WO2014139443A1 - 一种低免疫原性的人细胞及其制备方法 - Google Patents

一种低免疫原性的人细胞及其制备方法 Download PDF

Info

Publication number
WO2014139443A1
WO2014139443A1 PCT/CN2014/073338 CN2014073338W WO2014139443A1 WO 2014139443 A1 WO2014139443 A1 WO 2014139443A1 CN 2014073338 W CN2014073338 W CN 2014073338W WO 2014139443 A1 WO2014139443 A1 WO 2014139443A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
human
stem cells
modified
Prior art date
Application number
PCT/CN2014/073338
Other languages
English (en)
French (fr)
Inventor
肖磊
陈霁君
卢鹏飞
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2014139443A1 publication Critical patent/WO2014139443A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0006Modification of the membrane of cells, e.g. cell decoration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the invention belongs to the field of genetic engineering and medicine, and particularly relates to a human cell with low immunogenicity and a preparation method thereof. Background technique
  • Stem cells are a kind of self-renewing pluripotent cells that can differentiate into multiple functional cells under certain conditions. According to the developmental stage of stem cells, it is divided into embryonic stem cells (ES cells) and somatic stem cells. According to the developmental potential of stem cells, they are divided into three categories: totipotent stem cells (TSC), pluripotent stem cells, and unipotent stem cells. Stem cells are an under-differentiated, immature cell that has the potential to regenerate various tissues and organs and the human body. The medical community calls it "universal cells.”
  • hESCs Human embryonic stem cells
  • the cells of the inner cell mass are cultured in vitro, can proliferate indefinitely, self-renew, and have developmental pluripotency. a kind of cell.
  • human embryonic stem cells can differentiate into all tissues and organs of adults (including germ cells), they are expected to become an important source of cells for organ regeneration medicine and modern biological cell therapy, and will also be a large number of difficult diseases, such as neurodegenerative diseases.
  • Pathogenesis and therapeutics for cancer, organ transplantation and injury regeneration provide research pathways.
  • differentiated nerve cells with neurological diseases (Parkinson's disease, Huntington's disease, Alzheimer's disease, etc.); reconstituting blood function with differentiated hematopoietic stem cells; treating diabetic cells with differentiated islet cells; The differentiated cardiomyocytes repair the necrotic myocardium; the differentiated hepatocytes are used to treat liver diseases.
  • neurological diseases Parkinson's disease, Huntington's disease, Alzheimer's disease, etc.
  • reconstituting blood function with differentiated hematopoietic stem cells treating diabetic cells with differentiated islet cells
  • the differentiated cardiomyocytes repair the necrotic myocardium
  • the differentiated hepatocytes are used to treat liver diseases.
  • China has also attached great importance to and encouraged stem cell research, especially human embryonic stem cell research.
  • the State Council announced the Outline of the National Medium- and Long-Term Science and Technology Development Plan (2006-2020): China should "focus on therapeutic cloning technology, stem cell in vitro construction and directed
  • stem cell bank can be established according to the state of the art, but the establishment of these stem cell banks is quite difficult and costly; and even if a large stem cell bank can be established, it may not be satisfied. Matching of all patients.
  • HLA human leukocyte antigen
  • the major histocompatibility antigen is a complex antigenic system.
  • the gene encoding this system is located on the same chromosome segment and is a tightly linked group of genes called the major histocompatibility complex.
  • MHC major histocompatibility complex
  • MHC is divided into class I and class II molecules, in which MHC class I molecules are distributed in all nucleated cells, and MHC class II molecules are mainly expressed in B cells, monocytes-macrophages and dendritic cells.
  • the major histocompatibility antigens encoded by the MHC class I genes refer to HLA class I molecules.
  • class I molecules of the receptor are different, it will induce the proliferation and differentiation of CD8 + T cells, leading to the destruction of the graft.
  • the mismatch of the class I antigen is the main target of the donor graft in the immune effect stage. the reason. In human organ transplantation, class I antigens primarily affect the long-term survival efficiency of donor grafts.
  • the class II molecules are mainly expressed only in part of the immune cells, and the class I molecules are distributed in all the nucleated cells, if the HLA class I knockout or silencing human pluripotent stem cells can be obtained, they are differentiated into non-immune cells.
  • Cell types such as pancreas or liver cells, as a donor source for transplantation, will greatly reduce the immune rejection of allogeneic transplantation. This will provide a new approach to the source of the donor graft and will greatly improve the long-term survival of the graft.
  • B2M ⁇ 2-microglobulin
  • TAP1 plays an important role in the assembly of HLA class I molecules. When TAP1 is deleted, HLA class I molecules cannot be assembled correctly and thus affect the expression of HLA class I molecules on the cell surface. Therefore, knocking out TAP1 may result in loss of function of HLA class I molecules in the immune system.
  • HLA-related genes such as ⁇ 2-microglobulin gene or TAP1
  • human stem cells have differentiated pluripotency and are important cell sources for organ regeneration medicine, modern biological cell therapy, drug screening, and the like.
  • immunological rejection is highly likely to occur between recipients of cells or organ allografts, thereby limiting the clinical application of human adult or human stem cells. Therefore, there is an urgent need in the art to develop a human cell or human stem cell line with low immunogenicity, which can be used as a novel transplant donor capable of reducing or avoiding immunological rejection, thereby providing a treatment for transplantation.
  • New materials and methods are available and can be used for the evaluation and screening of drug candidates. Summary of the invention
  • the present invention provides human cells with low immunogenicity by genetically engineering human cells to down-regulate or delete HLA expression on the surface of human cells.
  • a primary object of the present invention to provide a human cell having a modified or reduced HLA having low immunogenicity and a method for producing the same, and preferably the cell is a human stem cell.
  • a second object of the present invention is to provide a cell for transplantation which is further prepared by the modified human stem cell of the present invention and which has reduced graft rejection and a method for producing the same.
  • a third object of the present invention is to provide a human stem cell modified by the present invention and a cell for transplantation for use in the treatment of a disease (e.g., by transplantation having reduced immunogenicity, etc.).
  • a modified human cell wherein the cell surface human leukocyte antigen HLA protein or polypeptide of the modified human cell is deleted or down-regulated in expression compared to the corresponding wild-type cell, thereby The modified human cells have reduced immunogenicity.
  • the HLA protein or polypeptide is an HLA class I protein or polypeptide.
  • the HLA protein or polypeptide is at least one selected from the group consisting of an HLA type A polypeptide, an HLA type B polypeptide, and an HLA type C polypeptide.
  • the human cell is selected from the group consisting of hematopoietic cells, nerve cells, blood cells, fat cells, mesenchymal cells, muscle cells, heart cells, liver cells, pancreatic cells, skin cells, and the like.
  • the human cell is a human stem cell, preferably a human pluripotent stem cell.
  • the modified human stem cells are based on stem cells selected from the group consisting of totipotent stem cells, pluripotent stem cells, and pluripotent stem cells.
  • the modified human stem cells are obtained by genetically engineering a stem cell line selected from the group consisting of embryonic-derived embryonic stem cells, such as established embryonic stem cell lines; induced pluripotent cells (induced pluripotent) Stem cells, iPS); stem cells derived from germ cells; stem cells obtained by somatic cell nuclear transfer (SCNT).
  • embryonic-derived embryonic stem cells such as established embryonic stem cell lines; induced pluripotent cells (induced pluripotent) Stem cells, iPS); stem cells derived from germ cells; stem cells obtained by somatic cell nuclear transfer (SCNT).
  • embryonic-derived embryonic stem cells such as established embryonic stem cell lines
  • induced pluripotent cells induced pluripotent Stem cells, iPS
  • stem cells derived from germ cells stem cells obtained by somatic cell nuclear transfer (SCNT).
  • SCNT somatic cell nuclear transfer
  • the modified human stem cells are based on stem cells selected from the group consisting of hematopoietic stem cells, neural stem cells, peripheral blood stem cells, adipose stem cells, mesenchymal stem cells, muscle stem cells, cardiac stem cells, and the like.
  • the HLA class I polypeptide of the modified stem cell is down-regulated at the cell surface by at least 30%, preferably by at least 50%, 60%, 70%, 80%, compared to the corresponding wild-type stem cell. 90%, 95%, 98%, 99%, more preferably no expression of HLA class I polypeptide.
  • the modified human stem cells have reduced immunogenicity, preferably less immunogenicity associated with transplantation, than the corresponding wild-type stem cells.
  • the decrease in immunogenicity is statistically significantly different (P ⁇ 0.05), and more preferably has a very significant difference (P ⁇ 0.001).
  • the modified human stem cells do not have the ability to develop into a human individual.
  • the modified stem cells have reduced immunogenicity relative to the corresponding wild-type stem cells.
  • the decrease may be selected from the group consisting of: (i) a decrease in the level of inflammatory response induced by the modified stem cell; (ii) a decrease in the level of cytokine induced by the modified stem cell, relative to the corresponding wild-type stem cell; And/or (iii) a decrease in the level of peripheral blood cell proliferation induced by said modified stem cells.
  • the level in (i), (ii) and/or (iii) is substantially lower than the level caused by the corresponding wild-type stem cell, which is 10% of the level caused by the corresponding wild-type stem cell. ⁇ 95%, more preferably 10% ⁇ 50%. In another preferred embodiment, the level in (i), (ii) and/or (iii) is reduced by 0.05 to 10 times, more preferably 1 to 10 times, than the level caused by the corresponding wild-type stem cells.
  • the level of inflammatory response in (i) is about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 after initiation of injection of the modified stem cells. , measured in 13 or 14 days.
  • the reduced level of inflammatory response includes a decrease in the number of inflammatory cells.
  • the level of inflammatory response is quantified using an inflammatory cell infiltration assay.
  • the cytokine level in the (ii) is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 after co-incubation of the peripheral blood with the modified stem cells. Measured on 11, 12, 13 or 14 days.
  • the reduction in the level of cytokines includes a decrease in the amount of interferon.
  • the cytokine levels were quantified relative to the corresponding wild-type stem cells using enzyme-linked immunosorbent spot analysis.
  • the peripheral blood cell proliferation level in (iii) is about 2, 3, 4, 5, 6, 7, 8, 9, 10 after starting the incubation of the modified stem cells and peripheral blood cells. Calculated in 11, 12, 13 or 14 days.
  • the peripheral blood cell proliferation level includes the level of peripheral blood mononuclear cell (PMBC) proliferation quantified by immunophenotyping.
  • the expression of one or more genes in the HLA class I molecule biosynthesis or transport pathway in the modified human cell is decreased.
  • one or more of the HLA class I molecular biosynthesis or transduction pathways are deleted in whole or in part.
  • the endogenous HLA gene of the modified human cell is disrupted, preferably by genetic site-directed modification, into the genome of the modified human cell, more preferably the disruption comprises homology Destroy the HLA gene.
  • the gene is selected from the group consisting of: a B2M gene, a TAP1 gene, a TAP2 gene, a TAPBP gene, or an NLRC5 gene, preferably a B2M gene.
  • the B2M gene, the TAP1 gene, the TAP2 gene, the TAPBP gene, or the NLRC5 gene are deleted in whole or in part.
  • TAP1 + / - knockout achieved TAP1 deletion or decreased expression of the single copy.
  • the TAP1 + / - causes down-regulation of HLA class I proteins or polypeptides of the modified stem cells on the cell surface.
  • the TAP 1-7 double copy knockout causes down-regulation of HLA class I molecules or polypeptides of the modified stem cells on the cell surface, more preferably no expression of HLA class I proteins or polypeptides.
  • the B2M gene, the TAP1 gene, the TAP2 gene, the TAPBP gene, or the NLRC5 gene are deleted in whole or in part. Deletion or loss of expression of the ⁇ 2-microglobulin is achieved by B2M- 7 double copy knockout or B2M +/- single copy knockout.
  • the ⁇ 2 ⁇ +/ (single copy knockout) causes the modified stem cell HLA class I protein or polypeptide to be downregulated at least 30% on the cell surface.
  • the ⁇ 2 ⁇ - 7 (double copy knockout) reduces the expression of the HLA class I protein or polypeptide of the modified stem cell by at least 90% on the cell surface, more preferably does not express the HLA class I molecule. Protein or polypeptide.
  • a method of preparing a modified human cell of the invention comprising: providing a raw material human cell; ⁇ ) modifying the human cell of the raw material, To make it HLA Decreased expression of one or more genes in the biosynthetic or transport pathway; C) collection of the modified human cells.
  • the raw material human cells in step A) are selected from the group consisting of totipotent stem cells, pluripotent stem cells, and pluripotent stem cells.
  • the human stem cell material is selected from the group consisting of: human embryonic stem cells (hESCs) that have been established and publicly available; human induced pluripotent stem cells (iPS); Stem cells derived from germ cells; stem cells obtained by somatic cell nuclear transfer (SCNT).
  • hESCs human embryonic stem cells
  • iPS human induced pluripotent stem cells
  • SCNT somatic cell nuclear transfer
  • the raw human stem cells are selected from the group consisting of adult stem cells such as hematopoietic stem cells, neural stem cells, blood stem cells, adipose stem cells, mesenchymal stem cells, muscle stem cells, cardiac stem cells, and the like.
  • the raw human cells are selected from the group consisting of hematopoietic cells, nerve cells, blood cells, fat cells, mesenchymal cells, muscle cells, heart cells, liver cells, pancreatic cells, skin cells, and the like. cell.
  • step BM results in the deletion of all or part of the gene in one or more of the HLA biosynthesis or transport pathways in the raw human cells.
  • the gene is selected from the group consisting of: a ⁇ 2-microglobulin gene, a TAP 1 gene, a TAP2 gene, a TAPBP gene, or an NLRC5 gene, preferably a B2M gene.
  • the step B) is to delete or down-regulate the expression of the B2M gene of the HLA class I molecular component protein in the raw human cells.
  • the step BM obtains deletion of all or part of the gene of the B2M gene in the raw stem cells.
  • the deletion or loss of expression of the ⁇ 2-microglobulin is achieved by B2M-double copy knockout or B2M +/- single copy knockout.
  • the ⁇ 2 ⁇ +/ (single copy knockout) causes the modified stem cell HLA class I protein or polypeptide to be downregulated at least 30% on the cell surface.
  • the ⁇ 2 ⁇ - 7 (double copy knockout) reduces the expression of the HLA class I protein or polypeptide of the modified stem cell by at least 90% on the cell surface, more preferably does not express the HLA class I molecule. Protein or polypeptide.
  • the deletion or loss of expression of the TAP1 is achieved by TAP1 - double copy knockout or ⁇ 1 + / - single copy knockout.
  • ⁇ 1 + / - single copy knockout
  • ⁇ 7 - double copy knockout
  • the B) is performed by the following steps: Bl) constructing a targeting vector, the target of which is the B2M gene of HLA class I molecular component protein;
  • said step B) is carried out by a genetic site-specific modification technique. In another preferred embodiment, said step B) is carried out by TALEN. In another preferred embodiment, the step B) is a B2M gene in which the HLA class I molecular component protein in the human cell is knocked out by single or double copying by the TALEN method.
  • the step C) comprises: selecting a human cell having a cell surface HLA class I molecule expression loss or downregulation from the cells obtained in the step B), thereby obtaining a cell surface HLA class I molecule deletion or downregulation Modified human cells.
  • the method optionally further comprises: D) examining the immunogenicity of the modified human cells obtained in step C) to determine that the modified human cells have reduced immunity compared to wild-type cells. Originality.
  • the method comprises: collecting a human cell comprising a target polynucleotide associated with one or more genes of an HLA class I biosynthesis or transport pathway; and a transcriptional activator (TAL) an effector nuclease is introduced into the human cell to produce the modified stem cell; and the modified stem cell is isolated, wherein a plurality of TAL effector repeats bind to the target polynucleotide.
  • TAL transcriptional activator
  • a transplant cell having reduced immunogenicity the transplanted cell being obtained or induced to differentiate by the modified human cell of the invention, or by using the present invention
  • the modified human cells produced by the method of the invention are obtained, induced to differentiate, or transdifferentiated.
  • the transplant-associated cells are less immunogenic in relation to transplantation than the corresponding wild-type cells.
  • the decrease in immunogenicity is statistically significantly different (P ⁇ 0.05), and more preferably has a very significant difference (P ⁇ 0.001).
  • the induction of differentiation is carried out by a method selected from the group consisting of: embryoid body formation, growth factor-induced differentiation, small molecule-induced differentiation, transcription factor-induced differentiation, or other methods. Induced differentiation and transdifferentiation.
  • a method for preparing a cell for transplantation of the present invention comprising: inducing differentiation of the modified human cell of the present invention into a desired cell for transplantation; or using The modified human cell produced by the method of the present invention, and inducing the resulting modified human cell to differentiate into a desired transplant cell, wherein the modified human cell is a modified human stem cell, preferably a modified human pluripotent stem cell .
  • a modified human cell of the invention a modified human cell produced by the method of the invention, a transplant cell of the invention or a transplant cell produced by the method of the invention
  • a modified human stem cells are in an undifferentiated or differentiated state.
  • the graft or pharmaceutical composition has attenuated immune rejection.
  • the graft or pharmaceutical composition is for treating a disease selected from the group consisting of: Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, spinal cord Neurodegenerative diseases such as muscular dystrophy, and organ transplantation (such as pancreas transplantation, liver cell transplantation, kidney transplantation, etc.) and injury regeneration of spinal cord injury, stroke, burns, heart disease, liver disease, diabetes, hematopoietic function defects, cancer, and the like.
  • a disease selected from the group consisting of: Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, spinal cord Neurodegenerative diseases such as muscular dystrophy, and organ transplantation (such as pancreas transplantation, liver cell transplantation, kidney transplantation, etc.) and injury regeneration of spinal cord injury, stroke, burns, heart disease, liver disease, diabetes, hematopoietic function defects, cancer, and the like.
  • a modified human cell of the invention for organ regeneration, repair, disease treatment, and the like (eg, treatment of cellular dysfunction or tissue destruction), mechanism studies of stem cell pluripotency, organ transplantation, Drug screening, application in gene therapy.
  • the invention provides a method of stem cell treatment of a patient, the method comprising: (a) isolating and collecting human stem cells; (b) modifying the human stem cells to make them HLA Decreased expression of one or more genes in a biosynthetic or transport pathway; (c) collecting said modified human stem cells; (d) transplanting said modified human stem cells into a patient in need of said treatment, or inducing said The modified human stem cells are differentiated into the desired cell type and transplanted into a patient in need of such treatment.
  • the stem cells may be stem cells obtained from the patient itself or others.
  • the gene is selected from the group consisting of a ⁇ 2-microglobulin gene, a TAP 1 gene, a TAP2 gene, a TAPBP gene, or an NLRC5 gene, preferably a B2M gene.
  • a method of screening a candidate drug or assessing a physiological function or toxicity of a candidate compound comprising the steps of: treating a modified human cell of the invention with the candidate drug or candidate compound or by the invention
  • the desired cell type differentiated from the modified stem cells From another point of view, the present invention relates to a modified cell, a method of producing a modified cell for transplantation, and a method of treatment using the cell of the present invention.
  • the modified stem cells are exemplified below, but it should be understood that the modified cells may be other types of cells, such as the various cell types exemplified above, preferably human cells.
  • the invention relates to a modified stem cell, wherein the modified stem cell comprises a reduced amount of HLA polypeptide compared to the corresponding wild-type stem cell, and wherein the modified stem cell has a compared with the corresponding wild-type stem cell Reduced immunogenicity.
  • the expression of one or more genes in the HLA biosynthesis or transport pathway in the modified stem cells is decreased compared to the corresponding wild-type stem cells.
  • the one or more genes comprise all or part of a gene deletion.
  • the present invention relates to a method of producing modified stem cells for transplantation, the method comprising: culturing modified stem cells in a medium, the HLA polypeptide of the modified stem cells compared to corresponding wild-type stem cells Reduced, wherein the modified stem cells have reduced immunogenicity compared to corresponding wild-type stem cells.
  • the method further comprises: collecting stem cells comprising a target polynucleotide associated with one or more genes of an HLA biosynthesis or transport pathway; (TAL) effector nucleases are introduced into the stem cells to produce the modified stem cells; and the modified stem cells are isolated, wherein a plurality of TAL effector repeats are associated with a target polynucleotide population.
  • stem cells comprising a target polynucleotide associated with one or more genes of an HLA biosynthesis or transport pathway
  • (TAL) effector nucleases are introduced into the stem cells to produce the modified stem cells
  • the modified stem cells are isolated, wherein a plurality of TAL effector repeats are associated with a target polynucleotide population.
  • the expression of one or more genes in the HLA biosynthesis or transport pathway in the modified stem cells produced by the method of the invention is reduced as compared to the corresponding wild-type stem cells.
  • the one or more genes comprise all or part of a gene deletion.
  • the invention further relates to a method of treatment comprising administering to a subject a therapeutically effective amount of a modified stem cell, wherein the modified stem cell comprises a reduced amount of HLA polypeptide compared to the corresponding wild-type stem cell, and wherein The modified stem cells have reduced immunogenicity compared to corresponding wild-type stem cells.
  • the disease is at least one selected from the group consisting of: Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, spinal muscular atrophy Neurodegenerative diseases such as diseases, and organ transplantation and injury regeneration of spinal cord injury, stroke, burns, heart disease, liver disease, diabetes, and hematopoietic cancer.
