WO2022247290A1 - 双燃料与多燃料内燃动力装置 - Google Patents

双燃料与多燃料内燃动力装置 Download PDF

Info

Publication number
WO2022247290A1
WO2022247290A1 PCT/CN2022/000093 CN2022000093W WO2022247290A1 WO 2022247290 A1 WO2022247290 A1 WO 2022247290A1 CN 2022000093 W CN2022000093 W CN 2022000093W WO 2022247290 A1 WO2022247290 A1 WO 2022247290A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
heating furnace
communicates
combustion engine
fuel
Prior art date
Application number
PCT/CN2022/000093
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2022247290A1 publication Critical patent/WO2022247290A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers

Definitions

  • the invention belongs to the technical field of thermodynamics and thermodynamics.
  • Fuel is an important option for building a high-temperature heat source.
  • the actual fuel there are many types of coal gangue, biomass fuel, thermal coal, methane, gasoline, diesel and natural gas, each with different properties and characteristics; among them ,
  • the temperature of the gas formed by fuel combustion directly determines the thermal power conversion efficiency.
  • the thermal power conversion efficiency Restricted by one or more factors such as working principle, working medium properties, material properties, components and device manufacturing level, in traditional thermal devices using high-grade fuel, there is a large irreversible loss of temperature difference in the combustion process—this is The participation of medium-grade fuels and low-grade fuels in building heat sources provides opportunities.
  • the invention provides a low-grade low-grade solution that can learn from each other's strengths and complement each other's advantages, improve the utilization value of various fuels, reduce greenhouse gas emissions, and effectively reduce fuel costs.
  • the main purpose of the present invention is to provide a dual-fuel internal combustion power plant, and the specific content of the invention is set forth as follows:
  • the dual-fuel internal combustion power plant is mainly composed of a compressor, an internal combustion engine, a heating furnace and a heat source regenerator; the external low-grade fuel communicates with the heating furnace, and the external air channel communicates with the heating furnace through the heat source regenerator.
  • the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator, an external air channel that communicates with the compressor, an air channel that communicates with the compressor through the heating furnace, and an external high-grade fuel channel that communicates with the internal combustion engine.
  • the gas channel communicates with the outside, the internal combustion engine and the cooling medium channel communicate with the outside, and the internal combustion engine is connected to the compressor and transmits power to form a dual-fuel internal combustion power device.
  • the dual-fuel internal combustion power plant is mainly composed of a compressor, an internal combustion engine, a heating furnace, a heat source regenerator and a regenerator; the external low-grade fuel communicates with the heating furnace, and the external air channel passes through the heat source regenerator and the regenerator.
  • the heating furnace is connected, the heating furnace and the gas channel are connected to the outside through the heat source regenerator, and the external air channel is connected to the compressor.
  • the compressor has an air channel to communicate with itself through the regenerator, and the compressor has an air channel that is heated
  • the furnace communicates with the internal combustion engine, and the external high-grade fuel channel communicates with the internal combustion engine.
  • the internal combustion engine also communicates with the external gas channel through the regenerator, and the internal combustion engine also communicates with the external cooling medium channel.
  • the internal combustion engine is connected to the compressor and transmits power to form a dual-fuel internal combustion powerplant.
  • the dual-fuel internal combustion power plant is mainly composed of a compressor, an internal combustion engine, a heating furnace, a heat source regenerator and a regenerator; the external low-grade fuel communicates with the heating furnace, and the external air channel passes through the heat source regenerator and the regenerator.
  • the heating furnace is connected, the heating furnace and the gas channel are connected to the outside through the heat source regenerator, the external air channel is connected to the compressor, the compressor and the air channel are connected to the internal combustion engine through the regenerator and the heating furnace, and there is high-grade fuel on the outside
  • the channel communicates with the internal combustion engine, the internal combustion engine and the gas channel communicate with the outside through the regenerator, and the internal combustion engine also communicates with the outside through the cooling medium channel, and the internal combustion engine is connected with the compressor and transmits power to form a dual-fuel internal combustion power plant.
  • the multi-fuel internal combustion power plant is mainly composed of a compressor, an internal combustion engine, a heating furnace, a heat source regenerator, a second heating furnace and a second heat source regenerator; there is a low-grade fuel connected to the heating furnace outside, and there is a
  • the air channel communicates with the heating furnace through the heat source regenerator, and the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator.
  • the external medium-grade fuel communicates with the second heating furnace, and the external air channel is reheated through the second heat source.
  • the second heating furnace communicates with the second heating furnace, the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator, and the external air channel communicates with the compressor, and the compressor has an air channel that passes through the heating furnace and the second heating
  • the furnace communicates with the internal combustion engine, the external high-grade fuel channel communicates with the internal combustion engine, the internal combustion engine also communicates with the external gas channel, the internal combustion engine also communicates with the external cooling medium channel, and the internal combustion engine is connected with the compressor and transmits power to form a multi-fuel internal combustion power plant.
  • Multi-fuel internal combustion power plant mainly composed of compressor, internal combustion engine, heating furnace, heat source regenerator, regenerator, second heating furnace and second heat source regenerator; external low-grade fuel communicates with the heating furnace , there is an external air channel that communicates with the heating furnace through the heat source regenerator, and the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator, and the external medium-grade fuel communicates with the second heating furnace, and there is an external air channel that passes through the second heating furnace.
  • the second heat source regenerator communicates with the second heating furnace, and the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator, and the external air channel communicates with the compressor, and then the compressor has an air channel that is reheated
  • the compressor is connected with itself, the compressor and the air passage are connected with the internal combustion engine through the heating furnace and the second heating furnace, the external high-grade fuel passage is connected with the internal combustion engine, the internal combustion engine and the gas passage are connected with the outside through the regenerator, and the internal combustion engine has cooling
  • the medium channel communicates with the outside, and the internal combustion engine is connected to the compressor and transmits power to form a multi-fuel internal combustion power device.
  • Multi-fuel internal combustion power plant mainly composed of compressor, internal combustion engine, heating furnace, heat source regenerator, regenerator, second heating furnace and second heat source regenerator; external low-grade fuel communicates with the heating furnace , there is an external air channel that communicates with the heating furnace through the heat source regenerator, and the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator, and the external medium-grade fuel communicates with the second heating furnace, and there is an external air channel that passes through the second heating furnace.
  • the second heat source regenerator communicates with the second heating furnace, the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator, and the external air channel communicates with the compressor, and the compressor also has an air channel that is reheated
  • the heater, the heating furnace and the second heating furnace are connected with the internal combustion engine, and the external high-grade fuel channel is connected with the internal combustion engine. And transmit power to form a multi-fuel internal combustion power plant.
  • the multi-fuel internal combustion power plant is mainly composed of a compressor, an internal combustion engine, a heating furnace, a heat source regenerator, a second heating furnace, and a second heat source regenerator; there are low-grade fuels connected to the heating furnace outside, and there are
  • the air channel communicates with the heating furnace through the heat source regenerator, and the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator.
  • the external medium-grade fuel communicates with the second heating furnace, and the external air channel is reheated through the second heat source.
  • the heater and the heating furnace communicate with the second heating furnace, and the second heating furnace also has a gas passage that communicates with the outside through the second heat source regenerator, and the outside has an air passage that communicates with the compressor, and the compressor and the air passage pass through the second heating
