WO2014136930A1 - メチル化dnaの検出方法 - Google Patents

メチル化dnaの検出方法 Download PDF

Info

Publication number
WO2014136930A1
WO2014136930A1 PCT/JP2014/055923 JP2014055923W WO2014136930A1 WO 2014136930 A1 WO2014136930 A1 WO 2014136930A1 JP 2014055923 W JP2014055923 W JP 2014055923W WO 2014136930 A1 WO2014136930 A1 WO 2014136930A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
exchange chromatography
bisulfite
pcr amplification
ion exchange
Prior art date
Application number
PCT/JP2014/055923
Other languages
English (en)
French (fr)
Inventor
卓也 與谷
勉 登
Original Assignee
積水メディカル株式会社
国立大学法人三重大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社, 国立大学法人三重大学 filed Critical 積水メディカル株式会社
Priority to JP2015504411A priority Critical patent/JP6222639B2/ja
Priority to CN201480018778.3A priority patent/CN105074010B/zh
Priority to US14/771,936 priority patent/US10550426B2/en
Priority to EP14761083.6A priority patent/EP2966179B1/en
Publication of WO2014136930A1 publication Critical patent/WO2014136930A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6848Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange

Definitions

  • the present invention relates to a method for detecting methylated DNA. More specifically, the present invention relates to a rapid and simple method for detecting methylated DNA by analyzing a product obtained by PCR amplification of DNA treated with bisulfite by ion exchange chromatography.
  • a CpG island is a region in which a two-base sequence of cytosine (C) -guanine (G) through a phosphodiester bond (p) appears frequently, and is often present in a promoter region upstream of a gene.
  • C cytosine
  • G guanine
  • p phosphodiester bond
  • tumor suppressor genes such as CDKN2A, CDH1, MLH1, RB, BRCA1, TSLC1, and RUNX3 are inactivated by abnormal methylation of CpG islands present in the promoter region, thereby inducing canceration.
  • DNA is methylated
  • the DNA methylation is replicated during cell division and inherited by daughter cells, so when a tumor suppressor gene is inactivated by abnormal methylation, the tumor suppressor gene is inactivated. The state will continue.
  • a method for analyzing methylated DNA there is a method using a bisulfite (bisulfite, bisulfite, bisulfite) reaction.
  • This method is the most widely used method for analyzing methylated DNA.
  • cytosine When single-stranded DNA is treated with bisulfite, cytosine is converted to uracil through sulfonation, hydrodeamination, and desulfonation.
  • methylated cytosine has a very slow reaction rate of the first sulfonation, and thus remains methylated cytosine in the reaction time of the actual bisulfite treatment.
  • PCR Polymerase Chain Reaction
  • methylated cytosine remains cytosine, but unmethylated cytosine is amplified by replacing uracil with thymine.
  • the methylation state is analyzed using the difference between the bases cytosine and thymine generated in the sequence of the PCR amplification product.
  • MSP Methylation-Specific PCR
  • COBRA Combined Bisulfite Restriction Analysis
  • the COBRA method used PCR amplification using a primer common to methylated DNA and non-methylated DNA after treatment with bisulfite of DNA, and a restriction enzyme that recognizes a different sequence between methylated DNA and unmethylated DNA.
  • treatment and agarose gel electrophoresis are sequentially performed, and the DNA methylation state of the target region is determined based on the presence or absence of a restriction enzyme-treated fragment. Both methods are still widely used today because they allow quantitative analysis of methylated DNA without any special equipment, but they require labor and time to use electrophoresis for analysis. There was a problem.
  • Ion exchange chromatography is widely used as a simple and accurate method for separating and analyzing biopolymers such as nucleic acids, proteins, and polysaccharides in fields such as biochemistry and medicine.
  • Ion exchange chromatography is a method that separates a measurement target substance using an electrostatic interaction between an ion exchange group of a column packing material and an ionic group in the measurement target substance, and is based on anion exchange.
  • cation exchange can separate an anionic substance using a column packing material having a cationic functional group as an ion exchange group.
  • cation exchange chromatography can separate a cationic substance using a column filler having an anionic functional group as an ion exchange group.
  • anion exchange chromatography When separating PCR amplification products of nucleic acids using ion exchange chromatography, anion exchange chromatography is generally used in which the negative charges of phosphate contained in the nucleic acid molecules are used for separation.
  • the cationic functional group of the column filler in anion exchange chromatography include a weak cationic group such as a diethylaminoethyl group and a strong cationic group such as a quaternary ammonium group. Columns packed with column fillers having these cationic functional groups as ion exchange groups are already commercially available and used in various research fields.
  • the present inventor has developed a column packing material having both a strong cationic group and a weak cationic group as a cationic functional group of the column packing as a column packing for ion exchange chromatography. It has been reported that a single base difference between 20-mer unmethylated synthetic oligonucleotides was separated and analyzed by ion exchange chromatography using a packed column (Patent Document 2).
  • An object of the present invention is to provide a quick and simple method for detecting methylated DNA, which eliminates the labor and time required for analysis by electrophoresis.
  • an object of the present invention is to provide a method capable of detecting DNA methylation with good detection signal separation performance and high accuracy and high sensitivity.
  • the present inventors have found that methylated DNA can be detected quickly and easily by separating a PCR amplification product obtained by amplifying DNA treated with bisulfite by PCR using ion exchange chromatography. As a result of further extensive studies on the analysis conditions for ion exchange chromatography, the present inventors have surprisingly found that the peak separation of the detection signal of methylated DNA depends on the column temperature of the ion exchange chromatography. It has been found that it can be dramatically improved and the present invention has been completed.
  • the present invention has the following configuration.
  • Method for detecting methylated DNA comprising the following steps (1), (2) and (3): (1) a step of treating sample DNA with bisulfite; (2) a step of amplifying the sample DNA treated with the bisulfite by PCR; and (3) a step of subjecting the obtained PCR amplification product to ion exchange chromatography.
  • Method for detecting methylated DNA comprising the following steps (1), (2) and (3 ′): (1) a step of treating sample DNA with bisulfite; (2) a step of amplifying the sample DNA treated with the bisulfite by PCR; and (3 ′) a step of subjecting the obtained PCR amplification product to ion exchange chromatography at a column temperature of 45 ° C.
  • a detection signal obtained by ion exchange chromatography of a PCR amplification product obtained by treating the sample DNA with bisulfite is obtained by converting a DNA having the same base sequence as the sample DNA but not methylated into bisulfite.
  • PCR-amplified product of salt-treated product or obtained by ion exchange chromatography of PCR-amplified product of DNA sample whose base sequence is the same as that of the above sample DNA and whose methylation ratio is known, treated with bisulfite
  • a method for extracting a methylated DNA signal from a sample DNA signal comprising the following steps (1) to (6): (1) a step of treating sample DNA with bisulfite; (2) Amplifying the sample DNA treated with the bisulfite by PCR; (3) subjecting the PCR amplification product obtained in step (2) to ion exchange chromatography; (4) A step of treating the sample DNA with the same base sequence but not methylated with bisulfite and performing PCR amplification; (5) a step of subjecting the PCR amplification product obtained in step (4) to ion exchange chromatography; and (6) a chromatographic detection signal obtained in step (3), which was obtained in step (5). Subtracting the chromatographic detection signal to obtain difference data.
  • a method for detecting methylated DNA using ion exchange chromatography is provided.
  • the ion exchange chromatography performed in the method of the present invention is excellent in peak separation of detection signals of methylated DNA and unmethylated DNA, and can detect methylated DNA with high accuracy. Therefore, according to the present invention, there is provided a rapid, simple and highly accurate method for detecting methylated DNA which does not require labor and time unlike electrophoresis.
  • the method for detecting methylated DNA of the present invention is useful for clinical tests such as cancer risk tests.
  • A Chromatogram of DNAs with different DNA methylation rates (0%, 25%, 50%, 75%, 100%)
  • B 50% methylated DNAs with different DNA methylation positions (random, 5 ′ side, 3 Chromatogram of 'side, center'. Variation in chromatographic elution time due to DNA methylation rate.
  • C Plot of elution time against DNA methylation rate.
  • the sample DNA to be subjected to methylated DNA detection includes DNA of any organism including animals, plants, and microorganisms, preferably animal DNA, more preferably mammalian DNA. Mammals include, but are not limited to, humans, monkeys, mice, rats, guinea pigs, rabbits, sheep, goats, horses, cows, pigs, dogs, cats and the like. Sample DNA can be obtained by extraction, isolation or purification from a sample derived from an organism containing DNA.
  • biological samples containing the sample DNA include various cells collected from the above-described organisms, such as tissue cells, blood cells, or cells present in urine, feces, saliva, other body fluids and secretions, and the above-described samples. And cultured cell lines derived from living organisms. Further, the biological sample includes cells characteristic of various diseases (solid cancer, leukemia, etc.).
  • the method for extracting, isolating or purifying the sample DNA from the sample is not particularly limited, and a known method can be appropriately selected and used.
  • a known method for preparing sample DNA a phenol chloroform method or a commercially available DNA extraction kit, for example, QIAamp DNA Mini kit (manufactured by Qiagen) described later, Clean Columns (manufactured by NexTec), AquaPure (manufactured by Bio-Rad) ), ZR Plant / Seed DNA Kit (manufactured by Zymo Research), prepGEM (manufactured by ZyGEM), BuccalQuick (manufactured by TrimGen), and the like.
  • sample DNA extracted from the sample is treated with bisulfite.
  • bisulfite treatment of DNA A well-known method can be selected suitably and can be used.
  • Known methods for treating bisulfite include, for example, EpiTect Bisulfite Kit (48) (manufactured by Qiagen), MethylEasy (manufactured by Human Genetics Pty), and Cells-to-CpG BisulfiteCv And a commercially available kit such as CpGenome Turbo Bisulfite Modification Kit (MERCK MILLIPORE).
  • the sample DNA treated with bisulfite is amplified by PCR.
  • the PCR amplification method is not particularly limited, and a known method can be appropriately selected and used according to the sequence, length, amount, etc. of the DNA to be amplified.
  • the chain length of the PCR amplification product can be appropriately selected in consideration of factors such as shortening the PCR amplification time, shortening the analysis time in ion exchange chromatography, and maintaining separation performance.
  • the PCR amplification product has a chain length of preferably 1000 bp or less, more preferably 700 bp or less, and even more preferably 500 bp or less.
  • the chain length of the PCR amplification product when using sample DNA with few CpG islands is 30 to 40 bp which is the chain length of the PCR amplification product when using a primer near 15 mer that can avoid non-specific hybridization in PCR. Is the lower limit.
  • cytosine at the CpG site is preferably contained at 2% or more, more preferably 5% or more, with respect to the chain length of the PCR amplification product.
  • the ion exchange chromatography performed in the present invention is preferably anion exchange chromatography.
  • the column packing used in the ion exchange chromatography performed in the present invention is not particularly limited as long as it is a base particle having a strong cationic group on the surface, but strong packing on the surface of the packing shown in Patent Document 2. Base particles having both groups and weak cationic groups are preferred.
  • the strong cationic group means a cationic group that dissociates in a wide range of pH 1 to 14. That is, the strong cationic group can be kept dissociated (cationized) without being affected by the pH of the aqueous solution.
  • the quaternary ammonium group is an example of the strong cationic group.
  • Specific examples include trialkylammonium groups such as a trimethylammonium group, a triethylammonium group, and a dimethylethylammonium group.
  • Examples of the counter ion of the strong cationic group include halide ions such as chloride ions, bromide ions, and iodide ions.
  • the amount of the strong cationic group introduced onto the surface of the substrate particles is not particularly limited, but a preferable lower limit per dry weight of the filler is 1 ⁇ eq / g, and a preferable upper limit is 500 ⁇ eq / g.
  • a preferable lower limit per dry weight of the filler is 1 ⁇ eq / g
  • a preferable upper limit is 500 ⁇ eq / g.
  • the amount of the strong cationic group is less than 1 ⁇ eq / g, the holding power is weak and the separation performance may be deteriorated.
  • the amount of the strong cationic group exceeds 500 ⁇ eq / g, the holding power becomes too strong and the PCR amplification product cannot be easily eluted, and problems such as an excessive analysis time may occur.
  • the weak cationic group means a cationic group having a pka of 8 or more. That is, the weak cationic group is affected by the pH of the aqueous solution, and the dissociation state changes. That is, when the pH is higher than 8, the protons of the weak cationic group are dissociated, and the proportion not having a positive charge increases. On the other hand, when the pH is lower than 8, the weak cationic group becomes protonated and the proportion of positive charges increases.
  • Examples of the weak cationic group include a tertiary amino group, a secondary amino group, and a primary amino group. Of these, a tertiary amino group is desirable.
  • the amount of the weak cationic group introduced onto the surface of the base particle is not particularly limited, but a preferable lower limit per dry weight of the filler is 0.5 ⁇ eq / g, and a preferable upper limit is 500 ⁇ eq / g.
  • a preferable lower limit per dry weight of the filler is 0.5 ⁇ eq / g
  • a preferable upper limit is 500 ⁇ eq / g.
  • the amount of the weak cationic group is less than 0.5 ⁇ eq / g, the separation performance may not be improved because the amount is too small. If the amount of the weak cationic group exceeds 500 ⁇ eq / g, the holding power becomes too strong as in the case of the strong cationic group, so that the PCR amplification product cannot be easily eluted and the analysis time becomes too long. May occur.
  • the amount of the strong cationic group or the weak cationic group on the surface of the substrate particle can be measured by quantifying the nitrogen atom contained in the amino group.
  • An example of a method for quantifying nitrogen is the Kjeldahl method.
  • nitrogen contained in the strong cationic group is quantified after polymerization, and then the strong cationic group and the weak cationic group after the introduction of the weak cationic group.
  • the amount of the weak cationic group introduced later can be calculated. By quantifying in this manner, the amount of strong cationic group and the amount of weak cationic group can be adjusted within the above range when preparing the filler.
  • the base particle for example, synthetic polymer fine particles obtained using a polymerizable monomer, inorganic fine particles such as silica, etc. can be used.
  • the particles are desirable.
  • the hydrophobic crosslinked polymer is a hydrophobic crosslinked polymer obtained by copolymerizing at least one hydrophobic crosslinking monomer and a monomer having at least one reactive functional group, and at least one hydrophobic crosslinked polymer. Any of the hydrophobic cross-linked polymers obtained by copolymerizing the polymerizable cross-linking monomer, the monomer having at least one reactive functional group and at least one hydrophobic cross-linking monomer may be used. .
  • the hydrophobic crosslinkable monomer is not particularly limited as long as it has two or more vinyl groups in one monomer molecule.
  • ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) Di (meth) acrylates such as acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, tri (meth) such as trimethylol methane tri (meth) acrylate, tetramethylol methane tri (meth) acrylate
  • acrylic esters, tetra (meth) acrylic esters, and aromatic compounds such as divinylbenzene, divinyltoluene, divinylxylene, and divinylnaphthalene.
  • the above (meth) acrylate means acrylate or methacrylate
  • (meth) acryl means acryl or methacryl.
  • Examples of the monomer having a reactive functional group include glycidyl (meth) acrylate and isocyanate ethyl (meth) acrylate.
  • the hydrophobic non-crosslinkable monomer is not particularly limited as long as it is a non-crosslinkable polymerizable organic monomer having hydrophobic properties.
  • methyl (meth) acrylate, ethyl (meth) acrylate examples thereof include (meth) acrylic acid esters such as butyl (meth) acrylate and t-butyl (meth) acrylate, and styrene monomers such as styrene and methylstyrene.