  • the subject is a human.
  • the expression of one or more genes in the HLA biosynthesis or transport pathway in the modified stem cells is reduced compared to the corresponding wild-type stem cells.
  • the one or more genes comprise all or part of a gene deletion.
  • the amount of HLA polypeptide accumulated in the modified stem cells is reduced as compared to the corresponding wild-type stem cells.
  • the amount of HLA polypeptide contained on the modified stem cells is reduced compared to the corresponding wild-type stem cells.
  • the endogenous HLA gene of the modified cell is disrupted.
  • the disruption is introduced into the genome of the modified cell by genetic site-directed modification, or the disruption comprises homologous disruption of the HLA gene.
  • the disruption impedes expression of the functional HLA RNA in the modified cell.
  • the disrupting results in at least partial deletion of the HLA gene.
  • the HLA polypeptide comprises an HLA class I polypeptide.
  • the HLA polypeptide comprises at least one of an HLA A type polypeptide, an HLA type B polypeptide, and an HLA type C polypeptide, and more preferably the HLA polypeptide comprises a ⁇ 2 immunoglobulin polypeptide.
  • the endogenous TAP1 gene of the modified cell is disrupted.
  • the disruption is introduced into the genome of the modified cell by genetic site-directed modification, or the disruption comprises homologous disruption of the TAP1 gene.
  • the disruption impedes expression of a functional TAP1 RNA in the modified cell.
  • the disruption results in the deletion of at least a portion or all of the TAP1 gene.
  • the modified stem cells or methods of the modified stem cells or methods of the present invention include totipotent stem cells and/or pluripotent stem cells, preferably including embryonic stem cells, induced pluripotent stem cells, more preferably The modified stem cells include human embryonic stem cells.
  • the reduced immunogenicity in the modified stem cells or methods of the invention comprises: using the modified stem cells as compared to the level of inflammatory response induced by the corresponding wild-type stem cells Inducing a decrease in the level of inflammatory response, preferably the level of inflammatory response induced by said modified stem cells is at least about 20%, at least about 50%, or substantially less than the level of inflammatory response induced by the corresponding wild-type stem cells.
  • the level of inflammatory response induced by the corresponding wild-type stem cells preferably at least 0.5, 1, 2, is induced by the modified stem cells compared to the level of inflammatory response induced by the corresponding wild-type stem cells. 3, 4, 5, 6, 7, 8, 9, 10 or 20 times.
  • the assay is performed about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days after the start of injecting the modified stem cells.
  • the reduced level of inflammatory response comprises a decrease in the number of inflammatory cells.
  • the level of inflammatory response is quantified using an inflammatory cell infiltration assay.
  • the reduced immunogenicity comprises: inducing a decrease in cytokine levels with the modified stem cells compared to a corresponding wild-type stem cell, preferably induced by the modified stem cells
  • the cytokine level is at least about 20%, at least about 50% of the level of cytokine induced by the corresponding wild-type stem cell, or the level of cytokine induced by the modified stem cell is substantially lower than that induced by the corresponding wild-type stem cell.
  • the modified dry fines are compared to the levels of cytokines induced by the corresponding wild-type stem cells.
  • Cell-induced cytokine levels are reduced by at least 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 20 fold.
  • the assay is performed about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days after the start of injecting the modified stem cells.
  • Modified stem cells induce cytokine levels.
  • the reduction in the level of cytokine comprises reducing the amount of interferon.
  • the cytokine levels are quantified relative to the corresponding wild-type stem cells using enzyme-linked immunosorbent spot assays.
  • the reduced immunogenicity comprises: a decrease in the level of peripheral blood cell proliferation induced by the modified stem cells relative to the corresponding wild-type stem cells, preferably induced by the modified stem cells
  • the level of peripheral blood cell proliferation is at least about 10%, at least about 20%, at least about 30% of the level of peripheral blood cell proliferation induced by the corresponding wild-type stem cells, and more preferably the level of peripheral blood cell proliferation induced by the modified stem cells is substantially low. Peripheral blood cell proliferation levels induced with corresponding wild-type stem cells.
  • the level of peripheral blood cell proliferation induced by the modified stem cells is reduced by at least 1.2, 1.5, 2, 3, 4, compared to the level of peripheral blood cell proliferation induced by the corresponding wild-type stem cells. 5, 6, 7, 8, 9, 10 or 20 times. In other embodiments of the invention, the calculation is performed about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 days after the start of incubation of the modified stem cells and peripheral blood cells.
  • the peripheral blood cell proliferation level comprises a peripheral blood mononuclear cell (PMBC) proliferation level quantified by immunophenotyping.
  • PMBC peripheral blood mononuclear cell
  • FIG 1 Schematic diagram of the DNA sequence and site recognized by T ALEN of the artificially designed human S2M gene (taking the target sequences shown in SEQ ID NOS: 4 and 7 as an example).
  • NI corresponds to A
  • HD corresponds to C
  • NN corresponds to G
  • NG corresponds to T.
  • Figure 2 A Schematic diagram of the structure of the B2M targeting carrier T ALEN-L86 and TALEN-R 102.
  • FIG. 2B Schematic diagram of the structure of TAP1 targeting vectors TALEN-1L1 and TALEN-1R1.
  • Figure 3 Targeting efficiency of TALEN in artificially designed human S2M gene in 293T cells.
  • Figure 4 Sequence alignment of S2M knockout human pluripotent stem cell lines established by TALEN of the artificially designed human S2M gene.
  • Figure 5 Targeting efficiency of artificially designed human S2M gene TALEN (L86 & R102) in human pluripotent stem cells.
  • Figure 6 Western blot analysis of B2M protein and HLA class I protein expression levels.
  • Figure 7A FACS was used to detect S2M and HLA class I protein expression levels in normal human pluripotent stem cells and human pluripotent stem cells knocked out of S2M.
  • Figure 7B FACS detection of HLA class I protein expression levels in normal human pluripotent stem cells and human pluripotent stem cells knocked out of TAR.
  • Figure 8 Normal human pluripotent stem cells and human pluripotent stem cells knocked out of S2M were injected into the tibialis anterior muscle of Balb/c mice for 2 days and stained with hematoxylin-eosin.
  • Figure 9 ELISPOT assay of normal human pluripotent stem cells and human pluripotent stem cells knocked out by S2M to stimulate human peripheral blood cells.
  • Figure 10 Normal human pluripotent stem cells and human pluripotent stem cells knocked out of S2M stimulate human peripheral blood cell proliferation experiments. detailed description
  • the inventors of the present invention have overcome the problem of low gene targeting efficiency on human cells (especially stem cells) by using specific gene targeting techniques through long-term and in-depth research, and have modified HLA class I protein-related genes on human cells. Modification (eg, knockout of genes encoding ⁇ 2-microglobulin in human pluripotent stem cells, including single-copy knockout and double-copy knockout) to down-regulate or not express HLA class I molecules on the surface of human cells obtained. The resulting human cells are low in immunogenicity. On the basis of this, the inventors have completed the present invention. Related definition
  • a refers to "a” or "more than one” (ie, "at least one") of the grammatical objects of this document.
  • one element refers to one element or more than one element.
  • approximately/about means total number, level, value, number, frequency, percentage, size, size, quantity, weight or length with reference total, level, value, number, frequency, percentage, size, size, quantity, weight Or the length varies by 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2% or 1%.
  • “Equivalent” refers to a polynucleotide having a nucleotide sequence substantially identical or complementary to all or a portion of a reference nucleotide sequence; or a polynucleotide encoding an amino acid sequence identical to the amino acid sequence of the polypeptide or protein. Or (b) a peptide or polypeptide having an amino acid sequence substantially identical to the reference polypeptide or protein.
  • the amount of "declining" or “decreasing” or “less than” is usually “statistically significant” or a physiologically significant amount, which may include a decrease in the amount or level described herein of about 1.1, 1.2, 1.3, 1.4, 1.5. , 1.6 1.7, 1.8, 1.9, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, or 50, or more (eg 100 , 500, 1000 times) (including all integers and decimal points between these values, and greater than 1, such as 1.5, 1.6, 1.7, 1.8, etc.).
  • “declining” or “decreasing” involves modifying the ability of stem cells to elicit an immunogenic response.
  • the immunogenic response is reduced by at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50 compared to non-modified or differently modified stem cells. %, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 150%, at least 200%, at least 300%, at least 400%, at least 500% or at least 1000%.
  • the immunogenic response is reduced by between about 50% and 200%.
  • ⁇ 2 microglobulin or " ⁇ 2 microsphere polypeptide” refers to an expression product of an MHC class I gene, such as native human ⁇ 2 microglobulin (see, for example, the sequence with Gene ID 567), and at least 65 with the aforementioned expression product. % (preferably 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99%) a protein or polypeptide having amino acid sequence identity and having native ⁇ 2 microglobulin functional activity.
  • the "functional activity" of a protein is any activity associated with the physiological function of the protein.
  • the functional activities of native ⁇ 2 microglobulin include: activities associated with other MHC class I molecules (eg, alpha chains) and MHC class I molecules (eg, clustering differentiation group 1 (CD1)), associated with allogeneic immunity Active, and includes the transport of MHC class I molecules.
  • MHC class I molecules eg, alpha chains
  • CD1 clustering differentiation group 1
  • binding refers to a molecule that recognizes or attaches to a particular second molecule in a sample or tissue, but does not substantially recognize or attach other non-structural related molecules in the sample.
  • coding sequence refers to any nucleic acid sequence that can be used to encode a polypeptide product of a gene.
  • non-coding sequence refers to any nucleic acid sequence that is not used to encode a polypeptide product of a gene.
  • complementarity and “complementarity” refer to polynucleotides (i.e., nucleotide sequences) that are related by base pairing principles.
  • sequence "A-G-T” is complementary to the sequence "T-C-A”.
  • “Complementary” can be a “partial” complement, in which only a portion of the bases of a nucleic acid match according to base pairing rules. Alternatively, it may be a “complete” or “all” nucleic acid complement. The degree of complementarity between nucleic acid strands has a significant impact on the efficiency and strength of hybridization between nucleic acid strands.
  • the "deletion" of the target gene can be achieved by targeting the DNA of the gene, such as by various gene-based site-directed modification techniques known in the art (e.g., homologous recombination or ZFN technology). This allows the modified cells to produce or accumulate less specific protein products (e. g., ⁇ 2 microglobulin) than unmodified or differently modified cells.
  • site-directed modification techniques e.g., homologous recombination or ZFN technology.
  • the term "endonuclease” refers to any wild-type or variant enzyme that catalyzes the hydrolysis (cleavage) of a bond between nucleic acids in a DNA or RNA molecule, preferably a DNA molecule.
  • endonucleases include, but are not limited to, Type II restriction enzymes such as FokI, Hhal, HindllK Nod, BbvCK EcoRI, Bgll and Alwl.
  • the endonuclease herein may be a transcriptional activator-like (TAL) effector endonuclease (TALEN).
  • exogenous refers to a polynucleotide sequence that is not naturally found in a wild-type cell or organism, but is typically introduced into the cell or organism by molecular biological techniques.
  • exogenous polynucleotides include vectors, plasmids, and/or artificial nucleic acid constructs encoding the desired protein.
  • the term "endogenous” or “native” refers to a naturally occurring polynucleotide sequence that can be found in a given wild-type cell or organism.
  • a particular polynucleotide sequence isolated from a first organism and transferred to a second organism by molecular biology techniques is generally considered to be an "exogenous" polynucleotide relative to the second organism.
  • the polynucleotide sequence can be "imported" into a microorganism that already contains the polynucleotide sequence by molecular biology techniques, for example to create additional one or more of such naturally occurring polynucleotide sequences. Copying, thereby promoting overexpression of the encoded protein or polypeptide.
  • gene refers to a genetic unit occupying a particular locus on a chromosome, which comprises transcriptional and/or translational regulatory sequences and/or coding regions and/or non-translated sequences (ie, introns, 5' and 3' non-translated). Sequence), or consists of elements selected from the above.
  • Homology refers to the percentage of identical amino acids or constitutive conservative substitutions. Homology can also be determined by sequence alignment programs such as GAP (see, for example, Deveraux et al., 1984, Nucleic Acids Research 12, 387-395, incorporated herein by reference). In this way, with the sequence described in this article Sequences having similar or substantially different lengths can be aligned by insertion of a gap, such gaps being determined by, for example, an alignment algorithm used in GAP.
  • host cell includes a single cell or cell culture that can be or has been used as a receptor for any of the recombinant vectors of the invention or isolated polynucleotides.
  • Host cells include the progeny of a single host cell that may not be identical (morphological or total DNA complementarity) to the original parent cell due to natural, random or deliberate mutations and/or changes.
  • Host cells include cells that are transfected or infected in vivo or in vitro with the recombinant vectors or polynucleotides of the invention.
  • a host cell comprising a recombinant vector of the invention is referred to as a recombinant host cell.
  • immunogenicity refers to the ability to elicit an immunogenic response in vivo or in vitro.
  • the immunogenic response can be caused by an immunogen (e.g., an immunogenic polypeptide and/or a cell, such as a stem cell).
  • the immunogenicity of a particular immunogen can be detected and/or quantified by various assays. Examples of such assays include enzyme-linked immunoassay (ELISA), surface plasmon resonance (SPR) based assays, PBMC immunophenotypic assays, and inflammatory cell infiltration assays.
  • ELISA enzyme-linked immunoassay
  • SPR surface plasmon resonance
  • PBMC immunophenotypic assays e.g., PBMC immunophenotypic assays
  • inflammatory cell infiltration assays e.g., cell in vitro.
  • wild type refers to a gene or gene product that is characterized when the gene or gene product is isolated from its naturally occurring source. Wild-type genes or gene products (such as polypeptides) are most frequently observed in the population and are thus designated as "normal” or "wild-type” gene forms.
  • isolated means substantially or substantially not including components normally associated with its natural condition.
  • isolated polynucleotide refers to a polynucleotide that has been purified from a sequence flanking its naturally occurring state, eg, a DNA fragment that has been removed from a sequence that is normally contiguous with a DNA fragment.
  • isolated peptide or isolated polypeptide and analogous, as used herein, refers to a peptide or polypeptide molecule that is isolated and/or purified in vitro, from its natural cellular environment, and from other cells to the cell. The association of the components is separated and/or purified.
  • isolated cells refers to the removal of cells from their original environment (eg, organisms, tissues, organs, body fluids, blood, etc.).
  • labeled means that the probe or antibody is directly labeled by coupling (i.e., physically linking) a detectable substance and the probe or antibody.
  • locus is the specific physical location of a DNA sequence (e. g., a gene) on a chromosome.
  • polynucleotide or “nucleic acid” refers to mRNA, RNA, cRNA, rRNA, cDNA or DNA.
  • the term generally refers to a polymeric form of nucleotides of at least 10 bases in length, including ribonucleotides or deoxynucleotides or modified versions of either of these two classes of nucleotides.
  • the term also encompasses single or double stranded forms of DNA and RNA.
  • polynucleotide variant and “variant” and like terms mean a polynucleotide that exhibits substantial sequence identity to a reference polynucleotide sequence, or hybridizes to a reference sequence under stringent conditions as defined below. Polynucleotide. These terms also include polynucleotides that differ from the reference polynucleotide by at least one nucleotide insertion, deletion or substitution. Thus, the terms “polynucleotide variant” and “variant” include polynucleotides in which one or more nucleotide additions or deletions have been made or replaced by different nucleotides.
  • polynucleotide variants include, for example, at least 50% (at least 51% to at least 99%, and all integer percentages therebetween, for example, 90%, 95% or 98%) with reference polynucleotide sequences as described herein. Sequence identity polynucleotides.
  • polynucleotide variant and variant also include naturally occurring allelic variants and orthologs encoding these enzymes.
  • stringent conditions refers to conditions under which a sequence (e.g., a probe, variant) can hybridize to its target sequence without hybridizing to other sequences. Stringent conditions are sequence dependent and vary in different environments. Longer sequences hybridize specifically at higher temperatures. Under defined ionic strength and pH conditions, stringent conditions are generally selected to be greater than the melting temperature of the particular sequence (TMT of about 15 ° C. This Tm is (at a defined ionic strength, pH and nucleic acid concentration) complementary to the target sequence The probe has 50% of the temperature at which the target sequence hybridizes to equilibrium. (Because the target sequence is usually present in excess at Tm, only 50% of the probe is occupied at equilibrium.) Typically the stringent conditions are salt concentrations below about 1.0 M.
  • Sodium ion typically about 0.01 to 1.0 M sodium ion concentration (or other salt), pH 7.0 to 8.3, short probe (10 to 15 nucleotides) at least about 30 ° C, long probe (50 The temperature above the total nucleotide is at least about 60 ° C. Strict conditions can also be achieved by the addition of destabilizing agents such as formamide.
  • the positive signal should normally be at least twice the background, preferably background. 10 times hybridization.
  • Exemplary stringent conditions are as follows: 50% formamide, 5xSSC and 1% SDS, incubation at 42 °C, or 5xSSC, 1% SDS, incubation at 65 °C, washing with 0.2x SSC and 0.1% SDS at 65 °C
  • For PCR usually at a temperature of about 36 ° C Strict amplification, although the annealing temperature varies between about 32 and 48 ° C depending on the length of the primer.
  • the temperature is usually about 62 ° C, although the high stringency annealing temperature ranges from about 50 ° C to Approximately 65 ° C, depending on primer length and specificity.
  • Typical cycling conditions for high and low stringency amplification include: denaturation at 90 to 95 ° C for 30 to 120 seconds, annealing for 30 to 120 seconds, extension of approximately 72 ° C 1 to 2 minutes.
  • Low and high stringency amplification reactions and methods and guidelines can be found, for example: Innis et al, (1990) PCR Protocols: A Guide to Methods and Applications, Academic Press ( Academic Press), New York.
  • nuclease includes exonucleases and endonucleases.
  • polypeptide polypeptide fragment
  • peptide protein
  • polypeptide fragment polypeptide fragment
  • protein protein
  • polypeptide variant refers to a polypeptide that differs from the reference polypeptide sequence by the addition, deletion or substitution of at least one amino acid residue.
  • a polypeptide variant is distinguished from a reference polypeptide by one or more conservative or non-conservative substitutions.
  • polypeptide variants comprise conservative substitutions, and in this regard, it will be readily understood in the art that some amino acids can be altered to other amino acids having substantially similar properties without altering the native activity of the polypeptide.
  • Polypeptide variants also include polypeptides in which one or more amino acids are added or deleted, or replaced by different amino acid residues.
  • reference sequence generally refers to a nucleic acid coding sequence or an amino acid sequence for comparison to another sequence.
  • the reference sequence includes all of the polypeptide and polynucleotide sequences described herein, including sequences described by names (e.g., ⁇ 2 microglobulin) and sequences described in the Sequence Listing.
  • sequence identity as used herein or, for example, includes “having 50% sequence identity with ", which means that the sequence is aligned on a nucleotide-by-nucleotide basis or on an amino acid-by-amino acid basis. identical.
  • sequence identity can be calculated by comparing the two best matching sequences with a comparison window to determine the presence of the same nucleic acid base (eg, A, T, C, G, I) or the same amino acid in both sequences.
  • Residues eg alanine, valine, serine, threonine, glycine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, lysine
  • the number of positions of arginine, histidine, aspartic acid, glutamic acid, asparagine, glutamine, cysteine, and methionine to obtain the number of matching positions.
  • the number of matching positions is divided by the total number of positions in the comparison window ( ⁇ , window size), and the result is multiplied by 100 to obtain the percent sequence identity.
  • references to describe the sequence relationship between two or more polynucleotides or polypeptides include “reference sequence”, “comparison window”, “sequence identity”, “percentage of sequence identity” and “substantially identical””.
  • the “reference sequence” comprises nucleotide and amino acid residues of at least 12, but often 15 to 18, and usually at least 25 monomer units.
  • both polynucleotides can include: (1) a sequence similar between the two polynucleotides (ie, only a portion of the full length polynucleotide sequence), and (2) between the two polynucleotides
  • the difference between the sequences is usually
  • the window “compares the sequence of the two polynucleotides to identify and compare the sequence similarity of the local regions.
  • “Comparative window” refers to a conceptual segment of at least 6 consecutive positions, usually from about 50 to about 100 More typically from about 100 to about 150 consecutive positions, in which, after the sequence and the reference sequence are best matched, the sequence is compared to a reference sequence having the same number of consecutive positions.
  • Comparison window and reference sequence (where not Including additions or deletions, which may include about 20% or less of addition or deletion gaps, as the best sequence alignment of the two sequences.
  • the best sequence alignment can be performed by a computer algorithm (Wisconsin Genetics Package 7.0) Version (Wisconsin Genetics Software Package Release 7.0) GAP, BESTFIT, FASTA nTFASTA, Genetics Computer Group, 575 Science Drives Madison, WI, USA (Genetics Computer Group, 575 Science Drive Madison, WI, USA)), or through The detection and the best alignment produced by any of these methods (ie, the highest percentage of homology in the comparison window) is determined.
