WO2014147861A1 - 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 - Google Patents

電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 Download PDF

Info

Publication number
WO2014147861A1
WO2014147861A1 PCT/JP2013/073211 JP2013073211W WO2014147861A1 WO 2014147861 A1 WO2014147861 A1 WO 2014147861A1 JP 2013073211 W JP2013073211 W JP 2013073211W WO 2014147861 A1 WO2014147861 A1 WO 2014147861A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
ratio
electronic
less
Prior art date
Application number
PCT/JP2013/073211
Other languages
English (en)
French (fr)
Inventor
牧 一誠
広行 森
大樹 山下
Original Assignee
三菱マテリアル株式会社
三菱伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱伸銅株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP13878726.2A priority Critical patent/EP2977476A4/en
Priority to KR1020157024680A priority patent/KR102087470B1/ko
Priority to US14/777,615 priority patent/US20160300634A1/en
Priority to CN201380074798.8A priority patent/CN105074025A/zh
Publication of WO2014147861A1 publication Critical patent/WO2014147861A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention is for a Cu-Zn-Sn based electronic / electrical device used as a conductive part for an electronic / electrical device such as a connector of a semiconductor device, other terminals, a movable conductive piece of an electromagnetic relay, or a lead frame.
  • the present invention relates to a copper alloy, a copper alloy thin plate for electronic / electric equipment, a conductive component for electronic / electric equipment, and a terminal using the copper alloy.
  • Cu—Zn alloys have been widely used from the viewpoint of strength, workability, and cost balance.
  • the surface of the base material (base plate) made of Cu—Zn alloy should be used with tin (Sn) plating.
  • Sn tin plating.
  • Sn is further added to the Cu-Zn alloy in order to improve the recyclability of Sn plating material and improve the strength.
  • Cu—Zn—Sn alloy is used.
  • conductive parts for electronic and electrical equipment such as connectors are generally formed into a predetermined shape by punching a thin plate (rolled plate) having a thickness of about 0.05 to 1.0 mm, and at least a part thereof is bent. It is manufactured by applying. In this case, the conductive component is brought into contact with the mating conductive member in the vicinity of the bent portion to obtain an electrical connection with the mating conductive member, and the contact state with the mating conductive material is maintained by the spring property of the bent portion.
  • rolled plate a thin plate having a thickness of about 0.05 to 1.0 mm
  • the copper alloy for electronic / electric equipment used for such electronic / electric equipment conductive parts is excellent in conductivity, rollability and punchability. Furthermore, as described above, in the case of a copper alloy that constitutes a connector or the like that is used to maintain a contact state with the mating conductive material in the vicinity of the bent portion due to the bending property of the bent portion as described above The copper alloy is required to have excellent bending workability and stress relaxation resistance.
  • Patent Documents 1 to 3 propose a method for improving the stress relaxation resistance of a copper alloy of a Cu—Zn—Sn alloy.
  • Patent Document 1 states that by adding Ni to a Cu—Zn—Sn alloy to produce a Ni—P compound, the stress relaxation resistance of the copper alloy can be improved. It has been shown to be effective in improving the stress relaxation resistance of copper alloys.
  • Patent Document 2 describes that strength, elasticity, and heat resistance can be improved by adding Ni and Fe together with P to a Cu—Zn—Sn alloy to form a compound. The above-mentioned improvement in strength, elasticity and heat resistance means improvement in stress relaxation resistance of the copper alloy.
  • the stress relaxation resistance of the copper alloy can be improved by adding Ni to the Cu—Zn—Sn alloy and adjusting the Ni / Sn ratio within a specific range.
  • the addition of a small amount of Fe is also effective for improving the stress relaxation resistance of the copper alloy.
  • Ni and Fe are added together with P to a Cu—Zn—Sn alloy, and the atomic ratio of (Fe + Ni) / P is within a range of 0.2-3. It is described that it is possible to improve the stress relaxation resistance of the copper alloy by forming the Fe—P compound, the Ni—P compound, and the Fe—Ni—P compound by adjusting to the above.
  • Japanese Laid-Open Patent Publication No. 05-33087 A) Japanese Unexamined Patent Publication No. 2006-283060 (A) Japanese Patent No. 3953357 (B) Japanese Patent No. 3717321 (B)
  • Patent Documents 1 and 2 only the individual contents of Ni, Fe, and P are taken into consideration, and the stress relaxation resistance characteristics of the copper alloy are not necessarily obtained only by adjusting such individual contents. Can not be improved reliably and sufficiently.
  • Patent Document 3 discloses that the Ni / Sn ratio is adjusted, but the relationship between the P compound and the stress relaxation resistance is not considered at all, and a sufficient and reliable copper alloy is disclosed. The stress relaxation resistance could not be improved.
  • Patent Document 4 only the total amount of Fe, Ni, and P and the atomic ratio of (Fe + Ni) / P are adjusted, and the stress relaxation resistance of the copper alloy cannot be sufficiently improved. .
  • the conventionally proposed methods cannot sufficiently improve the stress relaxation resistance of the Cu—Zn—Sn alloy. For this reason, in the connector having the above-described structure, the residual stress is relaxed over time or in a high-temperature environment, and the contact pressure with the counterpart conductive member is not maintained, and inconveniences such as poor contact are likely to occur at an early stage. There was a problem. In order to avoid such a problem, conventionally, the thickness of the material has to be increased, leading to an increase in material cost and weight. Thus, there is a strong demand for further reliable and sufficient improvement of the stress relaxation resistance of the copper alloy.
  • the present invention has been made against the background of the above circumstances, and the copper alloy for electronic and electrical equipment is excellent in strength and bending workability as well as surely and sufficiently excellent in stress relaxation resistance of the copper alloy. It is an object of the present invention to provide a copper alloy thin plate for electronic / electric equipment, a conductive component for electronic / electric equipment, and a terminal using the same.
  • the inventors of the present invention added a proper amount of Ni and Fe to a Cu—Zn—Sn alloy and added a proper amount of P, and the Fe / Ni content ratio Fe / Ni.
  • the ratio of the total content of Ni and Fe (Ni + Fe) to the content of P (Ni + Fe) / P and the ratio of the content of Sn to the total content of Ni and Fe (Ni + Fe) Sn / (Ni + Fe) are adjusted within the appropriate range in terms of atomic ratios, so that precipitates containing Fe and / or Ni and P are appropriately precipitated, and at the same time, measured by the EBSD method in the base material (mainly ⁇ phase).
  • Stress relaxation of copper alloy and it found that reliably and sufficiently enhanced to the same time strength properties, bending workability superior copper alloy obtained, leading to completion of the present invention. Furthermore, it has been found that the stress relaxation resistance and strength of a copper alloy can be further improved by adding an appropriate amount of Co simultaneously with Ni and / or Fe and P described above.
  • the copper alloy for electronic / electrical equipment according to the first aspect of the present invention has a Zn content of 23 mass% to 36.5 mass%, a Sn content of 0.1 mass% to 0.9 mass%, and a Ni content of 0.15 mass% to 1 0.0 mass%, Fe is 0.001 mass% or more and less than 0.10 mass%, P is 0.005 mass% or more and 0.1 mass% or less, and the balance is made of Cu and inevitable impurities.
  • the ratio Fe / Ni to the content satisfies the atomic ratio of 0.002 ⁇ Fe / Ni ⁇ 0.7, and the ratio of the total content of Ni and Fe (Ni + Fe) to the content of P (Ni + Fe) / P satisfies an atomic ratio of 3 ⁇ (Ni + Fe) / P ⁇ 15, and a ratio Sn / (Ni + Fe) between the Sn content and the total amount of Ni and Fe (Ni + Fe) is 0.1.
  • the copper alloy for electronic / electrical equipment having the above-described configuration, Ni and Fe are added together with P, and the addition ratio among Sn, Ni, Fe, and P is regulated, whereby the parent phase ( ⁇ phase (Ni, Fe) -P-based precipitates containing Fe and / or Ni and P precipitated from the main component) are appropriately present, and the stress relaxation resistance of the copper alloy is surely and sufficiently excellent.
  • Strength yield strength
  • the special grain boundary length ratio (L ⁇ / L) is set to 10% or more, the grain boundaries with high crystallinity (grain boundaries with less disorder of atomic arrangement) increase, so that the fracture during bending is increased.
  • the [Ni, Fe] -P-based precipitates are Ni—Fe—P ternary precipitates, or Fe—P or Ni—P binary precipitates.
  • a multi-component precipitate containing, for example, Cu, Zn, Sn as main components, O, S, C, Co, Cr, Mo, Mn, Mg, Zr, Ti, or the like as impurities is included.
  • the [Ni, Fe] -P-based precipitates exist in the form of phosphides or alloys in which phosphorus is dissolved.
  • the EBSD method means an electron beam diffraction diffraction pattern (EBSD) method using a scanning electron microscope with a backscattered electron diffraction image system.
  • EBSD electron beam diffraction diffraction pattern
  • an electron beam is irradiated on the surface of a sample placed in a greatly inclined state in a scanning electron microscope, and the crystal orientation of a measurement point is determined based on a crystal pattern (Kikuchi pattern) formed by reflection diffraction of the electron beam. taking measurement.
  • the crystal pattern is obtained as a plurality of bands. Three bands are selected from the crystal pattern, and one or a plurality of solutions are calculated as crystal orientations.
  • OIM is data analysis software (OIM) for analyzing crystal orientation using measurement data obtained by the EBSD method.
  • OIM data analysis software
  • a crystal grain is defined by collecting continuous measurement points showing the same crystal orientation from the crystal orientation measured by the EBSD method, thereby constructing microstructure information.
  • the CI value is a reliability index, which is displayed as a numerical value representing the reliability of crystal orientation determination when analyzed using analysis software OIM Analysis (Ver. 5.3) of an EBSD device.
  • each solution calculated when determining the crystal orientation of one measurement point in the EBSD method can be weighted according to the number of appearances.
  • the CI value obtained by determining the reliability of the crystal orientation at that point finally determined based on the weighting is the CI value. That is, if the crystal pattern is clear, the CI value is high, and if the crystal pattern is not clear, the CI value is low.
  • the structure of the measurement point measured by EBSD and analyzed by OIM is a processed structure
  • the crystal pattern is not clear, the reliability of crystal orientation determination is lowered, and the CI value is lowered.
  • the CI value is 0.1 or less, it is determined that the structure of the measurement point is a processed structure.
  • the special grain boundary is a ⁇ value defined crystallographically based on CSL theory (Kronberg et al: Trans. Met. Soc. AIME, 185, 501 (1949)) and corresponding to 3 ⁇ ⁇ ⁇ 29.
  • the grain boundary and the inherent corresponding site lattice orientation defect Dq at the corresponding grain boundary is Dq ⁇ 15 ° / ⁇ 1/2 (DG Brandon: Acta. Metallurgica. Vol. 14, p. 1479, (1966)).
  • the copper alloy for electronic / electrical equipment has a Zn content of 23 mass% to 36.5 mass%, a Sn content of 0.1 mass% to 0.9 mass%, and a Ni content of 0.15 mass% to 1. Less than 0 mass%, Fe is 0.001 mass% or more and less than 0.10 mass%, Co is contained in 0.001 mass% or more and less than 0.1 mass%, P is contained in 0.005 mass% or more and 0.1 mass% or less, and the balance is Cu and inevitable
  • the ratio of the total content of Fe and Co to the content of Ni (Fe + Co) / Ni satisfies 0.002 ⁇ (Fe + Co) / Ni ⁇ 0.7 in atomic ratio, and Ni,
  • the ratio (Ni + Fe + Co) / P of the total content of Fe and Co (Ni + Fe + Co) to the content of P is 3 ⁇ (Ni + Fe + Co) / P 15 and the ratio Sn / (Ni + Fe + Co) of the Sn
  • the ⁇ phase containing Cu, Zn and Sn is measured by an EBSD method with a measurement area of 1000 ⁇ m 2 or more at a measurement interval of 0.1 ⁇ m step, and the CI value analyzed by the data analysis software OIM is 0.1 Analysis is performed except for the following measurement points, and a crystal grain boundary is defined between the measurement points at which the orientation difference between adjacent measurements exceeds 15 °.
  • ⁇ 3, ⁇ 9, ⁇ 27a, and ⁇ 27b with respect to all the crystal grain boundary lengths L A special grain boundary length ratio (L ⁇ / L), which is a ratio of the sum L ⁇ of grain boundary lengths, is 10% or more.
  • the copper alloy according to the second aspect is the copper alloy according to the first aspect, further including Co in an amount of 0.001 mass% to less than 0.1 mass%, and a total content of Fe and Co;
  • the ratio (Fe + Co) / Ni to the Ni content satisfies the atomic ratio of 0.002 ⁇ (Fe + Co) / Ni ⁇ 0.7, and the total content of Ni, Fe and Co (Ni + Fe + Co) and P
  • the copper alloy for electronic and electrical equipment having the above-described configuration, by adding Ni, Fe and Co together with P, and appropriately regulating the addition ratio among Sn, Ni, Fe, Co and P, [Ni, Fe, Co] -P-based precipitates containing P and at least one element selected from Fe, Ni, and Co precipitated from the matrix (mainly ⁇ phase) are appropriately present. Therefore, the stress relaxation property of the copper alloy is surely and sufficiently excellent, and the strength (proof strength) is high.
  • the special grain boundary length ratio (L ⁇ / L) to 10% or more, the grain boundaries with high crystallinity (grain boundaries with less disorder of atomic arrangement) increase, so that the fracture during bending is increased.
  • the [Ni, Fe, Co] -P-based precipitates are Ni-Fe-Co-P quaternary precipitates, Ni-Fe-P, Ni-Co-P, or Fe-Co.
  • the [Ni, Fe, Co] -P-based precipitates exist in the form of phosphides or alloys in which phosphorus is dissolved.
  • the copper alloy according to the first or second aspect is a rolled material, and one surface (rolled surface) satisfies the above-mentioned special grain boundary length ratio (L ⁇ / L). Also good.
  • the rolled material has a form of a plate material or a strip material, and the surface of the plate or the strip satisfies the condition of the ratio of special grain boundary length (L ⁇ / L) on the one surface. Also good.
  • the average crystal grain size (including twins) of the ⁇ phase containing Cu, Zn and Sn is in the range of 0.5 ⁇ m or more and 10 ⁇ m or less. It is preferable to be inside.
  • the stress relaxation resistance characteristic of the copper alloy is maintained by setting the average crystal grain size (including twins) of the ⁇ phase containing Cu, Zn and Sn within the range of 0.5 ⁇ m or more and 10 ⁇ m or less. , Sufficient strength (proof strength) can be provided.
  • the copper alloy for electronic / electric equipment according to the first or second aspect has a mechanical property of 0.2% proof stress of 300 MPa or more.
  • a copper alloy for electronic and electrical equipment having a mechanical property of 0.2% proof stress of 300 MPa or more is suitable for conductive parts that require particularly high strength, such as a movable conductive piece of an electromagnetic relay or a spring part of a terminal. Is suitable.
  • the copper alloy thin plate for electronic / electric equipment according to the third aspect of the present invention has a thin plate main body made of a rolled material of the copper alloy for electronic / electric equipment according to the first or second aspect described above, and the thin plate The thickness of the main body is in the range of 0.05 mm to 1.0 mm.
  • the copper alloy thin plate main body may be a thin plate (tape-like copper alloy) having a strip shape.
  • the copper alloy thin plate for electronic / electric equipment having such a configuration can be suitably used for connectors, other terminals, movable conductive pieces of electromagnetic relays, lead frames, and the like.
  • the base material of the Sn plating is made of a Cu—Zn—Sn alloy containing 0.1 mass% or more and 0.9 mass% or less of Sn. It can be recovered as Cu—Zn alloy scrap to ensure good recyclability.
  • the conductive component for electronic / electrical equipment according to the fourth aspect of the present invention is characterized by comprising the copper alloy for electronic / electrical equipment according to the first or second aspect described above.
  • the terminal which concerns on the 5th aspect of this invention consists of a copper alloy for electronic and electrical equipment which concerns on the above-mentioned 1st or 2nd aspect.
  • the conductive component for electronic / electric equipment according to the fourth aspect of the present invention comprises the copper alloy thin plate for electronic / electric equipment according to the third aspect described above.