  • the furnace communicates with the internal combustion engine, the external high-grade fuel channel communicates with the internal combustion engine, the internal combustion engine also communicates with the external gas channel, the internal combustion engine also communicates with the external cooling medium channel, and the internal combustion engine is connected with the compressor and transmits power to form a multi-fuel internal combustion power plant.
  • Multi-fuel internal combustion power plant mainly composed of compressor, internal combustion engine, heating furnace, heat source regenerator, regenerator, second heating furnace and second heat source regenerator; external low-grade fuel communicates with the heating furnace , there is an external air channel that communicates with the heating furnace through the heat source regenerator, and the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator, and the external medium-grade fuel communicates with the second heating furnace, and there is an external air channel that passes through the second heating furnace.
  • the second heat source regenerator and heating furnace communicate with the second heating furnace, the second heating furnace also has a gas channel connected to the outside through the second heat source regenerator, and the outside has an air channel that communicates with the compressor, and then the compressor has an air channel It communicates with itself through the regenerator, the compressor and the air channel communicate with the internal combustion engine through the second heating furnace, the external high-grade fuel channel communicates with the internal combustion engine, the internal combustion engine and the gas channel communicate with the outside through the regenerator, and the internal combustion engine also has cooling
  • the medium channel communicates with the outside, and the internal combustion engine is connected to the compressor and transmits power to form a multi-fuel internal combustion power device.
  • Multi-fuel internal combustion power plant mainly composed of compressor, internal combustion engine, heating furnace, heat source regenerator, regenerator, second heating furnace and second heat source regenerator; external low-grade fuel communicates with the heating furnace , there is an external air channel that communicates with the heating furnace through the heat source regenerator, and the heating furnace also has a gas channel that communicates with the outside through the heat source regenerator, and the external medium-grade fuel communicates with the second heating furnace, and there is an external air channel that passes through the second heating furnace.
  • the second heat source regenerator and the heating furnace communicate with the second heating furnace
  • the second heating furnace also has a gas channel that communicates with the outside through the second heat source regenerator, and the outside has an air channel that communicates with the compressor
  • the compressor also has an air channel It communicates with the internal combustion engine through the regenerator and the second heating furnace, and the external high-grade fuel channel communicates with the internal combustion engine, and the internal combustion engine also communicates with the external gas channel through the regenerator. And transmit power to form a multi-fuel internal combustion power plant.
  • the multi-fuel internal combustion power plant is in the multi-fuel internal combustion power plant described in Item 7 or 8, the air channel of the compressor is connected to the internal combustion engine through the second heating furnace and adjusted so that the air channel of the compressor passes through the heating furnace It communicates with the second heating furnace and the internal combustion engine to form a multi-fuel internal combustion power plant.
  • the multi-fuel internal combustion power plant is in the multi-fuel internal combustion power plant described in item 9, the air channel of the compressor is connected to the internal combustion engine through the regenerator and the second heating furnace and adjusted so that the air channel of the compressor is connected to the internal combustion engine through the regenerator.
  • the heater, the heating furnace and the second heating furnace communicate with the internal combustion engine to form a multi-fuel internal combustion power plant.
  • Fig. 1/10 is the first principle thermal system diagram of the dual-fuel internal combustion power plant provided by the present invention.
  • Fig. 2/10 is the second principle thermodynamic system diagram of the dual-fuel internal combustion power plant provided by the present invention.
  • Fig. 3/10 is the third principle thermal system diagram of the dual-fuel internal combustion power plant provided by the present invention.
  • Fig. 4/10 is the fourth principle thermodynamic system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • Fig. 5/10 is the fifth principle thermal system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • Fig. 6/10 is a sixth principle thermal system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • Fig. 7/10 is the seventh principle thermodynamic system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • Fig. 8/10 is the eighth principle thermal system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • Fig. 9/10 is a ninth principle thermodynamic system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • Fig. 10/10 is a tenth principle thermal system diagram of the multi-fuel internal combustion power plant provided by the present invention.
  • 1-compressor 2-internal combustion engine, 3-heating furnace, 4-heat source regenerator, 5-regenerator, 6-second heating furnace, 7-second heat source regenerator.
  • Low-grade fuel refers to the fuel with a relatively low maximum temperature (such as adiabatic combustion temperature or constant pressure combustion temperature) that can be formed by combustion products; from the concept of heat source, low-grade fuel refers to combustion products Fuels with a relatively low temperature of the heat source formed.
  • High-grade fuel refers to the fuel with a relatively high maximum temperature (such as adiabatic combustion temperature or constant pressure combustion temperature) that can be formed by combustion products; from the concept of heat source, high-grade fuel refers to combustion products A fuel with a relatively high temperature of the heat source formed.
  • Medium-grade fuel refers to the fuel whose temperature of the heat source formed by the combustion product is between the temperature of the heat source formed by the combustion product of high-grade fuel and low-grade fuel.
  • medium-grade fuel refers to the fuel whose temperature of the heat source formed by the combustion product is between the temperature of the heat source formed by the combustion product of high-grade fuel and low-grade fuel.
  • the three are low-grade fuel, medium-grade fuel and high-grade fuel in turn.
  • the gaseous substance of the combustion product is the core of the heat source and an important part of the thermal system; while the solid substance in the combustion product, such as waste residue, can be used when it contains heat (utilization process and equipment Included in the heating furnace or preheated air outside the heating furnace body) and then discharged, not listed separately, and its function is not separately stated.
  • the air and gas of each heating furnace take away a small amount of heat through entering and leaving the heating furnace, which is ignored in the process expression.
  • the gas formed by the combustion of low-grade fuel, medium-grade fuel and high-grade fuel is called low-temperature gas, medium-temperature gas and high-temperature gas respectively; of course, the low temperature, medium temperature and high temperature here are relative terms, not actual temperature.
  • the heating furnace 3 also has a gas channel that communicates with the outside through the heat source regenerator 4, and the external air channel communicates with the compressor 1, and the compressor 1 also has an air channel that communicates with the internal combustion engine 2 through the heating furnace 3, and there is a high-grade fuel outside
  • the channel communicates with the internal combustion engine 2, the internal combustion engine 2 also has a gas channel that communicates with the outside, and the internal combustion engine 2 also has a cooling medium channel that communicates with the outside, and the internal combustion engine 2 is connected to the compressor 1 and transmits power.
  • the external low-grade fuel enters the heating furnace 3, and the external air flows through the heat source regenerator 4 to absorb heat and heat up and then enters the heating furnace 3.
  • the low-grade fuel and air are mixed and burned in the heating furnace 3 to generate low-temperature gas.
  • the gas in the heating furnace 3 releases heat to the compressed air flowing through it and cools down, and then flows through the heat source regenerator 4 to release heat and cool down and discharge to the outside; the external air flows through the compressor 1 to increase the pressure and temperature, and flows through the heating furnace 3 to absorb the heat.
  • the heat is heated up, and then provided to the internal combustion engine 2; the external high-grade fuel enters the internal combustion engine 2, and the high-grade fuel and air complete a series of processes including combustion and expansion in the cylinder of the internal combustion engine 2, and the high-temperature gas in the cylinder completes the process including thermal power conversion in the internal combustion engine 2.
  • the low-grade fuel and high-grade fuel provide the driving heat load through combustion respectively, the air and gas take away the low-temperature heat load through the in-out process, and the cooling medium flows through the internal combustion engine 2 to take away the cooling heat load, and the internal combustion engine 2
