WO2014148228A1 - 電池パック及び電気機器 - Google Patents

電池パック及び電気機器 Download PDF

Info

Publication number
WO2014148228A1
WO2014148228A1 PCT/JP2014/055094 JP2014055094W WO2014148228A1 WO 2014148228 A1 WO2014148228 A1 WO 2014148228A1 JP 2014055094 W JP2014055094 W JP 2014055094W WO 2014148228 A1 WO2014148228 A1 WO 2014148228A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
electric device
main body
signal
power
Prior art date
Application number
PCT/JP2014/055094
Other languages
English (en)
French (fr)
Inventor
高野 信宏
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Priority to US14/773,692 priority Critical patent/US9893343B2/en
Priority to EP14770752.5A priority patent/EP2978100A4/en
Priority to JP2015506675A priority patent/JP6098905B2/ja
Priority to CN201480013246.0A priority patent/CN105009401B/zh
Publication of WO2014148228A1 publication Critical patent/WO2014148228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and an electric device that operates on the battery pack.
  • a so-called cordless power tool using a rechargeable battery pack as a power source is widely used.
  • a battery pack usually includes a cell set in which a plurality of battery cells are connected in series, and a lithium ion battery is mainly used as a battery type.
  • a battery pack using a lithium ion battery incorporates a protection IC for monitoring the voltage of each battery cell or voltage monitoring means having the same function. If any battery cell is short-circuited or the voltage of the battery cell has reached the threshold value for overdischarge, an alarm signal is output from the protection IC and the use of the battery pack is stopped in response to this. This is to make it happen.
  • a power tool premised on the use of a battery pack with a built-in protection IC uses a switching element composed of an FET or the like provided in a current path flowing from the battery pack to the motor in the power tool as an alarm signal output from the protection IC. It is configured to be turned off in response to forcibly terminating the use of the battery pack (see, for example, Patent Document 1).
  • the battery pack 2 includes a switch operation detection circuit 36.
  • the switch 10 provided in the power supply path of the electric device main body 1 When the switch 10 provided in the power supply path of the electric device main body 1 is operated, an operation signal notifying that the switch 10 has been operated is output to the battery pack 2 via the S terminal.
  • the MCU 31 provided in the battery pack 2 detects that the switch 10 has been operated by the switch operation detection circuit 35, the MCU 31 outputs a discharge permission signal for permitting discharge to the electric device body 1 via the S terminal.
  • the drive circuit 23 transmits the discharge permission signal to the switching element 24 provided in the power supply path, and power supply to the motor 40 is started through the power supply path.
  • the battery pack 2 includes a monitoring circuit including a current detection circuit 32, a voltage detection circuit 33, a temperature detection circuit 34, and an MCU 31.
  • the MCU 31 When an abnormality occurs in the cell set 3, the MCU 31 outputs a stop signal for cutting off power supply to the S terminal.
  • the electrical device main body 1 When a stop signal is input from the S terminal, the electrical device main body 1 outputs a stop signal from the drive circuit 23 to the switching element 24 to cut off power supply.
  • FIG. 7 shows a state in which the battery pack is connected to such an electric device main body 1.
  • an operation signal notifying that the switch 10 has been operated is not input from the electric device body 1, but since there is no switching element 24 that cuts off the power supply circuit inside the electric device body 1, even the switch 10 is operated.
  • the power supply circuit becomes conductive and power supply is started.
  • the electric device main body as shown in FIG. 6 and the electric device main body as shown in FIG. 7 are configured to be able to cut off the power supply when the cell set is abnormal even when connected to either of them.
  • a battery pack was not provided. In recent years, the capacity of cells has been increased. However, when a cell with a capacity exceeding a certain level is used, the Electrical Appliance and Material Safety Law stipulates that the power supply is cut off when the cell set is abnormal. When it is intended to develop a battery pack having a large capacity that can be used in any of the electric device main bodies shown in FIGS. 6 and 7, that is, it is necessary to solve this first problem.
  • the abnormality is detected only by the monitoring circuit provided in the battery pack 2 and the power supply is reduced or cut off, but the connected electric device main body 1 has a high output.
  • the battery pack 2 is connected to the low load type electric device main body, it is slow to reduce or cut off the power supply after the abnormality of the cell set 3 occurs, rather the electric device main body abnormality occurs first. It may be appropriate to reduce or cut off the power supply earlier.
  • the second problem arises that not only the battery pack but also the electric device main body should be protected. *
  • the S terminal which is a signal terminal for connecting the battery pack and the power tool
  • the power cannot be correctly switched on / off.
  • a battery pack with an inappropriate rated voltage or the like is connected to the power tool, there is a third problem that the power cannot be turned off on the power tool side.
  • An object of this invention is to provide the battery pack which can solve at least any one of the problem mentioned above, and an electric equipment provided with the same.
  • the present invention provides a battery pack that is detachably connected to an electric device body having a switch, and permits the supply of electric power to the electric device body when the switch is operated.
  • a first power control circuit that outputs a first signal to the electric device main body, a second switching element provided in a power supply path for supplying electric power to the electric device main body, and the battery pack And a second power control circuit for outputting to the second switching element a second signal for reducing or cutting off the power supplied to the main body of the electric device when an abnormality occurs.
  • a battery pack is provided. *
  • the battery pack When the first signal is input, the battery pack may be connected to the electric device main body provided with a first switching element that permits power supply in a power supply path.
  • the battery pack may be connected to the electric device main body that permits supply of power when the switch is operated.
  • Third power control for outputting a third signal for reducing or cutting off the power supplied to the third switching element provided in the power supply path via the power supply path when an abnormality occurs in the electric device main body. You may connect this battery pack to this electric equipment main body provided with the circuit. *
  • the present invention is an electrical device in which a battery pack is connected to the electrical device main body, and when an abnormality occurs in at least one of the electrical device main body or the battery pack, a third power supply path is provided.
  • the electric device main body including a third power control circuit that outputs a third signal for reducing or cutting off the electric power supplied to the switching element via the electric power supply path, and an abnormality in the electric device main body or the battery pack
  • a battery pack including a second power control circuit that outputs a second signal for reducing or blocking power supplied to the second switching element provided in the power supply path via the power supply path
  • an electric device characterized by comprising: *
  • the electric device main body and the battery pack can reduce or cut off the power supply. Even if a contact failure occurs in a terminal that transmits a signal between the device main body and the battery pack, it is possible to escape from an abnormal state at an early stage. That is, the second problem described above can be solved.
  • a reference for switching whether or not to output the third signal in the electric device main body and a reference for switching whether or not to output the second signal in the battery pack may be different from each other.
  • the electric device main body and the battery pack can control power supply interruption or stop based on different standards, for example, a high-load type electric device main body including a high-output motor or the like
  • a high-load type electric device main body including a high-output motor or the like When a battery pack is connected to the battery pack, the reference for shutting off or stopping the power supply from the electric device body is set relatively high, and the reference for shutting off or stopping the power supply from the battery pack is set relatively low.
  • the electric power can be supplied to the main body of the electric device up to the limit that the battery pack can output, and a high-load operation can be performed.
  • a reference for cutting off or stopping power supply from the electric device main body is set relatively low, and the battery pack is By setting the reference for cutting off or stopping the power supply to be relatively high, it is possible to avoid exceeding the power that can be withstood by the lamp of the main body of the electric appliance. That is, the second problem described above can be solved.
  • the present invention provides a connection unit connected to a secondary battery, a blocking unit that blocks current from the secondary battery, a state monitoring unit that monitors a state of the secondary battery, and a state monitoring unit.
  • a connection unit connected to a secondary battery
  • a blocking unit that blocks current from the secondary battery
  • a state monitoring unit that monitors a state of the secondary battery
  • a state monitoring unit that monitors a state of the secondary battery
  • an electric device characterized by having foreseeing an abnormality based on a monitoring result and determining means for cutting off a current from the secondary battery when the abnormality is foreseen.
  • the electric device independently predicts an abnormality originating from the battery pack regardless of the battery pack, and can appropriately cut off the power. That is, the third problem described above can be solved.
  • the secondary battery has a predetermined rated value, and the judging means compares the predetermined value based on the rated value of the secondary battery with the monitoring result of the state monitoring means, thereby detecting an abnormality. It is preferable to judge. According to such a configuration, abnormality of the secondary battery can be properly predicted.
  • the determination unit determines an abnormality by comparing a predetermined value based on a rated value of the electric device with a monitoring result of the state monitoring unit.
  • an electric current can be interrupted
  • the state monitoring unit preferably monitors at least one of a current supplied from the secondary battery and a voltage applied by the secondary battery.
