WO2014141501A1 - 作動ガス循環型エンジンシステム - Google Patents

作動ガス循環型エンジンシステム Download PDF

Info

Publication number
WO2014141501A1
WO2014141501A1 PCT/JP2013/072866 JP2013072866W WO2014141501A1 WO 2014141501 A1 WO2014141501 A1 WO 2014141501A1 JP 2013072866 W JP2013072866 W JP 2013072866W WO 2014141501 A1 WO2014141501 A1 WO 2014141501A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
gas
supply
fuel
oxygen
Prior art date
Application number
PCT/JP2013/072866
Other languages
English (en)
French (fr)
Inventor
石田 裕幸
朝長 成之
伸樹 岡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201380074606.3A priority Critical patent/CN105189984A/zh
Priority to KR1020157024497A priority patent/KR101722348B1/ko
Publication of WO2014141501A1 publication Critical patent/WO2014141501A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/005Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for draining or otherwise eliminating condensates or moisture accumulating in the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • F02B29/0443Layout of the coolant or refrigerant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/02Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines
    • F02D21/04Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines with circulation of exhaust gases in closed or semi-closed circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/02Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
    • F02M31/04Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture
    • F02M31/06Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air
    • F02M31/08Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating combustion-air or fuel-air mixture by hot gases, e.g. by mixing cold and hot air the gases being exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • F02B47/10Circulation of exhaust gas in closed or semi-closed circuits, e.g. with simultaneous addition of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a working gas circulation engine system in which working gas containing argon circulates in the system from the exhaust part of the engine to the air supply part.
  • a working gas circulation type hydrogen engine system in which working gas containing argon (hereinafter sometimes referred to as "Ar") circulates in the system from the exhaust part of the engine to the air supply part.
  • Ar working gas containing argon
  • Patent Document 1 discloses an invention related to a working gas circulation type hydrogen engine using argon as a working gas.
  • argon is expanded by the heat generated by the combustion of hydrogen by supplying argon and oxygen (hereinafter sometimes referred to as "O 2 ") to air instead of air.
  • O 2 argon and oxygen
  • the argon exhausted from the engine circulates in the system and is supplied again to the engine together with the newly supplied oxygen.
  • NOx nitrogen oxides
  • argon is a monoatomic molecular gas and has a high specific heat ratio, it has an advantage of being able to construct an engine system excellent in thermal efficiency.
  • At least one embodiment of the present invention has been made in view of the current situation as described above, and an object of the present invention is to provide a fuel efficiency engine for fuel using a fuel containing carbon such as heavy oil or natural gas. It is to provide an excellent engine system.
  • At least one embodiment of the present invention is In a working gas circulation engine system in which working gas containing argon circulates in the system from the exhaust part of the engine to the air supply part,
  • An engine that uses fuel containing carbon as fuel;
  • a condenser for removing moisture in the combustion gas discharged from the engine;
  • a surplus gas discharger for discharging a part of the combustion gas discharged from the engine out of the system;
  • Carbon dioxide removing means for discharging carbon dioxide in the combustion gas discharged from the engine out of the system;
  • Oxygen supply means for supplying oxygen and argon contained in air outside the system into the system; It is characterized by having.
  • oxygen supply means for supplying oxygen and argon contained in air outside the system into the system is provided, and carbon dioxide in combustion gas discharged from the engine , CO 2 ) may be discharged out of the system.
  • carbon dioxide discharged from the engine can be discharged out of the system while maintaining oxygen and argon in the gas circulating in the system at a certain concentration or higher, so heavy oil and natural gas etc. which generate carbon dioxide at the time of combustion
  • the present engine system can be suitably applied to an engine using as a fuel a fuel containing carbon, and the thermal efficiency of the engine can be significantly improved.
  • the thermal efficiency is improved not only at high load but also at low load.
  • thermal energy can not be effectively improved at low load if the method of recovering exhaust gas energy by a turbocharger with a turbocharger can not effectively improve the efficiency of this system.
  • argon is recycled as working gas, there is an advantage that almost no exhaust gas is emitted and, at the same time, almost no NOx is generated at the time of engine combustion.
  • the carbon dioxide removing means and the oxygen supplying means are separate devices separately configured, and the carbon dioxide removing means is a pressure of combustion gas discharged from the engine and
  • the oxygen supply means comprises an adsorption type CO 2 removal device configured to adsorb and separate carbon dioxide in the combustion gas with an adsorbent and discharge it out of the system under an atmosphere in which at least one of the temperatures fluctuates. Separates oxygen and argon from air by adsorbing nitrogen and carbon dioxide in the air to the adsorbent under an atmosphere in which the pressure and / or temperature of the air taken in from outside the system fluctuates, It comprises an adsorptive O 2 feeder configured to feed separated oxygen and argon into the system.
  • the carbon dioxide removing means and the oxygen supplying means described above are configured by the adsorption type CO 2 removing device and the adsorption type O 2 supply device, respectively, so that the above-mentioned excellent heat efficiency is obtained
  • the present engine system can be realized.
  • the adsorptive O 2 delivery system is configured to deliver oxygen and argon into the system downstream of the adsorptive CO 2 removal system. According to this embodiment, compared with the case of supplying oxygen and argon, to reduce the gas flow rate supplied to the adsorption type CO 2 removing device on the upstream side of the system than the adsorption CO 2 removing device As a result, the adsorption type CO 2 removal device can be made smaller by that amount.
  • the adsorption type CO 2 removal device is disposed downstream of the excess gas discharger, and the remaining combustion gas excluding a portion of the combustion gas discharged out of the system by the excess gas discharger Is configured to be able to capture.
  • the adsorption type CO 2 removal device is disposed on the upstream side of the excess gas discharger, the adsorption corresponding to the amount of excess gas discharged from the excess gas discharger to the outside of the system is adsorbed. It is possible to reduce the gas flow rate supplied to the formula CO 2 removing device, it is possible to reduce the adsorption-type CO 2 removing device correspondingly.
  • a bypass bypassing the adsorption type CO 2 removal device is branched, and a flow control valve is disposed to control the flow rate of gas flowing through the bypass.
  • an air supply means is provided upstream of the engine for supplying air outside the system without passing through the adsorption type O 2 supply device.
  • the argon concentration of the gas (supply gas) supplied to the engine is increased, the in-cylinder pressure and in-cylinder temperature at the time of combustion are increased, and the thermal efficiency of the engine is also improved. If it is too high, problems will arise in the construction of the engine. Therefore, practically, it is necessary to control the argon concentration of the gas supplied to the engine within an appropriate range.
  • the flow rate of the combustion gas taken into the adsorption type oxygen generator is controlled by adjusting the valve opening degree of the flow control valve, or the system without using the adsorption type oxygen generator by the air supply means. By supplying outside air to the engine, the argon concentration of the supplied gas can be controlled.
  • At least one of the adsorption-type CO 2 removal device and the adsorption-type O 2 supply device is a target from a supply gas under an atmosphere in which the temperature of the supply gas supplied to the device fluctuates. While being configured to adsorb and separate the components, energy of the combustion gas discharged from the engine is configured to be available as energy for fluctuating the temperature of the supplied gas. According to such an embodiment, operation of the adsorption type CO 2 removal device and the adsorption type O 2 supply device is achieved by effectively utilizing the energy of the combustion gas discharged from the engine to change the temperature of the supply gas. Since the efficiency can be increased, the thermal efficiency of the present engine system can be further improved.
  • a compressor having a turbine driven by combustion gas exhausted from the engine, a compressor disposed coaxially with the turbine and compressing a gas containing oxygen and argon supplied to the engine, and a compressor And an intercooler for cooling the gas compressed in step b., And the heat medium heat-exchanged in the intercooler can be used as a heat source for fluctuating the temperature of the supplied gas.
  • the air cooler further includes an air cooler for cooling the combustion gas discharged from the engine, and the temperature of the heat medium, which is heat-exchanged with the combustion gas in the air cooler, is varied. It can be configured to be usable as a heat source of According to such an embodiment, the energy of the combustion gas discharged from the engine can be efficiently utilized to fluctuate the temperature of the supply gas, and the thermal efficiency of the present engine system can be further improved. .
  • the fuel cell system further comprises a liquefied fuel tank for storing the fuel gas supplied to the engine in a liquefied state
  • at least one of the adsorption type CO 2 removal device and the adsorption type O 2 supply device is a gas While being configured to adsorb and separate the target gas under an atmosphere in which the temperature fluctuates, the fuel gas in a liquefied state is configured to be usable as a heat source for fluctuating the gas temperature.
  • the thermal efficiency of the present engine system can be further improved by effectively utilizing the liquefied fuel gas as a heat source for changing the gas temperature.
  • the carbon dioxide removing means and the oxygen supplying means comprise one adsorptive CO 2 removal / O 2 supply device integrally configured, and the adsorptive CO 2 removal / O 2
  • the feed device adsorbs nitrogen and carbon dioxide in the air taken in from the outside of the system by adsorption with an adsorbent and discharges it out of the system under an atmosphere where pressure and / or temperature fluctuates, and residual oxygen and argon
  • the system is configured to be able to supply a gas containing the catalyst into the system and to take in the combustion gas discharged from the engine.
  • the above-described engine system is simplified by configuring the carbon dioxide removal means and the oxygen supply means described above by one adsorptive CO 2 removal / O 2 supply device. Can be realized with the following configuration.
  • the fuel cell system further includes an air supply valve for opening and closing the air supply port of the engine, and a control device that controls an operation timing of the air supply valve, and the control device lowers the air supply valve.
  • the compression ratio is configured to be lower than the expansion ratio.
