WO2014139095A1 - 一种频带资源的调度方法及装置 - Google Patents

一种频带资源的调度方法及装置 Download PDF

Info

Publication number
WO2014139095A1
WO2014139095A1 PCT/CN2013/072489 CN2013072489W WO2014139095A1 WO 2014139095 A1 WO2014139095 A1 WO 2014139095A1 CN 2013072489 W CN2013072489 W CN 2013072489W WO 2014139095 A1 WO2014139095 A1 WO 2014139095A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
subband
allocated
cqi
transport block
Prior art date
Application number
PCT/CN2013/072489
Other languages
English (en)
French (fr)
Inventor
黄建中
张优城
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/072489 priority Critical patent/WO2014139095A1/zh
Priority to EP13877439.3A priority patent/EP2958388B1/en
Priority to KR1020157028294A priority patent/KR20150128918A/ko
Priority to CN201380001710.XA priority patent/CN105264992B/zh
Publication of WO2014139095A1 publication Critical patent/WO2014139095A1/zh
Priority to US14/852,261 priority patent/US9801181B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method and an apparatus for scheduling a frequency band resource. Background of the invention
  • the bandwidth occupied by wireless network systems is increasing.
  • the bandwidth occupied by a CDMA (Code Division Multiple Access) system is: 1. 23 MHz
  • UMTS (Universal Mobile Telecommunications System) occupies a bandwidth of 5 MHz
  • LTE (Long Term Evolution) Long-term evolution) System bandwidth is more flexible, its bandwidth resources include: 1. 4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz bandwidth.
  • the current methods for reducing interference include: In the frequency selection process, the subband with the best or better channel quality is selected for scheduling. In the case of service dissatisfaction, by selecting the subband with better channel quality, the strong interference subband (ie, narrowband interference) can be avoided, thereby reducing interference. However, in the case of FullBuffer, all subbands are used for scheduling, and even in the above manner, narrowband interference cannot be reduced. Summary of the invention
  • the method for scheduling a frequency band resource includes:
  • the step of selecting a subband to be allocated to a user includes:
  • the acquiring, by the user terminal, the size of the new transport block that can be scheduled by the user terminal after the obtaining the selected subband includes :
  • the size of the new transport block that the user terminal can schedule is determined.
  • the calculating, by using the selected subband, the average value of the CQI of all subbands of the user terminal after the user terminal is allocated to the user terminal includes :
  • the average of the CQIs of all subbands of the user terminal (CQI 1 + CQI 2 + ⁇ + CQI mecanic) / the number of subbands, where CQL is the CQI value corresponding to the first subband allocated to the user terminal, and CQI 2 is the allocation
  • CQI value corresponding to the second sub-band of the user terminal 0105 is the CQI value corresponding to the n-th sub-band allocated to the user terminal, and ⁇ is the number of all sub-bands allocated to the user terminal.
  • the determining, by the user terminal, the size of the new transport block that can be scheduled by the user terminal includes:
  • a scheduling device for a frequency band comprising: a subband selection module, configured to select a subband to be allocated to a user terminal according to a transmission quality of each of the candidate subbands in the at least one candidate subband;
  • the subband selection module includes: a subband channel quality acquiring module, configured to acquire the at least one candidate subband reported by the user terminal Channel quality indication CQI;
  • a subband selection submodule configured to select, according to the CQI acquired by the subband channel quality acquisition module, a subband with the best channel quality among the at least one candidate subband as the subband to be allocated to the user terminal.
  • the resource scheduling processing module determines whether the transmission quality of the user terminal is decreased by more than the predetermined after the selected subband is allocated to the user terminal.
  • the processing part of the value includes:
  • a transport block size calculation module configured to calculate a new transport block size that can be scheduled by the user terminal after the subband selected by the subband selection module is allocated to the user terminal;
  • a determining module configured to determine, after determining that the allocated subband calculated by the transport block size calculation module, that the difference between the new transport block size that can be scheduled by the user terminal and the original transport block size exceeds a first predetermined value, or After obtaining the allocated subband, the new transmission block size scheduled by the user terminal is less than the second predetermined value, determining that the transmission quality of the user terminal decreases by more than the predetermined value; otherwise, determining that the transmission quality of the user terminal is reduced is not Exceeding the predetermined value.
  • the transport block size calculation module includes: a scheduling coding order calculation module, configured to calculate the subband selection The sub-band selected by the module is assigned to the average of the CQIs of all sub-bands of the user terminal after the user terminal; and the scheduling coding order MCS in the system is determined according to the average value of the CQIs of all sub-bands of the user terminal;
  • a transport block size calculation submodule configured to determine a new transport block size that the user terminal can schedule based on the MCS determined by the scheduling coding order calculation module and the number of subbands or radio bearers allocated to the user terminal.
  • the scheduling coding order calculation module calculates the subband selected by the subband selection module to be allocated to the user terminal
  • the average of the CQIs of all subbands of the latter user terminal is calculated as follows:
  • CQI value corresponding to the n subbands, and n is the number of all subbands allocated to the user terminal.
  • the manner in which the transport block size calculation submodule determines the size of the new transport block that the user terminal can schedule includes: according to the determined MCS, and the number of subbands or the number of radio bearers allocated to the user terminal, the predetermined MCS and the number of subbands Or in the correspondence between the number of radio bearers and the size of the transport block, the lookup determines the size of the new transport block that the user terminal can schedule.
  • FIG. 1 is a schematic diagram of an implementation process of a method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a subband according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of processing according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of subband selection in a specific implementation manner according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention. Mode for carrying out the invention
  • An embodiment of the present invention provides a method for scheduling a frequency band resource.
  • the specific implementation process is as shown in FIG. 1 and may include the following steps:
  • Step 11 Select a sub-band to be allocated to the user terminal according to the transmission quality of each of the candidate sub-bands in the at least one candidate sub-band;
  • the processing step of selecting the sub-band to be allocated to the user may specifically but not limited to include: Acquiring a CQI (Channel Quality Indicator) of the at least one candidate subband to be reported by the user equipment, and selecting, according to the CQI of the at least one candidate subband reported by the user equipment, in the at least one candidate subband The subband with the best channel quality is used as a subband to be allocated to the user terminal.