  • the output work is provided to the compressor 1 and external working power to form a dual-fuel internal combustion power plant.
  • the compressor 1 After the external air channel communicates with the compressor 1, the compressor 1 has an air channel that communicates with itself through the regenerator 5, and the compression
  • the engine 1 also has an air channel that communicates with the internal combustion engine 2 through the heating furnace 3, and the external high-grade fuel channel communicates with the internal combustion engine 2, and the internal combustion engine 2 also has a gas channel that communicates with the outside through the regenerator 5, and the internal combustion engine 2 also has a cooling medium channel that communicates with the external In communication, the internal combustion engine 2 is connected to the compressor 1 and transmits power.
  • the internal combustion engine 2 communicates with the internal combustion engine 2, and the external high-grade fuel channel communicates with the internal combustion engine 2.
  • the internal combustion engine 2 also communicates with the external gas channel through the regenerator 5, and the internal combustion engine 2 also communicates with the external cooling medium channel.
  • the internal combustion engine 2 is connected with the compressor 1 and transmits power. .
  • the external medium-grade fuel communicates with the second heating furnace 6, and the external air channel communicates with the second heating furnace 6.
  • the second heat source regenerator 7 communicates with the second heating furnace 6, and the second heating furnace 6 also has a gas channel that communicates with the outside through the second heat source regenerator 7, and the outside also has an air channel that communicates with the compressor 1, and the compressor 1 Also, the air channel communicates with the internal combustion engine 2 through the heating furnace 3 and the second heating furnace 6, the external high-grade fuel channel communicates with the internal combustion engine 2, the internal combustion engine 2 also communicates with the external gas channel, and the internal combustion engine 2 also communicates with the external cooling medium channel , the internal combustion engine 2 is connected to the compressor 1 and transmits power.
  • the external low-grade fuel enters the heating furnace 3, and the external air flows through the heat source regenerator 4 to absorb heat and heat up and then enters the heating furnace 3.
  • the low-grade fuel and air are mixed and burned in the heating furnace 3 to generate low-temperature gas.
  • the gas in the heating furnace 3 releases heat to the compressed air flowing through it and cools down, and then flows through the heat source regenerator 4 to release heat and cool down and discharge to the outside;
  • the external medium-grade fuel enters the second heating furnace 6, and the external air flows through the second
  • the heat source regenerator 7 absorbs heat and heats up and enters the second heating furnace 6.
  • the medium-grade fuel and air are mixed and burned in the second heating furnace 6 to generate medium-temperature gas.
  • the gas in the second heating furnace 6 releases heat to the gas flowing through it. Compress the air and cool it down, and then flow through the second heat source regenerator 7 to release heat and cool down and discharge to the outside; the external air flows through the compressor 1 to increase the pressure and temperature, and flows through the heating furnace 3 and the second heating furnace 6 to gradually absorb heat and heat up, and then Provided to the internal combustion engine 2; the external high-grade fuel enters the internal combustion engine 2, and the high-grade fuel and air complete a series of processes including combustion and expansion in the cylinder of the internal combustion engine 2, and the high-temperature gas in the cylinder completes a series of processes including thermal power conversion External discharge after the process; low-grade fuel, medium-grade fuel and high-grade fuel provide driving heat load through combustion respectively, air and gas take away the low-temperature heat load through the in-out process, and the cooling medium flows through the internal combustion engine 2 to take away the cooling heat load, and the internal combustion engine 2
  • the output work is provided to the compressor 1 and external working power to form a multi-fuel internal
  • the compressor 1 also has an air channel that communicates with the internal combustion engine 2 through the regenerator 5, the heating furnace 3 and the second heating furnace 6, and the external high-grade fuel channel communicates with the internal combustion engine 2, and the internal combustion engine 2 also has a gas channel that passes
  • the external medium-grade fuel communicates with the second heating furnace 6, and the external air channel communicates with the second heating furnace 6.
  • the second heat source regenerator 7 and the heating furnace 3 communicate with the second heating furnace 6, and the second heating furnace 6 also has a gas channel that communicates with the outside through the second heat source regenerator 7, and the outside has an air channel that communicates with the compressor 1
  • the compressor 1 also has an air channel that communicates with the internal combustion engine 2 through the second heating furnace 6, and the external high-grade fuel channel communicates with the internal combustion engine 2
  • the internal combustion engine 2 also has a gas channel that communicates with the external
  • the internal combustion engine 2 also has a cooling medium channel that communicates with the external
  • the internal combustion engine 2 is connected to the compressor 1 and transmits power.
  • the external low-grade fuel enters the heating furnace 3, and the external air flows through the heat source regenerator 4 to absorb heat and heat up and then enters the heating furnace 3.
  • the low-grade fuel and air are mixed and burned in the heating furnace 3 to generate low-temperature gas.
  • the gas in the heating furnace 3 releases heat to the air flowing through it and cools down, and then flows through the heat source regenerator 4 to release heat and cool down and discharge to the outside;
  • the external medium-grade fuel enters the second heating furnace 6, and the external air flows through the second heat source
  • the regenerator 7 and the heating furnace 3 gradually absorb heat and then enter the second heating furnace 6.
  • the medium-grade fuel and air are mixed and burned in the second heating furnace 6 to generate medium-temperature gas.
  • the gas in the second heating furnace 6 releases heat in the flow
  • the compressed air in it cools down, and then flows through the second heat source regenerator 7 to release heat and cool down and discharge to the outside;
  • the external air flows through the compressor 1 to increase the pressure and temperature, flows through the second heating furnace 6 to absorb heat and heat up, and then provides To the internal combustion engine 2;
  • the external high-grade fuel enters the internal combustion engine 2,
  • the high-grade fuel and air complete a series of processes including combustion and expansion in the cylinder of the internal combustion engine 2
  • the high-temperature gas in the cylinder completes a series of processes including thermal power conversion
  • low-grade fuel, medium-grade fuel and high-grade fuel provide driving heat load through combustion respectively, air and gas take away the low-temperature heat load through the in-out process, and the cooling medium flows through the internal combustion engine 2 to take away the cooling heat load, and the internal combustion engine 2 outputs
  • the compressor 1 After the compressor 1 is connected, the compressor 1 has an air channel to communicate with itself through the regenerator 5, the compressor 1 also has an air channel to communicate with the internal combustion engine 2 through the second heating furnace 6, and the external high-grade fuel channel communicates with the internal combustion engine 2,
  • the internal combustion engine 2 also has a gas channel that communicates with the outside through the regenerator 5, and the internal combustion engine 2 also has a cooling medium channel that communicates with the outside.
  • the internal combustion engine 2 is connected to the compressor 1 and transmits power.
  • the air discharged from the compressor 1 flows through the second heating furnace 6 to absorb heat and heat up, and then provide it to the internal combustion engine 2; the external high-grade fuel enters the internal combustion engine 2, and the high-grade fuel and air are in the cylinder of the internal combustion engine 2 After completing a series of processes including combustion and expansion, the high-temperature gas in the cylinder completes a series of processes including thermal power conversion, then flows through the regenerator 5 to release heat and cool down, and then is discharged externally to form a multi-fuel internal combustion power plant .
  • the compressor 1 communicates with the internal combustion engine 2 through the air passage of the compressor 1 through the regenerator 5 and the second heating furnace 6, and the external high-grade fuel passage communicates with the internal combustion engine 2, and the internal combustion engine 2 also has a gas passage through the regenerator 5 It communicates with the outside, and the internal combustion engine 2 also has a cooling medium channel to communicate with the outside.
  • the internal combustion engine 2 is connected to the compressor 1 and transmits power.
  • the compressor 1 has an air passage through the second heating furnace 6 and is adjusted to communicate with the internal combustion engine 2 so that the compressor 1 has an air passage through the heating furnace 3 And the second heating furnace 6 communicates with the internal combustion engine 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Abstract