  • the engine of the present engine system in some embodiments is configured such that the compression ratio is lower than the expansion ratio by controlling the air supply valve to be closed later than the bottom dead center.
  • the in-cylinder pressure of the engine can be reduced, so that, for example, the in-cylinder pressure can be made equal to or lower than the rated pressure even when argon is used as the working gas.
  • a turbocharger having a turbine driven by combustion gases exhausted from the engine and a compressor disposed coaxially with the turbine and compressing a gas containing oxygen and argon supplied to the engine Further comprising According to such an embodiment, it is possible to further improve the thermal efficiency of the entire engine system by driving the compressor with exhaust gas energy and compressing the gas containing oxygen and argon supplied to the engine.
  • the engine is a direct injection engine configured to inject fuel directly from the fuel injection valve into the combustion chamber.
  • the engine in the present engine system as a direct injection engine, the problems of knocking and preignition ignition which are of concern in the case of a port injection engine due to an increase in in-cylinder pressure and in-cylinder temperature are avoided. be able to.
  • the engine is a gas engine that uses a fuel gas mainly composed of a hydrocarbon gas having 1 to 4 carbon atoms, and the fuel gas is compressed and self-ignited in a combustion chamber. It is configured as a self-igniting gas engine.
  • argon as the working gas, the pressure in the cylinder and the temperature in the cylinder are increased.
  • methane (CH 4 ), ethane (C 2 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10) And the like can be self-ignited even when using a fuel gas mainly composed of hydrocarbon gas having 1 to 4 carbon atoms.
  • it can be configured as a self-igniting gas engine that does not use an ignition source such as fuel oil as a pilot fuel or a spark plug, and thermal efficiency can be further enhanced.
  • the engine is configured as a main marine engine for applying propulsion to a ship.
  • the engine of the engine system is particularly preferably used as a marine main engine.
  • an oxygen supply means for supplying oxygen and argon contained in air outside the system to the system is provided, and carbon dioxide in the combustion gas discharged from the engine is Since the carbon dioxide removal means for exhausting to the outside is provided, an engine system excellent in thermal efficiency can be provided for an engine fueled with heavy oil or natural gas.
  • 1 is a block diagram showing a schematic configuration of a working gas circulation engine system according to an embodiment of the present invention.
  • 1 is a block diagram showing a schematic configuration of a working gas circulation engine system according to an embodiment of the present invention.
  • 1 is a block diagram showing a schematic configuration of a working gas circulation engine system according to an embodiment of the present invention.
  • 1 is a block diagram showing a schematic configuration of a working gas circulation engine system according to an embodiment of the present invention.
  • 1 is a block diagram showing a schematic configuration of a working gas circulation engine system according to an embodiment of the present invention.
  • 1 is a block diagram showing a schematic configuration of a working gas circulation engine system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a working gas circulation engine system 1A according to one embodiment.
  • the engine system 1A is a circulation type engine system in which a working gas containing argon circulates in the system, and is applied to, for example, a marine main engine for applying propulsion to a ship.
  • the engine system 1A includes an engine 10, a condenser 22, an excess gas discharger 24, an adsorption type CO 2 removal device 25, an adsorption type oxygen supply device 26, a control device 30, and an exhaust portion of the engine 10. And a gas circulation passage 20 etc. which connects these devices in a ring shape.
  • the engine 10 includes a cylinder 11, a piston 12 slidably housed inside the cylinder 11, an air supply valve 13 for opening and closing the air supply port 13a, an exhaust valve 14 for opening and closing the exhaust port 14a, combustion
  • the fuel injection valve 16 for injecting the fuel into the chamber 15, the fuel supplier 17 for supplying the fuel to the fuel injection valve 16, the crankshaft 18, the connecting rod 19 connecting the piston 12 and the crankshaft 18, etc. Ru.
  • the exhaust port 13 a is connected to the gas circulation path 20. Then, by opening the air supply valve 13, argon and oxygen circulating in the gas circulation path 20 are supplied as the air supply gas from the air supply port 13 a to the combustion chamber 15. The supplied gas supplied to the combustion chamber 15 is compressed in the combustion chamber 15 as the piston 12 moves up, whereby the in-cylinder temperature and the in-cylinder pressure in the combustion chamber 15 increase. Then, when the piston 12 reaches near the top dead center, fuel is directly injected from the fuel injection valve 16 into the combustion chamber 15. The injected fuel is self-ignited in a high temperature atmosphere and explodes in the combustion chamber 15.
  • the argon gas (working gas) pushes down the piston 12 by the expansion accompanying the explosion to rotate the crankshaft 18 via the connecting rod 19.
  • the combustion gas after the explosion is discharged to the gas circulation passage 20 connected to the exhaust port 14 a by opening the exhaust valve 14.
  • a fuel containing carbon that is, a fuel other than hydrogen
  • a fuel gas such as natural gas or petroleum gas
  • a fuel oil such as heavy oil or light oil
  • Fuel gas such as natural gas and petroleum gas is mainly composed of hydrocarbon gas having 1 to 4 carbon atoms such as methane, ethane, propane and butane, and is usually stored in a liquefied state.
  • the condenser 22 is a device for condensing and removing the moisture in the combustion gas discharged from the engine 10, and is installed on the downstream side of the engine 10. The water condensed by the condenser 22 is removed out of the system.
  • the surplus gas discharger 24 is a device for discharging a part of the combustion gas delivered from the condenser 22 out of the system and delivering the remaining combustion gas downstream. Since oxygen and argon contained in air are supplied into the system from the adsorption type oxygen supply device 26 described later, an amount corresponding to the increment of the supplied gas amount is discharged out of the system in advance as surplus gas. A device for The amount of excess gas discharged from the excess gas discharger 24 is about 1% of the total amount of combustion gas.
  • the adsorption type carbon dioxide removing device 25 is a carbon dioxide removing means for discharging carbon dioxide in the combustion gas discharged from the engine 10 out of the system, and is an air by a method such as a so-called PSA (pressure swing adsorption) method. It is an apparatus which removes carbon dioxide in the inside.
  • the adsorption type carbon dioxide removing device 25 is disposed on the downstream side of the excess gas discharger 24 of the gas annular passage 20, and the remaining carbon dioxide removal device 25 removes a portion of the combustion gas discharged from the excess gas discharger 24 to the outside of the system. The combustion gas is supplied.
  • the adsorption type oxygen supply device 26 is an oxygen supply means for supplying oxygen and argon contained in air outside the system into the system, and like the adsorption type carbon dioxide removing device 25 described above, a PSA method etc. Oxygen and argon are adsorbed and separated from air outside the system by a method, and the separated oxygen and argon are supplied into the system.
  • the adsorption type O 2 supply device 26 is configured to be capable of taking in air outside the system, and is configured to supply oxygen and argon into the system downstream of the adsorption type CO 2 removal device 25. Further, the combustion gas flowing through the gas annular passage 20 does not flow into the adsorption type O 2 supply device 26.
  • Each of the adsorption type carbon dioxide removing device 25 and the adsorption type oxygen supply device 26 includes an adsorption tank filled with an adsorbent.
  • the combustion gas discharged from the engine 10 is fed to the adsorption tank.
  • carbon dioxide in the combustion gas is adsorbed to the adsorbent and separated.
  • air taken in from the outside of the system is fed to the adsorption tank.
  • nitrogen and carbon dioxide in the air are adsorbed to the adsorbent, and oxygen and argon are separated from the air.
  • the adsorption type carbon dioxide removal apparatus 25 and the adsorption type oxygen supply apparatus 26 are not limited to an apparatus based on the PSA method, that is, a method of adsorbing and separating the target gas by changing the pressure in the adsorption tank, and adsorption TSA (Thermal Swing Adsorption) method that adsorbs and separates target gas by changing the temperature in the tank, and PTSA (Pressure and Thermal Swing Adsorption) that adsorbs and separates the target gas by changing the temperature and pressure in the adsorption tank It may be a device according to law.
  • adsorption TSA Thermal Swing Adsorption
  • PTSA Pressure and Thermal Swing Adsorption
  • adsorption type carbon dioxide removal apparatuses 25 and adsorption type oxygen supply apparatuses 26 those known as apparatuses by the PSA method, TSA method and PTSA method can be used.
  • the control device 30 is configured by a computer such as an engine control unit, and includes a CPU (central processing unit), a memory, an input / output device, and the like. Then, by transmitting an operation signal related to the valve opening / closing timing, the operation timing of the air supply valve 13 and the exhaust valve 14 of the engine 10 described above can be controlled.
  • the working gas circulation engine system 1A oxygen and argon contained in air outside the system are supplied into the system as described above.
  • a carbon dioxide removal device 25 carbon dioxide removal means for discharging carbon dioxide in the combustion gas discharged from the engine 10 out of the system.
  • carbon dioxide exhausted from the engine 10 can be discharged out of the system while maintaining oxygen and argon in the gas circulating in the system at a certain concentration or higher, heavy oil or natural gas generating carbon dioxide at the time of combustion
  • the engine system 1A can be suitably applied to the engine 10 using a fuel containing carbon such as C. and the like as the fuel, and the thermal efficiency of the engine 10 can be significantly improved.
  • the thermal efficiency is improved not only at high load but also at low load.
  • a method of recovering exhaust gas energy by a turbine generator or the like by a turbocharger can not effectively improve the thermal efficiency at low load, the present system 1A also has a high advantage in this point. There is.
  • argon is recycled as a working gas, there is an advantage that almost no exhaust gas is emitted and, at the same time, almost no NOx is generated when the engine 10 is burned. Further, by adopting the adsorption type carbon dioxide removing device 25 as carbon dioxide removing means, it is possible to separate nitrogen accompanying carbon dioxide. Therefore, the concentration of argon circulating in the system can be increased, and the thermal efficiency of the engine system 1A can be further enhanced.
  • the carbon dioxide removal means and the oxygen supply means consist of separate devices configured separately. That is, the carbon dioxide removing means adsorbs and separates carbon dioxide in the combustion gas with the adsorbent under an atmosphere in which at least one of the pressure and the temperature of the combustion gas discharged from the engine 10 fluctuates,
