を増殖させられなかった。
 従って、本発明は、より効率的に細胞を培養できる細胞培養容器を提供することを目的とする。
 本発明は、一端側に開口部が形成された筒状の容器本体と、前記容器本体の開口部に着脱可能に取り付けられるキャップと、前記キャップに設けられ、液密性を有し、かつ、気体の流通を許容するガス透過領域と、前記容器本体の内部に配置され、表面に培養細胞が接着可能なフィルム体と、を備え、前記フィルム体は、該フィルム体の表面が前記容器本体の長手方向に沿うように配置される細胞培養容器に関する。
 また、前記容器本体は、該容器本体の一端側に配置される円筒部と、前記円筒部の先端側に配置され、基端側から先端側に向かって縮径する縮径部と、を備えることが好ましい。
 また、前記フィルム体は、所定間隔をあけて互いに平行に延びる複数の折線によりひだ状に折り畳まれると共に、該複数の折線が前記容器本体の長手方向に沿って配置されることが好ましい。
 また、前記フィルム体は、筒状に丸めた状態で前記容器本体の内部に収容されることが好ましい。
 また、前記複数の折線が、該細胞培養容器を遠心する際に重力がかかる方向と平行であることが好ましい。
 また、隣り合って配置される2つの前記折線の間の長さは、前記円筒部の半径以下であることが好ましい。
 また、前記フィルム体は、ポリエチレンテレフタレートフィルムにより構成されることが好ましい。
 また、前記フィルム体の表面には、電荷処理が施されていることが好ましい。
 本発明の細胞培養容器によれば、より効率的に細胞を培養できる。
本発明の第1実施形態に係る細胞培養容器を示す斜視図である。 第1実施形態の細胞培養容器を示す正面図である。 第1実施形態の細胞培養容器を示す分解斜視図である。 図1のA-A線断面図である。 フィルム体を展開した状態を示す図である。 図2のB-B線断面図である。 第1実施形態の細胞培養容器により細胞を培養している状態を模式的に示す図である。 第1実施形態の細胞培養容器により培養した細胞を集めている状態を模式的に示した図である。 本発明の第2実施形態に係る細胞培養容器を示す斜視図である。 第2実施形態の細胞培養容器を示す分解斜視図である。 第2実施形態の細胞培養容器の断面図であり、図6に対応する図である。 模擬微小重力装置を示す図である。 細胞培養容器の変形例を示す分解斜視図である。 細胞培養容器の他の変形例を示す断面図であり、図6に対応する図である。
 以下、本発明の細胞培養容器の好ましい各実施形態について、図面を参照しながら説明する。
 まず、第1実施形態に係る細胞培養容器につき、図1~図6を参照しながら説明する。
 第1実施形態の細胞培養容器1は、図1~図3に示すように、容器本体10と、この容器本体10に着脱可能に取り付けられるキャップ20と、容器本体10の内部に収容されるフィルム体30と、を備える。
 容器本体10は、図3及び図4に示すように、一端側に開口部11が形成され、他端側が閉止された筒状に形成される。この容器本体10は、円筒部12と、縮径部13と、を備える。
 円筒部12は、容器本体10の一端側、即ち、開口部11が形成された側に配置される。この円筒部12の開口部11側の端部近傍の外周面には、ねじ山121が形成される。
 縮径部13は、円筒部12における開口部11が形成された側と反対側(先端側)の端部に配置される。この縮径部13は、基端側から先端側に向かって縮径した円錐形状に形成される。
 以上の容器本体10は、透明性を有する、合成樹脂、又はガラスにより構成される。容器本体10の材質としては、上述の透明性、及び細胞の接着良好性の観点から、通常はポリスチレンにより構成されることが一般的であるが、遠心時の強度改善のため、PP(ポリプロピレン)、或いはPET(ポリエチレンテレフタレート)で構成されてもよい。
 また、容器本体10の内面には、細胞の接着性を向上させるために、プラズマ放電等の電荷処理が施されていることが好ましい。
 容器本体10は、遠心分離器に使用可能な遠心分離管と同様の形状及び大きさ(例えば、容量50mlの遠心分離管(コニカルチューブ)と同形同大)に形成される。
 キャップ20は、キャップ本体21と、このキャップ本体21に設けられたガス透過領域22と、Oリング23(図4参照)と、を備える。
 キャップ本体21は、容器本体10の外周面に被嵌される筒状の被嵌部211と、この被嵌部211の一端側を塞ぐ端面部212と、を備える。被嵌部211の内面には、容器本体10(円筒部12)に形成されたねじ山121に対応する形状のねじ溝213が形成される。
 ガス透過領域22は、液密性を有し、かつ、気体の流通を許容する領域である。このガス透過領域22は、キャップ本体21の端面部212に設けられる。ガス透過領域22は、端面部212に形成された複数の貫通孔221と、キャップ本体21における端面部212の内面側に配置されたガス透過膜222と、により構成される。
 ガス透過膜222は、液体を通さずに、二酸化炭素や酸素等の気体の流通を許容する。ガス透過膜222としては、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、シリコーン樹脂、ポリ4-メチルペンテン-1、ポリイソプレン、ポリブタジエン、エチレン酢酸ビニル共重合体及びポリスチレン等のフィルムを、厚さ100μm程度の膜状に構成したものが挙げられる。
 Oリング23は、キャップ本体21の内面側に配置される。このOリング23は、容器本体10にキャップ20を取り付けた場合に、キャップ20と容器本体10との間の液密性を維持する。