  • vector refers to a polynucleotide molecule into which a polynucleotide can be inserted or cloned, preferably
  • the vector preferably comprises one or more unique restriction endonuclease sites and can be autonomously replicated in a defined host cell, including the target cell or tissue or progenitor cell or tissue thereof, or integrated into the host genome such that the cloned sequence regenerable.
  • the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, such replication being independent of chromosomal replication, e.g., a linear or closed circular plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.
  • the vector may contain any means for ensuring self-replication.
  • the vector when introduced into a host cell, can be integrated into the genome and replicated along with the integrated chromosome.
  • Such vectors may contain specific sequences that permit recombination to occur at a particular, desired site in the host chromosome.
  • the vector system may comprise a single vector or plasmid, two or more vectors or plasmids which together comprise the total DNA to be introduced into the genome of the host cell, or a transposon.
  • the choice of vector will depend on the compatibility of the vector with the host cell into which the vector will be introduced.
  • the vector is preferably capable of functioning in a stem cell, such as a plasmid.
  • the vector may comprise a reporter gene, such as green fluorescent protein (GFP), which may be either fused to one or more of the encoded polypeptide frameworks or independently expressed.
  • GFP green fluorescent protein
  • the vector may also include a selection marker, such as an antibiotic resistance gene, which can be used to select a suitable transformant.
  • the term "statistically significant” means that the result does not occur by chance. Statistical significance can pass It is determined by any method known in the art. The p-value is usually used to measure saliency, which indicates the frequency or probability that an observed event may occur when the null hypothesis is true. If the resulting p-value is less than the significance level, the null hypothesis is overridden. In a single event, the level of significance is defined as a p-value less than or equal to 0.05.
  • TALEN refers to a protein comprising a transcriptional activator-like (TAL) effector binding region and an endonuclease region, the fusion of which forms "monomeric TALEN". Some of the monomers TALEN itself have a function, while others require dimerization with another monomer, TALEN. When the two monomers TALEN are the same, dimerization can produce homodimerization of TALEN, and when the two monomers TALEN are different, dimerization can produce heterodimerization of TALEN. For example, when the RVD numbers of the two monomers TALEN are different and/or when the content of the at least one RVD (i.e., the amino acid sequence) is different, the two monomers TALEN are different.
  • TAL effector-DNA modifying enzyme refers to a protein comprising a transcriptional activator-like effector binding region and a DNA modifying enzyme region.
  • sample as used herein has its broadest meaning.
  • Samples comprising polynucleotides, peptides, antibodies, and the like can include soluble fractions of body fluids, cell preparations or cell growth media, genomic DNA, RNA or cDNA, cells, tissues, skin, hair, and the like.
  • samples include saliva, serum, biopsy samples, blood, urine, and plasma.
  • patient refers to a mammalian (e.g., human) subject to be treated and/or obtained from a biological sample.
  • terapéuticaally effective amount refers to an amount of a composition described herein effective to achieve a desired therapeutic response, such as an amount sufficient to reduce graft rejection or prolong postoperative survival.
  • the particular safe or effective amount or therapeutically effective amount may vary depending on the following factors: the particular condition being treated, the condition of the patient, the type of mammal or animal being treated, the duration of treatment, the nature of the concurrent treatment (if any). And the particular dosage form employed and the structure of the compound and its derivatives.
  • treating refers to the application or administration of a therapeutic agent to a patient, or the application or administration of a therapeutic agent to a tissue or cell line isolated from a patient suffering from a disease, having a disease condition, or having a predisposed physique, Thereby achieving healing, restoring, alleviating, alleviating, altering, correcting, improving, ameliorating or affecting the disease, the symptoms of the disease or the susceptibility to the disease.
  • treatment includes prophylactic treatment.
  • treatment in patients who have not identified a disease or disorder symptom or clinically relevant manifestation is a prophylactic treatment, whereas a clinical, curative or palliative "treatment” for a patient who identifies a disease or disorder symptom or clinically relevant manifestation is usually Does not constitute preventive treatment.
  • differentiation induction refers to the induction of stem cell differentiation by a specific method. Common methods include embryoid body formation, growth factor induction, small molecule-induced differentiation, transcription factor-induced differentiation, or other methods-induced differentiation. Transcription factor expression regulation induction method, and the like. For example with Activin A, Wnt 3a The growth factor induces differentiation of human embryonic stem cells into pancreatic cells (D'Amour, KA, (2006). Nat Biotechnol 24, 1392-1401.) and the like. Stem cells and pluripotent stem cells
  • stem cells is a type of pluripotent cell with self-renewing that, under certain conditions, can differentiate into multiple functional cells. According to the developmental stage of stem cells, it is divided into embryonic stem cells (ES cells) and adult stem cells (somatic stem cells are classified into three types according to the developmental potential of stem cells: totipotent stem cells (TSC) and pluripotent stem cells ( Pluripotent stem cell) and unipotent stem cell.
  • TSC embryonic stem cells
  • Pluripotent stem cell pluripotent stem cells
  • unipotent stem cell unipotent stem cell.
  • pluripotent stem cells including pluripotent stem cells, PSC.
  • Multipotent Stem Cell refers to stem cells that have the potential to differentiate into a variety of cellular tissues, such as embryonic stem cells or induced pluripotent stem cells (iPS cells); also includes limited developmental potential and the ability to develop into intact individuals.
  • a type of stem cell such as a hematopoietic stem cell.
  • Pluripotent stem cells having the ability to produce different types of progeny cells under appropriate conditions, according to standard assays accepted in the art, such as the ability to form teratomas in 8-12 week old SCID mice or to form in tissue culture The ability of all three germ layers to identify this cell.
  • pluripotent stem cells can be obtained from adult bone marrow and various tissues and organs.
  • Pluripotent stem cell materials useful in the preparation of the low immunogenic pluripotent stem cells of the invention may include, but are not limited to: established embryonic stem cells, stem cells derived from germ cells, stem cells obtained by somatic cell nuclear transfer (SCNT), induced pluripotency Induced pluripotent stem cells (iPS), preferably established embryonic stem cells (such as XI cell lines, etc.), induced pluripotent stem cells.
  • SCNT somatic cell nuclear transfer
  • iPS induced pluripotency Induced pluripotent stem cells
  • iPS induced pluripotency Induced pluripotent stem cells
  • embryonic stem cells when the fertilized egg divides into blastocysts, the cells of the inner cell mass are cultured in vitro, can proliferate indefinitely, self-renew, and have developmental pluripotency. a kind of cell. The cells do not have the potential to develop into intact individuals and can only differentiate into other adult cell types of the adult body. From this point of view, they are essentially the same as other types of adult stem cells, and have only more than other adult stem cells. Potential only.
  • the term encompasses primary tissues and established cell lines with ES cell phenotypic characteristics and progeny of such cell lines that are still capable of producing progeny cells having phenotypic traits for each of the three germ layers.
  • Human ES cells hESC
  • Thomson et al. (Science 282: 1 145, 1998; US Patent 6,200,806) describes a prototype "human embryonic stem cell” (hES cell), including the cell line established therein. Techniques such as those described in Thomson et al. (U.S. Patent No. 5,483,780, Science 282:1 145, 1998; Curr. Top. Dev. Biol. 38: 133, 1998) and Reubinoff et al. (Nature Biotech. 18:399, 2000) can also be used. Human embryonic vesicles prepare human embryonic stem (hES) cells.
  • the term "modified” or “modified” refers to the loss of or the down-regulation of HLA class I protein or polypeptide on the surface of a cell of a raw material cell by genetic engineering operations, thereby reducing the immunogenicity/repellency of the resulting cell.
  • the modification may result in the loss or decrease in expression of one or more genes (e.g., B2M genes) in the HLA class I biosynthesis or transport pathway in a human cell, e.g., causing the gene to be deleted in whole or in part.
  • human cell of the invention As used herein, the terms "human cell of the invention”, “modified human cell”, “human cell with low immunogenicity”, “human cell with reduced HLA”, and the like, are used interchangeably and are meant to pass the invention. Genetic engineering methods of operation result in decreased expression of one or more genes in the HLA biosynthesis or transport pathway in human cells (eg, deletion or down-regulation of the B2M gene, such as double-copy or single-copy knockout of B2M using the TALEN method), The resulting immunogenicity is lower than a new class of cells of normal human cells.
  • the target gene can be referred to as "non-functional" by altering the amino acid sequence of the encoded polypeptide by alteration or mutation at the nucleotide level to express the modified polypeptide, the modified polypeptide being active In terms of function or reduced activity (e.g., introduction of HLA class I molecules for transport), whether by modifying the active site of the polypeptide, its intracellular localization, its stability, or other functional properties that will be apparent to those skilled in the art.
  • modifications to the polypeptide coding sequence involved in HLA expression can be achieved by techniques known in the art, such as directional mutagenesis at a genomic level for a given cell and/or Natural selection (ie directed evolution).
  • the method of preparing the modified human cells of the present invention may comprise the following main steps:
  • the method includes:
  • ⁇ ' providing a human cell, preferably a human stem cell, more preferably a human pluripotent stem cell, more preferably a human embryonic stem cell; ⁇ ') knocking out a human leukocyte antigen (HLA) protein or polypeptide in the human pluripotent stem cell
  • HLA human leukocyte antigen
  • the human pluripotent stem cell is obtained by selecting a pluripotent stem cell line in which the cell surface HLA class I molecule is deleted or down-regulated from the cells of the step )') by genetic engineering operation.
  • constructing a targeting vector, the target of which is the ⁇ 2 ⁇ gene of HLA class I molecular component protein
  • step C" the immunogenicity of the pluripotent stem cells obtained in step C") is tested to determine that the pluripotent stem cells have reduced immunogenicity compared to normal pluripotent stem cells.
  • the targeting vector in the step B" can be a TALEN targeting vector.
  • the TALEN recognition sequence can be initially selected according to the following principles: (1) the 0th base is T (the first sequence of the recognition sequence) The previous base is the 0th position); (2) the last base is ⁇ ; (3) the recognition sequence length is between 13-19; (4) the interval between the two recognition sequences (Spacer) Control is between 13-21 (12 is also possible, but the efficiency may be lower).
  • TALEN target sequences useful in the present invention include, but are not limited to: the sequences shown in SEQ ID NOs: 4-17.
  • the TALEN that can be constructed The target recognition module is cloned into an expression vector, preferably a eukaryotic expression vector such as, but not limited to, pCDNA3.0.
  • Sequence-specific nucleases that have developed rapidly in recent years can be used for precise genomic targeted modification.
  • a typical sequence-specific nuclease consists of a DNA recognition domain and a non-specific endonuclease domain. The principle of action is: First, the nuclease is mapped to the genomic region to be edited by the DNA recognition domain; then the double-stranded DNA is cleaved by the non-specific endonuclease, thereby causing DNA double-strand break (double-strand break, DSB); The DSB thus introduced activates DNA self-repair, which can cause mutation of the gene and promote homologous recombination of the DNA at the site.
  • Transcription Activator-Like Effector Nucleases is a recently developed sequence-specific nuclease whose principle of action is: recognition of targets by tandem "protein modules" that specifically recognize DNA The DNA sequence, and the two monomeres of the non-specific DNA cleavage protein Fokl fused to it are localized together; when the DNA cleavage protein forms a dimer, the double-stranded DNA at this position can be cleaved, thereby causing DSB.
  • the Rudolf Jaenisch team validated the targeting of TALEN in human embryonic stem cells and human iPS cells (Rudolf Jaenisch et al., Genetic Engineering of Human Pluripotent Cells Using TALE Nucleases ("Genetic Engineering of Human Pluripotent Stem Cells Using TALE Nucleases”) ); ature Biotechnology, Vol. 29, No. 8: 731-734, August 2011).
  • TALE Nucleases Genetic Engineering of Human Pluripotent Cells Using TALE Nucleases
  • ZFN zinc-fmger nucleases
  • TALEN technology is a good genetic modification tool and is constantly improving and maturing
  • not every TALENs designed according to the principle has genetic modification activity. It is also necessary to try to find a combination of many different TALENs.
  • Active TALENs In the present invention, the inventors screened active TALENs from a number of Talens, and preferred the most efficient TALENs for subsequent experiments.
  • the subculture of the step C') is to pass the pluripotent stem cell clone to the irradiation at a ratio of 1: 1 to 20, preferably 1: 4 to 10, more preferably 1: 6 to 8.
  • the loss or down-regulation of cell surface HLA class I molecule expression in the step C" may be detected by one or more methods and/or indicators selected from the group consisting of, of course, one of ordinary skill in the art. This can also be detected by other methods known in the art or in combination with a method selected from the group consisting of:
  • the immunogenicity of the obtained stem cells can be tested using ordinary techniques in the art.
  • the method known to the skilled person is carried out, for example, by detecting the intensity of the inflammatory reaction in the mouse caused by the above cells and ordinary stem cells.
  • the detection of the intensity of inflammatory response in mice can include the following steps:
  • the present invention provides a human stem cell in which a major histocompatibility antigen is deleted or down-regulated and a method for producing the same, which has low immunogenicity.
  • the present invention further provides a cell for transplantation having reduced immunogenicity and a preparation method thereof.
  • the cell for transplantation may be directly obtained from the modified human cell of the present invention or by differentiation of the stem cell which induces the modification of the present invention, for example, the induction of differentiation may be induced by directed differentiation.
  • Methods for differentiation induction are well known in the art, for example, reference to embryoid body formation, growth factor-induced differentiation, small molecule compound-induced differentiation, transcription factor-induced differentiation, or other methods-induced differentiation.
  • the transplantation cell of the present invention may include: pancreatic cells, liver cells, kidney cells, cardiomyocytes, skin cells, and the like; and can be used, for example, for pancreas transplantation, liver cell transplantation, kidney cell transplantation, cardiomyocyte transplantation, skin cell transplantation, and the like. transplant.
  • the immunogenicity associated with transplantation is reduced in the transplanted cells compared to the corresponding wild-type cells, and preferably the decrease in immunogenicity is statistically significant (P ⁇ 0.05), more preferably highly significant. (P ⁇ 0.001) o Modified human cells of the present invention and application of transplantation cells
  • the modified human cells of the present invention and the cells for transplantation have low immunogenicity. Therefore, it can be a new source of transplant donors with low immune rejection and will provide a new material and method for transplantation therapy.
  • the modified cells of the present invention can be used for tissue regeneration, repair, and disease treatment (for example, treatment of cell dysfunction or tissue destruction), mechanism research on stem cell pluripotency, and clinical application research of organ transplantation, drug screening, gene therapy, and the like. Has important value.
  • the cells of the present invention can be used for the following purposes, including but not limited to: Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis, neurodegenerative diseases such as spinal muscular atrophy, and spinal cord Organ transplantation for injuries, strokes, burns, heart disease, liver disease, diabetes, hematopoietic dysfunction, etc. Damage regeneration.
  • Kits or compositions comprising the stem cells of the invention or cells for transplantation may be provided for further research and application.
  • a composition of the invention may comprise: (a) a modified human cell or transplantable cell of the invention; (b) a pharmaceutically or physiologically acceptable carrier or medium.
  • the kit of the present invention may comprise: (a') a modified human cell or a cell for transplantation of the present invention; (b') a pharmaceutically or physiologically acceptable carrier or medium; (C) an optional one or a plurality of containers; (d') optionally one or more devices suitable for administering cells of the invention; (optional instructions for use, etc.. main advantages of the invention)
  • the present invention achieves the following major technological advances:
  • the starting material for this experiment is "established undifferentiated human embryonic stem (hES) cell line” Xl (see Wu Z et al, Derivation and characterization of human embryonic stem cell lines from the Chinese population ("Human embryos derived from Chinese population) Derivation and characterization of stem cell lines", J Genet Gewom. 201 January 1 , 38(1): 13-20).
  • the applicant has submitted the human embryonic stem (hES) cell line to the General Microbiology Center of the China Microbial Culture Collection Management Committee (CGMCC, Beijing, China) on March 12, 2013, and its deposit number is CGMCC7353.
  • the applicant undertakes to distribute the biological material to the public within 20 years from the date of application, provided that 1 a biomaterial transfer agreement is signed; 2 for legal, non-commercial use.
  • MEF cells are commercially available from a number of commercial companies, for example, MEF cells of the present invention are purchased from Millipore Corporation.
  • the specific composition was: 79% D-MEM/F 12 medium (purchased from Invitrogen, 10330); 20% Knockout SR (purchased from Invitrogen, 10828); 1 mM L-glutamic acid (purchased from Invitrogen, 25030) 1% non-essential amino acids (purchased from Invitrogen, 1 1 140050); 0.1 mM ⁇ -mercaptoethanol (purchased from Sigma, M7522); 10 bFGF (purchased from Invitrogen, 13256-029). 2. Medium for mouse embryonic fibroblast (MEF) cells
  • the specific composition is: 89% D-MEM medium (purchased from Invitrogen, 11965); 10% fetal calf serum (purchased from HyClone, SH30396.03); 1 mM L-glutamic acid (purchased from Invitrogen, 25030) 1% of non-essential amino acids (purchased from Invitrogen, 11140050).
  • HLA-ABC, ⁇ 2 ⁇ purchased from BD (for cell flow assay);
  • HLA-ABC, ⁇ 2 ⁇ purchased from Santa Cmz (for western detection experiments)
  • Example 1 Design of TALEN target sequence
  • the TALEN recognition sequence is determined according to the following principles:
  • the base of the 0th bit is T (the base before the first digit of the recognition sequence is the 0th position);
  • the designed B2M target sequence positions are shown in Figure 1.
  • the specific sequences of the B2M and TAP 1 gene target sequences are shown in Table 2- 1 and Table 2-2, respectively.
  • the recognition sequence of the TALEN target sequence in the above table was constructed into a vector as a plasmid, and the B2M vector TALEN-L86 constructed in the present invention was exemplarily shown in the subsequent actual images 2A and 2B.
  • the structural diagram of TALEN-R102, and the structural diagrams of the TAP1 vectors TALEN-1L1 and TALEN-1R1, the remaining vectors can be constructed correspondingly based on the conventional methods in the art and the sequences shown in Table 1.
  • the constructed B2M TALEN plasmids were transfected into cells in pairs according to Table 3, a total of 16 groups. Mix the plasmid, transfection reagent, and media solution according to the following protocol:
  • the culture medium was changed to a fresh culture medium containing 1 g/ml puromycin, and cultured in a 5% CO 2 incubator at 37 ° C for three days, and the same culture solution was changed every day. 7. Digest the 293T cells after the above-mentioned killing with 0.25% trypsin, and inhale the cell suspension into a 15 ml centrifuge tube, centrifuge at 13200 rpm/min for 5 min, and discard the supernatant.
  • the primers are SEQ ID NO: 1 and SEQ ID NO: 2 in Table 1.
  • the PCR system is as follows (50 ⁇ ):
  • PCR program 95. C 2min; 95 °C 5s, 60 °C 5s, 72 °C 20s, 35 cycles; 72. C is extended by 10 min.
  • the PCR fragment of the above genome was added to A and then ligated into the PMD18-T vector (purchased from TAKARA), and the ligated product was transformed into competent bacteria (DH5a), and the monoclonal was picked and sent for sequencing.
  • the target efficiency of each pair of TALENs was calculated based on the results of the measurements.
  • F-140 Extract the genome and PCR-amplify the DNA fragment of the target region.
  • the primers are SEQ ID ⁇ : 1 and SEQ ID NO: 2 in Table 1.
  • the PCR system is shown below (50 ⁇ ):
  • Mouse anti-human B2M monoclonal antibody was diluted 1:1000 in antibody dilution and co-incubated with PVDF membrane overnight at 4 °C.
  • TBST was washed with horseradish peroxidase-labeled goat anti-mouse secondary antibody (diluted 1:2000) at room temperature for 1 h.
  • ECL After washing the film, ECL illuminates the self-developing film and washes the tape.
  • control group was changed to normal culture, and the experimental group was treated with 500 U/ml of IFN- ⁇ for 24 h.
  • TBST was washed with horseradish peroxidase-labeled goat anti-mouse secondary antibody (diluted 1:2000) at room temperature for 1 h.
  • ECL After washing the film, ECL illuminates the self-developing film and washes the tape.
  • control group was changed to normal culture, and the experimental group was treated with 500 U/ml IFN- ⁇ for 24 h.
  • HLA class I molecules in ploidy human pluripotent stem cells was also reduced (Fig. 7 ⁇ ).
  • Example 7 Detection of cells in humoral immune response
  • mice After a week of adaptation to Balb/c mice, they were divided into 3 groups for intramuscular injection of the tibialis anterior muscle. Each group was injected separately: 1) normal human pluripotent stem cells, volume 50 ⁇ l, cell volume 3x l0 6 ; 2) B2M +/ human pluripotent stem cells, volume 50 ⁇ , cell volume 3 ⁇ 10 6 ; 3) B2M- 7 Human pluripotent stem cells, volume 50 ⁇ , cell volume 3 ⁇ 10 6 .
  • peripheral blood mononuclear cells PBMC
  • the PBMC was washed well plate count using a hemocytometer, adjusted to a concentration of 1640 medium containing 10% FBS PBMC of 5x l0 6 cells / ml.
  • Human pluripotent stem cells were treated with mitomycin C at a concentration of 10 g/ml and human pluripotent stem cells were knocked out of ⁇ 2 ⁇ , 37 ° (: placed 2 11 .
  • peripheral blood mononuclear cells PBMC
  • Human pluripotent stem cells were treated with mitomycin C at a concentration of 10 g/ml and human pluripotent stem cells were knocked out of ⁇ 2 ⁇ , 37 ° (: placed 2 11 .
  • Antigen cells are co-incubated with PBMC
  • PBMC blood cell count plate count

