WO2014142228A1 - メチルシトシン検出法 - Google Patents

メチルシトシン検出法 Download PDF

Info

Publication number
WO2014142228A1
WO2014142228A1 PCT/JP2014/056633 JP2014056633W WO2014142228A1 WO 2014142228 A1 WO2014142228 A1 WO 2014142228A1 JP 2014056633 W JP2014056633 W JP 2014056633W WO 2014142228 A1 WO2014142228 A1 WO 2014142228A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
cytosine
measured
fragmented
base sequence
Prior art date
Application number
PCT/JP2014/056633
Other languages
English (en)
French (fr)
Inventor
僚二 栗田
博幸 柳澤
恭子 吉岡
修 丹羽
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US14/775,004 priority Critical patent/US9988672B2/en
Publication of WO2014142228A1 publication Critical patent/WO2014142228A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • C12Q1/683Hybridisation assays for detection of mutation or polymorphism involving restriction enzymes, e.g. restriction fragment length polymorphism [RFLP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2440/00Post-translational modifications [PTMs] in chemical analysis of biological material
    • G01N2440/12Post-translational modifications [PTMs] in chemical analysis of biological material alkylation, e.g. methylation, (iso-)prenylation, farnesylation

Definitions

  • the present invention relates to a biomolecule detection technique for detecting the methylation state of cytosine at a specific position contained in a nucleic acid.
  • Genome methylation modification an example of epigenetics, is found in a wide range of species from E. coli to plants and vertebrates, and it is becoming clear that it is related to various life phenomena. Especially in mammals, it has become an important research area from the viewpoints of ontogeny, cell differentiation, and canceration, and methylation of CpG islands in the promoter region of genes inactivates tumor suppressor genes. It has been done.
  • methylation of the genome occurs when cytosine contained in the nucleic acid is methylated.
  • the most commonly used method for detecting the methylation status of cytosine contained in this nucleic acid is that when a sample nucleic acid is treated with bisulfite, methylcytosine is not converted. Is a method utilizing the fact that is converted to uracil (Patent Documents 1 and 2). After bisulfite treatment, PCR is performed, and when sequencing, uracil is detected as thymine and methylcytosine is detected as cytosine.
  • the presence or location of methylation can be determined from the difference between cytosine and thymine (uracil) produced before and after treatment.
  • cytosine and thymine uracil
  • the disadvantages of the bisulfite method are that the sequence operation is complicated, a long reaction time is required for complete modification (generally a dozen hours), and a depurination reaction due to the treatment occurs. In many cases, fragmentation of the sample proceeds, and improvement of the method is demanded.
  • Patent Document 3 a method for quantifying methylcytosine using an anti-methylcytosine antibody has been reported.
  • this method of quantifying methylcytosine using this antibody it is possible to measure the total amount of methylcytosine contained in the target nucleic acid, but know where the cytosine in the base sequence is methylated. I can't.
  • the cytosine methylation frequency which cytosine is methylated is extremely important for gene expression.
  • cytosine at a specific position to be measured in a nucleic acid is placed in a DNA bulge formed by unpairing when the nucleic acid hybridizes with a complementary strand, and an anti-cytosine to the nucleic acid or The amount of binding of the anti-methyl cytosine antibody is measured, whereby it is possible to determine whether or not the cytosine to be measured is methylated.
  • JP 2006-238701 A JP2004008217 Patent 3854493 JP2012-230019
  • the method for determining whether or not cytosine to be measured is methylated can detect methylation of the cytosine well in experiments with synthesized oligomers. When is used, it is difficult to detect methylation of a specific cytosine. This is because there is a possibility that methylated cytosine is present in regions other than the region that hybridizes with the complementary strand because a large amount of DNA other than the target nucleotide sequence exists in the genomic sample.
  • the present invention eliminates this drawback of the above invention and selectively detects methylation of a specific cytosine in genomic DNA using a method for detecting methylcytosine using an anti-methylcytosine antibody.
  • An object is to provide a technique for improving reliability.
  • the present inventors succeeded in selectively detecting methylation of a specific cytosine in genomic DNA as follows.
  • DNA was fragmented by adding a restriction enzyme to a genomic DNA sample to be measured.
  • the nucleic acid sequence of each DNA fragment to be generated is determined by the restriction enzyme used.
  • a nucleic acid to be measured having a specific sequence containing cytosine at a specific position to be measured can be excised from the genome as a fragment thereof.
  • ultrasonic waves have been used for fragmentation of DNA.
  • an unspecified number of fragments are generated. Therefore, PCR methods that amplify specific sequences later are particularly problematic.
  • the methylcytosine detection method of the present invention using a nucleic acid having complementarity with the nucleic acid to be measured as a detection reagent. Thereafter, the nucleic acid to be measured and a single-stranded nucleic acid having a sequence complementary to the nucleic acid to be measured except for the base to which the cytosine to be measured should form a base pair are mixed and hybridized to form double-stranded DNA. Formed.
  • the base sequence of the single-stranded nucleic acid has a complementarity and length that can form a double strand with the nucleic acid to be measured, but does not form a base pair with the cytosine to be measured.
  • the formed double-stranded DNA was recovered on the solid phase by binding to the solid phase via a solid-phase binding portion provided in the single-stranded nucleic acid. The remaining DNA fragments are removed by washing. Thereafter, the double-stranded DNA bound on the solid phase was reacted with the antibody.
  • the methylcytosine can be recognized by the antibody by forming a base pair with guanine. Sexually decreases.
  • methylcytosine at the position to be measured that does not form a base pair is recognized by a highly efficient antigen-antibody reaction. As a result, it was possible to selectively detect the methylation state of a specific cytosine in genomic DNA.
  • the nucleic acid to be measured is cleaved with a restriction enzyme and fragmented.
  • Various restriction enzymes that recognize a specific base sequence and cleave a nucleic acid are known.
  • a restriction enzyme that is cleaved so as to sandwich a base sequence to be measured is selected.
  • One restriction enzyme may be used or a combination of the two may be used.
  • Hybridization is performed by adding a single-stranded nucleic acid having a base sequence designed so that cytosine to be measured does not form a base pair while forming a double strand with the target base sequence. Normally, genomic DNA forms a double strand in vivo.
  • the base sequence of the single-stranded nucleic acid is designed in consideration of the combination with a restriction enzyme so that no unpaired base remains at the end of the double-stranded DNA to be formed.
  • the single-stranded nucleic acid is also provided with a solid phase binding part for later recovery on the solid phase.
  • the double-stranded nucleic acid having a solid phase binding portion hybridized with the measurement target is recovered using the solid phase binding portion.
  • a solid phase suitable for the subsequent detection method is preferably prepared. For example, in the surface plasmon resonance method, it is desirable to collect on a gold or silver thin film. You may collect
  • the methylation rate of cytosine is measured by introducing the antibody and detecting the amount of bound antibody. For example, if an anti-methyl cytosine antibody is added, if the cytosine to be measured is methylated, the anti-methyl cytosine antibody will bind to the double-stranded nucleic acid.
  • an antibody can be detected from a change in refractive index without labeling with an enzyme or a phosphor.
  • a wide variety of general techniques that have been used in conventional immunoassay methods can be used. As is obvious to those skilled in the art, for example, there are methods for labeling antibodies with enzymes, phosphors, radioisotopes, and metal nanoparticles. Moreover, detection by introducing these labeled secondary antibodies is also possible.
  • ⁇ 1> A method for detecting the methylation state of cytosine at a specific position contained in a nucleic acid, Fragmenting a nucleic acid with a restriction enzyme; Between the fragmented nucleic acid and a single-stranded nucleic acid having a base sequence and a solid phase binding part that hybridizes with the fragmented nucleic acid but does not form a base pair with cytosine at a specific position in the fragmented nucleic acid A step of forming a double-stranded nucleic acid in Binding the double-stranded nucleic acid onto a solid phase using the solid phase binding portion; Measuring the amount of antibody binding to the double-stranded nucleic acid on the solid phase; Having a method.
  • ⁇ 2> The method according to ⁇ 1>, wherein the antibody is an anti-methylcytosine antibody.
  • ⁇ 3> The method according to ⁇ 1> or ⁇ 2>, wherein the solid phase binding part is biotin and the solid phase is avidin.
  • ⁇ 4> The amount of antibody binding to the double-stranded nucleic acid is measured by detecting the binding of the antibody by a surface plasmon resonance method, according to any one of ⁇ 1> to ⁇ 3> Method.
  • ⁇ 5> Using an antibody labeled with horseradish peroxidase as an antibody for binding to the double-stranded nucleic acid, binding the antibody, adding a substrate for the horseradish peroxidase, and reacting the horseradish peroxidase The method according to ⁇ 1> to ⁇ 3>, wherein measurement is performed by detecting a change in absorbance due to the product.
  • a site that should form a base pair with cytosine to be measured is an abasic site
  • ⁇ 7> A base sequence that hybridizes with a fragmented nucleic acid but does not form a base pair with cytosine at a specific position in the fragmented nucleic acid.