 フィルム体30は、ポリエチレンテレフタレートフィルム(以下、PETフィルムともいう)により構成される。第1実施形態では、フィルム体30は、図5に示すように、矩形形状のPETフィルムが、所定間隔をあけて互いに平行に形成された複数の折線31において交互に折り返されて、ひだ状に折り畳まれて構成されている。そして、折り畳まれたフィルム体30は、図1及び図3に示すように、折線31が容器本体10の長手方向に沿うように容器本体10の内部に収容される。即ち、フィルム体30の表面は、容器本体10の長手方向に沿うように配置される。
 フィルム体30の表面(両面)には、細胞の接着性を向上させるために、プラズマ放電等の電荷処理が施されていることが好ましい。このフィルム体30の表面の電荷処理は、折線31が形成される前の状態のPETフィルムに施される。これにより、フィルム体30への電荷処理を容易かつ均一に施せる。
 フィルム体30の厚さは、折り畳み性を良好に保つ観点から、好ましくは30μm~150μm、より好ましくは50μm~100μmである。
 また、電荷処理を施したフィルム体30の表面における水の接触角は、細胞の接着性を向上させる観点から、室温(25℃)において、50度~70度であることが好ましい。
 以上の細胞培養容器1は、以下のようにして用いられる。
 まず、滅菌された状態の細胞培養容器1のキャップ20を取り外し、フィルム体30が収容された容器本体10に液体培地を充填し、次いで、細胞を播種する。その後、液体培地が充填され、細胞が播種された容器本体10にキャップ20を取り付ける。
 次いで、細胞培養容器1を、図7に示すように、フィルム体30の表面の少なくとも一部が水平方向にほぼ沿うように容器本体10を寝かせた状態でインキュベータに収容して細胞を培養する。
 これにより、寝かせた状態の容器本体10の下部に位置する内面及びフィルム体30に細胞が接着し、増殖する。
 尚、細胞培養容器1により培養される細胞としては、体性幹細胞、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖細胞(EG細胞)、間葉系幹細胞、神経幹細胞、血管内皮幹細胞、造血系幹細胞、肝幹細胞等の幹細胞の他に、骨細胞、軟骨細胞、筋細胞、心筋細胞、神経細胞、腱細胞、脂肪細胞、膵細胞、肝細胞、腎細胞、毛母細胞、血球細胞等の分化した細胞又はその前駆細胞が挙げられる。
 また、液体培地としては、通常、細胞培養に用いられるようなものを、特に制限なく用いることができる。具体的には、アルファα-MEM培地、RPMI-1640培地、MEM基本培地等が挙げられる。
 尚、これらの液体培地には、ナトリウム、カリウム、カルシウム、マグネシウム、リン、塩素、アミノ酸、ビタミン、ホルモン、抗生物質、脂肪酸、糖等の化学成分に加えて、細胞増殖効果を高めるため、血清や細胞増殖因子(サイトカイン)のような生体成分を含有させてもよい。ただし、血清や細胞増殖因子等の生体成分を加えることにより、BSE等に感染する可能性や、細胞が癌化する可能性があるため、これらの生体成分を用いないことが好ましい。
 次に、培養して増殖させた細胞を回収する手順につき説明する。
 培養した細胞を回収する場合には、まず、細胞培養容器1に充填された液体培地を除去し、その後、容器本体10にトリプシン等の細胞剥離剤を添加して、容器本体10及びフィルム体30に接着した細胞を剥離させる。次いで、細胞培養容器1を、そのまま遠心分離器に設置して遠心分離(例えば、1000rpm、4℃、5min)を行う。
 これにより、剥離された細胞は、図8に示すように、容器本体10の縮径部13に集められる。ここで、第1実施形態では、フィルム体30の表面が容器本体10の長手方向に沿うように配置されている。これにより、遠心分離を行う場合において、フィルム体30の表面を遠心分離による分離方向に沿わせられるので、培養した細胞を容易に分離して筒状の容器本体10の縮径部13に集められる。また、ひだ状に折り畳まれたフィルム体30は、縮径部13により下方への移動が制限される。これにより、フィルム体30が容器本体10の先端側に移動することを防ぎつつ、細胞を縮径部13に集められる。
 以上説明した第1実施形態の細胞培養容器1によれば、以下のような効果を奏する。
 (1)容器本体10を筒状に構成し、この容器本体10の内部にフィルム体30を配置した。これにより、細胞培養容器1を、フィルム体30の表面の少なくとも一部が水平方向に沿うように容器本体10を寝かせた状態で使用することで、容器本体10の内面に加え、フィルム体30の表面にも細胞を接着させられる。また、培養した細胞を回収する場合には、容器本体10及びフィルム体30の表面で培養した細胞を剥離させた後、この細胞培養容器1を遠心分離する。そこで、容器本体10の内部にフィルム体30を、このフィルム体30の表面が容器本体10の長手方向に沿うように配置した。これにより、遠心分離を行う場合において、フィルム体30の表面を遠心分離による分離方向(重力がかかる方向)に沿わせられるので、培養した細胞を容易に分離して筒状の容器本体10の底部に集められる。よって、細胞が接着できる領域の面積を増加させられ、かつ、培養した細胞を容易に集められるので、細胞培養の効率をより向上させられる。また、培養した細胞を別の容器に移すことなく回収できるので、細胞回収時にコンタミネーションを起こしにくくできる。
 (2)容器本体10を、円筒部12と縮径部13とを含んで構成した。これにより、細胞を培養した後の細胞培養容器1を遠心分離した場合に、フィルム体30が容器本体10の先端側に移動することを防ぎつつ、細胞を縮径部13に集められる。よって、遠心分離した細胞を回収しやすくできるので、細胞培養容器1を用いた細胞培養の効率をより向上させられる。