  • the hydrophobic cross-linked polymer is obtained by copolymerizing the hydrophobic cross-linkable monomer and the monomer having a reactive functional group, the hydrophobic property in the hydrophobic cross-linked polymer
  • the preferable lower limit of the content ratio of the segment derived from the crosslinkable monomer is 10% by weight, and the more preferable lower limit is 20% by weight.
  • the filler for ion exchange chromatography of the present invention preferably has a polymer layer having the strong cationic group and the weak cationic group on the surface of the base particle.
  • the strong cationic group and the weak cationic group are preferably derived from independent monomers.
  • the filler for ion-exchange chromatography of the present invention is a hydrophilic polymer having the above-mentioned hydrophobic crosslinked polymer particles and a strong cationic group copolymerized on the surface of the hydrophobic crosslinked polymer particles. It is preferable that a weak cationic group is introduced on the surface of the coated polymer particle comprising the above layer.
  • the hydrophilic polymer having a strong cationic group is composed of a hydrophilic monomer having a strong cationic group, and is derived from a hydrophilic monomer having one or more strong cationic groups. What is necessary is just to contain a segment. That is, as a method for producing the hydrophilic polymer having a strong cationic group, a method of polymerizing a hydrophilic monomer having a strong cationic group alone, a hydrophilic property having two or more strong cationic groups. Examples thereof include a method of copolymerizing monomers, a method of copolymerizing a hydrophilic monomer having a strong cationic group and a hydrophilic monomer having no strong cationic group.
  • the hydrophilic monomer having a strong cationic group is preferably one having a quaternary ammonium group.
  • ethyl triethylammonium chloride ethyldimethylethylammonium methacrylate, ethyldimethylbenzylammonium methacrylate, ethyldimethylbenzylammonium acrylate, ethyltriethylammonium acrylate, ethyldimethylethylammonium acrylate
  • Examples include chloride, acrylamidoethyltrimethylammonium chloride, acrylamidoethyltriethylammonium chloride, acrylamidoethyldimethylethylammonium chloride, and the like.
  • a method for introducing the weak cationic group into the surface of the coated polymer particle a known method can be used. Specifically, for example, as a method of introducing a tertiary amino group as the weak cationic group, a hydrophobic crosslinked polymer particle comprising a hydrophobic crosslinked polymer having a segment derived from a monomer having a glycidyl group is used.
  • a method in which a hydrophilic monomer having a strong cationic group is copolymerized on the surface, and then a reagent having a tertiary amino group is reacted with a glycidyl group, hydrophobic having a segment derived from a monomer having an isocyanate group A method in which a hydrophilic monomer having a strong cationic group is copolymerized on the surface of a hydrophobic crosslinked polymer particle comprising a crosslinked polymer, and then a reagent having a tertiary amino group is reacted with an isocyanate group; A method of copolymerizing the hydrophilic monomer having a strong cationic group and a monomer having a tertiary amino group on the surface of the conductive crosslinked polymer particle A method of introducing a tertiary amino group to the surface of a coated polymer particle having a hydrophilic polymer layer having a strong cationic group by using a si
  • the carboxy group produced by hydrolysis and the reagent having a tertiary amino group are then combined with the reagent. And a method such as condensation with Bojiimido.
  • the hydrophilic monomer having a strong cationic group is copolymerized on the surface of a hydrophobic crosslinked polymer particle composed of a hydrophobic crosslinked polymer having a segment derived from a monomer having a glycidyl group, and then A method of reacting a reagent having a tertiary amino group with a glycidyl group, or the above strong cationic property on the surface of a hydrophobic crosslinked polymer particle comprising a hydrophobic crosslinked polymer having a segment derived from a monomer having an isocyanate group A method of copolymerizing a hydrophilic monomer having a group and then reacting a reagent having a tertiary amino group with an isocyanate group is preferred.
  • the reagent having a tertiary amino group to be reacted with a reactive functional group is not particularly limited as long as the reagent has a functional group capable of reacting with the tertiary amino group and the reactive functional group.
  • a functional group capable of reacting with the tertiary amino group and the reactive functional group include a primary amino group and a hydroxyl group. Of these, a group having a primary amino group at the terminal is preferable.
  • Specific reagents having such functional groups include N, N-dimethylaminomethylamine, N, N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, N-dimethylaminobutylamine, N, N- Diethylaminoethylamine, N, N-diethylaminopropylethylamine, N, N-diethylaminobutylamine, N, N-diethylaminopentylamine, N, N-diethylaminohexylamine, N, N-dipropylaminobutylamine, N, N-dibutylaminopropyl An amine etc. are mentioned.
  • the relative position relationship between the strong cationic group, preferably a quaternary ammonium salt, and the weak cationic group, preferably a tertiary amino group is such that the strong cationic group is a substrate rather than the weak cationic group. It is preferable to be at a position far from the surface of the particle, that is, outside. For example, it is preferable that the weak cationic group is within 30 mm from the surface of the base particle, and the strong cationic group is within 300 mm from the base particle surface, and is outside the weak cationic group.
  • the average particle diameter of the base particles used in the filler for ion exchange chromatography of the present invention is not particularly limited, but a preferred lower limit is 0.1 ⁇ m and a preferred upper limit is 20 ⁇ m. If the average particle size is less than 0.1 ⁇ m, the inside of the column may become too high, resulting in poor separation. When the average particle diameter exceeds 20 ⁇ m, the dead volume in the column becomes too large, which may cause poor separation.
  • the average particle diameter indicates a volume average particle diameter, and can be measured using a particle size distribution measuring apparatus (such as AccuSize 780 / Particle Sizing Systems).
  • composition of the eluent used in the ion exchange chromatography performed in the present invention known conditions can be used.
  • buffers or organic solvents containing known salt compounds it is preferable to use buffers or organic solvents containing known salt compounds. Specifically, for example, Tris-HCl buffer, TE buffer consisting of Tris and EDTA, Tris And a TBA buffer solution composed of boric acid and EDTA.
  • the pH of the eluent is not particularly limited, but the preferred lower limit is 5 and the preferred upper limit is 10. By setting in this range, it is considered that the weak cationic group also effectively acts as an ion exchange group (anion exchange group).
  • the more preferable lower limit of the pH of the eluent is 6, and the more preferable upper limit is 9.
  • Examples of the salt contained in the eluent include salts composed of halides and alkali metals such as sodium chloride, potassium chloride, sodium bromide, potassium bromide, calcium chloride, calcium bromide, magnesium chloride, bromide.
  • a salt composed of a halide such as magnesium and an alkaline earth metal, or an inorganic acid salt such as sodium perchlorate, potassium perchlorate, sodium sulfate, potassium sulfate, ammonium sulfate, sodium nitrate, or potassium nitrate can be used.
  • organic acid salts such as sodium acetate, potassium acetate, sodium succinate, potassium succinate, can also be used. Any of the above salts may be used alone or in combination.
  • the salt concentration of the eluent may be appropriately adjusted according to the analysis conditions, but the preferred lower limit is 10 mmol / L, the preferred upper limit is 2000 mmol / L, the more preferred lower limit is 100 mmol / L, and the more preferred upper limit is 1500 mmol / L. L.
  • the eluent used in the ion exchange chromatography of the present invention contains anti-chaotropic ions to further improve the separation performance.
  • Anti-chaotropic ions have a property opposite to that of kaorotopic ions and have a function of stabilizing the hydration structure. Therefore, there is an effect of strengthening the hydrophobic interaction between the filler and the nucleic acid molecule.
  • the main interaction of the ion exchange chromatography of the present invention is an electrostatic interaction, but in addition, the separation performance is enhanced by utilizing the action of hydrophobic interaction.
  • Anti-chaotropic ions contained in the eluent include phosphate ions (PO 4 3 ⁇ ), sulfate ions (SO 4 2 ⁇ ), ammonium ions (NH 4 + ), potassium ions (K + ), sodium ions (Na + ). Among these ion combinations, sulfate ions and ammonium ions are preferably used.
  • the anti-chaotropic ions can be used either alone or in combination.
  • a part of the above-mentioned antichaotropic ion includes a salt or a buffer component contained in the eluent. When such a component is used, it has both a property as a salt or a buffer capacity contained in the eluent and a property as an anti-chaotropic ion, which is preferable for the present invention.
  • the concentration of anti-chaotropic ions in the eluent for ion-exchange chromatography according to the present invention may be appropriately adjusted according to the analysis target, but is preferably 2000 mmol / L or less as the anti-chaotropic salt.
  • a method of performing gradient elution with the concentration of the antichaotropic salt in the range of 0 to 2000 mmol / L Therefore, the concentration of the antichaotropic salt at the start of the analysis need not be 0 mmol / L, and the concentration of the antichaotropic salt at the end of the analysis need not be 2000 mmol / L.
  • the gradient elution method may be a low pressure gradient method or a high pressure gradient method, but a method of eluting while performing precise concentration adjustment by the high pressure gradient method is preferred.
  • the anti-chaotropic ion may be added to only one type of eluent used for elution, or may be added to a plurality of types of eluent.
  • the anti-chaotropic ion may have both the role of enhancing the hydrophobic interaction between the packing material and the PCR amplification product or the buffering capacity, and the effect of eluting the PCR amplification product from the column.
  • the column temperature when analyzing PCR amplification products by ion exchange chromatography performed in the present invention is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 45 ° C. or higher.
  • the column temperature of the ion exchange chromatography is less than 30 ° C., the hydrophobic interaction between the packing material and the PCR amplification product becomes weak, and it becomes difficult to obtain a desired separation effect. Further, as shown in FIGS.
  • the column temperature is 55 ° C. or higher
  • the PCR amplification product derived from the methylated DNA strand and the PCR amplification product derived from the unmethylated DNA strand in the hemimethylated DNA sample are separated and separated as two peaks having different retention times. Therefore, DNA methylation can be detected even in hemimethylated DNA samples.
  • the column temperature is 60 ° C. or higher
  • the difference in retention time between the methylated DNA sample and the non-methylated DNA sample is further widened, and each peak becomes clearer. Can be detected.
  • both of the methylated DNA sample and the unmethylated DNA sample are clearly separated when the column temperature of the ion exchange chromatography is increased, both of the methylated DNA sample and the unmethylated DNA sample are present according to the abundance ratio of the methylated DNA and the unmethylated DNA in the sample DNA. A difference tends to occur in the peak area or peak height of the holding time. Therefore, the higher the column temperature, the presence of each of methylated and unmethylated DNA in the sample DNA based on the area or height of the retention time peak between the methylated and unmethylated DNA samples It becomes easier to measure the quantity and the abundance ratio.
  • the column temperature of ion exchange chromatography is 90 ° C. or higher, the double strands of the nucleic acid molecules in the PCR amplification product are dissociated, which is not preferable for analysis. Furthermore, if the column temperature is 100 ° C. or higher, the eluent may be boiled, which is not preferable for analysis. Therefore, the column temperature when analyzing the PCR amplification product by ion exchange chromatography performed in the present invention may be 30 ° C. or higher and lower than 90 ° C., preferably 40 ° C. or higher and lower than 90 ° C., more preferably 45 ° C. It is more than 55 degreeC and less than 90 degreeC, More preferably, it is 55 degreeC or more and 85 degrees C or less, More preferably, it is 60 degreeC or more and 85 degrees C or less.
  • the amount of sample injected into the ion exchange chromatography column is not particularly limited, and may be appropriately adjusted according to the ion exchange capacity and sample concentration of the column.
  • the flow rate is preferably from 0.1 mL / min to 3.0 mL / min, more preferably from 0.5 mL / min to 1.5 mL / min. If the flow rate is slow, improvement of the separation can be expected. However, if the flow rate is too slow, it may take a long time for the analysis, or the separation performance may be lowered due to broad peaks. Conversely, an increase in the flow rate has an advantage in terms of shortening the analysis time, but the peak is compressed, leading to a decrease in separation performance.
  • the holding time of each sample can be determined in advance by conducting a preliminary experiment on each sample.
  • a liquid feeding method a known liquid feeding method such as a linear gradient elution method or a stepwise elution method can be used, but a linear gradient elution method is preferred as the liquid feeding method in the present invention.
  • the size of the gradient may be appropriately adjusted in accordance with the separation performance of the column and the characteristics of the analyte (here, PCR amplification product) in the range of 0 to 100% of the eluent used for elution.
  • DNA methylation in sample DNA is detected by subjecting a PCR amplification product of DNA treated with bisulfite in the above-described procedure to ion exchange chromatography.
  • detecting methylation of DNA means measuring the presence or amount of methylated DNA in the DNA, and the abundance of methylated DNA and unmethylated DNA in the DNA. Or the ratio of methylation of the DNA (also referred to as methylation rate) is measured.
  • a chromatogram showing different signals depending on the base sequence of the DNA contained in the amplification product is obtained.
  • the detection signal from the PCR amplification product of the obtained sample DNA treated with bisulfite is the same as that of the sample DNA but the DNA bisulfite treated product (hereinafter referred to as negative control) of the unmethylated DNA.
  • Detection signal from PCR amplification product, or PCR amplification product of DNA bisulfite-treated product (hereinafter referred to as positive control) having the same base sequence as sample DNA and a known methylation ratio (for example, 100%)
  • positive control PCR amplification product of DNA bisulfite-treated product having the same base sequence as sample DNA and a known methylation ratio (for example, 100%)
  • the presence or absence of methylated DNA in the sample DNA can be determined by comparison with the detection signal from (see FIGS. 1 to 3).
  • the amount of methylated DNA present in the sample DNA by comparing the detection signal from the PCR amplification product of the bisulfite treatment of the sample DNA with the detection signal from the negative and positive control PCR amplification products, and The ratio of abundance with unmethylated DNA can be measured.
  • detection signals from a plurality of PCR amplification products derived from a treated product (hereinafter referred to as “standard”) of a plurality of DNAs having the same base sequence as that of the sample DNA and a known methylation ratio Measure methylated DNA methylation rate, abundance, and abundance ratio with unmethylated DNA in sample DNA by comparing with detection signal from PCR amplification product of DNA bisulfite treatment product (See FIGS. 6, 7-1 and 7-2).
  • negative control positive control or standard PCR amplification product
  • chemically or genetically engineered DNA consisting of the same base sequence as the negative control, positive control or standard is used. May be.
  • commercially available products can be used for preparation of negative control, positive control or standard, for example, EpiTectEControl DNA and Control DNA Set (manufactured by Qiagen) can be used.
  • DNA methylation can also be detected for hemimethylated DNA in which one strand of methylated DNA is methylated.
  • the PCR amplification product of a product obtained by treating hemimethylated DNA with bisulfite is a mixture of a PCR amplification product of methylated DNA treated with bisulfite and a PCR amplified product of unmethylated DNA treated with bisulfite.
  • these methylated DNA strands and unmethylated DNA strands can be separated and measured with high precision, so that hemimethylated DNA can be detected (FIGS. 4-1, 4). Refer to 4-2, FIG. 5-1, and FIG. 5-2).