  • the oxygen supply means comprises an adsorption type CO 2 removal device 25 configured to discharge, the oxygen in the air and the atmosphere in which at least one of the pressure and the temperature of the air taken in from outside the system fluctuates. It comprises an adsorption type O 2 supply device 26 configured to adsorb and separate argon by an adsorbent and supply it into the system.
  • thermal efficiency can be achieved by configuring the carbon dioxide removing means and the oxygen supplying means described above by the adsorption type CO 2 removal device 25 and the adsorption type O 2 supply device 26, respectively.
  • the above-described excellent engine system 1A can be realized.
  • the adsorptive O 2 delivery system 26 is configured to deliver oxygen and argon into the system downstream of the adsorptive CO 2 removal system 25. According to this embodiment, as compared with the case of supplying oxygen and argon on the upstream side of the system than the adsorption CO 2 removing device 25, reducing the flow rate of the gas supplied to the adsorption type CO 2 remover 25 As such, the adsorptive CO 2 removal device can be made smaller accordingly.
  • the adsorption type CO 2 removal device 25 is disposed downstream of the excess gas discharger 24 and a part of the excess gas discharger 24 is discharged out of the system. It is comprised so that uptake
  • the excess gas is discharged from the excess gas discharger 24 to the outside of the system, as compared with the case where the adsorption type CO 2 removal device 25 is disposed on the upstream side of the excess gas discharger 24. amount corresponding it is possible to reduce the gas flow rate supplied to the adsorption type CO 2 removing device 25, it is possible to reduce the adsorption-type CO 2 removing device 25 correspondingly.
  • a bypass bypassing the adsorption type CO 2 removal device is branched, and a flow control valve is disposed to control the flow rate of gas flowing through the bypass.
  • an air supply means is provided upstream of the engine for supplying air outside the system without passing through the adsorption type O 2 supply device.
  • the engine system 1A includes a turbine 32, a compressor 32b coaxially disposed with the turbine 32, and a supercharger 32c connecting the turbine 32 and the compressor 32b.
  • the machine 32 is further provided.
  • the turbine 32a is disposed downstream of the engine 10
  • the compressor 32b is disposed downstream of the point where oxygen and argon are supplied from the adsorption type oxygen supply device 26 into the system.
  • the turbine 32a is driven by the combustion gas discharged from the engine 10
  • the compressor 32b is coaxially driven accordingly.
  • the gas containing oxygen and argon supplied into the system from the adsorption type oxygen supply device 26 is compressed by the compressor 32 b and supplied to the engine 10 as a supply gas.
  • an intercooler 34 for cooling the gas supplied to the engine 10 is disposed downstream of the compressor 32b.
  • the exhaust gas energy drives the compressor 32b to compress the gas containing oxygen and argon supplied to the engine 10, whereby the entire engine system 1A can be manufactured. Thermal efficiency can be further improved.
  • the air supply valve 13 for opening and closing the air supply port 13a of the engine 10 and the control device 30 for controlling the operation timing of the air supply valve 13 are further provided.
  • this control apparatus 30 is comprised so that a compression ratio may fall rather than an expansion ratio by controlling so that the air supply valve 13 may be retarded and closed after a bottom dead center.
  • the engine 10 of the present engine system 1A is configured so that the compression ratio is lower than the expansion ratio by controlling the air supply valve 13 so as to be closed later than the bottom dead center. It is configured as a mirror cycle engine.
  • the in-cylinder pressure of the engine 10 can be reduced, so that, for example, the in-cylinder pressure can be made equal to or lower than the rated pressure even when argon is used as the working gas. .
  • FIG. 2 is a block diagram showing a schematic configuration of a working gas circulation engine system 1B according to one embodiment.
  • a bypass passage 35 bypassing the adsorption type CO 2 removing device 25 is branched to the downstream side of the surplus gas discharger 24 with respect to the engine system 1A described above.
  • Flow control valve 36 for controlling the flow rate of gas flowing through the engine 10, and for supplying air outside the system to the engine 10 upstream of the engine 10 without using the adsorption type O 2 supply device 26.
  • the point in which the air supply means 38 is provided is different.
  • the installation position of the air supply means 38 is not particularly limited as long as it is a position where air outside the system can be supplied to the engine 10 without intervention of the adsorption type oxygen producing device 26. Since a lower pressure in the gas circulation passage 20 is advantageous for supplying air, it is preferable to be upstream of the compressor 32b. Also, the better to the downstream side of the adsorption type CO 2 removing device 25, it is possible to reduce the gas flow path to be supplied to the adsorption type CO 2 removing device 25, preferably.
  • the argon concentration of the gas (supply gas) supplied to the engine 10 increases, the pressure in the cylinder and the temperature in the cylinder during combustion increase and the thermal efficiency of the engine 10 also improves, but on the other hand, the pressure in the cylinder and the cylinder If the temperature is too high, problems will occur in the construction of the engine 10. Therefore, practically, it is necessary to control the argon concentration of the gas supplied to the engine 10 in an appropriate range.
  • the flow rate of the combustion gas taken into the adsorption type CO 2 removing device 25 is controlled by adjusting the valve opening degree of the flow control valve 36, and the air supply means By supplying the air outside the system to the engine 10 without the adsorption type O 2 supply device 26 by 38, it becomes possible to control the argon concentration of the supply gas.
  • FIG. 3 is a block diagram showing a schematic configuration of a working gas circulation engine system 1C according to one embodiment.
  • the engine system 1C shown in FIG. 3 at least one of the adsorption type CO 2 removing device 25 and the adsorption type O 2 supply device 26 described above is under an atmosphere where the temperature of the supply gas supplied to the device fluctuates.
  • the apparatus is configured as a TSA method or a PTSA method for adsorbing and separating the target component from the supplied gas.
  • the engine system 1C exchanges the heat of the fuel gas in the liquefied state with the heat medium with the liquefied fuel tank 42 for storing the fuel gas such as natural gas in the liquefied state with respect to the above-described engine system 1A.
  • the heat medium circulation path 46 for circulating the heat medium between the heat exchanger 44 and the adsorption type CO 2 removing device 25. .
  • the adsorption CO 2 remover 25 When the heat medium cooled by the heat exchange in the heat exchanger 44 is supplied to the adsorption CO 2 remover 25, the adsorption CO 2 remover 25 to the supplied feed gases (excess gas discharging device 24 The supplied combustion gas is configured to be cooled. That is, the engine system 1C is configured to use the fuel gas in the liquefied state as a cooling heat source for changing the temperature of the supply gas supplied to the adsorption type CO 2 removing device 25. With such a configuration, the operation efficiency of the adsorption type CO 2 removing device 25 can be enhanced, so that the thermal efficiency of the engine system 1C can be further improved.
  • the engine system 1C further includes a second heat medium circulation passage 48 for circulating a heat medium between the intercooler 34 and the adsorption type O 2 supply device 26 with respect to the above-described engine system 1A.
  • the air supply gas compressed by the compressor 32b and heated to a high temperature exchanges heat with a heat medium such as cooling water.
  • a heat medium such as cooling water.
  • heat medium heated by the heat exchanger is supplied to the adsorption type O 2 supply device 26, so that the supply gas supplied to the adsorption type O 2 supply device 26 (the outside of the system of air) is heated It is configured. That is, the engine system 1C is configured to use the energy of the combustion gas discharged from the engine 10 as the energy for changing the temperature of the supply gas supplied to the adsorption type O 2 supply device 26.
  • the engine system 1C further includes an air cooler 37 for cooling the combustion gas discharged from the engine 10, and an air cooler between the turbine 32a and the condenser 22.
  • a third heat medium circulation passage 50 for circulating a heat medium is further provided between 37 and the adsorption type CO 2 removal device 25.
  • the air cooler 37 heat is exchanged between the combustion gas discharged from the engine 10 and the heat medium such as the cooling water. Then, by heat medium heated by the heat exchanger is supplied to the adsorption type CO 2 removing device 25, the combustion gas supplied from the adsorption type CO 2 removing device 25 with the supplied feed gases (excess gas discharging device 24 ) Is configured to be heated.
  • the energy of the combustion gas discharged from the engine 10 is utilized as the energy for changing the temperature of the supply gas supplied to the adsorption type O 2 supply device 26. Since the operation efficiency of the adsorption type O 2 supply device 26 can be enhanced, the thermal efficiency of the present engine system 1C can be further enhanced.
  • the utilization form of the energy of the fuel gas of a liquefied state mentioned above and a combustion gas is not limited to the aspect shown in FIG. 3, Of course, various changes are possible.
  • the thermal energy of the combustion gas recovered through the heat medium in the condenser 22 may be supplied to the adsorptive CO 2 removing device 25 or the adsorptive O 2 supply device 26.
  • the carbon dioxide removing means and the oxygen supplying means are integrated from one adsorptive CO 2 removing / O 2 supplying device 27.
  • the adsorption type CO 2 removal / O 2 supply device 27 is a system in which nitrogen and carbon dioxide in air taken in from outside the system are adsorbed and separated by an adsorbent under an atmosphere in which at least one of pressure and temperature fluctuates. It is configured to be discharged to the outside and to supply a gas containing residual oxygen and argon into the system.
  • the adsorption type CO 2 removal / O 2 supply device 27 is disposed on the downstream side of the surplus gas discharger 24 of the gas circulation path 20 and configured to be able to take in the combustion gas discharged from the engine 10 described above. It is done. 4 corresponds to FIG. 1 of the above-described embodiment, FIG. 5 corresponds to FIG. 2 of the above-described embodiment, and FIG. 6 corresponds to FIG. 3 of the above-described embodiment.
  • the engine system 1D to 1F can be realized by configuring the carbon dioxide removing means and the oxygen supplying means described above by one adsorption type CO 2 removing / O 2 supplying device 27. Can be realized with a simple configuration.
  • engine 10 may be a direct injection engine configured to inject fuel directly from fuel injector 16 into combustion chamber 15.
  • a direct injection engine configured to inject fuel directly from fuel injector 16 into combustion chamber 15.
  • the engine 10 is a gas engine 10 that uses a fuel gas mainly composed of a hydrocarbon gas having 1 to 4 carbon atoms, and the fuel gas is compressed in the combustion chamber 15 It can be configured as a self-igniting gas engine that is self-ignited.
  • a fuel gas mainly composed of a hydrocarbon gas having 1 to 4 carbon atoms such as (C 4 H 10 )
  • self-ignition can be achieved.
  • the working gas circulation engine system is suitably used in various engine systems, for example, an engine system of a marine main engine for applying propulsion to a ship.