 (3)フィルム体30を、複数の折線31においてひだ状に折り畳むと共に、この折線31が容器本体10の長手方向に沿うように容器本体10に収容した。これにより、容器本体10に収容するフィルム体30の表面積を増加させられるので、細胞が接着できる領域の面積をより増加させられる。また、折線31を容器本体10の長手方向に沿うように配置したので、遠心分離を行った場合における細胞の分離性をより高められる。
 (4)細胞培養容器1は、細胞の接着性、及び加工の容易性等の観点から、主としてポリスチレンにより製造される。しかしながら、ポリスチレンによりフィルム体を構成した場合、このフィルム体を折り畳むとフィルム体が割れやすく、フィルム体をひだ状に加工することが困難であった。そこで、フィルム体30を、ポリエチレンテレフタレートフィルムにより構成した。これにより、フィルム体30を折り畳んだ場合におけるフィルム体30の割れの発生を防げる。よって、フィルム体30の加工の容易性を向上させられるので、細胞培養に適した形状のフィルム体30を容易に製造できる。
 (5)フィルム体30の表面に電荷処理を施した。これにより、フィルム体30の表面に官能基を付与でき、フィルム体30の親水性を高められる。よって、フィルム体30の表面に対する細胞の接着性をより向上させられる。
 次に、本発明の細胞培養容器の第2実施形態につき、図9~図11を参照しながら説明する。
 第2実施形態の細胞培養容器1は、容器本体10の内部におけるフィルム体30の配置において第1実施形態と異なる。尚、第2実施形態以降の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第2実施形態では、フィルム体30は、図9~図11に示すように、ひだ状に折り畳まれた状態で、折線31の延びる方向が高さ方向となるように筒状に丸められて容器本体10に収容される。
 第2実施形態では、ひだの高さH、つまり、隣り合って配置される2つの折線31の間の長さは、円筒部12の半径r以下であり、より好ましくは、円筒部12の半径rの70%~90%である。
 第2実施形態の細胞培養容器1は、微小重力環境において特に好適に用いられる。微小重力環境とは、地上に比して極めて重力の小さい環境をいい、例えば、宇宙ステーションにおける環境(10-3G)や、重力分散型の模擬微小重力装置(例えば、特開2003-9852号公報参照)を用いて実現できる環境をいう。或いは、重力の影響を減少するという点から、上記の細胞培養容器は3次元培養システムであるRotary Cell Culture System(RCCS;シンセコン社)にも、好適に使用できる。
 微小重力環境、或いはRCCSのような単軸の回転培養容器で実現できる重力の影響を減少する環境においては、細胞は、重力の影響を小さくすることができる。そのため、細胞は、水平面の上面のみではなく、細胞培養容器1の内部におけるすべての面に接着して増殖できる。そのため、第2実施形態の細胞培養容器1を微量重力環境やRCCSにおいて使用することで、ひだ状に折り畳まれたフィルム体30の表面の全面において細胞を増殖させられる。これにより、細胞培養容器1における細胞培養の効率を大きく向上させられる。
 尚、重力分散型の模擬微小重力装置100は、図12に示すように、複数、或いは単一の細胞培養容器1を収容可能な容器収容部110と、この容器収容部110を第1の軸125を回転軸として回転可能に支持する第1支持部120と、容器収容部110を第1の軸125に直交する第2の軸135を回転軸として回転可能に支持する第2支持部130と、容器収容部110の回転を制御する制御部(図示せず)と、を備える。そして、模擬微小重力装置100は、容器収容部110を、直交する2つの軸125,135を中心として回転させることで、容器収容部110にかかる重力を分散させて、模擬的に微小重力環境を実現する。
 以上説明した第2実施形態の細胞培養容器1によれば、上述した(1)~(5)の効果を奏する他、以下のような効果を奏する。
 (6)フィルム体30を筒状に丸めた状態で容器本体10に収容した。これにより、ひだ状に折り畳んだフィルム体30を、より表面積を多くした状態で容器本体10に収容できる。また、容器本体10の内部において、フィルム体30を均等に配置できるので、細胞培養容器1に充填された培地の流動性の偏りを生じにくくできる。よって、細胞培養の効率を更に向上させられる。
 (7)隣り合って配置される2つの折線31の間の長さを円筒部12の半径以下にした。これにより、フィルム体30に形成されるひだの高さを円筒部12の半径以下にできるので、フィルム体30を筒状に丸めた場合に、ひだ同士が過剰に重なり合うことを防げる。よって、フィルム体30同士が過剰に重なりあうことにより、細胞の接着及び増殖が妨げられることを防げる。
 以上、本発明の細胞培養容器1の好ましい各実施形態につき説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、容器本体10の内部におけるフィルム体30の配置は、第1実施形態及び第2実施形態の配置に限らない。即ち、図13に示すように、容器本体10の内径よりも小さい板状のPETフィルム32を、厚さ方向に所定間隔をあけて複数枚層状に配置する共に、これら複数枚のPETフィルム32を容器本体10の内径と略等しい円板状の支持板33により一体化させてフィルム体30を構成してもよい。また、図14に示すように、PETフィルムを渦巻き状に丸めた状態で容器本体10に収容してフィルム体30を構成してもよい。
 また、第1実施形態及び第2実施形態では、フィルム体30をPETフィルムにより構成したが、これに限らない。即ち、フィルム体を、ポリスチレンフィルム、ポリプロピレンフィルム等の他の合成樹脂フィルムにより構成してもよい。
 1 細胞培養容器
 10 容器本体
 11 開口部
 12 円筒部
 13 縮径部
 20 キャップ
 22 ガス透過領域
 30 フィルム体
 31 折線