  • a single-stranded nucleic acid having a base sequence arranged at is used.
  • a site that should form a base pair with cytosine to be measured is adenine, cytosine
  • a method according to ⁇ 1> to ⁇ 5>, wherein a single-stranded nucleic acid having a base sequence which is thymine is used.
  • ⁇ 9> Fragmentation of a single-stranded nucleic acid having a base sequence and a solid phase binding part that hybridizes with a fragmented nucleic acid but does not form a base pair with cytosine at a specific position in the fragmented nucleic acid
  • a base sequence that hybridizes with a fragmented nucleic acid but does not form a base pair with cytosine at a specific position in the fragmented nucleic acid, and a base sequence of a single-stranded nucleic acid having a solid phase binding portion is a restriction enzyme
  • ⁇ 11> a single-stranded nucleic acid having a base sequence and biotin that hybridizes with a restriction enzyme and a fragmented nucleic acid to be measured, but does not form a base pair with cytosine at a specific position in the fragmented nucleic acid;
  • cytosine to be measured By placing a specific cytosine to be measured in a conventional nucleic acid in a DNA bulge formed upon hybridization of the nucleic acid and a complementary strand, and measuring the amount of antibody binding to the nucleic acid, In the method of determining whether cytosine to be measured is methylated, all methyl cytosine that is unpaired with the complementary strand is recognized by the anti-methyl cytosine antibody. Selective detection of specific cytosine methylation in samples was difficult and lacked industrial utility value. According to the present invention, except for cytosine to be measured, all forms base pairs with guanine, so that methyl cytosine to be unmeasured is not detected. It has become possible to selectively detect the presence or absence of cytosine methylation. Thereby, the selectivity for detection of cytosine methylation is greatly improved as compared with the conventional methylcytosine detection technique using an anti-methylcytosine antibody.
  • a nucleic acid containing a region to be measured is fragmented with a restriction enzyme, and then a nucleic acid fragment in the region to be measured is hybridized with a biotinylated single-stranded nucleic acid to recover the cytosine specific for the measurement.
  • Example 1 It is the figure in Example 1 which contrasted the measurement result of the surface plasmon resonance angle of methylated DNA and non-methylated DNA. It is the figure which contrasted the measurement result of the surface plasmon resonance angle of methylcytosine using various complementary nucleic acids in Example 2. It is a figure which shows the result of having measured the methylation rate of DNA in Example 3 by the enzyme immunoassay. In Example 4, it is a figure which shows the result of having measured the response by the enzyme immunoassay at the time of changing the quantity of complementary nucleic acids with respect to a measuring object nucleic acid.
  • FIG. 1 shows a procedure for measuring the methylation state of cytosine at a specific position in a nucleic acid sequence in the present invention.
  • genomic DNA is cleaved at an arbitrary position with a restriction enzyme.
  • the restriction enzyme to be used can be appropriately selected according to the base sequence of the measurement target region. For example, it is known that the AluI enzyme recognizes only 5′-AGCT-3 ′ and cleaves nucleic acids between GCs.
  • a fragment of the base sequence of the region to be measured is prepared with a restriction enzyme (FIG. 1-2).
  • the base sequence of the measurement target region is determined by the selection of the restriction enzyme. Next, biotinylated single-stranded nucleic acid is added (FIGS. 1-3). Biotin is used as a solid phase binding part.
  • the base sequence of the biotinylated nucleic acid is a base sequence that does not form a base pair with cytosine to be measured while having complementarity capable of forming a double strand with the nucleic acid of the measurement target region fragmented by a restriction enzyme. ing. Examples of such a base sequence include a base sequence obtained by removing only guanine that forms a base pair with cytosine to be measured from a base sequence that is a completely complementary strand of the nucleic acid to be measured.
  • the cytosine to be measured is placed in the DNA bulge.
  • the same can be done by replacing guanine that forms a base pair with cytosine to be measured in the completely complementary strand with cytosine, adenine, or thymine.
  • the cytosine to be measured is in a state where it cannot form a base pair. It is also possible to remove only the base site of guanine that forms a base pair with cytosine to be measured in the completely complementary strand, leaving deoxyribose to be an abasic site.
  • the cytosine to be measured is in a state where it cannot form a base pair in the formed double-stranded DNA.
  • the base sequence of the biotinylated nucleic acid forms a double strand with the nucleic acid to be measured, it is preferable that the end of the double strand nucleic acid is aligned so that it is called a blunt end with no unpaired base. .
  • the ends blunt it is possible to match the restriction enzyme cleavage site with the base sequence of the biotinylated single-stranded nucleic acid.
  • a blunt end is preferable when methylcytosine is present in an unpaired base protruding to the end of a double-stranded nucleic acid, the antibody binds to the methylcytosine and becomes higher than the actual methylation rate. . If an unpaired base was present at the end of the double-stranded nucleic acid, it would not be a direct problem since it would not be recognized by the anti-methylcytosine antibody unless the unpaired base is methylcytosine.
  • the biotinylated nucleic acid has the same or higher concentration than the fragmented nucleic acid to be measured. This is to reduce the probability that the nucleic acid to be measured will re-hybridize with the nucleic acid that originally formed a double strand. However, it is not preferable to add a large excess because the recovery rate on the solid phase will be lowered later.
  • the biotinylated nucleic acid to be added is preferably about 1 to 100 times the fragmented nucleic acid to be measured.
  • a nucleic acid to be measured is hybridized with a biotinylated single-stranded nucleic acid (FIGS. 1-4).
  • Tm value a melting temperature of the fragmented nucleic acid to be measured
  • the measurement target nucleic acid hybridized with the biotinylated single-stranded nucleic acid is recovered using an avidin-biotin bond (FIG. 1-5).
  • Biotin and avidin (and streptavidin) are known to bind tightly. It is convenient to immobilize avidin on the surface of the solid phase in advance according to the later measurement method. For example, in the surface plasmon resonance method, avidin is immobilized on the gold thin film surface.
  • the enzyme immunoassay is immobilized in a well of a microtiter plate made of polystyrene or polyvinyl chloride.
  • a method using magnetic beads with avidin immobilized thereon is also widely known.
  • As a method for immobilizing avidin conventionally known methods can be widely used.
  • nucleic acid mixture containing a biotinylated nucleic acid hybridized with a nucleic acid to be measured onto the avidin-immobilized substrate only the nucleic acid to be measured is selectively immobilized on the substrate by an avidin-biotin bond. . Thereafter, by washing the substrate, the non-measurement target nucleic acid that is not hybridized with the biotinylated nucleic acid is removed. Thereafter, an anti-methylcytosine antibody is bound to the nucleic acid to be measured which is hybridized with the biotinylated nucleic acid and immobilized on the substrate (FIGS. 1-6).
  • an anti-methylcytosine antibody In the surface plasmon resonance method, since a change in refractive index due to antibody binding is observed, the anti-methylcytosine antibody does not need to be labeled and can be detected as it is.
  • an anti-methylcytosine antibody In the enzyme immunoassay, an anti-methylcytosine antibody is labeled with an enzyme such as horseradish peroxidase in advance, or is detected by a secondary antibody method.
  • Example 1 the results of an experiment confirming that methylcytosine in DNA can be measured by the surface plasmon resonance method according to the present invention are shown.
  • a sensor chip used for surface plasmon resonance was manufactured as follows by bonding a polydimethylsiloxane substrate having a channel formed thereon and a glass substrate having a gold thin film.
  • a polydimethylsiloxane substrate is a mixture of a polydimethylsiloxane (PDMS) oligomer (manufactured by Corning) and a curing agent mixed with a substrate serving as a mold for a flow path (width 3 mm, length 10 mm, depth 20 ⁇ m) at 60 ° C. It was hardened by leaving it for a time. Then, it removed from the casting_mold
  • PDMS polydimethylsiloxane
  • a glass substrate having a gold thin film was prepared as follows.
  • a sticker with two 3 mm diameter holes was pasted on an 18 mm square BK7 glass substrate.
  • a magnetron sputtering apparatus manufactured by Nippon Seed
  • titanium was deposited to 3 nm on the glass substrate, and then a gold thin film was deposited to 50 nm.
  • the glass substrate having two gold thin films with a diameter of 3 mm was produced by peeling off the seal (FIG. 2-1).
  • Immobilization of avidin on the gold thin film surface was performed as follows. First, carboxylic acid decanethiol was dissolved in ethanol to prepare a 1 mM solution.
  • the gold thin film was washed with pure water and reacted with 0.1 mg / mL streptavidin (phosphate buffer, diluted with pH 7.4) at room temperature for 2 hours (FIG. 2-3). After washing with pure water, 1M ethanolamine (phosphate buffered saline, diluted with pH 7.4) was reacted at room temperature for 15 minutes to inactivate, and then washed with pure water. Finally, a sensor was formed by bonding a polydimethylsiloxane substrate having a channel formed thereon and a glass substrate having a gold thin film.
  • a fragmented sample of methylated genomic DNA was prepared as follows. ⁇ DNA (Takara Bio, code No. 3010, about 48000 bp) was used. Collect 440 ⁇ L of ⁇ DNA (stock solution 0.34 ⁇ g / ⁇ L), add 10 ⁇ L of AluI (Takara Bio) as a restriction enzyme and 50 ⁇ L of 10 ⁇ buffer attached to the restriction enzyme. Then, ⁇ DNA was fragmented by reacting at 37 ° C. for 4 hours. Thereafter, 2 ⁇ L (8 units) of an enzyme that methylates cytosine in the CpG region (M.
