WO2014142263A1 - 静電容量式タッチパネル - Google Patents

静電容量式タッチパネル Download PDF

Info

Publication number
WO2014142263A1
WO2014142263A1 PCT/JP2014/056741 JP2014056741W WO2014142263A1 WO 2014142263 A1 WO2014142263 A1 WO 2014142263A1 JP 2014056741 W JP2014056741 W JP 2014056741W WO 2014142263 A1 WO2014142263 A1 WO 2014142263A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
touch panel
capacitive touch
temperature
mass
Prior art date
Application number
PCT/JP2014/056741
Other languages
English (en)
French (fr)
Inventor
真也 荻窪
柴田 路宏
三田村 康弘
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015505567A priority Critical patent/JP5926444B2/ja
Publication of WO2014142263A1 publication Critical patent/WO2014142263A1/ja
Priority to US14/827,475 priority patent/US9645691B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a capacitive touch panel, and more particularly to a capacitive touch panel in which a relative dielectric constant of a lower adhesive layer and an upper adhesive layer satisfies a predetermined relationship.
  • Patent Document 1 a capacitive touch panel capable of detecting multiple points is attracting attention.
  • an object of the present invention is to provide a capacitive touch panel that is less likely to malfunction even when used for a long time.
  • a capacitive touch panel comprising a display device, a lower adhesive layer, a capacitive touch panel sensor, an upper adhesive layer, and a protective substrate in this order,
  • the relative dielectric constant A of the upper adhesive layer and the relative dielectric constant B of the lower adhesive layer at each temperature of 20 ° C. from ⁇ 40 to 80 ° C. satisfy the relationship of the formula (1) at each temperature,
  • Relative permittivity A ⁇ relative permittivity B (2) The minimum value of the dielectric constant A of the upper adhesive layer at each temperature of 20 ° C. from ⁇ 40 to 80 ° C.
  • the capacitive touch panel according to (1) which is equal to or greater than a maximum value of the relative permittivity B.
  • the capacitive touch panel sensor is a laminate having detection electrodes on both sides of the substrate, or a laminate in which substrates with detection electrodes having detection electrodes on one side are bonded together with an adhesive layer. Or the electrostatic capacitance type touch panel as described in (2).
  • any of the detection electrodes selected from the group consisting of gold, silver, copper, aluminum, ITO, tin oxide, zinc oxide, cadmium oxide, gallium oxide, and titanium oxide, silver palladium alloy, silver palladium copper alloy
  • the capacitive touch panel as set forth in (3) comprising: (5) The capacitive touch panel according to any one of (1) to (4), wherein the temperature dependence of the relative dielectric constant of the lower adhesive layer obtained from the temperature dependence evaluation test is 20% or less. (6) The capacitive touch panel according to any one of (1) to (5), wherein a size of a display screen of the display device in a diagonal direction is 5 inches or more.
  • FIG. 5 is a cross-sectional view taken along a cutting line AA shown in FIG. It is an enlarged plan view of a 1st detection electrode. It is a partial cross section of other embodiment of an electrostatic capacitance type touch panel sensor. It is a partial cross section of other embodiment of an electrostatic capacitance type touch panel sensor.
  • the relative dielectric constant of the lower adhesive layer and the relative dielectric constant of the upper adhesive layer are controlled. More specifically, the relative dielectric constant of the upper adhesive layer at a predetermined temperature from low temperature to high temperature is equal to or higher than the relative dielectric constant of the lower adhesive layer, and the temperature dependence of the relative dielectric constant of the lower adhesive layer is a predetermined value. The following points are mentioned. The reason why the desired effect can be obtained by such a configuration will be described in detail below.
  • the relative dielectric constant of the lower adhesive layer is large, it acts as a parasitic capacitance, affecting the change in the total capacitance when touching on / off, and causing a malfunction. Therefore, in order to suppress the influence, it is preferable that the relative dielectric constant of the lower adhesive layer is suppressed to be lower than the relative dielectric constant of the upper adhesive layer to reduce the parasitic capacitance that causes malfunction. Further, the present inventors have found that one of the causes of malfunction is that the relative dielectric constant of the lower adhesive layer varies greatly with temperature.
  • the lower adhesive layer is easily affected by heat, and when the temperature dependence of the relative dielectric constant is large, the parasitic capacitance due to the lower adhesive layer greatly changes depending on the temperature. As a result, the capacitance between the detection electrodes changes, and a deviation from the initially set value is likely to occur, leading to a malfunction. Further, when the heat from the display device has an in-plane distribution, a temperature difference occurs locally, and similarly, the parasitic capacitance of the lower adhesive layer changes greatly in the plane, leading to a malfunction. Therefore, the operation failure is suppressed by adopting a lower adhesive layer whose relative dielectric constant is difficult to change with temperature.
  • FIG. 1 is a schematic cross-sectional view of a capacitive touch panel of the present invention.
  • the capacitive touch panel 10 includes a display device 12, a lower adhesive layer 14, a capacitive touch panel sensor 16, an upper adhesive layer 18, and a protective substrate 20 in this order.
  • the capacitive touch panel 10 when a finger approaches and contacts the protective substrate 20, the capacitance between the finger and the detection electrode in the capacitive touch panel sensor 16 changes.
  • a position detection driver (not shown) always detects a change in capacitance between the finger and the detection electrode.
  • the position detection driver detects a change in capacitance that is equal to or greater than a predetermined value
  • the position detection driver detects a position where the change in capacitance is detected as an input position.
  • the capacitive touch panel 10 can detect the input position.
  • the lower adhesive layer 14 is a layer for ensuring adhesion between the display device 12 described later and a capacitive touch panel sensor 16 described later.
  • the lower adhesive layer 14 has a temperature dependency of a relative dielectric constant of 30% or less obtained from a temperature dependency evaluation test described later. Among these, 25% or less is preferable, 20% or less is more preferable, 15% or less is more preferable, 10% or less is particularly preferable, and 8% or less is most preferable in that a touch panel malfunction is less likely to occur.
  • the lower limit is not particularly limited, but is preferably as low as possible, and is most preferably 0. When the temperature dependence of the relative permittivity exceeds 30%, the touch panel is likely to malfunction.
  • the capacitance method is a method in which a capacitor is formed by sandwiching a sample between electrodes, and the relative dielectric constant is calculated from the measured capacitance value.
  • the lower adhesive layer 14 thickness: 100 to 500 ⁇ m
  • the lower adhesive layer 14 is sandwiched between a pair of aluminum electrodes 100 (electrode area: 20 mm ⁇ 20 mm), 40 ° C., 5 atm, 60 minutes.
  • a sample for evaluation is prepared by pressure defoaming treatment.
  • the temperature of the lower adhesive layer in the sample is increased stepwise from ⁇ 40 ° C. to 80 ° C. in steps of 20 ° C., and electrostatic measurement is performed by impedance measurement at 1 MHz using an impedance analyzer (Agilent 4294A) at each temperature.
  • the capacity C is obtained.
  • the obtained capacitance C is multiplied by the thickness T of the lower adhesive layer, and the obtained value is used as the area S of the aluminum electrode and the dielectric constant ⁇ 0 (8.854 ⁇ 10 ⁇ 12 F / F). Divide by the product of m) to calculate the dielectric constant.
  • the thickness of a lower adhesion layer is the value which measured the thickness of the lower adhesion layer in the arbitrary points of at least 5 places, and arithmetically averaged them. Thereafter, the minimum value and the maximum value are selected from the calculated relative dielectric constants, and the ratio of the difference between the two to the minimum value is obtained. More specifically, a value (%) calculated from the formula [ ⁇ (maximum value ⁇ minimum value) / minimum value ⁇ ⁇ 100] is obtained, and the value is set as the temperature dependence.
  • FIG. 3 shows an example of the temperature dependence evaluation test result.
  • the horizontal axis represents temperature
  • the vertical axis represents relative dielectric constant.
  • FIG. 3 is an example of the measurement result of 2 types of adhesion layers, one is shown by the result of a white circle and the other is a black circle.
  • the relative permittivity at each temperature is relatively close, and the change is small. That is, the relative dielectric constant of the adhesive layer A indicates that there is little change due to temperature, and the relative dielectric constant of the adhesive layer A is hardly changed even in cold and warm regions.
  • the temperature dependency (%) of the adhesive layer A is selected from the formula [(A2-A1) / A1 ⁇ 100] by selecting A1 which is the minimum value of the white circle and A2 which is the maximum value in FIG. Can be sought.
  • the adhesive layer B indicated by a black circle as the temperature rises, the relative permittivity increases greatly, and the change is large. That is, the relative dielectric constant of the adhesive layer B indicates that the change with temperature is large, and the capacitance between the detection electrodes is likely to deviate from the initially set value, and malfunction is likely to occur.
  • the temperature dependency (%) of the adhesive layer B is determined by the formula [(B2-B1) / B1 ⁇ 100] by selecting B1 which is the minimum value of the black circle and B2 which is the maximum value in FIG. Can be sought. That is, the temperature dependence indicates the degree of change in dielectric constant with temperature, and when this value is small, the change in relative dielectric constant hardly occurs from low temperature ( ⁇ 40 ° C.) to high temperature (80 ° C.). On the other hand, when this value is large, the relative permittivity tends to change from a low temperature ( ⁇ 40 ° C.) to a high temperature (80 ° C.).
  • the maximum value A2 of the relative dielectric constant at each temperature of the adhesive layer A corresponds to an aspect smaller than the minimum value B1 of the relative dielectric constant at each temperature of the adhesive layer B.
  • the magnitude of the relative dielectric constant B at each temperature of 20 ° C. from ⁇ 40 to 80 ° C. of the lower adhesive layer 14 is not particularly limited, but is preferably 3.5 or less from the viewpoint that malfunction of the touch panel is less likely to occur. 0.0 or less is more preferable. Although a minimum in particular is not restrict
  • the measuring method of the dielectric constant B is the same as the procedure of the temperature dependence evaluation test.
  • the thickness of the lower adhesive layer 14 is not particularly limited, but is preferably 5 to 350 ⁇ m, more preferably 30 to 250 ⁇ m, and still more preferably 30 to 150 ⁇ m. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
  • the lower adhesive layer 14 is preferably optically transparent. That is, a transparent adhesive layer is preferable. Optically transparent means that the total light transmittance is 85% or more, preferably 90% or more, and more preferably 100%.
  • the material constituting the lower adhesive layer 14 is not particularly limited as long as the temperature dependency is satisfied.
  • an acrylic adhesive, a rubber adhesive, a silicone adhesive, and the like can be given.
  • the acrylic pressure-sensitive adhesive is a pressure-sensitive adhesive containing a polymer ((meth) acrylic polymer) of an acrylic monomer and / or a methacrylic monomer.
  • the said polymer is contained as a base polymer in the said acrylic adhesive, other components (The tackifier mentioned later, a rubber component, etc.) may be contained.
  • the (meth) acrylic polymer is a concept including both an acrylic polymer and a methacrylic polymer.
  • Examples of the monomer ((meth) acrylate monomer) used for producing the (meth) acrylic polymer include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • the lower adhesive layer 14 includes an embodiment in which an acrylic adhesive is included, and in particular has a repeating unit derived from a (meth) acrylate monomer having a hydrocarbon group having at least 4 carbon atoms (
  • the (meth) acrylic polymer is preferably included in the lower adhesive layer 14.
  • the (meth) acrylate monomer is a concept including both an acrylate monomer and a methacrylate monomer.
  • Examples of the (meth) acrylate monomer having the carbon number include 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, n-tetradecyl (meth) acrylate, n-hexadecyl (meth) acrylate, stearyl (meth) Examples include acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxye
  • Examples of the (meth) acrylate monomer having an aliphatic hydrocarbon group having the carbon number include a (meth) acrylate monomer having a chain aliphatic hydrocarbon group having the carbon number, and a cyclic aliphatic hydrocarbon group having the carbon number.
  • (Meth) acrylate monomers having 6 or more is preferable, 6 to 20 is more preferable, and 8 to 16 is even more preferable in that the occurrence of malfunction of the touch panel is further suppressed (hereinafter also simply referred to as “the point where the effect of the present invention is more excellent”).
  • One preferred embodiment of the (meth) acrylic polymer is a repeating unit derived from a (meth) acrylate monomer having a chain aliphatic hydrocarbon group having the above carbon number, and a cyclic aliphatic hydrocarbon group having the above carbon number.
  • the (meth) acrylic polymer which has a repeating unit derived from the (meth) acrylate monomer which has is mentioned.
  • the (meth) acrylic polymer includes monomers other than those described above within a range not impairing the effects of the present invention (for example, carboxylic acid group-containing (meth) acrylate (for example, acrylic acid), hydroxyl group-containing (meth) acrylate (for example, , 2-hydroxyethyl acrylate))-derived repeating units may be included. Furthermore, the (meth) acrylic polymer may have a crosslinked structure.
  • the method for forming the cross-linked structure is not particularly limited, and a method using a bifunctional (meth) acrylate monomer or a cross-link that introduces a reactive group (for example, a hydroxyl group) into a (meth) acrylic polymer and reacts with the reactive group.
  • the method of making it react with an agent is mentioned.
  • Specific examples of the latter method include a repeating unit derived from a (meth) acrylate monomer having a group having at least one active hydrogen selected from the group consisting of a hydroxyl group, a primary amino group, and a secondary amino group (meta )
  • the content of the (meth) acrylic polymer in the lower adhesive layer 14 is not particularly limited, but is preferably 10 to 50% by mass and more preferably 15 to 40% by mass in terms of more excellent effects of the present invention.
  • the lower adhesive layer 14 may further contain a tackifier.
  • a tackifier those known in the field of patch or patch preparation may be appropriately selected and used.
  • petroleum resin for example, aromatic petroleum resin, aliphatic petroleum resin, mixed aliphatic / aromatic petroleum meter resin, resin by C9 fraction
  • terpene resin for example, ⁇ -pinene resin, ⁇ -pinene, etc.
  • Resin resin obtained by copolymerization of any mixture of ⁇ -pinene / ⁇ -pinene / dipentene, terpene phenol copolymer, hydrogenated terpene phenol resin, aromatic modified hydrogenated terpene, terpene phenol copolymer, hydrogenated Terpene phenol resin, aromatic modified hydrogenated terpene resin, abietic acid ester resin
  • rosin resin for example, partially hydrogenated gum rosin resin, erythritol modified wood rosin resin, tall oil rosin resin, wood rosin resin, gum
  • the tackifier can be used singly or in combination of two or more, and when used in combination of two or more, for example, different types of resins may be combined, and the softening point of the same type of resin Different resins may be combined.
  • the content of the tackifier in the lower adhesive layer 14 is not particularly limited, but is preferably 10 to 60% by mass and more preferably 20 to 50% by mass in terms of more excellent effects of the present invention.
  • the lower adhesive layer 14 may further contain a rubber component (softening agent).
  • the rubber component include polyolefin or modified polyolefin.
  • the rubber component include natural rubber, polyisobutylene, polybutadiene (modified liquid polybutadiene, polymer of 1,4-butadiene, 1,2-butadiene or a copolymer mixture thereof), hydrogenated polyisoprene, and hydrogenated polybutadiene. , Polyisoprene, polybutadiene, polybutene, styrene butadiene copolymer, or a copolymer or polymer mixture of a combination arbitrarily selected from these groups.
  • the content of the rubber component in the lower adhesive layer 14 is not particularly limited, but is preferably 20 to 75% by mass, more preferably 25 to 60% by mass, from the viewpoint that the effect of the present invention is more excellent.
  • the total content of urethane groups and urea groups in the (meth) acrylic polymer in the lower adhesive layer 14 is preferably less than 10 millimoles in 100 g of the adhesive layer in terms of more excellent effects of the present invention, and 9 millimoles. Is more preferably less than 8, more preferably less than 8 mmol, and particularly preferably less than 6 mmol.
  • the lower limit is not particularly limited, but 0 mmol is preferable.
  • a urethane group and a urea group the urethane group and urea group which originated in the raw material or produced in the crosslinking reaction are mentioned.
  • the content of the hydroxyl group in the (meth) acrylic polymer in the lower adhesive layer 14 is preferably less than 11 mmol, more preferably less than 10 mmol, and more preferably 9 mmol in 100 g of the adhesive layer in that the effect of the present invention is more excellent. Is more preferable, and less than 8.5 mmol is especially preferable.
  • the lower limit is not particularly limited, but 0 mmol is preferable.
  • the content of the carboxylic acid group in the (meth) acrylic polymer in the lower adhesive layer 14 is preferably less than 11 mmol, more preferably less than 9 mmol in the adhesive layer 100 g in that the effect of the present invention is more excellent.
  • the (meth) acrylic polymer in the lower adhesive layer 14 is that the effect of the present invention is more excellent, and in the adhesive layer 100 g, the total of urethane groups and urea groups in the (meth) acrylic polymer.
  • the content is less than 8 mmol, the content of hydroxyl group in the (meth) acrylic polymer is less than 9 mmol, and the content of carboxylic acid group in the (meth) acrylic polymer is less than 7 mmol. preferable.
  • the (meth) acrylic polymer does not contain a urethane group or a urea group.
  • each group of a group having one or more active hydrogens selected from the group consisting of a primary amino group, a secondary amino group, and an amide group in the (meth) acrylic polymer in the lower adhesive layer 14 is In 100 g of the adhesive layer, it is preferably less than 11 mmol, preferably less than 10 mmol, and more preferably less than 9 mmol.
  • One preferred embodiment of the lower adhesive layer 14 includes an adhesive layer obtained by subjecting an adhesive composition containing a (meth) acrylate monomer having a hydrocarbon group having at least 8 carbon atoms to a curing treatment.
  • the definition of the (meth) acrylate monomer is as described above.
  • the said tackifier is contained in the said adhesive composition.
  • the rubber composition is contained in the pressure-sensitive adhesive composition.
  • the rubber component which has a polymeric group may be contained.
  • the pressure-sensitive adhesive composition may include a rubber component having a polymerizable group and a rubber component having no polymerizable group.
  • the polymerizable group include known radical polymerizable groups (such as vinyl group and (meth) acryloyl group) and known cationic polymerizable groups (such as epoxy group).
  • the content of the tackifier in the pressure-sensitive adhesive composition is not particularly limited, but is preferably 80 to 320 parts by weight, more preferably 120 to 270 parts by weight with respect to 100 parts by weight of the (meth) acrylate monomer.
  • the content of the rubber component in the pressure-sensitive adhesive composition is not particularly limited, but is preferably 70 to 320 parts by weight, more preferably 100 to 280 parts by weight with respect to 100 parts by weight of the (meth) acrylate monomer.
  • the pressure-sensitive adhesive composition may contain other additives (for example, a polymerization initiator, a thermosetting agent, an antioxidant, transparent particles, a plasticizer, etc.) other than the above components.
  • a polymerization initiator for example, a photopolymerization initiator such as (1-hydroxy) cyclohexyl phenyl ketone or acylphosphine oxide, or a thermal polymerization initiator such as azobisalkylnitrile or perbutyl can be used.
  • the thermosetting agent for example, polyisocyanate or epoxy or oxetane thermosetting agent is selected.
  • antioxidants examples include known hindered phenols (pentaerythritol tetrakis [3- (3,3-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis (octylthiomethyl) ortho Cresol) and hindered amines can be used.
  • the transparent particles optically minute particles (such as nano silica) that cannot be visually recognized can be appropriately used unless they are contrary to the present invention.
  • a well-known method is employable.
  • the pressure-sensitive adhesive composition is applied on a predetermined substrate (for example, on a peelable substrate), dried as necessary, and subjected to the curing treatment described above.
  • the coating method include known methods.
  • known coating apparatuses such as an applicator, a gravure coat, a curtain coat, a comma coater, a slot die coater, and a lip coater are used.
  • the curing treatment applied to the pressure-sensitive adhesive composition include photocuring treatment and thermosetting treatment.
  • the pressure-sensitive adhesive sheet is preferably formed by curing a photocurable pressure-sensitive adhesive or a thermosetting pressure-sensitive adhesive.
  • the pressure-sensitive adhesive composition (curable composition) used for curing is not limited to a monomer mixture, but a polymer obtained by polymerizing monomers in advance and a monomer or a polymer having curing reactivity, depending on the characteristics of the curing reaction. You may use the adhesive composition which blended.
  • the photocuring treatment may consist of a plurality of curing steps, and the light wavelength to be used may be appropriately selected from a plurality.
  • thermosetting treatment may be composed of a plurality of effect steps, and the method for applying heat may be selected from appropriate methods such as an oven, a reflow furnace, and an IR heater. Furthermore, you may combine a photocuring process and a thermosetting process suitably.
  • the pressure-sensitive adhesive sheet is formed by photocuring treatment, the pressure-sensitive adhesive sheet is relatively less likely to be deformed with time, which is preferable in terms of production suitability.