  • the motor further includes a rated value of the electrical device that is a rated voltage of the motor, and the determination unit determines that the voltage applied from the secondary battery is outside the rated voltage range of the motor.
  • the current from the secondary battery to the motor is preferably interrupted by the interrupting means.
  • the motor further includes a rated value of the electric device that is a rated current of the motor, and the determination unit determines that the current supplied from the secondary battery is outside the rated current range of the motor.
  • the current from the secondary battery to the motor is preferably interrupted by the interrupting means.
  • the secondary battery outputs an alarm signal to notify the warning based on its own state to the connection means, and the determination means outputs a current to the interruption means when the connection means inputs the alarm signal. It is preferable that the interruption means not cut off the current when the monitoring result of the state monitoring means does not predict an abnormality and the alarm signal is not received. According to such a configuration, the current can be appropriately interrupted based on the determination result of the determination means and the alarm signal.
  • a battery pack that solves at least one of the first to third problems described above and an electric device including the battery pack can be provided.
  • FIG. 1 is a block diagram showing an electrical configuration of a battery pack and an electric device main body according to a first embodiment of the present invention. It is the block diagram which showed the electrical structure of the battery pack and electric equipment main body by the 2nd Embodiment of this invention. It is the block diagram which showed the electrical structure of the battery pack and electric equipment main body by the 3rd Embodiment of this invention. It is the block diagram which showed the electrical structure of the battery pack and electric equipment main body by the 4th Embodiment of this invention. It is the block diagram which showed the electrical structure of the battery pack and electric equipment main body by the conventional 1st example. It is the block diagram which showed the electrical structure of the battery pack and electric equipment main body by the conventional 2nd example.
  • FIG. 1 is a view showing a state in which a battery pack 2 having a three-terminal configuration, which will be described later, which is a secondary battery, and a monitoring-compatible power tool body 1 are mounted.
  • the electric tool main body 1 includes a motor 40 and a controller 20, and a switching element such as an FET is inserted in a current path through which a current flows to the motor 40.
  • a switching element such as an FET is inserted in a current path through which a current flows to the motor 40.
  • an S terminal for inputting an alarm signal is formed on the battery pack connection surface.
  • the tool-side S terminal is a terminal for inputting an alarm signal output from the battery pack 2 when at least one cell voltage reaches a threshold value for reaching an overdischarge state.
  • the power tool body 1 is provided with a trigger switch 10 for driving the power tool. *
  • the battery pack 2 monitors the voltage of each battery cell 3 in which a plurality of cells are connected in series, and an alarm when the voltage of at least one of the battery cells falls below a reference value.
  • a controller 30 as battery voltage monitoring means for outputting a signal is incorporated.
  • the plus terminals and the minus terminals are electrically connected to each other, and the S terminal of the battery pack 2 and the S terminal on the tool body side are also electrically connected. Connected to.
  • the S terminal on the tool body 1 side is connected to the controller 20.
  • the controller 20 turns off the FET, opens the current path, and forcibly terminates the use of the battery pack 2.
  • FIG. 2 is a block diagram showing an electrical configuration of the battery pack 2 and the power tool main body 1.
  • the cell set 3 has a plurality of battery cells such as lithium ions connected in series. Although omitted in FIG. 2, a plurality of cell sets 3 may be connected in parallel. Examples include a battery pack 2 of 14.4V in which 4 series of battery cells having a rated voltage of 3.6V are in series, and a battery pack 2 having 5 series of battery cells in which the rated voltage is 3.6V. Further, the battery capacity of the battery pack 2 is determined according to the battery capacity per cell and the number of the cell sets 3 arranged in parallel.
  • 3.0Ah battery cells having two 1.5A cell groups arranged in parallel per battery cell for example, 3.0Ah battery cells having two 1.5A cell groups arranged in parallel per battery cell, or 4.0Ah battery cells having two 2.0A cell groups arranged in parallel. Use one.
  • the number of cell groups and the capacity per battery cell are not limited to these.
  • the battery pack 2 further includes a control unit 30, and the control unit 30 includes a micro-computing unit 31 (hereinafter referred to as “MCU 31”) as a controller, and each of the cells constituting the cell set 3.
  • the battery cell voltage is detected.
  • the battery pack 2 includes a current detection circuit 32, a voltage detection circuit 33, a temperature detection circuit 34, a charger detection circuit 35, a drive circuit 38, and an FET 39.
  • the current detection circuit 32 detects a current flowing from the battery pack 2 to the power tool main body 1 and is configured by a shunt resistor.
  • the voltage detection circuit 33 is a circuit that detects the voltage of the battery pack 2 from the divided voltage values of two resistors connected in parallel with the battery pack 2.
  • the temperature detection circuit 34 is a circuit that detects the temperature of the cell set 3 by a temperature sensitive element such as a thermistor that is in contact with or close to the battery pack 2. *
  • the charger detection circuit 35 connects the battery pack 2 to the charger according to the voltage input from the charger side via the charger connection terminal. It is a circuit for detecting that the *
  • the battery pack 2 is formed with at least four terminals of the charger connection terminal, plus terminal, minus terminal, and S terminal.
  • the plus terminal, minus terminal Since only the three terminals of the terminal and the S terminal are connected to the corresponding terminals of the electric power tool main body 1, for convenience of explanation, the battery pack 2 as shown in FIG. 2 is referred to as a three-terminal battery pack.
  • the charger connection terminal and the S terminal are integrally formed. *
  • various detection signals from the current detection circuit 32, the voltage detection circuit 33, the temperature detection circuit 34, and the charger detection circuit 35 are input to the MCU 31 built in the battery pack 2. Is done. A discharge control signal is output from the MCU 31 based on these detection signals. The discharge control signal is applied to the gate of the FET 37, and the drain potential of the FET 37 becomes the S terminal output.
  • the control unit 30 is further provided with a SW operation detection circuit 36 that detects whether or not the operator has turned on the trigger switch 10 of the electric power tool body 1 and inputs the detection result to the MCU 31. Specifically, when the operator turns on the trigger switch 10, the battery pack 2 and the power tool body 1 are electrically connected. That is, a current path is formed in which the plus terminal of the battery pack 2, the plus terminal on the electric tool body 1 side, the motor 40, the minus terminal on the electric tool body 1 side, and the minus terminal on the battery pack 2 side are connected. When the current path is formed, the reference voltage Vcc generated using the cell set 3 as a power source on the battery pack 2 side is applied to the electric tool body 1 side.
  • a resistor set 22 in which three resistors R1, R2 and R3 are connected in series between Vcc and ground is provided on the power tool body 1 side, and the divided voltage values of R2 and R3 are passed through the S terminal. Is applied to the SW operation detection circuit 36, and the fact that the trigger switch 10 is turned on is transmitted from the SW operation detection circuit 36 to the MCU 31. When the trigger switch 10 is off, the voltage input to the SW operation detection circuit 36 via the S terminal of the battery pack 2 is lower than the voltage input when the trigger switch 10 is on (ground potential). It becomes. *
  • the MCU 31 When the trigger switch 10 is turned on, the MCU 31 outputs a high level discharge control signal to the FET 37.
  • the signal is at a high level, and the FET 37 is on. Therefore, a low level (ground potential) signal is output from the S terminal on the battery pack side to the tool body side.
  • the MCU 31 switches the discharge control signal, which has been at a high level to a low level, when an abnormality is foreseen, while the electric tool can be driven or is being driven. Foreseeing an abnormality also means detecting that the battery pack or electrical device itself has reached an abnormal state that would result in damage, but it is approaching damage even if it has not yet been damaged.
  • the reference value is a threshold value that causes an overdischarge state when the voltage further decreases, and for example, 2.0 V per cell is set as the reference value.
  • the discharge control signal goes low as described above. This signal corresponds to an alarm signal output from the MCU 31 serving as battery voltage monitoring means.
  • the discharge control signal becomes low level, the FET 37 is turned off, and the voltage at the S terminal becomes equal to the potential higher than the ground level, that is, the divided voltage values of the resistors R1, R2, and R3 on the tool body side.
  • the MCU 31 controls the FET 39 via the drive circuit 38.
  • the MCU 31 turns off the FET 39 when an abnormality is predicted, and turns on the FET 39 in other states. More specifically, when the voltage is in a normal state for any of the cells constituting the cell set 3, the MCU 31 turns on the FET 39 so that the power from the battery set 3 can be output.
  • the power tool body 1 has been at a high level until then. The discharge control signal becomes low level.
  • the MCU 31 may turn off the FET 39 and set the discharge control signal to a low level. This is because if the current value is larger than the predetermined current value, the electric power tool body 1 may be damaged.
  • the FET 39 may be PWM controlled by the drive circuit 38 to reduce the effective current. In this way, the output power can be reduced.
  • a lower limit may be provided for the current value, and when the current value falls below the lower limit value, the MCU 31 may turn off the FET 39 and set the discharge control signal to a low level.
  • the electric tool body 1 is provided with a control unit 20.
  • the control unit 20 incorporates a micro computing unit 25 (hereinafter referred to as “MCU-2”) as a controller.
  • the control unit 20 is further provided with a control power supply circuit 21, a voltage detection circuit 26, a current detection circuit 27, and a resistor set 22.
