WO2014141587A1 - 電解水生成装置 - Google Patents

電解水生成装置 Download PDF

Info

Publication number
WO2014141587A1
WO2014141587A1 PCT/JP2014/000700 JP2014000700W WO2014141587A1 WO 2014141587 A1 WO2014141587 A1 WO 2014141587A1 JP 2014000700 W JP2014000700 W JP 2014000700W WO 2014141587 A1 WO2014141587 A1 WO 2014141587A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
plate
electrolytic
conductive film
ozone
Prior art date
Application number
PCT/JP2014/000700
Other languages
English (en)
French (fr)
Inventor
俊輔 森
康弘 才原
千尋 井
賢一郎 稲垣
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014141587A1 publication Critical patent/WO2014141587A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation

Definitions

  • the present invention relates to an electrolyzed water generator.
  • an electrolyzed water generating apparatus one having an electrolytic cell constituted of an anode having a plurality of through holes, a cathode, and a solid polymer electrolyte diaphragm, and generating ozone water by the electrolytic cell is known. (See, for example, Patent Document 1).
  • a through hole through which water flows in a direction perpendicular to the anode and the cathode is formed, and ozone is generated from water passing through the through hole, thereby changing the direction of the flow of the water.
  • Ozone can be discharged out of the electrolytic cell.
  • ozone can be easily dissolved in water and ozone water of high concentration can be generated by discharging the ozone to the outside of the electrolytic cell without changing the flow direction of the water.
  • an object of this invention is to obtain the electrolyzed water generating apparatus which can improve the generation
  • the electrolyzed water generating apparatus of this invention has a laminated body laminated
  • an electrolytic electrode device configured to expose at least a part of the interface between the conductive film and the electrode to the water flow passage, and a housing having a water flow passage including the water flow passage of the electrolytic electrode device And the electrode has an exposed surface exposed to the water flow passage when viewed in the stacking direction of the laminate.
  • the electrolyzed water generating apparatus which can improve the generation
  • An electrolytic water generation apparatus comprising: an electrolytic electrode device configured to expose at least a part of an interface to the water flow path; and a housing in which a water flow path including the water flow path of the electrolytic electrode device is formed The electrode has an exposed surface exposed to the water passage in a state viewed from the stacking direction of the laminate.
  • the electric field in the vicinity of the interface between the conductive film and the electrode can be made larger than in the case where there is no exposed surface.
  • the generation efficiency of the electrolytic product by the electrolytic electrode device can be further improved.
  • the water flow direction of the water passed through the water flow path of the first invention intersects with the stacking direction of the laminate.
  • the water passed through the water passage of the second invention is made to flow along the interface.
  • the water passage of any one of the first to third inventions has a closed cross-sectional structure.
  • the retention of the electrolytic product derived from the leakage from the electrolytic electrode device can be suppressed, and the decrease in the dissolution efficiency of the electrolytic product based on the retention of the electrolytic product can be suppressed.
  • the water passage according to any one of the first to fourth aspects is divided into a plurality of sections by a dividing portion.
  • the passage cross-sectional area of the water flowed in becomes small, and can make the flow velocity higher. As a result, dissolution of the electrolytic product can be performed more efficiently.
  • the partition portion of the fifth aspect is formed by laminating the electrode and the conductive film.
  • the interface between the conductive film and the electrode is also formed on the partition side of each water flow passage, and electrolytic products can be generated near the interface on the partition side of each water flow passage. .
  • the generation location of the electrolytic product can be increased, and the electrolytic product concentration of the electrolytic water can be improved.
  • the water passage according to any one of the first to sixth inventions is formed to have a closed cross section by being closed at least in part by the housing.
  • the electrolytic electrode device can be miniaturized, and the assembly workability of the electrolytic electrode device can be improved.
  • the water passage according to any one of the first to seventh inventions is formed to have a closed cross section by being at least partially closed by the electrode.
  • the assembly workability of the electrolytic electrode device can be improved.
  • ozone is generated as an electrolyzed water generating apparatus
  • the ozone water generating apparatus which produces
  • ozone water is widely used in the water treatment field, food and medical fields because it is effective for sterilization and organic matter decomposition, and it has the advantages of no residual property and no generation of by-products. .
  • the extending direction of the water passage is defined as the water passing direction (front-rear direction) X
  • the width direction of the water passage as the width direction Y
  • the direction in which the electrodes and the conductive film are stacked is the stacking direction (vertical direction) Z of the laminate.
  • generation apparatus (electrolytic water production
  • the ozone water generating apparatus (electrolytic water generating apparatus) 1 performs electrolytic processing to cause an electrochemical reaction in water to generate ozone water (electrolytic water) in which ozone (electrolytic product) is dissolved.
  • the housing 10 accommodates an electrolytic electrode device 20 described later, and is formed of a member using a nonconductive resin such as acrylic.
  • a water channel 11 is formed inside the housing 10, and pipes 30 communicating with the water channel 11 are connected to both ends of the housing 10 in the front-rear direction X, respectively. And the water which flowed in from one end side of waterway 11 in housing 10 through one piping (upstream side piping 31) 30 from the other end side of waterway 11 to the other piping (downstream side piping 32) 30 It is supposed to drain.
  • the housing 10 is formed at both ends of the hollow cylindrical main body portion 10a in which the electrolytic electrode device 20 is housed, and the main body portion 10a, and the diameter is gradually reduced as it is separated from the main body portion 10a. And a hollow connection portion 10b to be communicated.
  • a hollow connection portion 10b to be communicated.
  • both ends of the main body portion 10a may be closed by a disk-like lid having an opening communicating with the pipe 30.
  • the electrolytic electrode device 20 has a structure in which a plate-like anode (anode: electrode) 21, a conductive film 23, and a plate-like cathode (cathode: electrode) 22 are laminated in this order.
  • the electrolytic electrode device 20 includes one stacked body 27 stacked such that the conductive film 23 is interposed between the electrodes 21 and 22 adjacent to each other.
  • a feeder 24 made of, for example, titanium is stacked under the plate-like anode 21, and electricity is supplied to the plate-like anode 21 through the feeder 24. ing.
  • the groove portion 28 in which the side surface 23 a of the conductive film 23 and the side surface 22 a of the plate-like cathode 22 are the side 28 a and the top surface 21 a of the plate-like anode 21 is the bottom 28 b is formed in the laminate 27.
  • the groove 28 is a water passage 25.
  • the groove 28 is formed to extend in one direction, and the plate-like cathode 22 side (upper side in the vertical direction Z in FIG. 1) is opened, and the extending direction of the groove 28 (in FIG. 1)
  • the front and back direction X) is formed so as to open on both sides.
  • the interface 26A between the conductive film 23 and the plate-like anode 21 is in contact with water, and at least a part of the interface 26B between the conductive film 23 and the plate-like cathode 22
  • the electrolytic electrode device 20 is configured to contact the water.
  • the interface 26 A between the conductive film 23 and the plate-like anode 21 in the present embodiment is a line of intersection between the side surface 23 a of the conductive film 23 and the upper surface 21 a of the plate-like anode 21.
  • the interface 26 B between the conductive film 23 and the plate cathode 22 in the present embodiment is a boundary between the side surface 22 a of the plate cathode 22 and the side surface 23 a of the conductive film 23.
  • the electrolytic electrode device 20 is accommodated in the main body 10 a of the housing 10 in a state in which the extending direction of the groove 28 substantially matches the longitudinal direction X. As described above, the electrolytic electrode device 20 is accommodated in the main body portion 10 a in a state in which the extending direction of the groove portion 28 substantially matches the longitudinal direction X, whereby the water flow direction of the water flowing in the water flow path 25 Is in the front-rear direction X.
  • water flows along the upper surface 21 a of the plate-like anode 21.
  • the interface 26A between the conductive film 23 and the plate-like anode 21 (the line of intersection between the side surface 23 a of the conductive film 23 and the upper surface 21 a of the plate-like anode 21), the conductive film 23 and the plate-like cathode 22 Water is allowed to flow along the interface 26B (the boundary between the side surface 22a of the plate-like cathode 22 and the side surface 23a of the conductive film 23).
  • the water passage 25 of the electrolytic electrode device 20 is used as a part of the water passage 11 of the housing 10. That is, the water passage 11 including the water passage 25 of the electrolytic electrode device 20 is formed in the housing 10.
  • the gap between the inner circumferential surface 10c of the main body 10a and the outer circumferential surface 20a of the electrolytic electrode device 20 is sealed with a sealing resin or the like to form a closed cross section.
  • Water passage 25 is formed.
  • the water flowing into the housing 10 from one end side of the housing 10 does not flow out from the other end side of the housing 10 unless it passes through the water passage 25 provided on the way It has become.
  • the electrolytic electrode device 20 subjects the water supplied into the water passage 25 from the upstream side to the electrolytic treatment, and the water subjected to the electrolytic treatment by the electrolytic electrode device 20 is sent out of the water passage 25 from the downstream side.
  • ozone electrolytic product
  • the generated ozone electrolytic product
  • ozone (electrolytic product) is received at the interface 26 A between the plate-like anode 21 and the conductive film 23 in response to the ion supply from the conductive film 23 and the current from the power supply unit 40. It is designed to carry out an electrolytic treatment to be generated electrochemically.
  • the electrochemical reaction is as follows.
  • the plate-like anode 21 can be formed, for example, by forming a conductive diamond film on a conductive substrate having a width of about 10 mm and a length of about 50 mm formed using niobium.
  • the conductive diamond film has boron-dove conductivity.