本发明提供双燃料与多燃料内燃动力装置,属于热力学与热动技术领域。外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有空气通道与压缩机连通,压缩机还有空气通道经加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成双燃料内燃动力装置;相应地,有多燃料内燃动力装置。

Description

双燃料与多燃料内燃动力装置 技术领域:
本发明属于热力学与热动技术领域。
背景技术:
动力需求为人类生活与生产所常见,利用燃料燃烧形成的热能转换为机械能是获得和提供动力的重要方式,实现高效热变功需要合理的热力循环和驱动热源。
燃料是构建高温热源的重要选项,就现实存在的燃料而言,有煤矸石、生物质燃料、动力煤、甲烷、汽油、柴油和天然气等较多的种类,各自有着不同的性质和特点;其中,燃料燃烧所形成燃气的温度高低直接决定着热变功效率。受工作原理、工作介质性质、材料性质、部件及装置制造水平等某一或多个因素所限制,在采用高品位燃料的传统热动装置中,燃烧过程存在较大温差不可逆损失——这为中品位燃料和低品位燃料参与构建热源提供了机遇。
人们需要简单、主动、安全、高效地利用燃料来实现热能转化为机械能,本发明给出了实现取长补短和优势互补、提升各种燃料的利用价值、减少温室气体排放、有效降低燃料成本的低品位燃料与高品位燃料合理搭配使用的双燃料内燃动力装置,以及低品位燃料、中品位燃料与高品位燃料进行合理搭配使用的多燃料内燃动力装置。
发明内容:
本发明主要目的是要提供双燃料内燃动力装置,具体发明内容分项阐述如下:
1.双燃料内燃动力装置,主要由压缩机、内燃机、加热炉和热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有空气通道与压缩机连通,压缩机还有空气通道经加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成双燃料内燃动力装置。
2.双燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器和回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有空气通道与压缩机连通之后压缩机再有空气通道经回热器与自身连通,压缩机还有空气通道经加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道经回热器与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成双燃料内燃动力装置。
3.双燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器和回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有空气通道与压缩机连通,压缩机还有空气通道经回热器和加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道经回热器与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成双燃料内燃动力装置。
4.多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有中品位燃料与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有空气通道与压缩机连通,压缩机还有空气通道经加热炉和第二加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成多燃料内燃动力装置。
5.多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有中品位燃料与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有空气通道与压缩机连通之后压缩机再有空气通道经回热器与自身连通,压缩机还有空气通道经加热炉和第二加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道经回热器与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成多燃料内燃动力装置。
6.多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有中品位燃料与第二加热炉连通,外部还有空气通道经第二热源回热器与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有空气通道与压缩机连通,压缩机还有空气通道经回热器、加热炉和第二加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道经回热器与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成多燃料内燃动力装置。
7.多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有中品位燃料与第二加热炉连通,外部还有空气通道经第二热源回热器和加热炉与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有空气通道与压缩机连通,压缩机还有空气通道经第二加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成多燃料内燃动力装置。
8.多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有中品位燃料与第二加热炉连通,外部还有空气通道经第二热源回热器和加热炉与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有空气通道与压缩机 连通之后压缩机再有空气通道经回热器与自身连通,压缩机还有空气通道经第二加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道经回热器与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成多燃料内燃动力装置。
9.多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉连通,外部还有空气通道经热源回热器与加热炉连通,加热炉还有燃气通道经热源回热器与外部连通,外部有中品位燃料与第二加热炉连通,外部还有空气通道经第二热源回热器和加热炉与第二加热炉连通,第二加热炉还有燃气通道经第二热源回热器与外部连通,外部还有空气通道与压缩机连通,压缩机还有空气通道经回热器和第二加热炉与内燃机连通,外部有高品位燃料通道与内燃机连通,内燃机还有燃气通道经回热器与外部连通,内燃机还有冷却介质通道与外部连通,内燃机连接压缩机并传输动力,形成多燃料内燃动力装置。
10.多燃料内燃动力装置,是在第7或第8项所述的多燃料内燃动力装置中,将压缩机有空气通道经第二加热炉与内燃机连通调整为压缩机有空气通道经加热炉和第二加热炉与内燃机连通,形成多燃料内燃动力装置。
11.多燃料内燃动力装置,是在第9项所述的多燃料内燃动力装置中,将压缩机有空气通道经回热器和第二加热炉与内燃机连通调整为压缩机有空气通道经回热器、加热炉和第二加热炉与内燃机连通,形成多燃料内燃动力装置。