  • the control power supply circuit 21 is provided on the downstream side of the switch 10 and converts the power from the battery pack 1 when the switch 10 is turned on, whereby the control voltage Vcc is applied to the MCU-2 and the resistor set 22. Is applied. *
  • the voltage detection circuit 26 detects the voltage applied to the motor 40 from the divided values of the two resistors connected in parallel with the motor 40, and inputs the detection result to the MCU-2.
  • the current detection circuit 27 includes a shunt resistor and the like, detects a current flowing through the motor 40, and inputs a detection result to the MCU-2.
  • a reverse-biased diode 41 is connected in parallel with the motor 40 and provides a current path for a current flowing in a direction opposite to the current flowing in the motor 40. *
  • the control unit 20 is provided with an FET 24 inserted in the current path and a drive circuit 23 for driving the FET 24.
  • An output signal from the MCU-2 is applied to the drive circuit 23 via the diode 28, and the divided values of the resistors R1, R2 and R3 are applied via the diode 29.
  • the drive circuit 23 outputs a high level signal to turn on the FET 24.
  • power from the battery pack 2 is supplied to the motor 40.
  • the drive circuit 23 outputs a low level signal to turn off the FET 24.
  • the S terminal When the operator turns on the switch 10 and the discharge control signal of the battery pack 2 is at a high level, the S terminal is at a low level, and the diode 29 outputs a low level signal to the drive circuit 23. On the other hand, when the switch 10 is turned on and the discharge control signal is at a low level, the S terminal is at a high level, and the diode 29 outputs a high level signal to the drive circuit 23.
  • the MCU-2 Based on the voltage value detected by the voltage detection circuit 26 and the current value detected by the current detection circuit 27, the MCU-2 outputs a high level signal to the drive circuit 23 as an alarm signal when an abnormal state is predicted. MCU-2 turns off the FET 24 via the drive circuit 23 and stops driving the electric power tool.
  • the MCU-2 predicts an abnormal state based on the detection result of the voltage detection circuit 26
  • the voltage value is smaller than the first threshold value or larger than the second threshold value.
  • the second threshold value is larger than the first threshold value.
  • the first threshold value is a voltage value at which the battery cells of the battery set 3 are overdischarged when the voltage drops below that.
  • the first threshold value is determined based on the battery pack 2 having a rated voltage corresponding to the power tool body 1. For example, as described above, in the battery pack 2, it is determined that the battery is overdischarged when the cell voltage is reduced to 2.0V. Therefore, the first threshold value is set to a value TH1 obtained by multiplying the threshold value 2.0V by the number n of cells connected in series.
  • the judgment standard here, the threshold value
  • the determination criteria may be different between the electric power tool body 1 and the battery pack 2.
  • the first threshold value may be set to a value different from TH1, such as the lower limit value of the voltage value at which the power tool body 1 can operate without considering the battery pack 2.
  • TH1 the lower limit value of the voltage value at which the power tool body 1 can operate without considering the battery pack 2.
  • the motor 40 when the motor 40 is a brushless motor, the motor 40 may be damaged when a voltage lower than the rated voltage is applied. If this lower limit value is set as the first threshold value, it is possible to prevent the motor 40 from being damaged. That is, the first threshold value may be set in consideration of the rated voltage of the electric power tool body 1. *
  • the first threshold value may be set so as to change according to the current during discharge, that is, to have current dependency.
  • the electric power tool body 1 outputs a large current when a high load is applied, but at this time, the voltage rapidly decreases.
  • the first threshold value is made to depend on the current so that MCU-2 does not foresee an abnormality that may cause overdischarge, and the threshold value is set at the time of high current output (high load). Also to be lowered.
  • the second threshold is determined based on the upper limit value of the allowable voltage (rated voltage) of the electric power tool body 1. For example, the second threshold value is set so that the voltage value applied to the motor 40 does not exceed the rated voltage of the motor 40.
  • the second threshold value may also have current dependency. *
  • the MCU-2 predicts an abnormal state based on the current detection circuit 27, a state where the current value is smaller than the third threshold and overdischarge is expected, and the current value is the fourth value.
  • the rated current of the battery pack 2 mounted is larger than the threshold value and larger than the rated current of the electric power tool body 1.
  • the fourth threshold is larger than the third threshold.
  • the third and fourth threshold values may have voltage dependency.
  • FIG.1 and FIG.2 The example shown in FIG.1 and FIG.2 is a case where a battery pack 2 is a 14.4V output type when a three-terminal configuration battery pack is mounted on a monitoring-compatible power tool body.
  • the rated voltage is also 14.4 V, the voltage monitoring of the battery cell can be performed appropriately, so there is no problem in using the electric tool by such a combination.
  • the voltage value is determined from the output result from the voltage detection circuit 26 provided in the power tool body 1. It is determined that the value is larger than the second threshold value, and MCU-2 can turn off the FET 24 via the drive circuit 23 and prohibit the use of the power tool.
  • the FET 24 is PWM-controlled, and the duty ratio is adjusted so that the effective value of the voltage becomes the rated voltage of the electric power tool body 1. Even if a battery pack 2 having a higher rated voltage than the rated voltage of the electric power tool body 1 is attached, the electric power tool body 1 can be operated.
  • the MCU 31 when an abnormality is predicted, the MCU 31 can instruct the electric power tool main body 1 to interrupt the current path of the electric power tool main body 1 by the discharge control signal, and the drive circuit 38 can be turned on.
  • the FET 39 can be turned off, and the output of the battery pack 2 can be cut off or reduced.
  • the battery pack 2 and the power tool 2 can independently cut off or reduce power. Thereby, the lifetime of the battery pack 2 can be extended.
  • the electric power tool main body 1 has the MCU-2, the voltage detection circuit 26, and the current detection circuit 27.
  • the supply of electric power to the motor 40 can be cut off. For this reason, the burden on the battery cell can be reduced. Further, even when there is a contact failure in the S terminal and the alarm signal is not correctly output from the battery pack 2 side, the electric power tool body 1 can independently predict an abnormality.
  • the power tool body 1 can uniquely set the first to fourth threshold values, not only the control according to the standard of the battery pack 2 but also the standard of the power tool body 1 (the rating of the motor 40). It is possible to perform control in consideration of voltage, rated current). As a result, the life of the electric power tool body 1 can be extended.
  • the configuration of the electric power tool main body 1 of the second embodiment is the same as that of the first embodiment. Further, the second embodiment is different from the first embodiment in that the battery pack 2 does not have the drive circuit 38 and the FET 39. Therefore, in the second embodiment, as in the first embodiment, the MCU 31 outputs a low-level discharge control signal to the power tool body 1 when an abnormality is predicted. When the discharge control signal becomes low, the drive circuit 23 of the power tool body 1 cuts off or suppresses the supply of power to the motor 40 by turning off the FET 24. *
  • the battery pack 2 reliably shuts off the supply of electric power to the motor 40 by the electric power tool main body 1 without the configuration of interrupting the electric power supply. Or it can be suppressed.
  • the configuration of the battery pack 2 is the same as that of the first embodiment.
  • the third embodiment is different from the first embodiment in that the electric power tool body 1 does not include the MCU-2, the voltage detection circuit 26, the current detection circuit 27, and the diode 28. Therefore, in the third embodiment, the MCU-2 does not foresee an abnormality, and the battery pack 2 makes the discharge control signal low, so that the potential of the S terminal becomes high, and the drive circuit 23 has a high level. Signal is input. As a result, the FET 24 is turned off, and the drive circuit 23 can cut off the supply of power to the motor 40. Further, the drive circuit 23 turns on the FET 24 when the S terminal becomes low level, and supplies power to the motor 40. *
  • the electric power tool main body 1 of the third embodiment reliably shuts off the supply of electric power to the motor 40 without predicting the abnormality of the electric power input uniquely, or Can be suppressed.
  • the configuration of the battery pack 2 is the same as that of the first embodiment.
  • the power tool body 1 does not include the MCU-2, the voltage detection circuit 26, the current detection circuit 27, the resistor set 22, the drive circuit 23, the FET 24, and the S terminal. Is different from the first embodiment.
  • the power tool main body 1 does not have a configuration for predicting an abnormality in the power supplied to itself, and further does not have a configuration for cutting off or suppressing the supply of power to the motor 40. Therefore, in the fourth embodiment, when the battery pack 2 predicts an abnormality, the power supply to the power tool main body 1 is interrupted or suppressed.
  • the electric power tool main body 1 does not have a configuration for predicting an abnormality, and further has a configuration that interrupts or suppresses the supply of power to the motor 40. Even if it is not, the supply of electric power to the electric power tool body 1 can be surely cut off.
  • the electric power tool main body 1 connected to the battery pack 2 is shown as an example.
  • the device connected to the battery pack 2 is not limited to the electric power tool main body 1 and may be any electric device.
  • a fan or a light may be used.
  • the first signal recited in the claims is a discharge control signal
  • the first power control circuit is the MCU 31
  • the second switching element is the FET 39
  • the second power control circuit is the drive circuit 38
  • the third switching element is an FET 29
  • the third power control circuit is MCU-2
  • the third signal is a high level signal.
  • the interruption means is the FET 24
  • the state monitoring means is the voltage detection circuit 26 and the current detection circuit 27, and the determination means is MCU-2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Protection Of Static Devices (AREA)
  • Protection Of Generators And Motors (AREA)