Abstract

 重油や天然ガスなどの炭素を含む燃料を使用燃料とするエンジンにおいて熱効率性に優れたエンジンシステムを提供することを目的とし、アルゴンを含む作動ガスがエンジンの排気部から給気部に至る系内を循環する作動ガス循環型エンジンシステム(1A~1F)において、炭素を含む燃料を使用燃料とするエンジン(10)と、エンジンから排出される燃焼ガス中の水分を除去するための凝縮器(22)と、エンジンから排出される燃焼ガスの一部を系外に排出するための余剰ガス排出器(24)と、エンジンから排出される燃焼ガス中の二酸化炭素を系外に排出するための二酸化炭素除去手段(25,27)と、系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給手段(26,27)と、を備えたことを特徴とする。

Description

作動ガス循環型エンジンシステム
 本開示は、アルゴンを含む作動ガスがエンジンの排気部から給気部に至る系内を循環する作動ガス循環型エンジンシステムに関する。
 従来から、アルゴン(以下、「Ar」と記載する場合がある)を含む作動ガスがエンジンの排気部から給気部に至る系内を循環する作動ガス循環型の水素エンジンシステムが知られている。例えば特許文献1には、作動ガスとしてアルゴンを利用した水素エンジンに関する発明が本出願人によって出願されている。また特許文献2には、作動ガスとしてアルゴンを利用した作動ガス循環型水素エンジンに関する発明が開示されている。
 これら従来の水素エンジンシステムは、空気に換えてアルゴンと酸素(以下、「O」と記載する場合がある)とを燃焼室に供給することで、アルゴンが水素の燃焼により生じた熱による膨張体(すなわち作動ガス)として機能する。エンジンから排出されたアルゴンは系内を循環し、新たに供給される酸素とともに再びエンジンに供給される。このように、作動ガスとして窒素に代えてアルゴンを利用することで、窒素酸化物(NOx)の発生を抑えることができる。また、アルゴンは単原子分子ガスであり比熱比が高いため、熱効率性に優れたエンジンシステムを構築できるとの利点がある。
特許第3631891号公報 特開2006-77639号公報
 ところで、古くから重油を燃料としたディーゼルエンジンが幅広く利用されているが、昨今の重油価格の高騰やシュールガス革命による天然ガス価格の下落の中で、天然ガスを使用燃料とするガスエンジンにも注目が集まっている。また例えば、船舶に推進力を付与するための舶用主機エンジンなどでは、昨今のNOx規制強化の流れの中で、液化天然ガス(LNG)を燃料としたガスエンジンや重油に加えて天然ガスも燃料として利用できる所謂デュアルフュエルエンジンと呼ばれるエンジンも実用化されている。かかる重油や天然ガスを燃料とするエンジンにおいて、より一層の熱効率の向上が期待されている。
 本発明の少なくとも一つの実施形態は、上述したような現状に鑑みなされたものであって、その目的とするところは、重油や天然ガスなどの炭素を含む燃料を使用燃料とするエンジンにおいて、熱効率性に優れたエンジンシステムを提供することにある。
 本発明の少なくとも一つの実施形態は、
 アルゴンを含む作動ガスがエンジンの排気部から給気部に至る系内を循環する作動ガス循環型エンジンシステムにおいて、
 炭素を含む燃料を使用燃料とするエンジンと、
 前記エンジンから排出される燃焼ガス中の水分を除去するための凝縮器と、
 前記エンジンから排出される燃焼ガスの一部を系外に排出するための余剰ガス排出器と、
 前記エンジンから排出される燃焼ガス中の二酸化炭素を系外に排出するための二酸化炭素除去手段と、
 系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給手段と、
を備えたことを特徴とする。
 上記作動ガス循環型エンジンシステムによれば、系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給手段を備えるとともに、エンジンから排出される燃焼ガス中の二酸化炭素(以下、「CO」と記載する場合がある)を系外に排出するための二酸化炭素除去手段を備えている。このため、系内を循環するガス中の酸素およびアルゴンを一定の濃度以上に維持しつつエンジンから排出される二酸化炭素を系外に排出できるため、燃焼時に二酸化炭素が発生する重油や天然ガスなどの炭素を含む燃料を使用燃料とするエンジンにおいて、本エンジンシステムを好適に適用でき、エンジンの熱効率を大幅に向上させることができる。
 また、アルゴンを作動ガスとして利用する上記エンジンシステムによれば、高負荷時だけでなく低負荷時においても熱効率が向上する。この点、過給機によって排ガスエネルギーをタービン発電機などで回収する方法だと低負荷時において効果的に熱効率を向上させることができず、本システムはこの点においても高い優位性を備えている。
 また、アルゴンを作動ガスとして循環利用するため、排気ガスが殆ど排出されない他、エンジンの燃焼時に殆どNOxが発生しないとの利点がある。
 本発明の一実施形態では、上記二酸化炭素除去手段および上記酸素供給手段は、それぞれ別体に構成された別々の装置からなり、上記二酸化炭素除去手段は、エンジンから排出される燃焼ガスの圧力および温度の少なくともいずれか一方が変動する雰囲気下において、燃焼ガス中の二酸化炭素を吸着剤で吸着分離して系外に排出するように構成された吸着式CO除去装置からなり、上記酸素供給手段は、系外から取り込んだ空気の圧力および温度の少なくともいずれか一方が変動する雰囲気下において、空気中の窒素および二酸化炭素を吸着剤に吸着させることで空気中から酸素およびアルゴンを分離し、該分離した酸素およびアルゴンを系内に供給するように構成された吸着式O供給装置からなる。
 このような本発明の一実施形態によれば、上述した二酸化炭素除去手段および酸素供給手段を、それぞれ吸着式CO除去装置および吸着式O供給装置によって構成することで、熱効率性に優れる上述の本エンジンシステムを実現することができる。
 幾つかの実施形態では、上記吸着式O供給装置は、吸着式CO除去装置よりも下流側の系内に酸素およびアルゴンを供給するように構成されている。
 このような実施形態によれば、吸着式CO除去装置よりも上流側の系内に酸素およびアルゴンを供給する場合と比べて、吸着式CO除去装置に供給されるガス流量を少なくすることができるため、その分だけ吸着式CO除去装置を小さくすることができる。
 幾つかの実施形態では、上記吸着式CO除去装置は、余剰ガス排出器の下流側に配置され、余剰ガス排出器にて系外に排出された一部の燃焼ガスを除く残余の燃焼ガスを取り込み可能に構成されている。
 このような実施形態によれば、吸着式CO除去装置が余剰ガス排出器の上流側に配置されている場合と比べて、余剰ガス排出器から系外に余剰ガスが排出される分だけ吸着式CO除去装置に供給されるガス流量を少なくすることができ、その分だけ吸着式CO除去装置を小さくすることが可能となる。
 幾つかの実施形態では、上記吸着式CO除去装置を迂回するバイパス路が分岐するとともに、このバイパス路を流れるガス流量を制御するための流量制御弁が配置されている。
 また幾つかの実施形態では、上記エンジンの上流には、吸着式O供給装置を介さずに系外の空気を系内に供給するための給気手段が設けられている。
 エンジンに供給されるガス(給気ガス)のアルゴン濃度が高まると、燃焼時の筒内圧力や筒内温度が高まり、エンジンの熱効率も向上するが、その反面、筒内圧力や筒内温度が高まり過ぎると、エンジンの構造面において問題が生じてくる。このため、実用上はエンジンに供給するガスのアルゴン濃度を適当な範囲に制御する必要がある。
 上記実施形態によれば、流量制御弁の弁開度を調節して吸着式酸素製造器に取り込まれる燃焼ガスの流量を制御することや、給気手段によって吸着式酸素製造器を介さずに系外の空気をエンジンに供給することで、供給ガスのアルゴン濃度を制御することができる。
 幾つかの実施形態では、上記吸着式CO除去装置および前記吸着式O供給装置の少なくともいずれか一方は、該装置に供給される供給ガスの温度が変動する雰囲気下において、供給ガスから対象成分を吸着分離するように構成されるとともに、エンジンから排出される燃焼ガスのエネルギーを、供給ガスの温度を変動させるためのエネルギーとして利用可能に構成されている。
 このような実施形態によれば、エンジンから排出される燃焼ガスのエネルギーを、供給ガスの温度を変動させるために有効利用することで、吸着式CO除去装置および吸着式O供給装置の作動効率を高めることができるため、本エンジンシステムの熱効率をさらに向上させることができる。
 上記実施形態において、上記エンジンから排出される燃焼ガスによって駆動するタービンと、タービンと同軸に配置されエンジンに供給される酸素およびアルゴンを含む気体を圧縮するコンプレッサと、を有する過給機と、コンプレッサで圧縮された気体を冷却するためのインタークーラと、をさらに備え、上記インタークーラにおいて熱交換された熱媒体を供給ガスの温度を変動させるための熱源として利用可能に構成することができる。
 また、上記実施形態において、上記エンジンから排出される燃焼ガスを冷却するための空気冷却器をさらに備え、上記空気冷却器において燃焼ガスと熱交換された熱媒体を供給ガスの温度を変動させるための熱源として利用可能に構成することができる。
 このような実施形態によれば、エンジンから排出される燃焼ガスのエネルギーを、供給ガスの温度を変動させるために効率的に利用することができ、本エンジンシステムの熱効率をさらに向上させることができる。
 幾つかの実施形態では、上記エンジンに供給する燃料ガスを液化状態で貯蔵するための液化燃料タンクをさらに備え、吸着式CO除去装置および吸着式O供給装置の少なくともいずれか一方は、ガス温度が変動する雰囲気下において対象ガスを吸着分離するように構成されるとともに、液化状態の燃料ガスを、上記ガス温度を変動させるための熱源として利用可能に構成されている。
 このような実施形態によれば、液化状態の燃料ガスを、ガス温度を変動させるための熱源として有効利用することで、本エンジンシステムの熱効率をさらに向上させることができる。
 また本発明の他の実施形態では、上記二酸化炭素除去手段および酸素供給手段は、一体に構成された1つの吸着式CO除去/O供給装置からなり、この吸着式CO除去/O供給装置は、圧力および温度の少なくともいずれか一方が変動する雰囲気下において、系外から取り込んだ空気中の窒素および二酸化炭素を吸着剤で吸着分離して系外に排出し、残余の酸素およびアルゴンを含む気体を系内に供給するとともに、上記エンジンから排出される燃焼ガスを取り込み可能に構成されている。
 このような本発明の他の実施形態によれば、上述した二酸化炭素除去手段および酸素供給手段を1つの吸着式CO除去/O供給装置によって構成することで、上述した本エンジンシステムを簡素な構成で実現することができる。
 幾つかの実施形態では、上記エンジンの給気ポートを開閉するための給気弁と、給気弁の作動タイミングを制御する制御装置と、をさらに備え、制御装置は、給気弁を下死点よりも遅らせて閉弁するように制御することで膨張比よりも圧縮比が低下するように構成されている。
 このように幾つかの実施形態における本エンジンシステムのエンジンは、給気弁を下死点よりも遅らせて閉弁するように制御することで膨張比よりも圧縮比が低下するように構成された、所謂ミラーサイクルエンジンとして構成される。このような実施形態によれば、エンジンの筒内圧力を低下させることが出来るため、アルゴンを作動ガスとして利用した場合においても、例えば筒内圧力を定格圧力以下とすること等も可能となる。
 この際、通常のミラーサイクルエンジンでは、給気ガス量の減少に伴って酸素過剰率が低下してエンジン出力も低下するとの問題があるが、本エンジンシステムは上述した酸素供給手段を備えており、この酸素供給手段によって酸素過剰率を調整可能に構成されている。したがって、本エンジンシステムにおいては、酸素過剰率を適宜調整することでエンジン出力の低下を回避することができるようになっている。