附图说明:
图1/10是依据本发明所提供的双燃料内燃动力装置第1种原则性热力系统图。
图2/10是依据本发明所提供的双燃料内燃动力装置第2种原则性热力系统图。
图3/10是依据本发明所提供的双燃料内燃动力装置第3种原则性热力系统图。
图4/10是依据本发明所提供的多燃料内燃动力装置第4种原则性热力系统图。
图5/10是依据本发明所提供的多燃料内燃动力装置第5种原则性热力系统图。
图6/10是依据本发明所提供的多燃料内燃动力装置第6种原则性热力系统图。
图7/10是依据本发明所提供的多燃料内燃动力装置第7种原则性热力系统图。
图8/10是依据本发明所提供的多燃料内燃动力装置第8种原则性热力系统图。
图9/10是依据本发明所提供的多燃料内燃动力装置第9种原则性热力系统图。
图10/10是依据本发明所提供的多燃料内燃动力装置第10种原则性热力系统图。
图中,1-压缩机,2-内燃机,3-加热炉,4-热源回热器,5-回热器,6-第二加热炉,7-第二热源回热器。
关于低品位燃料、中品位燃料和高品位燃料,这里给出简要说明:
(1)低品位燃料:指的是燃烧产物所能够形成的最高温度(比如绝热燃烧温度或定压燃烧温度)相对较低的燃料;从热源的概念来看,低品位燃料指的是燃烧产物形成的热源温度相对较低的燃料。
(2)高品位燃料:指的是燃烧产物所能够形成的最高温度(比如绝热燃烧温度或定压燃烧温度)相对较高的燃料;从热源的概念来看,高品位燃料指的是燃烧产物形成的热源温度相对较高的燃料。
(3)中品位燃料:指的是燃烧产物所能够形成的热源温度介于高品位燃料和低品位燃料的燃烧产物所形成的热源温度之间的燃料。比如,就煤矸石、常用动力煤和天然气而言,三者依次为低品位燃料、中品位燃料和高品位燃料。
(4)受限于现行技术条件或材料性能等原因,尤其对于需要通过间接手段向循环工质提供驱动高温热负荷的燃料来说,它们的品位高低以现行技术条件下能够使循环工质所能达到的温度高低来划分——使循环工质(工作介质)能够达到的温度更高者为高品位燃料,使循环工质(工作介质)能够达到的温度较低者为低品位燃料。
还要指出的是:基于前述定义的品位相当的两种燃料,当其中的一种燃料适合用于内燃动力装置(如内燃机和燃气轮机等)时该种燃料为高品位燃料。
(5)对固体燃料来说,燃烧产物的气态物质是构成热源的核心,是热力系统的重要组成部分;而燃烧产物中的固态物质,如废渣,在其含有热能得到利用(利用流程及设备包含在加热炉内或在加热炉本体之外预热空气)之后被排出,不单独列出,其作用不单独表述。还有,各加热炉的空气和燃气通过进出加热炉带走小部分热量,在流程表述时忽略。
(6)为区分方便,低品位燃料、中品位燃料和高品位燃料燃烧形成的燃气,分别称低温燃气、中温燃气和高温燃气;当然,这里的低温、中温和高温是相对而言,而非实际温度。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流程不作表述。下面结合附图和实例来详细描述本发明。
图1/10所示的双燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉和热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有空气通道与压缩机1连通,压缩机1还有空气通道经加热炉3与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,外部低品位燃料进入加热炉3,外部空气流经热源回热器4吸热升温之后进入加热炉3,低品位燃料和空气在加热炉3内混合并燃烧生成低温燃气,加热炉3内燃气放热于流经其内的压缩空气并降温,之后流经热源回热器4放热降温和对外排放;外部空气流经压缩机1升压升温,流经加热炉3吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后对外排放;低品位燃料和高品位燃料分别通过燃烧提供驱动热负荷,空气与燃气通过进出流程带走低温热负荷,冷却介质流经内燃机2带走冷却热负荷,内燃机2输出的功提供给压缩机1和外部作动力,形成双燃料内燃动力装置。
图2/10所示的双燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器和回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有空气通道与压缩机1连通之后压缩机1 再有空气通道经回热器5与自身连通,压缩机1还有空气通道经加热炉3与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道经回热器5与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,与图1/10所示的双燃料内燃动力装置相比较,不同之处在于:外部空气进入压缩机1升压升温至一定程度之后流经回热器5吸热升温,进入压缩机1继续升压升温;压缩机1排放的空气流经加热炉3吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后流经回热器5放热降温,再之后对外排放,形成双燃料内燃动力装置。
图3/10所示的双燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器和回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有空气通道与压缩机1连通,压缩机1还有空气通道经回热器5和加热炉3与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道经回热器5与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,与图1/10所示的双燃料内燃动力装置相比较,不同之处在于:外部空气流经压缩机1升压升温,流经回热器5和加热炉3逐步吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后流经回热器5放热降温,再之后对外排放,形成双燃料内燃动力装置。
图4/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有中品位燃料与第二加热炉6连通,外部还有空气通道经第二热源回热器7与第二加热炉6连通,第二加热炉6还有燃气通道经第二热源回热器7与外部连通,外部还有空气通道与压缩机1连通,压缩机1还有空气通道经加热炉3和第二加热炉6与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,外部低品位燃料进入加热炉3,外部空气流经热源回热器4吸热升温之后进入加热炉3,低品位燃料和空气在加热炉3内混合并燃烧生成低温燃气,加热炉3内燃气放热于流经其内的压缩空气并降温,之后流经热源回热器4放热降温和对外排放;外部中品位燃料进入第二加热炉6,外部空气流经第二热源回热器7吸热升温之后进入第二加热炉6,中品位燃料和空气在第二加热炉6内混合并燃烧生成中温燃气,第二加热炉6内燃气放热于流经其内的压缩空气并降温,之后流经第二热源回热器7放热降温和对外排放;外部空气流经压缩机1升压升温,流经加热炉3和第二加热炉6逐步吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和 膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后对外排放;低品位燃料、中品位燃料和高品位燃料分别通过燃烧提供驱动热负荷,空气与燃气通过进出流程带走低温热负荷,冷却介质流经内燃机2带走冷却热负荷,内燃机2输出的功提供给压缩机1和外部作动力,形成多燃料内燃动力装置。