Abstract

 本発明は、異常に応じて、電気機器に接続される電池パックの出力電力を、低減または遮断するものである。 本発明の電池パック2は、スイッチ10を有する電気機器本体1に着脱可能に接続され、該スイッチ10が操作されると該電気機器本体1への電力の供給を許可するための第1の信号を該電気機器本体に対して出力する第1の電力制御回路と、該電気機器本体1に電力を供給する電力供給経路に設けられた第2のスイッチング素子39と、該電池パック2に異常が生じると該電気機器本体1に供給する電力を低減又は遮断するための第2の信号を該第2のスイッチング素子39に出力する第2の電力制御回路とを備える。

Description

電池パック及び電気機器
本発明は、電池パック、及び、電池パックで動作する電気機器に関する。
充電式の電池パックを電源とするいわゆるコードレス電動工具が広く普及している。電池パックには、通常、複数の電池セルを直列に接続してなるセル組が内蔵されており、電池種としてはリチウムイオン電池が主流となっている。リチウムイオン電池を用いた電池パックには、それぞれの電池セルの電圧を監視するための保護IC若しくはこれと同等の機能を有する電圧監視手段を内蔵している。いずれかの電池セルがショートしていたり、電池セルの電圧が過放電状態に至る閾値に達している場合には、保護ICから警報信号が出力され、これに応答して電池パックの使用を中止させるためである。 
保護ICを内蔵した電池パックの使用を前提とした電動工具は、電池パックから電動工具内のモータに流れる電流経路に設けたFET等で構成されるスイッチング素子を保護ICから出力された警報信号に応答してオフとし、電池パックの使用を強制終了させるように構成されている(例えば、特許文献1参照)。
特開2008-62343号公報
図6に示した例では電池パック2がスイッチ動作検出回路36を備えている。電気機器本体1の電力供給経路に設けられたスイッチ10が操作されると、スイッチ10が操作されたことを知らせる操作信号がS端子を介して電池パック2に出力される。電池パック2に設けられたMCU31はスイッチ動作検出回路35によってスイッチ10が操作されたことを検知すると放電を許可するための放電許可信号をS端子を介して電気機器本体1に出力する。電気機器本体1において、放電許可信号が入力されるとドライブ回路23から電力供給経路に設けられたスイッチング素子24に放電許可信号が伝達され、電力供給経路を通じてモータ40に電力供給が開始される。 
また、電池パック2は電流検出回路32、電圧検出回路33、温度検出回路34及びMCU31からなる監視回路を備えている。セル組3に異常が生じるとMCU31は電力供給を遮断するための停止信号をS端子に出力する。S端子から停止信号が入力されると、電気機器本体1はドライブ回路23からスイッチング素子24に停止信号を出力して電力供給を遮断させる。 
しかしながら市場では、図6に示したようなS端子、ドライブ回路23及びスイッチング素子24を備えた電気機器本体1だけに限られず、これらを備えていない電気機器本体1も流通している。このような電気機器本体1に上記の電池パックを接続した状態が図7に示されている。この場合では、電気機器本体1からはスイッチ10が操作されたことを知らせる操作信号が入力されないが、電気機器本体1の内部では電力供給回路を遮断するスイッチング素子24がないので、スイッチ10さえ操作されればすぐに電力供給回路が導通して電力供給が開始される。 
しかしながらこの場合では、S端子がなく、セル組3に異常が生じたことを知らせる停止信号が電気機器本体に入力されないので、セル組3に異常が生じても電力供給を遮断できない。このように、図6に示したような電気機器本体と図7に示したような電気機器本体との、いずれに接続された場合でもセル組の異常時に電力供給を遮断できるように構成された電池パックが提供されていないという第1の問題があった。近年、セルの大容量化が進んでいるが、ある程度を超える大容量のセルを用いる場合は、セル組の異常時に電力供給を遮断する構成を備えることが電気用品安全法で規定されている。図6と図7のいずれの電気機器本体にも使用できる、すなわち互換性のある大容量の電池パックを開発しようとする場合には、この第1の問題を解決する必要が生じる。 
また、図6に示した例では電池パック2に備えられた監視回路だけで異常を検知して電力供給を低減又は遮断するものであったが、接続される電気機器本体1には高出力のモータ等を備えた高負荷タイプの電気機器本体だけでなく、低出力のランプ等を備えた低負荷タイプの電気機器本体もある。低負荷タイプの電気機器本体に電池パック2が接続された場合は、セル組3の異常が生じてから電力供給を低減又は遮断させるのでは遅く、むしろ電気機器本体の異常が先に生じてしまい、より早く電力供給を低減又は遮断させた方が適切となる場合もありうる。このように電池パックだけではなく電気機器本体も保護すべきという第2の問題が生じる。 
また、上述のように従来の電動工具では、電池パック側からの警報信号に応答して電池パックの使用を終了させるものであったため、電池パックと電動工具とを接続する信号端子であるS端子の接触不良などが起こった場合には、正しく電力のオン、オフを切替えることができないという問題があった。また、定格電圧などが不適切な電池パックが電動工具に接続された場合に、電動工具側で電力をオフすることもできないという第3の問題があった。 
本発明は、上述した問題の少なくともいずれかを解決することのできる電池パック及びこれを備えた電気機器を提供することを目的としている。
上記目的を達成するために、本発明は、スイッチを有する電気機器本体に着脱可能に接続される電池パックであって、該スイッチが操作されると該電気機器本体への電力の供給を許可するための第1の信号を該電気機器本体に対して出力する第1の電力制御回路と、該電気機器本体に電力を供給する電力供給経路に設けられた第2のスイッチング素子と、該電池パックに異常が生じると該電気機器本体に供給する電力を低減又は遮断するための第2の信号を該第2のスイッチング素子に出力する第2の電力制御回路と、を備えたことを特徴とする電池パックを提供している。 
上記の構成によれば、スイッチが操作されたことを知らせる操作信号を電池パック側に出力する電気機器本体に対しても、そのような操作信号を電池パック側に出力しない電気機器本体に対しても、共通に使用できる電池パックを提供することができる。また電池パックに異常が生じたことを知らせる停止信号が入力されると電力供給経路を遮断するスイッチング素子を備えた電気機器本体に対して接続された場合だけではなく、そのようなスイッチング素子を備えていない電気機器本体に対して接続された場合であっても、電池パックに異常が生じると電力供給を低減又は遮断することのできる電池パックを提供することができる。すなわち上述の第1の問題を解決することができる。
該第1の信号が入力されると電力の供給を許可する第1のスイッチング素子を電力供給経路に備えた該電気機器本体に該電池パックを接続してもよい。
該第1の信号が入力されるか否かに関わらず該スイッチが操作されると電力の供給を許可する該電気機器本体に該電池パックを接続してもよい。 
該電気機器本体に異常が生じると電力供給経路に設けられた第3のスイッチング素子に電力供給経路を経て供給される電力を低減又は遮断するための第3の信号を出力する第3の電力制御回路を備えた該電気機器本体に該電池パックを接続してもよい。 
また、本発明は、電気機器本体に電池パックを接続して成る電気機器であって、該電気機器本体又は該電池パックの少なくともいずれかに異常が生じると電力供給経路に設けられた第3のスイッチング素子に電力供給経路を経て供給される電力を低減又は遮断するための第3の信号を出力する第3の電力制御回路を備えた該電気機器本体と、該電気機器本体又は電池パックに異常が生じると電力供給経路に設けられた第2のスイッチング素子に電力供給経路を経て供給する電力を低減又は遮断するための第2の信号を出力する第2の電力制御回路を備えた該電池パックと、を備えたことを特徴とする電気機器を提供している。 
上記の構成によれば、電気機器本体又は電池パックに異常が生じると電気機器本体と電池パックのそれぞれが電力供給を低減又は遮断することができるので、作業時の振動や接点の摩耗などによって電気機器本体と電池パックとの間の信号を伝える端子に接触不良が生じた場合であっても早期に異常な状態から脱することができる。すなわち上述の第2の問題を解決することができる。 
該電気機器本体において該第3の信号を出力するか否かを切り替える基準と、該電池パックにおいて該第2の信号を出力するか否かを切り替える基準とを、それぞれ異なる基準としてもよい。 
上記の構成によれば、電気機器本体と電池パックがそれぞれ異なる基準に基づいて電力供給の遮断又は停止を制御することができるので、例えば高出力のモータ等を備えた高負荷タイプの電気機器本体に電池パックが接続された場合は、電気機器本体から電力供給を遮断又は停止させる基準を相対的に高く設定し、電池パックから電力供給を遮断又は停止させる基準を相対的に低く設定することで、電池パックが出力しうる限界近くまで電力を電気機器本体に供給することができ高負荷の作業を行うことができる。また例えば低出力のランプ等を備えた低負荷タイプの電気機器本体に電池パックが接続された場合は、電気機器本体から電力供給を遮断又は停止させる基準を相対的に低く設定し、電池パックから電力供給を遮断又は停止させる基準を相対的に高く設定することで、電気器本体のランプ等が耐えられる電力を超えないようにすることができる。すなわち上述の第2の問題を解決することができる。 
また、本発明は、二次電池に接続される接続手段と、前記二次電池からの電流を遮断する遮断手段と、前記二次電池の状態を監視する状態監視手段と、前記状態監視手段の監視結果に基づいて異常を予見し、異常を予見した場合に前記二次電池からの電流を遮断させる判断手段とを有することを特徴とする電気機器を提供している。 
このような構成によれば、電気機器は電池パックによらず独自に電池パックに由来する異常を予見し、適切に電力を遮断することができる。すなわち上述の第3の問題を解決することができる。 
前記二次電池は、所定の定格値を有し、前記判断手段は、前記二次電池の前記定格値に基づいた所定値と、前記状態監視手段の監視結果とを比較することにより、異常を判断することが好ましい。このような構成によれば、二次電池の異常を適切に予見することができる。 
前記判断手段は、電気機器の定格値に基づいた所定値と、前記状態監視手段の監視結果とを比較することにより、異常を判断することが好ましい。このような構成によれば、電気機器の定格値に基づいて、電流を適切に遮断することができる。 