  • the conductive diamond film is formed on the conductive substrate with a film thickness of about 3 ⁇ m by plasma CVD.
  • the plate-like anode 21 and the plate-like cathode 22 have a plate-like shape, but the plate-like anode 21 and the plate-like cathode 22 may have a film shape, a mesh shape, or a linear shape.
  • the conductive film 23 is disposed on the plate-like anode 21 on which the conductive diamond film is formed.
  • the conductive film 23 is a proton conductive ion exchange film and has a thickness of about 100 to 200 ⁇ m.
  • the plate cathode 22 is disposed on the conductive film 23.
  • the plate cathode 22 can be formed of, for example, a stainless steel electrode plate having a thickness of about 1 mm.
  • the conductive film 23 is placed on the conductive diamond film formed on the conductive substrate, and the plate-like cathode 22 is placed on the conductive film 23. It is formed by putting it on.
  • the pipe 30 supplies water to be subjected to the electrolytic treatment to the electrolytic electrode device 20, and the pipe 30 is formed of a member using a nonconductive resin such as acrylic.
  • the power supply unit 40 generates a potential difference between the plate-like anode 21 and the plate-like cathode 22 via the conductive film 23.
  • a feeder 24 electrically connected to the plate-like anode 21 is electrically connected to the positive side of the power supply unit 40 through the conducting wire 41, and a plate-like unit on the negative side of the power supply unit 40.
  • the cathode 22 is electrically connected via the conductor 41.
  • water is supplied to the upstream side of the water channel 11 in the housing 10 from the upstream pipe 31 directly or indirectly connected to a tap of a water supply or the like. Then, the water flowing into the upstream side of the water channel 11 flows into the water channel 25 which is a part of the water channel 11, passes through the water channel 25 and flows out to the downstream side of the water channel 11.
  • water may be supplied into the water channel 11 by using a pump or the like.
  • a pump for transfer is provided upstream of the upstream pipe 31 or the upstream pipe 31.
  • a means to supply water in the water channel 11 is good also as what kind of structure not only in a tap pressure or a pump.
  • the voltage applied at this time is several volts to several tens of volts, and the higher the voltage (the higher the current value), the larger the amount of ozone generated.
  • ozone water ozone water
  • the ozone water in the downstream side piping 32 may be discharged as it is from the discharge port of the downstream side piping 32 or may be supplied into the water treatment reaction tank through the downstream side piping 32 depending on the application.
  • the higher the voltage applied to the electrolytic electrode device the higher the current value
  • the generation efficiency of ozone (electrolytic product) by the electrolytic electrode device 20 of the ozone water generating device (electrolytic water generating device) 1 can be further improved.
  • the plate-like anode 21 as an electrode is configured to have an exposed surface 21 b exposed to the water flow passage 25 in a state viewed from the stacking direction (vertical direction Z) of the stacked body 27.
  • the stacked body 27 As viewed from the stacking direction (vertical direction Z) of the stacked body 27, it is used as an electrode at a portion other than the portion where the plate-like anode 21, the conductive film 23 and the plate-shaped cathode 22 are stacked in the stacked body 27.
  • the plate-like anode 21 was made to exist.
  • the electric field in the vicinity of the interface 26A between the conductive film 23 and the plate-like anode 21 can be made larger than in the case where the exposed surface 21a does not exist. It is possible to further improve the generation efficiency of ozone (electrolytic product) by
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect with the stacking direction (vertical direction Z) of the stacked body 27. That is, the water is allowed to flow in a direction not orthogonal to the exposed surface 21a.
  • the electrolytic electrode device 20 is accommodated in the main body portion 10a in a state in which the extending direction of the groove portion 28 substantially coincides with the front-rear direction X, whereby water flows in the water passage 25.
  • Water flow direction is the back and forth direction X.
  • the entire outer peripheral surface 20a other than the portion where the water passage 25 of the electrolytic electrode device 20 is formed in a state viewed from the water flow direction (front and back direction X) is sealed with a sealing resin or the like.
  • the water passage 25 has a closed cross-sectional structure.
  • the plate-like anode 21 as the electrode has the exposed surface 21 b exposed to the water passage 25 in a state viewed from the stacking direction (vertical direction Z) of the stacked body 27. I made it.
  • the electric field in the vicinity of the interface 26A between the conductive film 23 and the plate-like anode 21 can be made larger than in the case where the exposed surface 21a does not exist.
  • the ozone water generation device (the electrolytic efficiency of the ozone (electrolytic product) can be further improved.
  • An electrolyzed water generator 1) can be obtained.
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect with the stacking direction (vertical direction Z) of the stacked body 27.
  • the water passage 25 of the electrolytic electrode device 20 is formed in a state viewed from the water flow direction (longitudinal direction X) with a sealing resin or the like. , And the water passage 25 has a closed cross-sectional structure.
  • water is caused to flow along the upper surface 21 a of the plate-like anode 21. Specifically, water was caused to flow along the interface 26A between the conductive film 23 and the plate-like anode 21 (the line of intersection between the side surface 23 a of the conductive film 23 and the upper surface 21 a of the plate-like anode 21).
  • generated ozone will flow along the interface 26A between the conductive film 23 and the plate-like anode 21. Therefore, stagnation of generated ozone can be suppressed.
  • a method of increasing the average flow velocity for example, a pump can be provided on the upstream side of the housing 10. Moreover, when the pump is already provided, it can respond by raising the supply power of a pump.
  • the method of increasing the average flow velocity is not limited to the above-described method, and any method may be used as long as it can increase the average flow velocity on the electrode surface.
  • the interface 26B between the conductive film 23 and the plate-like cathode 22 (the interface between the conductive film and the electrode) is also exposed to the water passage 25 to be in contact with water. . Therefore, it is also effective in the case of efficiently dissolving hydrogen generated in the vicinity of the interface 26B between the conductive film 23 and the plate-like cathode 22 (the interface between the conductive film and the electrode).
  • the water passage 25 can be formed only by laminating the plate-like anode 21, the conductive film 23 and the plate-like cathode 22, so that the assemblability of the electrolytic electrode device 20 can be improved. It is possible to improve.
  • generation apparatus electrophilyzed water production
  • the ozone water generating apparatus (electrolytic water generating apparatus) 1 ⁇ / b> A includes a housing 10, an electrolytic electrode device 20 ⁇ / b> A, a pipe 30, and a power supply unit 40.
  • the electrolytic electrode device 20A has one laminated body 27 laminated so that the conductive film 23 is interposed between the electrodes 21 and 22 adjacent to each other, and below the plate-like anode 21, A feeder 24 is stacked.
  • the plate-like anode 21 as the electrode has the exposed surface 21 b exposed to the water flow passage 25 in a state viewed from the stacking direction of the stacked body 27 (vertical direction Z). ing.
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect the stacking direction (vertical direction Z) of the stacked body 27. That is, by housing the electrolytic electrode device 20A in the main body portion 10a in a state in which the extending direction of the groove portion 28 substantially matches the longitudinal direction X, the water flow direction of the water flowing in the water passage 25 is Water is allowed to flow along the upper surface 21 a of the plate-like anode 21 in the direction X.
  • the main difference between the ozone water generating apparatus (electrolytic water generating apparatus) 1A of this embodiment and the ozone water generating apparatus (electrolytic water generating apparatus) 1 of the first embodiment is that the water passage 25 is a closing plate. It is in the point formed so that it may become a closed section by being at least one part closed by 50.
  • the closing plate 50 is laminated on the upper side of the laminate 27 in which the water passage 25 opened upward is formed, so that the water passage 25 has a closed cross section.
  • the closing plate 50 is formed using an insulating material such as acrylic, plastic, or rubber. Note that any material may be used as long as it is an insulating material. Further, it is preferable to form the closing plate 50 using a material having ozone resistance.
  • the entire outer peripheral surface 20a of the electrolytic electrode device 20A in a state viewed from the water flow direction (front-rear direction X) is sealed with a sealing resin or the like.
  • the closing plate 50 is laminated on the upper side of the stacked body 27 in which the water passage 25 opened upward is formed, so that the water passage 25 has a closed cross section. Therefore, the water passage 25 can be made to have a closed cross-sectional structure more reliably, and the electrolytic electrode device 20A can be manufactured more easily.
  • generation apparatus electrophilyzed water production
  • generation apparatus electrolytic water production
  • the electrolytic electrode device 20B has one laminated body 27 laminated so that the conductive film 23 is interposed between the electrodes 21 and 22 adjacent to each other, and under the plate-like anode 21, A feeder 24 is stacked.
  • the plate-like anode 21 as the electrode has the exposed surface 21 b exposed to the water flow passage 25 in a state viewed from the stacking direction of the stacked body 27 (vertical direction Z). ing.
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect the stacking direction (vertical direction Z) of the stacked body 27. That is, the electrolytic electrode device 20B is accommodated in the main body portion 10a in a state in which the extending direction of the groove portion 28 substantially matches the longitudinal direction X, whereby the water flowing direction of the water flowing in the water passage 25 is Water is allowed to flow along the upper surface 21 a of the plate-like anode 21 in the direction X.
  • the closing plate 50 is laminated on the upper side of the laminate 27 in which the water passage 25 opened upward is formed, so that the water passage 25 has a closed cross section.
  • the main difference between the ozone water generating apparatus (electrolyzed water generating apparatus) 1B of this embodiment and the ozone water generating apparatus (electrolyzed water generating apparatus) 1A of the second embodiment is that the water passage 25 is a dividing section. The point is that it is divided into a plurality by the separation plate 60 as.
  • the separation plate 60 is disposed at the central portion in the width direction Y of the water flow passage 25, and in this state, the water flow passage 25 is divided into two by laminating the closing plate 50 above the stacked body 27. ing.