  • CQI Channel Quality Indicator
  • Step 12 it is determined whether the selected sub-band is allocated to the user terminal, whether the transmission quality of the user terminal is reduced by more than a predetermined value, and if so, step 13 is performed, otherwise, step 14 is performed;
  • the following manner may be, but is not limited to, determining whether the transmission quality of the user terminal is reduced by a predetermined value, that is,
  • the predetermined value may be a value greater than or equal to zero. For example, when the predetermined value is zero, step 13 is performed as long as the value of the reduced transmission quality is greater than zero.
  • whether the transmission quality of the user terminal is reduced by a predetermined value may include:
  • the corresponding first predetermined value may be a value greater than or equal to zero.
  • the transport block size scheduled by the user terminal after the obtained allocated subband is calculated is calculated. If the difference from the original transport block size is greater than zero, step 13 can be performed;
  • the corresponding second predetermined value may be determined based on network transmission quality requirements in the system or desired network transmission quality conditions provided by the user terminal.
  • Step 13 End the resource allocation process, and do not assign the selected subband to the user terminal.
  • step 13 it is possible to avoid assigning the interfered sub-band to the user terminal.
  • Step 14 Assign the selected subband to the user terminal.
  • the transmission quality of the user terminal is not lowered. If the amplitude exceeds a predetermined value, it is determined that the selected sub-band is not interfered, and the selected sub-band can be allocated to the user terminal.
  • the process of obtaining the transport block size scheduled by the user terminal after the selected sub-band is allocated to the user terminal described in step 12 may specifically include, but is not limited to, including:
  • the number of bands where CQI is the CQI value corresponding to the first sub-band allocated to the user terminal, CQI 2 is the CQI value corresponding to the second sub-band allocated to the user terminal, and CQI n is the n-th child assigned to the user terminal With the corresponding CQI value, r is the number of all subbands allocated to the user terminal.
  • the method includes: searching, according to the foregoing MCS, the number of subbands or the number of radio bearers allocated to the user equipment, in the correspondence between the number of the MCS and the number of subbands or the number of radio bearers and the size of the transport block, searching for the transport block size scheduled by the user equipment, that is, generally
  • the embodiment of the present invention provides a spectrum efficiency-based scheduling scheme, which may specifically select a sub-band according to a sub-band CQI reported by a user terminal.
  • the sub-bands are sequentially selected according to the channel quality from good to bad, for example, the sub-band with the best channel quality is preferentially selected. , then select the subband with the second best channel quality.
  • the transmission quality such as the transmission rate, etc.
  • the transmission quality such as the transmission rate, etc.
  • Distribution process This can selectively mask out the interfered subbands and only the undisturbed subbands to the user terminals.
  • the frequency band allocated to the user terminal (the number of subbands allocated to the user terminal) is smaller, since the allocated subband channel quality is better, the order of modulation coding can be improved, thereby improving the overall Spectral efficiency.
  • the LTE system is taken as an example to describe a specific implementation process of the spectrum efficiency-based scheduling solution provided by the embodiment of the present invention.
  • the implementation process may include:
  • Step 31 The base station divides the bandwidth in the frequency domain into multiple sub-bands.
  • the subband division may be performed according to the bandwidth of the system. For example, for a 20 MHz LTE system, if there are 100 RBs (Resource Blocks) in the frequency domain, the adjacent 4 RBs may be used as a subband. , then the LTE system has a total of 25 sub-bands.
  • the base station may notify all user terminals of the cell by corresponding configuration of the number of sub-bands by using a configuration message or a broadcast message, so as to facilitate The user terminal reports the CQI of all subbands.
  • Step 32 The base station receives all sub-band CQIs reported by the user terminal;
  • the user terminal can obtain the signal-to-noise ratio (SINR) of each sub-band through its own measurement, and quantize the obtained signal-to-noise ratio into a 4-bit CQI; for example, it can be quantized by referring to the chart shown in FIG. In FIG. 4, the value of each signal-to-noise ratio SINR corresponds to a CQI index (CQI index), and the corresponding CQI index is determined according to FIG. 4, and the value of a 4-bit CQI corresponding to the CQI index can be determined;
  • SINR signal-to-noise ratio
  • the user terminal may report to the base station periodically, or may report the data to the base station in real time, or may report to the base station at a specified time.
  • Step 33 The base station scheduler selects a subband allocated to the UE (ie, the user terminal) according to the CQI of all the subbands reported by the user terminal;
  • the specific manner of selecting the sub-bands is as shown in FIG. 5, and may include the following steps:
  • Step 331 Select the subband with the best channel quality from the unassigned subband as the subband to be allocated to the UE; and pass the selected subband (or RB) through the bitmap (bit map, ie, binary bit) Indicates whether the subband or RB is occupied) to be identified to avoid repeated allocation;
  • bitmap bit map, ie, binary bit
  • the base station can select the one subband with the highest CQI from the unassigned subband as the subband to be allocated to the UE;
  • Step 332 Add the selected subband to the original subband of the UE (that is, the subband allocated to the UE), and calculate an average value of CQIs of all subbands allocated to the UE;
  • Step 333 Select, by using the average value of the CQIs of all the subbands allocated to the UE, and the number of subbands (or the number of RBs) allocated to the UE, the TBS that is currently scheduled by the UE, where the TBS is carried by the resources allocated to the terminal. Number of bits;
  • the manner of selecting the TBS scheduled by the UE in this time may include:
  • MCS 2*CQI -4;
  • the TBS of the current scheduling of the UE is determined (the number of MCS combined sub-bands or RBs usually corresponds to a unique TBS, so According to the MCS, and the number of subbands or the number of RBs, the TBS of the UE scheduled this time can be determined.
  • Step 334 Compare the size of the TBS (referred to as the original TBS) that can be scheduled by the UE when the selected subband is allocated to the UE and the new TBS that can be scheduled by the UE, and if the selected subband is not allocated to the UE, if the new TBS is greater than The original TBS, that is, indicating that the transmission rate is increased, step 335 is performed, otherwise, indicating that the transmission rate is decreased, step 336 is performed;
  • the original TBS that is, indicating that the transmission rate is increased
  • step 335 is performed, otherwise, indicating that the transmission rate is decreased
  • step 336 is performed;
  • Step 335 the selected sub-band (ie, the sub-band to be allocated to the UE) is allocated to the UE;
  • Step 336 ending the sub-band-based resource scheduling allocation process, and not assigning the selected sub-band to the UE, so as not to reduce the transmission rate;