  • the ion exchange chromatography performed in the present invention includes a sample containing the PCR amplification product of the bisulfite-treated product of the sample DNA and the negative control or positive control, or the standard PCR amplification product. Samples are individually subjected to ion exchange chromatography analysis. Samples adsorbed on the column are eluted with a gradient using multiple eluents, and DNA methylation is performed between the PCR amplification product of the sample DNA bisulfite treatment and the negative or positive control or standard PCR amplification product. Depending on the rate, it can be eluted with different retention times.
  • the detection signal from the negative control was obtained by performing bisulfite treatment and PCR according to the procedure described above using DNA having the same base sequence as that of the sample DNA but not methylated in place of the sample DNA.
  • the product can be obtained by ion exchange chromatography.
  • the detection signal from the positive control was obtained by performing bisulfite treatment and PCR according to the procedure described above using DNA having the same base sequence as the sample DNA and a known methylation rate (for example, 100%) instead of the sample DNA.
  • the obtained PCR amplification product can be obtained by subjecting it to ion exchange chromatography.
  • a detection signal from the negative or positive control may be obtained by subjecting the above-described synthetic DNA or commercially available DNA to ion exchange chromatography as a negative or positive control.
  • the detection signal from the standard was obtained by performing bisulfite treatment and PCR according to the procedure described above using a plurality of DNAs having the same base sequence as the sample DNA and a known methylation ratio instead of the sample DNA.
  • the obtained plurality of PCR amplification products can be obtained by subjecting each of them to ion exchange chromatography. Further, a calibration curve may be created from each obtained detection signal.
  • the detection signal from the standard may be obtained by subjecting the above-described synthetic DNA or commercially available DNA to the ion exchange chromatography as a standard.
  • the detection signal from the PCR amplification product of the bisulfite-treated sample DNA obtained by the above chromatography is compared with the detection signal from the negative or positive control or standard. Based on the difference between the two detection signals, methylation of the sample DNA can be detected.
  • the retention time of the peak of the detection signal obtained from the PCR amplification product of the sample DNA treated with bisulfite is different from the retention time of the negative control peak, it can be determined that the sample DNA is methylated. . Furthermore, at this time, it can be estimated that the greater the shift in retention time, the greater the methylation rate. Conversely, as the retention time of the peak of the detection signal obtained from the PCR amplification product of the sample DNA treated with bisulfite is shifted from the retention time of the peak of the 100% methylation positive control, the methylation of the sample DNA is increased. The rate can be estimated to be smaller.
  • a calibration curve can be created based on the retention times of a plurality of peaks obtained from a standard with a known methylation rate, and the methylation rate of the sample DNA can be determined based on this calibration curve (FIG. 7- 1 and FIG. 7-2).
  • the peak height or peak area of the detection signal obtained from the PCR amplification product of the sample DNA treated with bisulfite is treated with the bisulfite treatment of DNA with a known methylation rate and mixing ratio of the methylated DNA.
  • the abundance ratio of methylated DNA in the sample DNA for example, the abundance ratio of unmethylated DNA or methyl at a specific ratio
  • the abundance ratio of the converted DNA can be determined (see FIG. 6).
  • LCsolution Shiadzu Corporation
  • GRAMS / AI Thermo Fisher Scientific
  • Igor Pro Peak detection using WaveMetrics
  • the parameter “WIDTH” is set to be larger than the half-width of the unnecessary peak
  • the parameter “SLOPE” is set to be larger than the rising slope of the unnecessary peak
  • the setting of the parameter “DRIFT” is changed so that the low-separation peak For example, selecting whether to divide or to divide the baseline. Since different chromatograms can be obtained as parameter values depending on the analysis conditions, the type of gene marker selected, the amount of specimen, etc., appropriate values may be set according to the chromatogram.
  • the method for detecting methylated DNA of the present invention it is possible to detect methylated DNA quickly, conveniently and with high accuracy.
  • application to clinical examination can be mentioned. It is known that the state of DNA methylation affects the carcinogenesis of cells, and in particular, it has been reported that abnormal DNA methylation of CpG islands is involved in carcinogenesis (for example, JP-A-2010- No. 063413). Therefore, the method for detecting methylated DNA of the present invention can be suitably applied to clinical tests such as cancer onset tests and cancer onset risk tests.
  • difference data obtained by subtracting the detection signal obtained from the negative control from the detection signal obtained from the PCR amplification product of the bisulfite-treated sample DNA can be obtained.
  • the difference data corresponds to a detection signal by methylated DNA in the sample DNA. For example, in the difference data, if a peak having a retention time different from that of the negative control can be detected, it can be determined that methylated DNA is present in the sample DNA.
  • methylation of methylated DNA in the sample DNA by comparing the retention time, peak height or peak area of the difference data with that of the detection signal obtained from the negative control, positive control, or standard Rate and abundance ratio can be determined.
  • the difference data in samples in which the signal component from methylated DNA is detected only weakly, for example, sample DNA having a low abundance ratio of methylated DNA or sample DNA containing methylated DNA having a low methylation rate
  • requiring difference data it is desirable to match
  • the above difference data is particularly effective in clinical tests such as cancer onset tests and cancer onset risk tests.
  • the specimen collected for the clinical examination as described above may contain normal cells or may contain many precancerous cells in which DNA methylation has not progressed so much.
  • the detection result is used, the diagnosis of cancer onset and cancer onset risk can be performed more accurately.
  • the method for detecting methylated DNA of the present invention application to analysis of the differentiation state of cells can be mentioned. It is known that the methylation pattern on the genome is a determinant of cell differentiation. For undifferentiated stem cells (for example, ES cells, iPS cells, various biological stem cells) and differentiated cells, Cellular DNA methylation patterns are different.
  • the method for detecting methylated DNA of the present invention it is possible to analyze the difference in methylation pattern according to the differentiation state of the cell. Therefore, the differentiation stage of the cell used for DNA extraction and cells with different differentiation states are mixed. It is possible to analyze the differentiation state of the cell at a high level such as whether or not it exists.
  • methylated DNA can be separated or detected by using the above-described ion exchange chromatography column and eluent.
  • the present invention provides a column for ion-exchange chromatography used for detection of methylated DNA in which the above-mentioned surface is packed with a column filler containing base particles having both strong and weak cationic groups.
  • the present invention also provides an eluent for ion exchange chromatography used for detection of methylated DNA containing the above-mentioned antichaotropic ions.
  • the column or eluent of the present invention When the column or eluent of the present invention is provided to the public or announced to the public, the column or eluent is displayed or indicated that it can be used for detection of methylated DNA, or is used for detection of methylated DNA. It can be distinguished from other columns and eluents by being written on a written document or electronic medium (eg, instruction manual, catalog, pamphlet, CD, Web, etc.).
  • a written document or electronic medium eg, instruction manual, catalog, pamphlet, CD, Web, etc.
  • the above-described column of the present invention equipment and members used for ion exchange chromatography (for example, pumps, gradient mixers, guard columns, etc.), reagents used for ion exchange chromatography (for example, eluent of the present invention) , Column washing solution, etc.), members and reagents used in each step of the detection method of the present invention (for example, DNA extraction columns and reagents and reagents used in the PCR amplification step (eg, primers, polymerase, etc.))
  • a kit used for methylated DNA detection in combination with one or more.
  • kit of the present invention When the kit of the present invention is provided to the public or notified of the provision to the public, it is indicated or indicated that it can be used for detection of methylated DNA, or it is used for detection of methylated DNA. It can be distinguished from other columns and eluents by being described in written documents and electronic media (for example, instruction manuals, catalogs, pamphlets, CDs, Webs, etc.) This is the same as in the case of the eluent of the present invention.
  • the mixture was heated with stirring and polymerized at 80 ° C. for 1 hour in a nitrogen atmosphere.
  • 100 g of ethyl trimethyl ammonium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) as a hydrophilic monomer having a strong cationic group was dissolved in ion-exchanged water. This was added to the same reactor and polymerized in the same manner at 80 ° C. for 2 hours under stirring in a nitrogen atmosphere.
  • the obtained polymerization composition was washed with water and acetone to obtain coated polymer particles having a hydrophilic polymer layer having a quaternary ammonium group on the surface.
  • the obtained coated polymer particles were measured using a particle size distribution analyzer (Accumizer 780 / Particle Sizing Systems), and the average particle size was 10 ⁇ m.
  • the above-mentioned packing material for ion exchange chromatography was packed into a stainless steel column (column size: inner diameter 4.6 mm ⁇ length 20 mm) of a liquid chromatography system.
  • LS174T was added to MEM (Minimum Essential Medium) Earle's medium with 10% FBS and 1% NEAA (Non-Essential Amino Acids) and cultured at 37 ° C. in the presence of 5% CO 2 in a humidified chamber (B.H. Tom, LP Rutzky, MM Jakstys. In Vitro. 12, 1976, 180).
  • HCT116 was added to McCoy's 5A Medium medium with 10% FBS and cultured in a humidified chamber at 37 ° C. in the presence of 5% CO 2 (MG Brattain, WD Fine, J. Thompson. Cancer Res. 41, 1981, 1751). The culture was performed using a 75 mL cell culture flask, and the cells after completion of the culture were collected by a conventional method, pelleted, and stored at ⁇ 80 ° C.
  • DHL-9 Culture of DHL-9, 293T cells
  • DHL-9 is 10% (v / v) FBS and 100 U / mL penicillin, 100 ⁇ g / mL streptomycin and 2 mmol / L L-glutamine in Roswell Park Memorial Institute Tissue Culture Medium 1640 medium with 5% CO 2 in a humidified chamber. Cultured at 37 ° C. in the presence.
  • 293T was added to DMEM (Dulbecco's modified Eagle's medium) medium by adding 10% (v / v) FBS, 100 U / mL penicillin and 100 ⁇ g / mL streptomycin at 37 ° C. in the presence of 5% CO 2 in a humidified chamber. did.
  • the culture was performed using a 75 mL cell culture flask, and the cells after completion of the culture were collected by a conventional method, pelleted, and stored at ⁇ 80 ° C.
  • Example 1 Detection of methylated DNA from specimen cells 1) Extraction of genomic DNA and bisulfite treatment The genomic DNA of cell lines LoVo, LS174T, HCT116, DHL-9, or 293T cultured in Reference Example 2 The cell pellet stored at ⁇ 80 ° C. was extracted using QIAamp DNA Mini Kit (50) (manufactured by Qiagen), the DNA concentration was measured with a spectrophotometer, and stored at ⁇ 80 ° C. until use. 1 ⁇ g of each genomic DNA was prepared and purified by bisulfite treatment using EpiTect Bisulfite Kit (48) (manufactured by Qiagen).
  • the DNA after the bisulfite treatment was considered to be recovered at the time of purification (20 ng / ⁇ L) and used for the next operation.
  • the DNA not treated with bisulfite was adjusted to 10 ng / ⁇ L and used for the next operation.
  • the prepared DNA was stored at ⁇ 20 ° C. until use.
  • PCR The bisulfite-treated genomic DNA obtained in 1) was PCR amplified.
  • PCR is 10 ng of template DNA, GeneAmp 1 ⁇ PCR buffer (manufactured by Life Technologies), 200 ⁇ mol / L GeneAmp dNTP Mix (manufactured by Life Technologies), 0.75U AmpliTold Gold Polymol PolyGol 0.2 / AmplTol Gold Mol
  • the reaction was performed in 25 ⁇ L of a reaction solution containing L forward and reverse primers.
  • PCR after initial heat denaturation at 94 ° C. for 10 minutes, 94 ° C. for 30 seconds ⁇ 57 ° C. (when using F3-R3 primer) for 30 seconds or 58 ° C.
  • the peak resolution Rs between the PCR-amplified product of methylated DNA and the PCR-amplified product of unmethylated DNA is expressed by the retention time of each peak at t R1 , t R2 (t R1 ⁇ t R2 ), and the half width of each peak at W
  • t R1 , t R2 , W 0.5h1 and W 0.5h2 use the same unit.
  • the calculation method of the peak half width W 0.5h when the peak is regarded as a normal distribution with the standard deviation ⁇ , it is expressed by the following equation.
  • Example 2 Methylation analysis of MTAP gene promoter region According to the procedure of Example 1, methylation of the MTAP gene promoter region was detected in DNA extracted from DHL-9 and 293T. In PCR, a 202 bp region in the MTAP gene promoter DNA (SEQ ID NO: 5) of each bisulfite-treated DNA was amplified using primers (SEQ ID NOs: 6 and 7). The column temperature in ion exchange chromatography analysis was 70 ° C. Table 2 shows the template DNA sequence, primer sequence, amplification product size, and the number of CpG islands in the amplification region of the promoter sequence. The results of ion exchange chromatography analysis are shown in FIG.
  • FIGS. 4-1, 4-2, 5-1 and 5-2 show PCR amplification of 100% methylated DNA, unmethylated DNA and hemimethylated DNA derived from the CDKN2A gene promoter.
  • the results of ion exchange chromatographic analysis of the products (136 bp and 77 bp, respectively) are shown.
  • the column temperatures of ion exchange chromatography are shown in FIGS. 4-1, 4-2, 5-1 and 5-2.
  • the column temperatures are (A) 40 ° C., (B) 45 ° C., (C) 50 ° C, (D) 55 ° C, (E) 60 ° C, (F) 65 ° C, (G) 70 ° C, (H) 85 ° C.
  • Table 3 shows the peak resolution Rs of the PCR amplification product (77 bp) at each column temperature.
  • the methylation is such that a base difference of a little less than 10% occurs in the sequence of the PCR amplification product, it can be detected with high accuracy in a short time by the method of the present invention.
  • FIG. 4-1, FIG. 4-2, FIG. 5-1, FIG. 5-2, and Table 3 the PCR amplification products of the bisulfite-treated products of methylated DNA and unmethylated DNA in HPLC It was confirmed that peak separation improved with increasing column temperature. Therefore, by adjusting the column temperature for ion exchange chromatography analysis in the method of the present invention, methylated DNA and unmethylated DNA can be detected with higher accuracy.
  • Example 4 Analysis of methylated / unmethylated DNA mixed sample 1) Preparation of methylated / unmethylated DNA mixed sample According to the procedure of Example 1, 100% methylated DNA of CDKN2A gene promoter site (SEQ ID NO: 1) And unmethylated DNA was prepared and treated with bisulfite using EpiTect Bisulfite Kit (48) (Qiagen). A mixed sample of methylated / unmethylated DNA was prepared by mixing bisulfite-treated 100% methylated DNA and unmethylated DNA at a predetermined ratio. Each DNA was subjected to PCR amplification in the same procedure as in Experiment 1 to obtain a 136 bp PCR amplification product.
  • Example 2 HPLC analysis According to the procedure of Example 1, the PCR amplification product obtained above was subjected to ion exchange chromatography. The column temperature was 70 ° C. Each PCR amplification product was separated and detected, and the peak height of the retention time was measured. The ratio of the peak height of 100% methylated DNA in each sample to the peak height of the sample containing only 100% methylated DNA (methylated DNA content 100%), and containing only unmethylated DNA (methylated DNA The ratio of the peak height of unmethylated DNA in each sample to the peak height of the sample was determined. FIG. 6 shows a plot of the ratio of the peak height of 100% methylated DNA and unmethylated DNA in each sample DNA against the percentage content of 100% methylated DNA in the sample DNA.
  • FIG. 7-1A shows the HPLC chromatogram on the “side, 3” side, and center
  • FIG. 7-2C shows the data obtained by plotting the HPLC elution time (retention time) against the DNA methylation rate.
  • the elution time of HPLC analysis had a very high correlation with the DNA methylation rate. Furthermore, it was confirmed that 50% methylated DNA showed almost the same retention time regardless of the methylation position.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 迅速かつ簡便なメチル化DNAの検出方法の提供。以下の工程を含むことを特徴とするメチル化DNAの検出方法:(1)サンプルDNAを亜硫酸水素塩で処理する工程;(2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;および、(3)得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程。