  • the separation plate 60 is formed using an insulating material such as acrylic, plastic, or rubber. Note that any material may be used as long as it is an insulating material. Further, it is preferable to form the separating plate 60 using a material having ozone resistance.
  • the passage cross-sectional area of the supplied water is smaller than in the case where it is not divided. Become. As a result, the flow rate can be increased, and ozone can be dissolved more efficiently.
  • the length of the separation plate 60 in the front-rear direction X substantially matches the length of the water passage 25 in the front-rear direction X.
  • ozone generated on the upstream side of the interface 26A between the conductive film 23 and the plate-like anode 21 flows to the downstream side, particularly when there is a gap on the front side (upstream side). , And may be disturbed by the separation plate 60.
  • generation apparatus electrophilyzed water production
  • the ozone water generating apparatus (electrolytic water generating apparatus) 1 ⁇ / b> C includes the housing 10, the electrolytic electrode device 20 ⁇ / b> C, the pipe 30, and the power supply unit 40.
  • the electrolytic electrode device 20C has one laminated body 27 laminated so that the conductive film 23 is interposed between the electrodes 21 and 22 adjacent to each other, and under the plate-like anode 21, A feeder 24 is stacked.
  • the plate-like anode 21 as the electrode has the exposed surface 21 b exposed to the water flow passage 25 in a state viewed from the stacking direction of the stacked body 27 (vertical direction Z). ing.
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect the stacking direction (vertical direction Z) of the stacked body 27. That is, the electrolytic electrode device 20C is accommodated in the main body portion 10a in a state in which the extending direction of the groove portion 28 substantially coincides with the longitudinal direction X, whereby the water flow direction of the water flowing in the water passage 25 is Water is allowed to flow along the upper surface 21 a of the plate-like anode 21 in the direction X.
  • the closing plate 50 is laminated on the upper side of the laminate 27 in which the water passage 25 opened upward is formed, so that the water passage 25 has a closed cross section.
  • water flow path 25 is divided into two (plural) by the division part.
  • the ozone water generation apparatus (electrolytic water generation apparatus) 1C of the present embodiment is mainly different from the ozone water generation apparatus (electrolytic water generation apparatus) 1B of the third embodiment in that the partition portion is a conductive film 23 And the plate-like cathode (electrode) 22 are laminated.
  • the conductive film 23 and the plate-like cathode (electrode) 22 are laminated in the central portion in the width direction Y of the water passage 25, and the closing plate 50 is laminated above the laminate 27 in this state. Then, the water flow passage 25 is divided into two.
  • the plate-like cathodes 22 of the compartments are also electrically connected to the ⁇ side of the power supply unit 40 via the conducting wires 41.
  • the partition portion is formed by laminating the conductive film 23 and the plate-like cathode (electrode) 22. Therefore, the interface 26 A between the conductive film 23 and the plate-like anode 21 is also formed on the side of the partition of each water passage 25.
  • the place where ozone is generated by the electrolytic treatment is the interface 26A between the conductive film 23 and the plate-like anode 21, and in the present embodiment, the conductive film 23 of the section and the plate-like cathode 22 Is also energized. Therefore, ozone can be generated also in the vicinity of the interface 26A on the partition side of each water passage 25. As a result, the generation location of ozone can be increased, and the ozone concentration of ozone water can be improved.
  • the ozone water generating apparatus (electrolyzed water generating apparatus) 1D basically has the same configuration as that of the first embodiment.
  • the ozone water generating apparatus (electrolytic water generating apparatus) 1 D includes a housing 10, an electrolytic electrode device 20 D, a pipe 30, and a power supply unit 40.
  • the electrolytic electrode device 20D has one laminated body 27 laminated so that the conductive film 23 is interposed between the electrodes 21 and 22 adjacent to each other, and under the plate-like anode 21, A feeder 24 is stacked.
  • the plate-like anode 21 as the electrode has the exposed surface 21 b exposed to the water flow passage 25 in a state viewed from the stacking direction of the stacked body 27 (vertical direction Z). ing.
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect the stacking direction (vertical direction Z) of the stacked body 27. That is, the electrolytic electrode device 20D is accommodated in the main body portion 10a in a state in which the extending direction of the groove portion 28 substantially matches the longitudinal direction X, whereby the water flow direction of the water flowing in the water passage 25 is Water is allowed to flow along the upper surface 21 a of the plate-like anode 21 in the direction X.
  • the ozone water generation device (electrolytic water generation device) 1D of the present embodiment differs from the ozone water generation device (electrolytic water generation device) 1 of the first embodiment mainly by the housing 10.
  • the water passage 25 is formed so as to have a closed cross section by being closed.
  • the electrolytic electrode device 20D is fitted into the hollow portion 10d formed in the main body portion 10a of the housing 10, whereby the upper opening of the water passage 25 is closed by the housing 10, and the water passage 25 It is made to be a closed cross section.
  • the conductive film 23 and the plate-like cathode (electrode) 22 are laminated on the central portion in the width direction Y of the water passage 25.
  • the water flow passage 25 is divided into two by the division.
  • the plate-like cathodes 22 of the compartments are also electrically connected to the ⁇ side of the power supply unit 40 via the conducting wires 41.
  • the water passage 25 is formed so as to have a closed cross section by closing at least a part of the housing 10. Therefore, the electrolytic electrode device 20D can be miniaturized, and the assembly workability of the electrolytic electrode device 20D can be improved.
  • the water passage 25 may be divided into a plurality of parts by forming a convex part corresponding to the dividing part in the hollow part 10 d of the housing 10.
  • generation apparatus electrophilyzed water production
  • generation apparatus electrolytic water production
  • the electrolytic electrode device 20E has one laminated body 27 laminated so that the conductive film 23 is interposed between the electrodes 21 and 22 adjacent to each other, and under the plate-like anode 21, A feeder 24 is stacked.
  • the plate-like anode 21 as the electrode has the exposed surface 21 b exposed to the water flow passage 25 in a state viewed from the stacking direction of the stacked body 27 (vertical direction Z). ing.
  • the water flow direction of the water flowing into the water flow path 25 is made to intersect the stacking direction (vertical direction Z) of the stacked body 27. That is, the electrolytic electrode device 20E is accommodated in the main body portion 10a in a state in which the extending direction of the groove portion 28 substantially matches the longitudinal direction X, whereby the water flow direction of the water flowing in the water passage 25 is Water is allowed to flow along the upper surface 21 a of the plate-like anode 21 in the direction X.
  • the main difference between the ozone water generating device (electrolytic water generating device) 1E of this embodiment and the ozone water generating device (electrolytic water generating device) 1 of the first embodiment is that the plate-like cathode 22 as an electrode
  • the water passage 25 is formed so that a closed cross section can be obtained by closing at least a part of the water passage 25.
  • the plate-like cathode 22 having the recess 22 b formed on the lower surface side is laminated on the conductive film 23 to form the water channel 25 whose upper side is closed by the plate-like cathode 22.
  • the water channel 25 has a closed cross section.
  • the electrolytic electrode device 20E there are two partition parts formed by laminating the conductive film 23 and the plate-like cathode (electrode) 22, and the two partition parts Divided into three.
  • the water passage 25 can be made to have a closed cross-sectional structure only by laminating the plate-like cathode 22 on the conductive film 23, so the assembly workability of the electrolytic electrode device 20E is improved. Will be able to
  • the plate-like anode 21 can be made of diamond, platinum, lead oxide, tantalum oxide or the like, and any material can be used as long as it can generate electrolytic water.
  • the manufacturing method is not limited to the manufacturing method by film formation.
  • the ozone water generating apparatus that generates ozone water and generates ozone water by dissolving the ozone in water is exemplified, but the substance to be generated is not limited to ozone, for example, It is also possible to generate chlorous acid and use it for sterilization, water treatment and the like.
  • the plate cathode 22 can also be made of platinum, stainless steel or the like.
  • the electric power feeding body 24 made from titanium was illustrated, you may form using what kind of material if it passes electricity not only in this. Moreover, it is not necessary to form using one material, for example, it is also possible to comprise by carbon, a metal mesh, etc.
  • the electrolyzed water generating device may be provided with a means for releasing the accumulated air bubbles when the air bubbles are accumulated.
  • a means for releasing the accumulated air bubbles there are a gas-liquid separation tank and an exhaust valve.
  • ozone gas decomposition means there are activated carbon, ultraviolet lamp, ultraviolet LED and the like.
  • purification means may be provided upstream of the pipe for water treatment.
  • separation membranes such as RO membrane or NF membrane
  • adsorption means such as activated carbon, sand filtration filter, non-permanent cloth, ion exchange resin, etc.
  • purification means depending on the quality of the raw water.
  • the plate-like anode 21 has the exposed surface 21 b exposed to the water passage 25 in a state viewed from the stacking direction (vertical direction Z) of the stacked body 27. It is also possible to have the plate-like cathode 22 have an exposed surface exposed to the water flow passage 25 when viewed from the stacking direction (vertical direction Z) of the stacked body 27.
  • electrolytic electrode devices 20, 20A, 20B, 20C, and 20E described in the first to fourth embodiments and the sixth embodiment may be fitted into the hollow portion 10d formed in the main body portion 10a of the housing 10. It is also possible.
  • the specifications (shape, size, layout, etc.) of the housing, the electrolytic electrode device, and other details can be changed as appropriate.
  • the generated electric field product can be effectively dissolved, for example, water treatment for purification and sterilization with ozone water in which ozone as the electric field product is dissolved
  • the present invention can be applied to fields, food fields, medicine fields, semiconductor fields and the like.