  • the enzyme-treated ⁇ DNA was treated as DNA in which the CpG region was methylated.
  • the DNA sequence is 5′-CTTTCCCGGAATTACGCCCAGATGAG-3 ′ (C at the 15th base from the 5 ′ end is methylcytosine) (SEQ ID NO: 1).
  • the CpG region to be measured was confirmed to be 99% or more methylated using a combined bisulfite restriction analysis (COBRA method) as a conventional method.
  • a fragmented sample was prepared in the same manner using Unmethylated ⁇ DNA (Promega, catalog number D1521) as ⁇ DNA in which CpG was not methylated.
  • This ⁇ DNA is deficient in dam and dcm methylase activities and is marketed as containing no methylcytosine.
  • the present inventors have confirmed by COBRA method that the methylation of the CpG region to be measured is 1% or less in the fragment DNA prepared using this ⁇ DNA.
  • the measurement was performed as follows.
  • the sensor chip produced above was attached to a surface plasmon resonance sensor (NTT Advanced Technology) via matching oil. Thereafter, a sample was introduced into the sensor using a syringe pump (CMA).
  • CMA syringe pump
  • a phosphate buffer containing 0.1% bovine serum albumin and 0.05% Tween 20
  • the fragmented ⁇ DNA to be measured and the biotinylated nucleic acid were mixed so that the final concentration was 935 pM.
  • the base sequence of the biotinylated nucleic acid used in this example is 5′-CTCATCTGGGCTAATTCCGGGAA AG-3 ′ (SEQ ID NO: 2), which corresponds to C at the 15th base from the 5 ′ end of the DNA sequence to be measured. Except for the lack of a base to be analyzed, the sequence is completely complementary to the sequence of the DNA to be measured, and has biotin at the 5 ′ end. After heating at 95 ° C for 5 minutes, it was gradually cooled to room temperature (Fig. 3-1).
  • a 10-fold dilution series was prepared using a phosphate buffer, and the diluted sample was introduced at a flow rate of 2 ⁇ L / min for 30 minutes to capture biotinylated nucleic acid with streptavidin in the sensor (FIG. 3-2).
  • the biotinylated nucleic acid can be captured only on the surface of the streptavidin-immobilized gold thin film.
  • phosphate buffer containing 0.1% bovine serum albumin and 0.05% Tween20
  • 10 ⁇ g / mL anti-methylcytosine antibody Aviva Systems Biology
  • streptavidin is immobilized only on one of the sensors, the change in the surface plasmon resonance angle on the gold thin film surface on which streptavidin is not immobilized can be considered as a non-specific adsorption amount other than the nucleic acid to be measured. it can.
  • the surface on which the streptavidin is not immobilized is not essential, but by using this, the amount of nonspecific adsorption can be easily estimated at the time of measurement.
  • Figure 4 shows the measurement results. It can be seen that in the ⁇ DNA methylated in the CpG region, the amount of change in the surface plasmon resonance angle increases as the sample concentration increases. However, the change in the surface plasmon resonance angle is small in unmethylated DNA. This is because the introduction of the anti-methyl cytosine antibody causes the anti-methyl cytosine antibody to bind to the methylated cytosine of the nucleic acid to be measured hybridized with the biotinylated nucleic acid, thereby increasing the refractive index of the gold thin film surface. Thus, in the method of the present invention, it is possible to measure whether cytosine in genomic DNA is methylated.
  • Example 2 the biotinylated nucleic acid used in the present invention is suitable to have a base sequence that does not form a base pair with cytosine to be measured.
  • DNA was prepared as follows. As the nucleic acid to be measured, 5′-TTG CGC GGC GTC CGT CCT GTT GAC TTC-3 (C at the 13th base from the 5 ′ end was methylcytosine) (SEQ ID NO: 3) was used. This measurement target nucleic acid and the following 6 types of biotinylated nucleic acids were hybridized in the same manner as in Example 1. 5'-GAA GTC AAC AGG AC In GAC GCC GCG CAA-3 ′ (SEQ ID NO: 4), the cytosine to be measured is designed to be placed in the bulge.
  • 5′-GAA GTC AAC AGG AC A GAC GCC GCG CAA-3 ′ the base to form a base pair with the cytosine to be measured is mismatched with A.
  • 5′-GAA GTC AAC AGG AC T GAC GCC GCG CAA-3 ′ the base that should form a base pair with the cytosine to be measured is T, resulting in a mismatch.
  • 5′-GAA GTC AAC AGG AC C GAC GCC GCG CAA-3 ′ SEQ ID NO: 7
  • the base to form a base pair with the cytosine to be measured is C, which is a mismatch.
  • a sensor chip (Sensor chip SA, GE Healthcare) on which Biacore T100 (GE Healthcare) and streptavidin were immobilized was used as a surface plasmon resonance measuring instrument.
  • a sensor chip (Sensor chip SA, GE Healthcare) on which Biacore T100 (GE Healthcare) and streptavidin were immobilized was used as a surface plasmon resonance measuring instrument.
  • 1 nM DNA in which double strands were formed was captured on the sensor surface by feeding it to the sensor chip at 10 ⁇ L / min for 30 minutes.
  • anti-methylcytosine antibodies having various concentrations (0.25, 0.5, 1, 2.5, 5, 10, 25, 50 nM) were fed at 10 ⁇ L / min for 10 minutes.
  • GE Healthcare HBS-EP buffer pH7.4, 10 mM HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05% v / v Surfactant P20 included
  • a buffer containing no antibody was fed at 10 ⁇ L / min for 5 minutes.
  • 50 mM Gly-NaOH pH 10.6 was fed as a regeneration solution at 60 ⁇ L / min for 30 seconds. Under the conditions of this regeneration solution, it has been confirmed that the antigen-antibody reaction is dissociated while maintaining the double strand of DNA, and the antibody can be repeatedly sent.
  • FIG. 5 shows the measurement results.
  • the greatest response was obtained when methylcytosine was placed in the bulge.
  • a large response was also obtained when the site where a base pair was to be formed with methylcytosine was an abasic site (called AP site).
  • AP site abasic site
  • the binding of anti-methylcytosine antibody was not observed at all on the double strand of the completely complementary strand. It was found that a slight response can be obtained even when a site where a base pair should be formed with methylcytosine is adenine, cytosine, or thymine, and these are also applicable to the present invention.
  • the results of this example clearly show that the base sequence of the biotinylated nucleic acid used in the present invention needs to have a base sequence that does not form a base pair with the cytosine to be measured.
  • Example 3 In this example, experimental results confirming that the methylation rate of cytosine in DNA can be measured by enzyme immunoassay by the method of the present invention are shown.
  • ⁇ DNA was fragmented and used as the DNA to be measured.
  • a DNA sample in which all CpG regions were methylated was prepared by performing methylation with an enzyme in the same manner as in Example 1. Further, as a DNA sample in which all CpG regions were not methylated, unmethylated DNA (Promega, catalog number D1521) was fragmented and used in the same manner as in Example 1. By mixing these, DNA sample samples having methylation rates of 0, 25, 50, 75, and 100% were prepared. These DNAs were mixed with the same biotinylated nucleic acid as in Example 1, heated at 95 ° C. for 5 minutes, and then slowly cooled to room temperature.
  • Enzyme immunoassay was performed as follows. Streptavidin-coated plates (Sumitomo Bakelite) were prepared, and 200 ⁇ L of DNA sample was introduced into each well. Wash 3 times with 300 ⁇ L buffer (containing phosphate buffered saline, pH 7.4, 0.05% tween20), add 1 ⁇ g / mL horseradish peroxidase-labeled anti-methylcytosine antibody in 50 ⁇ L aliquots, seal 37 The reaction was allowed for 30 minutes. After washing 4 times with 300 ⁇ L of buffer, 50 ⁇ L of tetramethylbenzidine solution (Bethyl Laboratories) was added and allowed to react for 10 minutes while protected from light. The reaction was stopped by adding 50 ⁇ L of 2N hydrochloric acid solution, and the absorbance at 450 nm was measured with a microplate reader (BioRad model 680).
  • Figure 6 shows the measurement results. As the methylation rate increased, an increase in absorbance was confirmed. Thus, it was found that the methylation rate of cytosine in DNA can be measured by enzyme immunoassay according to the present invention.
  • Example 4 it is shown that it is appropriate to add biotinylated single-stranded nucleic acid in an amount of 1 to 100 times the concentration of the nucleic acid fragment to be measured in the method of the present invention.
  • 5'-CTTTCCCGGAATTACGCCCAGATGAG-3 '(C at the 15th base from the 5' end was methylcytosine) (SEQ ID NO: 1) was used.
  • Mix DNA (5'-CTCATCTGGGCGTAATTCCGGGAAAG-3 ') (SEQ ID NO: 10), which is the completely complementary strand with this measurement target, at the same concentration (1nM), heat at 95 ° C for 5 minutes, and cool slowly to room temperature. Thus, double strands of completely complementary strands were formed.
  • Biotinylated nucleic acid (5 '-(biotin) CTCATCTGGGCTAATTCCGGGAA AG-3', from the 5 'end of the DNA to be measured so that the final concentration is 0, 0.5, 1, 5, 10, 50, 100 nM
  • heat again at 95 ° C for 5 minutes slowly cool to room temperature, and then measure DNA with methylcytosine and biotin Hybridized with activated nucleic acid. Then, it measured by the enzyme immunoassay similarly to Example 3.
  • the measurement results are shown in FIG. A greater response can be obtained by increasing the amount of biotinylated nucleic acid relative to the nucleic acid to be measured. This is because the ratio of the nucleic acid to be measured that hybridizes with the biotinylated nucleic acid increases. However, if it is too much, the recovery rate of the biotinylated nucleic acid is decreased and the response is decreased. Under these conditions, it was found that about 100 times from the same concentration as the nucleic acid to be measured was good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 抗メチルシトシン抗体を用いたメチルシトシンの検出法を用いて、ゲノムDNAにおける特定のシトシンのメチル化を選択的に検出し、その定量性および信頼性を向上させる手法を提供する。 核酸中に含まれる特定の位置のシトシンのメチル化状態を検出する方法であって、 核酸を制限酵素により断片化する工程と、 該断片化核酸と、該断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸との間で2本鎖核酸を形成させる工程と、 該2本鎖核酸を該固相結合部を用いて固相上に結合させる工程と、 該固相上で該2本鎖核酸への抗体の結合量を測定する工程、 を有する方法。 これにより、測定対象のシトシン以外はすべてグアニンと塩基対を形成し、抗体により検出されないこととなり、長大なゲノムから測定対象の塩基配列部分の特定のシトシンのメチル化の有無を選択的に検出することが可能となる。