Claims (8)

  1.  一端側に開口部が形成された筒状の容器本体と、
     前記容器本体の開口部に着脱可能に取り付けられるキャップと、
     前記キャップに設けられ、液密性を有し、かつ、気体の流通を許容するガス透過領域と、
     前記容器本体の内部に配置され、表面に培養細胞が接着可能なフィルム体と、を備え、
     前記フィルム体は、該フィルム体の表面が前記容器本体の長手方向に沿うように配置される細胞培養容器。
  2.  前記容器本体は、
      該容器本体の一端側に配置される円筒部と、
      前記円筒部の先端側に配置され、基端側から先端側に向かって縮径する縮径部と、を備える請求項1に記載の細胞培養容器。
  3.  前記フィルム体は、所定間隔をあけて互いに平行に延びる複数の折線によりひだ状に折り畳まれると共に、該複数の折線が前記容器本体の長手方向に沿って配置される請求項1又は2に記載の細胞培養容器。
  4.  前記複数の折線が、該細胞培養容器を遠心する際に重力がかかる方向と平行である請求項3に記載の細胞培養容器。
  5.  前記フィルム体は、筒状に丸めた状態で前記容器本体の内部に収容される請求項3又は4に記載の細胞培養容器。
  6.  隣り合って配置される2つの前記折線の間の長さは、前記円筒部の半径以下である請求項5に記載の細胞培養容器。
  7.  前記フィルム体は、ポリエチレンテレフタレートフィルムにより構成される請求項1~6のいずれかに記載の細胞培養容器。
  8.  前記フィルム体の表面には、電荷処理が施されている請求項1~7のいずれかに記載の細胞培養容器。
PCT/JP2014/057389 2013-03-22 2014-03-18 細胞培養容器 WO2014148507A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013059700A JP6169869B2 (ja) 2013-03-22 2013-03-22 細胞培養容器
JP2013-059700 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148507A1 true WO2014148507A1 (ja) 2014-09-25