  • step 331 may be re-executed until there is no available unassigned subband or the UE does not need to be more If there are more spectrum resources, the resource allocation operation is stopped.
  • Step 34 The information about the spectrum resources (the number of RBs and the location) allocated to the UE is sent to the UE through the Bigmap in the control signaling.
  • the sub-bands can be selected according to the sub-band channel quality reported by the UE according to the sub-band channel quality, and each sub-band to be allocated to the UE is selected.
  • the rate of the UE is estimated to find the inflection point of the transmission efficiency from rising to falling, thereby effectively shielding some interference sub-bands in the system bandwidth and improving the spectrum efficiency.
  • the technical solution provided by the embodiment of the present invention can be applied to any wireless communication system, for example, not only in an LTE system, but also in wireless devices such as Wimax (Worldwide Interoperabiation for Microwave Access).
  • Wimax Worldwide Interoperabiation for Microwave Access
  • the storage medium is It is a disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the embodiment of the present invention further provides a scheduling device for a frequency band resource. As shown in FIG.
  • the method further includes: a subband selection module 61, configured to: according to at least one candidate to be selected when a subband resource needs to be allocated to a user terminal. The transmission quality of each candidate subband in the band selects a subband to be allocated to the user terminal;
  • the resource scheduling processing module 62 is configured to determine whether the sub-band selected by the sub-band selection module 61 is allocated to the user terminal, whether the transmission quality of the user terminal is reduced by more than a predetermined value, and if so, the selected The subband is assigned to the user terminal, otherwise the selected subband is assigned to the user terminal.
  • subband selection module 61 may specifically but not limited to include:
  • a sub-band channel quality obtaining module 611 configured to acquire a channel quality indicator CQI of the at least one candidate sub-band reported by the user equipment;
  • a sub-band selection sub-module 612 configured to select, according to the CQI acquired by the sub-band channel quality obtaining module 612, a sub-band with the best channel quality among the at least one candidate sub-band as the sub-to-user to be allocated to the user terminal. band.
  • whether the processing part that causes the transmission quality of the user terminal to decrease by more than the predetermined value may specifically pass the following transport block size calculation module 621 and The determining module 622 is implemented, and the specific implementation of the two modules may include:
  • a transport block size calculation module 621 configured to calculate a new transport block size that can be scheduled by the user terminal after the subband selected by the subband selection module 61 is allocated to the user terminal;
  • the determining module 622 is configured to: after determining that the determined allocation sub-band calculated by the transport block size calculation module 621 is calculated, the difference between the new transport block size that can be scheduled by the user terminal and the original transport block size exceeds a first predetermined value, or After calculating the obtained allocation subband, the transmission block size scheduled by the user terminal is less than the second predetermined value, determining that the transmission quality of the user terminal decreases by more than the predetermined value; otherwise, determining that the transmission quality of the user terminal is decreased is not Exceeding the predetermined value.
  • the implementation manner of the foregoing transport block size calculation module 621 may specifically include:
  • a scheduling coding order calculation module 6211 configured to calculate an average value of CQIs of all subbands of the user terminal after the subband selected by the subband selection module 61 is allocated to the user terminal; and according to all subbands of the user terminal
  • the average value of the CQI determines the scheduling coding order MCS in the system; wherein, the calculation of the average value of the CQIs of all subbands of the user terminal in the scheduling coding order calculation module 6211 can be, but is not limited to, including:
  • the average value of the CQI of the subband is 0 ⁇ 1 1 +031 2 + ⁇ + 01 thread) / the number of subbands, where 0 (31 1 is the first subband assigned to the user terminal)
  • the CQI value, CQI 2 is the CQI value corresponding to the second sub-band allocated to the user terminal
  • CQI hail is the CQI value corresponding to the n-th sub-band allocated to the user terminal
  • n is the number of all sub
  • a transport block size calculation sub-module 6212 configured to determine, according to the MCS determined by the scheduling and coding order calculation module 6211, and the number of sub-bands or radio bearers allocated to the user equipment, determine a transport block size scheduled by the user equipment;
  • the manner in which the transport block size calculation sub-module 6212 determines the transport block size scheduled by the user terminal may specifically but not limited to include: according to the determined MCS, and the number of sub-bands or radio bearers allocated for the user terminal, in the predetermined MCS and sub- In the correspondence between the number of bands or the number of radio bearers and the size of the transport block, the lookup determines the size of the transport block scheduled by the user terminal.
  • the inflection point of the transmission efficiency can be found in the sub-band based resource allocation process, thereby effectively shielding some interference sub-bands in the system bandwidth and improving the spectrum efficiency.
  • the foregoing scheduling device of a frequency band resource may be disposed in a base station, and the structure of the corresponding base station may be as shown in FIG. 7, and the base station includes at least a processor 71 and a memory 72.
  • the memory 72 is for storing code implementing any of the above method embodiments; the processor 71 is configured to execute the code stored by the memory 72.
  • the base station may further include a transceiver antenna 73 and a power source 74.
  • the power source 74 is responsible for powering the device such as the processor 71 and the memory 72.
  • the base station can receive the information sent by the user terminal through the transceiver antenna 73 (such as acquiring the CQI of the at least one candidate sub-band reported by the user terminal, etc.) And transmitting information to the user terminal through the transmitting and receiving antenna 73.
  • Fig. 7 only shows an example of the structure of the base station, which does not constitute the only limitation of the present invention.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be in an electrical, mechanical or other form.
  • each functional module in each embodiment of the present invention may be integrated into one processing unit, or each module may exist physically separately, or two or more modules may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. The above is only a preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or within the technical scope of the present disclosure. Alternatives are intended to be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the appended claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种频带资源的调度方法及装置,所述方法包括:首先,根据至少一个待选子带中各个待选子带的传输质量选择欲分配给用户终端的子带(11);将选择的子带分配给用户终端后,是否导致用户终端的传输质量降低超过预定值(12),若是,则不将选择的子带分配给用户终端(13),否则,将该选择的子带分配给用户终端(14)。本发明提供的技术方案可以有效减少无线通信系统中的干扰。