Description

メチルシトシン検出法
 本発明は、核酸中に含まれる特定の位置のシトシンのメチル化状態を検出する生体分子検出技術に関する。
 エピジェネティックスの一例であるゲノムのメチル化修飾は、大腸菌から植物、脊椎動物まで広範囲にわたる生物種で見られ、様々な生命現象に関係していることが明らかになりつつある。特に哺乳類では、個体発生や細胞分化、がん化などの観点からも重要な研究領域になってきており、遺伝子のプロモーター領域にあるCpGアイランドのメチル化により、癌抑制遺伝子が不活性化されることがしられている。
 ゲノムのメチル化は、具体的には核酸に含まれるシトシンがメチル化されることにより生じる。この核酸中に含まれるシトシンのメチル化状態を検出する方法として、現在、最も一般的に用いられているbisulfite法は、試料となる核酸にbisulfite処理を行なうとメチルシトシンは変換されず、シトシンのみがウラシルに変換されることを利用した方法である(特許文献1及び2)。Bisulfite処理後、PCRを行い、シーケンシングするとウラシルはチミンとして検出され、メチルシトシンはシトシンとして検出される。処理前後で生じるシトシンとチミン(ウラシル)の差異から、メチル化の有無や位置を決定することが出来る。しかしながら、bisulfite法の欠点は、シーケンスの操作が煩雑であることや、完全修飾に長時間の反応時間を要すこと(一般的には十数時間)、またその処理による脱プリン反応が起こったり、サンプルの断片化が進んだりすることが多く、手法の改善が求められている。
 これとは別の方法として、抗メチルシトシン抗体を用いたメチルシトシンの定量方法が報告されている(特許文献3)。しかしながら、この抗体を用いたメチルシトシンの定量方法では、目的核酸に含まれるメチルシトシンの総量を測定することは可能であるものの、塩基配列のどの位置のシトシンがメチル化されているのかを知ることができない。遺伝子の発現にはシトシンのメチル化頻度とともに、どのシトシンがメチル化されているかが極めて重要である。
 近年、本発明者らは、抗メチルシトシン抗体を用いて塩基配列の特定の位置のシトシンのメチル化を選択的に定量する方法を、合成オリゴマーによる実験結果と共に報告した(特許文献4)。この方法は、核酸中の測定対象となる特定の位置のシトシンを、当該核酸が相補鎖とハイブリダイズする際に不対合により形成されるDNAバルジ内に配置させ、当該核酸への抗シトシンもしくは抗メチルシトシン抗体の結合量を測定するものであり、これにより、測定対象のシトシンがメチル化しているか否かを判別することができる。
特開2006-238701 特開2004-008217 特許3854943 特開2012-230019
 上述の、核酸中の測定対象となる特定のシトシンを当該核酸と相補鎖とのハイブリダイズの際に形成されるDNAバルジ内に配置させ、当該核酸への抗体の結合量を測定することにより、測定対象のシトシンがメチル化しているか否かを判別する方法は、合成したオリゴマーでの実験に於いては当該シトシンのメチル化を良好に検出できるものの、このままでは、実際の分析対象となるゲノムDNAを用いた場合には、特定のシトシンのメチル化を検出することは困難である。これは、ゲノム試料中には、目的とする塩基配列以外のDNAが多量に存在するため、相補鎖とハイブリダイズする領域以外にメチル化したシトシンが存在する可能性があり、このようなメチル化シトシンにも上記抗体が結合するため、特定部位のメチル化シトシンのみを選択的に検出することが困難なためである。
 本発明は、上記発明が有するこの欠点を解消し、抗メチルシトシン抗体を用いたメチルシトシンの検出法を用いて、ゲノムDNAにおける特定のシトシンのメチル化を選択的に検出し、その定量性および信頼性を向上させる手法を提供することを目的とする。
 本発明者らは、以下の様にして、ゲノムDNAにおける特定のシトシンのメチル化を選択的に検出することに成功した。
 先ず、測定対象のゲノムDNA試料に制限酵素を加えることにより、DNAを断片化した。生成するそれぞれのDNA断片の核酸配列は、用いる制限酵素によって定まる。これにより、測定対象の特定の位置のシトシンを含む、特定の配列からなる測定対象核酸を、ゲノムからその断片として切り出すことができる。
 なお、従来、DNAの断片化では、超音波などが用いられてきたが、このような方法では、不特定多数の断片が発生するため、後に特定の配列を増幅させるPCR法などでは特段問題にならないものの、以下に述べるとおり、測定対象核酸と相補性を有する核酸を検出試薬として用いる、本発明のメチルシトシン検出法には適していない。
 その後、測定対象核酸と、測定対象のシトシンが塩基対を形成すべき塩基以外が当該測定対象核酸と相補的な配列を有する1本鎖核酸とを混合し、ハイブリダイズさせて、2本鎖DNAを形成させた。
 当該1本鎖核酸の塩基配列は、測定対象核酸と2本鎖を形成出来る相補性と長さを有しつつ、測定対象シトシンとは塩基対を形成しない配列とする。また、形成する2本鎖DNAの末端に不対塩基が残らないように、制限酵素による切断によって生じる測定対象核酸の末端配列を考慮して設計する。
 その後、形成された2本鎖DNAを、1本鎖核酸に設けた固相結合部を介して、固相に結合させることにより、固相上に回収した。残りのDNA断片は、洗浄により除去する。
 その後、固相上に結合された2本鎖DNAを抗体と反応させた。
 相補核酸と2本鎖を形成することにより、測定対象核酸の非測定対象位置にメチルシトシンが存在していたとしても、当該メチルシトシンはグアニンと塩基対を形成することで抗体に認識される可能性が大幅に減少する。一方、塩基対を形成していない測定対象位置のメチルシトシンは、高効率の抗原抗体反応により認識される。これによって、選択的にゲノムDNAにおける特定シトシンのメチル化状態を検出することができた。
 本発明の各工程について、より詳細に説明すると、以下のとおりである。
(1)測定対象である核酸を、制限酵素で切断し断片化する。
 特定の塩基配列を認識し、核酸を切断する制限酵素は様々なものが知られているが、測定対象となる塩基配列を挟むように切断される制限酵素を選択する。なお用いる制限酵素は1つでも良いし、2つの組み合わせでも良い。
(2)目的とする塩基配列と2本鎖を形成しつつ測定対象のシトシンが塩基対を形成しないように設計された塩基配列を有する1本鎖核酸を加えてハイブリダイゼーションを行う。
 通常、ゲノムDNAは生体内では2本鎖を形成している。このため1本鎖核酸を加えた後、断片化された核酸の融解温度以上に一旦加熱し1本鎖とし、再度徐冷することで、1本鎖核酸とハイブリダイゼーションさせることが望ましい。さらに、1本鎖核酸と高効率にハイブリダイゼーションさせるために、1本鎖核酸を測定対象核酸に対し過剰に加えることが好ましい。さらに、1本鎖核酸の塩基配列は、形成される2本鎖DNAの末端に不対塩基が残らないように、制限酵素との組み合わせを考慮して設計する。なお、上記1本鎖核酸は、後ほど固相上に回収するために固相結合部も併せ持つようにする。
(3)測定対象とハイブリダイゼーションした固相結合部を有する2本鎖核酸を、固相結合部を利用して回収する。
 回収する際には、その後の検出法に合わせた固相を用意しておくとよい。例えば、表面プラズモン共鳴法では、金や銀薄膜上へ回収することが望ましい。マイクロタイタープレートのウエルへ回収し、酵素免疫測定法として検出しても良い。基板のような平坦のものだけでなく、ポリスチレンや磁性を有する粒子上に回収しても良い。
(4)抗体を導入し、結合した抗体量を検出することにより、シトシンのメチル化率を測定する。
 例えば抗メチルシトシン抗体を加えるのであれば、測定対象のシトシンがメチル化されていれば、2本鎖核酸へ抗メチルシトシン抗体が結合することになる。表面プラズモン共鳴法では、抗体を酵素や蛍光体で標識することなく、屈折率の変化から検出することが可能である。また、従来のイムノアッセイ法に用いられてきた一般的手法を幅広く用いることが可能である。当業者には自明であるが、例えば、抗体を酵素や蛍光体、放射性同位体、金属ナノ粒子で標識する方法がある。また、これら標識した2次抗体を導入しての検出も可能である。