Description

メチル化DNAの検出方法
 本発明はメチル化DNAの検出方法に関する。より詳細には、亜硫酸水素塩で処理したDNAをPCRで増幅した産物を、イオン交換クロマトグラフィーで分析することによる、迅速、かつ簡便なメチル化DNAの検出方法に関する。
 近年、エピジェネティクスが様々な生命現象に関与することが認識され、その解析に関わる研究が盛んに行われている。特に、DNAの異常なメチル化ががん化に深く関与することが明らかになり、注目を集めている。がん細胞における特徴的なエピジェネティック異常として、一部の遺伝子プロモーター領域におけるCpGアイランドの異常なDNAメチル化が知られている。CpGアイランドは、ホスホジエステル結合(p)を介したシトシン(C)-グアニン(G)の2塩基配列が高頻度で出現する領域のことであり、遺伝子上流のプロモーター領域に存在することが多い。CpGアイランドの異常なDNAメチル化は、がん抑制遺伝子の不活化などを通じて、発がんに関与する。CDKN2A、CDH1、MLH1、RB、BRCA1、TSLC1、RUNX3など、様々ながん抑制遺伝子が、プロモーター領域に存在するCpGアイランドの異常なメチル化によって不活化されることでがん化を誘発される。DNAがメチル化されるとそのDNAのメチル化は細胞分裂時に複製され娘細胞に受け継がれるため、がん抑制遺伝子が異常なメチル化によって不活化された場合、がん抑制遺伝子が不活化された状態が続くことになる。
 すでに確立されたメチル化DNAの解析方法として、亜硫酸水素塩(重亜硫酸塩、バイサルファイト、bisulfite)反応を利用した方法がある。この方法は、メチル化DNAの解析に最も汎用されている方法である。一本鎖DNAを亜硫酸水素塩で処理すると、シトシンはスルホン化、加水脱アミノ化、脱スルホン化を経て、ウラシルに変換される。一方、メチル化されたシトシンは、最初に起こるスルホン化の反応速度が極めて遅いため、実際に行われる亜硫酸水素塩処理の反応時間の中ではメチル化シトシンのままである。従って、亜硫酸水素塩処理をしたDNAを用いてPCR(Polymerase Chain Reaction)を行うと、メチル化シトシンはシトシンのままであるが、非メチル化シトシンは、ウラシルからチミンに置き換わって増幅される。このPCR増幅産物の配列中に生じるシトシンとチミンという塩基の違いを利用してメチル化状態を解析する。これを基本原理として汎用されている方法が、特許文献1、非特許文献1に記載のMethylation-Specific PCR(MSP)法、および非特許文献2、3に記載のCombined Bisulfite Restriction Analysis(COBRA)法である。
 MSP法は、DNAの亜硫酸水素塩処理後にメチル化配列特異的プライマーと非メチル化配列特異的プライマーを用いたPCR増幅、アガロースゲル電気泳動を順に行い、両プライマーによる増幅産物の有無により対象領域のDNAメチル化状態を判定する方法である。COBRA法は、DNAの亜硫酸水素塩処理後にメチル化DNAと非メチル化DNAに共通のプライマーを用いたPCR増幅、メチル化DNAと非メチル化DNAで配列が異なる箇所を認識する制限酵素を用いた処理、アガロースゲル電気泳動を順に行い、制限酵素処理断片の有無により対象領域のDNAメチル化状態を判定する方法である。両方法ともに、特別な装置なしにメチル化DNAの定量的な解析ができるという点で、現在でも広く使用される方法であるが、解析に電気泳動法を利用する点で手間と時間がかかるという課題があった。
 一方、生化学や医学等の分野における核酸、タンパク質、多糖類といった生体高分子の分離分析には、簡便かつ短時間に精度良く検出できる方法としてイオン交換クロマトグラフィーが汎用されている。イオン交換クロマトグラフィーは、カラム充填剤のイオン交換基と測定対象物質中のイオン性基との間に働く静電的相互作用を利用して測定対象物質を分離する方法であり、アニオン交換によるものとカチオン交換によるものとがある。アニオン交換クロマトグラフィーは、イオン交換基としてカチオン性の官能基を有するカラム充填剤を用いて、アニオン性の物質を分離することができる。また、カチオン交換クロマトグラフィーは、イオン交換基としてアニオン性の官能基を有するカラム充填剤を用いて、カチオン性の物質を分離することができる。
 核酸のPCR増幅産物をイオン交換クロマトグラフィーを用いて分離する場合、一般的には核酸分子中に含まれるリン酸のマイナス電荷を利用して分離するアニオン交換クロマトグラフィーが用いられる。アニオン交換クロマトグラフィーにおけるカラム充填剤のカチオン性の官能基としては、ジエチルアミノエチル基のような弱カチオン性基、4級アンモニウム基のような強カチオン性基がある。これらカチオン性の官能基をイオン交換基として有するカラム充填剤が充填されたカラムは既に市販され、各種研究分野で使用されている。
 また本発明者は、イオン交換クロマトグラフィー用カラム充填剤として、カラム充填剤のカチオン性の官能基として強カチオン性基および弱カチオン性基の両方を有するカラム充填剤を開発し、この充填剤を充填したカラムを用いたイオン交換クロマトグラフィーにより、20merの非メチル化合成オリゴヌクレオチド間における一塩基の相違を分離分析したことを報告している(特許文献2)。
米国特許第5786146号公報 国際公開公報第2012/108516号パンフレット
Proc.Natl.Acad.Sci.USA,93,9821-9826(1996) Nucleic Acids Res.,24,5058-5059(1996) Nucleic Acids Res.,25,2532-2534(1997)
 上述のように亜硫酸水素塩反応を利用したDNAメチル化解析に基づいてがんリスク診断を行う場合、より早期またはより正確な診断のためには、亜硫酸水素塩反応によって生じたDNA塩基配列の違いを精度よく検出することが要求される。本発明は、電気泳動による解析に要していた手間と時間が解消された、迅速かつ簡便なメチル化DNAの検出方法を提供することを課題とする。特に、本発明は、検出シグナルの分離性能がよく高精度かつ高感度にDNAメチル化を検出することができる方法を提供することを課題とする。
 本発明者らは、亜硫酸水素塩で処理したDNAをPCRで増幅して得たPCR増幅産物を、イオン交換クロマトグラフィーによって分離することで、迅速かつ簡便にメチル化DNAを検出できることを見出した。本発明者らは、その後さらにイオン交換クロマトグラフィーの分析条件について鋭意検討を重ねた結果、驚くべきことに、当該イオン交換クロマトグラフィーのカラム温度に依存してメチル化DNAの検出シグナルのピーク分離が飛躍的に向上することを発見し、本発明を完成させるに至った。
 本発明は、以下の構成を有する。
〔1〕下記工程(1)、(2)および(3)を含むメチル化DNAの検出方法:
 (1)サンプルDNAを亜硫酸水素塩で処理する工程;
 (2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;および
 (3)得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程。
〔2〕下記工程(1)、(2)および(3’)を含むメチル化DNAの検出方法:
 (1)サンプルDNAを亜硫酸水素塩で処理する工程;
 (2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;および
 (3’)得られたPCR増幅産物を45℃以上90℃未満のカラム温度でイオン交換クロマトグラフィーにかける工程。
〔3〕上記イオン交換クロマトグラフィーがアニオン交換クロマトグラフィーである、〔1〕又は〔2〕記載の方法。
〔4〕上記イオン交換クロマトグラフィーに用いるカラム充填剤が、表面に強カチオン性基および弱カチオン性基の両方を有する基材粒子を含む、〔1〕~〔3〕のいずれか1に記載の方法。
〔5〕上記イオン交換クロマトグラフィーにおいて、上記PCR増幅産物の溶出に用いる溶離液がアンチカオトロピックイオンを含有する、〔1〕~〔4〕のいずれか1に記載の方法。
〔6〕上記アンチカオトロピックイオンが硫酸イオンおよびアンモニウムイオンのいずれかまたは両方である、〔1〕~〔5〕のいずれか1に記載の方法。
〔7〕上記サンプルDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルを、上記サンプルDNAと塩基配列は同じであるがメチル化していないDNAを亜硫酸水素塩で処理した物のPCR増幅産物、又は上記サンプルDNAと塩基配列は同じでかつメチル化の割合が既知であるDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルと比較する工程をさらに含む、〔1〕~〔6〕のいずれか1に記載の方法。
〔8〕上記比較する工程の結果に基づいて、上記サンプルDNAにおけるメチル化DNAの存在の有無、メチル化率、または存在比率を測定する工程をさらに含む、〔7〕記載の方法。
〔9〕上記サンプルDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルから、上記サンプルDNAと塩基配列は同じであるがメチル化していないDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルを差し引いて差分データを得る工程をさらに含む、〔1〕~〔6〕のいずれか1に記載の方法。
〔10〕上記差分データに基づいて、上記サンプルDNAにおけるメチル化DNAの存在の有無、メチル化率、または存在比率を測定する工程をさらに含む、〔9〕記載の方法。
〔11〕下記工程(1)~(6)を含むサンプルDNAのシグナルからメチル化DNAのシグナルを抽出する方法:
 (1)サンプルDNAを亜硫酸水素塩で処理する工程;
 (2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;
 (3)工程(2)で得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程;
 (4)該サンプルDNAと塩基配列は同じであるがメチル化していないDNAを亜硫酸水素塩で処理し、PCR増幅する工程;
 (5)工程(4)で得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程;および
 (6)工程(3)で得られたクロマトグラフィーの検出シグナルから、工程(5)で得られたクロマトグラフィーの検出シグナルを差し引いて差分データを得る工程。
〔12〕表面に強カチオン性基および弱カチオン性基の両方を有する基材粒子を含むカラム充填剤が充填されたイオン交換クロマトグラフィー用カラムのメチル化DNA検出のための使用。
〔13〕アンチカオトロピックイオンを含有するイオン交換クロマトグラフィー用溶離液のメチル化DNA検出のための使用。
 本発明によれば、イオン交換クロマトグラフィーを利用したメチル化DNAの検出方法が提供される。本発明の方法において行われるイオン交換クロマトグラフィーは、メチル化DNAと非メチル化DNAとの検出シグナルのピーク分離に優れており、精度よくメチル化DNAを検出することができる。したがって、本発明によれば、電気泳動法のような手間と時間を必要としない、迅速かつ簡便で、かつ高精度なメチル化DNAの検出方法が提供される。本発明のメチル化DNAの検出方法は、がんリスク検査等の臨床検査に有用である。
参考例1で得られたアニオン交換カラムを用いた、CDKN2A遺伝子プロモーター由来のメチル化DNAおよび非メチル化DNAのPCR増幅産物(136bp)のクロマトグラム。 参考例1で得られたアニオン交換カラムを用いた、CDKN2A遺伝子プロモーター由来のメチル化DNAおよび非メチル化DNAのPCR増幅産物(77bp)のクロマトグラム。 参考例1で得られたアニオン交換カラムを用いた、MTAPプロモーター遺伝子由来のメチル化DNAおよび非メチル化DNAのPCR増幅産物(202bp)のクロマトグラム。 参考例1で得られたアニオン交換カラムにて、カラム温度40℃~85℃で分析した場合の、CDKN2A遺伝子プロモーター由来のメチル化DNAおよび非メチル化DNAを亜硫酸水素塩で処理した物のPCR増幅産物(136bp)のクロマトグラム。 参考例1で得られたアニオン交換カラムにて、カラム温度40℃~85℃で分析した場合の、CDKN2A遺伝子プロモーター由来のメチル化DNAおよび非メチル化DNAを亜硫酸水素塩で処理した物のPCR増幅産物(136bp)のクロマトグラム。 参考例1で得られたアニオン交換カラムにて、カラム温度40℃~85℃で分析した場合の、CDKN2A遺伝子プロモーター由来のメチル化DNAおよび非メチル化DNAを亜硫酸水素塩で処理した物のPCR増幅産物(77bp)のクロマトグラム。 参考例1で得られたアニオン交換カラムにて、カラム温度40℃~85℃で分析した場合の、CDKN2A遺伝子プロモーター由来のメチル化DNAおよび非メチル化DNAを亜硫酸水素塩で処理した物のPCR増幅産物(77bp)のクロマトグラム。 サンプルDNA中の100%メチル化DNA含有率に対するPCR増幅産物のピーク高さ比率のプロット。 DNAメチル化率によるクロマトグラフィー溶出時間の変動。A:DNAメチル化率の異なるDNA(0%、25%、50%、75%、100%)のクロマトグラムB:DNAメチル化位置の異なる50%メチル化DNA(ランダム、5’側寄り、3’側寄り、中央)のクロマトグラム。 DNAメチル化率によるクロマトグラフィー溶出時間の変動。C:DNAメチル化率に対する溶出時間のプロット。
 本発明において、メチル化DNA検出の対象となるサンプルDNAとしては、動物、植物、微生物を含むあらゆる生物のDNAが挙げられ、好ましくは動物、より好ましくは哺乳動物のDNAである。哺乳動物としては、ヒト、サル、マウス、ラット、モルモット、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコなどが挙げられるが、これらに限定されない。サンプルDNAは、DNAを含有する生物由来の試料から抽出、単離または精製して得ることができる。
 上記サンプルDNAを含有する生物由来の試料としては、上述した生物から採取した各種細胞、例えば、組織細胞、血球、または尿、糞便、唾液、その他の体液や分泌液中に存在する細胞、および上述した生物由来の培養細胞株などが挙げられる。さらに、当該生物由来の試料には、各種疾患(固形がん、白血病など)に特徴的な細胞も含まれる。
 上記試料からサンプルDNAを抽出、単離または精製する方法としては、特に制限はなく、公知の手法を適宜選択して用いることができる。サンプルDNAを調製する公知の方法としては、フェノールクロロホルム法、または市販のDNA抽出キット、例えば後述するQIAamp DNA Mini kit(Qiagen社製)、Clean Columns(NexTec社製)、AquaPure(Bio-Rad社製)、ZR Plant/Seed DNA Kit(Zymo Research社製)、prepGEM(ZyGEM社製)、BuccalQuick(TrimGen社製)を用いるDNA抽出方法等が挙げられる。
 本発明のメチル化DNAの検出方法においては、上記試料から抽出したサンプルDNAを亜硫酸水素塩で処理する。DNAの亜硫酸水素塩処理の方法としては、特に制限はなく、公知の手法を適宜選択して用いることができる。亜硫酸水素塩処理のための公知の方法としては、例えば、後述するEpiTect Bisulfite Kit(48)(Qiagen社製)や、MethylEasy(Human Genetic Signatures Pty社製)、Cells-to-CpG Bisulfite Conversion Kit(Applied Biosystems社製)、CpGenome Turbo Bisulfite Modification Kit(MERCK MILLIPORE社製)などの市販のキットを用いる方法が挙げられる。
 次いで、亜硫酸水素塩によって処理されたサンプルDNAを、PCRによって増幅する。PCR増幅の方法としては特に制限はなく、増幅対象のDNAの配列、長さ、量などに応じて、公知の手法を適宜選択して用いることができる。PCR増幅産物の鎖長は、PCRの増幅時間の短縮、ならびにイオン交換クロマトグラフィーでの分析時間の短縮や分離性能の維持等の要素を勘案して適宜選択することができる。例えば、CpGアイランドが多いサンプルDNAを用いる場合のPCR増幅産物の鎖長は、1000bp以下が好ましく、700bp以下がより好ましく、500bp以下がさらに好ましい。一方、CpGアイランドが少ないサンプルDNAを用いる場合のPCR増幅産物の鎖長は、PCRにおける非特異的ハイブリダイズを避けられる15mer付近のプライマーを使用する場合のPCR増幅産物の鎖長である30~40bpが下限となる。一方で、CpGアイランドの含有率がリッチになるようにプライマーを設計するのが好ましい。例えば、CpGサイトのシトシンが、PCR増幅産物の鎖長に対して2%以上含まれるのが好ましく、5%以上含まれるのがより好ましい。