  • the terminal which concerns on the 5th aspect of this invention consists of a copper alloy thin plate for electronic / electrical equipment which concerns on the above-mentioned 3rd aspect, It is characterized by the above-mentioned.
  • the residual stress is less likely to be relaxed over time or in a high temperature environment because the copper alloy is particularly excellent in stress relaxation resistance.
  • the contact pressure with the conductive member can be maintained.
  • the copper alloy for electronic / electric equipment which used the copper alloy for electronic / electric equipment which was excellent in the stress relaxation characteristic of copper alloy reliably and sufficiently, and was excellent in intensity
  • the copper alloy for electronic and electric apparatuses which is one Embodiment of this invention is demonstrated.
  • the copper alloy for electronic / electric equipment according to the present embodiment includes Zn in a range of 23 mass% to 36.5 mass%, Sn in a range of 0.1 mass% to 0.9 mass%, and Ni in a range of 0.15 mass% to less than 1.0 mass%.
  • Fe is contained in an amount of 0.001 mass% to less than 0.10 mass%
  • P is contained in an amount of 0.005 mass% to 0.1 mass%
  • the balance is composed of Cu and inevitable impurities.
  • the ratio Fe / Ni between the content of Fe and the content of Ni is the atomic ratio as the content ratio between the alloy elements, and the following formula (1): 0.002 ⁇ Fe / Ni ⁇ 0 .7 satisfying (1), and the ratio (Ni + Fe) / P of the total content of Ni and Fe (Ni + Fe) to the content of P is an atomic ratio. ⁇ (Ni + Fe) / P ⁇ 15 (2) is satisfied, and the ratio Sn / (Ni + Fe) between the Sn content, the Ni content, and the total content of Fe (Ni + Fe) is the atomic ratio, (3) Equation 0.3 ⁇ Sn / (Ni + Fe) ⁇ 2.9 (3) is satisfied.
  • the copper alloy for electronic / electrical equipment which is this embodiment may contain 0.001 mass% or more and less than 0.10 mass% of Co other than said Zn, Sn, Ni, Fe, and P.
  • the ratio of the total content of Fe and Co to the content of Ni (Fe + Co) / Ni is the atomic ratio as the content ratio between the alloy elements.
  • the ratio (Ni + Fe + Co) / P of the total content of Ni, Fe and Co (Ni + Fe + Co) to the content of P is an atomic ratio, and the following (2 ′) formula 3 ⁇ (Ni + Fe + Co) / P ⁇ 15 (2 ') Further, the ratio Sn / (Ni + Fe + Co) of the Sn content and the total content of Ni, Fe and Co (Ni + Fe + Co) is expressed by the following formula (3 ′): 0.3 ⁇ Sn / (Ni + Fe + Co) ⁇ 2.9 (3 ') It is determined to satisfy.
  • Zinc (Zn) 23 mass% or more and 36.5 mass% or less
  • Zn is a basic alloy element in the copper alloy of interest in the present embodiment, and is an element effective for improving strength and springiness. Moreover, since Zn is cheaper than Cu, it is effective in reducing the material cost of the copper alloy. If Zn is less than 23 mass%, the effect of reducing the material cost cannot be sufficiently obtained. On the other hand, if Zn exceeds 36.5 mass%, corrosion resistance will fall and cold rolling property will also fall. Therefore, the Zn content is within the range of 23 mass% or more and 36.5 mass% or less. The Zn content is preferably within a range of 23 mass% to 33 mass%, and more preferably within a range of 23 mass% to 30 mass%, even within the above range.
  • Addition of Sn is effective in improving the strength of the copper alloy, and is advantageous in improving the recyclability of the Cu-Zn alloy material with Sn plating. Furthermore, it has been found by the present inventors that Sn, if Ni coexists with Ni and Fe, contributes to the improvement of the stress relaxation resistance of the copper alloy. If Sn is less than 0.1 mass%, these effects cannot be sufficiently obtained. On the other hand, if Sn exceeds 0.9 mass%, the hot workability and the cold rollability are deteriorated. There is a possibility that cracking may occur in cold rolling, and the electrical conductivity also decreases. Therefore, in the present embodiment, the Sn content is in the range of 0.1 mass% to 0.9 mass%. The Sn content is particularly preferably in the range of 0.2 mass% to 0.8 mass% even within the above range.
  • Nickel (Ni): 0.15 mass% or more and less than 1.0 mass% Ni is added together with Fe and P to precipitate [Ni, Fe] -P-based precipitates from the parent phase (mainly ⁇ phase) of the copper alloy.
  • the [Ni, Fe, Co] -P-based precipitate can be precipitated from the parent phase (mainly ⁇ phase) of the copper alloy.
  • the average grain size can be reduced by the effect of pinning the grain boundaries during recrystallization by these [Ni, Fe] -P based precipitates or [Ni, Fe, Co] -P based precipitates.
  • the strength, bending workability and stress corrosion cracking resistance of the copper alloy can be improved.
  • the presence of these precipitates can greatly improve the stress relaxation resistance of the copper alloy.
  • by coexisting Ni with Sn, Fe, Co, and P it can also be improved by solid solution strengthening.
  • the addition amount of Ni is less than 0.15 mass%, the stress relaxation resistance of the copper alloy cannot be sufficiently improved.
  • the addition amount of Ni is 1.0 mass% or more, the solid solution Ni is increased, the conductivity of the copper alloy is lowered, and the cost is increased due to an increase in the amount of expensive Ni raw material used. Therefore, the amount of Ni added is in the range of 0.15 mass% or more and less than 1.0 mass%.
  • the [Ni, Fe] -P-based precipitate can be precipitated from the parent phase (mainly ⁇ phase) of the copper alloy, and is added together with Ni, Co and P.
  • the [Ni, Fe, Co] -P-based precipitate can be precipitated from the parent phase (mainly ⁇ -phase) of the copper alloy.
  • the average grain size can be reduced by the effect of pinning the grain boundaries during recrystallization by these [Ni, Fe] -P based precipitates or [Ni, Fe, Co] -P based precipitates.
  • the strength, bending workability and stress corrosion cracking resistance of the copper alloy can be improved.
  • the presence of these precipitates can greatly improve the stress relaxation resistance of the copper alloy.
  • the addition amount of Fe is less than 0.001 mass%, the effect of pinning the crystal grain boundary cannot be sufficiently obtained, and sufficient strength cannot be obtained.
  • the amount of Fe added is 0.10 mass% or more, no further improvement in strength is observed, the solid solution Fe increases in the copper alloy, the conductivity decreases, and the cold rolling property also decreases. End up. Therefore, in the present embodiment, the Fe content is set within a range of 0.001 mass% or more and less than 0.10 mass%. In addition, it is preferable to make content of Fe into the range of 0.002 mass% or more and 0.08 mass% or less especially also in said range.
  • Co Co
  • Co is not necessarily an essential additive element, but if a small amount of Co is added together with Ni, Fe, and P, [Ni, Fe, Co] -P A system precipitate is generated, and the stress relaxation resistance of the copper alloy can be further improved.
  • the amount of Co addition is less than 0.001 mass%, the effect of further improving the stress relaxation resistance by Co addition cannot be obtained.
  • the amount of Co added is 0.10 mass% or more, the amount of solid solution Co increases, the conductivity of the copper alloy decreases, and the cost increases due to an increase in the amount of expensive Co raw material used.
  • the amount of Co added is in the range of 0.001 mass% or more and less than 0.10 mass%. Even in the above range, the amount of Co added is preferably in the range of 0.002 mass% to 0.08 mass%. Even when Co is not actively added, Co of less than 0.001 mass% may be contained as an impurity.
  • Phosphorus (P): 0.005 mass% or more and 0.10 mass% or less P has high bonding properties with Fe, Ni, and Co, and if Ni and Fe are contained together with Fe and Ni, [Ni, Fe] -P-based precipitates can be deposited, and if an appropriate amount of P is contained together with Fe, Ni, Co, [Ni, Fe, Co] -P-based precipitates can be deposited, and these The presence of the precipitate can improve the stress relaxation resistance of the copper alloy.
  • the amount of P is less than 0.005 mass%, it will be difficult to sufficiently deposit [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates, and the copper alloy It becomes impossible to improve the stress relaxation resistance.
  • the amount of P exceeds 0.10 mass%, the amount of P solid solution increases, and the electrical conductivity of the copper alloy decreases, and the rollability decreases and cold rolling cracks are likely to occur.
  • the P content is in the range of 0.005 mass% to 0.10 mass%.
  • the content of P is particularly preferably in the range of 0.01 mass% to 0.08 mass% even within the above range.
  • P is an element that is inevitably mixed in from the melting material of the copper alloy. Therefore, in order to regulate the amount of P as described above, it is desirable to appropriately select the melting material.
  • the balance of the above elements may be basically Cu and inevitable impurities.
  • inevitable impurities include Mg, Al, Mn, Si, (Co), Cr, Ag, Ca, Sr, Ba, Sc, Y, Hf, V, Nb, Ta, Mo, W, Re, Ru. , Os, Se, Te, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, Ti, Tl, Pb, Bi, S, O, C, Be, N, H , Hg, B, Zr, rare earth, and the like.
  • These inevitable impurities are desirably 0.3% by mass or less in total.
  • the mutual ratio of the content of each element is an atomic ratio. It is important to regulate the ratio so as to satisfy the expressions (1) to (3) or the expressions (1 ′) to (3 ′). Therefore, the reasons for limiting the expressions (1) to (3) and (1 ′) to (3 ′) will be described below.
  • the (Ni + Fe + Co) / P ratio is 15 or more, the electrical conductivity of the copper alloy decreases due to the increase in the proportion of Ni, Fe, and Co dissolved, and the amount of expensive Co and Ni raw materials used is relatively high. Increasing costs will increase costs. Therefore, the (Ni + Fe + Co) / P ratio is regulated within the above range. Note that the (Ni + Fe + Co) / P ratio is preferably in the range of more than 3 and 12 or less even in the above range.
  • each alloy element is adjusted not only to the individual content but also to the ratio between each element so that the formulas (1) to (3) or (1 ′) to (3 ′) are satisfied.
  • [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates are dispersed and precipitated from the parent phase (mainly ⁇ -phase). It is considered that the stress relaxation resistance of the copper alloy is improved by the dispersion and precipitation of the precipitates.
  • the crystal structure is defined as follows. First, an ⁇ phase containing Cu, Zn, and Sn is measured by an EBSD method with a measurement area of 1000 ⁇ m 2 or more at a measurement interval of 0.1 ⁇ m step, and a CI value analyzed by data analysis software OIM is 0.1 or less , And a crystal grain boundary between the measurement points where the orientation difference between adjacent measurements exceeds 15 °, and each grain of ⁇ 3, ⁇ 9, ⁇ 27a, and ⁇ 27b for all the grain boundary lengths L
  • the special grain boundary length ratio (L ⁇ / L) which is the ratio of the boundary length sum L ⁇ , is 10% or more.
  • the average crystal grain size (including twins) of the ⁇ phase containing Cu, Zn and Sn is set in the range of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the special grain boundary length ratio (L ⁇ / L) which is the ratio of the sum L ⁇ of the grain boundary lengths of ⁇ 27b, can further improve the bending workability while maintaining the stress relaxation resistance of the copper alloy. it can.
  • the special grain boundary length ratio (L ⁇ / L) is preferably 15% or more. More preferably, 20% or more is desirable.
  • the CI value (reliability index) when analyzed by the analysis software OIM of the EBSD device is small when the crystal pattern of the measurement point is not clear, and the analysis result is obtained when the CI value is 0.1 or less. Difficult to trust. Therefore, in the present embodiment, measurement points with low reliability whose CI value is 0.1 or less are excluded.
  • the crystal grain size of the material has some influence on the stress relaxation resistance of the copper alloy. Generally, the smaller the crystal grain size, the lower the stress relaxation resistance of the copper alloy.
  • the copper alloy is good by appropriately adjusting the ratio of the component composition and the ratio of each alloy element and by appropriately adjusting the ratio of the special grain boundary having high crystallinity. Therefore, the crystal grain size can be reduced, and the strength and bending workability can be improved. Accordingly, it is desirable that the average crystal grain size be 10 ⁇ m or less at the stage after the finish heat treatment for recrystallization and precipitation during the manufacturing process. In order to further improve the strength and the bending balance, it is preferable to be in the range of 0.5 ⁇ m to 8 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m.
  • a molten copper alloy having the above-described component composition is melted.
  • 4NCu oxygen-free copper or the like
  • scrap may be used as the raw material.
  • an atmospheric furnace may be used for melting, but an atmosphere furnace having a vacuum furnace, an inert gas atmosphere, or a reducing atmosphere may be used in order to suppress oxidation of the additive element.
  • the copper alloy melt whose components are adjusted is cast by an appropriate casting method, for example, a batch casting method such as die casting, a continuous casting method, a semi-continuous casting method, or the like to obtain an ingot.
  • Heating step: S02] Thereafter, if necessary, a homogenization heat treatment is performed in order to eliminate segregation of the ingot and make the ingot structure uniform. Alternatively, a solution heat treatment is performed to dissolve the crystallized product and the precipitate.
  • the conditions for this heat treatment are not particularly limited, but it may be usually heated at 600 to 1000 ° C. for 1 second to 24 hours. When the heat treatment temperature is less than 600 ° C. or the heat treatment time is less than 5 minutes, there is a possibility that a sufficient homogenization effect or solution effect cannot be obtained. On the other hand, if the heat treatment temperature exceeds 1000 ° C., a part of the segregated part may be dissolved, and if the heat treatment time exceeds 24 hours, only the cost increases.
  • the cooling conditions after the heat treatment may be determined as appropriate, but usually water quenching may be performed. After the heat treatment, chamfering is performed as necessary.
  • hot working may be performed on the ingot in order to increase the efficiency of roughing and make the structure uniform.
  • the conditions for this hot working are not particularly limited, but it is usually preferable that the starting temperature is 600 to 1000 ° C., the finishing temperature is 300 to 850 ° C., and the working rate is about 10 to 99%.
  • the ingot heating up to the hot working start temperature may also serve as the heating step S02 described above.
  • Cooling conditions after hot working may be determined as appropriate, but usually water quenching may be performed.
  • it chamfers as needed.
  • it does not specifically limit about the processing method of hot processing What is necessary is just to apply hot rolling, when a final shape is a board or a strip. If the final shape is a wire or a rod, extrusion or groove rolling may be applied, and if the final shape is a bulk shape, forging or pressing may be applied.
  • intermediate plastic working is performed on the ingot that has been homogenized in the heating step S02 or the hot-worked material that has been subjected to hot working S03 such as hot rolling.
  • the temperature condition in the intermediate plastic working S04 is not particularly limited, but is preferably in a range of ⁇ 200 ° C. to + 200 ° C. that is cold or warm working.
  • the processing rate of the intermediate plastic processing is not particularly limited, but is usually about 10 to 99%.
  • rolling may be applied when the final shape is a plate or strip. When the final shape is a wire or a rod, extrusion or groove rolling can be applied. When the final shape is a bulk shape, forging or pressing can be applied. Note that S02 to S04 may be repeated for thorough solution.
  • Intermediate heat treatment step: S05 After the cold or warm intermediate plastic processing S04, an intermediate heat treatment that serves both as a recrystallization process and as a precipitation process is performed.
  • This intermediate heat treatment is a process performed to recrystallize the structure and simultaneously disperse and precipitate [Ni, Fe] -P-based precipitates or [Ni, Fe, Co] -P-based precipitates.
  • the conditions of the heating temperature and the heating time at which the precipitates are produced may be applied, and it is usually sufficient that the temperature is 200 to 800 ° C. and 1 second to 24 hours.
  • the crystal grain size has some influence on the stress relaxation resistance of the copper alloy, it is desirable to measure the recrystallized grains by the intermediate heat treatment and appropriately select the conditions for the heating temperature and the heating time. Since the intermediate heat treatment and subsequent cooling affect the final average crystal grain size, these conditions are selected so that the average crystal grain size of the ⁇ phase falls within the range of 0.1 to 10 ⁇ m. It is desirable.