  • a photopolymerization initiator may be included in the photocurable pressure-sensitive adhesive.
  • the upper adhesive layer 18 is a layer for ensuring adhesion between a capacitive touch panel sensor 16 described later and a protective substrate 20 described later.
  • the upper adhesive layer 18 has a relative dielectric constant A at each temperature of 20 ° C. from ⁇ 40 to 80 ° C., and a relative dielectric constant B of the lower adhesive layer 14 at each temperature of 20 ° C. from ⁇ 40 to 80 ° C. Satisfies the following relationship. That is, at each temperature, the value of the relative permittivity A is equal to or greater than the value of the relative permittivity B.
  • Formula (1-1) relative permittivity A ( ⁇ 40 ° C.) ⁇ relative permittivity B ( ⁇ 40 ° C.)
  • Formula (1-2) relative permittivity A ( ⁇ 20 ° C.) ⁇ relative permittivity B ( ⁇ 20 ° C.)
  • Formula (1-3) relative permittivity A (0 ° C.) ⁇ relative permittivity B (0 ° C.)
  • Formula (1-4) relative permittivity A (20 ° C.) ⁇ relative permittivity B (20 ° C.)
  • Formula (1-5) relative permittivity A (40 ° C.) ⁇ relative permittivity B (40 ° C.)
  • Formula (1-6) relative permittivity A (60 ° C.) ⁇ relative permittivity B (60 ° C.)
  • Formula (1-7) relative permittivity A (80 ° C.) ⁇ relative permittivity B (80 ° C.)
  • the above A (° C.) (or B (° C.)) means the value of the relative dielectric constant A (or the
  • the relative dielectric constant of the upper adhesive layer 18 is relatively larger than the relative dielectric constant of the lower adhesive layer 14 from low temperature to high temperature, while maintaining good sensitivity to touch with a finger, The influence from the display device can be suppressed. If the relationship of formula (1) is not satisfied, malfunction of the touch panel is likely to occur.
  • the temperature dependency of the relative permittivity obtained from the temperature dependency evaluation test of the upper adhesive layer 18 is not particularly limited, but is preferably 30% or less in that the malfunction of the touch panel is further suppressed from low temperature to high temperature. % Or less is more preferable, 20% or less is more preferable, 15% or less is further preferable, and 10% or less is particularly preferable.
  • the lower limit is not particularly limited, but is preferably as low as possible, and is most preferably 0.
  • the method for performing the temperature dependence evaluation test is as described above.
  • the relative dielectric constant A at each temperature of 20 ° C. from ⁇ 40 to 80 ° C. of the upper adhesive layer 18 is not particularly limited. 5.0 or less is preferable and 4.0 or less is more preferable because of the desire of the chipset manufacturer who does not want to greatly change the capacitance range and the tendency of each manufacturer who wants to reduce the total thickness of the device. Although a minimum in particular is not restrict
  • the measuring method of the dielectric constant A is the same as the procedure of the temperature dependence evaluation test.
  • the minimum value of the relative dielectric constant A of the upper adhesive layer at each temperature of 20 ° C. from ⁇ 40 to 80 ° C. is the ratio of the lower adhesive layer at each temperature of 20 ° C. from ⁇ 40 to 80 ° C. It is preferable that the dielectric constant B is not less than the maximum value. If it is the said aspect, malfunction of a touchscreen will not arise more easily.
  • the thickness of the upper adhesive layer 18 is not particularly limited, but is preferably 5 to 350 ⁇ m, and more preferably 30 to 150 ⁇ m. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
  • the upper adhesive layer 18 is preferably optically transparent. That is, a transparent adhesive layer is preferable. Optically transparent means that the total light transmittance is 85% or more, preferably 90% or more, and more preferably 100%.
  • the type of the material constituting the upper adhesive layer 18 is not particularly limited, and examples thereof include the material constituting the lower adhesive layer 14 described above.
  • the display device 12 is a device having a display surface for displaying an image, and each member (for example, the lower adhesive layer 14 is disposed on the display screen side).
  • the kind in particular of the display apparatus 12 is not restrict
  • CTR cathode ray tube
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • VFD vacuum fluorescent display
  • PDP plasma display panel
  • SED surface field display
  • FED field emission display
  • E-Paper electronic paper
  • the protective substrate 20 is a substrate disposed on the upper adhesive layer 18 and serves to protect the capacitive touch panel sensor 16 and the display device 12 described later from the external environment, and the main surface constitutes a touch surface. To do.
  • the protective substrate is preferably a transparent substrate, and a plastic film, a plastic plate, a glass plate or the like is used. It is desirable that the thickness of the substrate is appropriately selected according to each application.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA; Resin;
  • polycarbonate (PC) polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), cycloolefin resin (COP), and the like can be used.
  • a polarizing plate, a circular polarizing plate, or the like may be used as the protective substrate 20 .
  • the capacitive touch panel sensor 16 is disposed on the display device 12 (operator side), and utilizes a change in capacitance that occurs when an external conductor such as a human finger comes into contact (approaching). This is a sensor that detects the position of an external conductor such as a finger.
  • the configuration of the capacitive touch panel sensor 16 is not particularly limited.
  • the capacitive touch panel sensor 16 includes detection electrodes (in particular, detection electrodes extending in the X direction and detection electrodes extending in the Y direction), and static detection of the detection electrodes in contact with or close to the finger.
  • the coordinates of the finger are specified by detecting the change in capacitance.
  • FIG. 4 shows a plan view of the capacitive touch panel sensor 160.
  • FIG. 5 is a cross-sectional view taken along the cutting line AA in FIG.
  • the capacitive touch panel sensor 160 includes a substrate 22, a first detection electrode 24 disposed on one main surface (surface) of the substrate 22, a first lead-out wiring 26, and the other main surface of the substrate 22.
  • a second detection electrode 28, a second lead-out wiring 30, and a flexible printed wiring board 32 are provided on the upper side (on the back surface).
  • the region where the first detection electrode 24 and the second detection electrode 28 are provided constitutes an input region E I (an input region (sensing unit) capable of detecting the contact of an object) that can be input by the user, and input.
  • a first lead wiring 26, a second lead wiring 30 and a flexible printed wiring board 32 are arranged in the outer region E O located outside the region E I. Below, the said structure is explained in full detail.
  • the substrate 22 plays a role of supporting the first detection electrode 24 and the second detection electrode 28 in the input region E I and plays a role of supporting the first lead wiring 26 and the second lead wiring 30 in the outer region E O. It is a member.
  • the substrate 22 preferably transmits light appropriately. Specifically, the total light transmittance of the substrate 22 is preferably 85 to 100%.
  • the substrate 22 preferably has an insulating property (is an insulating substrate). That is, the substrate 22 is a layer for ensuring insulation between the first detection electrode 24 and the second detection electrode 28.
  • the substrate 22 is preferably a transparent substrate (particularly a transparent insulating substrate).
  • a transparent substrate particularly a transparent insulating substrate.
  • Specific examples thereof include an insulating resin substrate, a ceramic substrate, and a glass substrate.
  • an insulating resin substrate is preferable because of its excellent toughness.
  • the material constituting the insulating resin substrate is polyethylene terephthalate, polyethersulfone, polyacrylic resin, polyurethane resin, polyester, polycarbonate, polysulfone, polyamide, polyarylate, polyolefin, cellulose resin, poly Examples include vinyl chloride and cycloolefin resins.
  • polyethylene terephthalate, cycloolefin resin, polycarbonate, and triacetyl cellulose resin are preferable because of excellent transparency.
  • the substrate 22 is a single layer, but may be a multilayer of two or more layers.
  • the thickness of the substrate 22 (when the substrate 22 is a multilayer of two or more layers, the total thickness thereof) is not particularly limited, but is preferably 5 to 350 ⁇ m, more preferably 30 to 150 ⁇ m. Within the above range, desired visible light transmittance can be obtained, and handling is easy.
  • substrate 22 is substantially rectangular shape, However, It is not restricted to this. For example, it may be circular or polygonal.
  • the first detection electrode 24 and the second detection electrode 28 are sensing electrodes that sense a change in capacitance, and constitute a sensing unit (sensing unit). That is, when the fingertip is brought into contact with the touch panel, the mutual capacitance between the first detection electrode 24 and the second detection electrode 28 changes, and the position of the fingertip is calculated by the IC circuit based on the change amount.
  • the first detection electrodes 24 are electrodes that extend in a first direction (X direction) and are arranged at a predetermined interval in a second direction (Y direction) orthogonal to the first direction. Includes patterns.
  • the second detection electrode 28 has a role of detecting the input position in the Y direction of the user's finger approaching the input area E I and has a function of generating a capacitance between the second detection electrode 28 and the finger. ing.
  • the second detection electrodes 28 are electrodes that extend in the second direction (Y direction) and are arranged at a predetermined interval in the first direction (X direction), and include a predetermined pattern as will be described later. In FIG. 4, five first detection electrodes 24 and five second detection electrodes 28 are provided, but the number is not particularly limited and may be plural.
  • the first detection electrode 24 and the second detection electrode 28 are composed of conductive thin wires.
  • FIG. 6 shows an enlarged plan view of a part of the first detection electrode 24.
  • the first detection electrode 24 is composed of conductive thin wires 34, and includes a plurality of gratings 36 formed of intersecting conductive thin wires 34.
  • the second detection electrode 28 similarly to the first detection electrode 24, also includes a plurality of lattices 36 formed by intersecting conductive thin wires 34.
  • Examples of the material of the conductive thin wire 34 include metals and alloys such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), and palladium (Pd) (for example, silver palladium alloy, silver palladium copper). Alloys), ITO, tin oxide, zinc oxide, cadmium oxide, gallium oxide, metal oxides such as titanium oxide, and the like. Among these, silver is preferable because the conductivity of the conductive thin wire 34 is excellent.
  • the conductive fine wire 34 preferably contains a binder from the viewpoint of adhesion between the conductive fine wire 34 and the substrate 22.
  • the binder is preferably a water-soluble polymer because the adhesion between the conductive thin wire 34 and the substrate 22 is more excellent.
  • binders include gelatin, carrageenan, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and its derivatives, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, and polyacryl. Examples include acid, polyalginic acid, polyhyaluronic acid, carboxycellulose, gum arabic, and sodium alginate.
  • gelatin is preferable because the adhesion between the conductive thin wire 34 and the substrate 22 is more excellent.
  • acid-processed gelatin may be used as gelatin, and gelatin hydrolyzate, gelatin enzyme decomposition product, and other gelatins modified with amino groups and carboxyl groups (phthalated gelatin, acetylated gelatin) Can be used.
  • the volume ratio of the metal to the binder (metal volume / binder volume) in the conductive thin wire 34 is preferably 1.0 or more, and more preferably 1.5 or more.
  • the upper limit is not particularly limited, but is preferably 6.0 or less, more preferably 4.0 or less, and even more preferably 2.5 or less from the viewpoint of productivity.
  • the volume ratio of the metal and the binder can be calculated from the density of the metal and the binder contained in the conductive thin wire 34. For example, when the metal is silver, the density of silver is 10.5 g / cm 3 , and when the binder is gelatin, the density of gelatin is 1.34 g / cm 3 .
  • the line width of the conductive thin wire 34 is not particularly limited, it is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, and particularly preferably 9 ⁇ m or less, from the viewpoint that a low resistance electrode can be formed relatively easily. 7 ⁇ m or less is most preferable, 0.5 ⁇ m or more is preferable, and 1.0 ⁇ m or more is more preferable.
  • the thickness of the conductive thin wire 34 is not particularly limited, but can be selected from 0.00001 mm to 0.2 mm from the viewpoint of conductivity and visibility, but is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and 0.01 Is more preferably from 9 to 9 ⁇ m, most preferably from 0.05 to 5 ⁇ m.
  • the lattice 36 includes an opening region surrounded by the conductive wiring 34.
  • the length W of one side of the grating 36 is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, and preferably 400 ⁇ m or more.
  • the aperture ratio is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more in terms of visible light transmittance. preferable.
  • the aperture ratio corresponds to the ratio of the transmissive portion excluding the conductive thin wires 34 in the first detection electrode 24 or the second detection electrode 28 in the predetermined region.
  • the lattice 36 has a substantially rhombus shape.
  • other polygonal shapes for example, a triangle, a quadrangle, a hexagon, and a random polygon
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • the arc shape for example, the two opposing sides may have an outwardly convex arc shape, and the other two opposing sides may have an inwardly convex arc shape.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous. Of course, the shape of each side may be a sine curve.
  • the conductive thin wire 34 is formed as a mesh pattern, but is not limited to this mode, and may be a stripe pattern.
  • the first detection electrode 24 and the second detection electrode 28 are configured by the mesh structure of the conductive thin wires 34, but the present invention is not limited to this mode.
  • the first detection electrode 24 and the second detection electrode 28 2 The entire detection electrode 28 may be formed of a metal oxide thin film (transparent metal oxide thin film) such as ITO or ZnO.
  • the conductive thin wires 34 of the first detection electrode 24 and the second detection electrode 28 are made of metal oxide particles, metal paste such as silver paste and copper paste, and metal nanowire particles such as silver nanowire and copper nanowire. Also good. Among these, silver nanowires are preferable because they are excellent in conductivity and transparency.
  • the patterning of the electrode can be selected depending on the material of the electrode, and a photolithography method, a resist mask screen printing-etching method, an ink jet method, a printing method, or the like may be used.
  • the first lead wiring 26 and the second lead wiring 30 are members that play a role in applying a voltage to the first detection electrode 24 and the second detection electrode 28, respectively.
  • the first lead wiring 26 is disposed on the substrate 22 in the outer region E O , one end of which is electrically connected to the corresponding first detection electrode 24, and the other end is electrically connected to the flexible printed wiring board 32.
  • the second lead wiring 30 is disposed on the substrate 22 in the outer region E O , one end of which is electrically connected to the corresponding second detection electrode 28, and the other end is electrically connected to the flexible printed wiring board 32.
  • the In FIG. 4, five first extraction wirings 26 and five second extraction wirings 30 are described, but the number is not particularly limited, and a plurality of the first extraction wirings are usually arranged according to the number of detection electrodes.
  • Examples of the material constituting the first lead wiring 26 and the second lead wiring 30 include metals such as gold (Au), silver (Ag), and copper (Cu), tin oxide, zinc oxide, cadmium oxide, and gallium oxide. And metal oxides such as titanium oxide. Among these, silver is preferable because of its excellent conductivity. Moreover, you may be comprised by metal or alloy thin films, such as metal pastes, such as a silver paste and a copper paste, aluminum (Al), molybdenum (Mo), and palladium (Pd).
  • metal pastes such as a silver paste and a copper paste, aluminum (Al), molybdenum (Mo), and palladium (Pd).
  • the binder is contained in the 1st extraction wiring 26 and the 2nd extraction wiring 30 from the point which adhesiveness with the board
  • the kind of binder is as above-mentioned.
  • the flexible printed wiring board 32 is a board in which a plurality of wirings and terminals are provided on a substrate, and is connected to each other end of the first lead wiring 26 and each other end of the second lead wiring 30 to electrostatically It plays a role of connecting the capacitive touch panel sensor 160 and an external device (for example, a display device).
  • the number of operation lines increases as the size of the input area that can detect contact of the capacitive touch panel sensor in the diagonal direction increases, so the scan time per line is reduced. It is necessary to In order to maintain an appropriate sensing environment for mobile use, it is a challenge to reduce the parasitic capacitance and temperature variation of the capacitive touch panel sensor. In the conventional adhesive layer, the temperature dependence of the relative permittivity is large, and as the size increases, the sensing program may not be able to follow (malfunction will occur).
  • the size in the diagonal direction of the input region (sensing unit) capable of detecting contact of an object of the capacitive touch panel sensor is larger than 5 inches, a more appropriate sensing environment is obtained, and more preferably When the size is 8 inches or more, more preferably 10 inches or more, a high effect can be exhibited in suppressing malfunction.
  • the shape of the input area indicated by the size is a rectangular shape.
  • the manufacturing method of the capacitive touch panel sensor 160 is not particularly limited, and a known method can be adopted. For example, there is a method in which a photoresist film on the metal foil formed on both main surfaces of the substrate 22 is exposed and developed to form a resist pattern, and the metal foil exposed from the resist pattern is etched. Further, a method of printing a paste containing metal fine particles or metal nanowires on both main surfaces of the substrate 22 and performing metal plating on the paste can be mentioned. Moreover, the method of printing and forming on the board
  • a method using silver halide can be mentioned. More specifically, the step (1) of forming a silver halide emulsion layer (hereinafter also referred to simply as a photosensitive layer) containing silver halide and a binder on both surfaces of the substrate 22, respectively, exposing the photosensitive layer. Then, the method which has the process (2) which carries out image development processing is mentioned. Below, each process is demonstrated.
  • a silver halide emulsion layer hereinafter also referred to simply as a photosensitive layer
  • Step (1) is a step of forming a photosensitive layer containing silver halide and a binder on both surfaces of the substrate 22.
  • the method for forming the photosensitive layer is not particularly limited, but from the viewpoint of productivity, the photosensitive layer forming composition containing silver halide and a binder is brought into contact with the substrate 22, and the photosensitive layer is formed on both surfaces of the substrate 22.
  • the method of forming is preferred. Below, after explaining in full detail the aspect of the composition for photosensitive layer formation used with the said method, the procedure of a process is explained in full detail.
  • the photosensitive layer forming composition contains a silver halide and a binder.
  • the halogen element contained in the silver halide may be any of chlorine, bromine, iodine and fluorine, or a combination thereof.
  • As the silver halide for example, a silver halide mainly composed of silver chloride, silver bromide or silver iodide is preferably used, and further a silver halide mainly composed of silver bromide or silver chloride is preferably used.
  • the kind of binder used is as above-mentioned.
  • the binder may be contained in the composition for photosensitive layer formation in the form of latex.
  • the volume ratio of the silver halide and the binder contained in the composition for forming the photosensitive layer is not particularly limited, and is appropriately adjusted so as to be within a preferable volume ratio range of the metal and the binder in the conductive thin wire 34 described above. Is done.
  • the composition for forming a photosensitive layer contains a solvent, if necessary.
  • the solvent used include water, organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, sulfoxides such as dimethyl sulfoxide, esters such as ethyl acetate, ethers, and the like. Etc.), ionic liquids, or mixed solvents thereof.
  • the content of the solvent to be used is not particularly limited, but is preferably in the range of 30 to 90% by mass, and more preferably in the range of 50 to 80% by mass with respect to the total mass of silver halide and binder.
  • the method for bringing the composition for forming a photosensitive layer into contact with the substrate 22 is not particularly limited, and a known method can be employed.
  • substrate 22 in the composition for photosensitive layer formation, etc. are mentioned.
  • the content of the binder in the formed photosensitive layer is not particularly limited but is preferably 0.3 ⁇ 5.0g / m 2, more preferably 0.5 ⁇ 2.0g / m 2.
  • the content of the silver halide in the photosensitive layer is not particularly limited, but is preferably 1.0 to 20.0 g / m 2 in terms of silver from the viewpoint that the conductive properties of the conductive fine wire 34 are more excellent. 0 to 15.0 g / m 2 is more preferable.
  • the protective layer By providing the protective layer, scratches can be prevented and mechanical properties can be improved.
  • Step (2) Exposure and development step
  • the photosensitive layer obtained in the above step (1) is subjected to pattern exposure and then developed to thereby perform the first detection electrode 24 and the first lead wiring 26, and the second detection electrode 28 and the second detection electrode 28.
  • This is a step of forming two lead-out wirings 30.
  • the pattern exposure process will be described in detail below, and then the development process will be described in detail.
  • the silver halide in the photosensitive layer in the exposed region forms a latent image.
  • a detection electrode and a lead-out wiring are formed by a development process described later.
  • the silver halide dissolves and flows out of the photosensitive layer during the fixing process described later, and a transparent film is obtained.