Abstract

 電解水生成装置(1)は、電解電極デバイス(20)を備えている。この電解電極デバイス(20)は、互いに隣り合う電極(21,22)間に導電性膜(23)が介在するように積層された積層体(27)を有しており、この積層体(27)には、通水路(25)が形成されている。そして、電解電極デバイス(20)は、導電性膜(23)と電極(21)との界面(26A)の少なくとも一部が通水路(25)に露出するように構成されている。さらに、電解水生成装置(1)は、電解電極デバイス(20)の通水路(25)を含む水路(11)が形成されたハウジング(10)と、を備えている。そして、電極(21)は、積層体(27)の積層方向(Z)から視た状態で、通水路(25)に露出する露出面(21b)を有している。

Description

電解水生成装置
 本発明は、電解水生成装置に関する。
 従来、電解水生成装置として、複数の貫通孔を有する陽極、陰極、固体高分子電解質隔膜とで構成された電解セルを有し、電解セルによりオゾン水を生成するようにしたものが知られている(例えば、特許文献1参照)。
 この特許文献1では、陽極および陰極と直交する方向に通水させる貫通孔を形成し、当該貫通孔を通過する水からオゾンを発生させることで、通水された水の流れの方向を変えることなくオゾンを電解セル外へ排出できるようにしている。このように、水の流れの方向を変えることなくオゾンを電解セル外へ排出させることで、オゾンが水に溶解しやすくなり、高濃度のオゾン水を生成することができるようになる。
特開2011-246800号公報
 上記従来技術のように、陽極および陰極と直交する方向に通水させる貫通孔を形成するようにすれば、高濃度の電解水を生成することが可能となるが、電解生成物の発生効率をより向上させるようにした方が好ましい。
 そこで、本発明は、電解生成物の発生効率をより向上させることのできる電解水生成装置を得ることを目的とする。
 前記従来の課題を解決するために、本発明の電解水生成装置は、互いに隣り合う電極間に導電性膜が介在するように積層された積層体を有し、当該積層体に通水路が形成されるとともに、前記導電性膜と前記電極との界面の少なくとも一部が前記通水路に露出するように構成された電解電極デバイスと、前記電解電極デバイスの通水路を含む水路が形成されたハウジングと、を備え、前記電極は、前記積層体の積層方向から視た状態で、前記通水路に露出する露出面を有していることを特徴としている。
 これによって、同じ電圧を印加した際における、導電性膜と電極との界面近傍の電界を、露出面が存在しない場合よりも大きくすることができるようになり、電解電極デバイスによる電解生成物の発生効率をより向上させることができるようになる。
 本発明によれば、電解生成物の発生効率をより向上させることのできる電解水生成装置を得ることができる。
本発明の第1実施形態にかかる電解水生成装置を模式的に示す図であって、(a)は電解水生成装置の一部を透視して示す斜視図、(b)は電解水生成装置の断面図である。 本発明の第2実施形態にかかる電解水生成装置を模式的に示す図であって、(a)は電解水生成装置の一部を透視して示す斜視図、(b)は電解水生成装置の断面図である。 本発明の第3実施形態にかかる電解水生成装置を模式的に示す図であって、(a)は電解水生成装置の一部を透視して示す斜視図、(b)は電解水生成装置の断面図である。 本発明の第4実施形態にかかる電解水生成装置を模式的に示す図であって、(a)は電解水生成装置の一部を透視して示す斜視図、(b)は電解水生成装置の断面図である。 本発明の第5実施形態にかかる電解水生成装置を模式的に示す図であって、(a)は電解水生成装置の一部を透視して示す斜視図、(b)は電解水生成装置の断面図である。 本発明の第6実施形態にかかる電解水生成装置を模式的に示す図であって、(a)は電解水生成装置の一部を透視して示す斜視図、(b)は電解水生成装置の断面図である。
 第1の発明は、互いに隣り合う電極間に導電性膜が介在するように積層された積層体を有し、当該積層体に通水路が形成されるとともに、前記導電性膜と前記電極との界面の少なくとも一部が前記通水路に露出するように構成された電解電極デバイスと、前記電解電極デバイスの通水路を含む水路が形成されたハウジングと、を備える電解水生成装置であって、前記電極は、前記積層体の積層方向から視た状態で、前記通水路に露出する露出面を有している。
 これにより、同じ電圧を印加した際における、導電性膜と電極との界面近傍の電界を、露出面が存在しない場合よりも大きくすることができるようになる。その結果、電解電極デバイスによる電解生成物の発生効率をより向上させることができるようになる。
 第2の発明は、特に第1の発明の前記通水路内に通水される水の通水方向が前記積層体の積層方向と交差しているものである。
 これにより、供給される水に電解処理を施す際に、互いに隣り合う電極のうちの少なくとも一方の電極に貫通孔を形成する必要がなくなる。すなわち、互いに隣り合う電極のうちの少なくとも一方の電極に貫通孔を形成することなく、電解生成物を発生させることができるようになる。そのため、互いに隣り合う電極の両方に貫通孔を形成する場合に比べて、製造コストを抑制することができるようになる。
 第3の発明は、特に第2の発明の前記通水路内に通水される水が前記界面に沿って流れるようにしたものである。
 これにより、発生した電解生成物が滞留してしまうのを抑制することができるようになる。
 第4の発明は、特に第1から第3のいずれか1つの発明の前記通水路が閉断面構造をしているものである。
 これにより、電解電極デバイスからの漏出に由来する電解生成物の滞留が抑制され、電解生成物の滞留に基づく電解生成物の溶解効率が低下してしまうのを抑制することができるようになる。
 第5の発明は、特に第1から第4のいずれか1つの発明の前記通水路が、区画部によって複数に区画されているものである。
 これにより、区画されていない場合に比べて、通水された水の通過断面積が小さくなって、流速をより大きくすることができる。その結果、電解生成物の溶解をより効率よく行うことができるようになる。
 第6の発明は、特に第5の発明の前記区画部が、前記電極と前記導電性膜とを積層することにより形成されているものである。
 これにより、各通水路の区画部側にも導電性膜と電極との界面が形成されることとなり、各通水路の区画部側の界面近傍でも電解生成物を発生させることができるようになる。その結果、電解生成物の発生箇所を増やすことができ、電解水の電解生成物濃度を向上させることができるようになる。
 第7の発明は、特に第1から第6のいずれか1つの発明の前記通水路が、前記ハウジングにより少なくとも一部が閉じられることで閉断面となるように形成されているものである。
 これにより、電解電極デバイスの小型化を図ることができる上、電解電極デバイスの組み立て作業性を向上させることができるようになる。
 第8の発明は、特に第1から第7のいずれか1つの発明の前記通水路が、前記電極により少なくとも一部が閉じられることで閉断面となるように形成されているものである。
 これにより、電極を、導電性膜上に積層するだけで、通水路を閉断面構造とすることができるため、電解電極デバイスの組み立て作業性を向上させることができるようになる。
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。以下では、電解水生成装置として、オゾンを発生させ、当該オゾンを水に溶解させることでオゾン水を生成するオゾン水生成装置を例示する。なお、オゾン水は、殺菌や有機物分解に有効であるため水処理分野や食品、医学分野において広く利用されており、残留性がないことや、副生成物を生成しないという利点を有するものである。また、通水路の延在方向を通水方向(前後方向)X、通水路の幅方向を幅方向Y、電極や導電性膜が積層される方向を積層体の積層方向(上下方向)Zとして説明する。
 また、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。
 (第1実施形態)
 本実施形態にかかるオゾン水生成装置(電解水生成装置)1は、図1に示すように、ハウジング10と電解電極デバイス20と配管30と電源部40とを備えている。このオゾン水生成装置(電解水生成装置)1は、水に電気化学反応を起こす電解処理をして、オゾン(電解生成物)が溶解したオゾン水(電解水)を生成するものである。
 ハウジング10は、後述する電解電極デバイス20を収容するものであり、アクリル等の非導電性の樹脂を用いた部材で形成されている。
 このハウジング10の内部には、水路11が形成されており、ハウジング10の前後方向X両端には、水路11に連通する配管30がそれぞれ接続されている。そして、一方の配管(上流側配管31)30を通って、ハウジング10内の水路11の一端側から流入した水は、水路11の他端側から他方の配管(下流側配管32)30へと流出するようになっている。
 本実施形態では、ハウジング10は、電解電極デバイス20が収容される中空円筒状の本体部10aと、本体部10aの両端に形成され、本体部10aから離れるにつれて徐々に縮径して配管30に連通される中空の接続部10bと、を備えている。なお、本体部10aと配管30との接続は、テーパ状の接続部を介さずに行うことも可能である。例えば、配管30に連通する開口が形成された円板状の蓋体によって本体部10aの両端を塞ぐようにしてもよい。
 電解電極デバイス20は、図1に示すように、板状陽極(陽極:電極)21、導電性膜23、板状陰極(陰極:電極)22の順に積層した構成をしている。
 このように、本実施形態では、電解電極デバイス20は、互いに隣り合う電極21,22間に導電性膜23が介在するように積層された1つの積層体27を有している。なお、本実施形態では、板状陽極21の下側に、例えば、チタン製の給電体24が積層されており、この給電体24を介して板状陽極21に電気が供給されるようになっている。
 そして、積層体27には、通水路25が形成されている。
 本実施形態では、導電性膜23の側面23aおよび板状陰極22の側面22aが側面28aとなり、板状陽極21の上面21aが底面28bとなっている溝部28を積層体27に形成し、当該溝部28を通水路25としている。この溝部28は、一方向に延在するように形成されており、板状陰極22側(図1では、上下方向Zの上方)が開口するとともに、当該溝部28の延在方向(図1では、前後方向X)両側が開口するように形成されている。
 このような溝状の通水路25を形成することで、導電性膜23と板状陽極21との界面(導電性膜と電極との界面)26Aの少なくとも一部を通水路25に露出させることができる。また、導電性膜23と板状陰極22との界面(導電性膜と電極との界面)26Bの少なくとも一部も通水路25に露出することとなる。
 このように、本実施形態では、導電性膜23と板状陽極21との界面26Aの少なくとも一部が水と接触するとともに、導電性膜23と板状陰極22との界面26Bの少なくとも一部が水と接触するように、電解電極デバイス20を構成している。なお、本実施形態における導電性膜23と板状陽極21との界面26Aとは、導電性膜23の側面23aと板状陽極21の上面21aとの交線のことである。また、本実施形態における導電性膜23と板状陰極22との界面26Bとは、板状陰極22の側面22aと導電性膜23の側面23aとの境界線のことである。