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Reproductive Health (AREA)
  • Cell Biology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Microbiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

提供了一种低免疫原性的人细胞及其制备方法。所述细胞为修饰的人细胞,与相应的野生型细胞相比,其细胞表面的人类白细胞抗原HLA蛋白或多肽缺失或表达下调,从而使得所述修饰的人细胞具有降低的免疫原性。还提供了一种制备上述修饰的人细胞的方法,包括使人细胞中HLA生物合成或转运途径中的一种或多种基因缺失或表达下降,所述基因包括β2-微球蛋白基因。所述修饰的低免疫原性的人细胞可用作一种能够降低甚至避免免疫排斥反应的移植供体,用于器官移植。

Description

一种低免疫原性的人细胞及其制备方法
技术领域
本发明属于基因工程和医学领域, 具体涉及一种具有低免疫原性的人细胞 及其制备方法。 背景技术
干细胞 (stem cells, SC)是一类具有自我复制能力 (self-renewing)的多潜能细 胞, 在一定条件下, 它可以分化成多种功能细胞。 根据干细胞所处的发育阶段 分为胚胎干细胞 (embryonic stem cell, ES细胞)禾卩成体干细胞 (somatic stem cell)。 根据干细胞的发育潜能分为三类: 全能干细胞 (totipotent stem cell, TSC)、 多能 干细胞 (pluripotent stem cell)和单能干细胞 (unipotent stem cell)。 干细胞是一种未 充分分化, 尚不成熟的细胞, 具有再生各种组织器官和人体的潜在功能, 医学 界称为"万用细胞"。
人类胚胎干细胞 (human embryonic stem cell, hESC)是当受精卵分裂发育成 囊胚时, 内细胞团 (inner cell mass)的细胞在体外培养而成、 能够无限增殖、 自我 更新且具有发育全能性的一种细胞。
人类胚胎干细胞的研究意义十分重大, 并且具有广阔的应用前景。 首先, 它带来了人类细胞移植治疗的一次重大革命。 由于人类胚胎干细胞能分化出成 体的所有组织和器官 (包括生殖细胞), 因而有望成为实施器官再生医学和现代生 物细胞疗法的重要细胞来源, 也将为目前大量疑难病症, 如神经退行性疾病、 癌症、 器官移植和损伤再生等的发病机理和治疗学提供研究途径。 例如, 用分 化得到的神经细胞治疗神经性疾病 (帕金森综合症、 亨廷顿舞蹈症、 阿兹海默症 等); 用分化得到的造血干细胞重建造血功能; 用分化得到的胰岛细胞治疗糖尿 病; 用分化得到的心肌细胞修复已坏死的心肌; 用分化得到的肝细胞治疗肝病, 近年来, 我国也非常重视并鼓励干细胞研究, 尤其是人胚胎干细胞研究。 例如, 2006年, 国务院公布的《国家中长期科学和技术发展规划纲要 (2006-2020 年)》 中就已经指出: 我国要"重点研究治疗性克隆技术, 干细胞体外建系和定向 诱导技术, 人体结构组织体外构建与规模化生产技术, 人体多细胞复杂结构组 织构建与缺损修复技术和生物制造技术",并进一步指出我国要"重点研究干细胞 增殖、 分化和调控, 生殖细胞发生、 成熟与受精, 胚胎发育的调控机制, 体细 胞去分化和动物克隆机理, 人体生殖功能的衰退与退行性病变的机制, 辅助生 殖与干细胞技术的安全和伦理等"。
然而, 由于细胞或者器官异体移植的供受体之间, 极易发生免疫排斥反应, 因此使得干细胞的临床应用受限。 为了解决免疫排斥的问题, 可根据现有技术 水平建立非常庞大的干细胞库, 但是建立这些干细胞库的难度相当大, 代价也 相当高; 并且, 即使可以建立庞大的干细胞库, 也不一定能满足所有患者的配 型。
20世纪时, 有科学家发现, 在不同种属或同种不同系别的个体间进行组织 移植时, 会出现排斥反应, 其本质是细胞表面的同种异型抗原诱导的一种免疫 应答。 这种代表个体特异性的同种异型抗原被称为"移植抗原"或"组织相容性抗 原", 其中能引起强而迅速排斥反应的抗原被称为"主要组织相容性抗原", 在人 体中称为人白细胞抗原(human leukocyte antigen, HLA)。
主要组织相容性抗原是一个复杂的抗原系统, 编码这一系统的基因位于同 一染色体片段上, 是一组紧密连锁的基因群, 称为"主要组织相容性复合 体" (major histocompatibility complex, MHC)。 同种异体组织移植时, 若供受体 移植抗原不同, 尤其是 MHC不匹配, 将会诱发受体产生明显的移植排斥反应。 MHC分为 I类和 II类分子, 其中 MHC I类分子分布于所有有核细胞, MHC II类分 子主要表达于 B细胞、 单核-巨噬细胞和树突状细胞等。 在人体中, MHC I类基因 编码的主要组织相容性抗原指的是 HLA I类分子。 若供受体的 I类分子不同, 会 诱发 CD8+的 T细胞增殖和分化成熟, 导致移植物的破坏, I类抗原的错配是导致 免疫效应阶段供体移植物成为被攻击的靶标的主要原因。 在人类器官移植中, I 类抗原主要影响供体移植物的长期存活效率。
由于 II类分子主要只表达于部分免疫细胞, 而 I类分子则分布于所有有核细 胞, 因此, 如果能够得到 HLA I类分子敲除或沉默的人多能干细胞, 将其分化为 非免疫细胞的细胞类型 (如胰腺或肝脏细胞等), 作为移植的供体来源, 将极大降 低异体移植的免疫排斥反应。 这将为供体移植物的来源提供一种崭新的途径, 并且能够在很大程度上改善移植物的长期存活率。
HLA生物合成或转运途径中可涉及很多种基因, 例如 β2-微球蛋白 ( 2-microglobulin, B2M)基因和 TAP1、 TAP2、 TAPBP、 NLRC5等基因。 B2M是 HLA I类分子的一个组成部分, 其与 I类分子在细胞表面的表达以及分子的稳定 性相关。 因此, 敲除 β2-微球蛋白可能会导致 HLA I类分子在免疫系统中功能的 丧失。 TAP1在装配 HLA I类分子过程中发挥重要作用。 当 TAP1缺失时, HLA I 类分子不能正确装配进而影响 HLA I类分子在细胞表面的表达。因此,敲除 TAP1 可能会导致 HLA I类分子在免疫系统中功能的丧失。
然而, 由于不同生物种类的多样性和机体的复杂性等因素, 至今仍没有在 人细胞中对这些 HLA相关基因(如 β2-微球蛋白基因或 TAP1)进行成功打靶和后 续研究的报道。
综上所述, 人干细胞具有分化的多潜能性, 是实施器官再生医学和现代生 物细胞疗法、 药物筛选等的重要细胞来源。 但由于细胞或者器官异体移植的供 受体之间极易发生免疫排斥反应, 由此使得人成体细胞或人干细胞的临床应用 受限。 因此, 本领域中迫切需要开发出一种具有低免疫原性的人细胞或人干细 胞系, 该细胞系可作为新型的、 能够降低或者避免免疫排斥反应的移植供体, 从而为移植治疗提供一种崭新的材料和方法, 且可用于候选药物的评估和筛选。 发明内容
本发明通过对人细胞进行基因工程学操作, 使得人细胞表面的 HLA表达下 调或者缺失, 这种方法得到的人细胞具有低免疫原性。
由此, 本发明的首要目的在于, 提供一种 HLA缺失或减少的、 具有低免疫 原性的修饰的人细胞及其制备方法, 优选所述细胞为人干细胞。 本发明的第二 个目的在于, 提供由本发明的修饰的人干细胞进一步制得的、 具有降低的移植 排斥性的移植用细胞及其制备方法。 本发明的第三个目的在于, 提供本发明修 饰的人干细胞以及移植用细胞在疾病治疗中的应用 (例如通过具有降低的免疫原 性的移植等)。
在本发明的第一方面中, 提供了一种修饰的人细胞, 与相应的野生型细胞相 比, 所述修饰的人细胞的细胞表面人类白细胞抗原 HLA蛋白或多肽缺失或表达下 调, 从而使得所述修饰的人细胞具有降低的免疫原性。
在一个优选例中, 所述 HLA蛋白或多肽为 HLA I类蛋白或多肽。 在另一个优选 例中, 所述 HLA蛋白或多肽为选自下组中的至少一种: HLA A型多肽、 HLA B型多 肽和 HLA C型多肽。 在另一个优选例中, 所述人细胞选自下组: 造血细胞、 神经细 胞、 血液细胞、 脂肪细胞、 间充质细胞、 肌肉细胞、 心脏细胞、 肝脏细胞、 胰腺细 胞、 皮肤细胞等。 在一些实施方式中, 所述人细胞是人干细胞, 优选人多能干细胞。 在一个优选 例中, 所述修饰的人干细胞基于选自下组的干细胞: 全能干细胞、 多能干细胞和单 能干细胞。
在另一个优选例中, 所述修饰的人干细胞通过对选自下组的干细胞系进行基因 工程化操作获得: 胚胎来源的胚胎干细胞, 例如已建立的胚胎干细胞系; 诱导多能 干细胞 (induced pluripotent stem cells, iPS); 生殖细胞起源的干细胞; 通过体细胞核 移植 (SCNT)所获得的干细胞。 优选已建立的干细胞系 (例如胚胎干细胞, 如 XI细胞 系)、 诱导多能干细胞。
在另一个优选例中,所述修饰的人干细胞基于选自下组的干细胞:造血干细胞、 神经干细胞、 周边血干细胞、 脂肪干细胞、 间充质干细胞、 肌肉干细胞、 心脏干细 胞等。
在另一个优选例中, 与相应的野生型干细胞相比, 所述修饰的干细胞的 HLA I 类多肽在细胞表面表达下调至少 30%, 优选下调至少 50%、 60%、 70%、 80%、 90%、 95%、 98%、 99%, 更优选不表达 HLA I类多肽。
在另一个优选例中, 与相应的野生型干细胞相比, 所述修饰的人干细胞的免疫 原性降低, 优选与移植相关的免疫原性降低。 在另一个优选例中, 所述免疫原性的 降低在统计学上具有显著差异 (P<0.05), 更优选具有极显著差异 (P<0.001)。
在本发明的一些实施方式中,所述修饰的人干细胞不具有发育成人类个体的能 力。
在另一个优选例中, 相对于相应的野生型干细胞, 所述修饰的干细胞具有降低 的免疫原性。 相对于相应的野生型干细胞, 所述降低可选自下组: (i)用所述修饰的 干细胞诱导的炎性应答水平降低; (ii)用所述修饰的干细胞诱导的细胞因子水平降 低; 和 /或 (iii)用所述修饰的干细胞诱导的外周血细胞增殖水平降低。
在另一个优选例中, (i)、 (ii)和 /或 (iii)中的所述水平基本上低于相应野生型干细 胞所致的水平, 是相应野生型干细胞所致的水平的 10%〜95%, 更优选 10%〜50%。 在另一个优选例中, (i)、 (ii)和 /或 (iii)中的所述水平比相应野生型干细胞所致的水平 降低 0.05〜 10倍, 更优选 1〜 10倍。
在另一个优选例中, 所述 (i)中的炎性应答水平是在开始注入所述修饰的干细胞 后约 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13或 14天测定的。 所述降低的炎性应 答水平包括炎性细胞数量的减少。 采用炎性细胞侵润分析法来定量所述炎性应答水 平。 在另一个优选例中,所述 (ii)中的细胞因子水平是在外周血与所述修饰的干细胞 共孵育后约 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13或 14天测定的。 所述细 胞因子水平的降低包括降低干扰素的量。 采用酶联免疫吸附斑点分析法相对于相应 的野生型干细胞定量所述细胞因子水平。
在另一个优选例中, 所述 (iii)中的外周血细胞增殖水平是在开始孵育所述修饰 的干细胞和外周血细胞后约 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13或 14天计算 的。 所述外周血细胞增殖水平包括采用免疫表型分析法定量的外周血单核细胞 (PMBC)增殖水平。
在另一些实施方式中, 所述修饰的人细胞中 HLA I类分子生物合成或转运途径 中的一种或多种基因表达下降。 在一个优选例中, 所述 HLA I类分子生物合成或转 运途径中的一种或多种基因发生全部或部分缺失。 在另一个优选例中, 所述修饰的 人细胞的内源性 HLA基因被破坏, 优选通过基因定点修饰将所述破坏引入所述修饰 的人细胞的基因组, 更优选所述破坏包括同源性破坏 HLA基因。
在另一些实施方式中,所述基因选自: B2M基因、 TAP1基因、 TAP2基因、 TAPBP 基因、 或 NLRC5基因, 优选 B2M基因。
在另一个优选例中, 所述 B2M基因、 TAP1基因、 TAP2基因、 TAPBP基因、 或 NLRC5基因全部或部分缺失。
在一个优选例中, 通过 TAP1— 7 双拷贝敲除或 TAP1 +/—单拷贝敲除实现所述 TAP1的缺失或表达下降。 在另一个优选例中, 所述 TAP1+/— (单拷贝敲除)使得所述 修饰的干细胞的 HLA I类蛋白或者多肽在细胞表面表达下调。 在另一个优选例中, 所述 TAP1— 7 (双拷贝敲除)使得所述修饰的干细胞的 HLA I类分子或者多肽在细胞表 面表达下调, 更优选不表达 HLA I类蛋白或者多肽。
在另一些实施方式中, 所述 B2M基因、 TAP1基因、 TAP2基因、 TAPBP基因、 或 NLRC5基因全部或部分缺失。 通过 B2M— 7 双拷贝敲除或 B2M+/—单拷贝敲除实现 所述 β2-微球蛋白的缺失或表达下降。在另一个优选例中,所述 Β2Μ+/— (单拷贝敲除) 使得所述修饰的干细胞的 HLA I类蛋白或者多肽在细胞表面表达下调至少 30%。在另 一个优选例中, 所述 Β2Μ—7— (双拷贝敲除)使得所述修饰的干细胞的 HLA I类分子蛋 白或者多肽在细胞表面表达下调至少 90%, 更优选不表达 HLA I类分子蛋白或者多 肽。
在本发明的第二方面中, 提供了一种制备本发明所述的修饰的人细胞的方法, 所述方法包括: Α)提供原料人细胞; Β)对所述原料人细胞进行修饰改造,以使其 HLA 生物合成或转运途径中的一种或多种基因表达下降; C)收集所述修饰的人细胞。 在一个优选例中, 步骤 A)中的原料人细胞选自下组: 全能干细胞、 多能干细胞 和单能干细胞。 在另一个优选例中, 所述人干细胞原料选自下组: 已建立并可公开 获得的人胚胎干细胞 (human embryonic stem cells , hESCs) ; 人诱导多能干细胞 (induced pluripotent stem cells, iPS); 生殖细胞起源的干细胞; 通过体细胞核移植 (SCNT)所获得的干细胞。 优选已建立的干细胞系 (例如胚胎干细胞, 如 XI细胞系)、 诱导多能干细胞。
在另一个优选例中,所述原料人干细胞选自下组:成体干细胞例如造血干细胞、 神经干细胞、 血液干细胞、 脂肪干细胞、 间充质干细胞、 肌肉干细胞、 心脏干细胞 等。
在另一个优选例中, 所述原料人细胞选自下组: 造血细胞、 神经细胞、 血液细 胞、 脂肪细胞、 间充质细胞、 肌肉细胞、 心脏细胞、 肝脏细胞、 胰腺细胞、 皮肤细 胞等体细胞。
在一个优选例中,步骤 BM吏得原料人细胞中 HLA生物合成或转运途径中的一种 或多种基因发生全部或部分基因缺失。在另一个优选例中, 所述基因选自: β2-微球 蛋白基因、 TAP 1基因、 TAP2基因、 TAPBP基因、 或 NLRC5基因, 优选 B2M基因。
在另一些实施方式中, 所述步骤 B)是使得所述原料人细胞中的 HLA I类分子组 分蛋白的 B2M基因缺失或使得该基因的表达下调。
在一个优选例中,所述步骤 BM吏得所述原料干细胞中 B2M基因发生全部或部分 基因缺失。 在另一个优选例中, 通过 B2M— 双拷贝敲除或 B2M+/—单拷贝敲除实现 所述 β2-微球蛋白的缺失或表达下降。在另一个优选例中,所述 Β2Μ+/— (单拷贝敲除) 使得所述修饰的干细胞的 HLA I类蛋白或者多肽在细胞表面表达下调至少 30%。在另 一个优选例中, 所述 Β2Μ—7— (双拷贝敲除)使得所述修饰的干细胞的 HLA I类分子蛋 白或者多肽在细胞表面表达下调至少 90%, 更优选不表达 HLA I类分子蛋白或者多 肽。
在另一个优选例中, 通过 TAP1— 双拷贝敲除或 ΤΑΡ1+/—单拷贝敲除实现所述 TAP1的缺失或表达下降。 在另一个优选例中, ΤΑΡ1+/— (单拷贝敲除)使得所述修饰 的干细胞的 HLA I类蛋白或者多肽在细胞表面表达下调。 在另一个优选例中, 所述 ΤΑΡΓ7— (双拷贝敲除)使得所述修饰的干细胞的 HLA I类分子蛋白或者多肽在细胞表 面表达下调, 更优选不表达 HAL I类蛋白或者多肽。
在另一个优选例中, 通过如下步骤进行所述 B): Bl) 构建打靶载体, 所打靶的目标为 HLA I类分子组分蛋白的 B2M基因;
B2) 用所述打靶载体转染所述人细胞,得到因 B2M基因被敲除而使得细胞表面 HLA I类分子表达缺失或下调的人细胞。
在另一个优选例中, 所述步骤 B)是通过基因定点修饰技术实现的。 在另一个优 选例中, 所述步骤 B)是通过 TALEN实现的。 在另一个优选例中, 所述步骤 B)是通过 TALEN法单拷贝或双拷贝敲除所述人细胞中的 HLA I类分子组分蛋白的 B2M基因。
在另一些实施方式中, 所述步骤 C)包括: 从步骤 B)中所得细胞中选择细胞表面 HLA I类分子表达缺失或下调的人细胞,从而获得细胞表面的 HLA I类分子缺失或表 达下调的修饰的人细胞。
在另一些实施方式中, 所述方法还任选包括: D)检验步骤 C)中所得修饰的人细 胞的免疫原性, 以确定所述修饰的人细胞与野生型细胞相比具有降低的免疫原性。
在一个优选例中, 所述方法包括: 收集包含靶多核苷酸的人细胞, 所述靶核酸 与 HLA I类分子生物合成或转运途径的一种和多种基因相关;将转录激活子样 (TAL) 效应子核酸酶导入所述人细胞以产生所述修饰的干细胞; 和分离所述修饰的干细 胞, 其中多种 TAL效应子重复序列与靶多核苷酸结合。
在本发明的第三方面中, 提供了一种具有降低的免疫原性的移植用细胞, 所述 移植用细胞是由本发明所述修饰的人细胞获得或诱导分化来的, 或是由采用本发明 所述方法制得的修饰的人细胞获得、 诱导分化、 或者转分化来的。
在一个优选例中, 与相应的野生型细胞相比, 所述移植用细胞与移植相关的免 疫原性降低。 在另一个优选例中, 所述免疫原性的降低在统计学上具有显著差异 (P<0.05), 更优选具有极显著差异 (P<0.001)。
在另一个优选例中, 所述分化的诱导是通过选自下组的方法进行的: 拟胚体形 成、 生长因子诱导的分化、 小分子化合物诱导的分化、 转录因子诱导的分化、 或其 他方法诱导的分化以及转分化。
在本发明的第四方面中, 提供了一种制备本发明所述移植用细胞的方法, 所述 方法包括: 诱导本发明所述修饰的人细胞分化为所需的移植用细胞; 或用采用本发 明所述方法制得的修饰的人细胞, 并诱导所得的修饰的人细胞分化为所需的移植用 细胞, 其中所述修饰的人细胞是修饰的人干细胞, 优选修饰的人多能干细胞。
在本发明的第五方面中, 提供了本发明所述修饰的人细胞、 通过本发明方法制 得的修饰的人细胞、 本发明的移植用细胞或通过本发明方法制得的移植用细胞在制 备用于疾病治疗的移植物或药物组合物中的用途。 在一个优选例中, 所述修饰的人干细胞为未分化或分化状态。 在另一个优选例 中, 所述移植物或药物组合物具有减弱的免疫排斥反应。
在另一个优选例中, 所述移植物或药物组合物用于治疗选自下组的疾病: 帕金 森氏病、 亨廷顿舞蹈症、 阿兹海默症、 肌肉萎缩性侧索硬化症、 脊髓性肌萎缩症 等神经退行性疾病, 以及脊髓损伤、 中风、 烧伤、 心脏病、 肝病、 糖尿病、 造血功 能缺陷、 癌症等的器官移植 (如胰腺移植、 肝细胞移植、 肾脏移植等)及损伤再生。
在本发明的其它方面中, 还提供了本发明的修饰的人细胞在器官再生、 修复、 疾病治疗等方面 (例如治疗细胞功能障碍或组织破坏)、对干细胞全能性的机理研究、 器官移植、 药物筛选、 基因治疗中的应用。
在一个实施方式中, 本发明提供了一种对患者进行干细胞治疗的方法, 所述方 法包括: (a)分离和收集人干细胞; (b)对所述人干细胞进行修饰改造, 以使其 HLA生 物合成或转运途径中的一种或多种基因表达下降; (c)收集所述修饰的人干细胞; (d) 将所述修饰的人干细胞移植入需要所述治疗的患者, 或诱导所述修饰的人干细胞分 化为所需的细胞类型后移植入需要所述治疗的患者。
在一个优选例中, 所述干细胞可为获自患者本身或他人的干细胞。 在另一优选 例中,所述基因选自 β2-微球蛋白基因、 TAP 1基因、 TAP2基因、 TAPBP基因、或 NLRC5 基因, 优选 B2M基因。
在另一个实施方式中, 提供了一种筛选候选药物或评估候选化合物生理功能或 毒性的方法, 所述方法包括步骤: 用所述候选药物或候选化合物处理本发明的修饰 的人细胞或由本发明的修饰的干细胞分化而得的所需细胞类型。 从另一角度而言, 在本发明中涉及一种修饰的细胞、 产生用于移植的修饰 的细胞的方法、 采用本发明细胞的治疗方法。 以下以修饰的干细胞为例, 但应 理解所述修饰的细胞可为其它类型的细胞, 例如上文所例举的各种细胞类型, 优选为人细胞。
在本发明中涉及一种修饰的干细胞, 与相应的野生型干细胞相比, 所述修 饰的干细胞包含的 HLA多肽的量减少, 且其中与相应的野生型干细胞相比, 所 述修饰的干细胞具有降低的免疫原性。
在本发明的一些实施方式中, 与相应的野生型干细胞相比, 所述修饰的干 细胞中 HLA生物合成或转运途径中的一种或多种基因表达下降。 在本发明的另 一些实施方式中, 所述一种或多种基因包括全部或部分基因缺失。 在本发明中进一步涉及一种产生用于移植的修饰的干细胞的方法, 所述方 法包括: 在培养基中培养修饰的干细胞, 与相应的野生型干细胞相比, 所述修 饰的干细胞的 HLA多肽减少, 其中与相应的野生型干细胞相比, 所述修饰的干 细胞具有降低的免疫原性。
在本发明的一些实施方式中, 所述的方法进一步包括: 收集包含靶多核苷 酸的干细胞, 所述靶核酸与 HLA生物合成或转运途径的一种和多种基因相关; 将转录激活子样 (TAL)效应因子核酸酶导入所述干细胞以产生所述修饰的干细 胞; 和分离所述修饰的干细胞, 其中多种 TAL效应因子重复序列与靶多核苷酸 口人口 。
在本发明的另一些实施方式中, 与相应的野生型干细胞相比, 采用本发明 方法制得的所述修饰的干细胞中 HLA生物合成或转运途径中的一种或多种基因 的表达降低。 在本发明的另一些实施方式中, 所述一种或多种基因包含全部或 部分基因缺失。
在本发明进一步涉及一种治疗方法, 所述方法包括给予对象治疗有效量的 修饰的干细胞,其中与相应的野生型干细胞相比,所述修饰的干细胞包含的 HLA 多肽的量减少, 且其中与相应的野生型干细胞相比, 所述修饰的干细胞具有降 低的免疫原性。