  • the light source used in the exposure is not particularly limited, and examples thereof include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • the method for performing pattern exposure is not particularly limited. For example, surface exposure using a photomask may be performed, or scanning exposure using a laser beam may be performed.
  • the shape of the pattern is not particularly limited, and is appropriately adjusted according to the pattern of the conductive fine wire to be formed.
  • the development processing method is not particularly limited, and a known method can be employed.
  • a usual development processing technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the type of the developer used in the development process is not particularly limited.
  • PQ developer, MQ developer, MAA developer and the like can be used.
  • Commercially available products include, for example, CN-16, CR-56, CP45X, FD-3, Papitol, C-41, E-6, RA-4, D-19, D-72 prescribed by KODAK.
  • a developer contained in a kit thereof can be used.
  • a lith developer can also be used.
  • the development process can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part.
  • a technique of fixing process used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the fixing temperature in the fixing step is preferably about 20 ° C. to about 50 ° C., more preferably 25 to 45 ° C.
  • the fixing time is preferably 5 seconds to 1 minute, more preferably 7 seconds to 50 seconds.
  • the mass of the metallic silver contained in the exposed area (detection electrode and lead-out wiring) after the development treatment is preferably a content of 50% by mass or more with respect to the mass of silver contained in the exposed area before the exposure. 80% by mass or more is more preferable. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
  • the following undercoat layer forming step, antihalation layer forming step, or heat treatment may be performed as necessary.
  • Undercoat layer forming process For the reason of excellent adhesion between the substrate 22 and the silver halide emulsion layer, it is preferable to perform a step of forming an undercoat layer containing the binder on both sides of the substrate 22 before the step (1).
  • the binder used is as described above.
  • the thickness of the undercoat layer is not particularly limited, but is preferably from 0.01 to 0.5 ⁇ m, more preferably from 0.01 to 0.1 ⁇ m, from the viewpoint that the adhesiveness and the rate of change in mutual capacitance can be further suppressed.
  • Anti-halation layer formation process From the viewpoint of thinning the conductive thin wire 34, it is preferable to perform a step of forming antihalation layers on both surfaces of the substrate 22 before the step (1).
  • Step (3) is performed as necessary, and is a step of performing heat treatment after the development processing. By performing this step, fusion occurs between the binders, and the hardness of the detection electrode and the lead-out wiring is further increased.
  • the binder when polymer particles are dispersed as a binder in the composition for forming a photosensitive layer (when the binder is polymer particles in latex), by performing this step, fusion occurs between the polymer particles, A detection electrode and a lead wiring having a desired hardness are formed.
  • the conditions for the heat treatment are appropriately selected depending on the binder used, but it is preferably 40 ° C. or higher from the viewpoint of the film forming temperature of the polymer particles, more preferably 50 ° C.
  • the heating time is not particularly limited, but is preferably 1 to 5 minutes and more preferably 1 to 3 minutes from the viewpoint of suppressing curling of the substrate and the like and productivity.
  • this heat treatment can be combined with a drying step usually performed after exposure and development processing, it is not necessary to increase a new step for film formation of polymer particles, and productivity, cost, etc. Excellent from a viewpoint.
  • the light transmissive part containing a binder is formed between detection electrodes (between the conductive thin wires 34) and between extraction wiring.
  • the transmittance in the light transmissive part is 90% or more, preferably 95% or more, more preferably 97% or more, and still more preferably, the transmittance indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm. 98% or more, and most preferably 99% or more.
  • the light transmissive portion may contain materials other than the binder, and examples thereof include a silver difficult solvent.
  • the capacitive touch panel sensor is not limited to the aspect of FIG. 4 described above, and may be another aspect.
  • the capacitive touch panel sensor 260 is electrically connected to the first substrate 38, the second detection electrode 28 disposed on the first substrate 38, and one end of the second detection electrode 28. Electrically connected to the second lead-out wiring (not shown) disposed on the first substrate 38, the adhesive layer 40, the first detection electrode 24, and one end of the first detection electrode 24.
  • the capacitive touch panel sensor 260 has the same configuration as that of the capacitive touch panel sensor 160 except for the first substrate 38, the second substrate 42, and the adhesive layer 40. Therefore, the same components are denoted by the same reference numerals, and the description thereof is omitted.
  • the definitions of the first substrate 38 and the second substrate 42 are the same as the definition of the substrate 22 described above.
  • the adhesive layer 40 is a layer for bringing the first detection electrode 24 and the second detection electrode 28 into close contact, and is preferably optically transparent (preferably a transparent adhesive layer). As a material constituting the adhesive layer 40, a known material is used. A plurality of the first detection electrodes 24 and the second detection electrodes 28 in FIG. 7 are used as shown in FIG.
  • the capacitive touch panel sensor 260 shown in FIG. 7 prepares two substrates with electrodes having a substrate and detection electrodes and lead wires arranged on the substrate surface, and the adhesive layer so that the electrodes face each other. Corresponds to the capacitive touch panel sensor obtained by bonding through the.
  • the capacitive touch panel sensor 360 is electrically connected to the first substrate 38, the second detection electrode 28 disposed on the first substrate 38, and one end of the second detection electrode 28.
  • a second lead-out wiring (not shown) disposed on the substrate, an adhesive layer 40, a second substrate 42, a first detection electrode 24 disposed on the second substrate 42, and one end of the first detection electrode 24.
  • a first lead-out wiring (not shown) and a flexible printed wiring board (not shown) which are electrically connected and are arranged on the second substrate 42 are provided.
  • the capacitive touch panel sensor 360 shown in FIG. 8 has the same layers as the capacitive touch panel sensor 260 shown in FIG. 7 except that the order of the layers is different.
  • the capacitive touch panel sensor 360 shown in FIG. 8 prepares two substrates with electrodes having a substrate and detection electrodes and lead wires arranged on the substrate surface, and the substrate in one substrate with electrodes This corresponds to a capacitive touch panel sensor obtained by bonding through an adhesive layer so that the electrode of the other electrode-attached substrate faces.
  • the manufacturing method of the capacitive touch panel 10 described above is not particularly limited, and a known method can be adopted.
  • an adhesive layer sheet (so-called transparent adhesive film (OCA)) is applied to the capacitive touch panel sensor 16.
  • OCA transparent adhesive film
  • Applying a liquid adhesion layer forming composition (so-called UV curable adhesive or transparent adhesive (OCR: Optically Clear Adhesive Resin)) on the capacitive touch panel sensor 16 as required.
  • a method of applying a curing treatment according to the method is given.
  • the type of the pressure-sensitive adhesive layer sheet and the pressure-sensitive adhesive layer-forming composition is not particularly limited as long as the formed upper pressure-sensitive adhesive layer 18 satisfies the above characteristics.
  • the capacitive touch panel sensor 16 is bonded onto the protective substrate 20.
  • a method for bonding a known method can be adopted.
  • the method for forming the upper adhesive layer 18 can be used.
  • the display device 12 is bonded onto the lower adhesive layer 14 to manufacture a desired touch panel.
  • a laminate A including a capacitive touch panel sensor 16, a lower adhesive layer 14, and a display device 12 is prepared first, and a laminate B including a protective substrate 20 and an upper adhesive layer 18 is prepared separately.
  • a desired touch panel can also be manufactured by bonding the laminate A and the laminate B together.
  • the pressure deaeration process and the bonding in a vacuum environment can also be performed suitably.
  • the capacitive touch panel of the present invention is less likely to malfunction in a wide range of usage environments from low to high temperatures.
  • the size of the capacitive touch panel is not particularly limited, but due to the demand for a larger screen, the display screen of the display device (synonymous with the input area (sensing part) that can detect the contact of the object of the capacitive touch panel sensor)
  • the diagonal size is preferably 5 inches or more, and more preferably 10 inches or more. With the capacitive touch panel of the present invention, malfunctions are unlikely to occur even in the above sizes. Normally, the size in the diagonal direction of the input area in which the touch of the object of the capacitive touch panel sensor can be detected is changed in accordance with the size of the diagonal line of the display image.
  • the input area indicated by the size is rectangular.
  • the capacitive touch panel of the present invention is less likely to malfunction due to environmental changes even when the display screen is large (when the diagonal size is 5 inches or more).
  • the drive frequency the number of scans
  • the capacitance is decreased.
  • the influence of the parasitic capacitance of the adhesive layer is increased, and malfunction is likely to occur.
  • the capacitive touch panel of the present invention since the change in the dielectric constant of the adhesive layer is small, even when the display screen is large, there is little deviation from the initially set capacitance value. Malfunction is unlikely to occur.
  • polyoil 110 liquid polybutadiene
  • L-LIR liquid polyisoprene
  • lucillin TPO 2,4,6-trimethylbenzoylphenyl) Ethoxyphosphine oxide
  • Irgacure 184 1-hydroxy-cyclohexyl ruphenyl-ketone
  • Karenz PE-01 pentaerythritol tetrakis (3-mercaptobutyrate)
  • Tinuvin 123 Tinuvin 123 (Sebashi) Bis [1- (octyloxy) -2,2,6,6-tetramethyl-4-piperidinyl]) (0.56 parts by mass) in a predetermined amount (mass basis), and pressure-sensitive adhesive 1 Prepared.
  • a tolylene diisocyanate compound manufactured by Nippon Polyurethane Industry Co., Ltd., Coronate L
  • pentaerythritol-tetrakis (3- (3,5-di-t-butyl-) as a hindered phenol antioxidant
  • 4-hydroxyphenyl) propionate BASF Japan K.K., IRGANOX 1010
  • tris (2,4-di-t-butylphenyl) phosphite BASF Japan K.K.
  • IRGAFOS 168 is blended in an amount of 0.5 parts by mass, Was obtained by mass%).
  • the obtained composition was applied to a first release sheet (manufactured by Oji Specialty Paper Co., Ltd., 38 ⁇ RL-07 (2)) provided with a release agent layer on one side of a polyethylene terephthalate film, using a knife coater.
  • a pressure-sensitive adhesive layer was formed by heating at 100 ° C. for 3 minutes.
  • a second release sheet (manufactured by Oji Specialty Paper Co., Ltd., 38 ⁇ RL-07 (L)) provided with a release agent layer having a higher release property than the first release sheet on one side of the polyethylene terephthalate film. Were bonded together to obtain an adhesive 2 (double-sided adhesive sheet).
  • acrylic copolymer (A1) having an average molecular weight of 900,000 was obtained.
  • Preparation of acrylic copolymer Polymerization started with 95.0 parts by mass of cyclohexylmethyl methacrylate and 5.0 parts by mass of dimethylaminoethyl methacrylate in a reaction vessel equipped with a stirrer, cold flow cooler, thermometer, dropping funnel and nitrogen gas inlet.
  • As an agent 1.0 part by mass of 2,2′-azobisisobutylnitrile is dissolved in 100 parts by mass of ethyl acetate, and after substitution with nitrogen, polymerization is carried out at 80 ° C.
  • a methacrylic copolymer having a weight average molecular weight of 20,000 ( B1) was obtained.
  • 2.5 parts by mass of the methacrylic copolymer (B1) was added to 100 parts by mass of the acrylic copolymer (A1), and diluted with ethyl acetate to obtain an adhesive (P1) having a resin solid content of 30% by mass. .
  • 0.1 parts by mass of an isocyanate-based crosslinking agent D-160N, Mitsui Chemicals Polyurethane Co., Ltd., solid content: 75% by mass
  • D-160N isocyanate-based crosslinking agent
  • the dried film was coated on a 50 ⁇ m thick polyester film (hereinafter referred to as # 75 release film) so that the thickness after drying was 25 ⁇ m, and dried at 75 ° C. for 5 minutes.
  • the obtained pressure-sensitive adhesive sheet and a 38 ⁇ m-thick polyester film (hereinafter referred to as “# 38 release film”) having one surface peel-treated with a silicone compound were bonded together. Thereafter, it was aged at 23 ° C. for 7 days to obtain a pressure-sensitive adhesive 7 (base material-less pressure-sensitive adhesive sheet) having a thickness of 25 ⁇ m and a gel fraction of 75%.
  • the temperature was raised at 0.5 ° C / min in a water bath, and after raising the temperature to the boiling point, after 3.5 hours while refluxing with a refluxing apparatus, 50 g of ethyl acetate alone was added to dilute the monomer concentration to about 40% by mass. Then, continue the reaction for 10 hours from the start of the reaction while heating in a water bath and refluxing, and then remove the reaction vessel from the water bath. And allowed to cool to obtain a solution of an acrylic high molecular weight copolymer (1). The mass average molecular weight of the obtained acrylic high molecular weight copolymer solution was measured and found to be about 900,000. The acid value of this copolymer was 16.3 mg / mg KOH.
  • the obtained solution was applied onto a release PET film, and the release surface of the release PET film was bonded to the coating solution.
  • a high-pressure mercury UV lamp light DEEP UV lamp UXM-501MD, manufactured by USHIO INC.
  • the sample sandwiched between peeled PET films was irradiated with UV light so that the irradiation energy was 3 J / cm 2 .
  • the obtained solution was applied onto a release PET film, and the release surface of the release PET film was bonded to the coating solution.
  • a high-pressure mercury UV lamp light DEEP UV lamp UXM-501MD, manufactured by USHIO INC.
  • the sample sandwiched between the peeled PET films was irradiated with UV light so that the irradiation energy was 3 J / cm 2 . Furthermore, it was heat-cured at 40 ° C. for 3 days to obtain an adhesive 13 (transfer type adhesive sheet).
  • the obtained solution was applied onto a release PET film, and the release surface of the release PET film was bonded to the coating solution.
  • a high-pressure mercury UV lamp light DEEP UV lamp UXM-501MD, manufactured by USHIO INC.
  • the sample sandwiched between peeled PET films was irradiated with UV light so that the irradiation energy was 3 J / cm 2 .
  • the adhesive 14 transfer type adhesive sheet was obtained by thermosetting at 40 degreeC for 3 days.
  • the obtained solution was applied onto a release PET film, and the release surface of the release PET film was bonded to the coating solution.
  • a high-pressure mercury UV lamp light DEEP UV lamp UXM-501MD, manufactured by USHIO INC.
  • the sample sandwiched between the peeled PET films was irradiated with UV light so that the irradiation energy was 3 J / cm 2 .
  • the adhesive 16 transfer type adhesive sheet was obtained by thermosetting at 40 degreeC for 3 days.
  • the sample sandwiched between peeled PET films was irradiated with UV light so that the irradiation energy was 3 J / cm 2 . Furthermore, the adhesive 17 (transfer type adhesive sheet) was obtained by thermosetting at 40 degreeC for 3 days.
  • the total content of urethane groups and urea groups, the content of hydroxyl groups, and the content of carboxylic acid groups in the (meth) acrylic polymer in the pressure-sensitive adhesives 1 to 18 with respect to 100 g of the pressure-sensitive adhesive (pressure-sensitive adhesive layer) are as follows. Shown in
  • the emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added.
  • Chemical sensitization to obtain optimum sensitivity at 0 ° C. 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was.
  • the finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
  • Photosensitive layer forming step After subjecting a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m to corona discharge treatment, a gelatin layer having a thickness of 0.1 ⁇ m as an undercoat layer on both sides of the PET film and an optical density of about 1.0 on the undercoat layer. And an antihalation layer containing a dye which is decolorized by alkali in the developer. On the antihalation layer, the composition for forming a photosensitive layer was applied, a gelatin layer having a thickness of 0.15 ⁇ m was further provided, and a PET film having a photosensitive layer formed on both sides was obtained. The obtained film is referred to as film A.
  • the formed photosensitive layer had a silver amount of 6.0 g / m 2 and a gelatin amount of 1.0 g / m 2 .
  • Exposure development process As shown in FIG. 4, a high voltage is applied through a photomask in which detection electrodes (first detection electrodes and second detection electrodes) and lead wires (first lead wires and second lead wires) are arranged on both surfaces of the film A. Exposure was performed using parallel light using a mercury lamp as a light source. After exposure, development was performed with the following developer, and further development was performed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.). Furthermore, by rinsing with pure water and drying, a capacitive touch panel sensor provided with detection electrodes and lead wires made of Ag fine wires on both sides was obtained.
  • the detection electrode is composed of conductive thin wires that intersect on the mesh. Further, as described above, the first detection electrode is an electrode extending in the X direction, and the second detection electrode is an electrode extending in the Y direction, and each 4.5-5.0 mm pitch is arranged on the film.
  • a touch panel including a liquid crystal display device, a lower adhesive layer (thickness: 200 ⁇ m), a capacitive touch panel sensor, an upper adhesive layer (thickness: 75 ⁇ m), and a glass substrate was manufactured.
  • the types of pressure-sensitive adhesives 1 to 18 (pressure-sensitive adhesive sheet and liquid composition) used in the production of the lower pressure-sensitive adhesive layer and the upper pressure-sensitive adhesive layer in each example and comparative example, and the size of the display screen are shown in the following table. 1 is shown collectively.
  • the thickness of the pressure-sensitive adhesive sheet was appropriately adjusted and synthesized so as to be the thickness depending on the position (upper pressure-sensitive adhesive layer, lower pressure-sensitive adhesive layer) used.
  • the adhesive sheet cut into the same size is attached with a 2 kg heavy roller on the capacitive touch panel sensor. Then, a glass protective substrate of the same size was laminated on the upper adhesive layer using a 2 kg heavy roller.
  • an appropriate amount of liquid material is dropped on the capacitive touch panel sensor so as to have a specified film thickness, and then the specified film thickness is obtained.
  • the glass protective substrate was pasted together so as to spread the liquid material up to a predetermined amount, and a prescribed amount of UV irradiation was performed to cure the liquid material.
  • sample preparation for temperature dependence evaluation test Using the pressure-sensitive adhesive shown in Table 1, a sample for temperature dependence evaluation test was prepared.
  • the pressure-sensitive adhesive to be used is a liquid (so-called OCR)
  • OCR a liquid
  • UV curing was performed under the recommended conditions, and then another Al substrate (vertical 20 mm ⁇ horizontal 20 mm, thickness 0.5 mm) was bonded to the formed adhesive layer. Thereafter, pressure defoaming treatment was applied at 40 ° C. for 60 minutes under 5 atm.
  • the pressure-sensitive adhesive to be used is a pressure-sensitive adhesive sheet (so-called OCA)
  • OCA pressure-sensitive adhesive sheet
  • a sheet adjusted to have a thickness of 100 to 500 ⁇ m is sandwiched between the Al substrates, subjected to pressure defoaming treatment, and a sample is obtained. Produced.
  • the thickness of the adhesive layer in each sample was measured at five locations on the sample for temperature dependence evaluation test with a micrometer, and the thickness of the two Al substrates was subtracted from the average value. The thickness was calculated.
  • relative dielectric constant (capacitance C ⁇ thickness T) / (area S ⁇ vacuum dielectric constant ⁇ 0 )
  • the thickness T is the thickness of the adhesive layer
  • the area S is the area of the aluminum electrode (vertical 20 mm ⁇ horizontal 20 mm)
  • the vacuum dielectric constant is a physical constant (8.854 ⁇ 10 ⁇ 12 F / m).
  • the minimum value and the maximum value were selected from the calculated relative dielectric constants, and the temperature dependence (%) was obtained from the formula [(maximum value ⁇ minimum value) / minimum value ⁇ 100].
  • the temperature was adjusted using a liquid nitrogen cooling stage when the temperature was low, and using a hot plate when the temperature was high.
  • the malfunction occurrence rate at the time of touch was measured when the touch panel produced above was turned on immediately after the display device was turned on and when the display device was turned on and left for 1 hour.
  • the touch panel malfunctions from the number of times when an arbitrary location is touched 100 times and does not react normally when the liquid crystal display device is turned on and after being left for 1 hour.
  • the rate (%) [(number of times of not reacting normally / 100) ⁇ 100] was measured. With respect to the measured malfunction occurrence rate, when the value was 5% or less, it was evaluated as OK when it was over 5%.
  • “Malfunction occurrence rate” is a malfunction occurrence rate when the liquid crystal display device is turned on immediately and when it is turned on and left for one hour.
  • the “display screen size” column intends the display screen size of the display device. In each example and comparative example, the size in the diagonal direction of the input area where the contact of the object of the capacitive touch panel sensor can be detected is also the same as the size of the display screen.
  • the “relative dielectric constant (minimum value)” in the “upper adhesive layer” column of Table 1 is the relative dielectric constant A of the upper adhesive layer at each temperature obtained by performing the temperature dependency evaluation test. Intended to be the minimum value of.
  • the “relative dielectric constant (maximum value)” in the “lower adhesive layer” column is the maximum value of the relative dielectric constant B of the lower adhesive layer at each temperature obtained by performing the temperature dependence evaluation test. Intended.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 本発明は、長時間使用した際にも誤動作を生じにくい静電容量式タッチパネルを提供する。本発明のタッチパネルは、表示装置と、下部粘着層と、静電容量式タッチパネルセンサーと、上部粘着層と、保護基板とをこの順で備える静電容量式タッチパネルであって、-40~80℃までの20℃毎の各温度における上部粘着層の比誘電率Aおよび下部粘着層の比誘電率Bが、各温度において式(1)の関係を満たし、温度依存性評価試験から求められる下部粘着層の比誘電率の温度依存度が30%以下である、静電容量式タッチパネル。 式(1) 比誘電率A≧比誘電率B