 幾つかの実施形態では、上記エンジンから排出される燃焼ガスによって駆動するタービンと、タービンと同軸に配置され、エンジンに供給される酸素およびアルゴンを含む気体を圧縮するコンプレッサと、を有する過給機をさらに備える。
 このような実施形態によれば、排ガスエネルギーによってコンプレッサを駆動し、エンジンに供給する酸素およびアルゴンを含む気体を圧縮することで、エンジンシステム全体の熱効率をより一層向上させることが可能となる。
 幾つかの実施形態では、上記エンジンは、燃料噴射弁から燃焼室内に直接燃料を噴射するように構成された直噴式エンジンである。
 このように、本エンジンシステムにおけるエンジンを直噴式エンジンとして構成することで、筒内圧力や筒内温度が高まることによりポート噴射式エンジンの場合に懸念されるノッキングや過早着火の問題を回避することができる。
 幾つかの実施形態では、上記エンジンは、炭素数が1~4の炭化水素ガスを主成分とする燃料ガスを使用するガスエンジンであって、燃焼室において前記燃料ガスを圧縮して自己着火させる自着火式ガスエンジンとして構成されている。
 作動ガスとしてアルゴンを利用することで筒内圧力や筒内温度が高まるため、例えば、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)などの炭素数が1~4の炭化水素ガスを主成分とする燃料ガスを利用した場合においても自着火させることができる。このため、パイロット燃料としての燃料油やスパークプラグなどの点火源を用いることのない自着火式ガスエンジンとして構成することができ、熱効率をより一層高めることができる。
 幾つかの実施形態では、前記エンジンは、船舶に推進力を付与するための舶用主機エンジンとして構成されている。
 上記エンジンシステムのエンジンは、舶用主機エンジンとして特に好適に用いられるものである。
 本発明の少なくとも一実施形態によれば、系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給手段を備えるとともに、エンジンから排出される燃焼ガス中の二酸化炭素を系外に排出するための二酸化炭素除去手段を備えているため、重油や天然ガスなどを燃料とするエンジンにおいて熱効率性に優れたエンジンシステムを提供することができる。
本発明の一実施形態にかかる作動ガス循環型エンジンシステムの概略的な構成を示すブロック図である。 本発明の一実施形態にかかる作動ガス循環型エンジンシステムの概略的な構成を示すブロック図である。 本発明の一実施形態にかかる作動ガス循環型エンジンシステムの概略的な構成を示すブロック図である。 本発明の一実施形態にかかる作動ガス循環型エンジンシステムの概略的な構成を示すブロック図である。 本発明の一実施形態にかかる作動ガス循環型エンジンシステムの概略的な構成を示すブロック図である。 本発明の一実施形態にかかる作動ガス循環型エンジンシステムの概略的な構成を示すブロック図である。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、一実施形態にかかる作動ガス循環型エンジンシステム1Aの概略的な構成を示すブロック図である。
 エンジンシステム1Aは、アルゴンを含む作動ガスが系内を循環する循環型のエンジンシステムであって、例えば船舶に推進力を付与するための舶用主機エンジンなどに適用される。
 エンジンシステム1Aは、図1に示すように、エンジン10、凝縮器22、余剰ガス排出器24、吸着式CO除去装置25、吸着式酸素供給装置26、制御装置30、及びエンジン10の排気部から給気部に至る系を構成するとともに、これら装置類を環状に接続するガス循環路20などを備えている。
 エンジン10は、シリンダ11と、シリンダ11の内部に摺動自在に収容されたピストン12、給気ポート13aを開閉するための給気弁13、排気ポート14aを開閉するための排気弁14、燃焼室15に燃料を噴射するための燃料噴射弁16、燃料噴射弁16に燃料を供給するための燃料供給器17、クランク軸18、ピストン12とクランク軸18とを接続するコンロッド19などから構成される。
 排気ポート13aはガス循環路20と接続している。そして、給気弁13を開弁することで、ガス循環路20を循環するアルゴンおよび酸素が給気ガスとして給気ポート13aから燃焼室15へと供給される。燃焼室15に供給された給気ガスは、ピストン12の上昇に伴って燃焼室15内で圧縮され、これにより、燃焼室15内の筒内温度および筒内圧力が高まる。そして、ピストン12が上死点近傍に到達すると、燃料噴射弁16から燃焼室15に直接燃料が噴射される。噴射された燃料は高温雰囲気下において自着火し、燃焼室15内で爆発する。そして、爆発に伴う膨張によってアルゴンガス(作動ガス)がピストン12を押し下げることで、コンロッド19を介してクランク軸18を回転せしめる。爆発後の燃焼ガスは、排気弁14を開弁することで排気ポート14aに接続されるガス循環路20に排出される。
 燃料としては、炭素を含む燃料、すなわち水素以外の燃料であって、例えば天然ガスや石油ガスなどの燃料ガス、重油や軽油などの燃料油を利用することができる。天然ガスや石油ガスなどの燃料ガスは、メタン、エタン、プロパン、ブタンなどの炭素数が1~4の炭化水素ガスを主成分とし、通常は液化状態で貯蔵される。
 凝縮器22は、エンジン10から排出される燃焼ガス中の水分を凝縮して除去するための装置であり、エンジン10の下流側に設置されている。凝縮器22で凝縮された水分は系外に除去される。
 余剰ガス排出器24は、凝縮器22から送出された燃焼ガスの一部を系外に排出し、残余の燃焼ガスを下流に送出するための装置である。後述する吸着式酸素供給装置26からは酸素や空気中に含まれるアルゴンなどが系内に供給されるため、その供給されるガス量の増分に見合う量を、予め余剰ガスとして系外に排出するための装置である。余剰ガス排出器24から排出される余剰ガス量は、燃焼ガス量全体のおよそ1%程度である。
 吸着式二酸化炭素除去装置25は、エンジン10から排出される燃焼ガス中の二酸化炭素を系外に排出するための二酸化炭素除去手段であって、所謂PSA(Pressure Swing Adsorption)法などの方法によって空気中の二酸化炭素を除去する装置である。この吸着式二酸化炭素除去装置25は、ガス環状路20の余剰ガス排出器24の下流側に配置されており、余剰ガス排出器24から系外に排出された一部の燃焼ガスを除く残余の燃焼ガスが供給されるようになっている。
 吸着式酸素供給装置26は、系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給手段であって、上記吸着式二酸化炭素除去装置25と同様に、PSA法などの方法によって系外の空気中から酸素およびアルゴンを吸着分離し、この分離した酸素およびアルゴンを系内に供給する装置である。この吸着式O供給装置26は、系外の空気を取り込み可能に構成されており、吸着式CO除去装置25よりも下流側の系内に酸素およびアルゴンを供給するようになっている。また、この吸着式O供給装置26には、ガス環状路20を流れる燃焼ガスは流入しないようになっている。
 これら吸着式二酸化炭素除去装置25および吸着式酸素供給装置26は、吸着剤が充填された吸着槽をそれぞれ備えている。
 吸着式二酸化炭素除去装置25にあっては、エンジン10から排出される燃焼ガスが上記吸着槽に送り込まれる。そして、吸着槽内において燃焼ガスの圧力を変動させることで燃焼ガス中の二酸化炭素を吸着剤に吸着して分離する。
 また、吸着式酸素供給装置26にあっては、系外から取り込んだ空気が上記吸着槽に送り込まれる。そして、吸着槽内において燃焼ガスの圧力を変動させることで空気中の窒素および二酸化炭素を吸着剤に吸着させ、空気中から酸素およびアルゴンを分離する。
 なお、これら吸着式二酸化炭素除去装置25および吸着式酸素供給装置26は、PSA法による装置、すなわち、吸着槽内の圧力を変動させることで対象ガスを吸着分離する方法には限定されず、吸着槽内の温度を変動させることで対象ガスを吸着分離するTSA(Thermal Swing Adsorption)法や、吸着槽内の温度および圧力を変動させることで対象ガスを吸着分離するPTSA(Pressure and Thermal Swing Adsorption)法などによる装置であってもよい。
 これら吸着式二酸化炭素除去装置25および吸着式酸素供給装置26としては、PSA法、TSA法、PTSA法による装置として公知なものを利用することができる。
 制御装置30は、エンジンコントロールユニットなどのコンピュータによって構成されており、CPU(中央演算処理装置)、メモリ、出入力装置等からなる。そして、バルブ開閉タイミングに関する作動信号を送信することで、上述したエンジン10の給気弁13および排気弁14の作動タイミングを制御することができるように構成されている。
 このように構成される本発明の少なくとも一つの実施形態にかかる作動ガス循環型エンジンシステム1Aによれば、上述したように、系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給装置26(酸素供給手段)を備えるとともに、エンジン10から排出される燃焼ガス中の二酸化炭素を系外に排出するための二酸化炭素除去装置25(二酸化炭素除去手段)を備えている。このため、系内を循環するガス中の酸素およびアルゴンを一定の濃度以上に維持しつつエンジン10から排出される二酸化炭素を系外に排出できるため、燃焼時に二酸化炭素が発生する重油や天然ガスなどの炭素を含む燃料を使用燃料とするエンジン10において、本エンジンシステム1Aを好適に適用でき、エンジン10の熱効率を大幅に向上させることができる。
 また、アルゴンを作動ガスとして利用する上記エンジンシステム1Aによれば、高負荷時だけでなく低負荷時においても熱効率が向上する。この点、過給機によって排ガスエネルギーをタービン発電機などで回収する方法だと低負荷時において効果的に熱効率を向上させることができず、本システム1Aはこの点においても高い優位性を備えている。
 また、アルゴンを作動ガスとして循環利用するため、排気ガスが殆ど排出されない他、エンジン10の燃焼時に殆どNOxが発生しないとの利点がある。
 また、二酸化炭素除去手段として吸着式二酸化炭素除去装置25を採用することで、二酸化炭素に随伴して窒素も分離することができる。このため系内を循環するアルゴンの濃度を高めることができ、本エンジンシステム1Aの熱効率をより高めることができる。
 本発明の一実施形態では、上述したように、二酸化炭素除去手段および酸素供給手段は、それぞれ別体に構成された別々の装置からなる。すなわち、上記二酸化炭素除去手段は、エンジン10から排出される燃焼ガスの圧力および温度の少なくともいずれか一方が変動する雰囲気下において、燃焼ガス中の二酸化炭素を吸着剤で吸着分離して系外に排出するように構成された吸着式CO除去装置25からなり、上記酸素供給手段は、系外から取り込んだ空気の圧力および温度の少なくともいずれか一方が変動する雰囲気下において、空気中の酸素およびアルゴンを吸着剤で吸着分離して系内に供給するように構成された吸着式O供給装置26からなる。
 このような本発明の一実施形態によれば、上述した二酸化炭素除去手段および酸素供給手段を、それぞれ吸着式CO除去装置25および吸着式O供給装置26によって構成することで、熱効率性に優れる上述の本エンジンシステム1Aを実現することができる。
 幾つかの実施形態では、上述したように、上記吸着式O供給装置26は、吸着式CO除去装置25よりも下流側の系内に酸素およびアルゴンを供給するように構成されている。
 このような実施形態によれば、吸着式CO除去装置25よりも上流側の系内に酸素およびアルゴンを供給する場合と比べて、吸着式CO除去装置25に供給されるガス流量を少なくすることができるため、その分だけ吸着式CO除去装置を小さくすることができる。
 幾つかの実施形態では、上述したように、上記吸着式CO除去装置25は、余剰ガス排出器24の下流側に配置され、余剰ガス排出器24にて系外に排出された一部の燃焼ガスを除く残余の燃焼ガスを取り込み可能に構成されている。