在本发明的一些实施方式中, 所述疾病是选自下组中的至少一种: 帕金森 氏病、 亨廷顿舞蹈症、 阿兹海默症、 肌肉萎缩性侧索硬化症、 脊髓性肌萎缩症 等神经退行性疾病, 以及脊髓损伤、 中风、 烧伤、 心脏病、 肝病、 糖尿病、 造 血功能缺陷癌症等的器官移植及损伤再生。 在本发明的另一些实施方式中, 所 述对象是人。
在本发明的另一些实施方式中, 与相应的野生型干细胞相比, 所述修饰的 干细胞中 HLA生物合成或转运途径中的一种或多种基因的表达降低。 在本发明 的另一些实施方式中, 所述一种或多种基因包含全部或部分基因缺失。
如本发明前述的修饰的干细胞或方法, 与相应的野生型干细胞相比, 所述 修饰的干细胞中累积的 HLA多肽的量减少。 在本发明的另一些实施方式中, 与 相应的野生型干细胞相比, 所述修饰的干细胞上包含的 HLA多肽的量减少。
在本发明的另一些实施方式中, 所述修饰的细胞的内源性 HLA基因被破坏。 在本发明的另一些实施方式中, 所述破坏是通过基因定点修饰导入所述修饰的 细胞的基因组, 或者所述破坏包括同源性破坏 HLA基因。 在本发明的另一些实 施方式中, 所述破坏阻碍了功能性 HLA RNA在所述修饰的细胞中的表达。 在本 发明的另一些实施方式中, 所述破坏使得 HLA基因的至少部分缺失。 在本发明 的另一些实施方式中, 所述 HLA多肽包含 HLA I型多肽。 在本发明的另一些实施 方式中, , 优选所述 HLA多肽包括 HLA A型多肽、 HLA B型多肽、 HLA C型多 肽中的至少一种, 更优选所述 HLA多肽包括 β2免疫球蛋白多肽。
在本发明的另一些实施方式中, 所述修饰的细胞的内源性 TAP1基因被破 坏。 在本发明的另一些实施方式中, 所述破坏是通过基因定点修饰导入所述修 饰的细胞的基因组, 或者所述破坏包括同源性破坏 TAP1基因。 在本发明的另一 些实施方式中, 所述破坏阻碍了功能性 TAP1 RNA在所述修饰的细胞中的表达。 在本发明的另一些实施方式中,所述破坏使得 TAP1基因的至少部分或全部缺失。
在本发明的另一些实施方式中, 本发明所述的修饰的干细胞或方法中所述 修饰的干细胞包括全能干细胞和 /或多能干细胞, 优选包括胚胎干细胞、 诱导的 多能干细胞, 更优选所述修饰的干细胞包括人胚胎干细胞。
在本发明的另一些实施方式中, 本发明所述的修饰的干细胞或方法中的免 疫原性降低包括: 与用相应的野生型干细胞诱导的炎性应答水平相比, 用所述 修饰的干细胞诱导炎性应答水平的降低, 优选用所述修饰的干细胞诱导的炎性 应答水平是用相应的野生型干细胞诱导的炎性应答水平的至少约 20%、 至少约 50%、或基本上少于用相应的野生型干细胞诱导的炎性应答水平, 优选与用相应 的野生型干细胞诱导的炎性应答水平相比, 用所述修饰的干细胞诱导的炎性应 答水平至少降低 0.5、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10或 20倍。 在本发明的另一 些实施方式中, 在开始注入所述修饰的干细胞后约 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13或 14天测定用所述修饰的干细胞诱导的炎性应答水平。 在本发 明的另一些实施方式中, 所述降低的炎性应答水平包括炎性细胞数量的减少。 在本发明的另一些实施方式中, 采用炎性细胞浸润分析法来定量所述炎性应答 水平。
在本发明的另一些实施方式中, 所述降低的免疫原性包括: 与相应的野生 型干细胞相比, 用所述修饰的干细胞诱导细胞因子水平的降低, 优选用所述修 饰的干细胞诱导的细胞因子水平是用相应的野生型干细胞诱导的细胞因子水平 的至少约 20%、 至少约 50%、 或者用所述修饰的干细胞诱导的细胞因子水平基本 上低于用相应的野生型干细胞诱导的细胞因子水平。 在本发明的另一些实施方 式中, 与用相应的野生型干细胞诱导的细胞因子水平相比, 用所述修饰的干细 胞诱导的细胞因子水平至少降低 0.5、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10或 20倍。 在本发明的另一些实施方式中, 在开始注入所述修饰的干细胞后约 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13或 14天测定用所述修饰的干细胞诱导的细胞因子 水平。 在本发明的另一些实施方式中, 所述细胞因子水平的降低包括降低干扰 素的量。 在本发明的另一些实施方式中, 采用酶联免疫吸附斑点分析法相对于 相应的野生型干细胞定量所述细胞因子水平。
在本发明的另一些实施方式中, 所述降低的免疫原性包括: 相对于相应的 野生型干细胞, 用所述修饰的干细胞诱导的外周血细胞增殖水平降低, 优选用 所述修饰的干细胞诱导的外周血细胞增殖水平是用相应的野生型干细胞诱导的 外周血细胞增殖水平的至少约 10%、 至少约 20%、 至少约 30%, 更优选用所述修 饰的干细胞诱导的外周血细胞增殖水平基本上低于用相应的野生型干细胞诱导 的外周血细胞增殖水平。 在本发明的另一些实施方式中, 与用相应的野生型干 细胞诱导的外周血细胞增殖水平相比, 用所述修饰的干细胞诱导的外周血细胞 增殖水平至少降低 1.2、 1.5、 2、 3、 4、 5、 6、 7、 8、 9、 10或 20倍。 在本发明的 另一些实施方式中, 在开始孵育所述修饰的干细胞和外周血细胞后约 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13或 14天计算所述水平。 在本发明的另一些实施 方式中, 所述外周血细胞增殖水平包括采用免疫表型分析法定量的外周血单核 细胞 (PMBC)增殖水平。 本发明的其它方面由于本文的公开内容, 对本领域的技术人员而言是显而 易见的。 并且, 本领域普通技术人员可对本文中所述的各种特征和方面进行有 效的组合, 这些组合仍然在本申请所要求保护的范围之内。 附图说明
下面结合附图对本发明作进一步说明:
图 1: 人工设计的人 S2M基因的 T ALEN识别的 DNA序列及位点示意图(以 SEQ ID NO: 4和 7中所示的靶序列为例)。
其中, NI对应于 A; HD对应于 C; NN对应于 G; NG对应于 T。
图 2 A: B2M打靶载体 T ALEN-L86禾口 TALEN-R 102的结构图示意图。
图 2B: TAP1打靶载体 TALEN-1L1和 TALEN-1R1的结构图示意图。
图 3 : 用人工设计的人 S2M基因的 TALEN在 293T细胞中的打靶效率。 图 4: 用人工设计的人 S2M基因的 TALEN建立的 S2M敲除的人多能干细胞系 测序比对。
图 5 : 用人工设计的人 S2M基因的 TALEN(L86&R102)在人多能干细胞中的 打靶效率。
图 6: 用蛋白质印迹法 (Western blot)检测 B2M蛋白和 HLA I类蛋白表达水平。 图 7A: 用 FACS检测正常人多能干细胞及敲除 S2M的人多能干细胞的 S2M和 HLA I类蛋白表达水平。
图 7B : 用 FACS检测正常人多能干细胞及敲除 TAR 的人多能干细胞的 HLA I 类蛋白表达水平。
图 8 : 将正常人多能干细胞及敲除 S2M的人多能干细胞注射入 Balb/c小鼠胫 骨前肌 2天后进行苏木精 -伊红染色。
图 9 : 正常人多能干细胞及敲除 S2M的人多能干细胞刺激人外周血细胞的酶 联免疫斑点分析 (ELISPOT assay)实验。
图 10 : 正常人多能干细胞及敲除 S2M的人多能干细胞刺激人外周血细胞增 殖实验。 具体实施方式
本发明的发明人通过长期而深入的研究, 利用特定的基因打靶技术克服了 人细胞 (尤其是干细胞)上基因打靶效率低的问题, 对人细胞上的 HLA I类分子蛋 白相关基因进行了修饰改造 (例如敲除人多能干细胞中编码 β2-微球蛋白的基因, 包括单拷贝敲除和双拷贝敲除), 使所得人细胞表面的 HLA I类分子表达下调或 者不表达, 这种方法得到的人细胞具有低免疫原性。 在此基础上, 本发明人完 成了本发明。 相关定义
除非另行定义, 文中所使用的所有科技术语与本发明所属技术领域的普通 技术人员所知晓的意义相同。 虽然任何与所记载内容相似或均等的方法及材料 皆可应用于本发明的实施或测试中, 优选的方法和材料如本文所描述。 为了本 发明的目的, 下述术语定义如下。
文中所用的术语"一"是指"一"或"多于一 "(即 "至少一")个 /种本文的语法对 象。 例如, "一个 /种元素"指一个 /种元素或多于一个 /种元素。 术语"大约 /约"是指总数、 水平、 值、 数目、 频率、 百分比、 尺寸、 大小、 数量、 重量或长度与参照总数、 水平、 值、 数目、 频率、 百分比、 尺寸、 大小、 数量、 重量或长度相比变化达 30%、 25%、 20%、 15%、 10%、 9%、 8%、 7%、 6%、 5%、 4%、 3%、 2%或 1%。
术语"大体上 "或"基本上 "是指几乎全部或完全, 例如, 95%、 96%、 97%、
98%、 99%或大于某给定的量。
"相当于"是指 具有与参照核苷酸序列的全部或者部分大体上相同或互补 的核苷酸序列的多核苷酸; 或者编码与多肽或者蛋白质中氨基酸序列完全相同 的氨基酸序列的多核苷酸; 或 (b)具有与参照多肽或者蛋白质大体相同的氨基酸 序列的肽或多肽。
"下降 "或者 "减少 "或者 "少于 "的量通常是 "统计意义上显著"或生理意义上 显著的量, 可包括本文所描述的量或水平下降约 1.1、 1.2、 1.3、 1.4、 1.5、 1.6 1.7、 1.8、 1.9、 2、 2.5, 3、 3.5, 4、 4.5 , 5、 6、 7、 8、 9、 10、 15、 20、 30、 40、 或 50, 或更多倍 (如 100、 500、 1000倍) (包括这些数值之间的所有的整数和小数点, 且大于 1, 如 1.5、 1.6、 1.7、 1.8等)。
在某些情况下, "下降 "或者 "减少 "包括修饰干细胞引发免疫原性应答的能 力。 在特定的实施方式中, 所述免疫原性应答与非修饰或不同修饰的干细胞相 比降低至少 10%、 至少 15%、 至少 20%、 至少 25%、 至少 30%、 至少 40%、 至少 50%、 至少 60%、 至少 70%、 至少 80%、 至少 90%、 至少 100%、 至少 150%、 至少 200%、 至少 300%、 至少 400%、 至少 500%或至少 1000%。 在某些实施方式中, 所述免疫原性应答降低约 50%〜200%。
术语" β2微球蛋白"或" β2微球多肽"是指 MHC I类基因的表达产物,例如天然 人 β2微球蛋白(可参见例如 Gene ID为 567的序列)、 与前述表达产物具有至少 65% (优选 75%、 80%、 85%、 90%、 95%、 96%、 97%、 98%或 99%)氨基酸序列相 同性且具有天然 β2微球蛋白功能活性的蛋白质或多肽。 蛋白质的"功能活性"是 与该蛋白质的生理功能相关的任何活性。 例如, 天然 β2微球蛋白的功能活性包 括: 与其它 MHC I类分子 (例如 α链)和 MHC I类分子 (例如聚类分化群 1(CD1))相关 的活性, 与同种异体免疫相关的活性, 且包括 MHC I类分子的转运。
术语"结合"是指一种分子识别或附着样品或组织中的特定第二种分子,但基 本上不能识别或附着该样品中其它非结构相关分子。
术语"编码序列"是指可用于编码某基因的多肽产物的任何核酸序列。 相反, 术语"非编码序列"是指不用于编码某基因的多肽产物的任何核酸序列。
术语"互补性 "及"互补"是指通过碱基配对原则相关的多核苷酸 (即核苷酸序 列)。 例如, 序列" A-G-T"与序列 "T-C-A"互补。 "互补 "可以是"部分的"互补, 其 中只有部分核酸的碱基根据碱基配对规则匹配。 或者, 可以是 "完全 "或"全部" 核酸互补。 核酸链之间的互补程度对核酸链之间杂交的效率及强度有着显著影 响。
靶基因的"缺失"可通过靶向基因的 DNA实现, 如采用领域内已知的多种基 因定点修饰技术 (如同源重组或者 ZFN技术等)。 这使得修饰的细胞产生或聚积比 未修饰或者不同修饰的细胞更少的特定蛋白质产物 (例如 β2微球蛋白)。
术语"核酸内切酶"是指能催化水解 (切割 )DNA或 RNA分子 (优选 DNA分子) 中核酸之间的键的任何野生型或变体酶。 核酸内切酶的例子包括但不限于: II 型限制性内切酶, 如 FokI、 Hhal、 HindllK Nod, BbvCK EcoRI、 Bgll和 Alwl。 本文中的核酸内切酶可为转录激活子样 (TAL)效应因子核酸内切酶 (TALEN)。
关于多核苷酸, 术语"外源性的"指的是非天然存在于野生型细胞或生物体 内, 而通常是通过分子生物学技术导入所述细胞或生物体内的多核苷酸序列。 外源多核苷酸的实例包括载体、 质粒和 /或编码所需蛋白质的人工核酸构建体。
关于多核苷酸,术语 "内源性"或"天然"是指可在指定的野生型细胞或者生物 体中发现的、 天然存在的多核苷酸序列。 此外, 从第一生物体中分离并通过分 子生物学技术转移到第二生物体中的特定多核苷酸序列, 相对于所述第二生物 体通常被认为是"外源性 "多核苷酸。在具体的实施方案中, 可通过分子生物学技 术将多核苷酸序列"导入"已含有此多核苷酸序列的微生物体中,例如以创建一个 或者多个此天然存在的多核苷酸序列的额外拷贝, 从而促进所编码蛋白质或多 肽的过表达。
如本文所用, 术语"功能"和"功能性的"以及相似的用词指生物的、酶的或治 疗性的功能。
术语"基因"表示在染色体上占据特定基因座的遗传单位, 它包含转录和 /或 翻译调控序列和 /或编码区和 /或非翻译序列 (即内含子, 5'和 3'的非翻译序列), 或 由选自上述的元件组成。
"同源性"是指相同氨基酸或者组成型保守取代的百分比。同源性也可通过序 列比对程序(如 GAP)来确定(可参见例如 Deveraux等., 1984, Nucleic Acids Research 12, 387-395 , 纳入本文作为参考)。 通过这种方法, 与本文所述的序列 具有类似的或基本上不同长度的序列可以通过缺口的插入进行比对, 这样的缺 口可以通过例如 GAP中所用比对算法来确定。
术语"宿主细胞"包括可作为或者已作为本发明任何重组载体或者分离得到 的多核苷酸的受体的单个细胞或者细胞培养物。 宿主细胞包括单个宿主细胞的 后代, 这些后代由于自然、 随机或者有意的突变和 /或变化, 可能并不与原始亲 本细胞完全相同 (形态或者总 DNA互补方面)。宿主细胞包括用本发明的重组载体 或者多聚核苷酸体内或者体外转染或者感染的细胞。 包含了本发明重组载体的 宿主细胞被称为重组宿主细胞。
术语"免疫原性"是指引起体内或体外免疫原性应答的能力。免疫原性应答可 由免疫原 (例如免疫原性多肽和 /或细胞, 如干细胞)引起。 可通过各种测定法来 检测和 /或定量特定免疫原的免疫原性。 所述测定法的例子包括酶联免疫测定法 (ELISA), 基于表面等离子共振技术 (SPR)的测定法、 PBMC免疫表型分析、 以及 炎性细胞浸润分析。术语"干细胞的免疫原性"是指干细胞引起体内或体外免疫应 答的能力。
术语"野生型"是指一种基因或基因产物,其具有该基因或基因产物从其天然 存在的来源中分离出来时的特征。野生型基因或基因产物 (如多肽)在群体中被观 察到的频率最高, 并由此被命名为"正常"或"野生型"的基因形式。
术语"分离出的"是指大体上或者从本质上不包含其天然状况中通常伴随的 组分。 例如, "分离的多核苷酸", 如本文所用, 是指从其天然存在状态中侧接的 序列中纯化出的多核苷酸, 例如, 已从 DNA片段通常邻接的序列中移除的 DNA 片段。 或者, "分离的肽"或"分离的多肽"和类似的, 如本文所用, 是指体外分离 和 /或纯化的肽或多肽分子, 这些分子从其天然的细胞环境中, 及从与细胞其它 组分的关联中分离和 /或纯化出来。 "分离的细胞" , 如本文所用, 是指将细胞 从其原始存在的环境 (例如生物体、 组织、 器官、 体液、 血液等)移出。
关于探针或抗体, 术语"标记的"是指通过偶联 (即物理连接)可检测物质和所 述探针或抗体来直接标记所述探针或抗体。
术语"基因座 "是染色体上 DNA序列 (例如基因)的特定物理定位。
本文所用的"多核苷酸"或者"核酸"代表 mRNA、 RNA、 cRNA、 rRNA、 cDNA 或 DNA。 该术语通常是指长度至少为 10个碱基的核苷酸多聚形式, 包括核糖核 苷酸或者脱氧核苷酸或者这两类核苷酸中任一类的修饰形式。 该术语也包含 DNA和 RNA的单链或者双链形式。 术语"多核苷酸变体 "和"变体"和类似术语是指显示与参照多核苷酸序列实 质性序列相同性的多核苷酸, 或在下文中被定义的严格条件下, 与参照序列杂 交的多核苷酸。 这些术语也包括与参照多核苷酸具有至少一个核苷酸插入、 缺 失或取代的区别的多核苷酸。 因此, 术语"多核苷酸变体 "和"变体"包括其中已有 一个或多个核苷酸的添加或缺失或被不同的核苷酸所替换的多核苷酸。 在这方 面, 本领域中很容易理解: 可对参照多核苷酸进行某些改变, 包括突变、 添加、 缺失和取代, 由此改变的多核苷酸保留参照多核苷酸的生物功能或活性, 或与 参照多核苷酸相比具有提高的活性 (即优化的)。 多核苷酸变体包括, 例如, 与本 文所述的参照多核苷酸序列具有至少 50% (至少 51%〜至少 99%,以及其间的所有 整数百分比, 例如, 90%、 95%或 98%)序列相同性的多核苷酸。 术语"多核苷酸 变体"和"变体"还包括编码这些酶的天然存在等位变体和直向同源物。
术语"严格条件"指某序列 (如探针、 变体)能与其靶序列杂交, 而不与其它序 列杂交的条件。 严格条件是序列依赖的, 在不同环境中不同。 较长的序列在较 高温度下特异性杂交。 在确定的离子强度和 pH条件下, 严格条件一般选择比特 定序列的解链温度 (TmM氏约 15 °C。 此 Tm是 (在确定的离子强度、 pH和核酸浓度 下)与靶序列互补的探针有 50%与该靶序列杂交达到平衡时的温度。 (由于在 Tm 时靶序列通常过量存在, 平衡时只有 50%的探针被占据)。 通常严格条件是盐浓 度低于约 1.0 M钠离子, 典型的是约 0.01〜1.0 M钠离子浓度 (或其它盐), pH 7.0〜 8.3 , 短探针 (10〜15个核苷酸)的温度至少约 30°C, 长探针 (50全核苷酸以上)的温 度至少约 60°C。 也可通过加入去稳定试剂如甲酰胺来实现严格条件。 对于选择 性和特异性杂交, 阳性信号通常应是背景的至少二倍, 优选背景杂交的 10倍。 示范性严格条件如下: 50%甲酰胺、 5xSSC和 1% SDS, 42°C培育, 或 5xSSC、 1% SDS, 65°C培育, 65 °C用 0.2xSSC和 0.1% SDS洗涤。对于 PCR,通常在温度约 36°C 作低严格性扩增, 虽然退火温度要根据引物长度在约 32〜48°C之间变化。 对于 高严格 PCR扩增, 通常温度为约 62°C, 虽然高严格退火温度范围为约 50°C至约 65 °C, 这取决于引物长度和特异性。 高和低严格性扩增的典型循环条件包括: 90〜95 °C变性 30〜120秒, 退火持续 30〜120秒, 约 72°C延伸 1〜2分钟。 低和高 严谨性扩增反应和方法和指南可参见例如: Innis等, (1990) PCR Protocols: A Guide to Methods and Applications(PCR方案: 方法和应用指南), 学术出版社 (Academic Press), 纽约。
术语"核酸酶 "包括核酸外切酶和核酸内切酶。 术语"多肽"、 "多肽片段"、 "肽"和"蛋白质"在此可以互换使用, 指的是氨基 酸残基的聚合物及其变体和合成类似物。 因此, 这些术语适用于天然存在的氨 基酸聚合物, 以及其中一个或多个氨基酸残基是人工合成的非天然存在的氨基 酸 (如相应的天然存在氨基酸的化学类似物)的氨基酸聚合物。
术语多肽"变体"指的是通过至少一个氨基酸残基的添加、缺失或取代而不同 于参照多肽序列的多肽。 在某些实施方式中, 多肽变体通过一个或多个保守或 非保守取代区别于参照多肽。 在某些实施方式中, 多肽变体包含保守取代, 就 该点而言, 本领域中很容易理解可将一些氨基酸改变为具有大致类似特性的另 一些氨基酸而不改变多肽的天然活性。 多肽变体也包括一个或多个氨基酸被添 加或缺失, 或被不同的氨基酸残基替代的多肽。
术语"参照序列"通常指的是用于与另一个序列比较的核酸编码序列或者氨 基酸序列。 参照序列包括本文描述的所有的多肽和多核苷酸序列, 包括用名称 描述的序列 (如, β2微球蛋白)以及序列表中描述的序列。
在此所用的术语"序列相同性"或者例如包括 "与 ......具有 50%序列相同性", 指得是通过窗口比对, 序列在逐个核苷酸基础或逐个氨基酸基础上是相同的。 因此, "序列相同性百分比 "可通过用比较窗口比较两条最佳匹配序列来计算,从 而确定在两条序列中存在相同核酸碱基 (如 A、 T、 C、 G、 I)或相同氨基酸残基 (如 丙氨酸、 脯氨酸、 丝氨酸、 苏氨酸、 甘氨酸、 缬氨酸、 亮氨酸、 异亮氨酸、 苯 丙氨酸、 酪氨酸、 色氨酸、 赖氨酸、 精氨酸、 组氨酸、 天门冬氨酸、 谷氨酸、 天冬酰胺、 谷氨酰胺、 半胱氨酸和甲硫氨酸)的位置的数目, 以得到匹配位置的 数目。 将匹配位置的数目除以在比较窗口中的位置的总数 (δΡ , 窗口大小), 将结 果乘以 100, 得到序列相同性百分数。包括与文本所述任何参照序列 (参见例如序 列表)具有至少约 50%、 55%、 60%、 65%、 70%、 75%、 80%、 85%、 90%、 95%、 97%、 98%、 99%或 100%序列相同性的核苷酸和多肽通常多肽变体保持参照多肽 的至少一种生物活性。