Description

静電容量式タッチパネル
 本発明は、静電容量式タッチパネルに係り、下部粘着層および上部粘着層の比誘電率が所定の関係を満たす静電容量式タッチパネルに関する。
 近年、携帯電話や携帯ゲーム機器等へのタッチパネルの搭載率が上昇しており、例えば、多点検出が可能な静電容量方式のタッチパネルが注目を集めている(特許文献1)。
特開2008-310551号公報
 近年、静電容量式タッチパネルの大画面化などの要求に応えるため、位置検出をより高い精度で行うことが求められている。一方で、静電容量式タッチパネルは長時間使用時にも、誤動作を生じないことが求められる。
 しかしながら、従来公知の静電容量式タッチパネルでは大画面化しようとすると長時間使用時に誤動作が生じやすく、必ずしも上記要件を満たしておらず、更なる改良が必要であった。
 本発明は、上記実情に鑑みて、長時間使用した際にも誤動作を生じにくい静電容量式タッチパネルを提供することを目的とする。
 本発明者らは、上記課題について鋭意検討した結果、静電容量式タッチパネル中に含まれる粘着層の比誘電率の変化が上記誤動作の主要因であることを見出した。該知見に基づき、検討を進め、以下の構成により上記目的を達成することができることを見出した。
(1) 表示装置と、下部粘着層と、静電容量式タッチパネルセンサーと、上部粘着層と、保護基板とをこの順で備える静電容量式タッチパネルであって、
 -40~80℃までの20℃毎の各温度における上部粘着層の比誘電率Aおよび下部粘着層の比誘電率Bが、各温度において式(1)の関係を満たし、
 後述する温度依存性評価試験から求められる下部粘着層の比誘電率の温度依存度が30%以下である、静電容量式タッチパネル。
 式(1) 比誘電率A≧比誘電率B
(2) -40~80℃までの20℃毎の各温度における上部粘着層の比誘電率Aのなかの最小値が、-40~80℃までの20℃毎の各温度における下部粘着層の比誘電率Bのなかの最大値以上である、(1)に記載の静電容量式タッチパネル。
(3) 静電容量式タッチパネルセンサーが、基板両面に検出電極を備える積層体、または、片面に検出電極を備える検出電極付き基板同士を粘着層にて貼り合せた積層体である、(1)または(2)に記載の静電容量式タッチパネル。
(4) 検出電極が、金、銀、銅、アルミニウム、ITO、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、および、酸化チタン、銀パラジウム合金、銀パラジウム銅合金からなる群から選択されるいずれかで構成される、(3)に記載の静電容量式タッチパネル。
(5) 温度依存性評価試験から求められる下部粘着層の比誘電率の温度依存度が20%以下である、(1)~(4)のいずれかに記載の静電容量式タッチパネル。
(6) 表示装置の表示画面の対角線方向のサイズが5インチ以上である、(1)~(5)のいずれかに記載の静電容量式タッチパネル。
 本発明によれば、長時間使用した際にも誤動作を生じにくい静電容量式タッチパネルを提供することができる。
本発明の静電容量式タッチパネルの一実施形態の断面図である。 温度依存性評価試験で使用される評価用サンプルの概略図である。 温度依存性評価試験の結果の一例である。 静電容量式タッチパネルセンサーの一実施形態の平面図である。 図4に示した切断線A-Aに沿って切断した断面図である。 第1検出電極の拡大平面図である。 静電容量式タッチパネルセンサーの他の実施形態の一部断面である。 静電容量式タッチパネルセンサーの他の実施形態の一部断面である。
 以下に、本発明の静電容量式タッチパネル(以後、単にタッチパネルとも称する)の好適態様について図面を参照して説明する。
 なお、本発明の静電容量式タッチパネルの特徴点としては、下部粘着層の比誘電率と上部粘着層の比誘電率を制御している点が挙げられる。より具体的には、低温から高温までの所定の温度における上部粘着層の比誘電率が下部粘着層の比誘電率以上であり、かつ、下部粘着層の比誘電率の温度依存度が所定値以下である点が挙げられる。このような構成にすることにより、所望の効果が得られる理由について、以下に詳述する。
 近年、タッチパネルの大画面化が要求されており、検知すべき静電容量がより小さくなっている。そのため、下部粘着層の比誘電率が大きいと寄生容量として働いてしまい、タッチon/off時の全容量変化に影響し、誤動作を生じさせる。そこで、その影響を抑えるために、下部粘着層の比誘電率は上部粘着層の比誘電率よりも低く抑え、誤動作の原因となる寄生容量を小さくすることが好ましい。
 また、本発明者らは、下部粘着層の比誘電率が温度により大きく変化していることが誤動作の要因の一つであることを知見した。つまり、表示装置側では熱が発生しやすいため下部粘着層は熱の影響を受けやすく、その比誘電率の温度依存度が大きいと、温度によって下部粘着層による寄生容量が大きく変化することになり、結果として、検出電極間の静電容量が変化して当初設定されていた値からのずれが生じやすく、動作不良につながる。また、表示装置からの熱が面内分布を持つ場合、局所的に温度差が生じ、同様に下部粘着層の寄生容量が面内で大きく変化し、誤動作につながる。そこで、比誘電率が温度により変化しづらい下部粘着層を採用することにより、動作不良を抑えている。
 図1は、本発明の静電容量式タッチパネルの模式的断面図である。
 図1に示すように、静電容量式タッチパネル10は、表示装置12と、下部粘着層14と、静電容量式タッチパネルセンサー16と、上部粘着層18と、保護基板20とをこの順で備える。なお、この静電容量式タッチパネル10においては、保護基板20上に指が近接、接触すると、指と静電容量式タッチパネルセンサー16中の検出電極との静電容量が変化する。ここで、図示しない位置検出ドライバは、指と検出電極との間の静電容量の変化を常に検出している。この位置検出ドライバは、所定値以上の静電容量の変化を検出すると、静電容量の変化が検出された位置を入力位置として検出する。このようにして、静電容量式タッチパネル10は、入力位置を検出することができる。
 以下、静電容量式タッチパネル10の各部材について詳述する。まず、本発明の特徴点である下部粘着層14および上部粘着層18の態様について詳述し、その後、他の部材について詳述する。
(下部粘着層)
 下部粘着層14は、後述する表示装置12と後述する静電容量式タッチパネルセンサー16との間の密着性を担保するための層である。
 下部粘着層14は、後述する温度依存性評価試験から求められる比誘電率の温度依存度が30%以下である。なかでも、タッチパネルの誤動作がより生じにくい点で、25%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましく、10%以下が特に好ましく、8%以下が最も好ましい。下限は特に制限されないが、低ければ低いほど好ましく、0が最も好ましい。
 比誘電率の温度依存度が30%超の場合、タッチパネルの誤動作が生じやすい。
 温度依存性評価試験の実施方法について、以下で詳述する。なお、以下で説明する各温度でのインピーダンス測定技術を用いた比誘電率の測定は、一般に容量法と呼ばれる。容量法は概念的には試料を電極で挟むことによってコンデンサを形成し、測定した容量値から比誘電率を算出する方法である。
 まず、図2に示すように、測定対象である下部粘着層14(厚み:100~500μm)を一対のアルミニウム電極100(電極面積:20mm×20mm)で挟み、40℃、5気圧、60分の加圧脱泡処理をして、評価用サンプルを作製する。
 その後、サンプル中の下部粘着層の温度を-40℃から80℃まで20℃ずつ段階的に昇温して、各温度においてインピーダンスアナライザー(Agilent社4294A)を用いた1MHzでのインピーダンス測定により静電容量Cを求める。その後、求められた静電容量Cと下部粘着層の厚みTとを掛け合わせた後、得られた値をアルミニウム電極の面積Sと真空の誘電率ε0(8.854×10-12F/m)の積で割り、比誘電率を算出する。つまり、式(X):比誘電率=(静電容量C×厚みT)/(面積S×真空の誘電率ε0)にて比誘電率を算出する。
 より具体的には、下部粘着層の温度が-40℃、-20℃、0℃、20℃、40℃、60℃、および80℃となるように段階的に昇温して、各温度において下部粘着層の温度が安定するまで5分間放置した後、その温度において1MHzでのインピーダンス測定により静電容量Cを求め、得られた値から各温度における比誘電率を算出する。
 なお、下部粘着層の厚みは、少なくとも5箇所以上の任意の点における下部粘着層の厚みを測定して、それらを算術平均した値である。
 その後、算出された比誘電率のなかから、最小値と最大値を選択して、両者の差分の最小値に対する割合を求める。より具体的には、式[{(最大値-最小値)/最小値}×100]より計算される値(%)を求め、その値を温度依存度とする。
 図3に、温度依存性評価試験結果の一例を示す。なお、図3の横軸は温度、縦軸は比誘電率を示す。また、図3は2種の粘着層の測定結果の一例であり、一方は白丸、他方は黒丸の結果で示される。
 図3を参照すると、白丸で示される粘着層Aにおいては、各温度における比誘電率が比較的近接しており、その変化も小さい。つまり、粘着層Aの比誘電率は、温度による変化が少ないことを示しており、寒冷地および温暖地においても粘着層Aの比誘電率が変わりにくい。結果として、検出電極間の静電容量が、当初設定されていた値からずれにくく、誤動作を生じにくい。なお、粘着層Aの温度依存度(%)は、図3中の白丸の最小値であるA1と最大値であるA2とを選択して、式[(A2-A1)/A1×100]により求めることができる。
 一方、黒丸で示される粘着層Bにおいては、温度が上昇するにつれて、比誘電率が大きく上昇し、その変化が大きい。つまり、粘着層Bの比誘電率は温度による変化が大きいことを示しており、検出電極間の静電容量が当初設定されていた値からずれやすく、誤動作を生じやすい。なお、粘着層Bの温度依存度(%)は、図3中の黒丸の最小値であるB1と最大値であるB2とを選択して、式[(B2-B1)/B1×100]により求めることができる。
 つまり、上記温度依存度とは温度による誘電率の変化の程度を示しており、この値が小さいと、低温(-40℃)から高温(80℃)にわたって比誘電率の変化が起きにくい。一方、この値が大きいと、低温(-40℃)から高温(80℃)にわたって比誘電率の変化が起こりやすい。
 なお、図3では、粘着層Aの各温度での比誘電率の最大値A2は、粘着層Bの各温度での比誘電率の最小値B1よりも小さい態様に該当する。
 下部粘着層14の-40~80℃までの20℃毎の各温度における比誘電率Bの大きさは特に制限されないが、タッチパネルの誤動作がより生じにくい点から、3.5以下が好ましく、3.0以下がより好ましい。下限は特に制限されないが、粘着性の点から、2.2以上が好ましい。
 なお、比誘電率Bの測定方法は、上記温度依存性評価試験の手順と同じである。
 下部粘着層14の厚みは特に制限されないが、5~350μmであることが好ましく、30~250μmであることがより好ましく、30~150μmであることがさらに好ましい。上記範囲内であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 下部粘着層14は、光学的に透明であることが好ましい。つまり、透明粘着層であることが好ましい。光学的に透明とは、全光線透過率は85%以上であることを意図し、90%以上が好ましく、100%がより好ましい。
 下部粘着層14を構成する材料としては上記温度依存度を満たしていれば、その種類は特に制限されない。例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤などが挙げられる。なお、ここでアクリル系粘着剤とは、アクリルモノマーおよび/またはメタクリルモノマーの重合体((メタ)アクリルポリマー)を含む粘着剤である。上記アクリル系粘着剤には、上記重合体がベースポリマーとして含まれるが、他の成分(後述する粘着付与剤、ゴム成分など)を含まれていてもよい。
 なお、(メタ)アクリルポリマーとは、アクリルポリマーおよびメタアクリルポリマーの両方を含む概念である。
 上記(メタ)アクリルポリマーを製造するために使用されるモノマー((メタ)アクリレートモノマー)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシノニル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロヘキシル(メタ)アクリレート、2-ジシクロヘキシルオキシエチル(メタ)アクリレート、モルホリノ(メタ)アクリルアミド、フェノキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジメタクリレート、ネオペンチルグルコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、2-モルホリノエチル(メタ)アクリレート、9-アントリルメタクリレート、2,2-ビス(4-メタクリロキシフェニル)プロパン、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トランス-1,4-シクロヘキサンジオールジメタクリレートなどが挙げられる。
 なお、「(メタ)アクリレート」とは、アクリレートおよびメタアクリレートの両者を意図する総称である。
 下部粘着層14の好適態様の一つとしては、アクリル系粘着剤が含まれる態様が挙げられ、特に、少なくとも炭素数4以上の炭化水素基を有する(メタ)アクリレートモノマー由来の繰り返し単位を有する(メタ)アクリルポリマーが下部粘着層14に含まれることが好ましい。なお、(メタ)アクリレートモノマーとは、アクリレートモノマーおよびメタクリレートモノマーの両方を含む概念である。
 上記炭素数の(メタ)アクリレートモノマーとしては、例えば、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、n-ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレートなどが挙げられる。
 上記炭素数の脂肪族炭化水素基を有する(メタ)アクリレートモノマーとしては、上記炭素数の鎖状脂肪族炭化水素基を有する(メタ)アクリレートモノマー、および、上記炭素数の環状脂肪族炭化水素基を有する(メタ)アクリレートモノマーが挙げられる。タッチパネルの誤動作の発生がより抑制される点(以後、単に「本発明の効果がより優れる点」とも称する)で、6以上が好ましく、6~20がより好ましく、8~16がさらに好ましい。
 (メタ)アクリルポリマーの好適態様の一つとしては、上記炭素数の鎖状脂肪族炭化水素基を有する(メタ)アクリレートモノマー由来の繰り返し単位、および、上記炭素数の環状脂肪族炭化水素基を有する(メタ)アクリレートモノマー由来の繰り返し単位を有する(メタ)アクリルポリマーが挙げられる。
 なお、(メタ)アクリルポリマーには、本発明の効果を損なわない範囲で上述した以外のモノマー(例えば、カルボン酸基含有(メタ)アクリレート(例えば、アクリル酸)、水酸基含有(メタ)アクリレート(例えば、2-ヒドロキシエチルアクリレート))由来の繰り返し単位が含まれていてもよい。
 さらに、(メタ)アクリルポリマーは、架橋構造を有していてもよい。架橋構造の形成方法は特に制限されず、2官能(メタ)アクリレートモノマーを使用する方法や、(メタ)アクリルポリマーに反応性基(例えば、水酸基)を導入し、該反応性基と反応する架橋剤と反応させる方法などが挙げられる。後者の方法の具体例としては、水酸基、1級アミノ基および2級アミノ基からなる群より選ばれる1種以上の活性水素を有する基を有する(メタ)アクリレートモノマー由来の繰り返し単位を有する(メタ)アクリルポリマーと、イソシアネート系架橋剤(2つ以上のイソシアネート基を有する化合物)とを反応させて、粘着層を作製する方法が挙げられる。
 下部粘着層14中における(メタ)アクリルポリマーの含有量は特に制限されないが、本発明の効果がより優れる点で、10~50質量%が好ましく、15~40質量%がより好ましい。
 下部粘着層14には、さらに、粘着付与剤が含まれていてもよい。
 粘着付与剤としては、貼付剤または貼付製剤の分野で公知のものを適宜選択して用いればよい。例えば、石油系樹脂(例えば、芳香族系石油樹脂、脂肪族系石油樹脂、脂肪族/芳香族混成石油計樹脂、C9留分による樹脂など)、テルペン系樹脂(例えば、αピネン樹脂、βピネン樹脂、αピネン/βピネン/ジペンテンのいずれかの混合物を共重合して得られる樹脂、テルペンフェノール共重合体、水添テルペンフェノール樹脂、芳香族変性水添テルペン、テルペンフェノール共重合体、水添テルペンフェノール樹脂、芳香族変性水添テルペン樹脂、アビエチン酸エステル系樹脂)、ロジン系樹脂(例えば、部分水素化ガムロジン樹脂、エリトリトール変性木材ロジン樹脂、トール油ロジン樹脂、ウッドロジン樹脂、ガムロジン、ロジン変性マレイン酸樹脂、重合ロジン、ロジンフェノール、ロジンエステル)、クマロンインデン樹脂(例えば、クロマンインデンスチレン共重合体)等が挙げられる。
 粘着付与剤は、1種または2種以上を組み合わせて用いることができ、2種以上を組み合わせて使用する場合には、例えば、種類の異なる樹脂を組み合わせてもよく、同種の樹脂で軟化点の異なる樹脂を組み合わせてもよい。
 下部粘着層14中における粘着付与剤の含有量は特に制限されないが、本発明の効果がより優れる点で、10~60質量%が好ましく、20~50質量%がより好ましい。
 下部粘着層14には、さらに、ゴム成分(柔軟化剤)が含まれていてもよい。
 ゴム成分としては、例えば、ポリオレフィンまたは変性ポリオレフィンなどが挙げられる。上記ゴム成分としては、例えば、天然ゴム、ポリイソブチレン、ポリブタジエン(変性液状ポリブタジエンや、1,4-ブタジエン、1,2-ブタジエンまたはそのコポリマー混合物の重合体など)、水添ポリイソプレン、水添ポリブタジエン、ポリイソプレン、ポリブタジエン、ポリブテン、スチレンブタジエン共重合体、あるいはこれらの群から任意に選ばれた組み合わせの共重合体やポリマー混合物などが挙げられる。
 下部粘着層14中におけるゴム成分の含有量は特に制限されないが、本発明の効果がより優れる点で、20~75質量%が好ましく、25~60質量%がより好ましい。
 なお、下部粘着層14中における(メタ)アクリルポリマー中のウレタン基およびウレア基の総含有量は、本発明の効果がより優れる点で、粘着層100g中において、10ミリモル未満が好ましく、9ミリモル未満がより好ましく、8ミリモル未満がさらに好ましく、6ミリモル未満が特に好ましい。下限は特に制限されないが、0ミリモルが好ましい。なお、ウレタン基およびウレア基としては、原料由来もしくは架橋反応において生じたウレタン基およびウレア基が挙げられる。
 下部粘着層14中における(メタ)アクリルポリマー中の水酸基の含有量は、本発明の効果がより優れる点で、粘着層100g中において、11ミリモル未満が好ましく、10ミリモル未満がより好ましく、9ミリモル未満がさらに好ましく、8.5ミリモル未満が特に好ましい。下限は特に制限されないが、0ミリモルが好ましい。
 下部粘着層14中における(メタ)アクリルポリマー中のカルボン酸基の含有量は、本発明の効果がより優れる点で、粘着層100g中において、11ミリモル未満が好ましく、9ミリモル未満がより好ましく、7ミリモル未満がさらに好ましく、6.5ミリモル未満が特に好ましい。下限は特に制限されないが、0ミリモルが好ましい。
 下部粘着層14中における(メタ)アクリルポリマーの好適態様の一つとしては、本発明の効果がより優れる点で、粘着層100g中において、(メタ)アクリルポリマー中のウレタン基およびウレア基の総含有量が8ミリモル未満で、かつ、(メタ)アクリルポリマー中の水酸基の含有量が9ミリモル未満で、かつ、(メタ)アクリルポリマー中のカルボン酸基の含有量が7ミリモル未満であることが好ましい。特に、(メタ)アクリルポリマーには、ウレタン基およびウレア基は含まれないことが好ましい。
 また、下部粘着層14中における(メタ)アクリルポリマー中の1級アミノ基、2級アミノ基、およびアミド基からなる群より選ばれる1種以上の活性水素を有する基の各基の含有量は、粘着層100g中において、11ミリモル未満が好ましく、10ミリモル未満が好ましく、9ミリモル未満がさらに好ましい。
 下部粘着層14の好適態様の一つとしては、少なくとも炭素数8以上の炭化水素基を有する(メタ)アクリレートモノマーを含む粘着剤組成物に硬化処理を施して得られる粘着層が挙げられる。(メタ)アクリレートモノマーの定義は上述の通りである。
 また、上記粘着剤組成物には、上記粘着付与剤が含まれることが好ましい。
 さらに、上記粘着剤組成物には、上記ゴム成分が含まれることが好ましい。なお、ゴム成分としては、重合性基を有するゴム成分が含まれていてもよい。より具体的には、例えば、(メタ)アクリロイル基を有する、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、および、水添ポリイソプレンからなる群から選ばれる一種が挙げられる。つまり、上記粘着剤組成物には、重合性基を有するゴム成分と、重合性基を有さないゴム成分が含まれていてもよい。なお、重合性基としては、公知のラジカル重合性基(ビニル基、(メタ)アクリロイル基など)や、公知のカチオン重合性基(エポキシ基など)が挙げられる。
 粘着剤組成物中における粘着付与剤の含有量は特に制限されないが、(メタ)アクリレートモノマー100質量部に対して、80~320質量部が好ましく、120~270質量部がより好ましい。