  • a batch-type heating furnace may be used, or continuous heating may be performed using a continuous annealing line.
  • a batch type heating furnace it is desirable to heat at a temperature of 300 to 800 ° C. for 5 minutes to 24 hours, and when using a continuous annealing line, the heating temperature is 250 to 800 ° C. It is preferable to keep the temperature within the range without holding or for about 1 second to 5 minutes.
  • the atmosphere for the intermediate heat treatment is preferably a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere, reducing atmosphere).
  • the cooling condition after the intermediate heat treatment is not particularly limited, but it may be normally cooled at a cooling rate of about 2000 ° C./second to 100 ° C./hour. If necessary, the intermediate plastic working S04 and the intermediate heat treatment step S05 may be repeated a plurality of times.
  • finishing plastic working After the intermediate heat treatment step S05, finishing is performed to the final dimension and final shape.
  • the processing method in the finish plastic working is not particularly limited, but when the final product form is a plate or a strip, rolling (cold rolling) may be applied. In addition, forging, pressing, groove rolling, or the like may be applied depending on the final product form.
  • the processing rate may be appropriately selected according to the final plate thickness and final shape, but is preferably in the range of 1 to 99%, particularly 1 to 70%. If the processing rate is less than 1%, the effect of improving the proof stress cannot be sufficiently obtained.
  • the processing rate is preferably 1 to 70%, more preferably 5 to 70%. After the finish plastic working, it may be used as a product as it is, but it is usually preferable to perform a finish heat treatment.
  • a finish heat treatment step S07 is performed as necessary to improve the stress relaxation resistance of the copper alloy and to perform low-temperature annealing hardening or to remove residual strain.
  • This finish heat treatment is desirably performed at a temperature in the range of 50 to 800 ° C. for 0.1 second to 24 hours. If the finish heat treatment temperature is less than 50 ° C. or the finish heat treatment time is less than 0.1 seconds, there is a possibility that a sufficient effect of removing strain may not be obtained. There is a fear of crystallizing, and the fact that the finishing heat treatment time exceeds 24 hours only increases the cost. In the case where the finish plastic working S06 is not performed, the finish heat treatment step S07 may be omitted.
  • the copper alloy for electronic / electric equipment can be obtained.
  • the 0.2% proof stress is 300 MPa or more.
  • a copper alloy thin plate (strip material) for electronic / electrical equipment having a thickness of about 0.05 to 1.0 mm can be obtained.
  • Such a thin plate may be used as it is for a conductive part for electronic or electrical equipment, but Sn plating with a film thickness of about 0.1 to 10 ⁇ m is applied to one or both sides of the plate surface, and Sn plating is provided.
  • the copper alloy strip is usually used for conductive parts for electronic and electrical equipment such as connectors and other terminals.
  • the Sn plating method is not particularly limited. In some cases, a reflow treatment may be performed after electrolytic plating.
  • the [Ni, Fe] -P-based precipitate or [Ni, Fe, Co] -P The special grain boundary length, which is the ratio of the sum L ⁇ of the grain boundary lengths of ⁇ 3, ⁇ 9, ⁇ 27a, and ⁇ 27b to all the grain boundary lengths L of the ⁇ phase crystal grains at the same time that the system precipitates are appropriately present Since the ratio (L ⁇ / L) is set to 10% or more, the stress relaxation resistance of the copper alloy is surely and sufficiently excellent, the strength (proof stress) is high, and the bending workability is also excellent.
  • the average particle diameter of the ⁇ phase is in the range of 0.5 ⁇ m or more and 10 ⁇ m or less, so that the stress relaxation resistance characteristic of the copper alloy is reliable and sufficient.
  • the strength (yield strength) is high and the bending workability is also excellent.
  • the copper alloy for electronic and electrical equipment according to the present embodiment has a mechanical property of 0.2% proof stress of 300 MPa or more, it has a particularly high strength such as a movable conductive piece of an electromagnetic relay or a spring part of a terminal. Suitable for conductive parts that require
  • the copper alloy thin plate for electronic and electrical equipment according to the present embodiment is made of the above-described rolled material of the copper alloy for electronic and electrical equipment, the copper alloy is excellent in stress relaxation resistance of the copper alloy, connectors, other terminals, It can be suitably used for a movable conductive piece of an electromagnetic relay, a lead frame or the like.
  • Sn plating is applied to the surface, it is possible to ensure good recyclability by collecting parts such as used connectors as scraps of Sn-plated Cu—Zn alloy.
  • the conductive member and terminal for electronic / electric equipment according to the present embodiment are made of the above-described copper alloy thin plate for electronic / electric equipment and are brought into contact with the counterpart conductive member to obtain electrical connection with the counterpart conductive member. Further, at least a part of the plate surface is subjected to bending processing, and is configured to maintain contact with the counterpart conductive material by the spring property of the bent portion. It is excellent in stress relaxation resistance, and the residual stress is less likely to be relaxed over time or in a high temperature environment, and the contact pressure with the counterpart conductive member can be maintained.
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • the present invention is not limited thereto, and the finally obtained copper alloy for electronic / electric equipment has a composition within the scope of the present invention, and Cu, Zn And the special grain boundary length ratio (L ⁇ / L) of the ⁇ phase containing Sn may be set within the scope of the present invention.
  • a raw material comprising a Cu-40% Zn master alloy and oxygen-free copper (ASTM B152 C10100) having a purity of 99.99% by mass or more was prepared and charged into a high-purity graphite crucible, and an N 2 gas atmosphere In this case, melting was performed using an electric furnace.
  • Various additive elements were added to the molten copper alloy to melt the molten alloy having the composition shown in Tables 1 and 2 and poured into a carbon mold to produce an ingot.
  • the size of the ingot was about 25 mm thick ⁇ about 50 mm wide ⁇ about 200 mm long.
  • each ingot was subjected to water quenching as a homogenization treatment after being held at 800 ° C. for a predetermined time in an Ar gas atmosphere.
  • hot rolling was performed. Reheating is performed so that the hot rolling start temperature is 800 ° C., the hot rolling is performed at a rolling rate of about 50% so that the width direction of the ingot is the rolling direction, and the rolling end temperature is 300 to 700 ° C. From this, water quenching was performed, and after cutting and surface grinding, a hot rolled material having a thickness of about 11 mm ⁇ width of about 160 mm ⁇ length of about 100 mm was produced.
  • the intermediate plastic working and the intermediate heat treatment were each performed once or repeated twice. Specifically, when the intermediate plastic working and the intermediate heat treatment are each performed once, after performing cold rolling (intermediate plastic working) with a rolling rate of about 90% or more, the intermediate for recrystallization and precipitation treatment As heat treatment, heat treatment was performed at 200 to 800 ° C. for a predetermined time, and water quenching was performed. Thereafter, the rolled material was cut, and surface grinding was performed to remove the oxide film. On the other hand, when the intermediate plastic working and the intermediate heat treatment are each performed twice, the primary cold rolling (primary intermediate plastic working) is performed at a rolling rate of about 50 to 90%, and then the primary intermediate heat treatment is performed at 200 to 800 ° C.
  • the intermediate plastic working and the intermediate heat treatment are each performed twice, the primary cold rolling (primary intermediate plastic working) is performed at a rolling rate of about 50 to 90%, and then the primary intermediate heat treatment is performed at 200 to 800 ° C.
  • secondary cold rolling (secondary intermediate plastic working) with a rolling rate of about 50 to 90% is performed, and secondary treatment is performed at a temperature between 200 and 800 ° C. for a predetermined time.
  • An intermediate heat treatment was performed and water quenching was performed. Thereafter, the rolled material was cut, and surface grinding was performed to remove the oxide film.
  • the average crystal grain size after the primary or secondary intermediate heat treatment was examined as follows.
  • the surface perpendicular to the normal direction to the rolling surface that is, the ND (Normal Direction) surface is used as the observation surface, mirror polishing, etching, and then using an optical microscope.
  • the film was photographed so that the rolling direction was next to the photograph, and observed with a 1000 ⁇ field of view (about 300 ⁇ 200 ⁇ m 2 ).
  • JIS H 0501: 1986 (corresponding to ISO 2624-1973)
  • draw a line segment of a predetermined length in the vertical and horizontal directions of the photograph and the number of crystal grains to be completely cut
  • the average value of the cutting length was calculated as the average crystal grain size.
  • the average crystal grain size is 10 ⁇ m or less
  • the average crystal grain size is measured by a SEM-EBSD (Electron Backscatter Diffraction Patterns) measuring device using the plane perpendicular to the rolling width direction, that is, the TD plane as the observation plane. did.
  • SEM-EBSD Electro Backscatter Diffraction Patterns
  • finish rolling was performed at the rolling rates shown in Tables 3 and 4.
  • finish rolling was performed at the rolling rates shown in Tables 3 and 4.
  • water quenching, cutting and surface polishing were performed, and a strip for characteristic evaluation having a thickness of 0.25 mm and a width of about 160 mm was produced.
  • test piece having a width of 10 mm and a length of 60 mm was taken from the strip for characteristic evaluation, and the electrical resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract
  • Stress relaxation resistance test of the copper alloy is performed by applying a displacement to the free end of the test piece supported with one end as a fixed end, in accordance with the cantilevered screw type of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004. Stress was applied and the residual stress ratio after holding at a temperature of 120 ° C. for a predetermined time was measured.
  • a specimen width 10 mm
  • the initial deflection displacement is set so that the maximum surface stress of the specimen is 80% of the proof stress.
  • the span length was adjusted to 2 mm.
  • the maximum surface stress is determined by the following equation.
  • the stress relaxation resistance of the copper alloy was evaluated by measuring the residual stress rate from the bending habit after holding for 500 hours at a temperature of 120 ° C. to evaluate the stress relaxation resistance of the copper alloy.
  • the orientation difference of each crystal grain was analyzed with an electron beam acceleration voltage of 20 kV and a measurement area of 1000 ⁇ m 2 or more at a measurement interval of 0.1 ⁇ m step.
  • the CI value of each measurement point was calculated by the analysis software OIM, and those having a CI value of 0.1 or less were excluded from the analysis of the crystal grain size.
  • a crystal grain boundary map is created with a crystal grain boundary as a crystal grain boundary between measurement points where the orientation difference between two adjacent crystals is 15 ° or more, and the cutting method of JIS H 0501
  • draw 5 vertical and horizontal line segments at a time from the grain boundary map count the number of crystal grains to be completely cut, and calculate the average value of the cut length as the average grain size. It was.
  • Bending was performed according to four test methods of JCBA (Japan Copper and Brass Association Technical Standard) T307-2007. W bending was performed so that the bending axis was parallel to the rolling direction. Multiple specimens 10 mm wide x 30 mm long x 0.25 mm thick were taken from the strip for characteristic evaluation, and a W-bending test was performed using a W-shaped jig having a bending angle of 90 degrees and a bending radius of 0.5 mm. Went. Each of the three samples was subjected to a cracking test. A sample in which no crack was observed in four fields of view of each sample was indicated by ⁇ , and a sample in which cracks were observed in one field or more was indicated by ⁇ . The evaluation results are shown in Tables 5 and 6.
  • the orientation difference of each crystal grain is analyzed except for the measurement point where the acceleration value of the electron beam is 20 kV, the measurement area is 1000 ⁇ m 2 at a measurement interval of 0.1 ⁇ m, and the CI value is 0.1 or less.
  • a crystal grain boundary was defined between the measurement points where the orientation difference between adjacent measurement points was 15 ° or more.
  • the total grain boundary length L of the crystal grain boundaries in the measurement range is measured to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes the special grain boundary, and among the special grain boundaries, ⁇ 3, ⁇ 9 , ⁇ 27a, ⁇ 27b
  • the grain boundary length ratio L ⁇ / L between the sum L ⁇ of the grain boundary lengths and the total grain boundary length L of the crystal grain boundaries measured above is obtained, and the special grain boundary length ratio (L ⁇ / L).
  • Tables 5 and 6 show the observation results of each structure and the evaluation results.
  • No. Nos. 1 to 16 are examples of the present invention based on a Cu-30Zn alloy containing about 30% Zn
  • No. No. 17 is an example of the present invention based on a Cu-35Zn alloy containing about 35% Zn
  • No. 17 18 to 30 are examples of the present invention based on a Cu-25Zn alloy containing about 25% Zn
  • No. No. 50 is a comparative example in which the Zn content exceeds the upper limit of the range of the present invention.
  • Nos. 51, 53, 55, and 56 are comparative examples, based on a Cu-25Zn alloy containing about 25% Zn
  • 52 and 54 are comparative examples based on a Cu-30Zn alloy containing about 30% Zn.
  • the special grain boundary length ratio (L ⁇ / L) ratio which is the ratio of the sum L ⁇ of the grain boundary lengths of ⁇ 3, ⁇ 9, ⁇ 27a, and ⁇ 27b to all the grain boundary lengths L.
  • the comparative example No. Nos. 50 to 56 were inferior to the examples of the present invention in terms of stress relaxation resistance or bending workability of the copper alloy.
  • Comparative Example No. No. 50 had a Zn content exceeding 37, and the stress relaxation resistance of the copper alloy was inferior.
  • Comparative Example No. 51 the special grain boundary length ratio (L ⁇ / L), which is the ratio of the sum L ⁇ of the grain boundary lengths of ⁇ 3, ⁇ 9, ⁇ 27a, and ⁇ 27b to all the grain boundary lengths L, is 8%. The result was out of the range, and the bending workability was inferior.
  • Comparative Example No. No. 52 is a Cu-30Zn alloy to which Ni, Fe, P and Co are not added, and the stress relaxation resistance of the copper alloy is inferior to that of the Cu-30Zn base alloy of the present invention. Comparative Example No.
  • Comparative Example No. 53 is a Cu-25Zn-based alloy to which Sn, Fe, P, and Co were not added, and the stress relaxation resistance of the copper alloy was inferior to that of the Cu-25Zn-based alloy of the present invention example.
  • Comparative Example No. No. 54 is a Cu-30Zn-based alloy that does not contain Sn, Ni, Fe, and Co, and has a coarse average crystal grain size. The copper alloy has higher proof stress and higher resistance than the Cu-30Zn-based alloy of the present invention. Stress relaxation characteristics were inferior.
  • Comparative Example No. No. 55 is a Cu-25Zn-based alloy in which Ni is not added and Fe is out of the scope of the present invention, and the stress relaxation resistance of the copper alloy is inferior to the Cu-25Zn-based alloy of the present invention example. .
  • Comparative Example No. No. 56 is a Cu-25Zn-based alloy to which Fe and Co are not added, and not only the proof stress is lower than the Cu-25Zn-based alloy of the present invention example, but also the stress relaxation resistance of the copper alloy is inferior. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 耐応力緩和特性が確実かつ十分に優れているとともに強度、曲げ加工性に優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子を提供する。Znを23mass%以上36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Feを0.001mass%以上0.10mass%未満、Pを0.005mass%以上0.1mass%以下含有し、残部がCuおよび不可避的不純物からなり、原子比で、0.002≦Fe/Ni<0.7、3<(Ni+Fe)/P<15、0.3<Sn/(Ni+Fe)<2.9を満たし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上である。