图5/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有中品位燃料与第二加热炉6连通,外部还有空气通道经第二热源回热器7与第二加热炉6连通,第二加热炉6还有燃气通道经第二热源回热器7与外部连通,外部还有空气通道与压缩机1连通之后压缩机1再有空气通道经回热器5与自身连通,压缩机1还有空气通道经加热炉3和第二加热炉6与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道经回热器5与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,与图4/10所示的多燃料内燃动力装置相比较,不同之处在于:外部空气进入压缩机1升压升温至一定程度之后流经回热器5吸热升温,进入压缩机1继续升压升温;压缩机1排放的空气流经加热炉3和第二加热炉6逐步吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后流经回热器5放热降温,再之后对外排放,形成多燃料内燃动力装置。
图6/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有中品位燃料与第二加热炉6连通,外部还有空气通道经第二热源回热器7与第二加热炉6连通,第二加热炉6还有燃气通道经第二热源回热器7与外部连通,外部还有空气通道与压缩机1连通,压缩机1还有空气通道经回热器5、加热炉3和第二加热炉6与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道经回热器5与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,与图4/10所示的多燃料内燃动力装置相比较,不同之处在于:外部空气流经压缩机1升压升温,流经回热器5、加热炉3和第二加热炉6逐步吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后流经回热器5放热降温,再之后对外排放,形成多燃料内燃动力装置。
图7/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有中品位燃料与 第二加热炉6连通,外部还有空气通道经第二热源回热器7和加热炉3与第二加热炉6连通,第二加热炉6还有燃气通道经第二热源回热器7与外部连通,外部还有空气通道与压缩机1连通,压缩机1还有空气通道经第二加热炉6与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,外部低品位燃料进入加热炉3,外部空气流经热源回热器4吸热升温之后进入加热炉3,低品位燃料和空气在加热炉3内混合并燃烧生成低温燃气,加热炉3内燃气放热于流经其内的空气并降温,之后流经热源回热器4放热降温和对外排放;外部中品位燃料进入第二加热炉6,外部空气流经第二热源回热器7和加热炉3逐步吸热升温之后进入第二加热炉6,中品位燃料和空气在第二加热炉6内混合并燃烧生成中温燃气,第二加热炉6内燃气放热于流经其内的压缩空气并降温,之后流经第二热源回热器7放热降温和对外排放;外部空气流经压缩机1升压升温,流经第二加热炉6吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后对外排放;低品位燃料、中品位燃料和高品位燃料分别通过燃烧提供驱动热负荷,空气与燃气通过进出流程带走低温热负荷,冷却介质流经内燃机2带走冷却热负荷,内燃机2输出的功提供给压缩机1和外部作动力,形成多燃料内燃动力装置。
图8/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有中品位燃料与第二加热炉6连通,外部还有空气通道经第二热源回热器7和加热炉3与第二加热炉6连通,第二加热炉6还有燃气通道经第二热源回热器7与外部连通,外部还有空气通道与压缩机1连通之后压缩机1再有空气通道经回热器5与自身连通,压缩机1还有空气通道经第二加热炉6与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道经回热器5与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,与图7/10所示的多燃料内燃动力装置相比较,不同之处在于:外部空气进入压缩机1升压升温至一定程度之后流经回热器5吸热升温,进入压缩机1继续升压升温;压缩机1排放的空气流经第二加热炉6吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后流经回热器5放热降温,再之后对外排放,形成多燃料内燃动力装置。
图9/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,它主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉3连通,外部还有空气通道经热源回热器4与加热炉3连通,加热炉3还有燃气通道经热源回热器4与外部连通,外部有中品位燃料与第二加热炉6连通,外部还有空气通道经第二热源回热器7和加热炉3与第二加 热炉6连通,第二加热炉6还有燃气通道经第二热源回热器7与外部连通,外部还有空气通道与压缩机1连通,压缩机1还有空气通道经回热器5和第二加热炉6与内燃机2连通,外部有高品位燃料通道与内燃机2连通,内燃机2还有燃气通道经回热器5与外部连通,内燃机2还有冷却介质通道与外部连通,内燃机2连接压缩机1并传输动力。
(2)流程上,与图7/10所示的多燃料内燃动力装置相比较,不同之处在于:外部空气流经压缩机1升压升温,流经回热器5和第二加热炉6逐步吸热升温,之后提供给内燃机2;外部高品位燃料进入内燃机2,高品位燃料和空气在内燃机2气缸内完成包括燃烧和膨胀在内的一系列过程,气缸内的高温燃气完成包括热变功在内的一系列过程之后流经回热器5放热降温,再之后对外排放,形成多燃料内燃动力装置。
图10/10所示的多燃料内燃动力装置是这样实现的:
(1)结构上,在图7/10所示的多燃料内燃动力装置中,将压缩机1有空气通道经第二加热炉6与内燃机2连通调整为压缩机1有空气通道经加热炉3和第二加热炉6与内燃机2连通。
(2)流程上,与图7/10所示的多燃料内燃动力装置相比较,不同之处在于:压缩机1排放的空气流经加热炉3和第二加热炉6逐步吸热升温,之后提供给内燃机2,形成多燃料内燃动力装置。
本发明技术可以实现的效果——本发明所提出的双燃料与多燃料内燃动力装置,具有如下效果和优势:
(1)低品位燃料、中品位燃料与高品位燃料合理搭配,分段构建,有效降低高温热源形成过程中的温差不可逆损失。
(2)低品位燃料、中品位燃料与高品位燃料共同构建高温热源,显著提升低品位燃料和中品位燃料的能源利用价值。
(3)高品位燃料携同低品位燃料和中品位燃料共同构建高温热源,从而减少高品位燃料投入,有效降低燃料成本。
(4)显著提升燃料利用效率,减少温室气体排放,减少污染物排放,节能减排效益突出。
(5)结构简单,流程合理;提升燃料选择范围和使用价值,降低蒸汽轮机装置能耗成本。