 そして、電解電極デバイス20は、溝部28の延在方向を前後方向Xに略一致させた状態で、ハウジング10の本体部10a内に収容されている。このように、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20を本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにしている。すなわち、本実施形態では、板状陽極21の上面21aに沿って水が流れるようにしている。具体的には、導電性膜23と板状陽極21との界面26A(導電性膜23の側面23aと板状陽極21の上面21aとの交線)および導電性膜23と板状陰極22との界面26B(板状陰極22の側面22aと導電性膜23の側面23aとの境界線)に沿って水が流れるようにしている。
 さらに、本実施形態では、電解電極デバイス20の通水路25をハウジング10の水路11の一部として用いている。すなわち、電解電極デバイス20の通水路25を含む水路11をハウジング10内に形成している。
 具体的には、図1(b)に示すように、本体部10aの内周面10cと電解電極デバイス20の外周面20aとの間の隙間を封止樹脂等により封止して、閉断面の通水路25が形成されるようにしている。このように、本体部10aと電解電極デバイス20との間の隙間を封止することで、上流側配管31を通ってハウジング10内の水路11の上流側に流入した水が、通水路25を通過することなく、水路11の下流側に接続された下流側配管32へと流出させることができないようにしている。
 すなわち、本実施形態では、ハウジング10の一端側からハウジング10内に流入した水は、途中に設けられた通水路25を通ってからでないと、ハウジング10の他端側から外部へと流出されないようになっている。
 このように、通水方向(前後方向X)から視た状態における電解電極デバイス20の通水路25が形成される部分以外の外周面20aの全体を、封止樹脂等により封止することで、通水方向から視た状態における電解電極デバイス20の外周面20aの少なくとも一部が閉じられるようにしている。
 電解電極デバイス20は、上流側から通水路25内に供給される水に電解処理を施すものであり、電解電極デバイス20によって電解処理が施された水は、下流側から通水路25外に送り出される。供給される水に電解処理が施されると、オゾン(電解生成物)が生成され、生成されたオゾン(電解生成物)は、水の流れにより下流側へ運ばれながら水に溶解する。
 本実施形態の電解電極デバイス20では、導電性膜23からのイオン供給および電源部40からの電流を受けて、板状陽極21と導電性膜23との界面26Aにおいてオゾン(電解生成物)を電気化学的に生成させる電解処理を行うようにしている。この電気化学反応は、以下の通りである。
 陽極側:3HO→O+6H+6e-
     2H0→O+4H+4e-
 陰極側:2H+2e-→H
 板状陽極21は、例えば、ニオブを用いて形成した幅10mm、長さ50mm程度の導電性基板に導電性ダイヤモンド膜を成膜することで形成することができる。この導電性ダイヤモンド膜は、ボロンドーブ導電性を有するものである。導電性ダイヤモンド膜は、プラズマCVD法によって、3μm程度の膜厚で導電性基板上に形成される。なお、本実施形態では、板状陽極21および板状陰極22の形状を板状としているが、板状陽極21や板状陰極22は、膜状、網目状、線状であってもよい。
 導電性膜23は、導電性ダイヤモンド膜が形成された板状陽極21上に配置されている。この導電性膜23は、プロトン導電型のイオン交換フィルムであり、100~200μm程度の厚みを有している。
 板状陰極22は、導電性膜23上に配置されており、この板状陰極22は、例えば、厚みが1mm程度のステンレスの電極板で形成することができる。
 このように、本実施形態では、電解電極デバイス20の積層体27は、導電性基板に成膜した導電性ダイヤモンド膜上に導電性膜23を載せ、導電性膜23上に板状陰極22を載せることで形成されている。
 配管30は、電解電極デバイス20に電解処理の対象となる水を供給するものであり、この配管30は、アクリル等の非導電性の樹脂を用いた部材で形成されている。
 電源部40は、板状陽極21と板状陰極22との間に導電性膜23を介して電位差を生じさせるものである。この電源部40の+側には、板状陽極21に電気的に接続されている給電体24が導線41を介して電気的に接続されており、電源部40の-側には、板状陰極22が導線41を介して電気的に接続されている。
 次に、かかる構成をしたオゾン水生成装置(電解水生成装置)1の動作、作用を説明する。
 まず、水道の蛇口等に直接または間接的に接続された上流側配管31よりハウジング10内の水路11の上流側に水が供給される。そして、水路11の上流側に流入した水は、水路11の一部である通水路25内に流入し、通水路25を通過して水路11の下流側へと流出する。このように、水道圧を利用して水を水路11内に供給することも可能であるが、ポンプなどを利用して水を水路11内に供給するようにしてもよい。ポンプを利用して水を水路11内に供給する場合、上流側配管31もしくは上流側配管31の上流側に移送用のポンプを備えることとなる。なお、水を水路11内に供給する手段は、水道圧やポンプに限らず、どのような構成としてもよい。
 また、通水路25内に水が流入すると、導電性膜23と板状陽極21との界面26Aの少なくとも一部が水と接触するとともに、導電性膜23と板状陰極22との界面26Bの少なくとも一部が水と接触することとなる。
 かかる状態で、電源部40をオンにして、電源部40により電解電極デバイス20の板状陽極21と板状陰極22との間に電圧を印加すると、板状陽極21と板状陰極22との間には導電性膜23を介して電位差が生じる。このように、板状陽極21と板状陰極22との間に電位差を生じさせることで、板状陽極21、導電性膜23および板状陰極22が通電し、導電性膜23と板状陽極21との界面26A近傍でオゾンが発生する。
 このとき印加される電圧は数ボルト~数十ボルトであり、電圧が高いほど(電流値が高いほど)オゾンの発生量が大きくなる。
 導電性膜23と板状陽極21との界面26A近傍で発生したオゾンは、水の流れに沿って水路11の下流側および下流側配管32へと運ばれながら水に溶解する。このように、オゾンを水に溶解させることで溶存オゾン水(オゾン水)が生成される。
 なお、下流側配管32内のオゾン水は、用途に応じて、下流側配管32の吐出口からそのまま吐出されたり、下流側配管32を介して水処理用の反応槽内に供給されたりする。
 ところで、上述したように、電解電極デバイスに印加する電圧が高いほど(電流値が高いほど)オゾン(電解生成物)の発生量は大きくなるが、同じ電圧を印加した際における、オゾン(電解生成物)の発生量を大きくすることができればより好ましい。
 そこで、本実施形態では、オゾン水生成装置(電解水生成装置)1の電解電極デバイス20によるオゾン(電解生成物)の発生効率をより向上できるようにした。
 具体的には、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようにした。
 すなわち、積層体27の積層方向(上下方向Z)から視た状態で、積層体27における板状陽極21、導電性膜23および板状陰極22が積層されている部分以外の部位に電極としての板状陽極21が存在するようにした。
 こうすることで、同じ電圧を印加した際における、導電性膜23と板状陽極21との界面26A近傍の電界を、露出面21aが存在しない場合よりも大きくすることができ、電解電極デバイス20によるオゾン(電解生成物)の発生効率をより向上させることができるようになる。
 また、本実施形態では、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させるようにした。すなわち、露出面21aと直交しない方向に水を通水させるようにした。
 具体的には、上述したように、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20を本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにした。
 こうすることで、板状陽極21の上面21aに沿って水が流れるようにした。具体的には、導電性膜23と板状陽極21との界面26A(導電性膜23の側面23aと板状陽極21の上面21aとの交線)および導電性膜23と板状陰極22との界面26B(板状陰極22の側面22aと導電性膜23の側面23aとの境界線)に沿って水が流れるようにした。
 さらに、本実施形態では、通水方向(前後方向X)から視た状態における電解電極デバイス20の通水路25が形成される部分以外の外周面20aの全体を、封止樹脂等により封止することで、通水路25を閉断面構造となるようにしている。
 以上、説明したように、本実施形態では、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようにした。こうすることで、同じ電圧を印加した際における、導電性膜23と板状陽極21との界面26A近傍の電界を、露出面21aが存在しない場合よりも大きくすることができるようになる。その結果、電解電極デバイス20によるオゾン(電解生成物)の発生効率をより向上させることができるようになるため、オゾン(電解生成物)の発生効率をより向上させることのできるオゾン水生成装置(電解水生成装置)1を得ることができる。
 また、本実施形態では、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させるようにした。
 このように、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させることで、供給される水に電解処理を施す際に、板状陽極21および板状陰極22のうちの少なくとも一方の電極(本実施形態では、板状陽極21)に貫通孔を形成する必要がなくなる。すなわち、板状陽極21および板状陰極22のうちの少なくとも一方の電極に貫通孔を形成することなく、オゾン(電解生成物)を発生させることができるようになる。そのため、板状陽極21および板状陰極22の両方に貫通孔を形成する場合に比べて、製造コストを抑制することができるようになる。
 ところで、発生したオゾンが滞留すると、オゾン同士が水に溶解する前に結合して気泡が肥大化してしまうおそれがある。そして、気泡が肥大化すると、オゾンの水への溶解が妨げられ、オゾン水の溶解オゾン濃度が低下してしまう。また、気泡が導電性膜23と板状陽極21との界面26A近傍に滞留すると、滞留した気泡によって導電性膜23と板状陽極21との界面26A近傍におけるオゾンの発生が妨げられてしまう。
 そのため、発生したオゾンを素早くかつ滞留させることなく流すことができるようにするのが好ましい。
 そこで、本実施形態では、発生したオゾンが滞留してしまうのを抑制できるようにしている。
 具体的には、通水方向(前後方向X)から視た状態における電解電極デバイス20の通水路25が形成される部分以外の外周面20aの全体を、封止樹脂等により封止することで、通水路25を閉断面構造となるようにした。
 こうすることで、電解電極デバイス20からの漏出に由来するオゾンの滞留が抑制され、オゾンの滞留に基づくオゾン溶解の効率低下を抑制することができるようになる。
 さらに、本実施形態では、板状陽極21の上面21aに沿って水が流れるようにした。具体的には、導電性膜23と板状陽極21との界面26A(導電性膜23の側面23aと板状陽極21の上面21aとの交線)に沿って水が流れるようにした。このように、導電性膜23と板状陽極21との界面26Aに沿って通水させることにより、発生したオゾンが導電性膜23と板状陽極21との界面26Aに沿って流れるようになるため、発生したオゾンが滞留してしまうのを抑制することができるようになる。
 なお、発生したオゾンの滞留を抑制するためには、導電性膜23と板状陽極21との界面26Aおよび板状陽極21の露出面21bだけでなく、ハウジング10内の水路11を水が滞留する段差などが設けられていない構成とするのが好ましい。
 また、発生したオゾンを素早く流すためには、例えば、平均流速を上げる方法があり、この平均流速を上げる方法としては、例えば、ハウジング10の上流側にポンプを備えるようにすることができる。また、既にポンプを備えている場合には、ポンプの供給力を上げることで対応することができる。なお、平均流速を上げる方法は、上述の方法に限らず、電極表面の平均流速を上げることができる方法であれば、どのような方法を用いてもよい。
 また、本実施形態では、導電性膜23と板状陰極22との界面(導電性膜と電極との界面)26Bの少なくとも一部も通水路25に露出させ、水と接触するようにしている。したがって、導電性膜23と板状陰極22との界面(導電性膜と電極との界面)26B近傍で発生する水素を効率よく溶解させる場合にも有効である。
 また、本実施形態によれば、板状陽極21、導電性膜23および板状陰極22を積層するだけで、通水路25を形成することが可能となるため、電解電極デバイス20の組立性の向上を図ることが可能となる。
 (第2実施形態)
 本実施形態にかかるオゾン水生成装置(電解水生成装置)1Aは、基本的に上記第1実施形態と同様の構成をしている。
 すなわち、オゾン水生成装置(電解水生成装置)1Aは、図2に示すように、ハウジング10と電解電極デバイス20Aと配管30と電源部40とを備えている。
 また、電解電極デバイス20Aは、互いに隣り合う電極21,22間に導電性膜23が介在するように積層された1つの積層体27を有しており、板状陽極21の下側には、給電体24が積層されている。
 そして、本実施形態にあっても、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようになっている。
 そして、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させるようにしている。すなわち、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20Aを本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにし、板状陽極21の上面21aに沿って水が流れるようにしている。
 ここで、本実施形態のオゾン水生成装置(電解水生成装置)1Aが上記第1実施形態のオゾン水生成装置(電解水生成装置)1と主に異なる点は、通水路25が、閉鎖板50により少なくとも一部が閉じられることで閉断面となるように形成されている点にある。
 具体的には、上方に開口する通水路25が形成された積層体27の上方に閉鎖板50を積層することで、通水路25が閉断面となるようにしている。
