WO2014136825A1 - 磁気検出装置 - Google Patents

磁気検出装置 Download PDF

Info

Publication number
WO2014136825A1
WO2014136825A1 PCT/JP2014/055592 JP2014055592W WO2014136825A1 WO 2014136825 A1 WO2014136825 A1 WO 2014136825A1 JP 2014055592 W JP2014055592 W JP 2014055592W WO 2014136825 A1 WO2014136825 A1 WO 2014136825A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
oscillation
magnetic field
coil
core
Prior art date
Application number
PCT/JP2014/055592
Other languages
English (en)
French (fr)
Inventor
毅 水間
信次郎 竹内
Original Assignee
独立行政法人交通安全環境研究所
株式会社羽野製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人交通安全環境研究所, 株式会社羽野製作所 filed Critical 独立行政法人交通安全環境研究所
Priority to US14/648,862 priority Critical patent/US9389282B2/en
Priority to CN201480003458.0A priority patent/CN104854469B/zh
Priority to EP14759574.8A priority patent/EP2975422B1/en
Publication of WO2014136825A1 publication Critical patent/WO2014136825A1/ja
Priority to HK15110844.0A priority patent/HK1210269A1/xx

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0041Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration using feed-back or modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers

Definitions

  • the present invention relates to a magnetic oscillation sensor and a magnetic detection device for measuring a leakage magnetic field etc. inside and outside of a vehicle caused by a railway vehicle and an automobile. More specifically, the measurement of a direct current magnetic field naturally includes an alternating current up to about 100 kHz.
  • the present invention relates to a magnetic detection device capable of measuring a magnetic field.
  • the present invention relates to a fluxgate type magnetic field measuring instrument defined by the IEC61786 standard or the JIS-C1910 standard, that is, "measurement that measures a magnetic field by using a nonlinear magnetic characteristic of a probe or a sensor unit including a ferromagnetic core. It is related with the magnetic detection apparatus in "a container”.
  • the magnetic sensor for measuring the leakage magnetic field inside and outside the body of a railway vehicle or automobile was mainly a search coil type magnetic sensor using electromagnetic induction, but the DC magnetic field cannot be measured with a magnetic sensor using a coil. There was a principle drawback.
  • the effective range of the magnetic field to be measured is limited to the AC magnetic field range from the DC magnetic field to several kHz at most, and the frequency from the DC magnetic field to the AC magnetic field of around 100 kHz.
  • a fluxgate type magnetic field measuring device for measuring the entire band has not been put into practical use yet. This is because it is very difficult to convert a DC magnetic field having the same magnetic field intensity into an electric signal having the same amplitude from an AC magnetic field of about 100 kHz, and it is very difficult to guarantee its performance.
  • the measurement items are defined as the leakage magnetic field (magnetic flux density) inside and outside the vehicle and the current of the magnetic field generating device, and the measurement conditions are defined according to the state of the vehicle. For example, in the running state, it is defined that the leakage magnetic field in the vehicle in the vicinity of the magnetic field generating device is measured in a vehicle speed range where the magnetic field generating device has a maximum current.
  • the DC magnetic field fluctuates at the time of departure, a magnetic field having a magnetic flux density of about 1 to 2 mT is measured, so that a measuring instrument using a Hall element is often used as a measuring instrument.
  • the X component, the Y component, and the Z component of the magnetic field are measured, and the combined value of each axis component is calculated by the equation (1). It is specified that it is expressed by this composite value.
  • the magnetic flux density also defines that the composite value and each axis component are recorded.
  • the conventional measuring instrument is a general-purpose measuring instrument that displays an effective value or a peak value, there is no performance guarantee regarding instantaneous waveform measurement or broadband frequency characteristics, and the composite value at the time of AC magnetic field measurement is X, It was calculated by the formula (1) based on the effective values or peak values of the Y and Z axes. As a result, even if the maximum value of the composite magnetic field was calculated, the data simultaneity and phase relationship between the X, Y, and Z components were ignored. It did not agree with the total magnetic force (magnitude or absolute value of the magnetic field vector).
  • the magnetic field composite value calculated by the peak value display value (magnitude of the magnetic field vector by synthesis) is compared to the true total magnetic force calculated from the data at the time of three-axis simultaneous measurement, except in special cases. Since it is always a large value and its error is several tens of percent or more, it far exceeds the allowable accuracy of the measuring instrument ⁇ 5%. As a result, there is a problem that the magnetic field composite value based on the peak value display value is far from the true magnetic field size due to an error caused by ignoring the phase.
  • the frequency band of a magnetic field generated from an automobile or a railway vehicle is a magnetic field covering a wide band from a DC magnetic field to an inverter frequency and further to a high-frequency noise magnetic field due to switching.
  • FFT Fast Fourier Transform
  • a broadband magnetic field from a low frequency region including a DC magnetic field, a fluctuating magnetic field, and a commercial frequency magnetic field to a high frequency region around 100 kHz is uniformly detected with the same detection sensitivity.
  • a broadband magnetic field measuring instrument has become necessary as a practical machine that can be used for measurement.