 このような実施形態によれば、吸着式CO除去装置25が余剰ガス排出器24の上流側に配置されている場合と比べて、余剰ガス排出器24から系外に余剰ガスが排出される分だけ吸着式CO除去装置25に供給されるガス流量を少なくすることができ、その分だけ吸着式CO除去装置25を小さくすることが可能となる。
 幾つかの実施形態では、上記吸着式CO除去装置を迂回するバイパス路が分岐するとともに、このバイパス路を流れるガス流量を制御するための流量制御弁が配置されている。
 また幾つかの実施形態では、上記エンジンの上流には、吸着式O供給装置を介さずに系外の空気を系内に供給するための給気手段が設けられている。
 幾つかの実施形態では、図1に示すように、エンジンシステム1Aは、タービン32、タービン32と同軸上に配置されたコンプレッサ32b、およびタービン32とコンプレッサ32bとを連結するロータ32cからなる過給機32をさらに備えている。
 タービン32aはエンジン10の下流に配置され、コンプレッサ32bは吸着式酸素供給装置26から系内に酸素およびアルゴンが供給される地点よりも下流側に配置されている。エンジン10から排出される燃焼ガスによってタービン32aが駆動すると、これに伴ってコンプレッサ32bが同軸駆動する。そして、コンプレッサ32bによって、吸着式酸素供給装置26から系内に供給された酸素およびアルゴンを含む気体を圧縮し、これを給気ガスとしてエンジン10へと供給する。また、コンプレッサ32bの下流には、エンジン10に供給される給気ガスを冷却するためのインタークーラ34が配置されている。
 このように、本エンジンシステム1Aが過給機32を備えていれば、排ガスエネルギーによってコンプレッサ32bを駆動し、エンジン10に供給する酸素およびアルゴンを含む気体を圧縮することで、エンジンシステム1A全体の熱効率をより一層向上させることができる。
 幾つかの実施形態では、上述したように、エンジン10の給気ポート13aを開閉するための給気弁13と、給気弁13の作動タイミングを制御する制御装置30と、をさらに備える。そして、この制御装置30は、給気弁13を下死点よりも遅らせて閉弁するように制御することで膨張比よりも圧縮比が低下するように構成されている。
 このように、本エンジンシステム1Aのエンジン10は、給気弁13を下死点よりも遅らせて閉弁するように制御することで膨張比よりも圧縮比が低下するように構成された、所謂ミラーサイクルエンジンとして構成される。このような実施形態によれば、エンジン10の筒内圧力を低下させることが出来るため、アルゴンを作動ガスとして利用した場合においても、例えば筒内圧力を定格圧力以下とすること等も可能となる。
 この際、通常のミラーサイクルエンジンでは、給気ガス量の減少に伴って酸素過剰率が低下してエンジン出力も低下するとの問題があるが、本エンジンシステム1Aは上述した吸着式O供給装置(酸素供給手段)を備えており、この吸着式O供給装置によって酸素過剰率を調整可能に構成されている。したがって、本エンジンシステム1Aにおいては、酸素過剰率を適宜調整することでエンジン出力の低下を回避することができるようになっている。
 図2は、一実施形態にかかる作動ガス循環型エンジンシステム1Bの概略的な構成を示すブロック図である。
 この図2に示したエンジンシステム1Bは、上述したエンジンシステム1Aに対し、余剰ガス排出器24の下流側に吸着式CO除去装置25を迂回するバイパス路35が分岐するとともに、このバイパス路35を流れるガス流量を制御するための流量制御弁36が配置されている点、並びに、エンジン10の上流に吸着式O供給装置26を介さずに系外の空気をエンジン10に供給するための給気手段38が設けられている点、が異なっている。
 ここで、給気手段38の設置位置は、吸着式酸素製造器26を介さずに系外の空気をエンジン10に供給することができる位置であればよく、特に限定されるものではないが、ガス循環路20内の圧力が低い方が空気を供給する上で有利であるので、コンプレッサ32bよりも上流側とするのが好ましい。
 また、吸着式CO除去装置25よりも下流側とする方が、吸着式CO除去装置25に供給されるガス流路を少なくできるため、好ましい。
 エンジン10に供給されるガス(給気ガス)のアルゴン濃度が高まると、燃焼時の筒内圧力や筒内温度が高まり、エンジン10の熱効率も向上するが、その反面、筒内圧力や筒内温度が高まり過ぎると、エンジン10の構造面において問題が生じてくる。このため、実用上はエンジン10に供給するガスのアルゴン濃度を適当な範囲に制御する必要がある。
 このような課題に対し、上記エンジンシステム1Bによれば、流量制御弁36の弁開度を調節して吸着式CO除去装置25に取り込まれる燃焼ガスの流量を制御することや、給気手段38によって吸着式O供給装置26を介さずに系外の空気をエンジン10に供給することで、供給ガスのアルゴン濃度を制御することが可能となる。
 図3は、一実施形態にかかる作動ガス循環型エンジンシステム1Cの概略的な構成を示すブロック図である。
 この図3に示したエンジンシステム1Cでは、上述した吸着式CO除去装置25および吸着式O供給装置26の少なくともいずれか一方は、該装置に供給される供給ガスの温度が変動する雰囲気下において、供給ガスから対象成分を吸着分離するTSA法又はPTSA法による装置として構成されている。また、本エンジンシステム1Cは、上述したエンジンシステム1Aに対して、天然ガスなどの燃料ガスを液化状態で貯蔵するための液化燃料タンク42と、液化状態にある燃料ガスを熱媒体と熱交換することで気化する熱交換器44と、熱交換器44と吸着式CO除去装置25との間に熱媒体を循環させるための熱媒体循環路46と、をさらに備えている点が異なっている。
 そして、熱交換器44において熱交換されて冷却された熱媒体が吸着式CO除去装置25に供給されると、吸着式CO除去装置25に供給された供給ガス(余剰ガス排出器24から供給された燃焼ガス)が冷却されるように構成されている。すなわち、本エンジンシステム1Cは、液化状態の燃料ガスを、吸着式CO除去装置25に供給される供給ガスの温度を変動させるための冷却熱源として利用するように構成されている。このように構成することで、吸着式CO除去装置25の作動効率を高めることができるため、本エンジンシステム1Cの熱効率をさらに向上させることができるようになっている。
 また、本エンジンシステム1Cは、上述したエンジンシステム1Aに対して、インタークーラ34と吸着式O供給装置26との間に熱媒体を循環させるための第2熱媒体循環路48をさらに備えている点が異なっている。
 インタークーラ34では、コンプレッサ32bによって圧縮され高温になった給気ガスと、冷却水などの熱媒体とが熱交換される。そして、熱交換によって加熱された熱媒体が吸着式O供給装置26に供給されることで、吸着式O供給装置26に供給される供給ガス(系外の空気)が加熱されるように構成されている。すなわち、本エンジンシステム1Cは、エンジン10から排出される燃焼ガスのエネルギーを、吸着式O2供給装置26に供給される供給ガスの温度を変動させるためのエネルギーとして利用するように構成されている。
 また、本エンジンシステム1Cは、上述したエンジンシステム1Aに対して、タービン32aと凝縮器22との間に、エンジン10から排出される燃焼ガスを冷却するための空気冷却器37と、空気冷却器37と吸着式CO除去装置25との間に熱媒体を循環させるための第3熱媒体循環路50をさらに備えている点が異なっている。
 空気冷却器37では、エンジン10から排出される燃焼ガスと冷却水などの熱媒体とが熱交換される。そして、熱交換によって加熱された熱媒体が吸着式CO除去装置25に供給されることで、吸着式CO除去装置25に供給された供給ガス(余剰ガス排出器24から供給された燃焼ガス)が加熱されるように構成されている。
 このような本実施形態の本エンジンシステム1Cでは、エンジン10から排出される燃焼ガスのエネルギーを、吸着式O2供給装置26に供給される供給ガスの温度を変動させるためのエネルギーとして利用することで、吸着式O供給装置26の作動効率を高めることができるため、本エンジンシステム1Cの熱効率をさらに向上させることができるようになっている。
 なお、上述した液化状態の燃料ガス及び燃焼ガスのエネルギーの利用形態は、図3に示した態様には限定されず、種々の変更が可能であることは勿論である。また例えば、凝縮器22において熱媒体を介して回収した燃焼ガスの熱エネルギーを、吸着式CO除去装置25又は吸着式O2供給装置26に供給するように構成することも可能である。
 また本発明の他の実施形態では、図4~図6に示すように、上記二酸化炭素除去手段および酸素供給手段は、一体に構成された1つの吸着式CO除去/O供給装置27からなる。この吸着式CO除去/O供給装置27は、圧力および温度の少なくともいずれか一方が変動する雰囲気下において、系外から取り込んだ空気中の窒素および二酸化炭素を吸着剤で吸着分離して系外に排出し、残余の酸素およびアルゴンを含む気体を系内に供給するように構成されている。また、この吸着式CO除去/O供給装置27は、ガス循環路20の余剰ガス排出器24の下流側に配置されており、上述したエンジン10から排出される燃焼ガスを取り込み可能に構成されている。
 なお、図4は上述した実施形態の図1に、図5は上述した実施形態の図2に、図6は上述した実施形態の図3にそれぞれ対応している。
 このような本発明の他の実施形態によれば、上述した二酸化炭素除去手段および酸素供給手段を1つの吸着式CO除去/O供給装置27によって構成することで、本エンジンシステム1D~1Fを簡素な構成で実現することができる。
 また、幾つかの実施形態では、エンジン10は、燃料噴射弁16から燃焼室15内に直接燃料を噴射するように構成された直噴式エンジンとすることができる。
 このように、本エンジンシステム1A~1Fにおけるエンジン10を直噴式エンジンとして構成することで、予混合方式エンジンの場合に懸念されるノッキングや過早着火の問題を回避することが可能となる。
 また、幾つかの実施形態では、エンジン10は、炭素数が1~4の炭化水素ガスを主成分とする燃料ガスを使用するガスエンジン10であって、燃焼室15において燃料ガスを圧縮して自己着火させる自着火式ガスエンジンとして構成することができる。
 上述したように、作動ガスとしてアルゴンを利用することで筒内圧力や筒内温度が高まるため、例えば、メタン(CH)、エタン(C)、プロパン(C)、ブタン(C10)などの炭素数が1~4の炭化水素ガスを主成分とする燃料ガスを利用した場合においても自着火させることができる。このため、パイロット燃料としての燃料油やスパークプラグなどの点火源を用いることのない自着火式ガスエンジンとして構成することができ、熱効率をより一層高めることが可能となる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 本発明の少なくとも一つの実施形態にかかる作動ガス循環型エンジンシステムは、種々のエンジンシステム、例えば、船舶に推進力を付与するための舶用主機エンジンのエンジンシステムに好適に用いられる。
1A~1F エンジンシステム
10    エンジン
11    シリンダ
12    ピストン
13    給気弁
13a   給気ポート
14    排気弁
14a   排気ポート
15    燃焼室
16    燃料噴射弁
17    燃料供給器
18    クランク軸
19    コンロッド
20    ガス循環路
22    凝縮器
24    余剰ガス排出器
25    吸着式CO除去装置(二酸化炭素除去手段)
26    吸着式O供給装置(酸素供給手段)
27    吸着式CO除去装置/O供給装置(二酸化炭素除去手段/酸素供給手段)
30    ECU(制御装置)
32    過給機
32a   タービン
32b   コンプレッサ
32c   ロータ
34    インタークーラ
35    バイパス路
36    流量制御弁
37    空気冷却器
38    給気手段
42    液化燃料タンク
44    熱交換器
46    熱媒体循環路
48    第2熱媒体循環路
50    第3熱媒体循環路
 