Description

一种频带资源的调度方法及装置 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种频带资源的调度方法及装置。 发明背景
随着无线宽带技术的发展, 无线网络系统占用的带宽越来越大。 例如, CDMA (Code Division Multiple Access , 宽带码分多址) 系统占用的带宽为: 1. 23MHz , UMTS (Universal Mobile Telecommunications System, 通用移动通信系统) 占用的带宽为: 5MHz, 而 LTE (Long Term Evolution, 长期演进) 系统带宽更加灵活, 其拥有的带宽资 源包括: 1. 4MHz、 3MHz、 5MHz、 10MHz、 15MHz、 20MHz带宽。
基于带宽越来越大的无线网络, 为提高用户的使用感受, 运营商在频普资源允许的 情况下, 都倾向于使用大带宽。 但是, 在使用大带宽的情况下, 若使用的部分频域上存 在相应的窄带干扰, 则将导致系统传输速率的降低; 例如, 在单用户占用全带宽时, 将 会导致全带宽的传输速率降低, 对系统的传输性能产生较大影响。
目前采用的减少干扰的方式包括: 在频选过程中, 选择信道质量最好或较好的子带 进行调度。 在业务不满的情况下, 通过这种选择信道质量较好的子带的方式, 可以避开 强干扰的子带 (即窄带干扰), 从而实现减少干扰。 然而, 在 FullBuffer (全缓存) 的 情况下, 会采用所有的子带进行调度, 此时, 即使采用上述方式也无法减少窄带干扰。 发明内容
本发明的目的是提供一种频带资源的调度方法及装置, 以减少无线通信系统中的干 扰。
第一方面, 所述一种频带资源的调度方法, 包括:
根据至少一个待选子带中各个待选子带的传输质量选择欲分配给用户终端的子带; 判断将选择的子带分配给用户终端后,是否导致用户终端的传输质量降低的幅度超 过预定值, 若是, 则不将该选择的子带分配给用户终端, 否则, 将该选择的子带分配给 用户终端。
基于第一方面, 在第一方面第一种可能的实现方式中, 所述选择欲分配给用户的子 带的步骤包括:
获取所述用户终端上报的所述至少一个待选子带的信道质量指示 CQI, 并根据所述 CQI在所述至少一个待选子带中选择信道质量最佳的子带作为所述欲分配给用户终端的 子带。
基于第一方面, 在第一方面第二种可能的实现方式中, 所述判断将选择的子带分配 给用户终端后, 是否导致用户终端的传输质量降低的幅度超过所述预定值包括:
获取将选择的子带分配给用户终端后用户终端可调度的新的传输块的大小; 若用户终端可调度的新的传输块大小与原传输块大小的差值超过第一预定值, 或 者, 用户终端可调度的新的传输块的大小小于第二预定值, 则确定用户终端的传输质量 降低的幅度超过了所述预定值, 否则, 确定用户终端的传输质量降低的幅度未超过所述 预定值。
基于第一方面第二种可能的实现方式, 在第一方面第三种可能的实现方式中, 所述 获取将选择的子带分配给用户终端后用户终端可调度的新的传输块的大小包括:
计算将选择的子带分配给用户终端后用户终端的所有子带的 CQI的平均值; 并根据 所述用户终端的所有子带的 CQI的平均值确定系统中的调度编码阶数 MCS;
基于所述 MCS, 以及为用户终端分配的子带数或无线承载数, 确定所述用户终端可 调度的新的传输块的大小。
基于第一方面第三种可能的实现方式, 在第一方面第四种可能的实现方式中, 所述 计算将选择的子带分配给用户终端后用户终端的所有子带的 CQI的平均值包括:
用户终端的所有子带的 CQI的平均 = (CQI1+CQI2+〜+CQI„) /子带数, 其中, CQL为分 配给用户终端的第 1个子带对应的 CQI值, CQI2为分配给用户终端的第 2个子带对应的 CQI 值, 01„为分配给用户终端的第 n个子带对应的 CQI值, η为分配给用户终端的所有子带数。
基于第一方面第三种可能的实现方式, 在第一方面第五种可能的实现方式中, 所述 确定用户终端可调度的新的传输块的大小的步骤包括:
根据所述 MCS, 以及为用户终端分配的子带数或无线承载数, 在 MCS和子带数或无 线承载数与传输块大小的对应关系中, 査找确定用户终端可调度的新的传输块的大小。
第二方面, 一种频带资源的调度装置, 包括- 子带选择模块,用于根据至少一个待选子带中各个待选子带的传输质量选择欲分配 给用户终端的子带;
资源调度处理模块, 用于判断将所述子带选择模块选择的子带分配给用户终端后, 是否导致用户终端的传输质量降低的幅度超过预定值, 若是, 则不将该选择的子带分配 给用户终端, 否则, 将该选择的子带分配给用户终端。 基于第二方面, 在第二方面第一种可能的实现方式中, 所述子带选择模块包括: 子带信道质量获取模块,用于获取所述用户终端上报的所述至少一个待选子带的信 道质量指示 CQI;
子带选择子模块, 用于根据所述子带信道质量获取模块获取的 CQI在所述至少一个 待选子带中选择信道质量最佳的子带作为所述欲分配给用户终端的子带。
基于第二方面, 在第二方面第二种可能的实现方式中, 所述资源调度处理模块判断 将选择的子带分配给用户终端后,是否导致用户终端的传输质量降低的幅度超过所述预 定值的处理部分包括:
传输块大小计算模块,用于计算将所述子带选择模块选择的子带分配给用户终端后 用户终端可调度的新的传输块大小;
判断模块,用于在判断确定所述传输块大小计算模块计算获得的分配子带后用户终 端可调度的新的传输块大小与原传输块大小的差值超过第一预定值时, 或者, 计算获得 的分配子带后用户终端调度的新的传输块大小小于第二预定值时, 则确定用户终端的传 输质量降低的幅度超过所述预定值, 否则, 确定用户终端的传输质量降低的幅度未超过 所述预定值。
基于第二方面第二种可能的实现方式, 在第二方面第三种可能的实现方式中, 所述 传输块大小计算模块包括- 调度编码阶数计算模块,用于计算将所述子带选择模块选择的子带分配给用户终端 后用户终端的所有子带的 CQI的平均值; 并根据所述用户终端的所有子带的 CQI的平均值 确定系统中的调度编码阶数 MCS;
传输块大小计算子模块, 用于基于所述调度编码阶数计算模块确定的 MCS, 以及为 用户终端分配的子带数或无线承载数, 确定用户终端可调度的新的传输块大小。
基于第二方面第三种可能的实现方式, 在第二方面第四种可能的实现方式中, 所述 调度编码阶数计算模块中计算将所述子带选择模块选择的子带分配给用户终端后用户 终端的所有子带的 CQI的平均值的计算方式包括:
用户终端的所有子带的 CQI的平均值^。。^。。^..^。。^/子带数, 其中, CQh 为分配给用户终端的第 1个子带对应的 CQI值, CQI2为分配给用户终端的第 2个子带对应 的 CQI值, 〇01为分配给用户终端的第 n个子带对应的 CQI值, n为分配给用户终端的所 有子带数。
基于第二方面第三种可能的实现方式, 在第二方面第五种可能的实现方式中, 所述 传输块大小计算子模块确定用户终端可调度的新的传输块的大小的方式包括: 根据确定的所述 MCS,以及为用户终端分配的子带数或无线承载数,在预定的 MCS 和子带数或无线承载数与传输块大小的对应关系中, 查找确定用户终端可调度的新的传 输块的大小。
由上述本发明提供的技术方案可以看出,本发明实施例提供的技术方案可以有效减 少无线通信系统中的干扰。 附图简要说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需要使用的 附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域的普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他附图。
图 1为本发明实施例提供的方法的实现过程示意图;
图 2为本发明实施例提供的子带情况示意图;
图 3为本发明实施例提供的具体实施方式处理流程图;
图 4为本发明实施例提供的量化 CQI的参考图表;
图 5为本发明实施例提供的具体实施方式中的子带选择流程图;
图 6为本发明实施例提供的装置的结构示意图;
图 7为本发明实施例提供的基站的结构示意图。 实施本发明的方式