Family

ID=51580184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057389 WO2014148507A1 (ja) 2013-03-22 2014-03-18 細胞培養容器

Country Status (2)

Country Link
JP (1) JP6169869B2 (ja)
WO (1) WO2014148507A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253518A1 (en) * 2022-03-31 2023-10-04 Pall Corporation Cell culture arrangement, device and method of use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732245B2 (ja) * 2016-03-31 2020-07-29 株式会社ツーセル 細胞培養装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445783A (ja) * 1990-06-11 1992-02-14 Konpetsukusu:Kk 通気性キャップ及び雑菌遮断通気性培養容器
JP2007500505A (ja) * 2003-07-31 2007-01-18 ブルー メンブレーンス ゲーエムベーハー 細胞の培養及び増殖方法
JP2007222037A (ja) * 2006-02-22 2007-09-06 Sumitomo Bakelite Co Ltd 細胞培養遠心分離管
JP2010518879A (ja) * 2007-02-26 2010-06-03 コーニング インコーポレイテッド 細胞培養において気泡の形成を減少させるための装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445783A (ja) * 1990-06-11 1992-02-14 Konpetsukusu:Kk 通気性キャップ及び雑菌遮断通気性培養容器
JP2007500505A (ja) * 2003-07-31 2007-01-18 ブルー メンブレーンス ゲーエムベーハー 細胞の培養及び増殖方法
JP2007222037A (ja) * 2006-02-22 2007-09-06 Sumitomo Bakelite Co Ltd 細胞培養遠心分離管
JP2010518879A (ja) * 2007-02-26 2010-06-03 コーニング インコーポレイテッド 細胞培養において気泡の形成を減少させるための装置および方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253518A1 (en) * 2022-03-31 2023-10-04 Pall Corporation Cell culture arrangement, device and method of use

Also Published As

Publication number Publication date
JP6169869B2 (ja) 2017-07-26
JP2014183752A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP6153357B2 (ja) 細胞培養容器
JP6524188B2 (ja) 生細胞の産物をキャップろ過により分離する方法
CA2884865A1 (en) Disposable bottle reactor tank
KR20140135204A (ko) 세포를 보유하고 재순환시키기 위한 일회용 분리기
JP6588845B2 (ja) 細胞培養容器および細胞培養容器の固定用治具
JP6169869B2 (ja) 細胞培養容器
JP2015188391A (ja) 細胞培養方法、及び細胞培養システム
WO2020196635A1 (ja) 細胞操作デバイス及び細胞操作方法
JP2016059355A (ja) 細胞培養容器
WO2018038032A1 (ja) 環状培養容器、細胞培養システム、及び細胞培養方法
CN105886398A (zh) 三维内腔的软膜生物反应器及其支撑架
CN116042373A (zh) 一种持续生产并分离纯化细胞外泌体的系统及使用方法
JP2021052619A (ja) 基材フィルム体及びそれを用いた細胞培養装置
JP2016007170A (ja) 細胞培養容器
JP6732245B2 (ja) 細胞培養装置
JP6494193B2 (ja) 細胞培養のためのガス透過性膜層を備えた遠心分離チャンバ
JP2007222037A (ja) 細胞培養遠心分離管
JP2021052620A (ja) 基材フィルム体の製造方法
JP2017029095A (ja) 細胞培養装置
WO2018066287A1 (ja) 細胞培養容器、細胞培養システム、細胞培養方法、及び細胞培養容器の製造方法
JP2015012862A (ja) 細胞培養のためのガス透過性膜を備えた遠心分離チャンバ
CN111417713A (zh) 灌注生物反应器系统及灌注细胞培养方法
WO2019017463A1 (ja) 脆弱物保持デバイス
CN216712123U (zh) 一种透气的消化培养皿
CN219709492U (zh) 细胞培养装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768437

Country of ref document: EP

Kind code of ref document: A1