Description

電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
 本発明は、半導体装置のコネクタや、その他の端子、あるいは電磁リレーの可動導電片や、リードフレームなどの電子・電気機器用導電部品として使用されるCu-Zn―Sn系の電子・電気機器用銅合金と、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子に関するものである。
 本願は、2013年3月18日に、日本に出願された特願2013-055052号に基づき優先権を主張し、その内容をここに援用する。
 上述の電子・電気用導電部品として、強度、加工性、コストのバランスなどの観点から、Cu-Zn合金が従来から広く使用されている。
 また、コネクタなどの端子の場合、相手側の導電部材との接触の信頼性を高めるため、Cu-Zn合金からなる基材(素板)の表面に錫(Sn)めっきを施して使用することがある。Cu-Zn合金を基材としてその表面にSnめっきを施したコネクタなどの導電部品においては、Snめっき材のリサイクル性を向上させるとともに、強度を向上させるため、Cu-Zn合金にさらにSnを添加し、Cu-Zn―Sn系合金を使用する場合がある。
 例えばコネクタ等の電子・電気機器用導電部品は、一般に、厚みが0.05~1.0mm程度の薄板(圧延板)に打ち抜き加工を施すことによって所定の形状とし、その少なくとも一部に曲げ加工を施すことによって製造される。この場合、上記導電部品は、曲げ部分付近で相手側導電部材と接触させて相手側導電部材との電気的接続を得るとともに、曲げ部分のバネ性により相手側導電材との接触状態を維持させるように使用される。
 このような電子・電気機器用導電部品に用いられる電子・電気機器用銅合金においては、導電性、圧延性や打ち抜き加工性が優れていることが望まれる。さらに、前述のように、曲げ加工を施してその曲げ部分のバネ性により、曲げ部分付近で相手側導電材との接触状態を維持するように使用されるコネクタなどを構成する銅合金の場合は、銅合金の曲げ加工性、耐応力緩和特性が優れていることが要求される。
 そこで、例えば特許文献1~3には、Cu-Zn―Sn系合金の、銅合金の耐応力緩和特性を向上させるための方法が提案されている。
 特許文献1には、Cu-Zn―Sn系合金にNiを含有させてNi-P系化合物を生成させることによって銅合金の耐応力緩和特性を向上させることができるとされ、またFeの添加も、銅合金の耐応力緩和特性の向上に有効であることが示されている。
 特許文献2においては、Cu-Zn―Sn系合金に、Ni、FeをPとともに添加して化合物を生成させることにより、強度、弾性、耐熱性を向上させ得ることが記載されている。上記の強度、弾性、耐熱性の向上は、銅合金の耐応力緩和特性の向上を意味している。
 また、特許文献3においては、Cu-Zn―Sn系合金にNiを添加するとともに、Ni/Sn比を特定の範囲内に調整することにより、銅合金の耐応力緩和特性を向上させることができると記載され、またFeの微量添加も、銅合金の耐応力緩和特性の向上に有効である旨、記載されている。
 さらに、リードフレーム材を対象とした特許文献4においては、Cu-Zn―Sn系合金に、Ni、FeをPとともに添加し、(Fe+Ni)/Pの原子比を0.2~3の範囲内に調整して、Fe―P系化合物、Ni―P系化合物、Fe―Ni―P系化合物を生成させることにより、銅合金の耐応力緩和特性の向上が可能となる旨、記載されている。
日本国特開平05-33087号公報(A) 日本国特開2006-283060号公報(A) 日本国特許第3953357号公報(B) 日本国特許第3717321号公報(B)
 しかしながら、特許文献1、2においては、Ni、Fe、Pの個別の含有量が考慮されているだけであり、このような個別の含有量の調整だけでは、必ずしも、銅合金の耐応力緩和特性を確実かつ十分に向上させることができなかった。
 また、特許文献3においては、Ni/Sn比を調整することが開示されているが、P化合物と耐応力緩和特性との関係については全く考慮されておらず、十分かつ確実な、銅合金の耐応力緩和特性の向上を図ることができなかった。
 さらに、特許文献4においては、Fe、Ni、Pの合計量と、(Fe+Ni)/Pの原子比とを調整しただけであり、銅合金の耐応力緩和特性の十分な向上を図ることができない。
 以上のように、従来から提案されている方法では、Cu-Zn―Sn系合金の、銅合金の耐応力緩和特性を十分に向上させることができなかった。このため、上述した構造のコネクタ等においては、経時的に、もしくは高温環境で、残留応力が緩和されて相手側導電部材との接触圧が維持されず、接触不良などの不都合が早期に生じやすいという問題があった。このような問題を回避するために、従来は材料の肉厚を大きくせざるを得ず、材料コストの上昇、重量の増大を招いていた。
 そこで、銅合金の耐応力緩和特性のより一層の確実かつ十分な改善が強く望まれている。
 本発明は、以上のような事情を背景としてなされたものであって、銅合金の耐応力緩和特性が確実かつ十分に優れているとともに強度、曲げ加工性に優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子を提供することを課題としている。
 本発明者らは、鋭意実験・研究を重ねたところ、Cu-Zn―Sn系合金に、NiおよびFeを適量添加するとともに、Pを適量添加し、FeおよびNiの含有量の比Fe/Niと、NiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pと、Snの含有量とNiおよびFeの合計含有量(Ni+Fe)との比Sn/(Ni+Fe)とを、それぞれ原子比で適切な範囲内に調整することにより、Feおよび/またはNiとPとを含有する析出物を適切に析出させ、同時に母材(α相主体)におけるEBSD法にて測定した全ての結晶粒界長さLに対する特殊粒界のうちΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)を適切に調整することによって銅合金の耐応力緩和特性を確実かつ十分に向上させると同時に強度、曲げ加工性に優れた銅合金が得られることを見い出して、本発明をなすに至った。
 さらに、上記のNiおよび/またはFe、Pと同時に適量のCoを添加することにより、銅合金の耐応力緩和特性および強度をより一層向上させることができることを見い出した。
 本願発明の第一の態様に係る電子・電気機器用銅合金は、Znを23mass%以上36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Feを0.001mass%以上0.10mass%未満、Pを0.005mass%以上0.1mass%以下含有し、残部がCuおよび不可避的不純物からなり、Feの含有量とNiの含有量との比Fe/Niが、原子比で、0.002≦Fe/Ni<0.7を満たし、NiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、3<(Ni+Fe)/P<15を満たし、Snの含有量とNiおよびFeの合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、0.3<Sn/(Ni+Fe)<2.9を満たすとともに、Cu、ZnおよびSnを含有するα相を、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされていることを特徴としている。
 上述の構成の電子・電気機器用銅合金によれば、NiおよびFeを、Pとともに添加し、Sn、Ni、Fe、およびPの相互間の添加比率を規制することにより、母相(α相主体)から析出したFeおよび/またはNiとPとを含有する〔Ni,Fe〕-P系析出物を適切に存在させているので、銅合金の耐応力緩和特性が確実かつ十分に優れ、しかも強度(耐力)も高い。
 また、特殊粒界長さ比率(Lσ/L)を10%以上に設定することで、結晶性の高い粒界(原子配列の乱れが少ない粒界)が増加することにより、曲げ加工時の破壊の起点となる粒界の割合を少なくすることが可能となり、曲げ加工性に優れることになる。
 なお、ここで〔Ni,Fe〕-P系析出物とは、Ni―Fe―Pの3元系析出物、あるいはFe―PもしくはNi―Pの2元系析出物であり、さらにこれらに他の元素、例えば主成分のCu、Zn、Sn、不純物のO、S、C、Co、Cr、Mo、Mn、Mg、Zr、Tiなどを含有した多元系析出物を含むことがある。また、この〔Ni,Fe〕-P系析出物は、リン化物、もしくはリンを固溶した合金の形態で存在する。
 なお、EBSD法とは、後方散乱電子回折像システム付の走査型電子顕微鏡による電子線反射回折(Electron Backscatter Diffraction Patterns:EBSD)法を意味する。EBSD法では、走査型電子顕微鏡中に大きく傾斜した状態で配置した試料表面に電子線を照射し、電子線の反射回折によって形成される結晶パターン(菊池パターン)に基づき、測定点の結晶方位を測定する。結晶パターンは複数のバンドとして得られる。結晶パターンから3本のバンドを選び、結晶方位として1もしくは複数の解を算出する。3本のバンドの全組合せに対しこの計算が行われ、各組合せから計算される解のうち全体として最も多く現れた解を、測定点における結晶方位とする。
 またOIMは、EBSD法による測定データを用いて結晶方位を解析するためのデータ解析ソフト(Orientation Imaging Microscopy:OIM)である。データ解析ソフトOIMでは、EBSD法で測定した結晶方位から、同じ結晶方位を示す連続した測定点をまとめることにより結晶粒を定義するものであり、これによりミクロ組織の情報を構築するものである。
 さらにCI値とは、信頼性指数(Confidence Index)であって、EBSD装置の解析ソフトOIM Analysis(Ver.5.3)を用いて解析したときに、結晶方位決定の信頼性を表す数値として表示される数値である(例えば、「EBSD読本:OIMを使用するにあたって(改定第3版)」鈴木清一著、2009年9月、株式会社TSLソリューションズ発行)。より詳細には、EBSD法において一つの測定点の結晶方位を決定する際に算出されたそれぞれの解について、その出現数に応じて重み付けができる。最終的に決定されたその点の結晶方位の信頼性を、重み付けに基づいて求めたものがCI値である。すなわち、結晶パターンが明確であればCI値が高く、結晶パターンが明確でない場合はCI値が低い。ここで、EBSDにより測定してOIMにより解析した測定点の組織が加工組織である場合、結晶パターンが明確ではないため結晶方位決定の信頼性が低くなり、CI値が低くなる。特にCI値が0.1以下の場合にその測定点の組織が加工組織であると判断される。
 また、特殊粒界とは、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。
 本願発明の第二の態様による電子・電気機器用銅合金は、Znを23mass%以上36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Feを0.001mass%以上0.10mass%未満、Coを0.001mass%以上0.1mass%未満、Pを0.005mass%以上0.1mass%以下含有し、残部がCuおよび不可避的不純物からなり、FeとCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、0.002≦(Fe+Co)/Ni<0.7を満たし、かつNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、3<(Ni+Fe+Co)/P<15を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、0.3<Sn/(Ni+Fe+Co)<2.9を満たすとともに、Cu、ZnおよびSnを含有するα相を、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされていることを特徴としている。
 なお、上記第二の態様に係る銅合金は、上記第一の態様に係る銅合金であって、さらにCoを0.001mass%以上0.1mass%未満含有し、FeとCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、0.002≦(Fe+Co)/Ni<0.7を満たし、かつNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、3<(Ni+Fe+Co)/P<15を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、0.3<Sn/(Ni+Fe+Co)<2.9を満たすのもであってもよい。
 上述の構成の電子・電気機器用銅合金によれば、Ni、FeおよびCoを、Pとともに添加し、Sn、Ni、Fe、CoおよびPの相互間の添加比率を適切に規制することにより、母相(α相主体)から析出したFeとNiとCoとから選択される少なくとも一種の元素と、Pと、を含有する〔Ni,Fe,Co〕-P系析出物が適切に存在させているので、銅合金の耐応力緩和特性が確実かつ十分に優れ、しかも強度(耐力)も高い。
 また、特殊粒界長さ比率(Lσ/L)を10%以上に設定することで、結晶性の高い粒界(原子配列の乱れが少ない粒界)が増加することにより、曲げ加工時の破壊の起点となる粒界の割合を少なくすることが可能となり、曲げ加工性に優れることになる。
 なお、ここで〔Ni,Fe,Co〕-P系析出物とは、Ni―Fe―Co―Pの4元系析出物、あるいはNi-Fe―P、Ni―Co―P、もしくはFe-Co―Pの3元系析出物、あるいはFe―P、Ni-P、もしくはCo―Pの2元系析出物であり、さらにこれらに他の元素、例えば主成分のCu、Zn、Sn、不純物のO、S、C、Co、Cr、Mo、Mn、Mg、Zr、Tiなどを含有した多元系析出物を含むことがある。また、この〔Ni,Fe,Co〕-P系析出物は、リン化物、もしくはリンを固溶した合金の形態で存在する。
 上記第一又は第二の態様に係る銅合金は、圧延材であって、その一表面(圧延面)が前記の特殊粒界長さの比率(Lσ/L)の条件を満たすものであってもよい。例えば、上記圧延材は、板材や条材の形態を有し、板表面又は条の表面が、前記の一表面における特殊粒界長さの比率(Lσ/L)の条件を満たすものであってもよい。
 上記第一又は第二の態様に係る電子・電気機器用銅合金においては、Cu、ZnおよびSnを含有するα相の平均結晶粒径(双晶を含む)が0.5μm以上10μm以下の範囲内とされていることが好ましい。