 すなわち、この出願は以下の発明を提供するものである。
〈1〉核酸中に含まれる特定の位置のシトシンのメチル化状態を検出する方法であって、
 核酸を制限酵素により断片化する工程と、
 該断片化核酸と、該断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸との間で2本鎖核酸を形成させる工程と、
 該2本鎖核酸を該固相結合部を用いて固相上に結合させる工程と、
 該固相上で該2本鎖核酸への抗体の結合量を測定する工程、
を有する方法。
〈2〉抗体が抗メチルシトシン抗体であることを特徴とする、〈1〉に記載の方法。
〈3〉固相結合部がビオチンであり、固相がアビジンであることを特徴とする、〈1〉または〈2〉に記載の方法。
〈4〉2本鎖核酸への抗体の結合量を、表面プラズモン共鳴法により抗体の結合を検出することによって、測定することを特徴とする、〈1〉~〈3〉のいずれかに記載の方法。
〈5〉2本鎖核酸への抗体の結合量を、抗体として西洋わさびペルオキシターゼを標識した抗体を用い、該抗体を結合させた後、該西洋わさびペルオキシターゼの基質を加え、該西洋わさびペルオキシターゼの反応生成物による吸光度変化を検出することによって、測定することを特徴とする、〈1〉~〈3〉に記載の方法。
〈6〉断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列として、測定対象のシトシンと塩基対を形成するべき箇所が脱塩基部位となっている塩基配列を有する1本鎖核酸を用いることを特徴とする、〈1〉~〈5〉に記載の方法。
〈7〉断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列として、2本鎖核酸の形成時に、測定対象のシトシンがバルジ構造内に配置される塩基配列を有する1本鎖核酸を用いることを特徴とする、〈1〉~〈5〉に記載の方法。
〈8〉断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列として、測定対象のシトシンと塩基対を形成するべき箇所がアデニン、シトシン、もしくはチミンとなっている塩基配列を有する1本鎖核酸を用いることを特徴とする、〈1〉~〈5〉に記載の方法。
〈9〉断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸を、測定対象の断片化核酸濃度の1倍以上100倍以下の量、加えて、2本鎖形成させることを特徴とする、〈1〉~〈8〉のいずれかに記載の方法。
〈10〉断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸の塩基配列が、制限酵素で断片化された測定対象核酸と2本鎖を形成した際に、該2本鎖核酸が平滑末端を形成する塩基配列であることを特徴とする、〈1〉~〈9〉に記載の方法。
〈11〉制限酵素と、測定対象の断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及びビオチンを有する1本鎖核酸と、抗メチルシトシン抗体と、固相化したアビジンを組み合わせて構成される、核酸配列中のメチルシトシン検出用キット。
 従来の、核酸中の測定対象となる特定のシトシンを当該核酸と相補鎖とのハイブリダイズの際に形成されるDNAバルジ内に配置させ、当該核酸への抗体の結合量を測定することにより、測定対象のシトシンがメチル化しているか否かを判別する方法では、相補鎖と不対合のメチルシトシンはすべて抗メチルシトシン抗体により認識されてしまうため、実際の分析対象となるゲノムDNAなどのDNA試料での特定のシトシンのメチル化の選択的な検出は困難であり、産業上の利用価値に乏しかった。
 本発明により、測定対象のシトシン以外はすべてグアニンと塩基対を形成することとなり、これによって非測定対象のメチルシトシンは検出されないこととなったため、長大なゲノムから測定対象の塩基配列部分の特定のシトシンのメチル化の有無を選択的に検出することが可能になった。これにより、従来の抗メチルシトシン抗体を用いたメチルシトシン検出技術に比べ、シトシンのメチル化の検出の選択性は大幅に向上する。
本発明により、測定対象領域を含む核酸を制限酵素により断片化した後、測定対象領域の核酸断片をビオチン化された1本鎖核酸とハイブリダイズさせて回収し、測定対象の特定のシトシンを抗メチルシトシン抗体で検出する手順を示す模式図である。 本発明における抗原抗体反応の測定を、表面プラズモン共鳴法を用いて行う際の、センサの作製手順を示す模式図である。 本発明における抗原抗体反応の測定を、表面プラズモン共鳴法を用いて行う際の、測定手順を示す模式図である。 実施例1における、メチル化DNAおよび非メチル化DNAの表面プラズモン共鳴角度の測定結果を対比した図である。 実施例2における、各種相補核酸を用いた、メチルシトシンの表面プラズモン共鳴角度の測定結果を対比した図である。 実施例3における、DNAのメチル化率を酵素免疫測定法によって測定した結果を示す図である。 実施例4における、測定対象核酸に対する相補核酸の量を変化させた際の酵素免疫測定法による応答を測定した結果を示す図である。
 本発明における、核酸配列中の特定の位置のシトシンのメチル化状態の測定手順を図1に示す。
 本発明では、ゲノム中の測定対象となる塩基配列を有する核酸(図1-1)のみを選択的に測定するにあたり、先ず制限酵素によりゲノムDNAを任意の位置で切断する。用いる制限酵素は、測定対象領域の塩基配列に合わせて適宜選択することが可能である。例えば、AluI酵素では、5’-AGCT-3’のみを認識し、G-C間の核酸を切断することが知られている。制限酵素により、測定対象領域の塩基配列の断片を作製する(図1-2)。制限酵素の選択により、測定対象領域の塩基配列が定まる。
 次にビオチン化した1本鎖核酸を加える(図1-3)。ビオチンは固相結合部として用いている。該ビオチン化核酸の塩基配列は、制限酵素により断片化された測定対象領域の核酸と2本鎖を形成できる相補性を有しつつ、測定対象のシトシンとは塩基対を形成しない塩基配列となっている。このような塩基配列としては、例えば、測定対象核酸の完全相補鎖である塩基配列から、測定対象のシトシンと塩基対を形成するグアニンのみを除去した塩基配列が挙げられる。この場合、形成される2本鎖DNAでは、測定対象シトシンは、DNAバルジ内に配置されることになる。また、同様のことは、完全相補鎖内の測定対象のシトシンと塩基対を形成するグアニンを、シトシンやアデニン、チミンと置き換えることでも可能である。この場合、形成される2本鎖DNAでは、測定対象シトシンは塩基対を形成できない状態となっている。また、完全相補鎖内の測定対象のシトシンと塩基対を形成するグアニンの塩基部位のみを除去してデオキシリボースを残し、脱塩基部位とすることも可能である。この場合も、形成される2本鎖DNAでは、測定対象シトシンは塩基対を形成できない状態となっている。
 さらに、該ビオチン化核酸の塩基配列は、測定対象核酸と2本鎖を形成した際に、2本鎖核酸の末端を揃えることで不対塩基が存在しない平滑末端と呼ばれる状態にせしめることが好ましい。平滑末端にするには、制限酵素の切断箇所と、ビオチン化した1本鎖核酸の塩基配列を合わせることにより可能である。平滑末端が好ましい理由としては、2本鎖核酸の末端に飛び出した不対塩基中にメチルシトシンが存在すると、そのメチルシトシンに抗体が結合し、実際のメチル化率よりも高値になるためである。仮に2本鎖核酸の末端に不対塩基が存在したとても、その不対塩基がメチルシトシンでなければ抗メチルシトシン抗体に認識されないので直接問題とはならない。しかしながら、上述したように制限酵素と、ビオチン化した1本鎖核酸の塩基配列の組み合わせにより、平滑末端を形成することは比較的容易であり、2本鎖DNAの末端に不対塩基がないことが好ましい。