 粘着剤組成物中におけるゴム成分の含有量は特に制限されないが、(メタ)アクリレートモノマー100質量部に対して、70~320質量部が好ましく、100~280質量部がより好ましい。
 粘着剤組成物には、上記成分以外の他の添加剤(例えば、重合開始剤、熱硬化剤、酸化防止剤、透明粒子、可塑剤など)が含まれていてもよい。
 例えば、重合開始剤としては、例えば、(1-ヒドロキシ)シクロヘキシルフェニルケトンやアシルホスフィンオキサイド等の光重合開始剤、アゾビスアルキロルニトリルまたはパーブチル等の熱重合開始剤を用いることができる。
 熱硬化剤としては、例えば、多価イソシアネート、または、エポキシ系若しくはオキセタン系の熱硬化剤などが選択される。
 酸化防止剤としては、例えば、既知のヒンダードフェノール(ペンタエリトリトールテトラキス[3-(3,3-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]、2,4-ビス(オクチルチオメチル)オルトクレゾール)、ヒンダードアミンを用いることができる。
 透明粒子としては、視覚では認知できない光学的に微小な大きさの粒子(ナノシリカなど)を本発明に反しない限り適宜用いることができる。
 上記粘着剤組成物から粘着層を製造する手順は特に制限されず、公知の方法を採用できる。例えば、上記粘着剤組成物を所定の基材上(例えば、剥離性基材上)に塗布して、必要に応じて乾燥処理を施し、上述した硬化処理を施す方法が挙げられる。
 塗布する方法は公知の方法が挙げられ、例えば、アプリケーター、グラビアコート、カーテンコート、コンマコーター、スロットダイコーター、リップコーターなどの既知の塗布装置が用いられる。
 上記粘着剤組成物に施される硬化処理としては、光硬化処理と熱硬化処理とを挙げることができる。言い換えると、粘着シートは、光硬化性粘着剤または熱硬化性粘着剤を硬化させて形成されることが好ましい。なお、硬化に用いる粘着剤組成物(硬化性組成物)は、硬化反応の特性に応じて、モノマー混合物のみならず、モノマーを予め重合して得たポリマーと、モノマーまたは硬化反応性を有するポリマーとをブレンドした粘着剤組成物を用いてもよい。
 光硬化処理は複数回の硬化工程からなってもよく、用いる光波長は複数から適宜選定されてよい。また熱硬化処理も複数回の効果工程からなってもよく、熱を与える手法はオーブン、リフロー炉、IRヒーターなど適切な手法から選定されてよい。さらには光硬化処理と熱硬化処理を適宜組み合わせてもよい。
 特に、光硬化処理により粘着シートを形成すると、比較的、粘着シートの経時変形が少なくなりやすく、製造適性上好ましい。なお、光硬化処理の場合、光硬化性粘着剤に光重合開始剤が含まれていてもよい。
(上部粘着層)
 上部粘着層18は、後述する静電容量式タッチパネルセンサー16と後述する保護基板20との間の密着性を担保するための層である。
 上部粘着層18は-40~80℃までの20℃毎の各温度における比誘電率Aと、-40~80℃までの20℃毎の各温度における上記下部粘着層14の比誘電率Bとは、以下の関係を満たす。つまり、各温度において比誘電率Aの値が、比誘電率Bの値以上となる。
 式(1) 比誘電率A≧比誘電率B
 より具体的には、-40℃、-20℃、0℃、20℃、40℃、60℃、および80℃で測定した上部粘着層の比誘電率A(A(-40℃)、A(-20℃)、A(0℃)、A(20℃)、A(40℃)、A(60℃)、A(80℃))と、下部粘着層の比誘電率B(B(-40℃)、B(-20℃)、B(0℃)、B(20℃)、B(40℃)、B(60℃)、B(80℃))とを測定して、同じ温度における誘電率を比較し、以下の7つの関係を満たすことを意味する。
 式(1-1):比誘電率A(-40℃)≧比誘電率B(-40℃)
 式(1-2):比誘電率A(-20℃)≧比誘電率B(-20℃)
 式(1-3):比誘電率A(0℃)≧比誘電率B(0℃)
 式(1-4):比誘電率A(20℃)≧比誘電率B(20℃)
 式(1-5):比誘電率A(40℃)≧比誘電率B(40℃)
 式(1-6):比誘電率A(60℃)≧比誘電率B(60℃)
 式(1-7):比誘電率A(80℃)≧比誘電率B(80℃)
 なお、上記A(℃)(またはB(℃))は、各温度における比誘電率Aの値(または比誘電率Bの値)を意味する。
 上記式(1)を満たせば、低温から高温にわたって、上部粘着層18の比誘電率が下部粘着層14の比誘電率よりも相対的に大きく、指によるタッチに対する良好な感度を維持したまま、表示装置からの影響を抑制することができる。
 式(1)の関係を満たさない場合、タッチパネルの誤動作が生じやすい。
 上部粘着層18の温度依存性評価試験から求められる比誘電率の温度依存度は特に制限されないが、低温から高温に渡ってタッチパネルの誤動作がより抑制される点で、30%以下が好ましく、25%以下がより好ましく、20%以下がさらに好ましく、15%以下がさらに好ましく、10%以下が特に好ましい。下限は特に制限されないが、低ければ低いほど好ましく、0が最も好ましい。
 温度依存性評価試験の実施方法は、上述の通りである。
 上部粘着層18の-40~80℃までの20℃毎の各温度における比誘電率Aの大きさは特に制限されないが、タッチパネルを駆動するチップセットの設計という観点から、従来の設定されていた静電容量の範囲から大きく変更したくないというチップセットメーカーの希望と、デバイスの総厚みを減らしたい各メーカーの傾向から、5.0以下が好ましく、4.0以下がより好ましい。下限は特に制限されないが、同様の理由から、2.5以上が好ましい。
 なお、比誘電率Aの測定方法は、上記温度依存性評価試験の手順と同じである。
 また、-40~80℃までの20℃毎の各温度における上部粘着層の比誘電率Aのなかの最小値は、-40~80℃までの20℃毎の各温度における下部粘着層の比誘電率Bのなかの最大値以上であることが好ましい。上記態様であれば、タッチパネルの誤動作がより生じにくい。
 上部粘着層18の厚みは特に制限されないが、5~350μmであることが好ましく、30~150μmであることがより好ましい。上記範囲内であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 上部粘着層18は、光学的に透明であることが好ましい。つまり、透明粘着層であることが好ましい。光学的に透明とは、全光線透過率は85%以上であることを意図し、90%以上が好ましく、100%がより好ましい。
 上部粘着層18を構成する材料としてはその種類は特に制限されず、上述した下部粘着層14を構成する材料が挙げられる。
(表示装置)
 表示装置12は、画像を表示する表示面を有する装置であり、表示画面側に各部材(例えば、下部粘着層14が配置される。
 表示装置12の種類は特に制限されず、公知の表示装置を使用することができる。例えば、陰極線管(CRT)表示装置、液晶表示装置(LCD)、有機発光ダイオード(OLED)表示装置、真空蛍光ディスプレイ(VFD)、プラズマディスプレイパネル(PDP)、表面電界ディスプレイ(SED)または電界放出ディスプレイ(FED)または電子ペーパー(E-Paper)などが挙げられる。
(保護基板)
 保護基板20は、上部粘着層18上に配置される基板であり、外部環境から後述する静電容量式タッチパネルセンサー16や表示装置12を保護する役割を果たすと共に、その主面はタッチ面を構成する。
 保護基板として、透明基板であることが好ましくプラスチックフィルム、プラスチック板、ガラス板などが用いられる。基板の厚みはそれぞれの用途に応じて適宜選択することが望ましい。
 上記プラスチックフィルムおよびプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類;ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA等のポリオレフィン類;ビニル系樹脂;その他、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)、シクロオレフィン系樹脂(COP)等を用いることができる。
 また、保護基板20としては、偏光板、円偏光板などを用いてもよい。
(静電容量式タッチパネルセンサー)
 静電容量式タッチパネルセンサー16は、表示装置12上(操作者側)に配置され、人間の指などの外部導体が接触(接近)するときに発生する静電容量の変化を利用して、人間の指などの外部導体の位置を検出するセンサーである。
 静電容量式タッチパネルセンサー16の構成は特に制限されないが、通常、検出電極(特に、X方向に延びる検出電極およびY方向に延びる検出電極)を有し、指が接触または近接した検出電極の静電容量変化を検出することによって、指の座標を特定する。
 図4を用いて、静電容量式タッチパネルセンサー16の好適態様について詳述する。
 図4に、静電容量式タッチパネルセンサー160の平面図を示す。図5は、図4中の切断線A-Aに沿って切断した断面図である。静電容量式タッチパネルセンサー160は、基板22と、基板22の一方の主面上(表面上)に配置される第1検出電極24と、第1引き出し配線26と、基板22の他方の主面上(裏面上)に配置される第2検出電極28と、第2引き出し配線30と、フレキシブルプリント配線板32とを備える。なお、第1検出電極24および第2検出電極28がある領域は、使用者によって入力操作が可能な入力領域EI(物体の接触を検知可能な入力領域(センシング部))を構成し、入力領域EIの外側に位置する外側領域EOには第1引き出し配線26、第2引き出し配線30およびフレキシブルプリント配線板32が配置される。
 以下では、上記構成について詳述する。
 基板22は、入力領域EIにおいて第1検出電極24および第2検出電極28を支持する役割を担うとともに、外側領域EOにおいて第1引き出し配線26および第2引き出し配線30を支持する役割を担う部材である。
 基板22は、光を適切に透過することが好ましい。具体的には、基板22の全光線透過率は、85~100%であることが好ましい。
 基板22は、絶縁性を有する(絶縁基板である)ことが好ましい。つまり、基板22は、第1検出電極24および第2検出電極28の間の絶縁性を担保するための層である。
 基板22としては、透明基板(特に、透明絶縁性基板)であることが好ましい。その具体例としては、例えば、絶縁樹脂基板、セラミックス基板、ガラス基板などが挙げられる。なかでも、靭性に優れる理由から、絶縁樹脂基板であることが好ましい。
 絶縁樹脂基板を構成する材料としては、より具体的には、ポリエチレンテレフタレート、ポリエーテルスルホン、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリエステル、ポリカーボネート、ポリスルホン、ポリアミド、ポリアリレート、ポリオレフィン、セルロース系樹脂、ポリ塩化ビニル、シクロオレフィン系樹脂などが挙げられる。なかでも、透明性に優れる理由から、ポリエチレンテレフタレート、シクロオレフィン系樹脂、ポリカーボネート、トリアセチルセルロース樹脂であることが好ましい。
 図4において、基板22は単層であるが、2層以上の複層であってもよい。
 基板22の厚み(基板22が2層以上の複層の場合は、それらの合計厚み)は特に制限されないが、5~350μmであることが好ましく、30~150μmであることがより好ましい。上記範囲内であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 また、図4においては、基板22の平面視形状は実質的に矩形状とされているが、これには限られない。例えば、円形状、多角形状であってもよい。
 第1検出電極24および第2検出電極28は、静電容量の変化を感知するセンシング電極であり、感知部(センシング部)を構成する。つまり、指先をタッチパネルに接触させると、第1検出電極24および第2検出電極28の間の相互静電容量が変化し、この変化量に基づいて指先の位置をIC回路によって演算する。
 第1検出電極24は、入力領域EIに接近した使用者の指のX方向における入力位置の検出を行う役割を有するものであり、指との間に静電容量を発生する機能を有している。第1検出電極24は、第1方向(X方向)に延び、第1方向と直交する第2方向(Y方向)に所定の間隔をあけて配列された電極であり、後述するように所定のパターンを含む。
 第2検出電極28は、入力領域EIに接近した使用者の指のY方向における入力位置の検出を行う役割を有するものであり、指との間に静電容量を発生する機能を有している。第2検出電極28は、第2方向(Y方向)に延び、第1方向(X方向)に所定の間隔をあけて配列された電極であり、後述するように所定のパターンを含む。図4においては、第1検出電極24は5つ、第2検出電極28は5つ設けられているが、その数は特に制限されず複数あればよい。
 図4中、第1検出電極24および第2検出電極28は、導電性細線により構成される。図6に、第1検出電極24の一部の拡大平面図を示す。図6に示すように、第1検出電極24は、導電性細線34により構成され、交差する導電性細線34による複数の格子36を含んでいる。なお、第2検出電極28も、第1検出電極24と同様に、交差する導電性細線34による複数の格子36を含んでいる。
 導電性細線34の材料としては、例えば、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、パラジウム(Pd)などの金属や合金(例えば、銀パラジウム合金、銀パラジウム銅合金)、ITO、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化チタンなどの金属酸化物、などが挙げられる。なかでも、導電性細線34の導電性が優れる理由から、銀であることが好ましい。
 導電性細線34の中には、導電性細線34と基板22との密着性の観点から、バインダーが含まれていることが好ましい。
 バインダーとしては、導電性細線34と基板22との密着性がより優れる理由から、水溶性高分子であることが好ましい。バインダーの種類としては、例えば、ゼラチン、カラギナン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロースおよびその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース、アラビアゴム、アルギン酸ナトリウムなどが挙げられる。なかでも、導電性細線34と基板22との密着性がより優れる理由から、ゼラチンが好ましい。
 なお、ゼラチンとしては石灰処理ゼラチンの他、酸処理ゼラチンを用いてもよく、ゼラチンの加水分解物、ゼラチン酵素分解物、その他アミノ基、カルボキシル基を修飾したゼラチン(フタル化ゼラチン、アセチル化ゼラチン)を使用することができる。
 導電性細線34中における金属とバインダーとの体積比(金属の体積/バインダーの体積)は、1.0以上が好ましく、1.5以上が更に好ましい。金属とバインダーの体積比を1.0以上とすることで、導電性細線34の導電性をより高めることができる。上限は特に制限されないが、生産性の観点から、6.0以下が好ましく、4.0以下がより好ましく、2.5以下がさらに好ましい。
 なお、金属とバインダーの体積比は、導電性細線34中に含まれる金属およびバインダーの密度より計算することができる。例えば、金属が銀の場合、銀の密度を10.5g/cm3として、バインダーがゼラチンの場合、ゼラチンの密度を1.34g/cm3として計算して求めるものとする。
 導電性細線34の線幅は特に制限されないが、低抵抗の電極を比較的容易に形成できる観点から、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。
 導電性細線34の厚みは特に制限されないが、導電性と視認性との観点から、0.00001mm~0.2mmから選択可能であるが、30μm以下が好ましく、20μm以下がより好ましく、0.01~9μmがさらに好ましく、0.05~5μmが最も好ましい。
 格子36は、導電性配線34で囲まれる開口領域を含んでいる。格子36の一辺の長さWは、800μm以下が好ましく、600μm以下がより好ましく、400μm以上であることが好ましい。
 第1検出電極24および第2検出電極28では、可視光透過率の点から開口率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが最も好ましい。開口率とは、所定領域において第1検出電極24または第2検出電極28中の導電性細線34を除いた透過性部分が全体に占める割合に相当する。
 格子36は、略ひし形の形状を有している。但し、その他、多角形状(例えば、三角形、四角形、六角形、ランダムな多角形)としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば、対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 なお、図6においては、導電性細線34はメッシュパターンとして形成されているが、この態様には限定されず、ストライプパターンであってもよい。
 なお、図4においては、第1検出電極24および第2検出電極28は導電性細線34のメッシュ構造で構成されていたが、この態様には限定されず、例えば、第1検出電極24および第2検出電極28全体が、ITO、ZnOなどの金属酸化物薄膜(透明金属酸化物薄膜)で形成されていてもよい。また、第1検出電極24および第2検出電極28の導電性細線34は、金属酸化物粒子、銀ペーストや銅ペーストなどの金属ペースト、銀ナノワイヤや銅ナノワイヤなどの金属ナノワイヤ粒子で構成されていてもよい。なかでも導電性と透明性に優れる点で、銀ナノワイヤが好ましい。
 また、電極のパターニングは、電極の材料に応じて選択でき、フォトリソグラフィー法やレジストマスクスクリーン印刷-エッチング法、インクジェット法、印刷法などを用いてもよい。
 第1引き出し配線26および第2引き出し配線30は、それぞれ上記第1検出電極24および第2検出電極28に電圧を印加するための役割を担う部材である。
 第1引き出し配線26は、外側領域EOの基板22上に配置され、その一端が対応する第1検出電極24に電気的に接続され、その他端はフレキシブルプリント配線板32に電気的に接続される。
 第2引き出し配線30は、外側領域EOの基板22上に配置され、その一端が対応する第2検出電極28に電気的に接続され、その他端はフレキシブルプリント配線板32に電気的に接続される。
 なお、図4においては、第1引き出し配線26は5本、第2引き出し配線30は5本記載されているが、その数は特に制限されず、通常、検出電極の数に応じて複数配置される。
 第1引き出し配線26および第2引き出し配線30を構成する材料としては、例えば、金(Au)、銀(Ag)、銅(Cu)などの金属や、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化チタンなどの金属酸化物、などが挙げられる。なかでも、導電性が優れる理由から、銀であることが好ましい。また、銀ペーストや銅ペーストなどの金属ペーストや、アルミニウム(Al)やモリブデン(Mo)、パラジウム(Pd)などの金属や合金薄膜で構成されていてもよい。金属ペーストの場合は、スクリーン印刷やインクジェット印刷法で、金属や合金薄膜の場合は、スパッタ膜をフォトリソグラフィー法などのパターニング方法が好適に用いられる。
 なお、第1引き出し配線26および第2引き出し配線30中には、基板22との密着性がより優れる点から、バインダーが含まれていることが好ましい。バインダーの種類は、上述の通りである。
 フレキシブルプリント配線板32は、基板上に複数の配線および端子が設けられた板であり、第1引き出し配線26のそれぞれの他端および第2引き出し配線30のそれぞれの他端に接続され、静電容量式タッチパネルセンサー160と外部の装置(例えば、表示装置)とを接続する役割を果たす。
 静電容量式タッチパネルセンサーの物体の接触を検知可能な入力領域の対角線方向のサイズが大きくなるに伴って、操作線数(検出電極の本数)が増えるため、線あたりのスキャン所要時間が圧縮される必要がある。モバイルユースで適切なセンシング環境を維持するには、静電容量式タッチパネルセンサーの寄生容量および温度変化量を小さくすることが課題である。従来の粘着層では比誘電率の温度依存度が大きく、サイズが大きくなるほどセンシングプログラムが追随できない(誤動作が生じる)おそれがある。一方、本発明では、静電容量式タッチパネルセンサーの物体の接触を検知可能な入力領域(センシング部)の対角線方向のサイズが5インチよりも大きいほど、適切なセンシング環境が得られ、より好ましくはサイズが8インチ以上、更に好ましくは10インチ以上であると誤動作の抑制に高い効果を発現できる。なお、上記サイズの示す入力領域の形状は、矩形状である。
(静電容量式タッチパネルセンサーの製造方法)
 静電容量式タッチパネルセンサー160の製造方法は特に制限されず、公知の方法を採用することができる。例えば、基板22の両主面上に形成された金属箔上のフォトレジスト膜を露光、現像処理してレジストパターンを形成し、レジストパターンから露出する金属箔をエッチングする方法が挙げられる。また、基板22の両主面上に金属微粒子または金属ナノワイヤを含むペーストを印刷し、ペーストに金属めっきを行う方法が挙げられる。また、基板22上にスクリーン印刷版またはグラビア印刷版によって印刷形成する方法、または、インクジェットにより形成する方法も挙げられる。
 さらに、上記方法以外にハロゲン化銀を使用した方法が挙げられる。より具体的には、基板22の両面にそれぞれ、ハロゲン化銀とバインダーとを含有するハロゲン化銀乳剤層(以後、単に感光性層とも称する)を形成する工程(1)、感光性層を露光した後、現像処理する工程(2)を有する方法が挙げられる。