 この閉鎖板50は、アクリルやプラスチック、ゴムなどの絶縁材料を用いて形成されている。なお、絶縁材料であれば、どのような材料を用いてもよい。また、耐オゾン性を有する材料を用いて閉鎖板50を形成するようにするのが好ましい。
 また、本実施形態では、通水方向(前後方向X)から視た状態における電解電極デバイス20Aの外周面20aの全体を、封止樹脂等により封止している。こうすることで、上流側配管31を通ってハウジング10内の水路11の上流側に流入した水が、通水路25を通過することなく、水路11の下流側に接続された下流側配管32へと流出させることができないようにしている。
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。
 また、本実施形態によれば、上方に開口する通水路25が形成された積層体27の上方に閉鎖板50を積層することで、通水路25が閉断面となるようにしている。そのため、より確実に通水路25を閉断面構造とすることができる上、電解電極デバイス20Aをより容易に製造することができるようになる。
 (第3実施形態)
 本実施形態にかかるオゾン水生成装置(電解水生成装置)1Bは、基本的に上記第2実施形態と同様の構成をしている。
 すなわち、オゾン水生成装置(電解水生成装置)1Bは、図3に示すように、ハウジング10と電解電極デバイス20Bと配管30と電源部40とを備えている。
 また、電解電極デバイス20Bは、互いに隣り合う電極21,22間に導電性膜23が介在するように積層された1つの積層体27を有しており、板状陽極21の下側には、給電体24が積層されている。
 そして、本実施形態にあっても、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようになっている。
 そして、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させるようにしている。すなわち、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20Bを本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにし、板状陽極21の上面21aに沿って水が流れるようにしている。
 また、上方に開口する通水路25が形成された積層体27の上方に閉鎖板50を積層することで、通水路25が閉断面となるようにしている。
 ここで、本実施形態のオゾン水生成装置(電解水生成装置)1Bが上記第2実施形態のオゾン水生成装置(電解水生成装置)1Aと主に異なる点は、通水路25が、区画部としての分離板60によって複数に区画されている点にある。
 本実施形態では、通水路25の幅方向Y中央部に分離板60を配置し、かかる状態で、積層体27の上方に閉鎖板50を積層することで、通水路25を2つに区画している。
 この分離板60は、アクリルやプラスチック、ゴムなどの絶縁材料を用いて形成されている。なお、絶縁材料であれば、どのような材料を用いてもよい。また、耐オゾン性を有する材料を用いて分離板60を形成するようにするのが好ましい。
 また、閉鎖板50と分離板60とを一体に形成することも可能である。
 以上の本実施形態によっても、上記第2実施形態と同様の作用、効果を奏することができる。
 また、本実施形態によれば、通水路25を、区画部としての分離板60によって複数に区画しているため、区画されていない場合に比べて、通水された水の通過断面積が小さくなる。その結果、流速をより大きくすることができ、オゾンの溶解をより効率よく行うことができるようになる。
 なお、分離板60の前後方向Xの長さは、通水路25の前後方向Xの長さと略一致させるようにするのが好ましい。
 両者の長さが異なると、特に手前(上流側)に隙間が存在するような場合、導電性膜23と板状陽極21との界面26Aの上流側で発生したオゾンが下流側に流れるのを、分離板60によって妨害されるおそれがあるためである。
 (第4実施形態)
 本実施形態にかかるオゾン水生成装置(電解水生成装置)1Cは、基本的に上記第3実施形態と同様の構成をしている。
 すなわち、オゾン水生成装置(電解水生成装置)1Cは、図4に示すように、ハウジング10と電解電極デバイス20Cと配管30と電源部40とを備えている。
 また、電解電極デバイス20Cは、互いに隣り合う電極21,22間に導電性膜23が介在するように積層された1つの積層体27を有しており、板状陽極21の下側には、給電体24が積層されている。
 そして、本実施形態にあっても、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようになっている。
 そして、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させるようにしている。すなわち、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20Cを本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにし、板状陽極21の上面21aに沿って水が流れるようにしている。
 また、上方に開口する通水路25が形成された積層体27の上方に閉鎖板50を積層することで、通水路25が閉断面となるようにしている。
 そして、通水路25が、区画部によって2つ(複数)に区画されている。
 ここで、本実施形態のオゾン水生成装置(電解水生成装置)1Cが上記第3実施形態のオゾン水生成装置(電解水生成装置)1Bと主に異なる点は、区画部が導電性膜23と板状陰極(電極)22とを積層することにより形成されている点にある。
 本実施形態では、通水路25の幅方向Y中央部に、導電性膜23と板状陰極(電極)22とを積層し、かかる状態で、積層体27の上方に閉鎖板50を積層することで、通水路25を2つに区画している。
 また、本実施形態では、区画部の板状陰極22も、導線41を介して電源部40の-側に電気的に接続されている。
 以上の本実施形態によっても、上記第3実施形態と同様の作用、効果を奏することができる。
 また、本実施形態によれば、導電性膜23と板状陰極(電極)22とを積層することにより区画部を形成している。そのため、各通水路25の区画部側にも導電性膜23と板状陽極21との界面26Aが形成されることとなる。
 ところで、上述したように、電解処理によってオゾンが発生する場所は、導電性膜23と板状陽極21との界面26Aであり、本実施形態では、区画部の導電性膜23および板状陰極22も通電されるようになっている。そのため、各通水路25の区画部側の界面26A近傍でもオゾンを発生させることができるようになる。その結果、オゾンの発生箇所を増やすことができ、オゾン水のオゾン濃度を向上させることができるようになる。
 (第5実施形態)
 本実施形態にかかるオゾン水生成装置(電解水生成装置)1Dは、基本的に上記第1実施形態と同様の構成をしている。
 すなわち、オゾン水生成装置(電解水生成装置)1Dは、図5に示すように、ハウジング10と電解電極デバイス20Dと配管30と電源部40とを備えている。
 また、電解電極デバイス20Dは、互いに隣り合う電極21,22間に導電性膜23が介在するように積層された1つの積層体27を有しており、板状陽極21の下側には、給電体24が積層されている。
 そして、本実施形態にあっても、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようになっている。
 そして、通水路25内に通水される水の通水方向を積層体27の積層方向(上下方向Z)と交差させるようにしている。すなわち、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20Dを本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにし、板状陽極21の上面21aに沿って水が流れるようにしている。
 ここで、本実施形態のオゾン水生成装置(電解水生成装置)1Dが上記第1実施形態のオゾン水生成装置(電解水生成装置)1と主に異なる点は、ハウジング10により少なくとも一部が閉じられることで閉断面となるように通水路25が形成されている点にある。
 具体的には、電解電極デバイス20Dが、ハウジング10の本体部10aに形成された中空部10d内に嵌め込まれるようにすることで、通水路25の上方開口をハウジング10によって塞ぎ、通水路25が閉断面となるようにしている。
 なお、電解電極デバイス20Dは、上記第3実施形態の電解電極デバイス20Cと同様に、通水路25の幅方向Y中央部に、導電性膜23と板状陰極(電極)22とを積層することで形成された区画部を有しており、当該区画部によって通水路25を2つに区画している。そして、区画部の板状陰極22も、導線41を介して電源部40の-側に電気的に接続されている。
 以上の本実施形態によっても、上記第1実施形態や第3実施形態と同様の作用、効果を奏することができる。
 また、本実施形態によれば、ハウジング10により少なくとも一部が閉じられることで閉断面となるように通水路25を形成している。そのため、電解電極デバイス20Dの小型化を図ることができる上、電解電極デバイス20Dの組み立て作業性を向上させることができるようになる。
 なお、区画部によって通水路25を複数に区画する際には、区画部としての分離板60を用いて行うことも可能である。また、ハウジング10の中空部10dに区画部に相当する凸部を形成することで、通水路25を複数に区画するようにしてもよい。
 (第6実施形態)
 本実施形態にかかるオゾン水生成装置(電解水生成装置)1Eは、基本的に上記第1実施形態と同様の構成をしている。
 すなわち、オゾン水生成装置(電解水生成装置)1Eは、図6に示すように、ハウジング10と電解電極デバイス20Eと配管30と電源部40とを備えている。
 また、電解電極デバイス20Eは、互いに隣り合う電極21,22間に導電性膜23が介在するように積層された1つの積層体27を有しており、板状陽極21の下側には、給電体24が積層されている。
 そして、本実施形態にあっても、電極としての板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようになっている。
 そして、通水路25内に通水される水の通水方向を積層体27の積
層方向(上下方向Z)と交差させるようにしている。すなわち、溝部28の延在方向を前後方向Xに略一致させた状態で電解電極デバイス20Eを本体部10a内に収容することで、通水路25内に通水される水の通水方向が前後方向Xとなるようにし、板状陽極21の上面21aに沿って水が流れるようにしている。
 ここで、本実施形態のオゾン水生成装置(電解水生成装置)1Eが上記第1実施形態のオゾン水生成装置(電解水生成装置)1と主に異なる点は、電極としての板状陰極22により少なくとも一部が閉じられることで閉断面となるように通水路25が形成されている点にある。
 具体的には、下面側に凹部22bが形成された板状陰極22を、導電性膜23上に積層することで、上方を板状陰極22によって塞がれた通水路25を形成し、通水路25が閉断面となるようにしている。
 なお、電解電極デバイス20Eでは、導電性膜23と板状陰極(電極)22とを積層することで形成された区画部を2つ有しており、2つの区画部によって、幅方向Yに3つに区画されている。
 以上の本実施形態によっても、上記第1実施形態や第3実施形態と同様の作用、効果を奏することができる。
 また、本実施形態によれば、板状陰極22を、導電性膜23上に積層するだけで、通水路25を閉断面構造とすることができるため、電解電極デバイス20Eの組み立て作業性を向上させることができるようになる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。
 例えば、板状陽極21は、ダイヤモンドや白金、酸化鉛、酸化タンタルなどで構成することも可能であり、電解水を生成することのできる電極であればどのような材料を用いてもよい。また、板状陽極21をダイヤモンド電極とした場合、その製造方法は成膜による製造方法に限定されるものではない。また、金属以外の材料を用いて基板を構成することも可能である。
 また、上記各実施形態では、オゾンを発生させ、当該オゾンを水に溶解させることでオゾン水を生成するオゾン水生成装置を例示したが、生成させる物質はオゾンに限るものではなく、例えば、次亜塩素酸を生成して殺菌や水処理等に利用するようにしてもよい。
 また、板状陰極22は、白金やステンレスなどで構成することも可能である。
 また、上記各実施形態では、チタン製の給電体24を例示したが、これに限らず、電気を通すものであればどのような材料を用いて形成してもよい。また、1つの材料を用いて形成する必要はなく、例えば、カーボンと金属メッシュ等によって構成することも可能である。
 また、電解水生成装置に、気泡が滞留した場合に、当該滞留した気泡を逃がすための手段を備えるようにしてもよい。滞留した気泡を逃がすための手段としては、気液分離槽や排気弁などがある。
 また、滞留した気泡を逃がすための手段を用いて気泡を装置外へ排出する場合、オゾンガス分解手段を備えるようにした方が好ましい。オゾンガス分解手段としては、活性炭や紫外線ランプ、紫外線LEDなどがある。
 また、原水としては、水道水だけでなく井戸水等を利用することができ、また、純水を用いることも可能である。
 また、原水が著しく汚れている場合には、配管の上流側に水処理を行う浄化手段を備えるようにしてもよい。
 その場合、RO膜やNF膜などの分離膜や、活性炭などの吸着手段、砂ろ過フィルター、不職布、イオン交換樹脂などを用いることができる。これらは原水の水質によって浄化手段を適宜選択するのが好ましい。
 また、上記各実施形態では、板状陽極21が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面21bを有するようにしたものを例示したが、板状陰極22が、積層体27の積層方向(上下方向Z)から視た状態で、通水路25に露出する露出面を有するようにすることも可能である。
 また、上記第1~第4実施形態および第6実施形態で示した電解電極デバイス20,20A,20B,20C,20Eがハウジング10の本体部10aに形成された中空部10d内に嵌め込まれるようにすることも可能である。
 また、ハウジングや電解電極デバイス、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。
 以上のように、本発明にかかる電解水生成装置は、発生した電界生成物が有効に溶解可能となるので、例えば、電界生成物としてのオゾンが溶解したオゾン水によって浄化・殺菌を行う水処理分野や、食品分野、医学分野、半導体分野等の用途にも適用できる。