下面结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、完整地 描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于 本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明的保护范围。
本发明实施例提供了一种频带资源的调度方法, 其具体实现过程如图 1所示, 可以 包括以下步骤:
步骤 11,根据至少一个待选子带中各个待选子带的传输质量选择欲分配给用户终端 的子带;
进一步地, 该选择欲分配给用户的子带的处理步骤具体可以但不限于包括: 获取用户终端上报的至少一个待选子带的 CQI ( Channel Qual ity Indicator , 信 道质量指示) , 并根据用户终端上报的至少一个待选子带的 CQI, 在所述至少一个待选 子带中选择信道质量最佳的子带作为欲分配给用户终端的子带。
步骤 12,判断将选择的子带分配给用户终端后, 是否导致用户终端的传输质量降低 的幅度超过预定值, 若是, 则执行步骤 13, 否则, 执行步骤 14;
具体地, 在该步骤中, 可以但不限于采用以下方式判断是否导致用户终端的传输质 量降低的幅度超过预定值, 即:
获取将选择的子带分配给用户终端后用户终端可调度的新的传输块的大小。 通常, 终端可调度的传输块越大则用户终端的传输质量越好, 终端可调度的传输块越小则用户 终端的传输质量越差。 因此, 在获取用户终端可调度的新的传输块的大小之后, 可以根 据用户终端可调度的新的传输块的大小确定将选择的子带分配给用户终端是否会导致 用户终端传输质量下降的幅度超过所述预定值。
上述预定值可以为大于等于零的数值, 例如, 当上述预定值为零时, 则只要传输质 量降低的值大于零, 便执行步骤 13。
判断将选择的子带分配给用户终端后,是否导致用户终端的传输质量降低的幅度超 过预定值具体可以包括:
获取将选择的子带分配给用户终端后用户终端可调度的新的传输块的大小; 若用户终端可调度的新的传输块的大小与原传输块大小的差值超过第一预定值,或 者, 用户终端可调度的新的传输块大小小于第二预定值, 则确定用户终端的传输质量降 低的幅度超过了所述预定值, 否则, 确定用户终端的传输质量降低的幅度未超过所述预 定值;
需要说明的是, 在该步骤中, 相应的第一预定值可以为大于等于零的数值, 例如, 当第一预定值为零时,则只要计算获得的分配子带后用户终端调度的传输块大小与原传 输块大小的差值大于零, 便可执行步骤 13了;
相应的第二预定值可以根据系统中的网络传输质量要求或期望为用户终端提供的 网络传输质量情况进行确定。
步骤 13, 结束本次资源分配过程, 且不将选择的子带分配给用户终端。
通过步骤 13可以避免将受到干扰的子带分配给用户终端。
步骤 14, 将该选择的子带分配给用户终端。
如果步骤 12中将选择的子带分配给用户终端后,不会导致用户终端的传输质量降低 的幅度超过预定值,则确定选择的子带未受到干扰,可以将选择的子带分配给用户终端。 具体地,在上述处理过程中, 歩骤 12描述的获取将选择的子带分配给用户终端后用 户终端调度的传输块大小的处理过程具体可以但不限于包括:
( 1 )计算将选择的子带分配给用户终端后用户终端的所有子带的 CQI的平均值; 并 根据该用户终端的所有子带的 CQI的平均值确定系统中的 MCS (调度编码阶数, Modulation and Coding Scheme) ;
具体地, 用户终端的所有子带的 CQI的平均值的计算方式可以但不限于包括: 用户 终端的所有子带的 CQI的平均值= 0^11+0012+〜+ 91„) /子带数, 其中, CQI,为分配给用户 终端的第 1个子带对应的 CQI值, CQI2为分配给用户终端的第 2个子带对应的 CQI值, CQIn 为分配给用户终端的第 n个子带对应的 CQI值, r为分配给用户终端的所有子带数。
(2)基于上述 MCS, 以及为用户终端分配的子带数或无线承载数, 确定用户终端可 调度的传输块大小; 进一步地, 相应的确定用户终端调度的传输块大小的方式可以但不 限于包括: 根据上述 MCS, 以及为用户终端分配的子带数或无线承载数, 在 MCS和子带 数或无线承载数与传输块大小的对应关系中, 查找用户终端调度的传输块大小, 即通常 可以预先保存的 MCS和子带数(或无线承载数, 即子带数也可以替换为无线承载数)与 传输块大小的对应关系, 以备查询, 在该对应关系中, 任一 MCS值和任一子带数(或无 线承载数) 值均会对应唯一的一个 TBS (传输块大小, Transmit Block Size) 值。
通过上述本发明实施例, 可以解决无线带宽系统中, 由于某一子带受到窄带干扰, 从而导致当用户分配资源占用全频带时, 调度的调制解调阶数低, 频谱效率低的问题。 即, 本发明实施提供的上述技术方案可以有效减少无线通信系统中的干扰。 为便于理解, 下面将结合附图对本发明实施例的具体实现方式作进一步描述。
本发明实施例提供了一种基于频谱效率的调度方案, 具体可以根据用户终端上报的 子带 CQI, 对子带进行选择。
如图 2所示, 假设系统中频域上共有 25个子带, 子带 4、 11、 19受到严重干扰(即窄 带干扰) , 而其它子带并未受到干扰。
基于图 2所示的情况, 若使用本发明实施例提供的基于频谱效率的调度方案, 可以 考虑按信道质量从好到坏的顺序依次选择子带, 例如, 优先选择信道质量最好的子带, 再选择信道质量次好的子带。 每选择一个子带, 都对传输质量(如传输速率等)进行预 估, 当选择某一子带会导致传输质量(如传输速率等)下降, 则停止针对该子带的选择 分配过程。 这样做可以选择性的屏蔽掉受到干扰的子带, 而只分配未受干扰的子带给用 户终端。 这种情况下, 虽然为用户终端分配的频带大小 (为用户终端分配的子带数目) 会小一些, 但由于分配的子带信道质量较好, 故可以提高调制编码的阶数, 从而提升整 体的频谱效率。
下面以 LTE系统为例, 结合附图描述本发明实施例提供的基于频谱效率的调度方案 的具体实现流程, 该实现流程具体可以包括:
步骤 31, 基站将频域上的带宽划分为多个子带;
具体地, 可以根据系统的带宽大小进行子带划分, 例如, 对于 20MHz的 LTE系统, 频 域上有 100个 RB (资源块, Resource Block) , 则可以将相邻的 4个 RB作为一个子带, 则 该 LTE系统共有 25个子带。 为执行基于频谱效率的调度方案 (如该基于频谱效率的调度 方案的开关打开后) , 基站可以通过配置消息或广播消息, 将相应的划分的子带数通知 该小区的所有用户终端, 以便于用户终端上报所有子带的 CQI。
步骤 32, 基站接收用户终端上报的所有子带 CQI;
进一步地, 用户终端可以通过自身的测量得到每个子带的信噪比 (SINR) , 并将测 量获得的信噪比后量化为 4bit的 CQI; 例如, 可以参照图 4所示的图表进行量化, 在图 4 中, 每个信噪比 SINR的值均对应一个 CQI index (CQI索引) , 在根据图 4确定相应的 CQI index, 便可以确定该 CQI index所对应一个 4bit的 CQI的值;
对于量化后的各子带的 CQI, 用户终端可以周期上报给基站, 也可以实时上报给基 站, 或者, 也可以在指定的时间点上报给基站。
步骤 33, 基站调度器根据用户终端上报的所有子带的 CQI选择分配给 UE (即用户终 端) 的子带;
该步骤中, 具体的选择子带的方式如图 5所示, 可以包括以下步骤:
步骤 331, 从未分配的子带中选择信道质量最好的子带作为欲分配给 UE的子带; 将已选择的子带 (或 RB) , 通过 bitmap (比特地图, 即用二进制的比特位表示该子 带或者 RB是否被占用) 标识出来, 以免重复分配;
由于 CQI越大信道质量越好, 故基站可以从未分配的子带中选择 CQI最高的一个子带 作为欲分配给 UE的子带;
步骤 332, 将选择的子带加入 UE原有的子带 (即己经为 UE分配的子带) 中, 并计算 为该 UE分配的所有子带的 CQI的平均值;
具体地, 为该 UE分配的所有子带的 CQI的平均值=0¾11 012+〜+ 91„) /子带数; 歩骤 333,通过上述为 UE分配的所有子带的 CQI的平均值,以及为 UE分配的子带数(或 RB数) , 选择 UE本次调度的 TBS, TBS即分配给终端的资源所携带的 bit数;
该步骤中, 选择 UE本次调度的 TBS的方式可以包括:
首先, 将为 UE分配的所有子带的 CQI的平均值映射到调度编码阶数(MCS, 具体值为 0-26 ) , 映射方式可以包括: MCS = 2*CQI -4; 之后, 在 LTE系统中, 根据 MCS和已分配 的子带数 (或 RB数, 即子带数也可以替换为 RBovt ) 确定 UE本次调度的 TBS (MCS结合子 带数或 RB数通常会对应唯一的 TBS, 故根据 MCS, 以及子带数或 RB数可以确定 UE本次调度 的 TBS ) 。
步骤 334, 比较将选择的子带分配给 UE后 UE可调度的新的 TBS与未将该选择的子带分 配给 UE时 UE可调度的 TBS (简称原 TBS ) 的大小, 如果新的 TBS大于原 TBS, 即表明传输速 率提高, 则执行步骤 335, 否则, 表明传输速率降低, 执行步骤 336;
步骤 335, 把上述选择的子带 (即欲分配给 UE的子带) 分配给 UE;
步骤 336, 结束本次基于子带的资源调度分配过程, 不将上述选择的子带分配给 UE, 以免降低传输速率;
进一步地, 在执行步骤 336后, 若 UE仍需要更多的频谱资源且存在可用的未分配的 子带, 则可以重新执行步骤 331, 直到不存在可用的未分配的子带或者 UE不需要更多的 频谱资源, 则停止资源分配操作。
步骤 34, 将为 UE分配的频谱资源(RB个数及位置)信息, 通过控制信令中的 Bigmap 下发给 UE。
通过该实施例的描述可以看出, 对于 LTE系统, 能够根据 UE上报的子带信道质量, 按照子带信道质量从高到低的顺序选择子带,每选择一个欲分配给 UE的子带都对 UE的速 率进行预估, 以找出传输效率的从上升到下降的拐点, 从而有效对系统带宽内的一些干 扰子带进行屏蔽处理, 提高频谱效率。
显然, 本发明实施例提供的技术方案可以用于任何无线通信系统, 例如, 不仅可以 应用于 LTE系统中, 也可以应用于 Wimax (Worldwide Interoperabi l ity for Microwave Access, 全球微波互联接入) 等无线通信系统中。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通 过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质 中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可 为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM ) 等。 本发明实施例还提供了一种频带资源的调度装置, 如图 6所示, 具体可以包括: 子带选择模块 61,用于在需要为用户终端分配子带资源时,根据至少一个待选子带 中的各个待选子带的传输质量选择欲分配给用户终端的子带;
资源调度处理模块 62, 用于判断将所述子带选择模块 61选择的的子带分配给用户 终端后, 是否导致用户终端的传输质量降低的幅度超过预定值, 若是, 则不将该选择的 子带分配给用户终端, 否则, 将该选择的子带分配给用户终端。
进一步地, 上述子带选择模块 61具体可以但不限于包括:
子带信道质量获取模块 611, 用于获取所述用户终端上报的所述至少一个待选子带 的信道质量指示 CQI;
子带选择子模块 612,用于根据所述子带信道质量获取模块 612获取的 CQI在所述至 少一个待选子带中选择信道质量最佳的子带作为所述欲分配给用户终端的子带。
具体地,上述资源调度处理模块 62判断将选择的子带分配给用户终端后, 是否导致 用户终端的传输质量降低的幅度超过所述预定值的处理部分具体可以通过以下传输块 大小计算模块 621和判断模块 622实现, 该两模块的具体实现方式可以包括:
传输块大小计算模块 621, 用于计算将所述子带选择模块 61选择的子带分配给用户 终端后用户终端可调度的新的传输块大小;
判断模块 622, 用于在判断确定所述传输块大小计算模块 621计算获得的分配子带 后用户终端可调度的新的传输块大小与原传输块大小的差值超过第一预定值时, 或者, 计算获得的分配子带后用户终端调度的传输块大小小于第二预定值时, 则确定用户终端 的传输质量降低的幅度超过所述预定值, 否则, 确定用户终端的传输质量降低的幅度未 超过所述预定值。
可选地, 上述传输块大小计算模块 621的实现方式具体可以包括:
调度编码阶数计算模块 6211,用于计算将所述子带选择模块 61选择的子带分配给用 户终端后用户终端的所有子带的 CQI的平均值; 并根据所述用户终端的所有子带的 CQI的 平均值确定系统中的调度编码阶数 MCS; 其中, 该调度编码阶数计算模块 6211中用户终 端的所有子带的 CQI的平均值的计算方式可以但不限于包括: 用户终端的所有子带的 CQI 的平均值=0^11+0312+〜+ 01„) /子带数, 其中, 0(311为分配给用户终端的第 1个子带对应 的 CQI值, CQI2为分配给用户终端的第 2个子带对应的 CQI值, CQI„为分配给用户终端的第 n个子带对应的 CQI值, n为分配给用户终端的所有子带数。
传输块大小计算子模块 6212,用于基于所述调度编码阶数计算模块 6211确定的 MCS, 以及为用户终端分配的子带数或无线承载数, 确定用户终端调度的传输块大小; 其中, 该传输块大小计算子模块 6212确定用户终端调度的传输块大小的方式具体可以但不限 于包括: 根据确定的所述 MCS, 以及为用户终端分配的子带数或无线承载数, 在预定的 MCS和子带数或无线承载数与传输块大小的对应关系中,査找确定用户终端调度的传输 块大小。
通过上述装置, 可以在基于子带的资源分配过程中找出传输效率的拐点, 从而有效 对系统带宽内的一些干扰子带进行屏蔽处理, 提高频谱效率。
具体地, 上述一种频带资源的调度装置可以设置于基站中, 相应的基站的结构可以 如图 7所示, 该基站至少包括包括处理器 71和存储器 72。
所述存储器 72用于存储实现上述任意一种方法实施例的代码; 所述处理器 71用于 执行所述存储器 72存储的代码。
除了上述存储器 72和处理器 71之外, 所述基站还可以包括收发天线 73及电源 74等 器件。
其中, 电源 74负责给处理器 71及存储器 72等器件供电, 基站可以通过收发天线 73 接收用户终端发送来的信息 (如获取所述用户终端上报的所述至少一个待选子带的 CQI 等) , 以及通过收发天线 73向用户终端发送信息。 图 7仅给出了基站结构的示例, 这并 不构成对本发明的唯一限定。
需要说明的是,上述装置中包含的各个处理单元所实现的功能的具体实现方式在前 面的各个实施例中已经有详细描述, 故在这里不再赘述。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各功能模 块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分配由不同的功能模 块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分 功能。 上述描述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其 它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述模块的划 分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个模块可以 结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或 讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接 耦合或通信连接, 可以是电性, 机械或其它的形式。
另外, 在本发明各个实施例中的各功能模块可以集成在一个处理单元中, 也可以是 各个模块单独物理存在, 也可以两个或两个以上模块集成在一个单元中。 上述集成的单 元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式实现。 以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明披露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求书的 保护范围为准。