 DNAを亜硫酸水素塩処理した場合、当該DNA中の非メチル化シトシンはウラシルに変換されるが、メチル化シトシンはシトシンのままである。亜硫酸水素塩処理したDNAをPCR増幅すると、非メチル化シトシン由来のウラシルは、さらにチミンに置き換わるため、メチル化DNAと非メチル化DNAとの間で、シトシンとチミンの存在比率に差が生じる。本発明のメチル化DNAの検出方法では、この塩基の存在比率の違いを利用して、DNAのメチル化状態を解析する。
 続いて、得られたPCR増幅産物をイオン交換クロマトグラフィーにかける。本発明で行われるイオン交換クロマトグラフィーは、アニオン交換クロマトグラフィーが好適である。本発明で行われるイオン交換クロマトグラフィーに用いるカラムの充填剤としては、表面に強カチオン性基を有する基材粒子であれば特に限定されないが、特許文献2に示される充填剤表面に強カチオン性基と弱カチオン性基の両方を有する基材粒子が好ましい。
 本明細書において、上記強カチオン性基とは、pHが1から14の広い範囲で解離するカチオン性基を意味する。すなわち、上記強カチオン性基は、水溶液のpHに影響を受けず解離した(カチオン化した)状態を保つことが可能である。
 上記強カチオン性基としては、4級アンモニウム基が挙げられる。具体的には例えば、トリメチルアンモニウム基、トリエチルアンモニウム基、ジメチルエチルアンモニウム基等のトリアルキルアンモニウム基等が挙げられる。また、上記強カチオン性基のカウンターイオンとしては、例えば、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオンが挙げられる。
 上記基材粒子の表面に導入される上記強カチオン性基量は、特に限定されないが、充填剤の乾燥重量あたりの好ましい下限は1μeq/g、好ましい上限は500μeq/gである。上記強カチオン性基量が1μeq/g未満であると、保持力が弱く分離性能が悪くなることがある。上記強カチオン性基量が500μeq/gを超えると、保持力が強くなり過ぎてPCR増幅産物を容易に溶出させることができず、分析時間が長くなりすぎる等の問題が生じることがある。
 本明細書において、上記弱カチオン性基とは、pkaが8以上のカチオン性基を意味する。すなわち、上記弱カチオン性基は、水溶液のpHによる影響を受け、解離状態が変化する。すなわち、pHが8より高くなると、上記弱カチオン性基のプロトンは解離し、プラスの電荷を持たない割合が増える。逆にpHが8より低くなると、上記弱カチオン性基はプロトン化し、プラスの電荷を持つ割合が増える。
 上記弱カチオン性基としては、例えば、3級アミノ基、2級アミノ基、1級アミノ基等が挙げられる。なかでも、3級アミノ基であることが望ましい。
 上記基材粒子の表面に導入される上記弱カチオン性基量は、特に限定されないが、充填剤の乾燥重量あたりの好ましい下限は0.5μeq/g、好ましい上限は500μeq/gである。上記弱カチオン性基量が0.5μeq/g未満であると、少なすぎて分離性能が向上しないことがある。上記弱カチオン性基量が500μeq/gを超えると、強カチオン性基と同様保持力が強くなり過ぎてPCR増幅産物を容易に溶出させることができず、分析時間が長くなりすぎる等の問題が生じることがある。
 上記基材粒子表面の強カチオン性基または弱カチオン性基量は、アミノ基に含まれる窒素原子を定量することにより測定することができる。窒素を定量する方法として例えばケルダール法が挙げられる。本発明(実施例)記載の充填剤の場合には、まず、重合後に強カチオン性基に含まれる窒素を定量し、次いで、弱カチオン性基を導入した後の強カチオン性基と弱カチオン性基に含まれる窒素を定量することにより、後から導入した弱カチオン性基量を算出することができる。このように定量することにより、充填剤を調製する際に、強カチオン性基量および弱カチオン性基量を上記範囲内に調整することができる。
 上記基材粒子としては、例えば、重合性単量体等を用いて得られる合成高分子微粒子、シリカ系等の無機微粒子等を用いることができるが、合成有機高分子からなる疎水性架橋重合体粒子であることが望ましい。
 上記疎水性架橋重合体は、少なくとも1種の疎水性架橋単量体と少なくとも1種の反応性官能基を有する単量体を共重合して得られる疎水性架橋重合体、少なくとも1種の疎水性架橋単量体と少なくとも1種の反応性官能基を有する単量体と少なくとも1種の疎水性架橋単量体とを共重合して得られる疎水性架橋重合体のいずれであってもよい。
 上記疎水性架橋性単量体としては、単量体1分子中にビニル基を2個以上有するものであれば特に限定されず、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のジ(メタ)アクリル酸エステル、トリメチロールメタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート等のトリ(メタ)アクリル酸エステル若しくはテトラ(メタ)アクリル酸エステル、またはジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、ジビニルナフタレン等の芳香族系化合物が挙げられる。なお、本明細書において上記(メタ)アクリレートとは、アクリレートまたはメタクリレートを意味し、(メタ)アクリルとは、アクリルまたはメタクリルを意味する。
 上記反応性官能基を有する単量体としては、グリシジル(メタ)アクリレート、イソシアネートエチル(メタ)アクリレート等が挙げられる。
 上記疎水性非架橋性単量体としては、疎水性の性質を有する非架橋性の重合性有機単量体であれば特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート等の(メタ)アクリル酸エステルや、スチレン、メチルスチレン等のスチレン系単量体が挙げられる。
 上記疎水性架橋重合体が、上記疎水性架橋性単量体と上記反応性官能基を有する単量体とを共重合して得られるものである場合、上記疎水性架橋重合体における上記疎水性架橋性単量体に由来するセグメントの含有割合の好ましい下限は10重量%、より好ましい下限は20重量%である。
 本発明のイオン交換クロマトグラフィー用充填剤は、上記基材粒子の表面に、上記強カチオン性基と上記弱カチオン性基とを有する重合体層を有するものであることが好ましい。また、上記強カチオン性基と上記弱カチオン性基とを有する重合体において、上記強カチオン性基と上記弱カチオン性基とはそれぞれ独立した単量体に由来するものであることが好ましい。具体的には、本発明のイオン交換クロマトグラフィー用充填剤は、上記疎水性架橋重合体粒子と、上記疎水性架橋重合体粒子の表面に共重合された強カチオン性基を有する親水性重合体の層とからなる被覆重合体粒子の表面に、弱カチオン性基が導入されたものであることが好適である。
 上記強カチオン性基を有する親水性重合体は、強カチオン性基を有する親水性単量体から構成されるものであり、1種以上の強カチオン性基を有する親水性単量体に由来するセグメントを含有すればよい。すなわち、上記強カチオン性基を有する親水性重合体を製造する方法としては、強カチオン性基を有する親水性単量体を単独で重合させる方法、2種以上の強カチオン性基を有する親水性単量体を共重合させる方法、強カチオン性基を有する親水性単量体と強カチオン性基を有しない親水性単量体を共重合させる方法等が挙げられる。
 上記強カチオン性基を有する親水性単量体としては、4級アンモニウム基を有するものであることが好ましい。具体的には例えば、メタクリル酸エチルトリエチルアンモニウムクロリド、メタクリル酸エチルジメチルエチルアンモニウムクロリド、メタクリル酸エチルジメチルベンジルアンモニウムクロリド、アクリル酸エチルジメチルベンジルアンモニウムクロリド、アクリル酸エチルトリエチルアンモニウムクロリド、アクリル酸エチルジメチルエチルアンモニウムクロリド、アクリルアミドエチルトリメチルアンモニウムクロリド、アクリルアミドエチルトリエチルアンモニウムクロリド、アクリルアミドエチルジメチルエチルアンモニウムクロリド等が挙げられる。
 上記被覆重合体粒子の表面に上記弱カチオン性基を導入する方法としては、公知の方法を用いることができる。具体的には例えば、上記弱カチオン性基として3級アミノ基を導入する方法としては、グリシジル基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いでグリシジル基に3級アミノ基を有する試薬を反応させる方法、イソシアネート基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、イソシアネート基に3級アミノ基を有する試薬を反応させる方法、上記疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体と3級アミノ基を有する単量体とを共重合する方法、3級アミノ基を有するシランカップリング剤を用いて上記強カチオン性基を有する親水性重合体の層を有する被覆重合体粒子の表面に3級アミノ基を導入する方法、カルボキシ基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、カルボキシ基と3級アミノ基を有する試薬とを、カルボジイミドを用いて縮合させる方法、エステル結合を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、エステル結合部を加水分解した後、次いで、加水分解によって生成したカルボキシ基と3級アミノ基を有する試薬とを、カルボジイミドを用いて縮合させる方法等が挙げられる。なかでも、グリシジル基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、グリシジル基に3級アミノ基を有する試薬を反応させる方法や、イソシアネート基を有する単量体に由来するセグメントを有する疎水性架橋重合体からなる疎水性架橋重合体粒子の表面において上記強カチオン性基を有する親水性単量体を共重合し、次いで、イソシアネート基に3級アミノ基を有する試薬を反応させる方法が好ましい。
 グリシジル基やイソシアネート基等の反応性官能基に反応させる上記3級アミノ基を有する試薬としては、3級アミノ基と反応性官能基に反応可能な官能基を有する試薬であれば、特に限定されない。上記3級アミノ基と反応性官能基に反応可能な官能基としては、例えば、1級アミノ基、水酸基等が挙げられる。なかでも、末端に1級アミノ基を有している基が好ましい。当該官能基を有する具体的な試薬としては、N,N-ジメチルアミノメチルアミン、N,N-ジメチルアミノエチルアミン、N,N-ジメチルアミノプロピルアミン、N,N-ジメチルアミノブチルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジエチルアミノプロピルエチルアミン、N,N-ジエチルアミノブチルアミン、N,N-ジエチルアミノペンチルアミン、N,N-ジエチルアミノヘキシルアミン、N,N-ジプロピルアミノブチルアミン、N,N-ジブチルアミノプロピルアミン等が挙げられる。
 上記強カチオン性基、好ましくは4級アンモニウム塩と、上記弱カチオン性基、好ましくは3級アミノ基との相対的な位置関係は、上記強カチオン性基が上記弱カチオン性基よりも基材粒子の表面から遠い位置、即ち外側にあることが好ましい。例えば、上記弱カチオン性基は基材粒子表面から30Å以内にあり、上記強カチオン性基は基材粒子表面から300Å以内で、かつ、弱カチオン性基よりも外側にあることが好ましい。
 本発明のイオン交換クロマトグラフィー用充填剤に用いられる上記基材粒子の平均粒子径は、特に限定されないが、好ましい下限は0.1μm、好ましい上限は20μmである。上記平均粒子径が0.1μm未満であると、カラム内が高圧になりすぎて分離不良を起こすことがある。上記平均粒子径が20μmを超えると、カラム内のデッドボリュームが大きくなりすぎて分離不良を起こすことがある。なお、本明細書において上記平均粒子径は体積平均粒子径を示し、粒度分布測定装置(AccuSizer780/Particle Sizing Systems社製など)を用いて測定することができる。
 本発明で行われるイオン交換クロマトグラフィーに用いる溶離液の組成としては、公知の条件を用いることができる。
 上記溶離液に用いる緩衝液としては、公知の塩化合物を含む緩衝液類や有機溶媒類を用いることが好ましく、具体的には例えば、トリス塩酸緩衝液、トリスとEDTAからなるTE緩衝液、トリスとホウ酸とEDTAからなるTBA緩衝液等が挙げられる。
 上記溶離液のpHは特に限定されないが、好ましい下限は5、好ましい上限は10である。この範囲に設定することで、上記弱カチオン性基も効果的にイオン交換基(アニオン交換基)として働くと考えられる。上記溶離液のpHのより好ましい下限は6、より好ましい上限は9である。
 上記溶離液に含まれる塩としては、例えば、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム等のハロゲン化物とアルカリ金属とからなる塩や、塩化カルシウム、臭化カルシウム、塩化マグネシウム、臭化マグネシウム等のハロゲン化物とアルカリ土類金属とからなる塩や、過塩素酸ナトリウム、過塩素酸カリウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硝酸ナトリウム、硝酸カリウム等の無機酸塩等を用いることができる。また、酢酸ナトリウム、酢酸カリウム、コハク酸ナトリウム、コハク酸カリウム等の有機酸塩を用いることもできる。上記塩は、いずれか単独または組み合わせて使用され得る。
 上記溶離液の塩濃度としては、分析条件に合わせ適宜調整すればよいが、好ましい下限は10mmol/L、好ましい上限は2000mmol/Lであり、より好ましい下限は100mmol/L、より好ましい上限は1500mmol/Lである。
 さらに、本発明のイオン交換クロマトグラフィーに用いる溶離液には、分離性能をさらに高めるためにアンチカオトロピックイオンが含まれている。アンチカオトロピックイオンは、カオロトピックイオンとは逆の性質を有し、水和構造を安定化させる働きがある。そのため、充填剤と核酸分子との間の疎水性相互作用を強める効果がある。本発明のイオン交換クロマトグラフィーの主たる相互作用は静電的相互作用であるが、加えて、疎水性相互作用の働きも利用することにより分離性能が高まる。
 上記溶離液に含まれるアンチカオトロピックイオンとしては、リン酸イオン(PO4 3-)、硫酸イオン(SO4 2-)、アンモニウムイオン(NH4 +)、カリウムイオン(K+)、ナトリウムイオン(Na+)などが挙げられる。これらのイオンの組合せの中でも、硫酸イオンおよびアンモニウムイオンが好適に用いられる。上記アンチカオトロピックイオンは、いずれか単独または組み合わせて使用され得る。なお、上述のアンチカオトロピックイオンの一部には、上記溶離液に含まれる塩や緩衝液の成分が含まれる。このような成分を使用する場合、溶離液に含まれる塩としての性質または緩衝能と、アンチカオトロピックイオンとしての性質の両方を具備するので、本発明には好適である。
 本発明のイオン交換クロマトグラフィー用溶離液におけるアンチカオトロピックイオンの分析時の濃度は、分析対象物に合わせて適宜調整すればよいが、アンチカオトロピック塩として2000mmol/L以下であることが望ましい。具体的には、アンチカオトロピック塩の濃度を0~2000mmol/Lの範囲でグラジエント溶出させる方法を挙げることができる。従って、分析開始時のアンチカオトロピック塩の濃度は0mmol/Lである必要はなく、また、分析終了時のアンチカオトロピック塩の濃度も2000mmol/Lである必要はない。上記グラジエント溶出の方法は、低圧グラジエント法であっても高圧グラジエント法であってもよいが、高圧グラジエント法による精密な濃度調整を行いながら溶出させる方法が好ましい。
 上記アンチカオトロピックイオンは、溶出に用いる溶離液のうちの1種のみに添加してもよいが、複数種の溶離液に添加してもよい。また上記アンチカオトロピックイオンは、充填剤とPCR増幅産物との間の疎水性相互作用を強める効果または緩衝能と、PCR増幅産物をカラムから溶出させる効果の両方の役割を備えていても良い。