 さらに、該ビオチン化核酸は、断片化された測定対象核酸の濃度と同じ、もしくは多くする方が好ましい。これは、測定対象核酸が、元々2本鎖を形成していた核酸と、再ハイブリダイゼーションする確率を減らすためである。しかしながら、大過剰に加えると、後に固相上での回収率が低下するため好ましくない。このため、加えるビオチン化核酸は、断片化された測定対象核酸の1~100倍程度が好ましい。
 測定対象核酸とビオチン化した1本鎖核酸をハイブリダイゼーションさせる(図1-4)。ハイブリダイゼーションさせる方法としては、一旦、測定対象となる断片化核酸の融解温度(Tm値と呼ばれる)以上に加熱し、その後徐冷する。徐冷の際には、Tm値付近で30分程度保持することにより、ハイブリダイゼーションの特異性が向上する。
 その後、ビオチン化した1本鎖核酸とハイブリダイゼーションした測定対象核酸をアビジン-ビオチン結合を用いて回収する(図1-5)。ビオチンとアビジン(およびストレプトアビジン)は強固に結合することが知られている。アビジンは、後の測定方法に合わせて、予め固相表面に固定化しておくと便利である。例えば表面プラズモン共鳴法では、金薄膜表面にアビジンを固定化する。酵素免疫測定法は、ポリスチレンやポリビニルクロライド製のマイクロタイタープレートのウエル内に固定化する。また、アビジンを固定化した磁性ビーズを用いる方法も広く知られている。なお、アビジンの固定化方法については従来知られている手法を幅広く用いることが出来る。
 上記、アビジン固定化基板上に、測定対象核酸とハイブリダイズしたビオチン化核酸を含む核酸混合物を導入することにより、アビジン-ビオチン結合によって、測定対象核酸のみが選択的に基板上に固定化される。その後、基板を洗浄することにより、ビオチン化した核酸とハイブリダイゼーションしていない、非測定対象核酸は除去される。
 その後、ビオチン化核酸とハイブリダイズし、基板上に固定化された測定対象核酸に、抗メチルシトシン抗体を結合させる(図1-6)。表面プラズモン共鳴法では、抗体の結合による屈折率変化を観測するので、抗メチルシトシン抗体は標識する必要はなく、そのままで検出可能である。酵素免疫測定法では、予め抗メチルシトシン抗体を西洋わさびペルオキシターゼなどの酵素で標識しておくか、2次抗体法により検出する。
 次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 本実施例では、本発明によってDNA中のメチルシトシンを、表面プラズモン共鳴法により測定可能であることを確認した実験結果を示す。
 表面プラズモン共鳴に用いるセンサチップは、流路を形成したポリジメチルシロキサン基板と金薄膜を有するガラス基板を貼り合わせることにより、以下の様に作製した。
 ポリジメチルシロキサン基板は、流路(幅3mm、長さ10mm、深さ20μm)の鋳型となる基板にポリジメチルシロキサン(PDMS)のオリゴマー(コーニング社製)と硬化剤を混合し、60℃で2時間放置することにより硬化させた。その後、鋳型からはずし、流路を有するPDMS基板を得た。
 金薄膜を有するガラス基板は、以下の様に作製した。18mm角のBK7ガラス基板上に、直径3mmの穴を2つ開けたシールを貼った。その後、マグネトロンスパッタ装置(日本シード社製)を用いて、該ガラス基板上にチタンを3nm堆積させた後、さらに金薄膜を50nm堆積させた。マグネトロンスパッタ装置から取り出した後、シールを剥がすことにより、直径3mmの金薄膜を2つ有するガラス基板を作製した(図2-1)。
 金薄膜表面へのアビジンの固定化は、以下の様に行った。まず、エタノールにカルボン酸デカンチオールを溶解させて1mM溶液を作製した。該溶液に金薄膜を有するガラス基板を一晩浸漬することにより、金―チオール結合により、金表面をカルボン酸デカンチオールで修飾した(図2-2)。その後、5mMのN-ヒドロキシスルフォスクシンイミドと40mMのN,N’-diisopropylcarbodiimideを含むMESバッファ(pH6.0)を5μL、金薄膜の一方にのみ滴下し、室温で30分反応させることで、カルボン酸デカンチオールのカルボキシル基を活性化した。その後、純水で金薄膜を洗浄し、0.1mg/mLのストレプトアビジン(リン酸緩衝液,pH7.4で希釈)を室温で二時間反応させた(図2-3)。純水で洗浄後、1Mエタノールアミン(リン酸緩衝生理食塩水,pH7.4で希釈)を室温で15min反応させ不活化後、純水で洗浄した。最後に、流路を形成したポリジメチルシロキサン基板と金薄膜を有するガラス基板を貼り合わせることにより、センサ化した。
 メチル化したゲノムDNAの断片化試料は、以下の様に調製した。λDNA(タカラバイオ社、code No.3010、約48000bp)を用いた。λDNA(原液0.34μg/μL)440μLを採取し、制限酵素としてAluI(タカラバイオ社)を10μLと制限酵素に付属の10×bufferを50μL入れる。その後、37℃で4時間反応させることにより、λDNAを断片化した。その後、CpG領域にあるシトシンをメチル化する酵素(M.SssI、ニューイングランドバイオラボ社)を2μL(8unit)と、S-adenosylmethionine(原液32mM)を10μLいれて、一晩反応させる。本酵素処理したλDNAをCpG領域がメチル化したDNAとして扱った。当該DNAの配列は、5’-CTTTCCCGGAATTACGCCCAGATGAG-3’(5’末端から15塩基目のCはメチルシトシン)(配列番号1)である。なお、測定対象のCpG領域が99%以上メチル化していることを、従来法としてCombined Bisulfite Restriction Analysis(COBRA法)を用いて確認した。
 一方、CpGがメチル化されてないλDNAとしてUnmethylated λDNA(プロメガ社、カタログ番号D1521)を用い、同様に断片化試料を調製した。本λDNAはdamおよびdcmメチラーゼ活性が欠損しており、メチルシトシンを含んでいないものとして販売されているものである。
 なお、本発明者らも、このλDNAを用いて調製した断片DNAにおいては、測定対象のCpG領域のメチル化が1%以下であることを、COBRA法で確認している。
 測定は以下の様に行った。上記で作製したセンサチップを表面プラズモン共鳴センサ(NTTアドバンステクノロジ社)にマッチングオイルを介して取り付けた。その後、シリンジポンプ(CMA社)を用いてセンサに試料を導入した。なお本測定ではリン酸緩衝液(0.1%ウシ血清アルブミン,0.05% Tween20を含む)を用いている。先ず、測定対象の断片化λDNAとビオチン化核酸の終濃度が935pMになるように混合した。なお、本実施例で用いたビオチン化核酸の塩基配列は、5’-CTCATCTGGGCTAATTCCGGGAA AG-3’(配列番号2)であり、測定対象のDNAの配列の5’末端から15塩基目のCに対応する塩基が欠如している以外は、測定対象のDNAの配列と完全に相補的な配列であり、5’末端にビオチンを有するものである。95℃で5分間加熱後、徐冷して室温にした(図3-1)。
 リン酸緩衝液を用いて10倍希釈系列を作製し、希釈した試料を流速2μL/分で30分間導入することにより、ビオチン化核酸をセンサ内のストレプトアビジンで捕捉した(図3-2)。なお、センサの一方にのみストレプトアビジンを固定化しておくことで、ストレプトアビジン固定化金薄膜表面のみでビオチン化核酸を捕捉可能である。
 ランニングバッファとして、リン酸緩衝液(0.1%ウシ血清アルブミン,0.05% Tween20を含む)をセンサに15分間導入し、洗浄してセンサの応答を安定させた後、10μg/mLの抗メチルシトシン抗体(Aviva Systems Biology社)を導入し、センサ内に捕捉されたビオチン化核酸への抗体の結合量を表面プラズモン共鳴角度の変化として観測した。なお、センサの一方にのみストレプトアビジンを固定化してあるため、ストレプトアビジンが固定化されていない金薄膜表面での表面プラズモン共鳴角度の変化を、測定対象核酸以外による非特異吸着量として考えることができる。このストレプトアビジンを固定化していない表面は必須ではないが、これを用いることで、非特異吸着量を測定時に簡便に見積もることができる。