Claims (8)

  1.  互いに隣り合う電極間に導電性膜が介在するように積層された積層体を有し、当該積層体に通水路が形成されるとともに、前記導電性膜と前記電極との界面の少なくとも一部が前記通水路に露出するように構成された電解電極デバイスと、
     前記電解電極デバイスの通水路を含む水路が形成されたハウジングと、
     を備える電解水生成装置であって、
     前記電極は、前記積層体の積層方向から視た状態で、前記通水路に露出する露出面を有していることを特徴とする電解水生成装置。
  2.  前記通水路内に通水される水の通水方向が前記積層体の積層方向と交差していることを特徴とする請求項1に記載の電解水生成装置。
  3.  前記通水路内に通水される水が前記界面に沿って流れるようにしたことを特徴とする請求項2に記載の電解水生成装置。
  4.  前記通水路が閉断面構造をしていることを特徴とする請求項1~3のうちいずれか1項に記載の電解水生成装置。
  5.  前記通水路は、区画部によって複数に区画されていることを特徴とする請求項1~4のうちいずれか1項に記載の電解水生成装置。
  6.  前記区画部が、前記電極と前記導電性膜とを積層することにより形成されていることを特徴とする請求項5に記載の電解水生成装置。
  7.  前記通水路は、前記ハウジングにより少なくとも一部が閉じられることで閉断面となるように形成されていることを特徴とする請求項1~6のうちいずれか1項に記載の電解水生成装置。
  8.  前記通水路は、前記電極により少なくとも一部が閉じられることで閉断面となるように形成されていることを特徴とする請求項1~7のうちいずれか1項に記載の電解水生成装置。
PCT/JP2014/000700 2013-03-13 2014-02-10 電解水生成装置 WO2014141587A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013049911A JP6132234B2 (ja) 2013-03-13 2013-03-13 電解水生成装置
JP2013-049911 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141587A1 true WO2014141587A1 (ja) 2014-09-18