 本発明で行われるイオン交換クロマトグラフィーでPCR増幅産物を分析する際のカラム温度は、好ましくは30℃以上であり、より好ましくは40℃以上であり、さらに好ましくは45℃以上である。イオン交換クロマトグラフィーのカラム温度が30℃未満であると充填剤とPCR増幅産物との間の疎水性相互作用が弱くなり、所望の分離効果を得ることが難しくなる。さらに図4-1、図4-2、図5-1、図5-2および表3に示すとおり、イオン交換クロマトグラフィーのカラム温度が45℃未満である場合、メチル化DNAの亜硫酸水素塩処理物のPCR増幅産物(メチル化DNAサンプル)と非メチル化DNAの亜硫酸水素塩処理物のPCR増幅産物(非メチル化DNAサンプル)との保持時間の差が小さい。また二本鎖DNAのうち片一方の鎖がメチル化されたヘミメチル化DNA(メチル化DNAサンプルと非メチル化DNAサンプルとの等量混合物と同等の組成となる)の亜硫酸水素塩処理物のPCR増幅産物(ヘミメチル化DNAサンプル)を分析した場合のクロマトグラムは、分離が良好でなく不明瞭である。一方、カラム温度が55℃以上では、ヘミメチル化DNAサンプル中のメチル化DNA鎖由来のPCR増幅産物と非メチル化DNA鎖由来のPCR増幅産物が分離されて保持時間の異なる2つのピークとしてそれぞれ別個に検出されるので、ヘミメチル化DNAサンプルにおいてもDNAのメチル化を検出することができる。さらに、カラム温度が60℃以上では、メチル化DNAサンプルと非メチル化DNAサンプルの間の保持時間の差がさらに広がり、かつそれぞれのピークもより明瞭になるので、より精度のよいDNAのメチル化の検出が可能になる。
 さらに、イオン交換クロマトグラフィーのカラム温度が高くなると、メチル化DNAサンプルと非メチル化DNAサンプルとが明瞭に分離されるので、サンプルDNA中のメチル化DNAと非メチル化DNAの存在比率に従って両者の保持時間のピーク面積またはピーク高さに差異が生じやすくなる。したがって、カラム温度を高くすれば、メチル化DNAサンプルと非メチル化DNAサンプルの間の保持時間のピークの面積または高さに基づいて、サンプルDNA中のメチル化DNAおよび非メチル化DNAそれぞれの存在量や存在比率を測定することがより容易になる。
 一方、イオン交換クロマトグラフィーのカラム温度が90℃以上になると、PCR増幅産物中の核酸分子の二本鎖が乖離するため分析上好ましくない。さらに、カラム温度が100℃以上になると、溶離液の沸騰が生じる恐れがあるため分析上好ましくない。したがって、本発明で行われるイオン交換クロマトグラフィーでPCR増幅産物を分析する際のカラム温度は、30℃以上90℃未満であればよく、好ましくは40℃以上90℃未満であり、より好ましくは45℃以上90℃未満であり、さらに好ましくは55℃以上90℃未満であり、さらにより好ましくは55℃以上85℃以下であり、なお好ましくは60℃以上85℃以下である。
 上記イオン交換クロマトグラフィーカラムへの試料注入量は、特に限定されずカラムのイオン交換容量および試料濃度に応じて適宜調整すればよい。流速は0.1mL/minから3.0mL/minが好ましく、0.5mL/minから1.5mL/minがより好ましい。流速が遅くなると分離の向上が期待できるが、遅くなりすぎると分析に長時間を要したり、ピークのブロード化による分離性能の低下を招く恐れがある。逆に流速が早くなると分析時間の短縮という面においてはメリットがあるが、ピークが圧縮されるため分離性能の低下を招く。よって、カラムの性能によって適宜調整されるパラメータではあるが、上記流速の範囲に設定することが望ましい。各サンプルの保持時間は、各サンプルについて予備実験を行うことによって予め決定することができる。送液方法はリニアグラジエント溶出法やステップワイズ溶出法など公知の送液方法を用いることができるが、本発明における送液方法としてはリニアグラジエント溶出法が好ましい。グラジエント(勾配)の大きさは溶出に用いる溶離液を0%から100%の範囲で、カラムの分離性能および分析対象物(ここではPCR増幅産物)の特性に合わせ適宜調整すればよい。
 本発明においては、上述した手順で亜硫酸水素塩処理したDNAのPCR増幅産物をイオン交換クロマトグラフィーにかけることによって、サンプルDNAにおけるDNAのメチル化を検出する。本明細書において、DNAの「メチル化を検出する」とは、当該DNAにおけるメチル化DNAの存在の有無もしくは存在量を測定すること、当該DNAにおけるメチル化DNAと非メチル化DNAとの存在量の比を測定すること、または当該DNAのメチル化の割合(メチル化率ともいう)を測定することを意味する。
 より詳細には、上記亜硫酸水素塩処理したサンプルDNAのPCR増幅産物をイオン交換クロマトグラフィーにかけると、当該増幅産物中に含まれるDNAの塩基配列に応じて、異なるシグナルを示すクロマトグラムが得られる。得られたサンプルDNAの亜硫酸水素塩処理物のPCR増幅産物からの検出シグナルを、サンプルDNAと塩基配列は同じであるがメチル化していないDNAの亜硫酸水素塩処理物(以下、陰性対照という)のPCR増幅産物からの検出シグナル、またはサンプルDNAと塩基配列は同じでかつメチル化の割合が既知(例えば、100%)であるDNAの亜硫酸水素塩処理物(以下、陽性対照という)のPCR増幅産物からの検出シグナルと比較することにより、サンプルDNA中におけるメチル化DNAの存在の有無を測定することができる(図1~3を参照)。
 あるいは、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物からの検出シグナルを、陰性および陽性対照のPCR増幅産物からの検出シグナルと比較することにより、サンプルDNA中のメチル化DNAの存在量、および非メチル化DNAとの存在量の比を測定することができる。またあるいは、サンプルDNAと塩基配列は同じでかつメチル化の割合が既知である複数のDNAの亜硫酸水素塩処理物(以下、標準という)に由来する複数のPCR増幅産物からの検出シグナルを、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物からの検出シグナルと比較することにより、サンプルDNA中のメチル化DNAのメチル化率、存在量、および非メチル化DNAとの存在量の比を測定することができる(図6、図7-1および図7-2を参照)。
 本発明の方法においては、上記陰性対照、陽性対照または標準のPCR増幅産物の代わりに、上記陰性対照、陽性対照または標準と同じ塩基配列からなる、化学的または遺伝子工学的に合成したDNAを用いてもよい。さらに本発明の方法においては、陰性対照、陽性対照または標準の調製には市販品を用いることもでき、例えばEpiTect Control DNA and Control DNA Set(Qiagen社製)を使用できる。
 また本発明によれば、二本鎖DNAのうち片一方の鎖がメチル化されたヘミメチル化DNAについても、DNAメチル化を検出することができる。ヘミメチル化DNAを亜硫酸水素塩で処理した物のPCR増幅産物は、亜硫酸水素塩処理したメチル化DNAのPCR増幅産物と、亜硫酸水素塩処理した非メチル化DNAのPCR増幅産物との混合物となる。本発明で行われるイオン交換クロマトグラフィーにおいては、これらメチル化DNA鎖と非メチル化DNA鎖とを精度良く分離して測定できることから、ヘミメチル化DNAを検出することができる(図4-1、図4-2、図5-1、図5-2を参照)。
 好ましい態様において、本発明で行われるイオン交換クロマトグラフィーにおいては、上記サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物を含む試料と、上記陰性対照もしくは陽性対照、または上記標準のPCR増幅産物を含む試料とを、個別にイオン交換クロマトグラフィー分析に供する。カラムに吸着した試料を、複数の溶離液を用いてグラジエント溶出させることにより、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物と陰性対照もしくは陽性対照または標準のPCR増幅産物とを、DNAメチル化率に応じて異なる保持時間で溶出することができる。
 陰性対照からの検出シグナルは、サンプルDNAの代わりに、サンプルDNAと塩基配列は同じであるがメチル化していないDNAを用いて上述した手順で亜硫酸水素塩処理およびPCRを行い、得られたPCR増幅産物をイオン交換クロマトグラフィーにかけることによって獲得することができる。陽性対照からの検出シグナルは、サンプルDNAの代わりに、サンプルDNAと塩基配列は同じでかつメチル化率が既知(例えば、100%)であるDNAを用いて上述した手順で亜硫酸水素塩処理およびPCRを行い、得られたPCR増幅産物をイオン交換クロマトグラフィーにかけることによって獲得することができる。あるいは、上述した合成DNAや市販のDNAを陰性または陽性対照として、イオン交換クロマトグラフィーにかけることで、陰性または陽性対照からの検出シグナルを得てもよい。
 標準からの検出シグナルは、サンプルDNAの代わりに、サンプルDNAと塩基配列は同じでかつメチル化の割合が既知である複数のDNAを用いて上述した手順で亜硫酸水素塩処理およびPCRを行い、得られた複数のPCR増幅産物をそれぞれイオン交換クロマトグラフィーにかけることによって獲得することができる。さらに、得られた各々の検出シグナルから、検量線を作成してもよい。あるいは、上述した合成DNAや市販のDNAを標準として、イオン交換クロマトグラフィーにかけることで、標準からの検出シグナルを得てもよい。
 次いで、上記クロマトグラフィーで得られたサンプルDNAの亜硫酸水素塩処理物のPCR増幅産物からの検出シグナルと、陰性もしくは陽性対照、または標準からの検出シグナルとを比較する。両者の検出シグナルの違いに基づいて、サンプルDNAのメチル化を検出することができる。
 例えば、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物から得られた検出シグナルのピークの保持時間が、陰性対照のピークの保持時間とずれていれば、サンプルDNAがメチル化していると判定できる。さらにこのとき、保持時間のずれが大きいほど、メチル化率がより大きいと推定できる。逆に、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物から得られた検出シグナルのピークの保持時間が、100%メチル化陽性対照のピークの保持時間とずれているほど、サンプルDNAのメチル化率はより小さいと推定できる。あるいは、メチル化率が既知の標準から得られた複数のピークの保持時間に基づいて検量線を作成し、この検量線に基づいてサンプルDNAのメチル化率を決定することができる(図7-1および図7-2を参照)。
 また例えば、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物から得られた検出シグナルのピークの高さまたはピーク面積を、メチル化DNAのメチル化率および混合比が既知のDNAの亜硫酸水素塩処理物のPCR増幅産物から得られた検出シグナルのピークの高さまたはピーク面積と比較することによって、サンプルDNAにおけるメチル化DNAの存在比率(例えば非メチル化DNAの存在比率や、特定の割合でメチル化されたDNAの存在比率など)を決定することができる(図6を参照)。
 本発明の方法において、クロマトグラフィーによる検出シグナルのピークの有無を判定する方法としては、既存のデータ処理ソフトウェア、例えばLCsolution(島津製作所)、GRAMS/AI(サーモフィッシャーサイエンティフィック社)、Igor Pro(WaveMetrics社)などを用いたピーク検出が挙げられる。LCsolutionを用いたピークの有無の判定方法を例示すると、具体的には、まずピークを検出させたい保持時間の区間を指定する。次に、ノイズなど不要なピークを除去するために、各種パラメータを設定する。例えば、パラメータ「WIDTH」を不要なピークの半値幅よりも大きくする、パラメータ「SLOPE」を不要なピークの立ち上り傾斜より大きくする、パラメータ「DRIFT」の設定を変えることにより分離度の低いピークを垂直分割するかベースライン分割するか選択する、などが挙げられる。パラメータの値は、分析条件、選択した遺伝子マーカーの種類、検体の量などにより、異なるクロマトグラムが得られるため、クロマトグラムに応じて適切な値を設定すればよい。
 本発明のメチル化DNAの検出方法によれば、迅速、簡便、かつ高精度なメチル化DNAの検出が可能になる。本発明のメチル化DNAの検出方法の応用例としては、臨床検査への応用を挙げることができる。DNAのメチル化の状態が細胞のがん化に影響することが知られており、特にCpGアイランドの異常なDNAメチル化が発がんに関与することは多く報告されている(例えば、特開2010-063413号公報参照)。したがって、本発明のメチル化DNAの検出方法は、がん発症検査やがん発症リスク検査等の臨床検査に好適に応用することができる。
 さらに、本発明の方法においては、サンプルDNAの亜硫酸水素塩処理物のPCR増幅産物から得られた検出シグナルから、陰性対照から得られた検出シグナルを差し引いた差分データを求めることができる。差分データを求めることにより、サンプルDNA全体としての検出シグナルから非メチル化DNAからのシグナル(ノイズ)を除去し、メチル化DNAからのシグナルのみを抽出することができる。当該差分データは、サンプルDNA中のメチル化DNAによる検出シグナルに相当する。例えば、上記差分データにおいて、陰性対照とは異なる保持時間のピークを検出することができれば、サンプルDNAにメチル化DNAが存在すると判断することができる。さらに、当該差分データのピークの保持時間、ピークの高さまたはピーク面積を、陰性対照、陽性対照、または標準から得られた検出シグナルのそれと比較することによって、サンプルDNAにおけるメチル化DNAのメチル化率や存在比率を決定することができる。当該差分データを用いることによって、メチル化DNAからのシグナル成分が微弱にしか検出されないサンプル、例えば、メチル化DNAの存在比率の低いサンプルDNAや、メチル化率の低いメチル化DNAを含むサンプルDNAにおいても、メチル化DNAの検出や解析が可能になる。したがって、当該差分データを用いることにより、サンプルDNA中のメチル化DNAに関するより高精度な解析が可能になる。なお差分データを求める際には、サンプルDNAと陰性対照に用いるDNAとのDNA量を合わせておくことが望ましい。DNA量の確認は、吸光度測定等の測定方法により確認すればよい。
 上記差分データは、がん発症検査やがん発症リスク検査等の臨床検査において特に有効である。上記のような臨床検査のために採取される検体は、正常細胞を含む場合や、またはDNAメチル化がそれほど進行していない前がん状態の細胞を多く含む場合がある。上記差分データを用いることによって、検体中の正常細胞や前がん細胞中の正常DNAに由来する非メチル化DNAの影響を除去することができるので、より高精度なメチル化DNAの検出を行うことができ、さらに当該検出結果を利用すれば、がん発症やがん発症リスクの診断をより精度よく行うことができる。
 本発明のメチル化DNAの検出方法の他の応用例としては、細胞の分化状態の解析への応用を挙げることができる。ゲノム上のメチル化パターンが細胞分化の決定要因となっていることが知られており、未分化である幹細胞(例えばES細胞、iPS細胞、各種生体幹細胞)と、分化した細胞とでは、それぞれの細胞のDNAのメチル化パターンが異なる。本発明のメチル化DNAの検出方法を用いれば、細胞の分化状態に応じたメチル化パターンの違いを解析できるため、DNA抽出に用いた細胞の分化段階や、分化状態の異なる細胞が混合しているか否かなど、高度に細胞の分化状態を解析することができる。
 以上のとおり、上述したイオン交換クロマトグラフィー用カラムおよび溶離液を用いることによって、メチル化DNAを分離または検出することができる。したがって本発明は、上述した表面に強カチオン性基および弱カチオン性基の両方を有する基材粒子を含むカラム充填剤が充填されたメチル化DNA検出に用いるイオン交換クロマトグラフィー用カラムを提供するものであり、また上述したアンチカオトロピックイオンを含有するメチル化DNA検出に用いるイオン交換クロマトグラフィー用溶離液を提供するものである。上記本発明のカラムまたは溶離液は、公衆に提供される際、または公衆への提供の告知にあたり、メチル化DNAの検出に用い得る旨が表示あるいは標榜されていたり、メチル化DNAの検出に用いられる旨が記載された書面や電子媒体(例えば、取り扱い説明書、カタログ、パンフレット、CD、Webなど)に記載されることにより、他のカラムや溶離液と識別をすることができる。
 さらに上記した本発明のカラムと、イオン交換クロマトグラフィーに使用される機器や部材(例えばポンプ、グラジエントミキサー、ガードカラムなど)、イオン交換クロマトグラフィーに使用される試薬類(例えば、本発明の溶離液、カラム洗浄液など)、本発明の検出法の各工程で使用される部材や試薬(例えば、DNA抽出用のカラムや試薬およびPCR増幅工程に使用される試薬(例えば、プライマーやポリメラーゼなど))の一以上とを組み合わせてメチル化DNA検出に用いられるキットとして提供することも可能である。上記本発明のキットは、公衆に提供される際、または公衆への提供の告知にあたり、メチル化DNAの検出に用い得る旨が表示あるいは標榜されていたり、メチル化DNAの検出に用いられる旨が記載された書面や電子媒体(例えば、取り扱い説明書、カタログ、パンフレット、CD、Webなど)に記載されることにより、他のカラムや溶離液と識別をすることができることは、本発明のカラム、本発明の溶離液の場合と同様である。
 以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