 以下に、各工程に関して説明する。
[工程(1):感光性層形成工程]
 工程(1)は、基板22の両面に、ハロゲン化銀とバインダーとを含有する感光性層を形成する工程である。
 感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀およびバインダーを含有する感光性層形成用組成物を基板22に接触させ、基板22の両面上に感光性層を形成する方法が好ましい。
 以下に、上記方法で使用される感光性層形成用組成物の態様について詳述した後、工程の手順について詳述する。
 感光性層形成用組成物には、ハロゲン化銀およびバインダーが含有される。
 ハロゲン化銀に含有されるハロゲン元素は、塩素、臭素、ヨウ素およびフッ素のいずれであってもよく、これらを組み合わせでもよい。ハロゲン化銀としては、例えば、塩化銀、臭化銀、ヨウ化銀を主体としたハロゲン化銀が好ましく用いられ、更に臭化銀や塩化銀を主体としたハロゲン化銀が好ましく用いられる。
 使用されるバインダーの種類は、上述の通りである。また、バインダーはラテックスの形態で感光性層形成用組成物中に含まれていてもよい。
 感光性層形成用組成物中に含まれるハロゲン化銀およびバインダーの体積比は特に制限されず、上述した導電性細線34中における金属とバインダーとの好適な体積比の範囲となるように適宜調整される。
 感光性層形成用組成物には、必要に応じて、溶媒が含有される。
 使用される溶媒としては、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、またはこれらの混合溶媒を挙げることができる。
 使用される溶媒の含有量は特に制限されないが、ハロゲン化銀およびバインダーの合計質量に対して、30~90質量%の範囲が好ましく、50~80質量%の範囲がより好ましい。
(工程の手順)
 感光性層形成用組成物と基板22とを接触させる方法は特に制限されず、公知の方法を採用できる。例えば、感光性層形成用組成物を基板22に塗布する方法や、感光性層形成用組成物中に基板22を浸漬する方法などが挙げられる。
 形成された感光性層中におけるバインダーの含有量は特に制限されないが、0.3~5.0g/m2が好ましく、0.5~2.0g/m2がより好ましい。
 また、感光性層中におけるハロゲン化銀の含有量は特に制限されないが、導電性細線34の導電特性がより優れる点で、銀換算で1.0~20.0g/m2が好ましく、5.0~15.0g/m2がより好ましい。
 なお、必要に応じて、感光性層上にバインダーからなる保護層をさらに設けてもよい。保護層を設けることにより、擦り傷防止や力学特性の改良がなされる。
[工程(2):露光現像工程]
 工程(2)は、上記工程(1)で得られた感光性層をパターン露光した後、現像処理することにより第1検出電極24および第1引き出し配線26、並びに、第2検出電極28および第2引き出し配線30を形成する工程である。
 まず、以下では、パターン露光処理について詳述し、その後現像処理について詳述する。
(パターン露光)
 感光性層に対してパターン状の露光を施すことにより、露光領域における感光性層中のハロゲン化銀が潜像を形成する。この潜像が形成された領域は、後述する現像処理によって検出電極および引き出し配線を形成する。一方、露光がなされなかった未露光領域では、後述する定着処理の際にハロゲン化銀が溶解して感光性層から流出し、透明な膜が得られる。
 露光の際に使用される光源は特に制限されず、可視光線、紫外線などの光、または、X線などの放射線などが挙げられる。
 パターン露光を行う方法は特に制限されず、例えば、フォトマスクを利用した面露光で行ってもよいし、レーザービームによる走査露光で行ってもよい。なお、パターンの形状は特に制限されず、形成したい導電性細線のパターンに合わせて適宜調整される。
(現像処理)
 現像処理の方法は特に制限されず、公知の方法を採用できる。例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
 現像処理の際に使用される現像液の種類は特に制限されないが、例えば、PQ現像液、MQ現像液、MAA現像液等を用いることもできる。市販品では、例えば、富士フイルム社処方のCN-16、CR-56、CP45X、FD-3、パピトール、KODAK社処方のC-41、E-6、RA-4、D-19、D-72等の現像液、またはそのキットに含まれる現像液を用いることができる。また、リス現像液を用いることもできる。
 現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。定着処理は、銀塩写真フィルムや印画紙、印刷製版用フィルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 定着工程における定着温度は、約20℃~約50℃が好ましく、25~45℃がより好ましい。また、定着時間は5秒~1分が好ましく、7秒~50秒がより好ましい。
 現像処理後の露光部(検出電極および引き出し配線)に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることが更に好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。
 上記工程以外に必要に応じて、以下の下塗層形成工程、アンチハレーション層形成工程、または加熱処理を実施してもよい。
(下塗層形成工程)
 基板22とハロゲン化銀乳剤層との密着性に優れる理由から、上記工程(1)の前に、基板22の両面に上記バインダーを含む下塗層を形成する工程を実施することが好ましい。
 使用されるバインダーは上述の通りである。下塗層の厚みは特に制限されないが、密着性と相互静電容量の変化率がより抑えられる点で、0.01~0.5μmが好ましく、0.01~0.1μmがより好ましい。
(アンチハレーション層形成工程)
 導電性細線34の細線化の観点で、上記工程(1)の前に、基板22の両面にアンチハレーション層を形成する工程を実施することが好ましい。
(工程(3):加熱工程)
 工程(3)は、必要に応じて実施され、上記現像処理の後に加熱処理を実施する工程である。本工程を実施することにより、バインダー間で融着が起こり、検出電極および引き出し配線の硬度がより上昇する。特に、感光性層形成用組成物中にバインダーとしてポリマー粒子を分散している場合(バインダーがラテックス中のポリマー粒子の場合)、本工程を実施することにより、ポリマー粒子間で融着が起こり、所望の硬さを示す検出電極および引き出し配線が形成される。
 加熱処理の条件は使用されるバインダーによって適宜好適な条件が選択されるが、40℃以上であることがポリマー粒子の造膜温度の観点から好ましく、50℃以上がより好ましく、60℃以上が更に好ましい。また、基板のカール等を抑制する観点から、150℃以下が好ましく、100℃以下がより好ましい。
 加熱時間は特に限定されないが、基板のカール等を抑制する観点、および、生産性の観点から、1~5分間であることが好ましく、1~3分間であることがより好ましい。
 なお、この加熱処理は、通常、露光、現像処理の後に行われる乾燥工程と兼ねることができるため、ポリマー粒子の造膜のために新たな工程を増加させる必要がなく、生産性、コスト等の観点で優れる。
 なお、上記工程を実施することにより、検出電極間(導電性細線34間)および引き出し配線間にはバインダーを含む光透過性部が形成される。光透過性部における透過率は、380~780nmの波長領域における透過率の最小値で示される透過率が90%以上、好ましくは95%以上、さらに好ましくは97%以上であり、さらにより好ましくは98%以上であり、最も好ましくは99%以上である。
 光透過性部には上記バインダー以外の材料が含まれていてもよく、例えば、銀難溶剤などが挙げられる。
 静電容量式タッチパネルセンサーの態様は、上記図4の態様に限定されず、他の態様であってもよい。
 例えば、図7に示すように、静電容量式タッチパネルセンサー260は、第1基板38と、第1基板38上に配置された第2検出電極28と、第2検出電極28の一端に電気的に接続し、第1基板38上に配置された第2引き出し配線(図示せず)と、粘着層40と、第1検出電極24と、第1検出電極24の一端に電気的に接続している第1引き出し配線(図示せず)と、第1検出電極24および第1引き出し配線が隣接する第2基板42と、フレキシブルプリント配線板(図示せず)とを備える。
 図7に示すように、静電容量式タッチパネルセンサー260は、第1基板38、第2基板42、および粘着層40の点を除いて、静電容量式タッチパネルセンサー160と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
 第1基板38および第2基板42の定義は、上述した基板22の定義と同じである。
 粘着層40は、第1検出電極24および第2検出電極28を密着させるための層であり、光学的に透明であることが好ましい(透明粘着層であることが好ましい)。粘着層40を構成する材料としては、公知の材料が使用される。
 図7中の第1検出電極24と第2検出電極28とは、図4に示すようにそれぞれ複数使用されており、両者は図4に示すように互いに直交するように配置されている。
 なお、図7に示す、静電容量式タッチパネルセンサー260は、基板と基板表面に配置された検出電極および引き出し配線とを有する電極付き基板を2枚用意し、電極同士が向き合うように、粘着層を介して貼り合せて得られる静電容量式タッチパネルセンサーに該当する。
 静電容量式タッチパネルセンサーの他の態様としては、図8に示す態様が挙げられる。
 静電容量式タッチパネルセンサー360は、第1基板38と、第1基板38上に配置された第2検出電極28と、第2検出電極28の一端に電気的に接続し、第1基板38上に配置された第2引き出し配線(図示せず)と、粘着層40と、第2基板42と、第2基板42上に配置された第1検出電極24と、第1検出電極24の一端に電気的に接続し、第2基板42上に配置された第1引き出し配線(図示せず)と、フレキシブルプリント配線板(図示せず)とを備える。
 図8に示す静電容量式タッチパネルセンサー360は、各層の順番が異なる点を除いて、図7に示す静電容量式タッチパネルセンサー260と同様の層を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
 また、図8中の第1検出電極24と第2検出電極28とは、図4に示すようにそれぞれ複数使用されており、両者は図4に示すように互いに直交するように配置されている。
 なお、図8に示す、静電容量式タッチパネルセンサー360は、基板と基板表面に配置された検出電極および引き出し配線とを有する電極付き基板を2枚用意し、一方の電極付き基板中の基板と他方の電極付き基板の電極とが向き合うように、粘着層を介して貼り合せて得られる静電容量式タッチパネルセンサーに該当する。
(タッチパネルの製造方法)
 上述した静電容量式タッチパネル10の製造方法は特に制限されず、公知の方法が採用できる。
 まず、静電容量式タッチパネルセンサー16に上部粘着層18を形成する方法としては、例えば、静電容量式タッチパネルセンサー16に粘着層シート(いわゆる、透明粘着フィルム(OCA:Optically clear adhesive Film))を貼り合せる方法や、静電容量式タッチパネルセンサー16上に液状の粘着層形成用組成物(いわゆる、UV硬化型接着剤または透明粘着剤(OCR:Optically Clear Adhesive Resin))を塗布して、必要に応じて硬化処理を施す方法が挙げられる。使用される粘着層シートおよび粘着層形成用組成物は、形成される上部粘着層18が上記特性を満たすものであれば、その種類は特に制限されない。
 次に、保護基板20上に静電容量式タッチパネルセンサー16を貼り合せる。貼り合せる方法としては、公知の方法を採用できる。
 次に、静電容量式タッチパネルセンサー16上に下部粘着層14を形成する方法としては、上記上部粘着層18の形成方法が使用できる。
 その後に、下部粘着層14上に表示装置12を貼り合せて、所望のタッチパネルを製造することができる。
 なお、上記では静電容量式タッチパネルセンサー16から各層を形成する方法について述べたが、この方法に限定されない。例えば、静電容量式タッチパネルセンサー16と下部粘着層14と表示装置12とを備える積層体Aをはじめに用意して、別途、保護基板20と上部粘着層18とを備える積層体Bを用意して、積層体Aと積層体Bとを貼り合せることにより、所望のタッチパネルを製造することもできる。
 また、適宜、加圧脱泡処理、真空環境下での貼り合わせを行うこともできる。
 本発明の静電容量式タッチパネルは、上述したように低温から高温までの幅広い使用環境下において誤動作が生じにくい。
 静電容量式タッチパネルのサイズは特に制限されないが、大画面化の要望より、表示装置の表示画面(静電容量式タッチパネルセンサーの物体の接触を検知可能な入力領域(センシング部)とも同義)の対角線方向のサイズが5インチ以上であることが好ましく、10インチ以上がより好ましい。本発明の静電容量式タッチパネルであれば、上記サイズにおいても誤動作が生じにくい。なお、通常、表示画像の対角線のサイズに合わせて、静電容量式タッチパネルセンサーの物体の接触を検知可能な入力領域の対角線方向のサイズも変更される。また、上記サイズの示す入力領域の形状は、矩形状である。
 特に、本発明の静電容量式タッチパネルは、表示画面が大きい場合(対角線方向のサイズが5インチ以上の場合)であっても、環境変化による誤動作が生じにくい。一般的に、表示画面サイズが大きくなると、駆動周波数(スキャン回数)の増加や静電容量の低下が生じるため、結果として粘着層の寄生容量の影響が大きくなり、誤動作が生じやすくなる。しかしながら、本発明の静電容量式タッチパネルであれば、粘着層の比誘電率の変化が小さいため、表示画面が大きい場合であっても、当初設定された静電容量の値からのズレが少なく、誤動作が生じにくい。
 以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
(合成例1:粘着剤1)
 UC-1(ポリイソプレンメタクリレートオリゴマー、分子量25000)(22.7質量部)と、QM657(ジシクロペンテニルオキシエチルメタクリレート)(22.7質量部)と、HOB(2-ヒドロキシブチルメタクリレート)(1.7質量部)と、ポリオイル110(液状ポリブタジエン)(35.5質量部)と、L-LIR(液状ポリイソプレン)(14.2質量部)と、ルシリンTPO(2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド)(1.1質量部)と、イルガキュア184(1-ヒドロキシーシクロヘキシルーフェニル-ケトン)(1.7質量部)と、カレンズPE-01(ペンタエリスリトールテトラキス(3-メルカプトブチレート))(0.3質量部)と、チヌビン123(セバシン酸ビス[1-(オクチルオキシ)-2,2,6,6-テトラメチル-4-ピペリジニル])(0.56質量部)とを、所定量(質量基準)配合して、粘着剤1を調製した。
(合成例2:粘着剤2)
 アクリル酸4-ヒドロキシブチル単位(4-HBA)4.5質量%とアクリル酸ブチル単位60質量%およびアクリル酸メチル単位35.5質量%を有するアクリル系粘着剤主剤100質量部に、架橋剤としてトリレンジイソシアネート系化合物(日本ポリウレタン工業(株)製、コロネートL)を0.3質量部、ヒンダードフェノール系酸化防止剤としてペンタエリスリトール-テトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)(BASFジャパン(株)、IRGANOX1010)を0.7質量部、リン系酸化防止剤としてトリス(2,4-ジ-t-ブチルフェニル)ホスファイト(BASFジャパン(株)、IRGAFOS168)を0.5質量部を配合して、組成物(カルボキシ基含有割合0質量%)を得た。
 得られた組成物を、ポリエチレンテレフタレートフィルムの片面に剥離剤層が設けられた第1の剥離シート〔王子特殊紙(株)製、38μRL-07(2)〕に、ナイフコーターにより塗工し、100℃、3分間加熱して、粘着剤層を形成した。
 この粘着剤層に、ポリエチレンテレフタレートフィルムの片面に第1の剥離シートより剥離性の高い剥離剤層が設けられた第2の剥離シート〔王子特殊紙(株)製、38μRL-07(L)〕を貼り合わせて、粘着剤2(両面粘着シート)を得た。
(合成例3:粘着剤3)
 ポリイソプレン重合物の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(商品名 UC102、(株)クラレ製、分子量12500)40質量部、ジシクロペンテニルオキシエチルメタクリレート(商品名 FA512M、日立化成工業(株)製)35質量部、2-ヒドロキシプロピルメタクリレート(商品名 ライトエステルHOP、共栄社化学(株)製)3質量部、アクリロモルホリン(商品名 ACMO、(株)興人製)3質量部、ベンジルアクリレート(商品名 ビスコート#160、大阪有機化学(株)製)15質量部、テルペン系水素添加樹脂(商品名 クリアロンP-85、ヤスハラケミカル(株)製)35質量部、ブタジエン重合体(商品名 Polyoil110、日本ゼオン(株)製)120質量部、ヒンダードフェノール系酸化防止剤(商品名 IRGANOX1520L、チバ・スペシャリティ・ケミカルズ(株)製)0.3質量部、光重合開始剤(商品名 SpeedCure TPO、日本シイベルヘグナー(株)製)0.5質量部、および光重合開始剤(商品名 IRGACURE184D、チバ・スペシャリティ・ケミカルズ(株)製)4質量部を混練機にて混練し、粘着剤3を調製した。
(合成例4:粘着剤4)
 紫外線架橋性部位を有するアクリル酸エステルを含むモノマーのアクリル共重合体を合成した。BA(n-ブチルアクリレート)/IBXA(イソボルニルアクリレート)/HEA(2-ヒドロキシエチルアクリレート)/AEBP(4-アクリロイルオキシエトキシベンゾフェノン)=50.0/25.0/25.0/0.20(質量部)となるように調製し、モノマー濃度が40質量%となるようにメチルエチルケトン(MEK)で希釈した。開始剤として、V-65をモノマー成分に対して0.4質量%となるように加えて、10分間窒素パージした。続いて、50℃の恒温槽で24時間反応させたところ、透明な粘稠溶液が得られた。
 次に、この重合溶液を、50μmの厚みの剥離フィルム(東レフィルム加工社製セラピールMIB(T)の重剥離面)上にナイフコーターのギャップを120μmに調整して塗布し、100℃のオーブンで8分間乾燥させた。乾燥後の粘着剤の厚みは、30μmであった。続いて、この粘着面に、38μmの厚みの剥離フィルム(帝人デュポン社製ピューレックス(登録商標)A-31)をラミネートし、粘着剤4(転写型粘着シート)を得た。
(合成例5:粘着剤5)
 イソボルニルアクリレート(SR506)(44.38質量%)と、1-ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184)(1.6質量%)と、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)PETAMAP(7.60質量%)と、脂肪族ウレタンジアクリレート(Ebecryl(登録商標)230)(46.42質量%)とを、所定量(質量基準)配合して、粘着剤5を調製した。
(合成例6:粘着剤6)
 イソボルニルアクリレート(SR506)(42.16質量%)と、1-ヒドロキシシクロヘキシルフェニルケトン(Irgacure(登録商標)184)(1.52質量%)と、ペンタエリトリトールテトラキス(3-メルカプトプロピオネート)PETAMAP(7.22質量%)と、脂肪族ウレタンジアクリレート(Ebecryl(登録商標)230)(44.10質量%)と、ヒュームドシリカ(DeGussa A200)(5質量%)とを、所定量(質量基準)配合して、粘着剤6を調製した。
(合成例7:粘着剤7)
 アクリル共重合体の調製攪拌機、寒流冷却器、温度計、滴下漏斗および窒素ガス導入口を備えた反応容器に、n-ブチルアクリレート87.0質量部、シクロヘキシルアクリレート10.0質量部、2-ヒドロキシエチルアクリレート3.0質量部と重合開始剤として2,2’-アゾビスイソブチルニトリル0.2質量部とを酢酸エチル100質量部に溶解し、窒素置換後、80℃で8時間重合して重量平均分子量90万のアクリル共重合体(A1)を得た。
 アクリル共重合体の調製攪拌機、寒流冷却器、温度計、滴下漏斗および窒素ガス導入口を備えた反応容器に、シクロヘキシルメチルメタクリレート95.0質量部、ジメチルアミノエチルメタクリレート5.0質量部と重合開始剤として2,2’-アゾビスイソブチルニトリル1.0質量部とを酢酸エチル100質量部に溶解し、窒素置換後、80℃で8時間重合して重量平均分子量2万のメタクリル共重合体(B1)を得た。
 上記アクリル共重合体(A1)100質量部に、上記メタクリル共重合体(B1)を2.5質量部添加し、酢酸エチルで希釈し樹脂固形分30質量%の粘着剤(P1)を得た。
 上記粘着剤(P1)100質量部にイソシアネート系架橋剤(三井化学ポリウレタン社製D-160N、固形分75質量%)を0.1質量部添加し15分攪拌後、シリコーン化合物で片面を剥離処理した厚さ50μmのポリエステルフィルム(以下#75剥離フィルム)上に乾燥後の厚さが25μmになるように塗工して、75℃で5分間乾燥した。得られた粘着シートと、シリコーン化合物で片面を剥離処理した厚さ38μmのポリエステルフィルム(以下#38剥離フィルム)を貼り合わせた。その後23℃で7日間熟成し厚さ25μmの、ゲル分率75%の粘着剤7(基材レス粘着シート)を得た。