用于描述两个或两个以上的多核苷酸或多肽之间序列关系的术语包括 "参 照序列"、 "比较窗口"、 "序列相同性"、 "序列相同性的百分比"和"实质性相同"。 "参照序列"包含的核苷酸和氨基酸残基的长度至少为 12个, 但往往是 15至 18个, 并且通常至少 25个单体单元。 由于两种多核苷酸均可以包括: (1)这两种多核苷 酸之间相似的序列 (即只是全长多核苷酸序列的一部分),和 (2)这两种多核苷酸之 间有区别的序列, 两种 (或更多种)多核苷酸之间序列的比较通常是通过在"比较 窗口"内比较这两种多核苷酸的序列来进行, 从而识别和比较局部区域的序列相 似性。 "比较窗口"是指至少 6个连续的位置的概念性片段, 通常约 50至约 100个, 更通常约 100至约 150个连续的位置, 在这些位置中, 当序列和参照序列最佳匹 配之后, 该序列与具有相同数目连续位置的参照序列进行比较。 比较窗口与参 照序列 (其中不包括添加或缺失)相比, 可包括约 20%或更少的添加或缺失 缺 口), 作为两条序列的最佳序列比对。 最佳序列比对可以由计算机执行算法 (威斯 康星遗传软件包 7.0版 (Wisconsin Genetics Software Package Release 7.0)的 GAP、 BESTFIT、 FASTA nTFASTA, 遗传学计算机组, 575科学驱动麦迪逊, WI, 美 国(Genetics Computer Group, 575 Science Drive Madison, WI, USA))实现, 或通过 检测和任何这些选择的方法产生的最佳比对 (即在比较窗口得到最高同源百分比) 来确定。也可以参考 BLAST程序族,例如 Altschul等人, 1997年, ucl. Acids Res. 25 :3389公开的程序。 在 Altschul等人的 "分子生物学现行操作步骤 "("Current Protocols in Molecular Biology"), John Wiley & Sons Inc, 1994-1998, 第 15章的 19.3单元中, 对序列分析有详细的讨论。
术语"载体"是指其中可插入或克隆入多核苷酸的多核苷酸分子, 优选为
DNA分子, 所述分子从例如质粒、 噬菌体、 酵母或病毒中衍生的。 载体优选地 包含一个或多个独特的限制性内切酶位点, 并且可以在限定的宿主细胞 (包括靶 细胞或组织或祖细胞或其组织)中自主复制, 或者整合至宿主基因组使得克隆序 列可再生。 因此, 载体可以是自主复制的载体, 即作为染色体外实体存在的载 体, 这种复制独立于染色体复制, 例如, 线性或闭合环状质粒、 染色体外元件、 微型染色体或人工染色体。 该载体可以包含任何装置用于确保自我复制。 或者 当导入宿主细胞时, 该载体可以整合到基因组并随所整合的染色体一起复制。 这种载体可含有特定的序列, 允许重组发生在宿主染色体中的特定的、 所期望 的部位。 载体系统可以包括单个载体或质粒, 两个或更多的载体或质粒, 它们 共同包含待引入到宿主细胞基因组中的总 DNA, 或转座子。 通常, 载体的选择 将取决于载体与将引入该载体的宿主细胞之间的相容性。 在本情况下, 优选地, 载体优选在干细胞中能够行使功能, 如质粒。 该载体可以包括报告基因, 如绿 色荧光蛋白 (GFP) , 其既可以在融合到一个或多个编码多肽架构中, 也可以独立 表达。 该载体还可以包括选择标记物, 如抗生素抗性基因, 其可用于选择合适 的转化体。
术语"统计学显著的 "指的是结果并不是偶然发生的。统计学显著性可以通过 本领域任何已知的方法来确定。通常用 p值来衡量显著性,它表示零假设为真时, 所观察事件可能发生的频率或概率。 如果所得 p值小于显著性水平, 则推翻零假 设。 在单事件中, 显著性水平定义为 p值小于或等于 0.05。
术语" TALEN"是指包含转录激活子样 (TAL)效应因子结合区域和核酸内切 酶区域的蛋白质, 这两个区域的融合形成"单体 TALEN"。 某些单体 TALEN本身 具有功能,而其它则需要与另一单体 TALEN二聚化。当两个单体 TALEN相同时, 二聚化可产生同二聚化 TALEN, 而当两个单体 TALEN不同时, 二聚化可产生异 二聚化 TALEN。 例如当两个单体 TALEN的 RVD数不同和 /或当至少一种 RVD的 内容 (即氨基酸序列)不同时, 这两个单体 TALEN不同。术语" TAL效应因子 -DNA 修饰酶 "是指包含转录激活子样效应因子结合区域和 DNA修饰酶区域的蛋白质。
术语"样品"用于本文时具有其最广义的含义。包含多核苷酸、 肽、抗体等等 的样品可包括体液、 细胞制备物或细胞生长的培养基的可溶性部分、 基因组 DNA、 RNA或 cDNA、 细胞、 组织、 皮肤、 毛发等等。 样品的例子包括唾液、 血 清、 活检样品、 血液、 尿液和血浆。
术语"患者"、 "对象 "和"个体"可互换使用, 均是指待处理和 /或由其获得生 物样品的哺乳动物 (例如人)对象。
术语"治疗有效量"是指可有效获得所需治疗反应的本文所述组合物的量,例 如足以降低移植物免疫排斥或延长术后存活时间的量。 特定的安全有效量或治 疗有效量可因以下因素而改变: 待治疗的具体病状、 患者的身体状况、 待治疗 的哺乳动物或动物的类型、 治疗的持续时间、 同步治疗的性质 (如有)、 以及所用 的特定剂型和化合物及其衍生物的结构。
术语"治疗"是指将治疗剂应用于或给予患者、或将治疗剂应用于或给予分离 自患者的组织或细胞系, 所述患者患有疾病、 具有疾病症状或具有易患病的体 质, 从而达到治愈、 复原、 缓和、 缓解、 改变、 矫正、 改善、 改进或影响所述 疾病、疾病症状或易患病的体质。在本发明中, 所用的术语"治疗"包括预防性治 疗。例如,对未鉴别出疾病或紊乱症状或临床相关表现的患者的"治疗"是预防性 治疗, 而对鉴别出疾病或紊乱症状或临床相关表现的患者的临床、 治愈性或姑 息"治疗"通常不构成预防性治疗。
术语"分化诱导"是指用特定的方法诱导干细胞分化。常用的方法包括拟胚体 形成法、 生长因子诱导法、 小分子化合物诱导的分化、 转录因子诱导的分化、 或其他方法诱导的分化。 转录因子表达调控诱导法等。例如用 Activin A, Wnt 3a 等生长因子诱导人胚胎干细胞向胰腺细胞分化 (D'Amour, K.A., (2006). Nat Biotechnol 24, 1392- 1401.)等。 干细胞和多能干细胞
术语"干细胞 "(stem cells, SC)是一类具有自我复制能力(self-renewing)的多 潜能细胞, 在一定条件下, 它可以分化成多种功能细胞。 根据干细胞所处的发 育阶段分为胚胎干细胞 (embryonic stem cell, ES细胞)和成体干细胞 (somatic stem cell 根据干细胞的发育潜能分为三类: 全能干细胞 (totipotent stem cell, TSC)、 多能干细胞 (pluripotent stem cell)和单能干细胞 (unipotent stem cell)。
如本文所用, 术语"多能干细胞"(包括 pluripotent stem cell, PSC)和
Multipotent Stem Cell, MSC)是指具有分化出多种细胞组织的潜能的干细胞, 例 如胚胎干细胞或诱导多能干细胞 (iPS细胞); 也包括发育潜能受到一定的限制, 失去了发育成完整个体的能力的一类干细胞, 例如造血干细胞。
多能干细胞, 具有在适当条件下产生不同类型后代细胞的能力特征, 按照 本领域所接受的标准试验, 如在 8- 12周龄 SCID小鼠中形成畸胎瘤的能力或在组 织培养中形成所有三种胚层的能力可鉴定此细胞。
可利用自愿捐献的生殖细胞、体外受精 (例如体外受精时多余的配子或囊胚)、 体细胞核移植 (例如通过体细胞核移植技术所获得的囊胚和单性分裂囊胚)或细胞 重编程获得多能干细胞。 或者, 可从成体骨髓和各种组织器官获得多能干细胞。
可用于制备本发明低免疫原性多能干细胞的多能干细胞原料可包括但不限 于: 已建立的胚胎干细胞、 生殖细胞起源的干细胞、 通过体细胞核移植 (SCNT) 所获得的干细胞、 诱导多能干细胞 (induced pluripotent stem cells , iPS) , 优选已 建立的胚胎干细胞 (如 XI细胞系等)、 诱导多能干细胞。
本文所用的"胚胎干细胞" (ESC), 是当受精卵分裂发育成囊胚时, 内细胞团 (inner cell mass)的细胞在体外培养而成、 能够无限增殖、 自我更新且具有发育全 能性的一种细胞。 所述细胞不具备发育成完整个体的潜能, 只能分化成人体其它 成体细胞类型, 从该角度而言, 其本质上与其它类型的成体干细胞无异, 仅仅是比 其它成体干细胞具有更多的潜能而已。
除非另有明确要求, 该术语包括原代组织和建立的具有 ES细胞表型特征的 细胞系和此类细胞系的后代, 该后代仍能产生具有 3个胚层各自表型性状的后代 细胞。 优选人 ES细胞 (hESC)。 Thomson等. (Science 282: 1 145, 1998; 美国专利 6,200,806)描述了原型"人胚胎干细胞 "(hES细胞), 包括其中所述建立的细胞系。 也可采用 Thomson等(美国专利 5,483,780, Science 282: 1 145, 1998; Curr.Top.Dev.Biol.38: 133 , 1998)和 Reubinoff等 (Nature Biotech. 18:399 , 2000)所 述的技术从人胚泡制备人胚胎干 (hES)细胞。
关于组织培养和胚胎干细胞, 可参考例如: "畸胎瘤和胚胎干细胞: 实施方 法 (Teratocarcinomas and embryonic stem cells: A practical approach)"(E丄 Robertson编, LPL Press Ltd, 1987); "小鼠开发技术指南 (Guide to Techniques in Mouse Development),,(P.M.Wasserman等编, Academic Press, 1993); "胚 胎 干 细 胞 的 体 外 分 化 (Embryonic Stem Cell Differentiation in Vitro)"(M.V. Wiles, Meth.Engymol.225 :900, 1993); "胚胎干细胞的特性和应用: 在人类生物和基因治疗中的应用前景(Properties and uses of Embryonic Stem Cells:Prospects for Application to Humcn. Biology and Gene Therapy)"(P.D.Rathjen 等, Repord.Fortil.Dev.10:31, 1998)。 本发明的修饰的细胞及其制备
如本文所用, 术语"修饰"或"修饰的 "是指通过遗传工程操作, 使得原料细胞 细胞表面的 HLA I类分子蛋白或多肽缺失或表达下调, 从而降低所得细胞的免疫 原性 /排斥性。 所述修饰可使得人细胞中 HLA I类分子生物合成或转运途径中的 一种或多种基因 (例如 B2M基因)表达缺失或下降, 例如使所述基因发生全部或部 分基因缺失。
如本文所用, 术语"本发明的人细胞"、 "修饰的人细胞"、 "具有低免疫原性 的人细胞"、 "HLA减少的人细胞 "等可互换使用, 均是指通过本发明的基因工程 方法操作使得人细胞中的 HLA生物合成或转运途径中的一种或多种基因表达下 降 (例如使得 B2M基因缺失或表达下调, 如利用 TALEN方法双拷贝或单拷贝敲除 B2M), 从而产生的免疫原性低于正常人细胞的一类新型细胞。
在某些方面, 可通过如下方式使得靶基因称为"非功能性":通过在核苷酸水 平的改变或突变改变所编码多肽的氨基酸序列以表达修饰的多肽, 所述修饰多 肽就其活性而言功能降低或活性降低 (例如引入 HLA I类分子的转运), 无论是通 过修饰多肽的活性位点、 其细胞内定位、 其稳定性, 或对于本领域技术人员显 而易见的其它功能特性。 对此涉及 HLA表达的多肽编码序列的的这类修饰可以 通过本领域中已知的技术实现, 如对给定细胞进行基因组水平的定向诱变和 /或 天然选择 (即定向进化)。
制备本发明的修饰的人细胞的方法, 可包括如下主要步骤:
A) 提供原料人细胞, 优选人干细胞, 更优选人多能干细胞;
B)对所述原料人细胞进行修饰, 以使其 HLA I类分子生物合成或转运途径中的 一种或多种基因表达下降;
C)收集所述修饰的人细胞。
在本发明的一些实施方式中, 所述方法包括:
Α')提供人细胞, 优选人干细胞, 更优选人多能干细胞, 更优选人胚胎干细胞; Β')敲除所述人多能干细胞中的人类白细胞抗原 (human leukocyte antigen, HLA) 蛋白或多肽的组份蛋白的 B2M基因或使得该基因的表达下调;
C')从步骤 Β')经基因工程化操作的细胞中选择细胞表面 HLA I类分子表达缺失 或下调的多能干细胞系, 从而获得所述人多能干细胞。
在本发明的一些实施方式中, 可采用包含如下主要步骤的方法:
Α") 提供原料人细胞, 优选人干细胞, 更优选人多能干细胞;
Β") 构建打靶载体, 所打靶的目标为 HLA I类分子组份蛋白的 Β2Μ基因;
C") 用所述打靶载体转染所述人多能干细胞, 通过对单细胞起始的克隆进 行传代培养,得到因 Β2Μ基因被敲除而使得细胞表面 HLA I类分子表达缺失或下 调的人多能干细胞系;
D") 任选地, 检验步骤 C")中所得多能干细胞的免疫原性, 以确定所述多能 干细胞与正常多能干细胞相比具有降低的免疫原性。
根据本发明所述的方法, 所述步骤 B")中的打靶载体可为 TALEN打靶载体。 可根据如下原则初步选择 TALEN识别序列:(1)第 0位碱基为 T(识别序列第一位之 前的碱基为第 0位); (2)最后一位碱基为 Τ; (3)识别序列长度在 13-19之间; (4)二 个识别序列之间的间隔序列 (Spacer)长度控制在 13-21之间(12也可, 但效率可能 较低)。 可用于本发明的 TALEN靶序列包括但不限于: SEQ ID NOs: 4-17中所示 的序列。 可将构建的 TALEN的靶点识别模块克隆入表达载体, 优选真核表达载 体, 例如但不限于: pCDNA3.0。
近年发展很快的序列特异性核酸酶可以用于精确的基因组靶向修饰。 一般 的序列特异性核酸酶由一个 DNA识别结构域和一个非特异性核酸内切酶结构域 构成。 其作用原理是: 首先由 DNA识别域把核酸酶定位到需要编辑的基因组区 域; 然后由非特异性核酸内切酶切断双链 DNA , 从而造成 DNA双链断裂 (double-strand break, DSB); 由此引入的 DSB可激活 DNA自我修复, 从而可以引 起基因的突变和促进该位点 DNA同源重组。
转录激活子样效应因子核酸酶 (Transcription Activator-Like Effector Nucleases, TALEN)是近期发展很快的一种序列特异性核酸酶, 其作用原理是: 由特异性识别 DNA的串联 "蛋白模块"识别靶 DNA序列, 并把与之融合表达的非 特异性 DNA切割蛋白 Fokl的两个单聚体定位到一起; DNA切割蛋白形成双聚体 时, 可以切断该位置的双链 DNA, 从而造成 DSB。
Rudolf Jaenisch小组验证了 TALEN在人胚胎干细胞和人 iPS细胞中的打靶效 果 (Rudolf Jaenisch等, Genetic Engineering of Human Pluripotent Cells Using TALE Nucleases ("采用 TALE核酸酶对人多能干细胞进行的基因工程化操作 "); ature Biotechnology, 第 29卷, 第 8期: 731-734, 2011年 8月)。 他们通过比较在五个位 点利用 TALEN的打靶效果和之前在相同位置利用锌指核酸酶(zinc-fmger nucleases , ZFN)的打靶效果, 得出五组 TALEN在打靶效率和精确度上都与从 Sangamo Biosciences公司购买的 ZFN相似, 进一步验证了 TALEN是非常好的基 因组编辑工具。
然而, 尽管 TALEN技术是很好的基因修饰工具, 并且在不断改进和成熟中, 但并非根据原理设计的每一对 TALENs都有基因修饰活性, 也需要通过尝试众多 不同的 TALENs组合, 才能找到有活性的 TALENs。 在本发明中, 发明人从众多 Talens中筛选出了具有活性的 TALENs , 并优选其中效率最高的 TALENs进行了 后续实验。
根据本发明所述的方法, 所述步骤 C')的传代培养是将多能干细胞克隆按 1 : 1〜20, 优选 1 :4〜10, 更优选 1 :6〜8的比例传代至辐照过的小鼠胚胎成纤维细 胞上。
根据本发明所述的方法, 所述步骤 C")中细胞表面 HLA I类分子表达缺失或 下调可采用选自下组的一种或多种方法和 /或指标检测, 当然本领域普通技术人 员也可采用本领域中已知的其它方法或结合选自下组的方法对此进行检测:
1)测序检验 β2-微球蛋白基因缺失;
2)用蛋白质印迹法检测 β2-微球蛋白蛋白在多能干细胞内表达缺失; 和
3)采用流式细胞技术检测 β2-微球蛋白、 HLA I类分子蛋白在人多能干细胞 表面表达缺失。
根据本发明所述的方法, 检验所得干细胞的免疫原性可采用本领域普通技 术人员已知的方法进行, 例如对上述细胞及普通干细胞引起的小鼠体内炎症反 应强度进行检测。 小鼠体内炎症反应强度检测可包括以下步骤:
1)将本发明的多能干细胞和普通人干细胞分别注射入 Balb/c小鼠肌肉内;
2)—段时间后取出注射过细胞的小鼠肌肉进行切片;
3)对上述切片进行 HE染色, 统计炎症细胞数量。
由此, 本发明中提供了一种主要组织相容性抗原缺失或下调的人干细胞及 其制备方法, 它具有低免疫原性。 移植用细胞及其制备
在获得了本发明的修饰的干细胞及其制备方法的基础上, 本发明中还进一 步提供了免疫原性降低的移植用细胞及其制备方法。
所述移植用细胞可直接为本发明的修饰的人细胞或可通过诱导本发明的修 饰的干细胞分化获得, 例如所述分化的诱导可为定向分化诱导。 分化诱导的方 法是本领域中熟知的, 例如可参考拟胚体形成、 生长因子诱导的分化、 小分子化 合物诱导的分化、 转录因子诱导的分化、 或其他方法诱导的分化。
本发明的移植用细胞可包括: 胰腺细胞、 肝脏细胞、 肾脏细胞、 心肌细胞、 皮肤细胞等细胞; 可用于例如: 胰腺移植、 肝细胞移植、 肾脏细胞移植、 心肌细 胞移植、 皮肤细胞移植等细胞移植。
与相应的野生型细胞相比, 所述移植用细胞与移植相关的免疫原性降低, 优选 所述免疫原性的降低在统计学上具有显著差异 (P<0.05), 更优选具有极显著差异 (P<0.001) o 本发明修饰的人细胞以及移植用细胞的应用
如前所述, 本发明的修饰的人细胞以及移植用细胞具有低免疫原性。 因此, 其可成为一种新型的、 具有低免疫排斥反应的移植供体的来源, 将为移植治疗 提供一种崭新的材料和方法。 本发明的修饰的细胞可用于组织器官再生、 修复、 和疾病治疗等方面 (例如治疗细胞功能障碍或组织破坏),对干细胞全能性的机理 研究以及器官移植、 药物筛选、 基因治疗等临床应用研究具有重要价值。
本发明的细胞可用于如下用途, 包括但不限于: 帕金森氏病、亨廷顿舞蹈症、 阿兹海默症、 肌肉萎缩性侧索硬化症、 脊髓性肌萎缩症等神经退行性疾病, 以及脊 髓损伤、 中风、 烧伤、 心脏病、 肝病、 糖尿病、 造血功能缺陷癌症等的器官移植及 损伤再生。
本发明细胞使用的通用原则可参见例如"细胞治疗: 干细胞移植、 基因治疗 禾口细胞免疫疗、法 (Cell Therapy: Stem Cell Transplantation , Gene Therapy and Cellular Immunotherapy)"G.Morstyn & W.Sheridan编, Cambridge University Press , 1996禾口"造血干细胞疗法 (Hematopoietic Stem Cell Therapy) "E.D. Ball , JLister & P丄 aw, Churchill Livingstone, 2000等。
可提供包含本发明干细胞或移植用细胞的试剂盒或组合物以用于进一步的 研究和应用。 例如, 本发明的组合物中可包含: (a)本发明的修饰的人细胞或移 植用细胞; (b)药学上或生理学上可接受的载体或培养基。 本发明的试剂盒中可 包含: (a')本发明的修饰的人细胞或移植用细胞; (b')药学上或生理学上可接受的 载体或培养基; (C)任选的一个或多个容器; (d')任选的一个或多个适于给予本发 明细胞的装置; ( 任选的使用说明书, 等等。 本发明的主要优点
本发明获得了如下的主要技术进步:
1. 克服了本领域中的技术难点,首次成功敲除了人细胞中的 β2-微球蛋白基 因;
2. 通过遗传工程学修饰改造获得了细胞表面 HLA表达下调或甚至不表达 的人细胞, 该细胞具有低免疫原性, 有望成为新型的可降低或避免免疫排斥反 应的移植供体, 为器官移植提供了新材料和方法。
由于本文的公开内容且基于本领域中的常识, 本领域的技术人员也可了解 到本发明的其它优点。 实施例
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 本领域技术人员可对本发明做出适当的 修改、 变动, 这些修改和变动都在本发明的范围之内。
以下实施例中所使用的技术, 包括 PCR扩增与检测、 细胞转染等分子生物 学技术以及细胞培养、 检测技术、 免疫学方法等, 除非特别说明, 均为本领域 内的技术人员已知的常规技术 (例如参考 《分子克隆实验指南》 (第三版, 纽约, 冷泉港实验室出版社, New York: Cold Spring Harbor Laboratory Press , 1989; 《蛋白质方法》(Protein Methods)(Bollag等, John Wiley & Sons 1996); 《免疫方 法手册》 (Immunology Methods Manual)(I. Lefkovits编, Academic Press , 1997) 和《细胞和组织培养:生物技术中的试验方法》 (Cell and Tissue Cluture: Laboratory Procedures in Biotechnology)(Doyle & Griffiths , John Wiley & Sons 1998))或按照 供应商所建议的条件); 所使用的仪器设备、 试剂和细胞系等, 除非是本说明书 特别注明, 均为一般本领域的研究和技术人员可以通过公共途径获得的。
除非另外说明, 否则百分比和份数按重量计算。 除非另行定义, 文中所使 用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。 此外, 任何与 所记载内容相似或均等的方法及材料皆可应用于本发明方法中。 文中所述的较 佳实施方法与材料仅作示范之用。
I. 实施例中所用的细胞及其来源
1. 人多能干细胞
本实验的起始原料为 "已建立的未分化人胚胎干 (hES)细胞系 "Xl (参见 Wu Z 等, Derivation and characterization of human embryonic stem cell lines from the Chinese population ("中国人群来源的人胚胎干细胞系的衍生和表征"), J Genet Gewom . 201 1年1月, 38(1): 13-20)。
本申请人已于 2013年 3月 12日, 将该人胚胎干 (hES)细胞系提交中国微生物 菌种保藏管理委员会普通微生物中心 (CGMCC , 中国北京)保藏, 其保藏号为 CGMCC7353。