 このように、Cu、ZnおよびSnを含有するα相の平均結晶粒径(双晶を含む)が0.5μm以上10μm以下の範囲内とすることによって銅合金の耐応力緩和特性を維持したまま、十分な強度(耐力)を持たせることが可能となる。
 さらに、上記第一又は第二の態様に係る電子・電気機器用銅合金においては、0.2%耐力が300MPa以上の機械特性を有することが好ましい。
 このような0.2%耐力が300MPa以上の機械特性を有する電子・電気機器用銅合金は、例えば電磁リレーの可動導電片あるいは端子のバネ部のごとく、特に高強度が要求される導電部品に適している。
 本願発明の第三の態様に係る電子・電気機器用銅合金薄板は、上述の第一又は第二の態様に係る電子・電気機器用銅合金の圧延材からなる薄板本体を有し、前記薄板本体の厚みが0.05mm以上1.0mm以下の範囲内にあることを特徴とする。なお、前記銅合金薄板本体は、条材の形態を有する薄板(テープ状の銅合金)であってもよい。
 このような構成の電子・電気機器用銅合金薄板は、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
 本願発明の第三の態様に係る電子・電気機器用銅合金薄板においては、表面にSnめっきが施されていてもよい。
 この場合、Snめっきの下地の基材は0.1mass%以上0.9mass%以下のSnを含有するCu-Zn―Sn系合金で構成されているため、使用済みのコネクタなどの部品をSnめっきCu-Zn系合金のスクラップとして回収して良好なリサイクル性を確保することができる。
 本願発明の第四の態様に係る電子・電気機器用導電部品は、上述の第一又は第二の態様に係る電子・電気機器用銅合金からなることを特徴とする。
 また、本願発明の第五の態様に係る端子は、上述の第一又は第二の態様に係る電子・電気機器用銅合金からなることを特徴とする。
 さらに、本願発明の第四の態様に係る電子・電気機器用導電部品は、上述の第三の態様に係る電子・電気機器用銅合金薄板からなることを特徴とする。
 また、本願発明の第五の態様に係る端子は、上述の第三の態様に係る電子・電気機器用銅合金薄板からなることを特徴とする。
 これらの構成の電子・電気機器用導電部品及び端子によれば、特に、銅合金の耐応力緩和特性に優れているので、経時的に、もしくは高温環境で、残留応力が緩和されにくく、相手側導電部材との接触圧を保つことができる。また、電子・電気機器用導電部品及び端子の薄肉化を図ることができる。
 本発明によれば、銅合金の耐応力緩和特性が確実かつ十分に優れているとともに強度、曲げ加工性に優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子を提供することができる。
本発明の電子・電気機器用銅合金の製造方法の工程例を示すフローチャートである。
 以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
 本実施形態である電子・電気機器用銅合金は、Znを23mass%以上36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Feを0.001mass%以上0.10mass%未満、Pを0.005mass%以上0.1mass%以下含有し、残部がCuおよび不可避的不純物からなる組成を有する。
 そして、各合金元素の相互間の含有量比率として、Feの含有量とNiの含有量との比Fe/Niが、原子比で、次の(1)式
  0.002≦Fe/Ni<0.7   (1)を満たし、かつNiの含有量およびFeの含有量の合計量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、次の(2)式
  3<(Ni+Fe)/P<15   (2)を満たし、さらにSnの含有量とNiの含有量およびFeの含有量の合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、次の(3)式
  0.3<Sn/(Ni+Fe)<2.9   (3)を満たすように定められている。
 さらに、本実施形態である電子・電気機器用銅合金は、上記のZn、Sn、Ni、Fe、Pのほか、さらにCoを0.001mass%以上、0.10mass%未満含有してもよい。
 そして、各合金元素の相互間の含有量比率として、FeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、次の(1´)式
  0.002≦(Fe+Co)/Ni<0.7   (1´)
を満たし、さらにNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、次の(2´)式
  3<(Ni+Fe+Co)/P<15   (2´)
を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、次の(3´)式
  0.3<Sn/(Ni+Fe+Co)<2.9   (3´)
を満たすように定められている。
 なお、上記の(1)、(2)、(3)式を満足する銅合金であって、さらにCoを0.001mass%以上0.1mass%未満含有し、FeとCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、0.002≦(Fe+Co)/Ni<0.7を満たし、かつNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、3<(Ni+Fe+Co)/P<15を満たし、さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、0.3<Sn/(Ni+Fe+Co)<2.9を満たす場合には、上記の(1’)式、(2’)式、(3’)式も満足される。
 ここで、上述のように成分組成を規定した理由について以下に説明する。
 亜鉛(Zn):23mass%以上36.5mass%以下
 Znは、本実施形態で対象としている銅合金において基本的な合金元素であり、強度およびばね性の向上に有効な元素である。また、ZnはCuより安価であるため、銅合金の材料コストの低減にも効果がある。Znが23mass%未満では、材料コストの低減効果が十分に得られない。一方、Znが36.5mass%を超えれば、耐食性が低下するとともに、冷間圧延性も低下してしまう。
 したがって、Znの含有量は23mass%以上36.5mass%以下の範囲内とした。なお、Zn量は、上記の範囲内でも23mass%以上33mass%以下の範囲内が好ましく、23mass%以上30mass%以下の範囲内がさらに好ましい。
 錫(Sn):0.1mass%以上0.9mass%以下
 Snの添加は銅合金の強度向上に効果があり、Snめっき付きCu-Zn合金材のリサイクル性の向上に有利となる。さらに、SnがNiおよびFeと共存すれば、銅合金の耐応力緩和特性の向上にも寄与することが本発明者等の研究により判明している。Snが0.1mass%未満ではこれらの効果が十分に得られず、一方、Snが0.9mass%を超えれば、熱間加工性および冷間圧延性が低下し、銅合金の熱間圧延や冷間圧延で割れが発生してしまうおそれがあり、導電率も低下してしまう。
 そこで、本実施形態では、Snの含有量を0.1mass%以上0.9mass%以下の範囲内とした。なお、Snの含有量は、上記の範囲内でも特に0.2mass%以上0.8mass%以下の範囲内が好ましい。
 ニッケル(Ni):0.15mass%以上1.0mass%未満
 Niは、Fe、Pとともに添加することにより、〔Ni,Fe〕-P系析出物を銅合金の母相(α相主体)から析出させることができ、また、Fe、Co,Pとともに添加することにより、〔Ni,Fe,Co〕-P系析出物を銅合金の母相(α相主体)から析出させることができる。これら〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物によって再結晶の際に結晶粒界をピン止めする効果により、平均結晶粒径を小さくすることができ、銅合金の強度、曲げ加工性、耐応力腐食割れ性を向上させることができる。さらに、これらの析出物の存在により、銅合金の耐応力緩和特性を大幅に向上させることができる。加えて、NiをSn、Fe、Co,Pと共存させることで、固溶強化によっても向上させることができる。ここで、Niの添加量が0.15mass%未満では、銅合金の耐応力緩和特性を十分に向上させることができない。一方、Niの添加量が1.0mass%以上となれば、固溶Niが多くなって銅合金の導電率が低下し、また高価なNi原材料の使用量の増大によりコスト上昇を招く。そこでNiの添加量は0.15mass%以上1.0mass%未満の範囲内とした。なお、Niの添加量は、上記の範囲内でも特に0.2mass%以上、0.8mass%未満の範囲内とすることが好ましい。
(Fe:0.001mass%以上0.10mass%未満)
 Feは、Ni、Pとともに添加することにより、〔Ni,Fe〕-P系析出物を銅合金の母相(α相主体)から析出させることができ、また、Ni、Co,Pとともに添加することにより、〔Ni,Fe,Co〕-P系析出物を銅合金の母相(α相主体)から析出させることができる。これら〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物によって再結晶の際に結晶粒界をピン止めする効果により、平均結晶粒径を小さくすることができ、銅合金の強度、曲げ加工性、耐応力腐食割れ性を向上させることができる。さらに、これらの析出物の存在により、銅合金の耐応力緩和特性を大幅に向上させることができる。ここで、Feの添加量が0.001mass%未満では、結晶粒界をピン止めする効果が十分に得られず、十分な強度が得られない。一方、Feの添加量が0.10mass%以上となれば、一層の強度向上は認められず、固溶Feが銅合金の多くなって導電率が低下し、また冷間圧延性も低下してしまう。
 そこで、本実施形態では、Feの含有量を0.001mass%以上0.10mass%未満の範囲内とした。なお、Feの含有量は、上記の範囲内でも特に0.002mass%以上0.08mass%以下の範囲内とすることが好ましい。
 コバルト(Co):0.001mass%以上0.10mass%未満
 Coは、必ずしも必須の添加元素ではないが、少量のCoをNi、Fe、Pとともに添加すれば、〔Ni,Fe,Co〕-P系析出物が生成され、銅合金の耐応力緩和特性をより一層向上させることができる。ここで、Co添加量が0.001mass%未満では、Co添加による耐応力緩和特性のより一層の向上効果が得られない。一方、Co添加量が0.10mass%以上となれば、固溶Coが多くなって銅合金の導電率が低下し、また高価なCo原材料の使用量の増大によりコスト上昇を招く。そこで、Coを添加する場合のCoの添加量は0.001mass%以上0.10mass%未満の範囲内とした。Coの添加量は、上記の範囲内でも特に0.002mass%以上0.08mass%以下の範囲内とすることが好ましい。なお、Coを積極的に添加しない場合でも、不純物として0.001mass%未満のCoが含有されることがある。
 燐(P):0.005mass%以上0.10mass%以下
 Pは、Fe、Ni、さらにはCoとの結合性が高く、Fe、Niとともに適量のPを含有させれば、〔Ni,Fe〕-P系析出物を析出させることができ、またFe、Ni、Coとともに適量のPを含有させれば、〔Ni,Fe,Co〕-P系析出物を析出させることができ、そしてこれらの析出物の存在によって銅合金の耐応力緩和特性を向上させることができる。ここで、P量が0.005mass%未満では、十分に〔Ni,Fe〕-P系析出物または〔Ni,Fe,Co〕-P系析出物を析出させることが困難となり、十分に銅合金の耐応力緩和特性を向上させることができなくなる。一方、P量が0.10mass%を超えれば、P固溶量が多くなって、銅合金の導電率が低下するとともに圧延性が低下して冷間圧延割れが生じやすくなってしまう
 そこで、本実施形態では、Pの含有量を0.005mass%以上0.10mass%以下の範囲内とした。Pの含有量は、上記の範囲内でも特に0.01mass%以上0.08mass%以下の範囲内が好ましい。
 なお、Pは、銅合金の溶解原料から不可避的に混入することが多い元素であり、従ってP量を上述のように規制するためには、溶解原料を適切に選定することが望ましい。
 以上の各元素の残部は、基本的にはCuおよび不可避的不純物とすればよい。ここで、不可避的不純物としては、Mg,Al, Mn, Si, (Co),Cr,Ag,Ca,Sr,Ba,Sc,Y,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Te,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Ti,Tl,Pb,Bi,S,O,C,Be,N,H,Hg, B、Zr、希土類等が挙げられる。
これらの不可避不純物は、総量で0.3質量%以下であることが望ましい。
 さらに、本実施形態である電子・電気機器用銅合金においては、各合金元素の個別の添加量範囲を上述のように調整するばかりではなく、それぞれの元素の含有量の相互の比率が、原子比で、前記(1)~(3)式、あるいは(1´)~(3´)式を満たすように規制することが重要である。そこで、以下に(1)~(3)式、(1´)~(3´)式の限定理由を説明する。
 (1)式: 0.002≦Fe/Ni<0.7
 本発明者等らは、詳細な実験の結果、Fe、Niのそれぞれの含有量を前述のように調整するだけではなく、それらの比Fe/Niを、原子比で、0.002以上、0.7未満の範囲内とした場合に、十分な銅合金の耐応力緩和特性の向上を図り得ることを見い出した。ここで、Fe/Ni比が0.7以上の場合、銅合金の耐応力緩和特性が低下する。Fe/Ni比が0.002未満の場合、強度が低下するとともに高価なNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、Fe/Ni比は、上記の範囲内に規制することとした。
 なお、Fe/Ni比は、上記の範囲内でも、特に0.002以上0.5以下の範囲内が望しい。さらに好ましくは0.005以上0.2以下の範囲内が望ましい。
 (2)式: 3<(Ni+Fe)/P<15
 (Ni+Fe)/P比が3以下では、固溶Pの割合の増大に伴って、銅合金の耐応力緩和特性が低下し、また同時に固溶Pにより銅合金の導電率が低下するとともに、圧延性が低下して冷間圧延割れが生じやすくなり、さらに曲げ加工性も低下する。一方、(Ni+Fe)/P比が15以上となれば、固溶したNi、Feの割合の増大により銅合金の導電率が低下するとともに高価なNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、(Ni+Fe)/P比を上記の範囲内に規制することとした。なお、(Ni+Fe)/P比は、上記の範囲内でも、特に3を超え、12以下の範囲内が望ましい。