〔参考例1〕アニオン交換カラムの調製
 攪拌機付き反応器中の3重量%ポリビニルアルコール(日本合成化学社製)水溶液2000mLに、テトラエチレングリコールジメタアクリレート(新中村化学工業社製)200g、トリエチレングリコールジメタアクリレート(新中村化学工業社製)100g、グリシジルメタクリレート(和光純薬工業社製)100gおよび過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃で1時間重合した。次に、強カチオン性基を有する親水性単量体として、メタクリル酸エチルトリメチルアンモニウムクロリド(和光純薬工業社製)100gをイオン交換水に溶解した。これを同じ反応器に添加して、同様にして、攪拌しながら窒素雰囲気下にて80℃で2時間重合した。得られた重合組成物を水およびアセトンで洗浄することにより、4級アンモニウム基を有する親水性重合体の層を表面に有する被覆重合体粒子を得た。得られた被覆重合体粒子について、粒度分布測定装置(AccuSizer780/Particle Sizing Systems社製)を用いて測定したところ、平均粒子径は10μmであった。
 得られた被覆重合体粒子10gをイオン交換水100mLに分散させ、反応前スラリーを準備した。次いで、このスラリーを撹拌しながら、N,N-ジメチルアミノプロピルアミン(和光純薬工業社製)を10mL加え、70℃で4時間反応させた。反応終了後、遠心分離機(日立製作所社製、「Himac CR20G」)を用いて上澄みを除去し、イオン交換水で洗浄した。洗浄後、遠心分離機を用いて上澄みを除去した。このイオン交換水による洗浄を更に4回繰り返し、基材粒子の表面に4級アンモニウム基と3級アミノ基とを有するイオン交換クロマトグラフィー用充填剤を得た。
 上記イオン交換クロマトグラフィー用充填剤を液体クロマトグラフィーシステムのステンレス製カラム(カラムサイズ:内径4.6mm×長さ20mm)に充填した。
〔参考例2〕検体細胞の調製
1)LoVo、LS174T、HCT116細胞の培養
 CDKN2A遺伝子プロモーター部位(配列番号1)の100%メチル化DNA、非メチル化DNA、およびこれらのヘテロ結合体DNA(ヘミメチル化DNA)を得るために、それぞれの状態(status)の当該プロモーター遺伝子を持つ3種類のセルラインLoVo、LS174T、およびHCT116を購入した(DS Pharma Biochemical社製)。培養はそれぞれの細胞に適した培地条件で行った。LoVoはHam’s F-12(F-12 Nutrient Mixture)培地に10%FBS(Fetal Bovine Serum)を加えて加湿チャンバーの中5%CO2存在下37℃で培養した(B.Drewinko,M.M.Romsdahl,L.Y.Yang.,Cancer Res.36,1976,467)。LS174TはMEM(Minimum Essential Medium)Earle’s培地に10%FBSと1%NEAA(Non-Essential Amino Acids)を加えて加湿チャンバーの中5%CO2存在下37℃で培養した(B.H.Tom,L.P.Rutzky,M.M.Jakstys.In Vitro.12,1976,180)。HCT116はMcCoy‘s 5A Medium培地に10%FBSを加えて加湿チャンバーの中5%CO2存在下37℃で培養した(M.G.Brattain,W.D.Fine,J.Thompson.Cancer Res.41,1981,1751)。培養は75mLの細胞培養フラスコを用いて行い、培養終了後の細胞は通常の方法で回収してペレット状にし-80℃で保存した。
2)DHL-9、293T細胞の培養
 MTAP遺伝子プロモーター部位(配列番号5)のメチル化、非メチル化を得るために、それぞれの状態(status)の当該プロモーター遺伝子を持つ2種類のセルラインDHL-9および293Tを用いた。培養はそれぞれの細胞に適した培地条件で行った。DHL-9はRoswell Park Memorial Institute Tissue Culture Medium 1640培地に10%(v/v)FBSと100U/mLペニシリン、100μg/mLストレプトマイシンおよび2mmol/L L-グルタミンを加えて加湿チャンバーの中5%CO2存在下37℃で培養した。293TはDMEM(Dulbecco's modified Eagle's medium)培地に10%(v/v)FBSと100U/mLペニシリンおよび100μg/mLストレプトマイシンを加えて加湿チャンバーの中5%CO2存在下37℃で培養した。培養は75mLの細胞培養フラスコを用いて行い、培養終了後の細胞は通常の方法で回収してペレット状にし-80℃で保存した。
〔実施例1〕検体細胞からのメチル化DNAの検出
1)ゲノムDNAの抽出と亜硫酸水素塩処理
 参考例2で培養したセルラインLoVo、LS174T、HCT116、DHL-9、または293TのゲノムDNAは、-80℃で保存してある細胞ペレットからQIAamp DNA Mini Kit(50)(Qiagen社製)を用いて抽出し、分光光度計でDNA濃度を測定した後、使用するまで-80℃で保存した。それぞれのゲノムDNAを1μgずつ用意し、EpiTect Bisulfite Kit(48)(Qiagen社製)を用いて亜硫酸水素塩処理を行い精製した。亜硫酸水素塩処理後のDNAは、精製時に全て回収されたとみなし(20ng/μL)、次の操作に用いた。また亜硫酸水素塩処理しないDNAは10ng/μLに調整して次の操作に用いた。準備したDNAは、使用するまで-20℃で保存した。
2)PCR
 1)で得られた亜硫酸水素塩処理ゲノムDNAをPCR増幅した。PCRは、鋳型DNA 10ng、GeneAmp 1×PCR buffer(Life Technologies社製)、200μmol/L GeneAmp dNTP Mix(Life Technologies社製)、0.75U AmpliTaq Gold DNA Polymerase(Life Technologies社製)、0.25μmol/L forwardおよびreverseプライマーを含んだ25μLの反応液で行った。PCRでは、94℃10分間初期熱変性を行った後、94℃30秒→57℃(F3-R3プライマー使用時)30秒または58℃(F4-R3プライマー使用時)30秒→72℃30秒を1サイクルとして40サイクル続け、さらに72℃7分の伸張反応を行った。PCR終了後、予めethidium bromideを添加した3%アガロースゲルに、反応液5μLにloading dye solution 1μLを混ぜた後アプライして電気泳動し、PCR増幅産物を観察して目的のPCR増幅産物が得られたことを確認した。
3)HPLC分析
 参考例1で準備したアニオン交換カラムを用いて、以下の条件でイオン交換クロマトグラフィーを行い、2)で得られた各PCR増幅産物を分離検出した。
 システム:LC-20Aシリーズ(島津製作所社製)
 溶離液:溶離液A 25mmol/Lトリス塩酸緩衝液(pH7.5)
     溶離液B 25mmol/Lトリス塩酸緩衝液(pH7.5)+1mol/L硫酸アンモニウム
 分析時間:分析時間は10分
 溶出法:以下のグラジエント条件により溶離液Bの混合比率を直線的に増加させた。 0分(溶離液B40%)→10分(溶離液B100%)
 検体:LoVo(メチル化DNA)PCR増幅産物     136bp
    LS174T(非メチル化DNA)PCR増幅産物  136bp
    HCT116(ヘミメチル化DNA)PCR増幅産物 136bp
    LoVo(メチル化DNA)PCR増幅産物      77bp
    LS174T(非メチル化DNA)PCR増幅産物   77bp
    HCT116(ヘミメチル化DNA)PCR増幅産物  77bp
    DHL-9(メチル化DNA)PCR増幅産物    202bp
    293T(非メチル化DNA)PCR増幅産物    202bp
 流速:1.0mL/min
 検出波長:260nm
 試料注入量:5μL(LoVo、LS174TまたはHCT116由来試料)
       7μL(DHL-9または293T由来試料)
 カラム温度40~85℃
 メチル化DNAのPCR増幅産物と非メチル化DNAのPCR増幅産物とのピーク分離度Rsは、各ピークの保持時間をtR1,tR2(tR1<tR2)、各ピークの半値幅をW0.5h1、W0.5h2と定義するとき、日本薬局方およびJIS高速液体クロマトグラフィー通則の定義により次式で表される。
Figure JPOXMLDOC01-appb-C000001
 ただし、tR1,tR2、W0.5h1、W0.5h2は同じ単位を用いる。また、ピーク半値幅W0.5hの計算方法について、ピークを標準偏差σの正規分布とみなすとき次式で表される。
Figure JPOXMLDOC01-appb-C000002
〔実験1〕CDKN2A遺伝子プロモーター領域のメチル化解析
 実施例1の手順に従い、LoVoおよびLS174Tから抽出したDNAにおける、CDKN2A遺伝子プロモーター領域のメチル化を検出した。PCRでは、各亜硫酸水素塩処理DNAのCDKN2A遺伝子プロモーターDNA(配列番号1)から、プライマーCDKN2A-F3とCDKN2A-R3(配列番号2、3)を用いて136bp領域を、およびプライマーCDKN2A-F4とCDKN2A-R3(配列番号4、3)を用いて77bp領域を、それぞれ増幅した。イオン交換クロマトグラフィー分析でのカラム温度は40℃とした。鋳型DNAの配列、プライマーの配列、増幅産物サイズ、およびプロモーターの配列の増幅領域中のCpGアイランドの数を表1に示す。イオン交換クロマトグラフィー分析の結果は図1および図2に示す。
Figure JPOXMLDOC01-appb-T000003
〔実験2〕MTAP遺伝子プロモーター領域のメチル化解析
 実施例1の手順に従い、DHL-9および293Tから抽出したDNAにおける、MTAP遺伝子プロモーター領域のメチル化を検出した。PCRでは、プライマー(配列番号6、7)を用いて、各亜硫酸水素塩処理DNAのMTAP遺伝子プロモーターDNA(配列番号5)中の202bp領域を増幅した。イオン交換クロマトグラフィー分析でのカラム温度は70℃とした。鋳型DNAの配列、プライマーの配列、増幅産物サイズ、およびプロモーターの配列の増幅領域中のCpGアイランドの数を表2に示す。イオン交換クロマトグラフィー分析の結果は図3に示す。
Figure JPOXMLDOC01-appb-T000004
〔実験3〕CDKN2A遺伝子プロモーター領域のメチル化解析
 実施例1の手順に従い、LoVo、LS174TおよびHCT116から抽出したDNAにおける、CDKN2A遺伝子プロモーター領域のメチル化を検出した。PCRでは、実験1と同様に、各亜硫酸水素塩処理DNAのCDKN2A遺伝子プロモーターDNA(配列番号1)中の136bp領域および77bp領域を増幅した。イオン交換クロマトグラフィー分析でのカラム温度は40℃~85℃とした。
 図4-1、図4-2、図5-1、図5-2に、CDKN2A遺伝子プロモーター由来の100%メチル化DNA、非メチル化DNA、およびヘミメチル化DNAの亜硫酸水素塩処理物のPCR増幅産物(それぞれ136bpおよび77bp)のイオン交換クロマトグラフィー分析の結果を示す。イオン交換クロマトグラフィーのカラム温度は、図4-1、図4-2、図5-1および図5-2において、カラム温度は、(A)40℃、(B)45℃、(C)50℃、(D)55℃、(E)60℃、(F)65℃、(G)70℃、(H)85℃である。表3には、上記PCR増幅産物(77bp)の各カラム温度でのピーク分離度Rsを示す。
Figure JPOXMLDOC01-appb-T000005
実験1~3を通じての結果と考察
 HPLCによる分析結果(図1、2、3)から、メチル化DNAと非メチル化DNAを精度良く分離検出できることが確認された。メチル化されていないDNAは、鋳型プロモーター配列におけるCpGアイランドのシトシンが亜硫酸水素塩処理によってウラシルに変換され、PCRにおいてはチミンとして増幅される。一方、メチル化DNAは、CpGアイランドのメチル化シトシンが亜硫酸水素塩処理によっても変化を受けずシトシンのままであるため、PCRにおいてはシトシンとして増幅される。よって、図1、2、3に示された結果は、PCR増幅産物のシトシンとチミンの差により、メチル化DNAと非メチル化DNAが分離検出されたことを表す。なお、パイロシーケンス解析の結果、LoVoおよびDHL-9のDNAは、100%メチル化されていることが確認された。
 それぞれの鋳型プロモーター配列のPCR増幅領域におけるCpGアイランドの数は、図1の分析に供したサンプルでは10/136bp、図2の分析に供したサンプルでは7/77bp、図3の分析に供したサンプルでは16/202bpであった。従って、PCR増幅産物の配列中に10%弱の塩基差が生じる程度のメチル化であれば、本発明の方法により、短時間で精度良く検出することができる。
 また、図4-1、図4-2、図5-1、図5-2および表3に示すとおり、メチル化DNAおよび非メチル化DNAの亜硫酸水素塩処理物のPCR増幅産物のHPLCでのピーク分離が、カラム温度の上昇に従い向上することが確認された。したがって、本発明の方法においてイオン交換クロマトグラフィー分析のカラム温度を調節することにより、メチル化DNAと非メチル化DNAをより精度よく検出できる。
〔実験4〕メチル化/非メチル化DNA混合サンプルの解析
1)メチル化/非メチル化DNA混合サンプルの調製
 実施例1の手順に従い、CDKN2A遺伝子プロモーター部位(配列番号1)の100%メチル化DNAおよび非メチル化DNAを調製し、EpiTect Bisulfite Kit(48)(Qiagen社製)を用いて亜硫酸水素塩処理した。亜硫酸水素塩処理された100%メチル化DNAおよび非メチル化DNAを所定の割合で混合して、メチル化/非メチル化DNA混合サンプルを調製した。各DNAを実験1と同様の手順でPCR増幅し、136bpのPCR増幅産物を得た。
2)HPLC分析
 実施例1の手順に従って、上記で得られたPCR増幅産物のイオン交換クロマトグラフィーを行った。カラム温度は70℃とした。各PCR増幅産物を分離検出し、保持時間のピーク高さを測定した。100%メチル化DNAのみを含む(メチル化DNA含有率100%)サンプルのピーク高さに対する各サンプルにおける100%メチル化DNAのピーク高さの比率、および非メチル化DNAのみを含む(メチル化DNA含有率0%)サンプルのピーク高さに対する各サンプルにおける非メチル化DNAのピーク高さの比率を、それぞれ求めた。図6は、各サンプルDNA中の100%メチル化DNAおよび非メチル化DNAのピーク高さの比率をサンプルDNA中の100%メチル化DNA含有率に対してプロットした図を示す。
 図6に示すとおり、HPLCによりサンプルDNA中の100%メチル化DNAと非メチル化DNAは明確に異なるピークに分離され、しかもそのピーク高さの比率は、サンプルDNA中の各々の存在比率に比例していた。したがって、本発明の方法においてHPLCのピーク高さを測定することにより、サンプルDNAに含まれるメチル化率の異なるDNAの存在比率を測定することが可能になる。
〔実験5〕メチル化率の異なるDNAサンプルの解析
 全長384bpであり、アデニン(A)48bp、チミン(T)158bp、グアニン(G)100bp、シトシン0bp、および39箇所のCpGサイト78bpよりなる合成DNAについて、39箇所のCpGサイト全てがメチル化されているDNA(100%メチル化DNA)から全くメチル化されていないDNA(0%メチル化DNA)まで、メチル化率の異なる8つのDNAを合成した。なお50%メチル化DNAについては、メチル化位置を5’側寄り、3’側寄り、および中央寄りの3パターンのDNAを合成した。各合成DNAのメチル化率およびCpGアイランドのメチル化数を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 上記8つの合成DNAについて実施例1の手順に従ってメチル化を検出した。DNAメチル化率の異なるDNA(0%、25%、50%、75%、100%)のHPLCのクロマトグラムを図7-1Aに、DNAメチル化位置の異なる50%メチル化DNA(ランダム、5’側寄り、3’側寄り、中央)のHPLCのクロマトグラムを図7-1Bに、HPLCの溶出時間(保持時間)をDNAメチル化率に対してプロットしたデータを図7-2Cに示す。HPLC分析の溶出時間は、DNAメチル化率に対して極めて高い相関を有していた。さらに、50%メチル化DNAについては、メチル化位置に依らず、ほぼ同一の保持時間を示すことが確認された。このことから、DNA中のメチル化位置に依らず、メチル化率に依存して保持時間が決定されることが示された。したがって、本発明の方法においてHPLCの保持時間を測定することにより、サンプルDNAに含まれるメチル化率を測定することが可能になる。