Claims

权利要求
1、 一种频带资源的调度方法, 其特征在于, 包括:
根据至少一个待选子带中各个待选子带的传输质量选择欲分配给用户终端的子带; 判断将选择的子带分配给用户终端后,是否导致用户终端的传输质量降低的幅度超 过预定值, 若是, 则不将该选择的子带分配给用户终端, 否则, 将该选择的子带分配给 用户终端。
2、根据权利要求 1所述的方法, 其特征在于, 所述选择欲分配给用户的子带的步骤 包括:
获取所述用户终端上报的所述至少一个待选子带的信道质量指示 CQI, 并根据所述 CQI在所述至少一个待选子带中选择信道质量最佳的子带作为所述欲分配给用户终端的 子带。
3、根据权利要求 1所述的方法, 其特征在于, 所述判断将选择的子带分配给用户终 端后, 是否导致用户终端的传输质量降低的幅度超过所述预定值包括:
获取将选择的子带分配给用户终端后用户终端可调度的新的传输块的大小; 若用户终端可调度的新的传输块大小与原传输块大小的差值超过第一预定值, 或 者, 用户终端可调度的新的传输块的大小小于第二预定值, 则确定用户终端的传输质量 降低的幅度超过了所述预定值, 否则, 确定用户终端的传输质量降低的幅度未超过所述 预定值。
4、根据权利要求 3所述的方法, 其特征在于, 所述获取将选择的子带分配给用户终 端后用户终端可调度的新的传输块的大小包括:
计算将选择的子带分配给用户终端后用户终端的所有子带的 CQI的平均值; 并根据 所述用户终端的所有子带的 CQI的平均值确定系统中的调度编码阶数 MCS;
基于所述 MCS, 以及为用户终端分配的子带数或无线承载数, 确定所述用户终端可 调度的新的传输块的大小。
5、 根据权利要求 4所述的方法, 其特征在于, 所述计算将选择的子带分配给用户终 端后用户终端的所有子带的 CQI的平均值包括:
用户终端的所有子带的 CQI的平均值- :!^。^"^^^) /子带数, 其中, CQI,为分 配给用户终端的第 1个子带对应的 CQI值, CQI2为分配给用户终端的第 2个子带对应的 CQI 值, 91„为分配给用户终端的第 n个子带对应的 CQI值, n为分配给用户终端的所有子带数。
6、 根据权利要求 4所述的方法, 其特征在于, 所述确定用户终端可调度的新的传输 块的大小的步骤包括:
根据所述 MCS, 以及为用户终端分配的子带数或无线承载数, 在 MCS和子带数或无 线承载数与传输块大小的对应关系中, 查找确定用户终端可调度的新的传输块的大小。
7、 一种频带资源的调度装置, 其特征在于, 包括- 子带选择模块,用于根据至少一个待选子带中各个待选子带的传输质量选择欲分配 给用户终端的子带;
资源调度处理模块, 用于判断将所述子带选择模块选择的子带分配给用户终端后, 是否导致用户终端的传输质量降低的幅度超过预定值, 若是, 则不将该选择的子带分配 给用户终端, 否则, 将该选择的子带分配给用户终端。
8、 根据权利要求 7所述的装置, 其特征在于, 所述子带选择模块包括:
子带信道质量获取模块,用于获取所述用户终端上报的所述至少一个待选子带的信 道质量指示 CQI;
子带选择子模块, 用于根据所述子带信道质量获取模块获取的 CQI在所述至少一个 待选子带中选择信道质量最佳的子带作为所述欲分配给用户终端的子带。
9、根据权利要求 7所述的装置, 其特征在于, 所述资源调度处理模块判断将选择的 子带分配给用户终端后,是否导致用户终端的传输质量降低的幅度超过所述预定值的处 理部分包括:
传输块大小计算模块,用于计算将所述子带选择模块选择的子带分配给用户终端后 用户终端可调度的新的传输块大小;
判断模块,用于在判断确定所述传输块大小计算模块计算获得的分配子带后用户终 端可调度的新的传输块大小与原传输块大小的差值超过第一预定值时, 或者, 计算获得 的分配子带后用户终端调度的新的传输块大小小于第二预定值时,则确定用户终端的传 输质量降低的幅度超过所述预定值, 否则, 确定用户终端的传输质量降低的幅度未超过 所述预定值。
10、 根据权利要求 9所述的装置, 其特征在于, 所述传输块大小计算模块包括: 调度编码阶数计算模块,用于计算将所述子带选择模块选择的子带分配给用户终端 后用户终端的所有子带的 CQI的平均值; 并根据所述用户终端的所有子带的 CQI的平均值 确定系统中的调度编码阶数 MCS;
传输块大小计算子模块, 用于基于所述调度编码阶数计算模块确定的 MCS, 以及为 用户终端分配的子带数或无线承载数, 确定用户终端可调度的新的传输块大小。
11、根据权利要求 10所述的装置, 其特征在于, 所述调度编码阶数计算模块中计算 将所述子带选择模块选择的子带分配给用户终端后用户终端的所有子带的 CQI的平均值 的计算方式包括:
用户终端的所有子带的 CQI的平均值=(〇011+〇012+...+〇01 )/子带数, 其中, CQh 为分配给用户终端的第 1个子带对应的 CQI值, CQI2为分配给用户终端的第 2个子带对应 的 CQI值, 〇01为分配给用户终端的第 n个子带对应的 CQI值, n为分配给用户终端的所 有子带数。
12、根据权利要求 10所述的装置, 其特征在于, 所述传输块大小计算子模块确定用 户终端可调度的新的传输块的大小的方式包括:
根据确定的所述 MCS,以及为用户终端分配的子带数或无线承载数,在预定的 MCS 和子带数或无线承载数与传输块大小的对应关系中, 査找确定用户终端可调度的新的传 输块的大小。
PCT/CN2013/072489 2013-03-12 2013-03-12 一种频带资源的调度方法及装置 WO2014139095A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2013/072489 WO2014139095A1 (zh) 2013-03-12 2013-03-12 一种频带资源的调度方法及装置
EP13877439.3A EP2958388B1 (en) 2013-03-12 2013-03-12 Method and device for scheduling frequency band resource
KR1020157028294A KR20150128918A (ko) 2013-03-12 2013-03-12 주파수 대역 자원 스케줄링 방법 및 장치
CN201380001710.XA CN105264992B (zh) 2013-03-12 2013-03-12 一种频带资源的调度方法及装置
US14/852,261 US9801181B2 (en) 2013-03-12 2015-09-11 Frequency band resource scheduling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072489 WO2014139095A1 (zh) 2013-03-12 2013-03-12 一种频带资源的调度方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/852,261 Continuation US9801181B2 (en) 2013-03-12 2015-09-11 Frequency band resource scheduling method and apparatus

Publications (1)

Publication Number Publication Date
WO2014139095A1 true WO2014139095A1 (zh) 2014-09-18

Family

ID=51535794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072489 WO2014139095A1 (zh) 2013-03-12 2013-03-12 一种频带资源的调度方法及装置

Country Status (5)