Claims (11)

  1. 双燃料内燃动力装置,主要由压缩机、内燃机、加热炉和热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有空气通道与压缩机(1)连通,压缩机(1)还有空气通道经加热炉(3)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成双燃料内燃动力装置。
  2. 双燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器和回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有空气通道与压缩机(1)连通之后压缩机(1)再有空气通道经回热器(5)与自身连通,压缩机(1)还有空气通道经加热炉(3)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道经回热器(5)与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成双燃料内燃动力装置。
  3. 双燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器和回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有空气通道与压缩机(1)连通,压缩机(1)还有空气通道经回热器(5)和加热炉(3)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道经回热器(5)与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成双燃料内燃动力装置。
  4. 多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有中品位燃料与第二加热炉(6)连通,外部还有空气通道经第二热源回热器(7)与第二加热炉(6)连通,第二加热炉(6)还有燃气通道经第二热源回热器(7)与外部连通,外部还有空气通道与压缩机(1)连通,压缩机(1)还有空气通道经加热炉(3)和第二加热炉(6)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成多燃料内燃动力装置。
  5. 多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有中品位燃料与第二加热炉(6)连通,外部还有空气通道经第二热源回热器(7)与第二加热炉(6)连通,第二加热炉(6)还有燃气通道经第二热源回热器(7)与外部连通,外部还有空气通道与压缩机(1)连通之后压缩机(1)再有空气通道经回热器(5)与自身连通,压缩机(1)还有空气通道经加热炉(3)和第二加热炉(6)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道经回 热器(5)与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成多燃料内燃动力装置。
  6. 多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有中品位燃料与第二加热炉(6)连通,外部还有空气通道经第二热源回热器(7)与第二加热炉(6)连通,第二加热炉(6)还有燃气通道经第二热源回热器(7)与外部连通,外部还有空气通道与压缩机(1)连通,压缩机(1)还有空气通道经回热器(5)、加热炉(3)和第二加热炉(6)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道经回热器(5)与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成多燃料内燃动力装置。
  7. 多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有中品位燃料与第二加热炉(6)连通,外部还有空气通道经第二热源回热器(7)和加热炉(3)与第二加热炉(6)连通,第二加热炉(6)还有燃气通道经第二热源回热器(7)与外部连通,外部还有空气通道与压缩机(1)连通,压缩机(1)还有空气通道经第二加热炉(6)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成多燃料内燃动力装置。
  8. 多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有中品位燃料与第二加热炉(6)连通,外部还有空气通道经第二热源回热器(7)和加热炉(3)与第二加热炉(6)连通,第二加热炉(6)还有燃气通道经第二热源回热器(7)与外部连通,外部还有空气通道与压缩机(1)连通之后压缩机(1)再有空气通道经回热器(5)与自身连通,压缩机(1)还有空气通道经第二加热炉(6)与内燃机(2)连通,外部有高品位燃料通道与内燃机(2)连通,内燃机(2)还有燃气通道经回热器(5)与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成多燃料内燃动力装置。
  9. 多燃料内燃动力装置,主要由压缩机、内燃机、加热炉、热源回热器、回热器、第二加热炉和第二热源回热器所组成;外部有低品位燃料与加热炉(3)连通,外部还有空气通道经热源回热器(4)与加热炉(3)连通,加热炉(3)还有燃气通道经热源回热器(4)与外部连通,外部有中品位燃料与第二加热炉(6)连通,外部还有空气通道经第二热源回热器(7)和加热炉(3)与第二加热炉(6)连通,第二加热炉(6)还有燃气通道经第二热源回热器(7)与外部连通,外部还有空气通道与压缩机(1)连通,压缩机(1)还有空气通道经回热器(5)和第二加热炉(6)与内燃机(2)连通,外部有高品位燃料通道与内 燃机(2)连通,内燃机(2)还有燃气通道经回热器(5)与外部连通,内燃机(2)还有冷却介质通道与外部连通,内燃机(2)连接压缩机(1)并传输动力,形成多燃料内燃动力装置。
  10. 多燃料内燃动力装置,是在权利要求7或权利要求8所述的多燃料内燃动力装置中,将压缩机(1)有空气通道经第二加热炉(6)与内燃机(2)连通调整为压缩机(1)有空气通道经加热炉(3)和第二加热炉(6)与内燃机(2)连通,形成多燃料内燃动力装置。
  11. 多燃料内燃动力装置,是在权利要求9所述的多燃料内燃动力装置中,将压缩机(1)有空气通道经回热器(5)和第二加热炉(6)与内燃机(2)连通调整为压缩机(1)有空气通道经回热器(5)、加热炉(3)和第二加热炉(6)与内燃机(2)连通,形成多燃料内燃动力装置。
PCT/CN2022/000093 2021-05-28 2022-05-25 双燃料与多燃料内燃动力装置 WO2022247290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110634466 2021-05-28
CN202110634466.7 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022247290A1 true WO2022247290A1 (zh) 2022-12-01