(合成例8:粘着剤8)
 メチルメタクリレート(15質量部)と、ブチルアクリレート(57質量部)と、2-エチルヘキシルアクリレート(28質量部)と、メチルアクリレート(1質量部)と、アクリル酸(1質量部)と、メタクリル酸(1質量部)と、トリレンジイソシアネート(0.7質量部)とを、所定量(質量基準)配合して、粘着剤5を調製した。
(合成例9:粘着剤9)
(アクリル系高分子量共重合体(1)の調製)
 1L容の三口の反応容器に、反応溶媒として酢酸エチル40g、アセトン60gを投入し、この溶媒に2-エチルヘキシルアクリレート(2EHA)60g、ブチルアクリレート(BA)37.9g、アクリル酸(AA)2.1gを投入して溶解し、さらに、重合開始剤としてAIBNを0.05gおよび連鎖移動剤としてn-ドデカンチオールを0.01g投入し、冷却器、温度計および攪拌装置を取り付け、これを80℃ウォーターバスで0.5℃/分で昇温させ、沸点まで昇温後は還流器により還流させながら3.5時間経過後、酢酸エチルのみを50g追加してモノマー濃度が約40質量%に希釈して、さらにウォーターバスにて加熱し、還流させながら反応開始から10時間反応を継続した後、反応容器をウォーターバスから取り出して放冷し、アクリル系高分子量共重合体(1)の溶液を得た。得られたアクリル系高分子量共重合体の溶液について、質量平均分子量を測定したところ、約90万であった。また、この共重合体の酸価は16.3mg/mgKOHであった。
(アクリル系低分子量共重合体(1)の調製)
 1L容の三口の反応容器に、反応溶媒として酢酸エチル150gを投入し、この溶媒に2-エチルヘキシルアクリレート(2EHA)96g、アクリル酸(AA)4.0gを投入して溶解し、さらに、重合開始剤としてAIBNを0.05gおよび連鎖移動剤としてn-ドデカンチオールを0.1g投入し、冷却器、温度計および攪拌装置を取り付け、これをウォーターバスで0.5℃/分で昇温させ、80℃まで昇温後は還流器により還流させながら反応開始から10時間反応を継続した後、反応容器をウォーターバスから取り出して放冷し、アクリル系低分子量共重合体(1)の溶液を得た。得られたアクリル系低分子量共重合体(1)の溶液について、質量平均分子量を測定したところ、約40万であった。また、この共重合体の酸価は31.1mg/mgKOHであった。
 上記のアクリル系高分子量共重合体溶液(1)10gとアクリル系低分子量共重合体(1)溶液30gとを混合し、これに架橋剤としてTETRAD-C(三菱瓦斯化学株式会社製)を0.5g添加して粘着剤塗布溶液とし、基材としての厚さ50μmのポリエステルシート(商品名:ルミラー50S10、東レ株式会社製)の表面に、メイヤーバーを用いて乾燥後の厚さが10μmとなるように塗布し、100℃に温調した熱風乾燥機で60秒乾燥して、粘着剤9(耐熱性粘着シート)を得た。
(合成例10:粘着剤10)
 2-エチルヘキシアクリレート(49.0質量部)と、イソボルニルアクリレート(29.0質量部)と、2-ヒドロキシエチルアクリレート(19.0質量部)と、IRGACURE819(BASF製)(2.0質量部)と、LUCIRIN TPO(BASF製)(1.0質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化させ、粘着剤10(転写型粘着シート)を得た。
(合成例11:粘着剤11)
 2-エチルヘキシアクリレート(49.0質量部)と、イソボルニルアクリレート(29.0質量部)と、2-ヒドロキシエチルアクリレート(18.0質量部)と、イソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(1質量部)と、IRGACURE819(BASF製)(2.0質量部)と、LUCIRIN TPO(BASF製)(1.0質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化させ、粘着剤11(転写型粘着シート)を得た。
(合成例12:粘着剤12)
 2-エチルヘキシアクリレート(49.0質量部)と、イソボルニルアクリレート(29.0質量部)と、2-ヒドロキシエチルアクリレート(18.0質量部)と、ヘキサメチレンジアクリレート(1質量部)と、IRGACURE819(BASF製)(2.0質量部)と、LUCIRIN TPO(BASF製)(1.0質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化させ、粘着剤12(転写型粘着シート)を得た。
(合成例13:粘着剤13)
 2-エチルヘキシルアクリレート(29.5質量部)、2-ヒドロキシエチルアクリレート(1.0質量部)と、イソボルニルアクリレート(63.0質量部)と、ドデシルアクリレート(4.9質量部)と、イソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(1質量部)と、IRGACURE184(BASF製)(0.6質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化させ、粘着剤13(転写型粘着シート)を得た。
(合成例14:粘着剤14)
 2-エチルヘキシアクリレート(29.5質量部)と、ヘキサメチレンジアクリレート(1.0質量部)と、イソボルニルアクリレート(63.0質量部)と、ドデシルアクリレート(4.9質量部)と、イソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(1質量部)と、IRGACURE184(BASF製)(0.6質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化することにより、粘着剤14(転写型粘着シート)を得た。
(合成例15:粘着剤15)
 2-エチルヘキシルアクリレート(47質量部)、イソボルニルアクリレート(93質量部)、ドデシルアクリレート(14質量部)、ヒドロキシエチルアクリレート(1.6質量部)、および酢酸エチル(127質量部)を混合し、窒素気流下、90℃で15分間攪拌して系内の酸素除去を行った。続いて、アゾビスイソブチロニトリル(0.04質量部)を加え、90℃で3時間攪拌した。さらに、アゾビスイソブチロニトリル(0.04質量部)、酢酸エチル(132質量部)を加え、90℃で2時間攪拌し、アクリルポリマー溶液を得た。
 得られたアクリルポリマー溶液(10質量部)にイソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(0.08質量部)を加え、よく攪拌した。次いで、剥離PET上にアクリルポリマー溶液を塗布し、100℃、3分間加熱し、溶媒を除去した。その後、剥離PETで上面をラミネートし、40℃で3日間放置し、粘着剤15(転写型粘着シート)を得た。
(合成例16:粘着剤16)
 2-エチルヘキシアクリレート(47.2質量部)と、イソボルニルアクリレート(42.3質量部)と、2-ヒドロキシエチルアクリレート(1.0質量部)と、ドデシルアクリレート(7.9質量部)と、イソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(1質量部)と、IRGACURE184(BASF製)(0.6質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化することにより、粘着剤16(転写型粘着シート)を得た。
(合成例17:粘着剤17)
 2-エチルヘキシアクリレート(47.2質量部)と、イソボルニルアクリレート(42.3質量部)と、ヘキサメチレンジアクリレート(1.0質量部)と、ドデシルアクリレート(7.9質量部)と、イソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(1質量部)と、IRGACURE184(BASF製)(0.6質量部)とを混合して、溶液を得た。
 得られた溶液を剥離PETフィルム上に塗布し、その塗布液上に剥離PETフィルムの剥離面を貼り合せた。高圧水銀UVランプ光(DEEP UV ランプ UXM-501MD,ウシオ電機(株)製)を用いて、剥離PETフィルムで挟まれたサンプルに照射エネルギーが3J/cm2になるようにUV光を照射し、さらに40℃で3日間熱硬化することにより、粘着剤17(転写型粘着シート)を得た。
(合成例18:粘着剤18)
 2-エチルヘキシルアクリレート(70質量部)、イソボルニルアクリレート(70質量部)、ドデシルアクリレート(14質量部)、ヒドロキシエチルアクリレート(1.6質量部)、および酢酸エチル(127質量部)を混合し、窒素気流下、90℃で15分間攪拌して系内の酸素除去を行った。続いて、アゾビスイソブチロニトリル(0.04質量部)を加え、90℃で3時間攪拌した。さらに、アゾビスイソブチロニトリル(0.04質量部)、酢酸エチル(132質量部)を加え、90℃で2時間攪拌し、アクリルポリマー溶液を得た。
 得られたアクリルポリマー溶液(10質量部)にイソホロンジイソシアネートアダクト体(イソホロンジイソシアネートのトリメチロールプロパン反応物、三井化学社製、商品名タケネートD-140N)(0.08質量部)を加え、よく攪拌した。次いで、剥離PET上にアクリルポリマー溶液を塗布し、100℃、3分間加熱し、溶媒を除去した。その後、剥離PETで上面をラミネートし、40℃で3日間放置し、粘着剤18(転写型粘着シート)を得た。
 なお、粘着剤(粘着層)100gに対する、粘着剤1~18中における(メタ)アクリルポリマー中のウレタン基およびウレア基の合計含有量、水酸基の含有量、および、カルボン酸基の含有量を以下に示す。
Figure JPOXMLDOC01-appb-T000001
<実施例1~29、比較例1~4>
(ハロゲン化銀乳剤の調製)
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記4液および5液を8分間にわたって加え、更に、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。更に、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。
 1液:
   水                    750ml
   ゼラチン                    9g
   塩化ナトリウム                 3g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300ml
   硝酸銀                   150g
 3液:
   水                    300ml
   塩化ナトリウム                38g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(III)酸カリウム
    (0.005%KCl 20%水溶液)    8ml
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液) 10ml
 4液:
   水                    100ml
   硝酸銀                    50g
 5液:
   水                    100ml
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
 その後、常法に従い、フロキュレーション法によって水洗した。具体的には、温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、上澄み液を約3リットル除去した(第一水洗)。更に3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を3リットル除去した(第二水洗)。第二水洗と同じ操作を更に1回繰り返して(第三水洗)、水洗・脱塩工程を終了した。水洗・脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン3.9g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgと塩化金酸10mgを加え55℃にて最適感度を得るように化学増感を施し、安定剤として1,3,3a,7-テトラアザインデン100mg、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径0.22μm、変動係数9%のヨウ塩臭化銀立方体粒子乳剤であった。
(感光性層形成用組成物の調製)
 上記乳剤に1,3,3a,7-テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩0.90g/モルAgを添加し、クエン酸を用いて塗布液pHを5.6に調整して、感光性層形成用組成物を得た。
(感光性層形成工程)
 厚み100μmのポリエチレンテレフタレート(PET)フィルムにコロナ放電処理を施した後、上記PETフィルムの両面に、下塗層として厚み0.1μmのゼラチン層、さらに下塗層上に光学濃度が約1.0で現像液のアルカリにより脱色する染料を含むアンチハレーション層を設けた。上記アンチハレーション層の上に、上記感光性層形成用組成物を塗布し、さらに厚み0.15μmのゼラチン層を設け、両面に感光性層が形成されたPETフィルムを得た。得られたフィルムをフィルムAとする。形成された感光性層は、銀量6.0g/m2、ゼラチン量1.0g/m2であった。
(露光現像工程)
 上記フィルムAの両面に、図4に示すような、検出電極(第1検出電極および第2検出電極)および引き出し配線(第1引き出し配線および第2引き出し配線)を配したフォトマスクを介し、高圧水銀ランプを光源とした平行光を用いて露光を行った。露光後、下記の現像液で現像し、更に定着液(商品名:CN16X用N3X-R、富士フィルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg細線からなる検出電極および引き出し配線を備える静電容量式タッチパネルセンサーを得た。
 なお、得られた静電容量式タッチパネルセンサーにおいては、検出電極はメッシュ上に交差する導電性細線で構成されている。また、上述したように、第1検出電極はX方向に延びる電極で、第2検出電極はY方向に延びる電極であり、それぞれ4.5~5.0mmピッチずつフィルム上に配置されている。
 次に、液晶表示装置、下部粘着層(厚み:200μm)、静電容量式タッチパネルセンサー、上部粘着層(厚み:75μm)、ガラス基板を含むタッチパネルを製造した。なお、各実施例および比較例において下部粘着層および上部粘着層を製造の際に使用した粘着剤1~18(粘着シートおよび液状組成物)の種類、および、表示画面のサイズは、以下の表1にまとめて示す。また、粘着シートの厚みは、使用される位置(上部粘着層、下部粘着層)に応じて、その厚みとなるように適宜調整して合成した。
 タッチパネルの製造方法としては、静電容量式タッチパネルセンサー上に、上部粘着層が粘着シートを用いて形成される場合は、同じサイズに切り出した粘着シートを静電容量式タッチパネルセンサーに2kg重ローラーを使用して貼り、さらに上部粘着層上に同サイズのガラス保護基板を、同様に2kg重ローラーを使用して貼り合わせた。または、上部粘着層が液状物を用いて形成される場合は、静電容量式タッチパネルセンサー上に、液状物(いわゆるOCR)を規定膜厚になるよう適量滴下し、その後、規定膜厚になるまで液状物を押し広げるようにしてガラス保護基板を貼り合わせ、規定量のUV照射を行い、液状物を硬化させた。
 静電容量式タッチパネルセンサーと液晶表示装置(表示画面:対角線のサイズが10インチ)の貼り合わせは、上記と同じ方法を用いることができ、下部粘着層として、粘着シートまたは液状物を用いた。
 粘着シートを貼り合わせた後は、その都度、40℃、5気圧、20分のオートクレーブ処理をして脱泡処理をし、液状物(いわゆるOCR)にて貼り合わせる場合は、真空環境下で貼り合わせ、タッチパネルを製造した。
(温度依存性評価試験用サンプル作製)
 表1に示す、粘着剤を用いて、温度依存性評価試験用サンプルを作製した。
 使用する粘着剤が液状物(いわゆるOCR)の場合は、縦20mm×横20mm、厚さ0.5mmのAl基板上に、塗膜の厚みが100~500μmになるように粘着剤を塗布し、推奨条件にてUV硬化させ、その後、形成された粘着層上に別のAl基板(縦20mm×横20mm、厚さ0.5mm)を貼り合わせた。その後、5気圧下にて、40℃で60分間、加圧脱泡処理を施した。
 また、使用する粘着剤が粘着シート(いわゆるOCA)の場合、厚みが100~500μmの間になるように調整されたシートを、上記Al基板にて挟み、加圧脱泡処理を行い、サンプルを作製した。
 なお、各サンプル中における粘着層の厚みは、マイクロメーターで温度依存性評価試験用サンプルの厚さを5か所測定し、その平均値からAl基板2枚分の厚さを差し引き、粘着層の厚さを算出した。
(温度依存性評価試験の方法)
 上記で作製した温度依存性評価試験用サンプルを用いて、インピーダンスアナライザー(Agilent社4294A)にて1MHzでのインピーダンス測定を行い、粘着層の比誘電率を測定した。
 具体的には、温度依存性評価試験用サンプルを-40℃から80℃まで20℃ずつ段階的に昇温して、各温度においてインピーダンスアナライザー(Agilent社4294A)を用いた1MHzでのインピーダンス測定により静電容量Cを求めた。なお、各温度では、サンプルの温度が一定になるまで5分間静置した。
 その後、求められた静電容量Cを用いて、以下の式(X)より各温度における比誘電率を算出した。
式(X):比誘電率=(静電容量C×厚みT)/(面積S×真空の誘電率ε0
 なお、厚みTは粘着層の厚みを、面積Sはアルミニウム電極の面積(縦20mm×横20mm)を、真空の誘電率は物理定数(8.854×10-12F/m)を意図する。
 算出された比誘電率のなかから、最小値と最大値とを選択し、式[(最大値-最小値)/最小値×100]より温度依存度(%)を求めた。
 なお、温度の調整は、低温の場合は液体窒素冷却ステージを用いて、高温の場合はホットプレートを用いて実施した。
(誤動作評価方法)
 上記で作製したタッチパネルを、表示装置の電源を入れてすぐの場合と、電源を入れて1時間放置した後の場合で、タッチ時の誤動作発生率を測定した。つまり、液晶表示装置の電源を入れてすぐの場合と、1時間放置した後の場合において、任意の箇所を100回、タッチをし、正常に反応しなかった場合の回数から、タッチパネルの誤動作発生率(%)[(正常に反応しなかった回数/100)×100]を測定した。
 測定された誤動作発生率に対し、その値が5%以下の場合をOK、5%超の場合NGと評価した。
 「誤動作発生率」は、液晶表示装置の電源を入れてすぐの場合と、電源を入れて1時間放置した後の場合とでの誤動作発生率である。
 また、表1中、「表示画面サイズ」欄は、表示装置の表示画面のサイズを意図する。なお、各実施例および比較例において、静電容量式タッチパネルセンサーの物体の接触を検知可能な入力領域の対角線方向のサイズも、上記表示画面のサイズと同じであった。
 なお、表1中の「上部粘着層」欄の「比誘電率(最小値)」は、上記温度依存性評価試験を実施して得られる各温度での上部粘着層の比誘電率Aのなかの最小値を意図する。また、「下部粘着層」欄の「比誘電率(最大値)」は、上記温度依存性評価試験を実施して得られる各温度での下部粘着層の比誘電率Bのなかの最大値を意図する。
 なお、実施例1~29においては、上記温度依存性評価試験を実施して得られる各温度での上部粘着層の比誘電率Aは、各温度において、上記温度依存性評価試験を実施して得られる各温度での下部粘着層の比誘電率B以上であった。つまり、上記式(1)の関係を満たしていた。
 一方、比較例1~2および比較例4においては、上記温度依存性評価試験を実施して得られる各温度での上部粘着層の比誘電率Aと、各温度での下部粘着層の比誘電率Bとは、上記式(1)の関係を満たしていなかった。
 表1中、「式(1)の関係を満たすか?」欄は、各実施例および比較例において、上述した式(1)の関係を満たすものを「A」、満たさないものを「B」と表記する。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、本発明のタッチパネルにおいては、長時間使用後も誤動作が生じにくいことが確認された。
 実施例1~29より、-40~80℃までの20℃毎の各温度における上部粘着層の比誘電率Aのなかの最小値が、-40~80℃までの20℃毎の各温度における下部粘着層の比誘電率Bのなかの最大値以上である場合、誤動作がより生じにくいことが確認された。
 一方、式(1)の関係を満たさない比較例1~2、および4、並びに、下部粘着層の温度依存度が高い比較例3においては、長時間使用後において誤動作が生じやすく、所望の効果が得られなかった。
10  静電容量式タッチパネル
12  表示装置
14  下部粘着層
16,260,360  静電容量式タッチパネルセンサー
18  上部粘着層
20  保護基板
22  基板
24  第1検出電極
26  第1引き出し配線
28  第2検出電極
30  第2引き出し配線
32  フレキシブルプリント配線板
34  導電性細線
36  格子
38  第1基板
40  粘着層
42  第2基板
100  アルミニウム基板