(3)式: 0.3<Sn/(Ni+Fe)<2.9
 Sn/(Ni+Fe)比が0.3以下では、十分な銅合金の耐応力緩和特性向上効果が発揮されず、一方Sn/(Ni+Fe)比が2.9以上の場合、相対的に(Ni+Fe)量が少なくなって、〔Ni,Fe〕-P系析出物の量が少なくなり、銅合金の耐応力緩和特性が低下してしまう。そこで、Sn/(Ni+Fe)比を上記の範囲内に規制することとした。なお、Sn/(Ni+Fe)比は、上記の範囲内でも、特に0.3を超え、1.5以下の範囲内が望ましい。
 (1´)式: 0.002≦(Fe+Co)/Ni<0.7
 Coを添加した場合、Feの一部をCoで置き換えたと考えればよく、(1´)式も基本的には(1)式に準じている。ここで、(Fe+Co)/Ni比が0.7以上の場合には、銅合金の耐応力緩和特性が低下するとともに高価なCo原材料の使用量の増大によりコスト上昇を招く。(Fe+Co)/Ni比が0.002未満の場合には、強度が低下するとともに高価なNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、(Fe+Co)/Ni比は、上記の範囲内に規制することとした。なお、(Fe+Co)/Ni比は、上記の範囲内でも、特に0.002以上0.5以下の範囲内が望ましい。さらに好ましくは0.005以上0.2以下の範囲内が望ましい。
 (2´)式: 3<(Ni+Fe+Co)/P<15
 Coを添加する場合の(2´)式も、前記(2)式に準じている。(Ni+Fe+Co)/P比が3以下では、固溶Pの割合の増大に伴って耐応力緩和特性が低下し、また同時に固溶Pにより銅合金の導電率が低下するとともに、圧延性が低下して冷間圧延割れが生じやすくなり、さらに曲げ加工性も低下する。一方、(Ni+Fe+Co)/P比が15以上となれば、固溶したNi、Fe、Coの割合の増大により銅合金の導電率が低下するとともに高価なCoやNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、(Ni+Fe+Co)/P比を上記の範囲内に規制することとした。なお、(Ni+Fe+Co)/P比は、上記の範囲内でも、特に3を超え、12以下の範囲内が望ましい。
(3´)式: 0.3<Sn/(Ni+Fe+Co)<2.9
 Coを添加する場合の(3´)式も、前記(3)式に準じている。Sn/(Ni+Fe+Co)比が0.3以下では、十分な耐応力緩和特性向上効果が発揮されず、一方、Sn/(Ni+Fe+Co)比が2.9以上となれば、相対的に(Ni+Fe+Co)量が少なくなって、〔Ni,Fe,Co〕-P系析出物の量が少なくなり、銅合金の耐応力緩和特性が低下してしまう。そこで、Sn/(Ni+Fe+Co)比を上記の範囲内に規制することとした。なお、Sn/(Ni+Fe+Co)比は、上記の範囲内でも、特に0.3を超え、1.5以下の範囲内が望ましい。
 以上のように各合金元素を、個別の含有量だけではなく、各元素相互の比率として、(1)~(3)式もしくは(1´)~(3´)式を満たすように調整した電子・電気機器用銅合金においては、〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物が、母相(α相主体)から分散析出したものとなり、このような析出物の分散析出によって、銅合金の耐応力緩和特性が向上するものと考えられる。
 また、本実施形態である電子・電気機器用銅合金においては、その成分組成を上述のように調整するだけではなく、以下のように結晶組織について規定している。
 まず、Cu、ZnおよびSnを含有するα相を、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされている。
 さらに、Cu、ZnおよびSnを含有するα相の平均結晶粒径(双晶を含む)が0.5μm以上10μm以下の範囲内とされている。
 ここで、上述のように結晶組織を規定した理由について以下に説明する。
(特殊粒界長さ比率)
 特殊粒界は、結晶学的にCSL理論(Kronberg et al:Trans.Met.Soc.AIME,185,501(1949))に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2(D.G.Brandon:Acta.Metallurgica.Vol.14,p.1479,(1966))を満たす結晶粒界であるとして定義される。特殊粒界は結晶性の高い粒界(原子配列の乱れが少ない粒界)であるため、加工時の破壊の起点となりにくくなるため、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)を高くすると、銅合金の耐応力緩和特性を維持したまま、さらに曲げ加工性を向上させることができる。なお、特殊粒界長さ比率(Lσ/L)は、15%以上とすることが好ましい。
 さらに好ましくは20%以上が望ましい。
 なお、EBSD装置の解析ソフトOIMにより解析したときのCI値(信頼性指数)は、測定点の結晶パターンが明確ではない場合にその値が小さくなり、CI値が0.1以下ではその解析結果を信頼することが難しい。よって、本実施形態では、CI値が0.1以下である信頼性の低い測定点を除いた。
(平均結晶粒径)
 銅合金の耐応力緩和特性には、材料の結晶粒径もある程度の影響を与えることが知られており、一般には結晶粒径が小さいほど、銅合金の耐応力緩和特性は低下する。本実施形態である電子・電気機器用銅合金の場合、成分組成と各合金元素の比率の適切な調整、及び、結晶性の高い特殊粒界の比率を適切にすることによって良好な、銅合金の耐応力緩和特性を確保できるため、結晶粒径を小さくして、強度と曲げ加工性の向上を図ることができる。したがって製造プロセス中における再結晶および析出のための仕上げ熱処理後の段階で、平均結晶粒径が10μm以下となるようにすることが望ましい。強度と曲げバランスをさらに向上させるためには、0.5μm以上8μm以下、さらに好ましくは0.5μm以上5μm以下の範囲内とすることが好ましい。
 さらに本実施形態である電子・電気機器用銅合金においては、〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物が存在していることが重要である。これらの析出物は、本発明者等の研究により、FeP系またはNiP系の結晶構造を持つこと、六方晶(space group:P-62m(189))もしくはFeP系の斜方晶(space group:P-nma(62))であることが判明している。そしてこれらの析出物は、その平均粒径が100nm以下と、微細であることが望ましい。
 このように微細な析出物が存在することによって、優れた、銅合金の耐応力緩和特性を確保することができると同時に、結晶粒微細化を通じて、強度と曲げ加工性を向上させることができる。ここで、このような析出物の平均粒径が100nmを越えれば、銅合金の強度や、耐応力緩和特性の向上に対する寄与が小さくなる。
 次に、前述のような実施形態の電子・電気機器用銅合金の製造方法の好ましい例について、図1に示すフローチャートを参照して説明する。
〔溶解・鋳造工程:S01〕
 まず、前述した成分組成の銅合金溶湯を溶製する。銅原料としては、純度が99.99%以上の4NCu(無酸素銅等)を使用することが望ましいが、スクラップを原料として用いてもよい。また、溶解には、大気雰囲気炉を用いてもよいが、添加元素の酸化を抑制するために、真空炉、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いてもよい。
 次いで、成分調整された銅合金溶湯を、適宜の鋳造法、例えば金型鋳造などのバッチ式鋳造法、あるいは連続鋳造法、半連続鋳造法などによって鋳造して鋳塊を得る。
〔加熱工程:S02〕
 その後、必要に応じて、鋳塊の偏析を解消して鋳塊組織を均一化するために均質化熱処理を行う。または晶出物、析出物を固溶させるために溶体化熱処理を行う。この熱処理の条件は特に限定しないが、通常は600~1000℃において1秒~24時間加熱すればよい。熱処理温度が600℃未満、あるいは熱処理時間が5分未満では、十分な均質化効果または溶体化効果が得られないおそれがある。一方、熱処理温度が1000℃を超えれば、偏析部位が一部溶解してしまうおそれがあり、さらに熱処理時間が24時間を超えることはコスト上昇を招くだけである。熱処理後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱処理後には、必要に応じて面削を行う。
〔熱間加工:S03〕
 次いで、粗加工の効率化と組織の均一化のために、鋳塊に対して熱間加工を行ってもよい。この熱間加工の条件は特に限定されないが、通常は、開始温度600~1000℃、終了温度300~850℃、加工率10~99%程度とすることが好ましい。なお、熱間加工開始温度までの鋳塊加熱は、前述の加熱工程S02と兼ねてもよい。熱間加工後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱間加工後には、必要に応じて面削を行う。熱間加工の加工方法については、特に限定されないが、最終形状が板や条の場合は熱間圧延を適用すればよい。また最終形状が線や棒の場合には、押出や溝圧延を、また最終形状がバルク形状の場合には、鍛造やプレスを適用すればよい。
〔中間塑性加工:S04〕
 次に、加熱工程S02で均質化処理を施した鋳塊、あるいは熱間圧延などの熱間加工S03を施した熱間加工材に対して、中間塑性加工を施す。この中間塑性加工S04における温度条件は特に限定はないが、冷間又は温間加工となる-200℃から+200℃の範囲内とすることが好ましい。中間塑性加工の加工率も特に限定されないが、通常は10~99%程度とする。加工方法は特に限定されないが、最終形状が板、条の場合は、圧延を適用すればよい。また最終形状が線や棒の場合には、押出や溝圧延、さらに最終形状がバルク形状の場合には、鍛造やプレスを適用する事ができる。なお、溶体化の徹底のために、S02~S04を繰り返してもよい。
〔中間熱処理工程:S05〕
 冷間もしくは温間での中間塑性加工S04の後に、再結晶処理と析出処理を兼ねた中間熱処理を施す。この中間熱処理は、組織を再結晶させると同時に、〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物を分散析出させるために実施される工程であり、これらの析出物が生成される加熱温度、加熱時間の条件を適用すればよく、通常は、200~800℃で、1秒~24時間とすればよい。但し、結晶粒径は、銅合金の耐応力緩和特性にある程度の影響を与えるから、中間熱処理による再結晶粒を測定して、加熱温度、加熱時間の条件を適切に選択することが望ましい。なお、中間熱処理およびその後の冷却は、最終的な平均結晶粒径に影響を与えるから、これらの条件は、α相の平均結晶粒径が0.1~10μmの範囲内となるように選定することが望ましい。
 中間熱処理の具体的手法としては、バッチ式の加熱炉を用いても、あるいは連続焼鈍ラインを用いて連続的に加熱してもよい。バッチ式の加熱炉を使用する場合は、300~800℃の温度で、5分~24時間加熱することが望ましく、また連続焼鈍ラインを用いる場合は、加熱到達温度250~800℃とし、かつその範囲内の温度で、保持なし、もしくは1秒~5分程度保持することが好ましい。また、中間熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、還元性雰囲気)とすることが好ましい。
 中間熱処理後の冷却条件は、特に限定しないが、通常は2000℃/秒~100℃/時間程度の冷却速度で冷却すればよい。
 なお、必要に応じて、上記の中間塑性加工S04と中間熱処理工程S05を、複数回繰り返してもよい。
〔仕上げ塑性加工:S06〕
 中間熱処理工程S05の後には、最終寸法、最終形状まで仕上げ加工を行う。仕上げ塑性加工における加工方法は特に限定されないが、最終製品形態が板や条である場合には、圧延(冷間圧延)を適用すればよい。その他、最終製品形態に応じて、鍛造やプレス、溝圧延などを適用してもよい。加工率は最終板厚や最終形状に応じて適宜選択すればよいが、1~99%、特に1~70%の範囲内が好ましい。加工率が1%未満では、耐力を向上させる効果が十分に得られず、一方70%を超えれば、実質的に再結晶組織が失われて加工組織となり、曲げ加工性が低下してしまうおそれがある。なお、加工率は、好ましくは1~70%、より好ましくは、5~70%とする。仕上げ塑性加工後は、これをそのまま製品として用いてもよいが、通常は、さらに仕上げ熱処理を施すことが好ましい。
〔仕上げ熱処理工程:S07〕
 仕上げ塑性加工後には、必要に応じて、銅合金の耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上げ熱処理工程S07を行う。この仕上げ熱処理は、50~800℃の範囲内の温度で、0.1秒~24時間行うことが望ましい。仕上げ熱処理の温度が50℃未満、または仕上げ熱処理の時間が0.1秒未満では、十分な歪み取りの効果が得られなくなるおそれがあり、一方、仕上げ熱処理の温度が800℃を超える場合は再結晶のおそれがあり、さらに仕上げ熱処理の時間が24時間を超えることは、コスト上昇を招くだけである。なお、仕上げ塑性加工S06を行わない場合には、仕上げ熱処理工程S07は省略してもよい。
 以上のようにして、本実施形態である電子・電気機器用銅合金を得ることができる。この電子・電気機器用銅合金においては、0.2%耐力が300MPa以上とされている。
 また、加工方法として圧延を適用した場合、板厚0.05~1.0mm程度の電子・電気機器用銅合金薄板(条材)を得ることができる。このような薄板は、これをそのまま電子・電気機器用導電部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1~10μm程度のSnめっきを施し、Snめっき付き銅合金条として、コネクタその他の端子などの電子・電気機器用導電部品に使用するのが通常である。この場合のSnめっきの方法は特に限定されない。また、場合によっては電解めっき後にリフロー処理を施してもよい。
 以上のような構成とされた本実施形態である電子・電気機器用銅合金においては、α相主体の母相から〔Ni,Fe〕-P系析出物もしくは〔Ni,Fe,Co〕-P系析出物が適切に存在すると同時に、α相の結晶粒の全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされているので、銅合金の耐応力緩和特性が確実かつ十分に優れ、しかも強度(耐力)も高く、曲げ加工性も優れることになる。
 また、本実施形態である電子・電気機器用銅合金においては、α相の平均粒径が0.5μm以上10μm以下の範囲内とされているので、銅合金の耐応力緩和特性が確実かつ十分に優れ、しかも強度(耐力)も高く、曲げ加工性も優れることになる。
 さらに、本実施形態である電子・電気機器用銅合金においては、0.2%耐力が300MPa以上の機械特性を有するので、例えば電磁リレーの可動導電片あるいは端子のバネ部のごとく、特に高強度が要求される導電部品に適している。
 本実施形態である電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなることから、銅合金の耐応力緩和特性に優れており、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
 また、表面にSnめっきを施した場合には、使用済みのコネクタなどの部品をSnめっきCu-Zn系合金のスクラップとして回収して良好なリサイクル性を確保することができる。
 本実施形態である電子・電気機器用導電部材及び端子は、上述の電子・電気機器用銅合金薄板よりなり、かつ相手側導電部材と接触させて相手側導電部材との電気的接続を得るための導電部材であって、しかも板面の少なくとも一部に曲げ加工が施されて、その曲げ部分のバネ性により相手側導電材との接触を維持するように構成されているので、銅合金の耐応力緩和特性に優れており、経時的に、もしくは高温環境で、残留応力が緩和されにくく、相手側導電部材との接触圧を保つことができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、製造方法の一例を挙げて説明したが、これに限定されることはなく、最終的に得られた電子・電気機器用銅合金が、本発明の範囲内の組成であり、Cu、ZnおよびSnを含有するα相の特殊粒界長さ比率(Lσ/L)が本発明の範囲内に設定されていればよい。
 以下、本発明の効果を確認すべく行った確認実験の結果を本発明の実施例として、比較例とともに示す。なお以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものでない。
 まず、Cu-40%Zn母合金および純度99.99質量%以上の無酸素銅(ASTM B152 C10100)からなる原料を準備し、これを高純度グラファイト坩堝内に装入して、Nガス雰囲気において電気炉を用いて溶解した。銅合金溶湯内に、各種添加元素を添加して、表1、2に示す成分組成の合金溶湯を溶製し、カーボン鋳型に注湯して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約25mm×幅約50mm×長さ約200mmとした。
 続いて各鋳塊について、均質化処理として、Arガス雰囲気中において、800℃で所定時間保持後、水焼き入れを実施した。
 次に、熱間圧延を実施した。熱間圧延開始温度が800℃となるように再加熱して、鋳塊の幅方向が圧延方向となるようにして、圧延率約50%の熱間圧延を行い、圧延終了温度300~700℃から水焼入れを行い、切断および表面研削実施後、厚さ約11mm×幅約160mm×長さ約100mmの熱間圧延材を製出した。
 その後、中間塑性加工および中間熱処理を、それぞれ1回行うか、又は2回繰り返して実施した。
 具体的には、中間塑性加工および中間熱処理をそれぞれ1回実施する場合には、圧延率約90%以上の冷間圧延(中間塑性加工)を行った後、再結晶と析出処理のための中間熱処理として、200~800℃で、所定時間の熱処理を実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
 一方、中間塑性加工および中間熱処理をそれぞれ2回実施する場合には、圧延率約50~90%の一次冷間圧延(一次中間塑性加工)を行った後、一次中間熱処理として、200~800℃で所定時間の熱処理を実施して水焼入れした後、圧延率約50~90%の二次冷間圧延(二次中間塑性加工)を施し、200~800℃の間で所定の時間の二次中間熱処理を実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
 一次もしくは二次中間熱処理後の平均結晶粒径を次のようにして調べた。
 平均粒径が10μmを超える場合については、圧延面に対して法線方向に垂直な面、すなわちND(Normal Direction)面を観察面とし、鏡面研磨、エッチングを行ってから、光学顕微鏡にて、圧延方向が写真の横になるように撮影し、1000倍の視野(約300×200μm)で観察を行った。そして、結晶粒径をJIS H 0501:1986(ISO 2624-1973と対応する)の切断法に従い、写真縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径として算出した。
 また、平均結晶粒径10μm以下の場合は、圧延の幅方向に対して垂直な面、すなわちTD面を観察面として、SEM-EBSD(Electron Backscatter Diffraction Patterns)測定装置によって、平均結晶粒径を測定した。具体的には、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行い、その後、走査型電子顕微鏡を用いて、試料表面の測定範囲内の個々の測定点(ピクセル)に電子線を照射し、後方散乱電子線回折による方位解析により、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界として結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。
 このようにして調べた一次もしくは二次中間熱処理後の段階での平均結晶粒径を表5、6に示す。
 その後、表3、4に示す圧延率で仕上げ圧延を実施した。
 最後に、200~400℃で仕上げ熱処理を実施した後、水焼入れし、切断および表面研磨を実施した後、厚さ0.25mm×幅約160mmの特性評価用条材を製出した。
 これらの特性評価用条材について銅合金の導電率、機械的特性(耐力)を調べるとともに、耐応力緩和特性を調べ、さらに組織観察を行った。各評価項目についての試験方法、測定方法は次の通りであり、また、その結果を表5、6に示す。
〔機械的特性〕
 特性評価用条材からJIS Z 2201:1998(現在のJIS Z 2241:2011に対応し、JIS Z 2241:2011はISO 6892-1:2009に基づく)に規定される13B号試験片を採取し、JIS Z 2241:2011のオフセット法により、0.2%耐力σ0.2を測定した。ここで、オフセット法とは、引張試験において塑性伸びが伸び計標点距離(引張前の長さ)に対する規定の百分率に等しくなったときの応力を測定するものである。本実施例では前記規定の百分率が0.2%となったときの応力を測定した。なお、試験片は、引張試験の引張方向が特性評価用条材の圧延方向に対して直交する方向となるように採取した。
〔導電率〕
 特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。
〔耐応力緩和特性〕
 銅合金の耐応力緩和特性試験は、日本伸銅協会技術標準JCBA-T309:2004の片持はりねじ式に準じた、一端を固定端として支持された試験片の自由端に変位を与える方法によって応力を負荷し、120℃の温度で所定時間保持後の残留応力率を測定した。
 試験方法としては、各特性評価用条材から圧延方向に対して直交する方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
 表面最大応力(MPa)=1.5Etδ0/Ls 2ただし、E:たわみ係数(MPa)t:試料の厚み(t=0.25mm)δ:初期たわみ変位(2mm)L:スパン長さ(mm)である。
 銅合金の耐応力緩和特性の評価は、120℃の温度で、500h保持後の曲げ癖から、残留応力率を測定し、銅合金の耐応力緩和特性を評価した。なお、残留応力率は次式を用いて算出した。
 残留応力率(%)=(1-δt0)×100ただし、δ:120℃で500h保持後の永久たわみ変位(mm)-常温で24h保持後の永久たわみ変位(mm)δ:初期たわみ変位(mm)である。
 残留応力率が、70%以上のものをA、70%未満ものをBと評価した。
〔結晶粒径観察〕
 圧延の幅方向に対して垂直な面、すなわちTD面(Transverse direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように結晶粒界および結晶方位差分布を測定した。
 耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM
 Data Analysis ver.5.3)によって、電子線の加速電圧20kV、測定間隔0.1μmステップで1000μm以上の測定面積で、各結晶粒の方位差の解析を行った。解析ソフトOIMにより各測定点のCI値を計算し、結晶粒径の解析からはCI値が0.1以下のものは除外した。結晶粒界は、二次元断面観察の結果、隣り合う2つの結晶間の配向方位差が15°以上となる測定点間を結晶粒界として結晶粒界マップを作成し、JIS H 0501の切断法に準拠し、結晶粒界マップに対して、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。
〔析出物の観察〕
 各特性評価用条材について、 透過型電子顕微鏡(TEM:日立製作所製、H-800、HF-2000、HF-2200および日本電子製 JEM-2010F)およびEDX分析装置(Noran製、EDX分析装置Vantage)を用いて、次のように析出物観察を実施した。
 TEMを用いて150,000倍(観察視野面積は約4×10nm)および750,000倍(観察視野面積は約2×10 nm)で10~100nmの粒径の析出物
の観察を実施した。さらに、析出物の電子線回折パターンより、析出物の結晶構造を同定した。加えて、EDX(エネルギー分散型X線分光法)を用いて、析出物の組成を分析した。
〔曲げ加工性〕
 JCBA(日本伸銅協会技術標準)T307-2007の4試験方法に準拠して曲げ加工を行った。曲げの軸が圧延方向に平行になるようにW曲げした。特性評価用条材から幅10mm×長さ30mm×厚さ0.25mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.5mmのW型の治具を用い、W曲げ試験を行った。それぞれ3つのサンプルで割れ試験を実施し、各サンプルの4つの視野においてクラックが観察されなかったものを○で、1つの視野以上でクラックが観察されたものを×で示した。評価結果を表5,6に示す。
〔特殊粒界長さ比率〕
 圧延の幅方向に対して垂直な面、すなわちTD面(Transverse direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように結晶粒界および結晶方位差分布を測定した。耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.5.3)によって、電子線の加速電圧20kV、測定間隔0.1μmステップで1000μm以上の測定面積で、CI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行ない、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とした。
 また、測定範囲における結晶粒界の全粒界長さLを測定し、隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界のうちΣ3、Σ9、Σ27a、Σ27b粒界の各長さの和Lσと、上記測定した結晶粒界の全粒界長さLとの粒界長さ比率Lσ/Lを求め、特殊粒界長さ比率(Lσ/L)とした。
 上記の各組織観察結果、各評価結果について、表5,6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以上の各試料の評価結果について次に説明する。
 なお、No.1~16は、30%前後のZnを含有するCu-30Zn合金をベースとする本発明例、No.17は、35%前後のZnを含有するCu-35Zn合金をベースとする本発明例、No.18~30は、25%前後のZnを含有するCu-25Zn合金をベースとする本発明例である。
 また、No.50は、Znの含有量が本発明範囲の上限を越えた比較例であり、さらに、No.51、53、55、56は、25%前後のZnを含有するCu-25Zn合金をベースとする比較例、No.52、54は、30%前後のZnを含有するCu-30Zn合金をベースとする比較例である。
 表5に示しているように、各合金元素の個別の含有量が本発明で規定する範囲内であるばかりでなく、各合金成分の相互間の比率が本発明で規定する範囲内であり、組織観察の結果、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)比率が本発明の範囲内とされた本発明例No.1~30は、いずれも銅合金の耐応力緩和特性が優れており、さらに耐力、曲げ加工性にも優れており、コネクタやその他の端子部材に十分に適用可能であることが確認された。
 一方、表6に示しているように、比較例No.50~56は、銅合金の耐応力緩和特性、あるいは、曲げ加工性が本発明例よりも劣っていた。
 すなわち、比較例No.50は、Znの含有量が37を超えており、銅合金の耐応力緩和特性が劣っていた。
 また、比較例No.51は、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が8%と本発明の範囲を外れており、曲げ加工性に劣る結果となった。
 比較例No.52は、Ni,Fe,P,Coを添加しなかったCu-30Zn合金であり、本発明例のCu-30Znベースの合金よりも銅合金の耐応力緩和特性が劣っていた。
 比較例No.53は、Sn,Fe,P,Coを添加しなかったCu-25Znベースの合金であり、本発明例のCu-25Znベースの合金よりも銅合金の耐応力緩和特性が劣っていた。
 比較例No.54は、Sn,Ni,Fe,Coを添加せず、さらに平均結晶粒径が粗大なCu-30Znベースの合金であり、本発明例のCu-30Znベースの合金よりも銅合金の耐力及び耐応力緩和特性が劣っていた。
 比較例No.55は、Niを添加せず、Feが本発明の範囲から外れたCu-25Znベースの合金であり、本発明例のCu-25Znベースの合金よりも銅合金の耐応力緩和特性が劣っていた。
 比較例No.56は、Fe,Coを添加しなかったCu-25Znベースの合金であり、本発明例のCu-25Znベースの合金よりも耐力が低いばかりでなく、銅合金の耐応力緩和特性も劣っていた。
 経時的に、もしくは高温環境で、残留応力が緩和されにくく、相手側導電部材との接触圧を保つことができる電子・電気機器用導電部品及び端子を提供することができる。また、電子・電気機器用導電部品及び端子の薄肉化を図ることができる。

Claims (10)

  1.  Znを23mass%以上36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Feを0.001mass%以上0.10mass%未満、Pを0.005mass%以上0.1mass%以下含有し、残部がCuおよび不可避的不純物からなり、
     Feの含有量とNiの含有量との比Fe/Niが、原子比で、
      0.002≦Fe/Ni<0.7を満たし、
     かつ、NiおよびFeの合計含有量(Ni+Fe)とPの含有量との比(Ni+Fe)/Pが、原子比で、
      3<(Ni+Fe)/P<15を満たし、
     さらに、Snの含有量とNiおよびFeの合計量(Ni+Fe)との比Sn/(Ni+Fe)が、原子比で、
      0.3<Sn/(Ni+Fe)<2.9を満たすとともに、
     Cu、ZnおよびSnを含有するα相を、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされていることを特徴とする電子・電気機器用銅合金。
  2.  Znを23mass%以上36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Feを0.001mass%以上0.10mass%未満、Coを0.001mass%以上0.1mass%未満、Pを0.005mass%以上0.1mass%以下含有し、残部がCuおよび不可避的不純物からなり、
     FeとCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、
      0.002≦(Fe+Co)/Ni<0.7を満たし、
     かつNi、FeおよびCoの合計含有量(Ni+Fe+Co)とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、
      3<(Ni+Fe+Co)/P<15を満たし、
     さらにSnの含有量とNi、FeおよびCoの合計含有量(Ni+Fe+Co)との比Sn/(Ni+Fe+Co)が、原子比で、
      0.3<Sn/(Ni+Fe+Co)<2.9を満たすとともに、
     Cu、ZnおよびSnを含有するα相を、EBSD法により1000μm以上の測定面積を測定間隔0.1μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定間の方位差が15°を超える測定点間を結晶粒界とし、全ての結晶粒界長さLに対するΣ3、Σ9、Σ27a、Σ27bの各粒界長さの和Lσの比率である特殊粒界長さ比率(Lσ/L)が10%以上とされていることを特徴とする電子・電気機器用銅合金。
  3.  請求項1または請求項2に記載の電子・電気機器用銅合金において、
     Cu、ZnおよびSnを含有するα相の平均結晶粒径(双晶を含む)が0.5μm以上10μm以下の範囲内とされていることを特徴とする電子・電気機器用銅合金。
  4.  請求項1から請求項3のいずれか一項に記載の電子・電気機器用銅合金において、
     0.2%耐力が300MPa以上の機械特性を有することを特徴とする電子・電気機器用銅合金。
  5.  請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金の圧延材からなり、厚みが0.05mm以上1.0mm以下の範囲内にあることを特徴とする電子・電気機器用銅合金薄板。
  6.  請求項5に記載の電子・電気機器用銅合金薄板において、
     表面にSnめっきが施されていることを特徴とする電子・電気機器用銅合金薄板。
  7.  請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用導電部品。
  8.  請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする端子。
  9.  請求項5または請求項6に記載の電子・電気機器用銅合金薄板からなることを特徴とする電子・電気機器用導電部品。
  10.  請求項5または請求項6に記載の電子・電気機器用銅合金薄板からなることを特徴とする端子。
PCT/JP2013/073211 2013-03-18 2013-08-29 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子 WO2014147861A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13878726.2A EP2977476A4 (en) 2013-03-18 2013-08-29 COPPER ALLOY FOR ELECTRICAL AND ELECTRONIC DEVICES, COPPER ALLOY THINNING LAYER FOR ELECTRICAL AND ELECTRONIC DEVICES AND CONDUCTIVE PART AND CLAMP FOR ELECTRICAL AND ELECTRONIC DEVICES
KR1020157024680A KR102087470B1 (ko) 2013-03-18 2013-08-29 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금 박판, 전자·전기 기기용 도전 부품 및 단자
US14/777,615 US20160300634A1 (en) 2013-03-18 2013-08-29 Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal
CN201380074798.8A CN105074025A (zh) 2013-03-18 2013-08-29 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-055052 2013-03-18
JP2013055052A JP5604549B2 (ja) 2013-03-18 2013-03-18 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Publications (1)

Publication Number Publication Date
WO2014147861A1 true WO2014147861A1 (ja) 2014-09-25

Family

ID=51579579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073211 WO2014147861A1 (ja) 2013-03-18 2013-08-29 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Country Status (7)

Country Link
US (1) US20160300634A1 (ja)
EP (1) EP2977476A4 (ja)
JP (1) JP5604549B2 (ja)
KR (1) KR102087470B1 (ja)
CN (1) CN105074025A (ja)
TW (1) TWI486463B (ja)
WO (1) WO2014147861A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380174B2 (ja) * 2015-03-10 2018-08-29 三菱マテリアル株式会社 銀めっき付き銅端子材及び端子
DE202018104958U1 (de) 2018-08-30 2018-09-12 Harting Electric Gmbh & Co. Kg Steckverbinder mit Komponenten aus verbessertem Material
DE102020128955A1 (de) 2020-11-03 2022-05-05 Aurubis Stolberg Gmbh & Co. Kg Messinglegierung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533087A (ja) 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The 小型導電性部材用銅合金
JP2005060773A (ja) * 2003-08-12 2005-03-10 Mitsui Mining & Smelting Co Ltd 特殊黄銅及びその特殊黄銅の高力化方法
JP3717321B2 (ja) 1998-12-11 2005-11-16 古河電気工業株式会社 半導体リードフレーム用銅合金
JP2006283060A (ja) 2005-03-31 2006-10-19 Dowa Mining Co Ltd 銅合金材料およびその製造法
JP3953357B2 (ja) 2002-04-17 2007-08-08 株式会社神戸製鋼所 電気、電子部品用銅合金
JP2012158829A (ja) * 2011-01-13 2012-08-23 Mitsubishi Materials Corp 電子・電気機器用銅合金、銅合金薄板および導電部材
JP5303678B1 (ja) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086233A (ja) * 1983-10-14 1985-05-15 Nippon Mining Co Ltd 高力導電銅合金
JPS6141737A (ja) * 1984-07-31 1986-02-28 Tamagawa Kikai Kinzoku Kk 電気ヒユ−ズ用Cu合金
JP3408929B2 (ja) * 1996-07-11 2003-05-19 同和鉱業株式会社 銅基合金およびその製造方法
US6471792B1 (en) * 1998-11-16 2002-10-29 Olin Corporation Stress relaxation resistant brass
US8268098B2 (en) 2006-05-26 2012-09-18 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
EP2184371B1 (en) 2007-08-07 2016-11-30 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
TW201118183A (en) * 2009-11-19 2011-06-01 Kun-Yi He Copper based alloy
JP5715399B2 (ja) * 2010-12-08 2015-05-07 株式会社Shカッパープロダクツ 電気・電子部品用銅合金材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533087A (ja) 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The 小型導電性部材用銅合金
JP3717321B2 (ja) 1998-12-11 2005-11-16 古河電気工業株式会社 半導体リードフレーム用銅合金
JP3953357B2 (ja) 2002-04-17 2007-08-08 株式会社神戸製鋼所 電気、電子部品用銅合金
JP2005060773A (ja) * 2003-08-12 2005-03-10 Mitsui Mining & Smelting Co Ltd 特殊黄銅及びその特殊黄銅の高力化方法
JP2006283060A (ja) 2005-03-31 2006-10-19 Dowa Mining Co Ltd 銅合金材料およびその製造法
JP2012158829A (ja) * 2011-01-13 2012-08-23 Mitsubishi Materials Corp 電子・電気機器用銅合金、銅合金薄板および導電部材
JP5303678B1 (ja) * 2012-01-06 2013-10-02 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. G. BRANDON, ACTA. METALLURGICA, vol. 14, 1966, pages 1479
KRONBERG ET AL., TRANS. MET. SOC. AIME, vol. 185, 1949, pages 501
See also references of EP2977476A4
SEIICHI SUZUKI: "EBSD Reader: Using OIM, 3rd Revised Edition", September 2009, TSL SOLUTIONS CO., LTD.

Also Published As

Publication number Publication date
JP5604549B2 (ja) 2014-10-08
US20160300634A1 (en) 2016-10-13
JP2014181362A (ja) 2014-09-29
TW201437391A (zh) 2014-10-01
EP2977476A4 (en) 2016-12-28
TWI486463B (zh) 2015-06-01
EP2977476A1 (en) 2016-01-27
CN105074025A (zh) 2015-11-18
KR102087470B1 (ko) 2020-03-10
KR20150129719A (ko) 2015-11-20

Similar Documents

Publication Publication Date Title
JP5690979B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2014074220A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
JP5572754B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2015001683A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用部品及び端子
JP5417523B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5417539B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2014109083A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用銅合金の製造方法、電子・電気機器用導電部品および端子
WO2014147862A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2015004940A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2014147861A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6097575B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6097606B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6166891B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6264887B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP7172089B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP7172090B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6097576B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304867B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2014141742A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074798.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024680

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14777615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013878726

Country of ref document: EP