前記状態監視手段は、前記二次電池から供給される電流と、前記二次電池よって印加される電圧との少なくとも一方を監視することが好ましい。 
モータをさらに有し、電気機器の定格値は、前記モータの定格電圧であり、前記判断手段は、前記二次電池から印加される電圧が前記モータの定格電圧範囲外であると判断したときに、前記二次電池から前記モータへの電流を前記遮断手段に遮断させることが好ましい。 
モータをさらに有し、電気機器の定格値は、前記モータの定格電流であり、前記判断手段は、前記二次電池から供給される電流が前記モータの定格電流範囲外であると判断したときに、前記二次電池から前記モータへの電流を前記遮断手段に遮断させることが好ましい。 
前記二次電池は、自身の状態に基づいて警告を報知する警報信号を前記接続手段に出力し、前記判断手段は、前記接続手段が前記警報信号を入力したときに、前記遮断手段に電流の遮断をさせ、前記遮断手段は、前記状態監視手段の監視結果が異常を予見せず、かつ、前記警報信号を受け取っていないときに電流の遮断を行わないことが好ましい。このような構成によれば、判断手段の判断結果と警報信号とに基づいて適切に電流の遮断を行うことができる。
上述した第1乃至第3の問題の少なくともいずれかを解決した電池パック及びこれを備えた電気機器を提供することができる。
セル毎の電圧監視機能を有する電池パックを電気機器本体に装着した状態を示した概略説明図である。 本発明の第1の実施の形態による電池パックと電気機器本体の電気的構成を示したブロック図である。 本発明の第2の実施の形態による電池パックと電気機器本体の電気的構成を示したブロック図である。 本発明の第3の実施の形態による電池パックと電気機器本体の電気的構成を示したブロック図である。 本発明の第4の実施の形態による電池パックと電気機器本体の電気的構成を示したブロック図である。 従来の第1の例による電池パックと電気機器本体の電気的構成を示したブロック図である。 従来の第2の例による電池パックと電気機器本体の電気的構成を示したブロック図である。
以下、本発明の実施の形態を添付図面を参照しながら説明する。 
図1は、二次電池である後述する3端子構成の電池パック2と監視対応型電動工具本体1が装着されている状態を示した図である。電動工具本体1はモータ40とコントローラ20を内蔵し、モータ40に電流を流す電流路にはFET等のスイッチング素子が介挿されている。電池パック接続面にはプラス端子とマイナス端子の他に警報信号を入力するためのS端子が形成されている。工具側S端子は、少なくとも一つのセル電圧が過放電状態に至る閾値に達したときに電池パック2から出力される警報信号を入力するための端子である。電動工具本体1には電動工具を駆動するためのトリガースイッチ10が設けられている。 
電池パック2には複数のセルを直列接続して成るセル組3と、セル組3の各電池セルの電圧を監視し、少なくともいずれかの電池セルの電圧が基準値以下に低下したときに警報信号を出力する電池電圧監視手段たるコントローラ30が内蔵されている。電動工具本体1に電池パック2が装着された状態では、それぞれのプラス端子同士、マイナス端子同士が電気的に接続されると共に、電池パック2のS端子と、工具本体側のS端子も電気的に接続される。工具本体1側のS端子はコントローラ20に接続されている。コントローラ20は電池パック2のS端子から警報信号が入力されると、FETをオフとして電流路を開放し、電池パック2の使用を強制終了させる。 
図2は、電池パック2と電動工具本体1の電気的構成を示したブロック図である。図2に示すように、セル組3は、例えばリチウムイオンなどの電池セルを複数個直列に接続している。尚、図2では省略しているが、セル組3は、複数個並列に接続されていてもよい。例として、定格電圧が3.6Vの電池セルが4直列である14.4Vの電池パック2や、定格電圧が3.6Vの電池セルが5直列の電池パック2が挙げられる。また、1セル当たりの電池容量、および、セル組3が並列される数に応じて、電池パック2の電池容量が決まる。本実施の形態では、例えば、電池セル1セル当たり1.5Aのセルグループを2つ並列させた3.0Ahのものや、1セル当たり2.0Aのセルグループを2つ並列させた4.0Ahのものを使用する。但し、セルグループの数や、電池セル1セル当たりの容量はこれらに限定されるものではない。 
電池パック2は、制御部30をさらに有し、制御部30は、コントローラたるマイクロ・コンピューティング・ユニット31(以下、「MCU31」と言う。)が内蔵されており、セル組3を構成する各電池セルの電圧を検出している。電池パック2には他に、電流検出回路32、電圧検出回路33、温度検出回路34、充電器検出回路35、ドライブ回路38、FET39が設けられている。電流検出回路32は、電池パック2から電動工具本体1に流れる電流を検出するもので、シャント抵抗で構成されている。電圧検出回路33は、電池パック2と並列接続された2つの抵抗の分圧値から電池パック2の電圧を検出する回路である。温度検出回路34は電池パック2に接触若しくは近接配置したサーミスタ等の感温素子によりセル組3の温度を検出する回路である。 
充電器検出回路35は、電池パック2を図示しない充電器に接続したときに、充電器接続用端子を介して充電器側から入力される電圧に応じて、電池パック2が充電器に接続されていることを検出するための回路である。 
電池パック2には、上記した充電器接続用端子と、プラス端子、マイナス端子、及びS端子の少なくとも4つの端子が形成されているが、電動工具本体1に接続する際にはプラス端子、マイナス端子及びS端子の3端子のみが電動工具本体1の対応する端子と接続されるので、説明の便宜上、図2に示したような電池パック2を3端子構成電池パックと呼ぶ。なお、充電器接続用端子とS端子は、一体的に構成されている。 
電池パック2に内蔵されたMCU31には、電池パック2の各電池セルの電圧以外に、電流検出回路32、電圧検出回路33、温度検出回路34及び充電器検出回路35からの各種検出信号が入力される。これらの検出信号に基づき、MCU31から放電制御信号が出力される。放電制御信号はFET37のゲートに印加され、FET37のドレイン電位がS端子出力となる。 
制御部30には更にSW動作検出回路36が設けられており、作業者が電動工具本体1のトリガースイッチ10をオンにしたか否かの検出を行い、検出結果をMCU31に入力する。具体的には、作業者がトリガースイッチ10をオンにすると、電池パック2と電動工具本体1は電気的に接続された状態となる。即ち、電池パック2のプラス端子と、電動工具本体1側のプラス端子、モータ40、電動工具本体1側のマイナス端子、及び電池パック2側のマイナス端子が接続された電流路が形成される。電流路が形成されると、電池パック2側でセル組3を電源として生成された基準電圧Vccが電動工具本体1側に印加される。後述するように電動工具本体1側にはVccとアース間に3つの抵抗R1,R2及びR3が直列接続された抵抗組22が設けられており、R2とR3の分圧値がS端子を介してSW動作検出回路36に印加され、トリガースイッチ10がオンになったことがSW動作検出回路36よりMCU31に伝達される。トリガースイッチ10がオフのときには、電池パック2のS端子を介してSW動作検出回路36に入力される電圧は、トリガースイッチ10がオンのときに入力される電圧よりは低い電圧値(アース電位)となる。 
トリガースイッチ10がオンされるとMCU31は、ハイレベルの放電制御信号をFET37に出力する。 
 一旦、トリガースイッチ10がオンされ、ハイレベルの放電制御信号がFET37に出力されると、セル組3を構成するいずれのセルについても電圧が正常状態にある間は、MCU31から出力される放電制御信号はハイレベルであり、FET37はオンとなっている。そのため、電池パック側のS端子からはローレベル(アース電位)の信号が工具本体側に出力される。一方、電動工具が駆動可能な状態若しくは駆動している間に、MCU31は、異常を予見するとハイレベルであった放電制御信号をローレベルに切り替える。異常を予見するということは、電池パックや電気機器本体などが破損に至るような異常な状態に達したことを検知するという意味もあるが、破損にはまだ至らないまでも破損に近づきつつはあることを検知するという意味も含んでいる。本実施の形態では、異常を予見する例として、いずれか少なくとも一つの電池セルの電圧が基準値まで低下したことが検出されたときが挙げられる。ここでいう基準値とは、更に電圧が低下すると過放電状態になる閾値であって、例えば、セル当たり2.0Vを基準値とする。セル電圧が2.0Vまで低下したことをMCU31が検出すると、前述のように、放電制御信号がローレベルになる。この信号が電池電圧監視手段たるMCU31から出力される警報信号に相当する。放電制御信号がローレベルになると、FET37はオフとなり、S端子の電圧はアースレベルより高い電位、即ち、工具本体側の抵抗R1,R2,R3の分圧値に等しくなる。 
MCU31は、ドライブ回路38を介して、FET39を制御している。MCU31は、異常を予見したときにはFET39をオフさせ、それ以外の状態ではFET39をオンさせている。より具体的には、セル組3を構成するいずれのセルについても電圧が正常状態にある場合には、MCU31はFET39をオンにし、電池組3からの電力を出力可能にしている。一方、電動工具本体1が駆動可能な状態若しくは駆動している間に、いずれか少なくとも一つの電池セルの電圧が上述の基準値まで低下したことが検出されると、それまでハイレベルであった放電制御信号がローレベルとなる。 
尚、電流検出回路32が所定の電流値より大きい電流値を検出したときにMCU31は、FET39をオフさせると共に、放電制御信号をローレベルにするようにしてもよい。電流値が所定の電流値より大きくなると電動工具本体1に損傷を与える可能性があるからである。あるいは、FET39をドライブ回路38によってPWM制御し、実効電流が低下するようにしてもよい。このようにすれば、出力する電力を低減することができる。また、電流値にも下限を設け、下限値より下回ったときにはMCU31は、FET39をオフさせると共に、放電制御信号をローレベルにするようにしてもよい。 
次に電動工具本体1の構成について説明する。電動工具本体1には、トリガースイッチ10とモータ40の他に、制御部20が設けられている。制御部20には、コントローラとしてのマイクロ・コンピューティング・ユニット25(以下、「MCU-2」と言う。)が内蔵されている。制御部20には更に制御用電源回路21、電圧検出回路26,電流検出回路27、抵抗組22が設けられている。制御用電源回路21はスイッチ10の下流側に設けられており、スイッチ10がオンされたときに、電池パック1からの電力を変換することで、MCU-2、抵抗組22に制御用電圧Vccを印加する。 