Family

ID=51536272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000700 WO2014141587A1 (ja) 2013-03-13 2014-02-10 電解水生成装置

Country Status (2)

Country Link
JP (1) JP6132234B2 (ja)
WO (1) WO2014141587A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858744B2 (en) 2016-10-20 2020-12-08 Advanced Diamond Technologies, Inc. Ozone generators, methods of making ozone generators, and methods of generating ozone
CN112313176A (zh) * 2018-03-29 2021-02-02 北极星医疗放射性同位素有限责任公司 用于臭氧水生成器的系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210418B2 (ja) * 2014-09-26 2017-10-11 パナソニックIpマネジメント株式会社 電解液体生成装置、電解液体生成装置を備えた液体改質装置または電解液体生成装置で生成された電解液体を利用する電気機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177672A (ja) * 2003-12-22 2005-07-07 Ishikawajima Shibaura Mach Co Ltd 電解式オゾナイザ
JP2007283180A (ja) * 2006-04-14 2007-11-01 Ozotech:Kk オゾン水生成装置およびオゾン水生成方法
JP2011246800A (ja) * 2010-04-30 2011-12-08 Aquaecos Ltd 膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177672A (ja) * 2003-12-22 2005-07-07 Ishikawajima Shibaura Mach Co Ltd 電解式オゾナイザ
JP2007283180A (ja) * 2006-04-14 2007-11-01 Ozotech:Kk オゾン水生成装置およびオゾン水生成方法
JP2011246800A (ja) * 2010-04-30 2011-12-08 Aquaecos Ltd 膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10858744B2 (en) 2016-10-20 2020-12-08 Advanced Diamond Technologies, Inc. Ozone generators, methods of making ozone generators, and methods of generating ozone
CN112313176A (zh) * 2018-03-29 2021-02-02 北极星医疗放射性同位素有限责任公司 用于臭氧水生成器的系统和方法

Also Published As

Publication number Publication date
JP2014172029A (ja) 2014-09-22
JP6132234B2 (ja) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6077087B2 (ja) オゾン生成のための電解槽
JP4220978B2 (ja) 電極、オゾン生成装置、及び、オゾン生成方法
KR101716349B1 (ko) 연속식 전해 산화수/환원수 생성 장치
US20080156642A1 (en) System for the Disinfection of Low-Conductivity Liquids
US20130228459A1 (en) Electrolyzed water producing apparatus
TWI622666B (zh) 電解水生成裝置
KR101895525B1 (ko) 역전기투석 장치를 이용한 저 에너지 소비형 수산화나트륨 생산 장치 및 이를 이용한 하이브리드 시스템
JP2015174085A (ja) 電解水生成装置
WO2014141587A1 (ja) 電解水生成装置
TWI546419B (zh) 電解電極元件及具有該電解電極元件之電解水生成裝置
JP5282201B2 (ja) 電気分解水生成器
JP2014217820A (ja) 電解水生成装置
WO2017006911A1 (ja) 電解槽及び電解水生成装置
KR20160123954A (ko) 기능수 생성모듈
WO2017010372A1 (ja) 電解槽及び電解水生成装置
JP2012007206A (ja) 電解槽
US10858744B2 (en) Ozone generators, methods of making ozone generators, and methods of generating ozone
JP6190424B2 (ja) 電解槽及び電解水生成装置
JP6435413B2 (ja) パイプ型電解セル
KR101686138B1 (ko) 전해모듈
KR102146236B1 (ko) 수소 발생 장치
JP5210456B1 (ja) 洗浄水生成装置
JP2017529231A (ja) 酸性水電解槽
KR20190135071A (ko) 브라운 가스 발생 장치
JP2017148716A (ja) 電解次亜水生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765667

Country of ref document: EP

Kind code of ref document: A1