 図4に測定結果を示す。CpG領域をメチル化したλDNAでは、試料濃度の増加に伴い表面プラズモン共鳴角度の変化量が増加していることがわかる。しかしながら、非メチル化DNAでは表面プラズモン共鳴角度の変化は小さい。これらは、抗メチルシトシン抗体の導入により、抗メチルシトシン抗体がビオチン化核酸とハイブリダイゼーションした測定対象核酸のメチル化シトシンに結合し、金薄膜表面の屈折率が上昇したためである。このように、本発明の方法ではゲノムDNA中のシトシンがメチル化しているか否かを計測可能である。
(実施例2)
 本実施例では、本発明で用いるビオチン化核酸ついて、測定対象のシトシンと塩基対を形成しない塩基配列にすることが適していることを示す。
 DNAの調製は以下の様に行った。測定対象核酸として5’-TTG CGC GGC GTC CGT CCT GTT GAC TTC-3(5’末端から13塩基目のCはメチルシトシン)(配列番号3)を用いた。この測定対象核酸と以下の6種類のビオチン化核酸とを、実施例1と同様の手順で、おのおのハイブリダイゼーションさせた。
 5’-GAA GTC AAC AGG AC  GAC GCC GCG CAA-3’(配列番号4)では、測定対象シトシンはバルジ内に配置されるように設計されている。
 5’-GAA GTC AAC AGG ACA GAC GCC GCG CAA-3’(配列番号5)では、測定対象シトシンと塩基対を形成すべき塩基がAとなってミスマッチになっている。
 5’-GAA GTC AAC AGG ACT GAC GCC GCG CAA-3’(配列番号6)では、測定対象シトシンと塩基対を形成すべき塩基がTとなってミスマッチになっている。
 5’-GAA GTC AAC AGG ACC GAC GCC GCG CAA-3’(配列番号7)では、測定対象シトシンと塩基対を形成すべき塩基がCとなってミスマッチになっている。
 5’-GAA GTC AAC AGG ACd GAC GCC GCG CAA-3’(配列番号8)では、測定対象シトシンと塩基対を形成すべき塩基が脱塩基部位(AP siteと呼ばれる)となってミスマッチになっている。
 5’-GAA GTC AAC AGG ACG GAC GCC GCG CAA-3’(配列番号9)では、測定対象シトシンと塩基対を形成すべき塩基がGとなって、完全相補鎖になっている。
 本実施例では、表面プラズモン共鳴測定器として、Biacore T100(GEヘルスケア社)とストレプトアビジンが固定化されたセンサチップ(Sensor chip SA,GEヘルスケア社)を用いた。
 まず、2本鎖を形成させた1nMのDNAを30分間,10μL/分でセンサチップへ送液することでセンサ表面に捕捉した。その後、各種濃度(0.25,0.5,1,2.5,5,10,25,50nM)の抗メチルシトシン抗体を10分間,10μL/分で送液した。なお、ランニングバッファとして、GEヘルスケア社のHBS-EPバッファ(pH7.4,10mM HEPES,0.15M NaCl,3mM EDTA,0.05%v/v Surfactant P20を含む)を用いた。その後、抗体を含まないバッファを5分間,10μL/分で送液した。その後、再生溶液として、50mM Gly-NaOH(pH10.6)を30秒,60μL/minで送液した。本再生溶液の条件では、DNAの2本鎖は維持しつつ、抗原抗体反応が解離することを確認してあり、繰り返し抗体の送液が可能である。
 図5に測定結果を示す。メチルシトシンがバルジ内に配置されている場合に最も大きなレスポンスが得られた。また、メチルシトシンと塩基対を形成すべき箇所が脱塩基部位(AP siteと呼ばれる)である場合にも、大きなレスポンスが得られた。これらに対し、完全相補鎖の2本鎖に対しては、抗メチルシトシン抗体の結合は全く見られなかった。メチルシトシンと塩基対を形成すべき箇所が、アデニンやシトシン、チミンである場合に於いても若干のレスポンスを得ることが可能であり、これらも本発明に適用可能であることがわかった。
 本実施例の結果は、本発明で用いるビオチン化核酸の塩基配列は、測定対象のシトシンと塩基対を形成しない塩基配列を有することが必要であることを明確に示している。
(実施例3)
 本実施例では、本発明の方法によってDNA中のシトシンのメチル化率を、酵素免疫測定法により測定可能であることを確認した実験結果を示す。
 測定対象DNAとしてλDNAを断片化して、用いた。すべてのCpG領域がメチル化されているDNA試料を、実施例1と同様に酵素によりメチル化を行うことにより調製した。また、すべてのCpG領域がメチル化されていないDNA試料として、実施例1と同様に、Unmethylated λDNA(プロメガ社、カタログ番号D1521)を断片化して、用いた。これらを混合することにより、メチル化率が、0,25,50,75,100%となるDNA試料サンプルを作製した。これらのDNAに実施例1と同じビオチン化核酸を混合し、95℃で5分間加熱後、徐冷して室温にした。
 酵素免疫測定法は以下の様におこなった。ストレプトアビジンコート済みプレート(住友ベークライト)を準備し、各ウエルに200μLずつDNA試料を導入した。300μLのバッファ(リン酸緩衝生理食塩水,pH7.4、0.05% tween20を含む)で3回洗浄し、1μg/mLの西洋わさびペルオキシターゼ標識の抗メチルシトシン抗体を50μLずつ加え、シールをして37度で30分反応させた。300μLのバッファで4回洗浄し、テトラメチルベンジジン溶液(Bethyl Laboratories社)を50μL加え、遮光して10分間反応させた。2N塩酸溶液を50μL加えて反応を停止させ、マイクロプレートリーダー(BioRad model 680)で450nmの吸光度を計測した。
 図6に測定結果を示す。メチル化率の上昇に伴い、吸光度の増加が確認された。これにより、本発明によって、DNA中のシトシンのメチル化率を酵素免疫測定法により測定可能であることがわかった。
(実施例4)
 本実施例では、本発明の方法においては、ビオチン化1本鎖核酸を、測定対象となる核酸断片濃度の1倍以上100倍以下の量、加えることが適当であることを示す。
 測定対象DNAとして5’-CTTTCCCGGAATTACGCCCAGATGAG-3’(5’末端から15塩基目のCはメチルシトシン)(配列番号1)を用いた。本測定対象と完全相補鎖であるDNA(5’-CTCATCTGGGCGTAATTCCGGGAAAG-3’)(配列番号10)を同濃度(1nM)で混合し、95℃で5分間加熱後、徐冷して室温にすることで、完全相補鎖の2本鎖を形成させた。上記2本鎖DNAに終濃度が0,0.5,1,5,10,50,100nMとなるようにビオチン化核酸(5’-(biotin)CTCATCTGGGCTAATTCCGGGAA AG-3’、測定対象DNAの5’末端から15塩基目のCに対応する相補塩基Gが欠如(配列番号2))を加え、再度95℃で5分間加熱後、徐冷して室温にすることで、メチルシトシンを有する測定対象DNAとビオチン化核酸とをハイブリダイゼーションさせた。その後、実施例3と同様に酵素免疫測定法により測定を行った。
 測定結果を図7に示す。測定対象核酸に対するビオチン化核酸の量を増やすことにより、より大きなレスポンスが得られる。これはビオチン化核酸とハイブリダイゼーションする測定対象核酸の割合が増えるためである。しかしながら、あまり過剰すぎると、ビオチン化核酸の回収率が減少するためレスポンスが減少する。本条件では、測定対象核酸と同濃度から100倍程度が良好であることがわかった。