電圧検出回路26は、モータ40と並列接続された2つの抵抗の分圧値からモータ40へ印加されている電圧を検出し、検出結果をMCU-2に入力する。電流検出回路27は、シャント抵抗などで構成され、モータ40に流れる電流を検出し、検出結果をMCU-2に入力する。モータ40と並列に逆バイアスされたダイオード41が接続されており、モータ40に流れる電流とは逆方向に流れる電流の電流路を提供している。 
制御部20には電流路に介挿されたFET24と、FET24を駆動するためのドライブ回路23が設けられている。ドライブ回路23にはMCU-2からの出力信号がダイオード28を介して印加されると共に、前記抵抗R1,R2及びR3の分圧値がダイオード29を介して印加されている。MCU-2からダイオード28を介してローレベルの信号が入力され、ダイオード29からも、ローレベルの信号が入力されたときに、ドライブ回路23はハイレベルの信号を出力し、FET24をオンさせる。これにより電池パック2からの電力がモータ40に供給される。ダイオード28、29の少なくとも一方がハイレベルのときには、ドライブ回路23はローレベルの信号を出力し、FET24をオフさせる。 
作業者がスイッチ10をオンしたときに、電池パック2の放電制御信号がハイレベルであるときには、S端子がローレベルになり、ダイオード29はローレベルの信号をドライブ回路23に出力する。一方、スイッチ10がオンしたときに、放電制御信号がローレベルであるときには、S端子がハイレベルになり、ダイオード29はハイレベルの信号をドライブ回路23に出力する。 
また、MCU-2は、電圧検出回路26で検出した電圧値及び電流検出回路27で検出した電流値に基づき、異常状態を予見した場合には警報信号としてハイレベル信号をドライブ回路23に出力し、MCU-2はドライブ回路23を介してFET24をオフとして電動工具の駆動を停止する。 
ここで、MCU-2が、電圧検出回路26の検出結果に基づいて異常状態を予見する例として、電圧値が第1の閾値より小さいとき、または、第2の閾値より大きいときが挙げられる。ここで、第2の閾値は第1の閾値より大きい。第1の閾値は、それより電圧が下がると電池組3の電池セルが過放電となる電圧値である。 
より具体的には、第1の閾値は、電動工具本体1に対応した定格電圧を有する電池パック2に基づいて決定される。例えば、上述のように、電池パック2において、セル電圧が2.0Vまで低下したときに過放電であると判定している。そのため、第1の閾値は、かかる閾値2.0Vに、直列につながれるセルの数nをかけた数値TH1を閾値とする。言い換えれば、異常を予見するための判断基準(ここでは閾値)が、電動工具本体1と電池パック2ととで同じ基準によって定められている。あるいは、判断基準を電動工具本体1と電池パック2ととで異なるようにしてもよい。例えば、第1の閾値は、電池パック2を考慮せず、電動工具本体1が動作可能である電圧値の下限値など、TH1と異なる値を設定してもよい。例えば、モータ40がブラシレスモータである場合には、定格電圧より低い電圧が印加されるとモータ40にダメージを与える場合がある。この下限値を第1の閾値として設定すれば、モータ40にダメージを与えることを抑制することができる。即ち、第1の閾値を電動工具本体1の定格電圧を考慮して設定してもよい。 
また、第1の閾値は、放電時の電流に応じて変化するように、即ち電流依存性を有するように設定されていてもよい。これは、例えば、電動工具本体1は、高負荷がかかると、大電流を出力するが、このとき電圧は急激に低下する。このような状態のときに、MCU-2が過放電が起こりうる異常と予見しないように、第1の閾値を電流に依存するようにしておき、大電流出力時(高負荷時)には閾値も低下するようにする。 
第2の閾値は、電動工具本体1の許容電圧(定格電圧)の上限値に基づいて決定される。例えば、第2の閾値は、モータ40に印加される電圧値がモータ40の定格電圧を超えないように設定される。また、第2の閾値についても電流依存性を持たせてもよい。 
MCU-2が、電流検出回路27に基づいて異常状態と予見する例として、電流値が第3の閾値より小さく、過放電が起こっていると予想される状態、および、電流値が第4の閾値より大きく、装着されている電池パック2の定格電流が電動工具本体1の定格電流より大きい場合が挙げられる。ここで、第4の閾値は第3の閾値より大きい。 
第1、2の閾値が電流依存性を有していたように、第3、4の閾値が電圧依存性を有していていもよい。 
図1及び図2に示した例は、3端子構成電池パックを監視対応型電動工具本体に装着した場合であって、電池パック2が14.4V出力タイプのものであり、電動工具本体1の定格電圧も14.4Vのものである場合には、電池セルの電圧監視を適正に行うことができるので、係る組み合わせによる電動工具の使用は問題ない。 
電池パック2が18V出力タイプのものであり、電動工具本体1の定格電圧が14.4Vのものである場合には、電動工具本体1に設けた電圧検出回路26からの出力結果から電圧値が第2の閾値より大きいと判断し、MCU-2はドライブ回路23を介してFET24をオフとし、電動工具の使用を禁止することができる。あるいは、この場合には、FET24を完全にオフせず、FET24をPWM制御して、そのデューティ比を調整することで電圧の実効値が、電動工具本体1の定格電圧になるようにすれば、電動工具本体1の定格電圧より高い定格電圧の電池パック2が装着されても、電動工具本体1を動作させることができる。 
以上の電池パック2の構成によれば、異常が予見されると、MCU31は、放電制御信号によって電動工具本体1に電動工具本体1の電流路を遮断するように指示できると共に、ドライブ回路38を介してFET39をオフさせ、電池パック2の出力を遮断、または、低減することができる。例えば、S端子に接触不良が生じたときにも、電池パック2と、電動工具2とで独自に電力の遮断、または、低減を行うことができる。これにより電池パック2の寿命を延ばすことが可能になる。 
以上の電動工具本体1の構成によれば、電動工具本体1がMCU-2、電圧検出回路26、電流検出回路27を有しているため、電動工具本体1において電圧値、電流値から異常が予見された場合にはモータ40への電力の供給を遮断することができる。このため電池セルへの負担を減らすことができる。また、S端子に接触不良などがあり、電池パック2側から警報信号が正しく出力されないときにも、電動工具本体1が独自に異常を予見することができる。また、電動工具本体1において、第1-4の閾値を独自に設定することが可能になるため、電池パック2の規格に則った制御のみならず、電動工具本体1の規格(モータ40の定格電圧、定格電流)などを考慮した制御を行うことが可能になる。これにより電動工具本体1の寿命も伸ばすことが可能になる。 
次に、図3を参照して、第2の実施の形態について説明する。第2の実施の形態の電動工具本体1の構成は第1の実施の形態と同じである。また、第2の実施の形態では、電池パック2がドライブ回路38、FET39を有していない点が第1の実施の形態と異なる。従って、第2の実施の形態では、第1の実施の形態と同様、MCU31が、異常を予見すると、電動工具本体1にローレベルの放電制御信号を出力する。放電制御信号がローになると、電動工具本体1のドライブ回路23は、FET24をオフさせることでモータ40への電力の供給を遮断、または、抑制する。 
第2の実施の形態の電動工具本体1の構成によれば、電池パック2において、電力の供給を遮断する構成がなくとも、電動工具本体1によって確実にモータ40への電力の供給を遮断、または、抑制することができる。
次に、図4を参照して第3の実施の形態について説明する。第3の実施の形態では、電池パック2の構成は第1の実施の形態と同じである。第3の実施の形態では、電動工具本体1がMCU-2、電圧検出回路26、電流検出回路27、ダイオード28を備えていない点が第1の実施の形態と異なる。従って、第3の実施の形態では、MCU-2が異常を予見することはなく、電池パック2が放電制御信号をローにすることによりS端子の電位がハイになり、ドライブ回路23にハイレベルの信号が入力される。これによりFET24がオフになり、ドライブ回路23は、モータ40への電力の供給を遮断することができる。また、ドライブ回路23は、S端子がローレベルになったときにFET24をオンさせ、モータ40に電力を供給する。 
第3の実施の形態の電動工具本体1の構成によれば、電動工具本体1が独自に入力された電力の異常を予見せずとも、確実にモータ40への電力の供給を遮断、または、抑制することができる。 
次に、図5を参照して、第4の実施の形態について説明する。第4の実施の形態では、電池パック2の構成は第1の実施の形態と同じである。第4の実施の形態では、電動工具本体1では、電動工具本体1がMCU-2、電圧検出回路26、電流検出回路27、抵抗組22、ドライブ回路23、FET24、S端子を備えていない点が第1の実施の形態と異なる。言い換えれば、電動工具本体1は、自身に供給される電力の異常を予見する構成を有さず、さらに、モータ40への電力の供給を遮断、または、抑制する構成も有していない。従って、第4の実施の形態では、電池パック2が、異常を予見したときに電動工具本体1への電力の供給を遮断、または、抑制する。 
第4の実施の形態の電池パック4の構成によれば、電動工具本体1が異常を予見する構成を有さず、さらに、モータ40への電力の供給を遮断、または、抑制する構成も有していない場合でも確実に電動工具本体1への電力の供給を遮断することができる。 
尚、上記の実施の形態では電池パック2に接続される電動工具本体1を例に示したが、電池パック2に接続される機器は電動工具本体1に限定されず、電気機器であればよく、例えば、扇風機やライトなどであってもよい。 
請求項に記載の第1の信号は放電制御信号であり、第1の電力制御回路がMCU31であり、第2のスイッチング素子がFET39であり、第2の電力制御回路がドライブ回路38であり、第3のスイッチング素子がFET29であり、第3の電力制御回路はMCU-2であり、第3の信号はハイレベルの信号である。また、遮断手段はFET24であり、状態監視手段は電圧検出回路26および電流検出回路27であり、判断手段はMCU-2である。
1 電動工具本体
32 マイクロ・コンピューティング・ユニット
32 電流検出回路
33 電圧検出回路
38 ドライブ回路
39 FET
2 電池パック
26 電圧検出回路
27 電流検出回路
25 マイクロ・コンピューティング・ユニット
40 モーター23 ドライブ回路
24 FET