并且, 本申请人承诺从申请日起 20年内向公众发放该生物材料, 前提为① 签订生物材料转移协议; ②仅限于合法的、 非商业目的使用。
2. 小鼠胚胎成纤维 细胞
MEF细胞可从众多商业公司购买, 例如本发明中的 MEF细胞购自 Millipore 公司。
II. 实施例中所用的培养基和细胞培养产品
1. 用于人多能干细胞的培养基
具体组成为: 79%的 D-MEM/F 12培养液(购自 Invitrogen , 10330); 20%的 Knockout SR (购自 Invitrogen, 10828); 1 mM L-谷氨酸 (购自 Invitrogen, 25030); 1%的非必需氨基酸(购自 Invitrogen , 1 1 140050); 0.1 mM的 β-巯基乙醇(购自 Sigma, M7522) ; 10 的 bFGF (购自 Invitrogen, 13256-029)。 2. 用于小鼠胚胎成纤维 (MEF)细胞的培养基
具体组成为: 89%的 D-MEM培养液 (购自 Invitrogen, 11965); 10%的胎牛血 清 (购自 HyClone, SH30396.03); 1 mM的 L-谷氨酸 (购自 Invitrogen, 25030); 1% 的非必需氨基酸 (购自 Invitrogen, 11140050)。
3. 实施例中所用细胞培养产品
以下实施例中, 通用的细胞培养产品均购自 Invitrogen公司。
III. 实施例中所用的抗体
HLA-ABC、 β2ηΐ: 购自 BD (用于细胞流式检测实验);
HLA-ABC、 β2ηΐ: 购自 Santa Cmz (用于 western检测实验) 实施例 1. TALEN靶序列的设计
1. 从 NCBI上下载人 β2-微球蛋白基因组序列 (Gene ID:567)及 TAP1基因组序 列 (Gene ID: 100507463)。
2. 设计引物, PCR扩增基因组上打靶位点片段并测序, 其中, PCR引物及 测序引物见表 1-1和表 1-2:
表 1-1
Figure imgf000028_0001
3. 设计 TALEN识别序列 (靶序列
根据测序得到的序列, 并依照以下原则确定 TALEN识别序列:
(1) 第 0位碱基为 T(识别序列第一位之前的碱基为第 0位);
(2) 最后一位碱基为 Τ;
(3) 识别序列长度在 13-19之间;
(4) 二个识别序列之间的间隔序列 (Spacer)长度控制在 13-21之间(12也可,但 效率可能较低);
设计得到的 B2M靶序列位置如图 1所示, B2M及 TAP 1基因靶序列的具体序 列分别见表 2- 1和表 2-2。
表 2- 1
Figure imgf000029_0001
将上表中的 TALEN靶序列的识别序列构建到载体上成为质粒, 用于后续实 图 2A和 2B中示例性地显示了本发明中所构建的 B2M载体 TALEN-L86和 TALEN-R102的结构图、 以及 TAP1载体 TALEN-1L1和 TALEN-1R1的结构图, 其 余载体可基于本领域常规方法和表 1中所示序列相应构建。 实施例 2. 用 TALENs质粒转染 293T细胞验证打靶效率
1. 将培养 293T细胞的 T25瓶中的培养基吸出, 用 PBS洗一遍, 加入 1 ml 0.25%的胰蛋白酶, 来回晃动, 使其均匀覆盖瓶底, 置于 37°C、 5% CO2培养箱中 5 miri。
2. 消化完成后, 使用 2 ml含 10% FBS的 DMEM培养液终止反应, 将细胞吹 打成单细胞后转移至离心管中, 计数。
3. 取 30万个细胞置于 24孔板的一个孔中, 每孔加入 0.5 ml新鲜的培养基。
4. 24h后进行转染。
5. 将构建好的 B2M的 TALEN质粒按表 3两两配对组合转染细胞, 共 16种组
Figure imgf000030_0001
Figure imgf000030_0002
根据下列方案混合质粒、 转染试剂和介质溶液:
TALEN 质粒 2.5
TALEN-R质粒 2.5
Lv-EF 1 a-EGFP-IRES-PURO
Fugene转染试齐 lj 15μ1
opti MEM介质溶液 300μ1
体系中各成分的比例:
TALEN-L: TALEN-R: Lv-EF 1 a-EGFP-IRES-PURO =5:5:2 总 DNA: opti MEM=2 g: 100 μΐ
总 DNA: Fugene=2 g: 5 μΐ
6. 转染后第二天, 将培养液换成含 1 g/ml嘌呤霉素的新鲜培养液, 置于 5% CO2培养箱中 37°C培养三天, 每天换同样的培养液。 7. 用 0.25%的胰蛋白酶消化上述药杀结束后的 293T细胞, 并将细胞悬液吸 入 15ml 离心管中, 13200 rpm/min离心 5min, 弃去上清液。
8. 用直接 PCR Kit(thermo货号: F-140)抽提基因组, 并 PCR扩增打靶区域 DNA片段。 引物为表 1中 SEQ ID NO: 1和 SEQ ID NO: 2。 PCR体系如下 (50 μΐ):
DNA: 2.5 μΐ
引物: 各 0.5 μ1
Phire II: 1 μΐ
2x缓冲液: 25 μΐ
ddH2O: 20.5 μΐ
PCR程序: 95。C 2min; 95 °C 5s, 60 °C 5s, 72 °C 20s, 35个循环; 72。C延 长 10 min。
9. 将上述基因组的 PCR片段加 A后连入 PMD18-T载体 (购自 TAKARA公司) 中, 将其连接产物转化至感受态细菌 (DH5a)中, 挑出单克隆并送测序。 根据测 序结果计算出每对 TALENs的打靶效率。
加 A体系为:
DNA: 10 μΐ
rTaq: 0.5μ1
10χ缓冲液: 1.5 μΐ
dNTP: 0.5 μΐ
ddddHH22OO:: 2.5 μΐ
结果显示, 16对 B2M的 TALENs中有 9对测出效率, 其余几对未检测到打靶 成功的克隆 (如图 3所示)。 该结果表明需要经过筛选验证才能得到有活性且高效 率的 TALENs。 实施例 3. TANLENs质粒转染人多能干细胞
1. 在 6孔板每个孔中加入 100 μΐ基质胶,来回晃动,使之铺满整个孔的底部, 铺好后置于 37 °C、 5% CO2培养箱中 30 min。
2. 将培养人多能干细胞细胞的 T25瓶中的培养基吸出, PBS洗一遍, 加入 4 ml IV型胶原酶, 来回晃动, 使其均匀覆盖瓶底, 置于 37 °C、 5% CO2培养箱中 30 min。
3. 消化完成后使用人多能干细胞培养液终止反应, 吹打成小块后转移至离 心管中, 1200 rpm离心 5 min。
4. 去除上清后, 使用该培养基重悬细胞, 取 50万个细胞置于已铺好基质胶 的 6孔板中, 加入 2 ml新鲜的培养基。
5. 24 h后进行转染。
6. 将测好效率的几对 B2M的 TALENs质粒按表 4两两配对组合转染细胞 (结 果如图 3所示), 共 9种组合。 将构建好的 TAP1的质粒按表 5两两配对组合转染细 胞。
表 4
Figure imgf000032_0001
根据下列方案混合质粒、 转染试剂和介质溶液:
TALEN-L质粒 2.5
TALEN-R质粒 2.5
Lv-EF 1 a-EGFP-IRES-PURO
Fugene 15μ1
opti MEM 300μ1
体系中各成分的比例如下:
TALEN-L: TALEN-R: Lv-EF 1 a-EGFP-IRES-PURO =5:5:2
总 DNA: opti MEM=2 g: 100 μΐ
总 DNA: Fugene=2 g: 5 μΐ
7. 转染后第二天, 即可在荧光显微镜下观察 EGFP荧光亮度以及转染效率。 若转染成功, 则将 6孔中的培养基吸除, 加入含1 8/1111嘌呤霉素的2 1111新鲜培养 基。
8. 置于 5% CO2培养箱中 37 °C培养三天,每天换 2ml 1 g/ml嘌呤霉素的新鲜 的培养基。
9. 第四天开始将培养液换为不含嘌呤霉素的培养基,置于 5% CO2培养箱中 37 °C培养至细胞量足够传代培养之用。 实施例 4. 细胞打靶鉴定
1. 提前 2〜3天铺好 CF-1滋养层细胞于 6孔板中。
2. 向实例 3中药杀后的人多能干细胞中加入 2 ml中性蛋白酶, 来回晃匀。 37 °C放置 30min, 用枪吹打使所有细胞都被消化下来。将上述悬液吸入 15 ml离心管 中, 计数。
3. 将 CF-1滋养层细胞中的培养基换成人多能干细胞培养基, 按照 5000个细 胞 /孔的密度, 将步骤 2中消化并完成计数的人多能干细胞, 种入 CF-1滋养层细胞 之上。
4. 置于 5% CO2培养箱中 37 °C培养 14天左右, 挑出单个细胞克隆于孔板中 单独培养。
5. 单细胞克隆培养约 7天左右, 消化细胞, 用直接 PCR试剂盒 (thermo货号:
F-140)抽提基因组, 并 PCR扩增打靶区域 DNA片段。 引物为表 1中 SEQ ID ΝΟ: 1 和 SEQ ID NO :2。 PCR体系如下所示 (50 μΐ):
DNA: 2.5 μΐ
引物: 各 0.5 μΐ
Phire II: 1 μΐ
2χ缓冲液: 25 μΐ
ddH2O: 20.5 μΐ
PCR程序: 95 °C 2 min; 95 °C 5 s, 60 °C 5 s, 72 °C 20 s, 35个循环; 72。C 延长 10 min
6. 鉴定打靶细胞的基因型。 将上述扩增后的打靶区域 PCR片段加碱基 A后, 连入 PMD 18-T载体中, 单克隆化 DNA片段, 送测序后得到 B2M基因打靶位点的 基因型 (如图 4), 并计算打靶效率 (如图 5)。
加 A体系为:
D A: 10 μΐ
rTaq: 0.5μ1
10x缓冲液: 1.5 μΐ dNTP: 0.5 μΐ
ddH2O: 2.5 μΐ
然后混匀, 置于 72 °C 20 min。
结果显示已得到了几株 B2M双拷贝敲除 (― 7— )和 B2M单拷贝敲除 (+/— )的人多能 干细胞系。该结果表明用 TANLENs技术对人的 B2M基因进行基因敲除是可行的, 且有着较高的效率。 实施例 5. B2M表达鉴定
1. 用蛋白质印迹法检测蛋白水平表达
1) 用冰冷的 PBS洗涤细胞 3次, 加细胞裂解液, 在冰上孵育 20 min。
2) 将细胞刮下, 4 °C, 12000 rpm/min离心 lO min后吸出上清液体。
3) 取 40 μ§细胞总蛋白与加样缓冲液混匀, 100 °C, 5 min热变性。
4) 于 15% SDS-PAGE胶中上样并电泳, 转移至 PVDF膜上。
5) 封闭液室温封闭 l h。
6) 将小鼠抗人 B2M的单克隆抗体以 1 : 1000稀释于抗体稀释液中, 并与 PVDF膜共孵育, 4 °C过夜。
7) TBST洗膜, 用辣根过氧化物酶标记的羊抗小鼠二抗 (1 :2000稀释), 室 温 1 h。
8) 洗膜后, ECL发光自显影, 洗片显带。
9) 同一张膜洗脱后, 用小鼠抗人 GAPDH单克隆抗体 (1 :800稀释)和辣根 过氧化物酶标记羊抗小鼠二抗 (1 :2000稀释)重新孵育, 发光自显影, 洗片显带作 为内参。
结果如图 6所示。
2. 流式细胞分析蛋白在细胞表面表达水平
1)将细胞接种于基质胶孵育过的 6孔板, 每孔 5x l05个细胞。
2)细胞贴壁后,对照组正常换液培养,实验组加 500 U/ml的 IFN-γ处理 24 h。
3)胰酶消化细胞, 1200 rpm/min 离心 5 min, 收集细胞置于 1.5 ml离心管 中。 用 4 °C预冷的 PBS洗两次。
4)用 50 μΐ PBS重新悬浮细胞, 力 P 10 μΐ抗人 B2M-PE流式抗体, 37 °C孵育 20 min。
5) 1200 rpm/min离心 5 min, 去上清, 并将细胞过细胞筛。 最后将细胞转 移至流式管中, 用 PBS将细胞悬液体积定至 500 L, 进行流式细胞仪分析, 结果 如图 7A所示。
所示结果显示: 在细胞内, 与野生型人多能干细胞相比, B2M+/—的人多能 干细胞 P2 蛋白的表达水平明显下降, B2M— 7—的人多能干细胞检测不到 P2 蛋白的 表达;在细胞表面,与野生型人多能干细胞相比, B2M+/—的人多能干细胞表达 P2 蛋白的水平有所下降, B2M—7—的人多能干细胞几乎不表达 P2 蛋白。 该结果表明, 我们正确地得到了 B2M+/—和 B2M— 7—的人多能干细胞系, 并且这些细胞表达 B2M 基因产物的水平下降或者不表达 B2M基因产物。 实施例 6. HLA I类蛋白表达水平鉴定
1. 用蛋白质印迹法检测蛋白表达水平
1) 用冰冷的 PBS洗涤细胞 3次, 加细胞裂解液, 在冰上孵育 20 min。
2) 将细胞刮下, 4 °C, 12000 rpm/min离心 lO min后吸出上清液体。
3) 取 40 μ§细胞总蛋白与加样缓冲液混匀, 100 °C, 5 min热变性。
4) 于 15% SDS-PAGE胶中上样并电泳, 转移至 PVDF膜上。
5) 封闭液室温封闭 1 h。
6) 将小鼠抗人 HLA I类分子的单克隆抗体以 1 : 1000稀释于抗体稀释液中, 并与 PVDF膜共孵育, 4 °C过夜。
7) TBST洗膜, 用辣根过氧化物酶标记的羊抗小鼠二抗 (1 :2000稀释), 室 温 l h。
8) 洗膜后, ECL发光自显影, 洗片显带。
9) 同一张膜洗脱后,用小鼠抗人 GAPDH单克隆抗体 (1 :800稀释)和辣根过 氧化物酶标记羊抗小鼠二抗 (1 :2000稀释)重新孵育, 发光自显影, 洗片显带作为 内参。
结果如图 6所示。
2. 采用流式细胞法分析蛋白质在细胞表面的表达水平
1) 将细胞接种于基质胶孵育过的 6孔板, 每孔 5x l05个细胞。
2) 细胞贴壁后, 对照组正常换液培养, 实验组加 500 U/ml的 IFN-γ处理 24 h。
3) 胰酶消化细胞, 1200 rpm/min 离心 5 min, 收集细胞置于 1.5 ml离心管 中。 4°C预冷的 PBS洗两次。 4) 用 50 μΐ PBS重新悬浮细胞, 力口 5 μι 抗人 HLA-A,B,C-PE-CY7 流式抗 体, 37°C孵育 20 min。
5) 1200 rpm/min离心 5min, 去上清, 并将细胞过细胞筛。 最后将细胞转 移至流式管中, 用 PBS将细胞悬液体积定至 500 μΐ, 进行流式细胞仪分析, 结果 如图 7Α所示。
所示结果显示, 在细胞内, 与野生型人多能干细胞相比, MHC I类分子 HLA I类分子在细胞内部的表达不受 Β2Μ基因敲除的影响; 在细胞表面, 与野生型人多 能干细胞相比, Β2Μ+/—的人多能干细胞表达 MHC I类分子 HLA I类分子蛋白的水平 有所下降, Β2Μ— 的人多能干细胞几乎不表达 MHC I类分子 HLA I类分子蛋白。 该 结果表明, 通过对 Β2Μ基因的敲除, 我们得到了细胞表面 MHC I类蛋白表达量下 调 (Β2Μ+/— )的人多能干细胞系和表达缺失 (Β2Μ— )的人多能干细胞系。
TAP1敲除的人多能干细胞的 HLA I类分子的表达也有降低 (如图 7Β)。 实施例 7. 细胞在体液免疫反应中的检测
1. 实验动物
SPF级雄性 Balb/c小鼠, 5〜6周龄, 购自斯莱克公司。
2. 细胞体内注射
给予 Balb/c小鼠一周的适应时间后, 将其分为 3组, 进行胫骨前肌肌肉注射。 每组分别注射: 1) 正常人多能干细胞, 体积 50 μ1, 细胞量 3x l06个; 2) B2M +/ 人多能干细胞, 体积 50 μΐ, 细胞量 3x l06个; 3) B2M— 7 人多能干细胞, 体积 50 μΐ, 细胞量 3x l06个。
3. 冰冻切片及苏木精 -伊红 (HE)染色
1) 注射 2天后, 取实验小鼠的胫骨前肌, 用 PBS洗两遍, 4%多聚甲醛在 4 °C固定过夜。
2) 用 20%蔗糖处理 2天。
3) 包埋剂包埋, -80 °C, 30 min。 制作 20 μηι冷冻切片。
4) HE染色步骤:
将冰冻切片用蒸熘水洗 2 min, 苏木精染色 lO min后, 流水冲去切片上残 余染液, 自来水冲洗 10 min左右。 用蒸熘水洗数秒, 95%酒精洗 30 s, 伊红染液 染 2 min。 再用 95%乙醇洗两遍, 每次 2 min。 最后用二甲苯洗 2次, 每次 5 min后 封片。 4. 炎症细胞数量统计结果如图 8所示。
所示结果显示, 与野生型的人多能干细胞相比, B2M+/—和 B2M— 7—的人多能 干细胞作为移植物所引起的受体小鼠炎症细胞侵润的反应显著减弱 (P<0.001)。 该结果表明, 我们得到的 B2M+/—和 B2M— 7—的人多能干细胞具有低的免疫原性。 实施例 8. 酶联免疫斑点分析 (Elispot assay)
1. PBMC的准备
1) 用 EDTA-2K抗凝真空采血管取自愿献血者外周血 5 ml, 用人外周血淋 巴细胞分离液分离人外周血单核细胞 (PBMC)。
2) 用 1640基础培养基离心(1500 rpm, lO min)洗涤两次。
3) 将洗涤好的 PBMC用血细胞计数平板计数, 用含 10% FBS的 1640培养基 将 PBMC的浓度调至 5x l06个细胞 /ml。
2. 抗原细胞的准备
1) 用浓度为 10 g/ml的丝裂霉素 C处理人多能干细胞及敲除 β2ηι的人多能 干细胞, 37 °(:放置2 11。
2) 用 PBS洗去残留的丝裂霉素 C。
3) 用 trypLE消化人多能干细胞及敲除 β2ηι的人多能干细胞, 37°C放置 10 min, 轻轻用枪头吹散成单细胞, 离心去除 trypLE。
4) 用含 10% FBS的 1640培养基离心(1200 rpm, 4 min)洗涤一遍。
5) 用血细胞计数平板进行细胞计数, 用含 10% FBS的 1640培养基将 PBMC 的浓度调至 5x l06个细胞 /亳升。
3. Elispot板的准备
1) 用无菌 PBS稀释包被抗体人 IFN-y(mabtech kit货号: 3420-2H)浓度至 15 ug/ml o
2) 用 15 μΐ 35%乙醇处理 PVDF板 (Millipore 货号: MSIPS4510)不超过 1 min。
3) 用无菌水洗涤 5次, 200 μ1/孔 /次。
4) 力 Ρ ΙΟΟ μΙ/孔稀释后的包被抗体溶液, 4 °C过夜。
4. 在 Elispot板中共孵育 PBMC和抗原细胞
1) 去除 Elispot板中的包被抗体溶液, 用无菌 PBS洗涤 5次, 200 μΐ/孔 /次。
2) 加 10% FBS的 1640培养基 200 μΐ/孔, 室温孵育至少 30 min。 3) 去除 10% FBS的 1640培养基,在阴性对照孔中加入 100 μΐ步骤 1中准备好 的 PBMC和 100 μΐ 10% FBS的 1640培养基; 阳性对照孔中加入 100 μΐ步骤 1中准备 好的 PBMC、 100 μΐ 10% FBS的 1640培养基和终浓度为 10 g/ml植物凝集素 (PHA); 实验组中加入 100 μΐ步骤 1中准备好的 PBMC和 100 μΐ步骤 2中准备好的对 应的人多能干细胞或者敲除 β2ηι的人多能干细胞。
4) 用锡箔纸将加好样品的 Elispot板, 放置在 37 °(:含5%(:02的细胞培养箱 中静止共孵育 24 h(共孵育过程中禁止移动 Elispot板)。
5. 检测斑点
1) 去除板中的细胞, 用 PBS洗涤 5次, 200 μ1/孔 /次。
2) 用含 0.5%FBS的 PBS稀释检测抗体 (-生物素)至 1 g/ml, 每孔加 ΙΟΟ μΙ, 室温孵育 2 h。
3) 去除板中的检测抗体溶液, 用 PBS洗涤 5次, 200 μ1/孔 /次。
4) 用含 0.5% FBS的 PBS按 1 :300比例稀释链酶亲和素 -HRP, 每孔加 ΙΟΟ μΙ, 室温孵育 l h。
5) 去除板中的链酶亲和素 -HRP溶液, 用 PBS洗涤 5次, 200 μΐ/孔 /次。
6) 加 100 μΐ/孔 ΤΜΒ底物溶液, 避光室温孵育至清晰斑点出现 (通常情况下 20〜60 min)。
7) 通过用大量的 dd¾O反复洗涤来终止显色反应, 并吸干多余的水。
8) 晾干 Elispot板, 用 Elispot酶标仪读板、 计数。
9) 室温避光保存 Elispot板。
Elispot分析结果如图 9所示。
所示结果显示, 与野生型的人多能干细胞相比, B2M+/—和 B2M— 7—的人多能 干细胞刺激人外周血细胞的免疫反应程度减弱或显著减弱 ^〈(^(^和!^。^^, 该 结果表明我们得到的 B2M+/—和 B2M— 7—的人多能干细胞具有较低的免疫原性。 实施例 9. 刺激人外周血单核细胞 (PBMC)增殖实验
1. PBMC的准备
1) 用 EDTA-2K抗凝真空采血管取自愿献血者外周血 5 ml,用人外周血淋巴 细胞分离液分离人外周血单核细胞 (PBMC)。
2) 用 1640基础培养基离心(1500 rpm, lO min)洗涤两次。
3) 将洗涤好的 PBMC用血细胞计数平板计数, 用含 10% FBS的 1640培养基 将 PBMC的浓度调至 5x l06个细胞 /亳升。
2. 抗原细胞的准备
1) 用浓度为 10 g/ml的丝裂霉素 C处理人多能干细胞及敲除 β2ηι的人多能 干细胞, 37 °(:放置2 11。
2) 用 PBS洗去残留的丝裂霉素 C。
3) 用 trypLE消化人多能干细胞及敲除 β2ηι的人多能干细胞, 37 °C放置 10 min, 轻轻用枪头吹散成单细胞, 离心去除 trypLE。
4) 用含 10% FBS的 1640培养基离心(1200 rpm, 4 min)洗涤一遍。
5) 用血细胞计数平板计数, 用含 10% FBS的 1640培养基将 PBMC的浓度调 至 5x l06个细胞 /亳升。
3. 抗原细胞与 PBMC共孵育
1) 加入 100 μΐ步骤 1中准备好的 PBMC和 100 μΐ步骤 2中准备好的对应的人 多能干细胞或者敲除 β2ηι的人多能干细胞到 96孔板中, 共孵育 3〜4天。
2) 用血细胞计数平板计数, PBMC相对人多能干细胞较小、较圆、较光滑, 容易区分, 只计 PBMC形态的细胞数目。
刺激 PBMC增殖实验的结果如图 10。
所示结果显示, 与野生型的人多能干细胞相比, B2M+/—和 B2M— 7—的人多能 干细胞刺激人外周血细胞增殖的速度显著减弱 (P<0.05)。 该结果表明, 我们得到 的 B2M+/—和 B2M— 7—的人多能干细胞具有低免疫原性。
在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献 被单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申 请所附权利要求书所限定的范围。