Claims (13)

  1.  下記工程(1)、(2)および(3)を含むメチル化DNAの検出方法:
     (1)サンプルDNAを亜硫酸水素塩で処理する工程;
     (2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;および
     (3)得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程。
  2.  下記工程(1)、(2)および(3’)を含むメチル化DNAの検出方法:
     (1)サンプルDNAを亜硫酸水素塩で処理する工程;
     (2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;および
     (3’)得られたPCR増幅産物を45℃以上90℃未満のカラム温度でイオン交換クロマトグラフィーにかける工程。
  3.  前記イオン交換クロマトグラフィーがアニオン交換クロマトグラフィーである、請求項1又は2記載の方法。
  4.  前記イオン交換クロマトグラフィーに用いるカラム充填剤が、表面に強カチオン性基および弱カチオン性基の両方を有する基材粒子を含む、請求項1~3のいずれか1項記載の方法。
  5.  前記イオン交換クロマトグラフィーにおいて、前記PCR増幅産物の溶出に用いる溶離液がアンチカオトロピックイオンを含有する、請求項1~4のいずれか1項記載の方法。
  6.  前記アンチカオトロピックイオンが硫酸イオンおよびアンモニウムイオンのいずれかまたは両方である、請求項1~5のいずれか1項記載の方法。
  7.  前記サンプルDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルを、前記サンプルDNAと塩基配列は同じであるがメチル化していないDNAを亜硫酸水素塩で処理した物のPCR増幅産物、又は前記サンプルDNAと塩基配列は同じでかつメチル化の割合が既知であるDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルと比較する工程をさらに含む、請求項1~6のいずれか1項記載の方法。
  8.  前記比較する工程の結果に基づいて、前記サンプルDNAにおけるメチル化DNAの存在の有無、メチル化率、または存在比率を測定する工程をさらに含む、請求項7記載の方法。
  9.  前記サンプルDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルから、前記サンプルDNAと塩基配列は同じであるがメチル化していないDNAを亜硫酸水素塩で処理した物のPCR増幅産物のイオン交換クロマトグラフィーで得られた検出シグナルを差し引いて差分データを得る工程をさらに含む、請求項1~6のいずれか1項記載の方法。
  10.  前記差分データに基づいて、前記サンプルDNAにおけるメチル化DNAの存在の有無、メチル化率、または存在比率を測定する工程をさらに含む、請求項9記載の方法。
  11.  下記工程(1)~(6)を含むサンプルDNAのシグナルからメチル化DNAのシグナルを抽出する方法:
     (1)サンプルDNAを亜硫酸水素塩で処理する工程;
     (2)該亜硫酸水素塩によって処理されたサンプルDNAをPCRによって増幅する工程;
     (3)工程(2)で得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程;
     (4)該サンプルDNAと塩基配列は同じであるがメチル化していないDNAを亜硫酸水素塩で処理し、PCR増幅する工程;
     (5)工程(4)で得られたPCR増幅産物をイオン交換クロマトグラフィーにかける工程;および
     (6)工程(3)で得られたクロマトグラフィーの検出シグナルから、工程(5)で得られたクロマトグラフィーの検出シグナルを差し引いて差分データを得る工程。
  12.  表面に強カチオン性基および弱カチオン性基の両方を有する基材粒子を含むカラム充填剤が充填されたイオン交換クロマトグラフィー用カラムのメチル化DNA検出のための使用。
  13.  アンチカオトロピックイオンを含有するイオン交換クロマトグラフィー用溶離液のメチル化DNA検出のための使用。
PCT/JP2014/055923 2013-03-07 2014-03-07 メチル化dnaの検出方法 WO2014136930A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015504411A JP6222639B2 (ja) 2013-03-07 2014-03-07 メチル化dnaの検出方法
CN201480018778.3A CN105074010B (zh) 2013-03-07 2014-03-07 甲基化dna 的检测方法
US14/771,936 US10550426B2 (en) 2013-03-07 2014-03-07 Method for detecting methylated DNA
EP14761083.6A EP2966179B1 (en) 2013-03-07 2014-03-07 Method for detecting methylated dna

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013-045845 2013-03-07
JP2013045845 2013-03-07
JP2013067814 2013-03-28
JP2013-067814 2013-03-28
JP2013-149867 2013-07-18
JP2013149867 2013-07-18
JP2014055155 2014-02-28
JPPCT/JP2014/055155 2014-02-28

Publications (1)

Publication Number Publication Date
WO2014136930A1 true WO2014136930A1 (ja) 2014-09-12

Family

ID=51491437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055923 WO2014136930A1 (ja) 2013-03-07 2014-03-07 メチル化dnaの検出方法

Country Status (5)

Country Link
US (1) US10550426B2 (ja)
EP (1) EP2966179B1 (ja)
JP (1) JP6222639B2 (ja)
CN (1) CN105074010B (ja)
WO (1) WO2014136930A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129916A1 (ja) * 2014-02-28 2015-09-03 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
WO2016060264A1 (ja) * 2014-10-17 2016-04-21 積水メディカル株式会社 幹細胞の品質管理方法
WO2017038983A1 (ja) * 2015-09-02 2017-03-09 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
WO2017061609A1 (ja) * 2015-10-07 2017-04-13 公益財団法人がん研究会 腫瘍の判定方法
JP2018501776A (ja) * 2014-10-17 2018-01-25 イルミナ ケンブリッジ リミテッド 連続性を維持した転位
WO2019039613A1 (ja) 2017-08-25 2019-02-28 積水メディカル株式会社 メチル化dna分離及び/又は検出用クロマトグラフィー用充填剤
WO2019039532A1 (ja) 2017-08-23 2019-02-28 国立研究開発法人国立がん研究センター 肝細胞癌のリスク評価方法
WO2021117772A1 (ja) 2019-12-09 2021-06-17 学校法人慶應義塾 非アルコール性脂肪性肝炎から肝細胞がんを発症するリスクを判定する方法
US11149310B2 (en) 2013-12-20 2021-10-19 Illumina, Inc. Preserving genomic connectivity information in fragmented genomic DNA samples
CN114045282A (zh) * 2014-10-17 2022-02-15 伊卢米纳剑桥有限公司 接近性保留性转座
US11299730B2 (en) 2011-02-02 2022-04-12 University Of Washington Through Its Center For Commercialization Massively parallel contiguity mapping
US11319534B2 (en) 2013-03-13 2022-05-03 Illumina, Inc. Methods and compositions for nucleic acid sequencing
US11993772B2 (en) 2011-02-10 2024-05-28 Illumina, Inc. Linking sequence reads using paired code tags

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683230B2 (en) 2013-01-09 2017-06-20 Illumina Cambridge Limited Sample preparation on a solid support
CN105779465A (zh) * 2016-04-15 2016-07-20 广东医学院 一种cdkn2a基因片段及其引物以及在肿瘤诊断中的应用
US11840738B2 (en) 2018-03-19 2023-12-12 Keio University Method for determining risk of urothelial carcinoma
CN109266722A (zh) * 2018-10-25 2019-01-25 常州市第人民医院 一种支气管肺病灶灌洗液的shox2甲基化检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786146A (en) 1996-06-03 1998-07-28 The Johns Hopkins University School Of Medicine Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids
JP2005514035A (ja) * 2002-01-08 2005-05-19 エピゲノミクス アーゲー ハイブリダイゼーションしたプローブオリゴヌクレオチド(mla)の指数的ライゲーションによるシトシン−メチル化パターンの検出方法
JP2010063413A (ja) 2008-09-11 2010-03-25 Japan Health Science Foundation Bacクローンを用いる腎細胞癌の予後予測方法
WO2012108516A1 (ja) 2011-02-10 2012-08-16 積水メディカル株式会社 イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786146A (en) 1996-06-03 1998-07-28 The Johns Hopkins University School Of Medicine Method of detection of methylated nucleic acid using agents which modify unmethylated cytosine and distinguishing modified methylated and non-methylated nucleic acids
JP2005514035A (ja) * 2002-01-08 2005-05-19 エピゲノミクス アーゲー ハイブリダイゼーションしたプローブオリゴヌクレオチド(mla)の指数的ライゲーションによるシトシン−メチル化パターンの検出方法
JP2010063413A (ja) 2008-09-11 2010-03-25 Japan Health Science Foundation Bacクローンを用いる腎細胞癌の予後予測方法
WO2012108516A1 (ja) 2011-02-10 2012-08-16 積水メディカル株式会社 イオン交換クロマトグラフィー用充填剤及び核酸鎖の分離検出方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
B. DREWINKO; M.M. ROMSDAHL; L.Y. YANG, CANCER RES., vol. 36, 1976, pages 467
B.H. TOM; L.P. RUTZKY; M.M. JAKSTYS, IN VITRO, vol. 12, 1976, pages 180
KEVIN K. DIVINE ET AL.: "Nested multigene MSP/ DHPLC method for analyzing promoter hypermethylation status in clinical samples", BIOTECHNIQUES, vol. 40, no. 1, 1 January 2006 (2006-01-01), pages 40 - 46, XP055277038, DOI: DOI 10.2144/000112095 *
M.G. BRATTAIN; W.D. FINE; J. THOMPSON, CANCER RES., vol. 41, 1981, pages 1751
NUCLEIC ACIDS RES., vol. 24, 1996, pages 5058 - 5059
NUCLEIC ACIDS RES., vol. 25, 1997, pages 2532 - 2534
P. COUVERT ET AL.: "DHPLC-Based Method for DNA Methylation Analysis of Differential Methylated Regions from Imprinted Genes", BIOTECHNIQUES, vol. 34, no. 2, 1 February 2003 (2003-02-01), pages 356 - 362, XP009039901 *
PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 9821 - 9826
See also references of EP2966179A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11999951B2 (en) 2011-02-02 2024-06-04 University Of Washington Through Its Center For Commercialization Massively parallel contiguity mapping
US11299730B2 (en) 2011-02-02 2022-04-12 University Of Washington Through Its Center For Commercialization Massively parallel contiguity mapping
US11993772B2 (en) 2011-02-10 2024-05-28 Illumina, Inc. Linking sequence reads using paired code tags
US11319534B2 (en) 2013-03-13 2022-05-03 Illumina, Inc. Methods and compositions for nucleic acid sequencing
US11149310B2 (en) 2013-12-20 2021-10-19 Illumina, Inc. Preserving genomic connectivity information in fragmented genomic DNA samples
US10190172B2 (en) 2014-02-28 2019-01-29 National Cancer Center Method for determining prognosis of renal cell carcinoma
JP5897228B2 (ja) * 2014-02-28 2016-03-30 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
JPWO2015129916A1 (ja) * 2014-02-28 2017-03-30 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
WO2015129916A1 (ja) * 2014-02-28 2015-09-03 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
JPWO2016060264A1 (ja) * 2014-10-17 2017-07-27 積水メディカル株式会社 幹細胞の品質管理方法
WO2016060264A1 (ja) * 2014-10-17 2016-04-21 積水メディカル株式会社 幹細胞の品質管理方法
JP2018501776A (ja) * 2014-10-17 2018-01-25 イルミナ ケンブリッジ リミテッド 連続性を維持した転位
CN114045282A (zh) * 2014-10-17 2022-02-15 伊卢米纳剑桥有限公司 接近性保留性转座
US11873480B2 (en) 2014-10-17 2024-01-16 Illumina Cambridge Limited Contiguity preserving transposition
JP2020072734A (ja) * 2014-10-17 2020-05-14 積水メディカル株式会社 幹細胞の品質管理方法
EP3346015A4 (en) * 2015-09-02 2019-02-13 National Cancer Center PROGNOSTIC METHOD FOR RENAL CELL CANCER
JPWO2017038983A1 (ja) * 2015-09-02 2018-06-21 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
WO2017038983A1 (ja) * 2015-09-02 2017-03-09 国立研究開発法人国立がん研究センター 腎細胞癌の予後判定方法
CN108026586A (zh) * 2015-09-02 2018-05-11 国立研究开发法人国立癌研究中心 肾细胞癌的预后判定方法
US11142801B2 (en) 2015-10-07 2021-10-12 Japanese Foundation For Cancer Research Tumor determination method
CN108138163A (zh) * 2015-10-07 2018-06-08 公益财团法人癌研究会 肿瘤的判定方法
JPWO2017061609A1 (ja) * 2015-10-07 2018-07-26 公益財団法人がん研究会 腫瘍の判定方法
WO2017061609A1 (ja) * 2015-10-07 2017-04-13 公益財団法人がん研究会 腫瘍の判定方法
WO2019039532A1 (ja) 2017-08-23 2019-02-28 国立研究開発法人国立がん研究センター 肝細胞癌のリスク評価方法
WO2019039613A1 (ja) 2017-08-25 2019-02-28 積水メディカル株式会社 メチル化dna分離及び/又は検出用クロマトグラフィー用充填剤
JPWO2019039613A1 (ja) * 2017-08-25 2019-11-07 積水メディカル株式会社 メチル化dna分離及び/又は検出用クロマトグラフィー用充填剤
WO2021117772A1 (ja) 2019-12-09 2021-06-17 学校法人慶應義塾 非アルコール性脂肪性肝炎から肝細胞がんを発症するリスクを判定する方法

Also Published As

Publication number Publication date
JPWO2014136930A1 (ja) 2017-02-16
US10550426B2 (en) 2020-02-04
CN105074010B (zh) 2018-04-17
CN105074010A (zh) 2015-11-18
US20160138097A1 (en) 2016-05-19
EP2966179A1 (en) 2016-01-13
JP6222639B2 (ja) 2017-11-01
EP2966179B1 (en) 2019-05-08
EP2966179A4 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP6222639B2 (ja) メチル化dnaの検出方法
CN106062215B (zh) 肾细胞癌的预后判定方法
JP5930443B2 (ja) 核酸鎖分離検出用イオン交換クロマトグラフィー用充填剤及び核酸鎖分離検出用イオン交換クロマトグラフィー用カラム
US20230175067A1 (en) Prognosis method for renal cell cancer
EP2664917B1 (en) Method for detecting single nucleotide polymorphisms
JP6614630B2 (ja) 肝細胞癌のリスク評価方法
EP2692863B1 (en) Pcr primers for preparing samples for single nucleotide polymorphism detection comprising allele-specific pcr and ion exchange chromatographic detection
JP6985932B2 (ja) 腫瘍の判定方法
WO2016024634A1 (ja) インプリンティング疾患の診断に有効な染色体機能異常の判定方法
JP6570795B2 (ja) メチル化dna分離及び/又は検出用クロマトグラフィー用充填剤
WO2016060264A1 (ja) 幹細胞の品質管理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018778.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014761083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14771936

Country of ref document: US