  • the dynamic range required for this broadband magnetic field measuring device can measure from a strong magnetic field of about several mT to a weak magnetic field of about several hundred nT to several tens of nT, which is concerned about the influence on the human body.
  • One of the conditions is that the magnetic field measuring device has a very wide dynamic range.
  • the magnetic detection method of the magnetic sensor is suitable for measurement of a DC fluctuation magnetic field from DC to several Hz according to the magnetic detection principle, suitable for measurement of a DC fluctuation magnetic field from DC to several hundred Hz, AC of several Hz to several tens kHz.
  • There are various methods such as those that can only measure magnetic fields, those that can only measure weak magnetic fields, and those that can only measure strong magnetic fields.
  • the practically effective accuracy of the magnetic field measuring device is about several tens of ⁇ T, and a small magnetic field of about several tens of ⁇ T is ignored as an error when measuring a strong magnetic field of about 1 to 2 mT. It can be used for strong magnetic field measurement.
  • the error is larger than the signal and the weak magnetic field signal is buried in noise.
  • each of the two types of magnetic sensors includes a low frequency region including a DC magnetic field and a high frequency region.
  • a technique for sharing and measuring was invented.
  • the magnetic field is measured by utilizing the nonlinear magnetic characteristics of the probe or sensor unit including a ferromagnetic core by the technique disclosed in “Magnetic Vehicle Magnetic Field Measuring Method and Magnetic Field Measuring Device” of Patent Document 1.
  • This is a composite magnetic sensor that is compatible with broadband magnetic field measurement by complementing each other's disadvantages by combining a magnetic oscillation sensor that belongs to the fluxgate (IEC 61786 standard definition) and a search coil type magnetic sensor. .
  • a search coil type magnetic sensor that excels in detecting an alternating magnetic field of several tens of Hz or more is a first three-axis magnetic sensor, and a magnetic oscillation sensor suitable for measuring a DC magnetic field or a variable magnetic field is a second three-axis magnetic sensor.
  • the magnetic sensing axes (maximum magnetic sensing directions) of the three magnetic sensing units are orthogonal to each other so that the external magnetic field can be detected by being decomposed into three axis components of the X, Y, and Z axes. ing.
  • FIG. 7 is an example of a magnetic sensor in Patent Document 1, and shows a basic configuration when a magnetically sensitive part is integrally mounted in a sensor case.
  • the magnetic sensitive part of the first three-axis magnetic sensor 51 is dedicated to AC magnetic field measurement and is composed of three orthogonal search coils.
  • the magnetic field signal (induced voltage) detected by the search coil of each axis is sent to the measuring instrument main body through the sensor cable 53, processed by the signal circuit unit, and output.
  • the second three-axis magnetic oscillation sensor 52 uses a magnetic oscillation sensor that measures a DC magnetic field and a low-frequency magnetic field, and the magnetically sensitive part has three coils with a core having a ferromagnetic core.
  • the magnetic detection axes of the cored coils are arranged so as to be orthogonal to each other along the X, Y, and Z coordinate axes.
  • the circuit of the magnetic oscillation sensor shown in FIG. 8 is a basic circuit configuration diagram of a three-axis magnetic field measuring device.
  • 100 is an X-axis circuit unit
  • 104 is an X-axis magnetic sensing unit
  • 200 is a Y-axis circuit unit
  • 204 is a Y-axis magnetic sensing unit
  • 300 is a Z-axis circuit unit
  • 304 is a Z-axis circuit unit. It is a magnetic sensitive part.
  • the X-axis circuit unit 100 will be described.
  • the circuit of this magnetic oscillation sensor is a modified circuit of a multivibrator, which has a function of varying the voltage between capacitor terminals that repeats a voltage change during oscillation, and the voltage between coil terminals with a core that has nonlinear characteristics when an alternating current flows is unique. It is reconstructed so that the deformation circuit of the multivibrator oscillates, replacing the phenomenon that causes fluctuations.
  • this oscillation circuit oscillates using the non-linear magnetization characteristics of the magnetic material, so this oscillation circuit is called “magnetic oscillation circuit”, and this magnetic oscillation phenomenon was applied to a magnetic sensor.
  • This is called a “magnetic oscillation sensor” or “magnetic oscillation type magnetic sensor”.
  • this oscillation current is also referred to as “excitation current”.
  • the magnetic oscillation sensor of the X-axis circuit has a configuration in which resistors 107, 109, and 110 are attached to an operational amplifier (operational amplifier) 108 and a magnetic sensing unit 104 including a cored coil 105 having a core 106 as a magnetic core.
  • the terminal P20 of the cored coil 105 is connected to the non-inverting input terminal of the operational amplifier 108, and the other end of the cored coil 105 is grounded.
  • Reference numeral 111 denotes a low-pass filter circuit that mainly has a function of attenuating a magnetic oscillation frequency component included in the magnetic detection signal.
  • An amplification circuit 112 adjusts the voltage amplification degree so as to correspond to the external magnetic field intensity detected by the magnetic sensing unit, and outputs it from the terminal Q10.
  • the excitation time until the core 106 is magnetically saturated in the positive direction and conversely the excitation time until the magnetic saturation is achieved when the core 106 is excited in the negative direction.
  • the excitation time until the magnetic saturation is achieved when the core 106 is excited in the negative direction.