Claims

权 利 要 求
1. 一种修饰的人细胞, 其特征在于, 与相应的野生型细胞相比, 所述修饰的人 细胞的细胞表面人类白细胞抗原 HLA蛋白或多肽缺失或表达下调, 从而使得所述修 饰的人细胞具有降低的免疫原性。
2. 如权利要求 1所述的修饰的人细胞, 其特征在于, 所述人细胞是人干细胞, 优选人多能干细胞。
3. 如权利要求 1所述的修饰的人细胞, 其特征在于, 所述修饰的人细胞中 HLA 生物合成或转运途径中的一种或多种基因缺失或表达下降。
4. 如权利要求 3所述的修饰的人细胞, 其特征在于, 所述基因选自: β2-微球蛋 白基因 B2M、 TAP1基因、 ΤΑΡ2基因、 ΤΑΡΒΡ基因、 或 NLRC5基因, 优选 β2-微球蛋 白基因 Β2Μ。
5. 如权利要求 4所述的修饰的人细胞, 其特征在于, 通过 Β2Μ— 7 双拷贝敲除或 Β2Μ+/—单拷贝敲除实现所述 β2-微球蛋白的缺失或表达下降。
6. 一种制备权利要求 1〜5中任一项所述的修饰的人细胞的方法, 所述方法包 括:
Α) 提供原料人细胞;
Β) 对所述原料人细胞进行修饰改造, 以使其 HLA生物合成或转运途径中的一 种或多种基因缺失或表达下降;
C) 收集所述修饰的人细胞。
7. 如权利要求 6所述的方法, 其特征在于, 所述步骤 Β)是使得所述原料人细胞 中的 HLA I类分子组分蛋白的 Β2Μ基因缺失或使得该基因的表达下调。
8. 如权利要求 6所述的方法, 其特征在于, 所述步骤 C)包括: 从步骤 Β)中所得 细胞中选择细胞表面 HLA I类分子表达缺失或下调的人细胞, 从而获得细胞表面的 HLA I类分子缺失或表达下调的修饰的人细胞。
9. 如权利要求 6〜8中任一项所述的方法, 其特征在于, 所述方法还任选包括: D) 检验步骤 C)中所得修饰的人细胞的免疫原性, 以确定所述修饰的人细胞与 野生型细胞相比具有降低的免疫原性。
10. 一种具有降低的免疫原性的移植用细胞,所述移植用细胞是由权利要求 1〜 5中任一项所述修饰的人细胞获得、 诱导分化或转分化来的, 或是由采用权利要求
6〜9中任一项所述方法制得的修饰的人细胞获得、 诱导分化或转分化来的。
11. 一种制备权利要求 10所述的移植用细胞的方法, 所述方法包括: 诱导权利 要求 1〜5中任一项所述修饰的人细胞分化为所需的移植用细胞; 或采用权利要求 6〜9中任一项所述方法制得的修饰的人细胞, 并诱导所得的修饰的人细胞分化为所 需的移植用细胞, 其中所述修饰的人细胞是修饰的人干细胞, 优选修饰的人多能干 细胞。
12. 权利要求 1〜5中任一项所述修饰的人细胞、 通过权利要求 6〜9中任一项所 述的方法制得的修饰的人细胞、 权利要求 10所述的移植用细胞或通过权利要求 11所 述的方法制得的移植用细胞在制备用于疾病治疗的移植物或药物组合物中的用途。
PCT/CN2014/073338 2013-03-14 2014-03-13 一种低免疫原性的人细胞及其制备方法 WO2014139443A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310082427.6 2013-03-14
CN201310082427.6A CN104046593A (zh) 2013-03-14 2013-03-14 一种低免疫原性的人细胞及其制备方法

Publications (1)

Publication Number Publication Date
WO2014139443A1 true WO2014139443A1 (zh) 2014-09-18

Family

ID=51499993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073338 WO2014139443A1 (zh) 2013-03-14 2014-03-13 一种低免疫原性的人细胞及其制备方法

Country Status (2)

Country Link
CN (1) CN104046593A (zh)
WO (1) WO2014139443A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3245286A4 (en) * 2015-01-17 2018-07-11 Zhejiang University Modified cells evoking reduced immunogenic responses
WO2020067993A1 (en) * 2018-09-26 2020-04-02 National University Of Singapore Engineered human mesenchymal stromal cells with low immunogenicity, methods and kits of generating the same
US10993419B2 (en) 2014-12-10 2021-05-04 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3805370A4 (en) * 2018-05-30 2022-04-27 Kangstem Biotech Co., Ltd. MESENCHYMATE STEM CELL DERIVED FROM HLA GENE DELETED HUMAN INDUCED PLURIPOTENT STEM CELL AND METHOD FOR PREPARING IT

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104611370A (zh) * 2015-01-16 2015-05-13 深圳市科晖瑞生物医药有限公司 一种剔除β2-微球蛋白基因片段的方法
CN106148405B (zh) * 2015-03-26 2019-07-12 中国科学院微生物研究所 一种优化型hla-i类转基因小鼠的构建方法
EP3294342A4 (en) * 2015-05-08 2018-11-07 President and Fellows of Harvard College Universal donor stem cells and related methods
CN105985985B (zh) * 2016-05-06 2019-12-31 苏州大学 Crispr技术编辑并用igf优化的异体间充质干细胞的制备方法及在治疗心梗中应用
KR20190017985A (ko) * 2016-06-14 2019-02-20 리전츠 오브 더 유니버스티 오브 미네소타 질환을 치료하기 위한 유전적으로 변형된 세포, 조직, 및 장기
AU2018239320A1 (en) * 2017-03-20 2019-11-07 Washington University Cells and methods of uses and making the same
US10391156B2 (en) * 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
CN110468094B (zh) * 2018-05-10 2021-04-13 澳门大学 角膜上皮细胞和角膜支架及其制备方法和应用
CN111424016A (zh) * 2019-01-09 2020-07-17 复旦大学 降低细胞免疫原性的诱导型多能干细胞系及建立方法
TW202115245A (zh) * 2019-06-27 2021-04-16 丹麥商諾佛 儂迪克股份有限公司 安全免疫隱形細胞
WO2022012531A1 (zh) * 2020-07-14 2022-01-20 苏州克睿基因生物科技有限公司 一种经修饰的免疫细胞的制备方法
CN113801881B (zh) * 2021-08-27 2024-02-20 浙江大学 超级增强子基因序列在促进人b2m基因表达中的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703508A (zh) * 2001-09-21 2005-11-30 中辻宪夫 定制多能干细胞及其应用
CN101678126A (zh) * 2007-02-20 2010-03-24 赛莱克蒂斯公司 切割来自β-2-微球蛋白基因之DNA靶序列的大范围核酸酶变体及其用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703508A (zh) * 2001-09-21 2005-11-30 中辻宪夫 定制多能干细胞及其应用
CN101678126A (zh) * 2007-02-20 2010-03-24 赛莱克蒂斯公司 切割来自β-2-微球蛋白基因之DNA靶序列的大范围核酸酶变体及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARYAM, M.M. ET AL.: "Specific Knockdown of Oct4 and Beta2-microglobulin Expression by RNA Interference in Human Embryonic Stem Cells and Embryonic Carcinoma Cells", STEM CELLS, vol. 22, no. 5, 1 September 2004 (2004-09-01), pages 659 - 668, XP008035005, DOI: doi:10.1634/stemcells.22-5-659 *
SHYAM, A.P. ET AL.: "Mesenchymal Stem Cells Protect Breast Cancer Cells through Regulatory T Cells: Role of Mesenchymal Stem Cell -Derived TGF-b", THE JOURNAL OF IMMUNOLOGY, vol. 184, no. 10, 9 April 2010 (2010-04-09), pages 5885 - 5894 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10993419B2 (en) 2014-12-10 2021-05-04 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
US11234418B2 (en) * 2014-12-10 2022-02-01 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3245286A4 (en) * 2015-01-17 2018-07-11 Zhejiang University Modified cells evoking reduced immunogenic responses
EP3805370A4 (en) * 2018-05-30 2022-04-27 Kangstem Biotech Co., Ltd. MESENCHYMATE STEM CELL DERIVED FROM HLA GENE DELETED HUMAN INDUCED PLURIPOTENT STEM CELL AND METHOD FOR PREPARING IT
WO2020067993A1 (en) * 2018-09-26 2020-04-02 National University Of Singapore Engineered human mesenchymal stromal cells with low immunogenicity, methods and kits of generating the same

Also Published As

Publication number Publication date
CN104046593A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2014139443A1 (zh) 一种低免疫原性的人细胞及其制备方法
US11202839B2 (en) RNA guided endonuclease targeting blood coagulation factor VIII intron 1 inversion gene and composition for treating hemophilia comprising same
US10260042B2 (en) Compositions and methods for diminishing an immune response
EP1437404A1 (en) Tailor-made multifunctional stem cells and utilization thereof
KR102184947B1 (ko) Hla g-변형된 세포 및 방법
CN103403150A (zh) 利用羊膜来源贴壁细胞治疗与免疫相关的疾病和紊乱
WO2018185709A1 (en) Compositions for reprogramming cells into dendritic cells or antigen presenting cells, methods and uses thereof
EP3119879A1 (en) A method for inducing human cholangiocyte differentiation
US20230053028A1 (en) Engineered cells for therapy
WO2018220623A1 (en) Compositions and methods for providing cell replacement therapy
CA2889232C (en) Mait-like cells and their preparation method
Song et al. Generation of individualized immunocompatible endothelial cells from HLA-I-matched human pluripotent stem cells
CN113195724A (zh) 低免疫原性的工程化人类间充质基质细胞,制备方法和试剂盒
WO2023069882A1 (en) Method for rejuvenating glial progenitor cells and rejuvenated glial progenitor cells per se
EP2483395A1 (en) A nuclear receptor and mutant thereof and the use of the same in the reprogramming of cells
KR101658135B1 (ko) 혈액 응고인자 ⅷ 유전자를 타겟으로 하는 엔도뉴클레아제 및 이의 용도
WO2012165740A1 (en) Composition for improving dedifferentiation of cells and method for producing inducted pluripotent stem cells using the same
CN114645021A (zh) 一种表达靶向cd47抑制因子的多能干细胞及其衍生物与应用
WO2024002279A1 (zh) 免疫兼容型人多能干细胞、其制备方法及应用
Zhu et al. Gene expression profiles of HLA-G1 overexpressed in hES cells
JP7308750B2 (ja) 耐性を誘導するための操作された細胞
CN114657132A (zh) 一种表达Siglec-15靶向抑制因子的多能干细胞及其衍生物与应用
JP2018011546A (ja) 骨格筋前駆細胞の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14764802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14764802

Country of ref document: EP

Kind code of ref document: A1