Claims (15)

  1.  アルゴンを含む作動ガスがエンジンの排気部から給気部に至る系内を循環する作動ガス循環型エンジンシステムにおいて、
     炭素を含む燃料を使用燃料とするエンジンと、
     前記エンジンから排出される燃焼ガス中の水分を除去するための凝縮器と、
     前記エンジンから排出される燃焼ガスの一部を系外に排出するための余剰ガス排出器と、
     前記エンジンから排出される燃焼ガス中の二酸化炭素を系外に排出するための二酸化炭素除去手段と、
     系外の空気中に含まれる酸素およびアルゴンを系内に供給するための酸素供給手段と、
    を備えたことを特徴とする作動ガス循環型エンジンシステム。
  2.  前記二酸化炭素除去手段および前記酸素供給手段は、それぞれ別体に構成された別々の装置からなり、
     前記二酸化炭素除去手段は、前記エンジンから排出される燃焼ガスの圧力および温度の少なくともいずれか一方が変動する雰囲気下において、前記燃焼ガス中の二酸化炭素を吸着剤で吸着分離して系外に排出するように構成された吸着式CO除去装置からなり、
     前記酸素供給手段は、系外から取り込んだ空気の圧力および温度の少なくともいずれか一方が変動する雰囲気下において、前記空気中の窒素および二酸化炭素を吸着剤に吸着させることで空気中から酸素およびアルゴンを分離し、該分離した酸素およびアルゴンを系内に供給するように構成された吸着式O供給装置からなることを特徴とする請求項1に記載の作動ガス循環型エンジンシステム。
  3.  前記吸着式O供給装置は、前記吸着式CO除去装置よりも下流側の系内に酸素およびアルゴンを供給するように構成されていることを特徴とする請求項2に記載の作動ガス循環型エンジンシステム。
  4.  前記吸着式CO除去装置は、前記余剰ガス排出器の下流側に配置され、前記余剰ガス排出器にて系外に排出された一部の燃焼ガスを除く残余の燃焼ガスを取り込み可能に構成されていることを特徴とする請求項2又は3に記載の作動ガス循環型エンジンシステム。
  5.  前記吸着式CO除去装置を迂回するバイパス路が分岐するとともに、該バイパス路を流れるガス流量を制御するための流量制御弁が配置されていることを特徴とする請求項1乃至4の何れか一項に記載の作動ガス循環型エンジンシステム。
  6.  前記エンジンの上流には、前記吸着式O供給装置を介さずに系外の空気を系内に供給するための給気手段が設けられていることを特徴とする請求項2乃至5の何れか一項に記載の作動ガス循環型エンジンシステム。
  7.  前記吸着式CO除去装置および前記吸着式O供給装置の少なくともいずれか一方は、該装置に供給される供給ガスの温度が変動する雰囲気下において、前記供給ガスから対象成分を吸着分離するように構成されるとともに、前記エンジンから排出される燃焼ガスのエネルギーを、前記供給ガスの温度を変動させるためのエネルギーとして利用可能に構成されていることを特徴とする請求項2乃至6の何れか一項に記載の作動ガス循環型エンジンシステム。
  8.  前記エンジンから排出される燃焼ガスを冷却するための空気冷却器をさらに備え、
     前記空気冷却器において前記燃焼ガスと熱交換された熱媒体を前記供給ガスの温度を変動させるための熱源として利用可能に構成されていることを特徴とする請求項7に記載の作動ガス循環型エンジンシステム。
  9.  前記エンジンに供給する燃料ガスを液化状態で貯蔵するための液化燃料タンクをさらに備え、
     前記吸着式CO除去装置および前記吸着式O供給装置の少なくともいずれか一方は、該装置に供給される供給ガスの温度が変動する雰囲気下において、前記供給ガスから対象成分を吸着分離するように構成されるとともに、前記液化状態の燃料ガスを、前記供給ガスの温度を変動させるための熱源として利用可能に構成されていることを特徴とする請求項2乃至8の何れか一項に記載の作動ガス循環型エンジンシステム。
  10.  前記二酸化炭素除去手段および前記酸素供給手段は、一体に構成された1つの吸着式CO除去/O供給装置からなり、
     前記吸着式CO除去/O供給装置は、圧力および温度の少なくともいずれか一方が変動する雰囲気下において、系外から取り込んだ空気中の窒素および二酸化炭素を吸着剤で吸着分離して系外に排出し、残余の酸素およびアルゴンを含む気体を系内に供給するとともに、前記エンジンから排出される燃焼ガスを取り込み可能に構成されていることを特徴とする請求項1に記載の作動ガス循環型エンジンシステム。
  11.  前記エンジンの給気ポートを開閉するための給気弁と、前記給気弁の作動タイミングを制御する制御装置と、をさらに備え、
     前記制御装置は、前記給気弁を下死点よりも遅らせて閉弁するように制御することで膨張比よりも圧縮比を低下させるように構成されていることを特徴とする請求項1乃至10の何れか一項に記載の作動ガス循環型エンジンシステム。
  12.  前記エンジンから排出される燃焼ガスによって駆動するタービンと、
    前記タービンと同軸に配置され、前記エンジンに供給される酸素およびアルゴンを含む気体を圧縮するコンプレッサと、を有する過給機をさらに備えることを特徴とする請求項1乃至11の何れか一項に記載の作動ガス循環型エンジンシステム。
  13.  前記エンジンは、燃料噴射弁から燃焼室内に直接燃料を噴射するように構成された直噴式エンジンであることを特徴とする請求項1乃至12の何れか一項に記載の作動ガス循環型エンジンシステム。
  14.  前記エンジンは、炭素数が1~4の炭化水素ガスを主成分とする燃料ガスを使用するガスエンジンであって、燃焼室において前記燃料ガスを圧縮して自己着火させる自着火式ガスエンジンとして構成されることを特徴とする請求項1乃至13の何れか一項に記載の作動ガス循環型エンジンシステム。
  15.  前記エンジンは、船舶に推進力を付与するための舶用主機エンジンとして構成されることを特徴とする請求項1乃至14の何れか一項に記載の作動ガス循環型エンジンシステム。
     