Claims (6)

  1.  表示装置と、下部粘着層と、静電容量式タッチパネルセンサーと、上部粘着層と、保護基板とをこの順で備える静電容量式タッチパネルであって、
     -40~80℃までの20℃毎の各温度における前記上部粘着層の比誘電率Aおよび前記下部粘着層の比誘電率Bが、前記各温度において式(1)の関係を満たし、
     下記温度依存性評価試験から求められる前記下部粘着層の比誘電率の温度依存度が30%以下である、静電容量式タッチパネル。
     式(1) 比誘電率A≧比誘電率B
    (温度依存性評価試験:粘着層をアルミニウム電極で挟み、-40℃から80℃まで20℃毎に昇温して、各温度において1MHzでのインピーダンス測定により前記粘着層の比誘電率を算出して、算出された各温度における比誘電率のなかから、最小値と最大値とを選択し、式[(最大値-最小値)/最小値×100]より求められる値(%)を温度依存度とする。)
  2.  -40~80℃までの20℃毎の各温度における前記上部粘着層の比誘電率Aのなかの最小値が、-40~80℃までの20℃毎の各温度における前記下部粘着層の比誘電率Bのなかの最大値以上である、請求項1に記載の静電容量式タッチパネル。
  3.  前記静電容量式タッチパネルセンサーが、基板両面に検出電極を備える積層体、または、片面に検出電極を備える検出電極付き基板同士を粘着層にて貼り合せた積層体である、請求項1または2に記載の静電容量式タッチパネル。
  4.  前記検出電極が、金、銀、銅、アルミニウム、ITO、酸化スズ、酸化亜鉛、酸化カドミウム、酸化ガリウム、および、酸化チタン、銀パラジウム合金、銀パラジウム銅合金からなる群から選択されるいずれかで構成される、請求項3に記載の静電容量式タッチパネル。
  5.  前記温度依存性評価試験から求められる前記下部粘着層の比誘電率の温度依存度が20%以下である、請求項1~4のいずれか1項に記載の静電容量式タッチパネル。
  6.  前記表示装置の表示画面の対角線方向のサイズが5インチ以上である、請求項1~5のいずれか1項に記載の静電容量式タッチパネル。
PCT/JP2014/056741 2013-03-13 2014-03-13 静電容量式タッチパネル WO2014142263A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015505567A JP5926444B2 (ja) 2013-03-13 2014-03-13 静電容量式タッチパネル
US14/827,475 US9645691B2 (en) 2013-03-13 2015-08-17 Capacitance touch panel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013051052 2013-03-13
JP2013-051052 2013-03-13
JP2013169715 2013-08-19
JP2013-169715 2013-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/827,475 Continuation US9645691B2 (en) 2013-03-13 2015-08-17 Capacitance touch panel

Publications (1)

Publication Number Publication Date
WO2014142263A1 true WO2014142263A1 (ja) 2014-09-18

Family

ID=51536912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056741 WO2014142263A1 (ja) 2013-03-13 2014-03-13 静電容量式タッチパネル

Country Status (4)

Country Link
US (1) US9645691B2 (ja)
JP (1) JP5926444B2 (ja)
TW (1) TWI608395B (ja)
WO (1) WO2014142263A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045758A1 (ja) * 2013-09-26 2015-04-02 富士フイルム株式会社 粘着剤組成物、粘着シート、タッチパネル用積層体および静電容量式タッチパネル
WO2019143065A1 (ko) * 2018-01-18 2019-07-25 동우 화인켐 주식회사 터치 센서 및 이를 포함하는 표시 장치
US11119597B2 (en) 2018-01-18 2021-09-14 Dongwoo Fine-Chem Co., Ltd. Touch sensor and display device comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6109336B2 (ja) * 2013-11-20 2017-04-05 富士フイルム株式会社 静電容量式タッチパネル
JP6267340B2 (ja) * 2014-07-16 2018-01-24 富士フイルム株式会社 静電容量式タッチパネル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147047A1 (ja) * 2009-06-18 2010-12-23 日東電工株式会社 光学用粘着シート
JP2011170511A (ja) * 2010-02-17 2011-09-01 Alps Electric Co Ltd 静電容量式の入力装置
JP2012251030A (ja) * 2011-06-01 2012-12-20 Toray Advanced Film Co Ltd 粘着シート、表面保護層付き静電容量式タッチパネルおよび表示装置
JP2013003952A (ja) * 2011-06-20 2013-01-07 Nitto Denko Corp 静電容量タッチパネル
JP2013032500A (ja) * 2011-06-30 2013-02-14 Nitto Denko Corp 粘着剤組成物、粘着剤層、および粘着シート

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998919B2 (ja) 2007-06-14 2012-08-15 ソニーモバイルディスプレイ株式会社 静電容量型入力装置
US8947399B2 (en) * 2010-05-11 2015-02-03 Tpk Touch Solutions Inc. Dual-substrate capacitive touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147047A1 (ja) * 2009-06-18 2010-12-23 日東電工株式会社 光学用粘着シート
JP2011170511A (ja) * 2010-02-17 2011-09-01 Alps Electric Co Ltd 静電容量式の入力装置
JP2012251030A (ja) * 2011-06-01 2012-12-20 Toray Advanced Film Co Ltd 粘着シート、表面保護層付き静電容量式タッチパネルおよび表示装置
JP2013003952A (ja) * 2011-06-20 2013-01-07 Nitto Denko Corp 静電容量タッチパネル
JP2013032500A (ja) * 2011-06-30 2013-02-14 Nitto Denko Corp 粘着剤組成物、粘着剤層、および粘着シート

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045758A1 (ja) * 2013-09-26 2015-04-02 富士フイルム株式会社 粘着剤組成物、粘着シート、タッチパネル用積層体および静電容量式タッチパネル
JP2015086353A (ja) * 2013-09-26 2015-05-07 富士フイルム株式会社 粘着剤組成物、粘着シート、タッチパネル用積層体および静電容量式タッチパネル
WO2019143065A1 (ko) * 2018-01-18 2019-07-25 동우 화인켐 주식회사 터치 센서 및 이를 포함하는 표시 장치
US11119597B2 (en) 2018-01-18 2021-09-14 Dongwoo Fine-Chem Co., Ltd. Touch sensor and display device comprising same

Also Published As

Publication number Publication date
TWI608395B (zh) 2017-12-11
TW201439874A (zh) 2014-10-16
US9645691B2 (en) 2017-05-09
US20150355754A1 (en) 2015-12-10
JP5926444B2 (ja) 2016-05-25
JPWO2014142263A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5926445B2 (ja) 静電容量式タッチパネル
JP5689931B2 (ja) 粘着シート、タッチパネル用積層体、静電容量式タッチパネル
JP6267340B2 (ja) 静電容量式タッチパネル
JP6088467B2 (ja) タッチパネル用粘着シート、タッチパネル用積層体、静電容量式タッチパネル
US20150376466A1 (en) Adhesive film and laminate for touch panel
JP6148217B2 (ja) タッチパネル用粘着フィルム、タッチパネル用積層体、粘着層の剥離方法、タッチパネルの使用方法、タッチパネルシステム
JP5926444B2 (ja) 静電容量式タッチパネル
JP6042853B2 (ja) タッチパネル用粘着フィルム、タッチパネル用積層体、粘着層の剥離方法、タッチパネルの使用方法、タッチパネルシステム
JP6109336B2 (ja) 静電容量式タッチパネル
JP2016138184A (ja) 両面粘着シート、剥離フィルム付き両面粘着シート、および、静電容量式タッチパネル
WO2016009913A1 (ja) 静電容量式タッチパネル
JP6126526B2 (ja) タッチパネル用粘着フィルム、タッチパネル用積層体
JP2016023201A (ja) 光硬化性組成物、粘着シート、タッチパネル用積層体および静電容量式タッチパネル
JP2015086277A (ja) 粘着シートの製造方法、粘着シート、タッチパネル用積層体および静電容量式タッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764229

Country of ref document: EP

Kind code of ref document: A1