Claims (14)

  1. スイッチを有する電気機器本体に着脱可能に接続される電池パックであって、
    該スイッチが操作されると該電気機器本体への電力の供給を許可するための第1の信号を該電気機器本体に対して出力する第1の電力制御回路と、
    該電気機器本体に電力を供給する電力供給経路に設けられた第2のスイッチング素子と、
    該電池パックに異常が生じると該電気機器本体に供給する電力を低減又は遮断するための第2の信号を該第2のスイッチング素子に出力する第2の電力制御回路と、
    を備えたことを特徴とする電池パック。
  2. 該第1の信号が入力されると電力の供給を許可する第1のスイッチング素子を電力供給経路に備えた該電気機器本体に該電池パックを接続してなる請求項1記載の電気機器。
  3. 該第1の信号が入力されるか否かに関わらず該スイッチが操作されると電力の供給を許可する該電気機器本体に該電池パックを接続してなる請求項1記載の電気機器。
  4. 該電気機器本体に異常が生じると電力供給経路に設けられた第3のスイッチング素子に電力供給経路を経て供給される電力を低減又は遮断するための第3の信号を出力する第3の電力制御回路を備えた該電気機器本体に該電池パックを接続してなる請求項1記載の電気機器。
  5. 電気機器本体に電池パックを接続して成る電気機器であって、
    該電気機器本体又は該電池パックの少なくともいずれかに異常が生じると電力供給経路に設けられた第3のスイッチング素子に電力供給経路を経て供給される電力を低減又は遮断するための第3の信号を出力する第3の電力制御回路を備えた該電気機器本体と、
    該電気機器本体又は電池パックに異常が生じると電力供給経路に設けられた第2のスイッチング素子に電力供給経路を経て供給する電力を低減又は遮断するための第2の信号を出力する第2の電力制御回路を備えた該電池パックと、
    を備えたことを特徴とする電気機器。
  6. 該電気機器本体において該第3の信号を出力するか否かを切り替える基準と、該電池パックにおいて該第2の信号を出力するか否かを切り替える基準とを、それぞれ異なる基準としたことを特徴とする請求項5記載の電気機器。
  7. 二次電池に接続される接続手段と、
    前記二次電池からの電流を遮断する遮断手段と、
    前記二次電池の状態を監視する状態監視手段と、
    前記状態監視手段の監視結果に基づいて異常を予見し、異常を予見した場合に前記二次電池からの電流を遮断させる判断手段とを有することを特徴とする電気機器。
  8. 前記二次電池は、所定の定格値を有し、
    前記判断手段は、前記二次電池の前記定格値に基づいた所定値と、前記状態監視手段の監視結果とを比較することにより、異常を判断することを特徴とする請求項7に記載の電気機器。
  9. 前記判断手段は、電気機器の定格値に基づいた所定値と、前記状態監視手段の監視結果とを比較することにより、異常と予見することを特徴とする請求項7に記載の電気機器。
  10. 前記状態監視手段は、前記二次電池から供給される電流と、前記二次電池よって印加される電圧との少なくとも一方を監視することを特徴とする請求項7乃至9に記載の電気機器。
  11. 前記判断手段は、前記監視手段が監視する電圧と電流との少なくとも一方が、前記二次電池の定格値に基づく所定の範囲外であると判断したときに、異常と予見することを特徴とする請求項10に記載の電気機器。
  12. モータをさらに有し、
    電気機器の定格値は、前記モータの定格電圧であり、
    前記判断手段は、前記二次電池から印加される電圧が前記モータの定格電圧範囲外であると判断したときに、前記二次電池から前記モータへの電流を前記遮断手段に遮断させることを特徴とする請求項10に記載の電気機器。
  13. モータをさらに有し、
    電気機器の定格値は、前記モータの定格電流であり、
    前記判断手段は、前記二次電池から供給される電流が前記モータの定格電流範囲外であると判断したときに、前記二次電池から前記モータへの電流を前記遮断手段に遮断させることを特徴とする請求項10に記載の電気機器。
  14. 前記二次電池は、自身の状態に基づいて警告を報知する警報信号を前記接続手段に出力し、
    前記判断手段は、前記接続手段が前記警報信号を入力したときに、前記遮断手段に電流の遮断をさせ、前記遮断手段は、前記状態監視手段の監視結果が異常を予見せず、かつ、前記警報信号を受け取っていないときに電流の遮断を行わないことを特徴とする請求項7乃至13に電気機器。
PCT/JP2014/055094 2013-03-22 2014-02-28 電池パック及び電気機器 WO2014148228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/773,692 US9893343B2 (en) 2013-03-22 2014-02-28 Battery pack and electric device
EP14770752.5A EP2978100A4 (en) 2013-03-22 2014-02-28 CELL PACKAGE AND ELECTRICAL DEVICE
JP2015506675A JP6098905B2 (ja) 2013-03-22 2014-02-28 電池パック及び電気機器
CN201480013246.0A CN105009401B (zh) 2013-03-22 2014-02-28 电池组和电气设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-059634 2013-03-22
JP2013059634 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148228A1 true WO2014148228A1 (ja) 2014-09-25

Family

ID=51579919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055094 WO2014148228A1 (ja) 2013-03-22 2014-02-28 電池パック及び電気機器