Family

ID=84156972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/000093 WO2022247290A1 (zh) 2021-05-28 2022-05-25 双燃料与多燃料内燃动力装置

Country Status (2)

Country Link
CN (1) CN115405386A (zh)
WO (1) WO2022247290A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1498814A (en) * 1975-07-31 1978-01-25 Rolls Royce Gas turbine power plant with fluidised bed combustion apparatus
EP0061262A1 (en) * 1981-03-23 1982-09-29 Cpc International Inc. Power generating system
US5261226A (en) * 1991-08-23 1993-11-16 Westinghouse Electric Corp. Topping combustor for an indirect fired gas turbine
CN104533621A (zh) * 2015-01-06 2015-04-22 中国科学院工程热物理研究所 一种双燃料注蒸汽正逆燃气轮机联合循环
CN104929706A (zh) * 2014-05-28 2015-09-23 李华玉 联合循环供能系统
CN105189984A (zh) * 2013-03-15 2015-12-23 三菱重工业株式会社 工作气体循环型发动机系统
CN106224099A (zh) * 2016-09-20 2016-12-14 中国科学院工程热物理研究所 一种双燃料热电联供注水正逆燃气轮机联合循环系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1498814A (en) * 1975-07-31 1978-01-25 Rolls Royce Gas turbine power plant with fluidised bed combustion apparatus
EP0061262A1 (en) * 1981-03-23 1982-09-29 Cpc International Inc. Power generating system
US5261226A (en) * 1991-08-23 1993-11-16 Westinghouse Electric Corp. Topping combustor for an indirect fired gas turbine
CN105189984A (zh) * 2013-03-15 2015-12-23 三菱重工业株式会社 工作气体循环型发动机系统
CN104929706A (zh) * 2014-05-28 2015-09-23 李华玉 联合循环供能系统
CN104533621A (zh) * 2015-01-06 2015-04-22 中国科学院工程热物理研究所 一种双燃料注蒸汽正逆燃气轮机联合循环
CN106224099A (zh) * 2016-09-20 2016-12-14 中国科学院工程热物理研究所 一种双燃料热电联供注水正逆燃气轮机联合循环系统

Also Published As

Publication number Publication date
CN115405386A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2022247290A1 (zh) 双燃料与多燃料内燃动力装置
CN203717159U (zh) 外热式发动机
WO2022134200A1 (zh) 双燃料燃气轮机装置
WO2022156522A1 (zh) 双燃料高温热源与双燃料燃气轮机装置
WO2022134201A1 (zh) 双燃料气体动力装置
WO2022148329A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022161113A1 (zh) 双燃料联合循环动力装置
WO2022152007A1 (zh) 双燃料联合循环动力装置
WO2022156521A1 (zh) 双燃料联合循环动力装置
CN115387905A (zh) 多燃料燃气轮机装置
WO2022161114A1 (zh) 双燃料高温热源与双燃料动力装置
CN115405389A (zh) 双热源与多热源内燃动力装置
WO2022166504A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022206087A1 (zh) 双燃料联合循环动力装置
WO2022161112A1 (zh) 双燃料联合循环蒸汽动力装置
WO2022152006A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
CN117145635A (zh) 双燃料与多燃料内燃动力装置
WO2022206085A1 (zh) 双燃料联合循环动力装置
CN114810239A (zh) 双燃料气体动力装置
WO2022193796A1 (zh) 双燃料联合循环动力装置
WO2022199199A1 (zh) 双燃料联合循环动力装置
WO2022156523A1 (zh) 双燃料燃气-蒸汽联合循环动力装置
WO2022141612A1 (zh) 双燃料高温热源
CN115217631A (zh) 双燃料燃气轮机装置
CN115217630A (zh) 双燃料燃气轮机装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810030

Country of ref document: EP

Kind code of ref document: A1