Country Link
US (1) US9801181B2 (zh)
EP (1) EP2958388B1 (zh)
KR (1) KR20150128918A (zh)
CN (1) CN105264992B (zh)
WO (1) WO2014139095A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106535262A (zh) * 2016-11-16 2017-03-22 深圳互由科技有限公司 一种基于mcs值的动态调频方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160101440A (ko) * 2015-02-17 2016-08-25 한국전자통신연구원 비면허대역에서 LTE-U와 WiFi 서비스간의 상호공존을 위한 장치 및 방법
EP3528571B1 (en) * 2016-11-04 2021-11-03 LG Electronics Inc. Communication method using frequency band of base station in wireless communication system, and device using method
US10715275B2 (en) 2018-05-11 2020-07-14 At&T Intellectual Property I, L.P. Configuring channel quality indicator for communication service categories in wireless communication systems
US10492212B1 (en) 2018-06-22 2019-11-26 At&T Intellectual Property I, L.P. Scheduling ultra-reliable low latency communications in wireless communication systems
CN109191962B (zh) * 2018-10-11 2020-11-03 四川生学教育科技有限公司 一种用于固定带宽下同频帧率的优化方法及系统
CN111436052B (zh) * 2019-01-14 2023-06-23 普天信息技术有限公司 一种无线通信系统中覆盖优化方法及基站
CN111479322B (zh) * 2019-01-23 2023-06-23 普天信息技术有限公司 一种资源分配方法及装置
CN111698785B (zh) * 2019-03-15 2023-05-09 中国移动通信有限公司研究院 一种资源调度方法及装置、设备、存储介质
WO2021237709A1 (en) * 2020-05-29 2021-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and base station for resource allocation
CN114765483A (zh) * 2021-01-15 2022-07-19 维沃移动通信有限公司 信道状态信息的上报方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730239A (zh) * 2008-10-24 2010-06-09 中兴通讯股份有限公司 小区频率资源的分配方法及终端信道质量指示值反馈装置
CN101790243A (zh) * 2009-12-26 2010-07-28 华为技术有限公司 一种调度方法和装置
CN102244881A (zh) * 2011-07-18 2011-11-16 中兴通讯股份有限公司 资源调度方式的确定方法、装置及系统
CN102356685A (zh) * 2009-03-16 2012-02-15 株式会社Ntt都科摩 基站装置和信息发送方法
CN102801498A (zh) * 2012-07-25 2012-11-28 电信科学技术研究院 一种终端设备选择子带反馈的上报及确定方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274159A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 基地局、無線端末および無線通信方法
JP2007274094A (ja) * 2006-03-30 2007-10-18 Toshiba Corp 基地局、無線端末および無線通信方法
US8498639B2 (en) * 2007-02-09 2013-07-30 Qualcomm Incorporated Flexible channel quality indicator reporting
CN101277166A (zh) * 2008-04-03 2008-10-01 中兴通讯股份有限公司 一种信道质量指示反馈方法
ATE541431T1 (de) * 2008-06-11 2012-01-15 Ericsson Telefon Ab L M Verfahren und anordnung zur auswahl eines cqi- wertes basierend auf der transportblockgrösse in einem mobilen telekommunikationsnetz
US20100041344A1 (en) * 2008-08-13 2010-02-18 Bong Hoe Kim Method for transmitting channel quality indicators
CN102055569B (zh) * 2009-10-28 2013-07-31 中国移动通信集团公司 一种信道质量指示反馈方法、系统及装置
US20120026986A1 (en) * 2010-07-29 2012-02-02 Continuous Computing India Private Ltd. Downlink frequency selective scheduling based on channel quality feedback
EP2753002B1 (en) * 2011-09-02 2018-10-10 LG Electronics Inc. Method and apparatus for transmitting channel state information in a wireless communication system
GB2491222B (en) * 2012-02-29 2013-07-10 Renesas Mobile Corp Channel quality
US9680623B2 (en) * 2012-04-20 2017-06-13 Lg Electronics Inc. Method for reporting channel state, and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730239A (zh) * 2008-10-24 2010-06-09 中兴通讯股份有限公司 小区频率资源的分配方法及终端信道质量指示值反馈装置
CN102356685A (zh) * 2009-03-16 2012-02-15 株式会社Ntt都科摩 基站装置和信息发送方法
CN101790243A (zh) * 2009-12-26 2010-07-28 华为技术有限公司 一种调度方法和装置
CN102244881A (zh) * 2011-07-18 2011-11-16 中兴通讯股份有限公司 资源调度方式的确定方法、装置及系统
CN102801498A (zh) * 2012-07-25 2012-11-28 电信科学技术研究院 一种终端设备选择子带反馈的上报及确定方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2958388A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106535262A (zh) * 2016-11-16 2017-03-22 深圳互由科技有限公司 一种基于mcs值的动态调频方法

Also Published As

Publication number Publication date
US20150382355A1 (en) 2015-12-31
EP2958388A1 (en) 2015-12-23
CN105264992A (zh) 2016-01-20
EP2958388A4 (en) 2016-02-17
KR20150128918A (ko) 2015-11-18
CN105264992B (zh) 2019-06-18
EP2958388B1 (en) 2017-09-20
US9801181B2 (en) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2014139095A1 (zh) 一种频带资源的调度方法及装置
JP7197700B2 (ja) ガード・バンド指示方法及び装置
WO2015124084A1 (zh) 一种基站、ue中非授权频谱上的调度方法和设备
CN110830194B (zh) 上行信道资源的指示及确定方法、基站、终端、介质
JP7238169B2 (ja) ダウンリンク制御情報の送信方法、装置及び読み取り可能な記憶媒体
JP2013507096A5 (zh)
CN107733622B (zh) 资源分配和确定的方法及装置
CN108770015B (zh) 通信系统传输方式的选择方法及装置
CN107453851B (zh) 一种cqi测量方法、装置及无线通信系统
CN102098785B (zh) 无线通讯资源分配方法及装置
KR20190007452A (ko) 기지국 장치, 단말 장치, 무선 통신 시스템 및 무선 통신 시스템 제어 방법
KR20150054055A (ko) 셀룰러 통신 시스템에서의 자원 할당 방법 및 장치
CN108347315B (zh) 一种电力无线专网中多子带业务调度方法
CN111294144B (zh) 直接链路的信道质量上报方法及装置、存储介质、用户设备
JP5652193B2 (ja) 割り当て無線リソース決定方法、割り当て無線リソース決定装置、無線通信システム、およびコンピュータプログラム
WO2015172275A1 (zh) 传输下行信号的方法、基站和用户设备
JP2011010040A (ja) 閾値算出方法及び無線基地局
WO2018028696A1 (zh) 资源分配和确定的方法及装置
RU2777044C1 (ru) Способ и устройство для передачи информации управления нисходящей линии связи и машиночитаемый носитель данных
US11589379B2 (en) Resource allocation method, device, and system
WO2023010384A1 (en) Csi feedback for multi-pdsch transmission
JP5547017B2 (ja) 基地局と基地局の制御方法
JP5547016B2 (ja) 基地局と基地局の制御方法
US9078272B2 (en) Base station and control method of base station
CN116346286A (zh) 用于提高小区下行吞吐率的csi-rs re速率匹配方法、装置、处理器及其存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380001710.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013877439

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013877439

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157028294

Country of ref document: KR

Kind code of ref document: A