Country Status (5)

Country Link
US (1) US9893343B2 (ja)
EP (1) EP2978100A4 (ja)
JP (1) JP6098905B2 (ja)
CN (1) CN105009401B (ja)
WO (1) WO2014148228A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016098565A1 (ja) * 2014-12-18 2017-09-21 日立工機株式会社 電動工具
WO2017187891A1 (ja) * 2016-04-28 2017-11-02 日立工機株式会社 電源装置及び電気機器
JP2019004631A (ja) * 2017-06-16 2019-01-10 工機ホールディングス株式会社 電池パック及び電池パックを用いた電気機器
JP2020526883A (ja) * 2017-11-06 2020-08-31 エルジー・ケム・リミテッド 締結認識機能付きバッテリーパック
JP2020167862A (ja) * 2019-03-29 2020-10-08 株式会社マキタ 電源供給装置、電動作業機システム
US20230208163A1 (en) * 2021-12-24 2023-06-29 Motorola Solutions, Inc. Device, battery and system to control battery power

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191878A (ja) * 2014-03-31 2015-11-02 株式会社日立製作所 リチウムイオン二次電池システムおよびリチウムイオン二次電池の状態診断方法
JP6419028B2 (ja) * 2015-06-08 2018-11-07 株式会社マキタ 器具本体および電動機械器具
CN106042969A (zh) * 2016-07-22 2016-10-26 肇庆市小凡人科技有限公司 一种自动断电的充电桩系统
CN109891621B (zh) * 2016-10-31 2022-02-22 工机控股株式会社 电池组以及使用电池组的电动机器、电动机器系统
DE102017103005A1 (de) 2017-02-15 2018-08-16 Metabowerke Gmbh Überlastschutz einer akkubetriebenen Elektrowerkzeugmaschine
US11637433B2 (en) 2017-08-14 2023-04-25 Koki Holdings Co., Ltd. Battery pack and electrical apparatus
GB2566255B (en) * 2017-08-23 2021-02-24 Hyperdrive Innovation Ltd Battery safety protection
JP7192877B2 (ja) * 2018-11-30 2022-12-20 工機ホールディングス株式会社 電気機器システム
US11108253B2 (en) * 2018-12-19 2021-08-31 Motorola Solutions, Inc. Device, battery and system to reduce battery leakage
JP7500273B2 (ja) * 2019-05-28 2024-06-17 株式会社マキタ 電動作業機
JP7503059B2 (ja) * 2019-06-27 2024-06-19 パナソニックエナジー株式会社 電池パック及びその異常監視方法
EP3806273A1 (en) 2019-10-11 2021-04-14 Black & Decker Inc. Power tool receiving different capacity batttery packs
CN114589659A (zh) * 2022-03-11 2022-06-07 宁波市鄞州永佳电机工具有限公司 一种具有本质安全属性的码钉枪控制系统及其控制方法
WO2023187520A1 (en) * 2022-03-28 2023-10-05 3M Innovative Properties Company Personal protective equipment system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114838A (ja) * 1984-06-18 1986-01-23 ボーグ・ワーナー・コーポレーシヨン 切削工具の磨耗監視方法およびその装置
JP2006075227A (ja) * 2004-09-07 2006-03-23 Toshiba Tec Corp 電気掃除機
JP2007143284A (ja) * 2005-11-17 2007-06-07 Matsushita Electric Works Ltd 電動工具用の電池パック
JP2008062343A (ja) 2006-09-07 2008-03-21 Hitachi Koki Co Ltd 電動工具
JP2008154395A (ja) * 2006-12-19 2008-07-03 Makita Corp 電池保護装置、電池パック、及び電動工具
JP2012182909A (ja) * 2011-03-01 2012-09-20 Sony Corp 電池パック、蓄電システム、電子機器、電動車両、電力システムおよび制御システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694686A (en) 1984-06-18 1987-09-22 Borg-Warner Corporation Cutting tool wear monitor
US7270910B2 (en) * 2003-10-03 2007-09-18 Black & Decker Inc. Thermal management systems for battery packs
JP2005131770A (ja) 2003-10-31 2005-05-26 Matsushita Electric Ind Co Ltd 電池パック、電動工具及び電動工具システム
JP2007000992A (ja) 2005-06-27 2007-01-11 Matsushita Electric Works Ltd 電動工具本体及び電動工具
CN101714647B (zh) 2008-10-08 2012-11-28 株式会社牧田 电动工具用蓄电池匣以及电动工具
JP4793425B2 (ja) 2008-11-10 2011-10-12 パナソニック電工株式会社 充電式電動工具
JP5488877B2 (ja) 2009-09-17 2014-05-14 日立工機株式会社 電動工具
JP2011078282A (ja) * 2009-10-01 2011-04-14 Sony Corp 電池パック
JP5461221B2 (ja) 2010-02-12 2014-04-02 株式会社マキタ 複数のバッテリパックを電源とする電動工具
JP2013176810A (ja) 2010-07-07 2013-09-09 Makita Corp バッテリパックの取り付け構造
JP5582397B2 (ja) 2010-08-31 2014-09-03 日立工機株式会社 電動工具及び電動工具に用いられる電池パック

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114838A (ja) * 1984-06-18 1986-01-23 ボーグ・ワーナー・コーポレーシヨン 切削工具の磨耗監視方法およびその装置
JP2006075227A (ja) * 2004-09-07 2006-03-23 Toshiba Tec Corp 電気掃除機
JP2007143284A (ja) * 2005-11-17 2007-06-07 Matsushita Electric Works Ltd 電動工具用の電池パック
JP2008062343A (ja) 2006-09-07 2008-03-21 Hitachi Koki Co Ltd 電動工具
JP2008154395A (ja) * 2006-12-19 2008-07-03 Makita Corp 電池保護装置、電池パック、及び電動工具
JP2012182909A (ja) * 2011-03-01 2012-09-20 Sony Corp 電池パック、蓄電システム、電子機器、電動車両、電力システムおよび制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2978100A1

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016098565A1 (ja) * 2014-12-18 2017-09-21 日立工機株式会社 電動工具
US10886764B2 (en) 2014-12-18 2021-01-05 Koki Holdings Co., Ltd. Power tool
WO2017187891A1 (ja) * 2016-04-28 2017-11-02 日立工機株式会社 電源装置及び電気機器
JPWO2017187891A1 (ja) * 2016-04-28 2018-12-27 工機ホールディングス株式会社 電源装置及び電気機器
JP2019004631A (ja) * 2017-06-16 2019-01-10 工機ホールディングス株式会社 電池パック及び電池パックを用いた電気機器
JP2020526883A (ja) * 2017-11-06 2020-08-31 エルジー・ケム・リミテッド 締結認識機能付きバッテリーパック
JP7076526B2 (ja) 2017-11-06 2022-05-27 エルジー エナジー ソリューション リミテッド 締結認識機能付きバッテリーパック
JP2020167862A (ja) * 2019-03-29 2020-10-08 株式会社マキタ 電源供給装置、電動作業機システム
JP7193403B2 (ja) 2019-03-29 2022-12-20 株式会社マキタ 電源供給装置、電動作業機システム
JP7524284B2 (ja) 2019-03-29 2024-07-29 株式会社マキタ バッテリパック、電動作業機システム
US20230208163A1 (en) * 2021-12-24 2023-06-29 Motorola Solutions, Inc. Device, battery and system to control battery power

Also Published As

Publication number Publication date
US20160049636A1 (en) 2016-02-18
US9893343B2 (en) 2018-02-13
EP2978100A4 (en) 2016-10-19
JP6098905B2 (ja) 2017-03-22
CN105009401B (zh) 2019-06-28
EP2978100A1 (en) 2016-01-27
CN105009401A (zh) 2015-10-28
JPWO2014148228A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6098905B2 (ja) 電池パック及び電気機器
US9768625B2 (en) Battery pack, and method for controlling the same
US10784676B2 (en) Electrically-driven working apparatus and method for protecting battery of electrically-driven working apparatus
JP5067722B2 (ja) 電動工具
JP5065958B2 (ja) 電池パック
CN106415915B (zh) 电动工具以及电池组
US6388426B1 (en) Battery power source protecting device for an electromotive device
TWI625910B (zh) 鋰離子二次電池之保護電路及電池組
JP4936227B2 (ja) 電池パックおよび電池パックを用いた電動工具
KR20060042009A (ko) 배터리 상태 감시 회로 및 배터리 장치
JP6589948B2 (ja) 電源装置
JP2008042964A (ja) 二次電池保護装置
JP2008029156A (ja) 充電式ライト
JP2005312140A (ja) 充放電制御回路
JP5094129B2 (ja) 電池パック
CN112803506A (zh) 电动工具
JP2008029167A (ja) 電気機器
JP2011211867A (ja) 電池パック
JP5033035B2 (ja) 電池パック
JP6066449B2 (ja) 電源装置
JP2014117115A (ja) パック電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14770752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506675

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014770752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14773692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE