WO2014146588A1 - 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 - Google Patents
皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 Download PDFInfo
- Publication number
- WO2014146588A1 WO2014146588A1 PCT/CN2014/073751 CN2014073751W WO2014146588A1 WO 2014146588 A1 WO2014146588 A1 WO 2014146588A1 CN 2014073751 W CN2014073751 W CN 2014073751W WO 2014146588 A1 WO2014146588 A1 WO 2014146588A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester
- melt
- sheath
- staple fiber
- melting point
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/141—Feedstock
- Y02P20/143—Feedstock the feedstock being recycled material, e.g. plastics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the invention relates to the technical field of chemical fiber production, in particular to a sheath core type polyester short fiber core layer high melting point regenerated polyester and a preparation method and application thereof.
- the low-melting-point sheath-core composite polyester staple fiber refers to a fiber obtained by distributing a core-core structure of the two different polymers of a low-melting-point polyester and a conventional polyester in the same fiber.
- the skin layer is a low melting point polyester which retains some of the characteristics of conventional polyesters and has good compatibility with conventional polyesters.
- the low melting point sheath-core composite fiber is mainly used for the heat bonding fiber, and the main function in the production of the nonwoven fabric is that the low melting point fiber skin layer polymer melts at a certain temperature, thereby exerting a bonding effect in the fiber web.
- the produced non-woven fabric has the characteristics of soft handfeel and high elasticity, and is widely used in sanitary masks, bandages and other sanitary materials and interior decoration materials. field.
- the invention patent "a low melting point copolyester and a preparation method thereof" discloses a design method of a low melting point copolyester, the melting point of the polyester can be lowered to 110 ° C, and the low melting point copolyester crystallizes Good performance, high intrinsic viscosity, difficult adhesion of particles, good spinnability, etc.
- Invention patent "manufacturing method of low melting point polyester staple fiber” (application number: 200410072878.2 The low melting point short fiber is obtained by melt spinning after low temperature vacuum drying of the polyester chip having a low melting point of 120 ° C to 130 ° C.
- Invention patent "a side-by-side composite low-melting staple fiber” (application number: 200810123792.6) discloses that a water-soluble polyester component and a polytrimethylene terephthalate component are juxtaposed into a low-melting staple fiber, and the fiber has good heat shrinkage stability. There have been some reports on the research of low melting core-sheath composite polyester fibers.
- the invention patent "manufacturing method of sheath-core type low-melting polyester staple fiber" (application No.: 200810163542.5) is characterized in that the skin layer is a low-melting polyester melt obtained by direct spinning of a melt, and the core layer is passed through conventional PET.
- a conventional PET polyester melt obtained by a slicing process obtained by a slicing process.
- the use of recycled materials for the preparation of polyester staple fibers as the core layer of sheath-core composite fibers has not been reported so far.
- polyester waste Recycling has become a necessity for a sustainable society.
- Most of the short fibers currently prepared from polyester waste are used in low-addition fields such as fillers. Studying the quenching and tempering process to solve the technical problems of wide sources of polyester waste, complex composition and high quality fluctuations.
- the use of polyester waste to prepare products with high added value has become a major issue in the transformation and upgrading of the recycling industry.
- the technology replaces low-melting polyester chip spinning with melt direct spinning, which better solves a series of problems such as high drying cost, poor stability and poor fiber spinnability of Russian low-melting polyester, and the production cost is greatly reduced.
- the first object of the present invention is to provide a method for preparing a sheath-core type polyester short fiber core layer high-melting point regenerated polyester, which has a high melting point.
- the recycled polyester can be used for preparing the sheath-core type polyester staple fiber, and the added value of the polyester waste to prepare the recycled polyester staple fiber is improved, and the prepared sheath-core type recycled polyester staple fiber has the characteristics of stable quality and excellent quality.
- a second object of the present invention is to provide a high melting point regenerated polyester prepared by the above process.
- a third object of the present invention is to provide an application of the high melting point regenerated polyester prepared by the above method.
- the invention discloses a preparation method of a core-core type polyester short fiber core layer high-melting-point regenerated polyester, and a high-melting-point regenerated polyester-based polyester bottle-based recycled polyester raw material is prepared by the following process: reclaimed raw material-cleaning-mixing ratio - Drum drying - multi-stage filtration - liquid phase thickening, wherein the drying temperature of the drum is 100 ⁇ 150 ° C, the drying time is 7 ⁇ 10h; the steps of liquid phase thickening are as follows:
- the melt having a temperature of 260 ° C to 290 ° C and having an intrinsic viscosity of 0.5 dl / g to 0.70 dl / g is pumped to the vacuum separation tower by melt transfer, and the melt is in a vacuum of 10 Pa to 400 Pa.
- the temperature is 270 ° C ⁇ 300 ° C, the intrinsic viscosity can reach 0.55 dl / g ⁇ 0.78 dl / g after 15 min ⁇ 40 min;
- the melt temperature and the vacuum degree in the secondary quenching and tempering adjusting device are the same as those in the vacuum separation tower, and the melt continuously advances under the action of the rotary propeller, and the melt viscosity Increasingly, the rotation speed of the propeller is 1.5r/min ⁇ 10r/min
- the residence time is from 15 min to 30 min, and the final melt intrinsic viscosity is from 0.60 dl/g to 1.0 dl/g.
- the liquid phase thickening process of the present invention adopts a waste plastic quenching and tempering system as described in the Chinese invention patent (Application No.: 201010574044.7, application date: 2010-12-01).
- the high melting point regenerated polyester has a melting point of 250 to 270 ° C and a terminal carboxyl group content of ⁇ 20 mmol/kg.
- the high melt-recycled polyester has a final melt intrinsic viscosity of from 0.60 dl/g to 0.88 dl/g.
- the multi-stage filtration adopts a secondary filter
- the filter of the secondary filter has an accuracy of 120 mesh to 150 mesh
- the filter has a filter area of 10-20 m 2 .
- the recycled polyester raw material also includes a hybrid waste polyester textile.
- the present invention also provides a high melting point regenerated polyester prepared by the above preparation method.
- the present invention also provides a sheath-core type polyester staple fiber having a core layer of the above-mentioned high-melting point-recycled polyester.
- the high melting point regenerated polyester of the invention can be used for preparing sheath-core type polyester staple fibers, and the added value of the prepared polyester staple fiber for polyester scrap is improved, and the prepared sheath-core type recycled polyester staple fiber has stable quality and excellent quality. specialty. Can be used in the production of non-woven fabrics, flocking, composite materials and other industries.
- the production method of the present invention specifically includes:
- the ratio of terephthalic acid (PTA) to isophthalic acid (IPA) is 2:1, and the ratio of ethylene glycol (EG) to neopentyl glycol (NPG) is 8:1, the ratio of terephthalic acid (PTA) to ethylene glycol (EG) is 1.2:1, the molar ratio of alkyd is 1.5, the catalyst antimony trioxide (Sb203) and cobalt acetate (Co(Ac) 2) 300 ppm of the total amount of acid in the reaction system, and a stabilizer of trimethyl phosphate of 0.01% by weight (relative to the acid component) (TMP).
- PTA terephthalic acid
- IPA isophthalic acid
- NPG neopentyl glycol
- the ratio of terephthalic acid (PTA) to ethylene glycol (EG) is 1.2:1
- the molar ratio of alkyd is 1.5
- the above raw material esterification reaction is carried out under nitrogen pressure, the temperature is 180-250 ° C, and the pressure is 0.05 MPa. ⁇ 0.4MPa, reaction time 1.5 ⁇ 3h; polycondensation reaction temperature is 250 ⁇ 285°C, vacuum degree is 30 ⁇ 200Pa, reaction time is 2.5 ⁇ 5h, and the obtained low melting point polyester has a melting point of 110° C. and a terminal carboxyl group content of 25 mmol/ Kg, intrinsic viscosity was 0.69 dL/g.
- the preparation of recycled polyester the use of bottle flakes through cleaning, drum drying, multi-stage filtration, liquid phase thickening process.
- the drum drying temperature was 130 ° C
- the drying time was 8 h.
- the steps of liquid phase thickening are as follows: 1) The melt having a temperature of 270 ° C and an intrinsic viscosity of 0.55 dl / g after being melted by the screw is pumped to the vacuum separation tower by melt transfer, and the melt is at a vacuum of 100 Pa, and the temperature is After 280 ° C, the intrinsic viscosity can reach 0.68 dl / g after staying for 30 min; 2) after the melt enters the horizontal device, The melt temperature and vacuum in the horizontal tank are the same as those in the vacuum separation tower.
- the regenerated polyester had a melting point of 264 ° C, a terminal carboxyl group content of 16 mmol/kg, and an intrinsic viscosity of 0.79 dl/g.
- sheath-core type recycled polyester staple fiber the above low-melting polyester melt and recycled polyester melt are accurately metered into the composite spinneret at a weight of 4:6 core, respectively, and sprayed from the spinneret of the composite component
- the melt obtained by cooling, winding, bundling, drawing, shaping, cutting and packing can obtain a sheath-core type recycled polyester staple fiber.
- the drying temperature of the recycled polyester raw material is 150 ° C, the drying time is 7 h, the screw temperature is 280 ° C; the low melting point polyester spinning pipe insulation temperature is 230 ° C, the regenerated polyester spinning pipe insulation temperature is 275 ° C, the spinning box
- the temperature was 280 ° C; the ring air cooling cooling air temperature was 15 ° C, the wind speed was 2.0 m / s; the spinning speed was 1100 m / min; the draft ratio was 2.0, the drawing temperature was 75 ° C, and the drafting speed was 110 m / min.
- the quality index of the sheath-core type recycled polyester staple fiber obtained by the above production process is:
- the above raw material esterification reaction is carried out under nitrogen pressure, the temperature is 220 ° C, the pressure is 0.3 MPa, the reaction time is 2.5 h; the polycondensation reaction temperature is 275 ° C, the vacuum degree is 80 Pa, and the reaction time is 3 h, and the obtained low melting point polyester is obtained.
- the melting point was 105 ° C, the terminal carboxyl group content was 28 mmol/kg, and the intrinsic viscosity was 0.67 dL/g.
- the preparation of recycled polyester the use of bottle flakes through cleaning, drum drying, multi-stage filtration, liquid phase thickening process.
- the drum drying temperature was 110 ° C
- the drying time was 7 h.
- the steps of liquid phase thickening are as follows: 1) The melt having a temperature of 270 ° C and an intrinsic viscosity of 0.55 dl / g after being melted by the screw is pumped to the vacuum separation tower by melt transfer, and the melt is at a vacuum of 100 Pa, and the temperature is After 280 ° C, the intrinsic viscosity can reach 0.68 dl / g after staying for 30 min; 2) after the melt enters the horizontal device, The melt temperature and vacuum in the horizontal tank are the same as those in the vacuum separation tower.
- the regenerated polyester had a melting point of 269 ° C, a terminal carboxyl group content of 14 mmol/kg, and an intrinsic viscosity of 0.78 dl/g.
- sheath-core type recycled polyester staple fiber the above low-melting polyester melt and recycled polyester melt are accurately metered into the composite spinneret with a 5:5 core weight, respectively, sprayed from the spinneret of the composite component
- the melt obtained by cooling, winding, bundling, drawing, shaping, cutting and packing can obtain a sheath-core type recycled polyester staple fiber.
- the drying temperature of the recycled polyester raw material is 140 ° C, the drying time is 7.5 h, the screw temperature is 270 ° C; the low melting point polyester spinning pipe insulation temperature is 220 ° C, and the regenerated polyester spinning pipe insulation temperature is 275 ° C, the spinning box
- the body temperature was 280 ° C; the ring blowing cooling air temperature was 20 ° C, the wind speed was 3.0 m / s; the spinning speed was 1000 m / min; the draft ratio was 3.0, the drawing temperature was 80 ° C, and the drafting speed was 120 m / min.
- the quality index of the sheath-core type recycled polyester staple fiber obtained by the above production process is:
- the ratio of terephthalic acid (PTA) and adipic acid (AA) is 3:1, and the ratio of ethylene glycol (EG) to neopentyl glycol (NPG) is 10 :1, the ratio of terephthalic acid (PTA) to ethylene glycol (EG) is 1:1.3, the molar ratio of alkyd is 1.5, the catalyst antimony trioxide (Sb203) and cobalt acetate (Co(Ac)2 ) 300 ppm of the total amount of acid in the reaction system, and a stabilizer of trimethyl phosphate of 0.01% by weight (relative to the acid component) (TMP).
- PTA terephthalic acid
- NPG neopentyl glycol
- Sb203 catalyst antimony trioxide
- Co(Ac)2 cobalt acetate
- the above raw material esterification reaction is carried out under nitrogen pressure, the temperature is 210 ° C, the pressure is 0.25 MPa, the reaction time is 2 h; the polycondensation reaction temperature is 280 ° C, the vacuum degree is 60 Pa, and the reaction time is 3 h, and the melting point of the obtained low melting point polyester is obtained.
- the temperature was 115 ° C, the terminal carboxyl group content was 30 mmol/kg, and the intrinsic viscosity was 0.68 dL/g.
- the preparation of recycled polyester the use of bottle flakes through cleaning, drum drying, multi-stage filtration, liquid phase thickening process.
- the drum drying temperature was 100 ° C
- the drying time was 7 h.
- the steps of liquid phase thickening are as follows: 1) The melt having a temperature of 270 ° C and an intrinsic viscosity of 0.55 dl / g after being melted by the screw is pumped to the vacuum separation tower by melt transfer, and the melt is at a vacuum of 100 Pa, and the temperature is After 280 ° C, the intrinsic viscosity can reach 0.68 dl / g after staying for 30 min; 2) after the melt enters the horizontal device, The melt temperature and vacuum in the horizontal tank are the same as those in the vacuum separation tower.
- the regenerated polyester had a melting point of 267 ° C, a terminal carboxyl group content of 16 mmol/kg, and an intrinsic viscosity of 0.78 dl/g.
- the drying temperature of the recycled polyester raw material is 140 ° C, the drying time is 7 h, the screw temperature is 170 ° C; the low melting point polyester spinning pipe insulation temperature is 230 ° C, the regenerated polyester spinning pipe insulation temperature is 270 ° C, the spinning box The temperature was 285 ° C; the ring air cooling cooling air temperature was 22 ° C, the wind speed was 2.5 m / s; the spinning speed was 900 m / min; the draft ratio was 2.5, the drawing temperature was 60 ° C, and the drafting speed was 110 m / min.
- the quality index of the sheath-core type recycled polyester staple fiber obtained by the above production process is:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Multicomponent Fibers (AREA)
Abstract
涉及用作皮芯型聚酯短纤维芯层的高熔点再生聚酯及其制备方法和应用,所述的高熔点再生聚酯以聚酯瓶片为主的回收聚酯为原料通过如下的工艺制备:再生原料-清洗-配比-转鼓干燥-多级过滤-液相增粘,其中,转鼓干燥温度为100-150°C,干燥时间为7-10h;所得的高熔点再生聚酯可用于制备皮芯型聚酯短纤维,提高了聚酯废料制备再生聚酯短纤维的附加值,制备的皮芯型再生聚酯短纤维具有质量稳定,品质优良的特点。可用于生产非织造布、植绒、复合材料等行业中。
Description
本发明涉及属化纤生产技术领域,尤其涉及皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用。
低熔点皮芯型复合聚酯短纤维是指用低熔点聚酯和常规聚酯这两种不同的聚合物以皮芯结构分布于同一根纤维之中制成的纤维。皮层是低熔点聚酯,它保留了常规聚酯的部分特性,与常规聚酯具有良好的相容性的特点。低熔点皮芯复合纤维主要用于热粘合纤维,在非织造布生产中主要作用是在一定温度下低熔点纤维皮层聚合物熔化,从而在纤维网中起到黏结效果。由于低熔点涤纶短纤维具有强度高、膨松性好、弹性恢复率高,生产出的非织造布具有手感柔软、弹性高等特点,目前广泛使用在手术口罩、绷带等卫生材料和室内装饰材料等领域。
目前对于低熔点聚酯短纤维的生产方法有较多的研究报道。如发明专利“一种低熔点共聚酯及其制备方法”(申请号:200810063395.4)公开了低熔点共聚酯的设计方法,聚酯熔点可降至110℃,而且该低熔点共聚酯结晶性能好、特性粘度高、粒子不易粘连、具有良好的可纺性等。发明专利“一种低熔点聚酯短纤维的生产方法”(申请号:200410072878.2
)采用120℃~130℃低熔点聚酯切片经过低温真空干燥后,经熔融纺丝可得低熔点短纤维。发明专利“一种并列型复合的低熔点短纤”(申请号:
200810123792.6)公开的是水溶性聚酯组分与聚对苯二甲酸丙二酯组分并列复合而成低熔点短纤,此纤维具有良好的热收缩率稳定性。关于低熔点皮芯复合聚酯纤维的研究也有一些报道。如发明专利“一种皮芯型低熔点聚酯短纤维的生产方法”(申请号:200810163542.5)其特征在于皮层为通过熔体直纺得到的低熔点聚酯熔体,芯层为通过常规PET切片纺工艺得到的常规PET聚酯熔体。但是利用再生料制备聚酯短纤维作为皮芯型复合纤维的芯层至今没有报道。
随着聚酯材料在各领域的迅速发展和使用,聚酯废料的排放量与日俱增,其难降解性现已对环境造成了极大的污染,并且由于目前工业原料的缺乏,对聚酯废料的回收再利用已成为可持续发展社会之所需。目前用聚酯废料制备的短纤维大部分用于填充物等低附加领域。研究调质调粘工艺,解决聚酯废料来源广、成分复杂、质量波动大的技术难题,利用聚酯废料制备具有高附加值的产品成为再生行业转型升级的一个重大课题。另外,该技术以熔体直纺替代低熔聚酯切片纺丝,较好的解决俄低熔点聚酯干燥成本大、稳定性差、纤维可纺性差等一系列问问题,生产成本大幅下降。
为了解决利用再生料制备聚酯皮芯型复合纤维存在的技术问题,本发明的第一个目的在于提供一种皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,该高熔点再生聚酯可用于制备皮芯型聚酯短纤维,提高了聚酯废料制备再生聚酯短纤维的附加值,制备的皮芯型再生聚酯短纤维具有质量稳定,品质优良的特点。本发明的第二个目的在于提供采用上述的方法制备的高熔点再生聚酯。本发明的第三个目的在于提供采用上述的方法制备的高熔点再生聚酯的应用。
为了实现上述的第一个目的,本发明采用了以下的技术方案:
一种皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,高熔点再生聚酯以聚酯瓶片为主的回收聚酯原料通过如下的工艺制备:再生原料—清洗—配比—转鼓干燥—多级过滤—液相增粘,其中,转鼓干燥温度为100~150℃,干燥时间为7~10h;液相增粘的步骤如下:
1)经螺杆熔融后的温度在260℃~290℃特性粘度为0.5dl/g~0.70dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为10pa~400pa,温度为270℃~300℃,条件下停留15min~40min之后特性粘度可达到0.55dl/g~0.78dl/g;
2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为1.5r/min~10r/min
,停留时间15min~30min,最终熔体特性粘度在0.60dl/g~1.0dl/g。
本发明液相增粘工艺采用中国发明专利(申请号:201010574044.7,申请日:2010-12-01)所述的一种废塑料调质调粘系统。
作为进一步改进,高熔点再生聚酯的熔点为250~270℃,端羧基含量≤20mmol/kg。
作为进一步改进,高熔点再生聚酯的最终熔体特性粘度在0.60dl/g~0.88dl/g。
作为进一步改进,多级过滤采用二级过滤器,二级过滤器的过滤网精度为120目~150目,过滤器的过滤面积为10~20㎡。
作为进一步改进,所述的回收聚酯原料还包括混杂的废聚酯纺织品。
为了实现上述的第二个目的,本发明还提供了上述的制备方法制备得到高熔点再生聚酯。
为了实现上述的第二个目的,本发明还提供了一种皮芯型聚酯短纤维,该皮芯型聚酯短纤维的芯层采用上述的高熔点再生聚酯。
本发明的高熔点再生聚酯可用于制备皮芯型聚酯短纤维,提高了聚酯废料制备再生聚酯短纤维的附加值,制备的皮芯型再生聚酯短纤维具有质量稳定,品质优良的特点。可用于生产非织造布、植绒、复合材料等行业中。
下面将结合具体实施例对本发明作详细的介绍:本发明所述的生产方法具体包括:
实施例1
1、低熔点聚酯的制备:对苯二甲酸(PTA)与间苯二甲酸(IPA)的投料比为2:1,乙二醇(EG)与新戊二醇(NPG)的投料比为8:1,对苯二甲酸(PTA)与乙二醇(EG)的投料比为1.2:1,醇酸的摩尔比例为1.5,催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2)
为反应体系中酸总量的300ppm,再加入重量为0.01%(相对酸成份)的稳定剂磷酸三甲酯
(TMP)。以上原料酯化反应在氮气加压下进行,温度为180~250℃,压力为0.05MPa
~0.4MPa,反应时间1.5~3h;缩聚反应温度为250~285℃,真空度为30~200Pa,反应时间2.5~5h,得到的低熔点聚酯的熔点为110℃,端羧基含量为25mmol/kg,特性粘度为0.69dL/g。
2、再生聚酯的制备:采用瓶片料经过清洗、转鼓干燥、多级过滤、液相增粘的工艺流程。其中,转鼓干燥温度为130℃,干燥时间为8h。液相增粘的步骤如下:1)经螺杆熔融后的温度在270℃特性粘度为0.55dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为100pa,温度为280℃,条件下停留30min之后特性粘度可达到0.68dl/g;2)之后熔体进入卧式装置,
卧式釜内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为5r/min
,停留时间20min,最终熔体特性粘度在0.79dl/g。再生聚酯的熔点为264℃,端羧基含量为16 mmol/kg,特性粘度为0.79dl/g。
3、皮芯型再生聚酯短纤维:将上述低熔点聚酯熔体与再生聚酯熔体分别以4:6皮芯重量精确计量进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。再生聚酯原料的干燥温度为150℃,干燥时间为7h,螺杆温度280℃;低熔点聚酯纺丝管道保温温度为230℃,再生聚酯纺丝管道保温温度为275℃,纺丝箱体温度为280℃;环吹风冷却风温为15℃,风速为2.0m/s;纺丝速度为1100m/min;牵伸比为2.0,牵伸温度75℃,牵伸速度为110m/min。经上述生产工艺得到的皮芯型再生聚酯短纤维质量指标为:
线密度:4.24dtex
断裂强度:3.12cN/dtex
断裂伸长率:40%
切断长度:51.5mm。
实施例2
1、低熔点聚酯的制备:对苯二甲酸(PTA)、间苯二甲酸(IPA)、己二酸(AA)的投料比为8:1:1,乙二醇(EG)与己二醇(HG)的投料比为6:1,对苯二甲酸(PTA)与乙二醇(EG)的投料比为1:1.3,醇酸的摩尔比例为1.4,催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2)
为反应体系中酸总量的400ppm,再加入重量为0.01%(相对酸成份)的稳定剂磷酸三甲酯
(TMP)。以上原料酯化反应在氮气加压下进行,温度为220℃,压力为0.3MPa,反应时间2.5h;缩聚反应温度为275℃,真空度为80Pa,反应时间3h,得到的低熔点聚酯的熔点为105℃,端羧基含量为28mmol/kg,特性粘度为0.67dL/g。
2、再生聚酯的制备:采用瓶片料经过清洗、转鼓干燥、多级过滤、液相增粘的工艺流程。其中,转鼓干燥温度为110℃,干燥时间为7h。液相增粘的步骤如下:1)经螺杆熔融后的温度在270℃特性粘度为0.55dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为100pa,温度为280℃,条件下停留30min之后特性粘度可达到0.68dl/g;2)之后熔体进入卧式装置,
卧式釜内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为5r/min
,停留时间15min,最终熔体特性粘度在0.78dl/g。再生聚酯的熔点为269℃,端羧基含量为14 mmol/kg,特性粘度为0.78dl/g。
3、皮芯型再生聚酯短纤维:将上述低熔点聚酯熔体与再生聚酯熔体分别以5:5皮芯重量精确计量进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。再生聚酯原料的干燥温度为140℃,干燥时间为7.5h,螺杆温度270℃;低熔点聚酯纺丝管道保温温度为220℃,再生聚酯纺丝管道保温温度为275℃,纺丝箱体温度为280℃;环吹风冷却风温为20℃,风速为3.0m/s;纺丝速度为1000m/min;牵伸比为3.0,牵伸温度80℃,牵伸速度为120m/min。经上述生产工艺得到的皮芯型再生聚酯短纤维质量指标为:
线密度:4.05 dtex
断裂强度:2.93cN/dtex
断裂伸长率:46%
切断长度:51.6mm。
实施例3
1、低熔点聚酯的制备:对苯二甲酸(PTA)、己二酸(AA)的投料比为3:1,乙二醇(EG)与新戊二醇(NPG)的投料比为10:1,对苯二甲酸(PTA)与乙二醇(EG)的投料比为1:1.3,醇酸的摩尔比例为1.5,催化剂三氧化二锑(Sb203)与醋酸钴(Co(Ac)2)
为反应体系中酸总量的300ppm,再加入重量为0.01%(相对酸成份)的稳定剂磷酸三甲酯
(TMP)。以上原料酯化反应在氮气加压下进行,温度为210℃,压力为0.25MPa,反应时间2h;缩聚反应温度为280℃,真空度为60Pa,反应时间3h,得到的低熔点聚酯的熔点为115℃,端羧基含量为30mmol/kg,特性粘度为0.68dL/g。
2、再生聚酯的制备:采用瓶片料经过清洗、转鼓干燥、多级过滤、液相增粘的工艺流程。其中,转鼓干燥温度为100℃,干燥时间为7h。液相增粘的步骤如下:1)经螺杆熔融后的温度在270℃特性粘度为0.55dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为100pa,温度为280℃,条件下停留30min之后特性粘度可达到0.68dl/g;2)之后熔体进入卧式装置,
卧式釜内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为5r/min
,停留时间15min,最终熔体特性粘度在0.78dl/g。再生聚酯的熔点为267℃,端羧基含量为16 mmol/kg,特性粘度为0.78dl/g。
3、皮芯型再生聚酯短纤维:
将上述低熔点聚酯熔体与再生聚酯熔体分别以6:4皮芯重量精确计量进入复合喷丝组件,从复合组件的喷丝板中喷出的熔体,经冷却、卷绕、集束、牵伸、定型、切断和打包,可得皮芯型再生聚酯短纤维。再生聚酯原料的干燥温度为140℃,干燥时间为7h,螺杆温度170℃;低熔点聚酯纺丝管道保温温度为230℃,再生聚酯纺丝管道保温温度为270℃,纺丝箱体温度为285℃;环吹风冷却风温为22℃,风速为2.5m/s;纺丝速度为900m/min;牵伸比为2.5,牵伸温度60°C,牵伸速度为110m/min。经上述生产工艺得到的皮芯型再生聚酯短纤维质量指标为:
线密度:4.12dtex
断裂强度:2.55cN/dtex
断裂伸长率:48%
切断长度:51.8mm。
Claims (7)
- 皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,其特征在于:高熔点再生聚酯以聚酯瓶片为主的回收聚酯原料通过如下的工艺制备:再生原料—清洗—配比—转鼓干燥—多级过滤—液相增粘,其中,转鼓干燥温度为100~150℃,干燥时间为7~10h;液相增粘的步骤如下:1)经螺杆熔融后的温度在260℃~290℃特性粘度为0.5dl/g~0.70dl/g的熔体经熔体输送泵送至真空分离塔,熔体在真空度为10pa~400pa,温度为270℃~300℃,条件下停留15min~40min之后特性粘度可达到0.55dl/g~0.78dl/g;2)之后熔体进入二级调质调粘装置,二级调质调粘装置内的熔体温度和真空度与真空分离塔相同,在旋转推进器的作用下熔体不断前进,熔体粘度不断增加,推进器的旋转速度为1.5r/min~10r/min ,停留时间15min~30min,最终熔体特性粘度在0.60dl/g~1.0dl/g。
- 根据权利要求1所述的皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,其特征在于:高熔点再生聚酯的熔点为250~270℃,端羧基含量≤20mmol/kg。
- 根据权利要求1所述的皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,其特征在于:高熔点再生聚酯的最终熔体特性粘度在0.60dl/g~0.88dl/g。
- 根据权利要求1所述的皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,其特征在于:多级过滤采用二级过滤器,二级过滤器的过滤网精度为120目~150目,过滤器的过滤面积为10~20㎡。
- 根据权利要求1所述的皮芯型聚酯短纤维芯层高熔点再生聚酯的制备方法,其特征在于:回收聚酯原料还包括混杂的废聚酯纺织品。
- 根据权利要求1~5任意一项权利要求所述的制备方法制备得到高熔点再生聚酯。
- 一种皮芯型聚酯短纤维,其特征在于:该皮芯型聚酯短纤维的芯层采用权利要求6所述的高熔点再生聚酯。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100918076A CN103146020A (zh) | 2013-03-21 | 2013-03-21 | 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 |
CN201310091807.6 | 2013-03-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014146588A1 true WO2014146588A1 (zh) | 2014-09-25 |
Family
ID=48544368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/073751 WO2014146588A1 (zh) | 2013-03-21 | 2014-03-20 | 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103146020A (zh) |
WO (1) | WO2014146588A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103146020A (zh) * | 2013-03-21 | 2013-06-12 | 宁波大发化纤有限公司 | 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 |
CN103147162B (zh) * | 2013-03-21 | 2015-09-16 | 宁波大发化纤有限公司 | 芯层采用再生聚酯的皮芯型聚酯短纤维及其制备方法 |
CN106400140B (zh) * | 2016-11-14 | 2019-04-16 | 浙江理工大学 | 一种低熔点皮芯复合长丝的加工工艺 |
CN111138641B (zh) * | 2018-11-02 | 2021-12-21 | 中国石油化工股份有限公司 | 一种废聚酯瓶回用制备瓶级切片的方法 |
CN109853081A (zh) * | 2018-12-23 | 2019-06-07 | 无锡金通高纤股份有限公司 | 一种低熔点复合单丝及其制备方法 |
CN110117837B (zh) * | 2019-04-26 | 2022-01-11 | 绍兴喜能纺织科技有限公司 | 一种无扭皮芯型双组分弹力丝及其制备方法 |
CN110616474B (zh) * | 2019-10-22 | 2021-02-12 | 宁波大发化纤有限公司 | 废聚酯纺织品制备皮芯复合低熔点再生聚酯纤维的方法 |
CN114000207B (zh) * | 2021-10-14 | 2022-11-15 | 余姚大发化纤有限公司 | 有色再生低熔点纤维的智能生产方法、设备、控制装置和可读载体介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328369A (ja) * | 1999-05-21 | 2000-11-28 | Nippon Ester Co Ltd | 再生ポリエステル含有ポリエステルマルチフィラメント |
CN101445972A (zh) * | 2008-12-29 | 2009-06-03 | 浙江理工大学 | 一种皮芯型低熔点聚酯短纤维的生产方法 |
CN102093590A (zh) * | 2010-12-01 | 2011-06-15 | 宁波大发化纤有限公司 | 一种废塑料调质调粘系统 |
CN103146020A (zh) * | 2013-03-21 | 2013-06-12 | 宁波大发化纤有限公司 | 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 |