PCT/JP2013/072866 2013-03-15 2013-08-27 作動ガス循環型エンジンシステム WO2014141501A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380074606.3A CN105189984A (zh) 2013-03-15 2013-08-27 工作气体循环型发动机系统
KR1020157024497A KR101722348B1 (ko) 2013-03-15 2013-08-27 작동 가스 순환형 엔진 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-053069 2013-03-15
JP2013053069A JP6008764B2 (ja) 2013-03-15 2013-03-15 作動ガス循環型エンジンシステム

Publications (1)

Publication Number Publication Date
WO2014141501A1 true WO2014141501A1 (ja) 2014-09-18

Family

ID=51536191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072866 WO2014141501A1 (ja) 2013-03-15 2013-08-27 作動ガス循環型エンジンシステム

Country Status (4)

Country Link
JP (1) JP6008764B2 (ja)
KR (1) KR101722348B1 (ja)
CN (1) CN105189984A (ja)
WO (1) WO2014141501A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065539A (zh) * 2019-06-11 2020-12-11 丰田自动车株式会社 Co2回收系统
EP4001607A1 (en) * 2020-11-17 2022-05-25 Winterthur Gas & Diesel Ltd. Internal combustion engine, exhaust system and method for running an internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109611192B (zh) * 2018-12-26 2021-05-04 重庆长安汽车股份有限公司 一种汽油机高压喷入气体的装置、发动机及汽车
CN109681349B (zh) * 2018-12-30 2020-07-31 北京工业大学 一种压升率可控的零排放质调节氢发动机及其控制方法
DE102019128882B3 (de) 2019-10-25 2020-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur prozessintegrierten Sauerstoff-Versorgung eines Wasserstoff-Kreislaufmotors mit Kreislaufführung eines Edelgases
WO2022247290A1 (zh) * 2021-05-28 2022-12-01 李华玉 双燃料与多燃料内燃动力装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193681A (ja) * 1997-09-22 1999-04-06 Mitsubishi Heavy Ind Ltd 水素エンジン
JP2000265867A (ja) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd 予混合圧縮自着火エンジンとその制御方法
JP2001517751A (ja) * 1997-09-22 2001-10-09 フェルミン ヴィテリ, 運送やその他の動力利用のためのクリーンな空気エンジン
JP2002155770A (ja) * 2000-11-20 2002-05-31 Yoshinori Sano 酸素富化空気を用いる内燃機関、およびその運転方法
JP2008002289A (ja) * 2006-06-20 2008-01-10 Press Kogyo Co Ltd 内燃機関
JP2012167582A (ja) * 2011-02-14 2012-09-06 Toyota Motor Corp 作動ガス循環型エンジン
JP2012219783A (ja) * 2011-04-13 2012-11-12 Toyota Motor Corp 作動ガス循環型エンジンへの空気侵入判定方法及び同方法を使用する装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4158752B2 (ja) 2004-09-08 2008-10-01 トヨタ自動車株式会社 作動ガス循環型水素エンジン
JP4192930B2 (ja) * 2005-09-12 2008-12-10 トヨタ自動車株式会社 内燃機関
JP4682871B2 (ja) * 2006-02-24 2011-05-11 トヨタ自動車株式会社 作動ガス循環型水素エンジン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1193681A (ja) * 1997-09-22 1999-04-06 Mitsubishi Heavy Ind Ltd 水素エンジン
JP2001517751A (ja) * 1997-09-22 2001-10-09 フェルミン ヴィテリ, 運送やその他の動力利用のためのクリーンな空気エンジン
JP2000265867A (ja) * 1999-03-15 2000-09-26 Osaka Gas Co Ltd 予混合圧縮自着火エンジンとその制御方法
JP2002155770A (ja) * 2000-11-20 2002-05-31 Yoshinori Sano 酸素富化空気を用いる内燃機関、およびその運転方法
JP2008002289A (ja) * 2006-06-20 2008-01-10 Press Kogyo Co Ltd 内燃機関
JP2012167582A (ja) * 2011-02-14 2012-09-06 Toyota Motor Corp 作動ガス循環型エンジン
JP2012219783A (ja) * 2011-04-13 2012-11-12 Toyota Motor Corp 作動ガス循環型エンジンへの空気侵入判定方法及び同方法を使用する装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112065539A (zh) * 2019-06-11 2020-12-11 丰田自动车株式会社 Co2回收系统
CN112065539B (zh) * 2019-06-11 2022-04-26 丰田自动车株式会社 Co2回收系统
EP4001607A1 (en) * 2020-11-17 2022-05-25 Winterthur Gas & Diesel Ltd. Internal combustion engine, exhaust system and method for running an internal combustion engine

Also Published As

Publication number Publication date
JP6008764B2 (ja) 2016-10-19
JP2014177907A (ja) 2014-09-25
KR101722348B1 (ko) 2017-03-31
CN105189984A (zh) 2015-12-23
KR20150119036A (ko) 2015-10-23

Similar Documents

Publication Publication Date Title
WO2014141501A1 (ja) 作動ガス循環型エンジンシステム
CN105526021B (zh) 发动机中的供体和非供体汽缸之间的不同的燃料供给
US10359008B2 (en) Differential fueling between donor and non-donor cylinders in engines
JP6607831B2 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP5833326B2 (ja) 噴射装置
US20100095915A1 (en) External compression two-stroke internal combustion engine with burner manifold
JP7374818B2 (ja) アンモニアエンジン
JP2018009528A (ja) 内燃機関の制御装置および内燃機関の制御方法
WO2011125976A1 (ja) 熱機関および該熱機関を用いた発電システム
JP2017015072A (ja) 往復動ピストン内燃エンジンを運転するための低荷重運転方法、コンピュータ・プログラム製品、並びに往復動ピストン内燃エンジン
US20100095914A1 (en) External compression two-stroke internal combustion engine
US10907554B2 (en) Control device for internal combustion engine and control method for internal combustion engine
CN106662020B (zh) 用于运行自点火式内燃机的方法
JP2021011869A (ja) ガス燃料供給システム及びガス燃料供給システムを動作させる方法
KR20120060479A (ko) 브라운 가스를 이용하는 엔진 시스템 및 엔진의 구동방법
JP2016164414A (ja) 二元燃料エンジンを運転するための方法および制御装置
US11840979B1 (en) Gaseous fuel engine system and operating method for same
KR102207883B1 (ko) 배기가스 재순환 시스템 및 이를 구비하는 선박
JP7307293B1 (ja) 大型ターボ過給式2ストロークユニフロークロスヘッド圧縮着火内燃機関及びその動作方法
KR20220056142A (ko) 배기가스 재순환 시스템 및 이를 구비한 선박

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074606.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157024497

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877972

Country of ref document: EP

Kind code of ref document: A1