Claims (11)

  1.  核酸中に含まれる特定の位置のシトシンのメチル化状態を検出する方法であって、
     核酸を制限酵素により断片化する工程と、
     該断片化核酸と、該断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸との間で2本鎖核酸を形成させる工程と、
     該2本鎖核酸を該固相結合部を用いて固相上に結合させる工程と、
     該固相上で該2本鎖核酸への抗体の結合量を測定する工程、
    を有する方法。
  2.  抗体が抗メチルシトシン抗体であることを特徴とする、請求項1に記載の方法。
  3.  固相結合部がビオチンであり、固相がアビジンであることを特徴とする、請求項1または2に記載の方法。
  4.  2本鎖核酸への抗体の結合量を、表面プラズモン共鳴法により抗体の結合を検出することによって、測定することを特徴とする、請求項1~3のいずれか一項に記載の方法。
  5.  2本鎖核酸への抗体の結合量を、抗体として西洋わさびペルオキシターゼを標識した抗体を用い、該抗体を結合させた後、該西洋わさびペルオキシターゼの基質を加え、該西洋わさびペルオキシターゼの反応生成物による吸光度変化を検出することによって、測定することを特徴とする、請求項1~3のいずれか一項に記載の方法。
  6.  断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列として、測定対象のシトシンと塩基対を形成するべき箇所が脱塩基部位となっている塩基配列を有する1本鎖核酸を用いることを特徴とする、請求項1~5のいずれか一項に記載の方法。
  7.  断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列として、2本鎖核酸の形成時に、測定対象のシトシンがバルジ構造内に配置される塩基配列を有する1本鎖核酸を用いることを特徴とする、請求項1~5のいずれか一項に記載の方法。
  8.  断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列として、測定対象のシトシンと塩基対を形成するべき箇所がアデニン、シトシン、もしくはチミンとなっている塩基配列を有する1本鎖核酸を用いることを特徴とする、請求項1~5のいずれか一項に記載の方法。
  9.  断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸を、測定対象の断片化核酸濃度の1倍以上100倍以下の量、加えて、2本鎖形成させることを特徴とする、請求項1~8のいずれか一項に記載の方法。
  10.  断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及び固相結合部を有する1本鎖核酸の塩基配列が、制限酵素で断片化された測定対象の核酸と2本鎖を形成した際に、該2本鎖核酸が平滑末端を形成する塩基配列であることを特徴とする、請求項1~9のいずれか一項に記載の方法。
  11.  制限酵素と、測定対象の断片化核酸とハイブリダイズするが、該断片化核酸内の特定の位置のシトシンとは塩基対を形成しない塩基配列及びビオチンを有する1本鎖核酸と、抗メチルシトシン抗体と、固相化したアビジンを組み合わせて構成される、核酸配列中のメチルシトシン検出用キット。
PCT/JP2014/056633 2013-03-14 2014-03-13 メチルシトシン検出法 WO2014142228A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/775,004 US9988672B2 (en) 2013-03-14 2014-03-13 Methylcytosine detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013051501A JP6095058B2 (ja) 2013-03-14 2013-03-14 メチルシトシン検出法
JP2013-051501 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014142228A1 true WO2014142228A1 (ja) 2014-09-18

Family

ID=51536877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056633 WO2014142228A1 (ja) 2013-03-14 2014-03-13 メチルシトシン検出法

Country Status (3)

Country Link
US (1) US9988672B2 (ja)
JP (1) JP6095058B2 (ja)
WO (1) WO2014142228A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170298412A1 (en) * 2014-09-29 2017-10-19 Fujirebio Inc Method and kit for measuring target nucleic acid containing modified nucleobase
US20170016894A1 (en) * 2015-07-15 2017-01-19 Orizhan Bioscience Limited Detection Comprising Signal Amplifier
CN110093439A (zh) * 2019-04-11 2019-08-06 中国农业科学院生物技术研究所 一种用于检测转基因植物的探针、表面等离子共振生物传感器及检测转基因植物的方法
CN110093440A (zh) * 2019-04-11 2019-08-06 中国农业科学院生物技术研究所 用于检测转基因植物的探针、探针组、表面等离子共振生物传感器及检测转基因植物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080565A1 (ja) * 2004-02-20 2005-09-01 Japan Science And Technology Agency Dnaメチル化分析用dnaアレイ及びその製造方法並びにdnaメチル化分析方法
JP2012230019A (ja) * 2011-04-27 2012-11-22 National Institute Of Advanced Industrial & Technology メチル化核酸検出法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804384A (en) * 1996-12-06 1998-09-08 Vysis, Inc. Devices and methods for detecting multiple analytes in samples
ES2272636T3 (es) 2002-06-05 2007-05-01 Epigenomics Ag Procedimiento para la determinacion cuantitativa del grado de metilac ion de citosinas en posiciones cpg.
JP3854943B2 (ja) 2003-05-23 2006-12-06 独立行政法人科学技術振興機構 Dnaメチル化率の測定方法
JP2006238701A (ja) 2005-02-28 2006-09-14 Mitsubishi Rayon Co Ltd メチル化dna検出用マイクロアレイ
JP2010068800A (ja) * 2008-08-19 2010-04-02 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法
JP2010048566A (ja) * 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd Dnaを定量又は検出する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080565A1 (ja) * 2004-02-20 2005-09-01 Japan Science And Technology Agency Dnaメチル化分析用dnaアレイ及びその製造方法並びにdnaメチル化分析方法
JP2012230019A (ja) * 2011-04-27 2012-11-22 National Institute Of Advanced Industrial & Technology メチル化核酸検出法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KURITA R. ET AL.: "DNA methylation analysis triggered by bulge specific immuno-recognition.", ANAL. CHEM., vol. 84, no. 17, 2012, pages 7533 - 7538, XP055213627, DOI: doi:10.1021/ac301702y *
RYOJI KURITA ET AL.: "DNA Bulge ni Haichi sareta Methyl Cytosine to Kotaikan deno Sogo Sayo Kaiseki", DAI 73 KAI ABSTRACTS OF THE SYMPOSIUM OF THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, May 2013 (2013-05-01), pages 10 *
RYOJI KURITA ET AL.: "DNA Bulge o Riyo shita Ichi Sentakuteki Methyl Cytosine Keisoku Chip no Kaihatsu", SOCIETY FOR CHEMISTRY AND MICRO- NANO SYSTEMS DAI 27 KAI KENKYUKAI KOEN YOSHISHU, May 2013 (2013-05-01), pages 17 *
RYOJI KURITA ET AL.: "DNA Bulge Tokuiteki na Kotai Ninshiki o Riyo shita Cytosine no Methyl- ka Shindan", THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY DAI 61 NENKAI KOEN YOSHISHU, 2012, pages 51 *

Also Published As

Publication number Publication date
JP2014176330A (ja) 2014-09-25
US9988672B2 (en) 2018-06-05
US20160138080A1 (en) 2016-05-19
JP6095058B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
US20190024141A1 (en) Direct Capture, Amplification and Sequencing of Target DNA Using Immobilized Primers
US20220372548A1 (en) Vitro isolation and enrichment of nucleic acids using site-specific nucleases
Miao et al. Signal amplification by enzymatic tools for nucleic acids
JP2021512631A (ja) 遺伝子およびタンパク質の発現を検出する生体分子プローブおよびその検出方法
CA2840558C (en) Methods of detecting gene fusions using first and second nucleic acid probes
US20120058471A1 (en) Identification of nucleic acid sequences
KR102354422B1 (ko) 대량 평행 서열분석을 위한 dna 라이브러리의 생성 방법 및 이를 위한 키트
JP2005521409A (ja) 単一プライマー等温核酸増幅−増強型被分析物検出および定量
JP5266828B2 (ja) メチル化されたdnaの含量を測定する方法
JP6095058B2 (ja) メチルシトシン検出法
JP2012230019A (ja) メチル化核酸検出法
CN107367618B (zh) 与胎儿绒毛外滋养层细胞测定有关的方法和组合物
WO2009151149A1 (ja) Dnaを定量又は検出する方法
Bodulev et al. Improving the sensitivity of the miRNA assay coupled with the mismatched catalytic hairpin assembly reaction by optimization of hairpin annealing conditions
CA3042723A1 (en) Quantitative cluster analysis method of target protein by using next-generation sequencing and use thereof
JP5206059B2 (ja) メチル化されたdnaの含量を測定する方法
US20120107808A1 (en) High throughput detection of gene-specific hydroxymethylation
EP3857228A2 (en) Compounds, compositions, and methods for improving assays
JP5303981B2 (ja) Dnaメチル化測定方法
JP2007020526A (ja) 特異的結合を利用した標的分子の高感度検出法、そのキット
JP5277681B2 (ja) Dnaメチル化測定方法
US20230059683A1 (en) Transposition-based diagnostics methods and devices
JP5151709B2 (ja) Dnaを定量又は検出する方法
JP2006141342A (ja) 核酸の解析法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14775004

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14763958

Country of ref document: EP

Kind code of ref document: A1