CN103147162A (zh) * | 2013-03-21 | 2013-06-12 | 宁波大发化纤有限公司 | 芯层采用再生聚酯的皮芯型聚酯短纤维及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102899729B (zh) * | 2012-10-19 | 2015-08-26 | 宁波大发化纤有限公司 | 废聚酯纺织品加工再生涤纶短纤维的方法 |
-
2013
- 2013-03-21 CN CN2013100918076A patent/CN103146020A/zh active Pending
-
2014
- 2014-03-20 WO PCT/CN2014/073751 patent/WO2014146588A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000328369A (ja) * | 1999-05-21 | 2000-11-28 | Nippon Ester Co Ltd | 再生ポリエステル含有ポリエステルマルチフィラメント |
CN101445972A (zh) * | 2008-12-29 | 2009-06-03 | 浙江理工大学 | 一种皮芯型低熔点聚酯短纤维的生产方法 |
CN102093590A (zh) * | 2010-12-01 | 2011-06-15 | 宁波大发化纤有限公司 | 一种废塑料调质调粘系统 |
CN103146020A (zh) * | 2013-03-21 | 2013-06-12 | 宁波大发化纤有限公司 | 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 |
CN103147162A (zh) * | 2013-03-21 | 2013-06-12 | 宁波大发化纤有限公司 | 芯层采用再生聚酯的皮芯型聚酯短纤维及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103146020A (zh) | 2013-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014146590A1 (zh) | 芯层采用再生聚酯的皮芯型聚酯短纤维及其制备方法 | |
WO2014146588A1 (zh) | 皮芯型聚酯短纤维芯层高熔点再生聚酯及其制备方法和应用 | |
CN103145957B (zh) | 乙二醇降解生产皮芯型聚酯用低熔点再生聚酯的方法 | |
WO2014146591A1 (zh) | 一种皮芯型再生聚酯短纤维及其制备方法 | |
WO2014146587A1 (zh) | 甲醇降解生产皮芯型聚酯用低熔点再生聚酯的方法 | |
WO2014146589A1 (zh) | 水解降解生产皮芯型聚酯用低熔点再生聚酯的方法 | |
CN103012758B (zh) | Pet聚酯的回收处理方法及高强高伸的涤纶纤维 | |
CN102146598B (zh) | 一种含phbv的生物基化学纤维及其制备方法 | |
CN102877157B (zh) | 一种抗菌、阻燃、隔音和隔热涤纶短纤维的制备方法 | |
CN103789873B (zh) | 一种再生皮芯结构复合纤维及其制备方法 | |
KR101965990B1 (ko) | 복합 폴리에스테르 재료, 복합 폴리에스테르 섬유 및 그 제조방법과 용도 | |
CN102242419A (zh) | 一种聚乙烯/改性聚丙烯皮芯复合纤维及其制备方法 | |
CN102702692A (zh) | 抗菌多孔聚酯切片及其制备和加工poy长丝、dty丝的方法 | |
CN112760748A (zh) | 一种废旧聚酯再生制备自粘型抗菌皮芯纤维的方法 | |
CN105200563B (zh) | 一种再生有色聚酯短纤维的制备方法 | |
CN112680829A (zh) | 一种再生聚酯和聚丙烯皮芯复合纤维的制备方法 | |
CN104911748A (zh) | 一种利用聚酯废丝工业化生产涤纶长丝的方法 | |
CN110616474A (zh) | 废聚酯纺织品制备皮芯复合低熔点再生聚酯纤维的方法 | |
CN104593902B (zh) | 一种碳纤维前驱体聚丙烯腈/木质素纤维的制备方法 | |
CN112251844A (zh) | 一种用于香烟过滤嘴具有y型皮芯结构的可降解丝束及其制备方法 | |
CN112981610A (zh) | 环保型亲水低熔pet复合短纤维及其制备方法 | |
CN106319680B (zh) | 一种多功能聚酯短纤维的制造方法 | |
CN115896976A (zh) | 一种具有阻燃功能的再生低熔点聚酯复合纤维及其制备方法 | |
CN113005563A (zh) | 一种低熔点ptt皮芯复合共聚酯纤维的制备方法 | |
CN115726057A (zh) | 一种具有紫外屏蔽功能的再生低熔点聚酯复合纤维及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14768662 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14768662 Country of ref document: EP Kind code of ref document: A1 |