  • the external magnetic field is detected as a change in the integrated value of the output voltage of the operational amplifier 108 in the magnetic oscillation sensor.
  • the first problem is that when a difference in oscillation frequency occurs between a plurality of magnetic oscillation sensors, a signal having a beat frequency (referred to as a “beat” frequency generated when two waves having slightly different frequencies are superimposed) is generated. That is.
  • a beat frequency component signal that does not exist in the external magnetic field is superimposed on the detection signal as noise. It is very difficult to distinguish this beat frequency component from the magnetic detection signal of the magnetic oscillation sensor, and the magnetic field of the beat frequency component has to be recognized as an external magnetic field.
  • the output of the magnetic oscillation sensor has a fluctuation error in a DC level of several tens of nT to several thousand nT depending on the strength of the disturbance magnetic field, and accurate measurement of the environmental magnetic field is not possible. It became possible, or magnetic field measurement itself became impossible in a strong magnetic field.
  • the magnetic oscillation frequency tends to be low during the measurement of the strong magnetic field. Therefore, the beat phenomenon is likely to occur due to this frequency change, which is fatal enough to negate the many performance aspects of the magnetic oscillation sensor. It was a defect, so it had to be resolved quickly.
  • the second problem is that the measurement accuracy of the disturbance magnetic field deteriorates due to electromagnetic induction noise between the coils with the core of the triaxial magnetic oscillation sensor and electromagnetic induction noise to the adjacent search coil type magnetic sensor. is there.
  • the measured values will match regardless of the dispersion position between the sensors, so there is no problem at all.
  • the magnetic field inside and outside a railway vehicle or automobile in which the magnetic field is locally distorted with a steep gradient is not a problem.
  • the magnetic field strength varies significantly depending on the position of the sensors arranged in a distributed manner, so that a measurement error due to the displacement of the magnetic sensitive part of each sensor inevitably occurs, and the magnetic field measurement value is not reliable. It also included fatal problems.
  • Fluxgate magnetic sensors that measure the magnetic field using the nonlinear magnetic characteristics of the ferromagnetic core are classified into the separately excited type and the self-excited type when classified from the method of supplying the excitation current that flows through the cored coil of the magnetically sensitive part. Broadly divided.
  • the former separately-excited type is an external excitation method in which an excitation current is supplied from an external oscillation circuit or an external AC power supply that is separated from the cored coil.
  • This method was published in 1939 and is still widely used today as the most basic excitation method in fluxgate magnetic sensors. Since the effective measurement range is a DC magnetic field to an AC magnetic field of several kHz, the fluxgate type magnetic sensor has been widely used for weak magnetic field measurement in a low frequency region.
  • the condition that an excitation current is supplied from an external power source is an essential condition. Therefore, if the magnetic field measurement is such that the external magnetic field strength is several thousand ⁇ T or more, the excitation magnetic field strength is several thousand ⁇ T. It is necessary to flow an excitation current several times stronger as an alternating current having a constant amplitude, and it is also necessary to increase the power of the excitation current that excites the core of the magnetic sensor.
  • the excitation current that magnetically saturates the core is small and sufficient, but in order to be able to measure both strong and weak magnetic fields of several thousand ⁇ T or more, it is always the maximum. It is necessary to be in an overexcited state capable of measuring a strong magnetic field corresponding to a magnetic field, and for this purpose, it is necessary to flow a useless exciting current having a strength several times as large as several thousand ⁇ T to the magnetic sensitive part.
  • the latter self-excited fluxgate type magnetic sensor is called a magnetic oscillation sensor
  • the simplest circuit of the magnetic oscillation sensor is the capacitor terminal of the oscillation circuit of an astable multivibrator composed of an operational amplifier.
  • the cored coil itself functions as a component of the oscillation circuit, so that the oscillation current of the oscillation circuit naturally flows as an exciting current in the cored coil.
  • the oscillation current flowing through the circuit becomes an excitation current to excite the cored coil itself, it is not necessary to be excited by an external AC power supply, and can be said to be an independent self-sustained excitation system.
  • an alternating current component for magnetic oscillation which is an exciting current component
  • a component proportional to the intensity of the disturbance magnetic field flow through the cored coil of the magnetically sensitive part. Since the integral value of the excitation current flowing through the cored coil of the magnetic oscillation sensor is proportional to the strength of the external magnetic field, unlike the excitation method that always generates an excitation magnetic field exceeding the measurement limit, such as a separately excited flux gate, the excitation current Therefore, it can be said that this is an efficient and energy-saving magnetic sensor.
  • the present invention maximizes the characteristics of the magnetic oscillation sensor described above in order to enable magnetic field measurement from direct current to alternating current in conformity with the international standard IEC / TS62597 (international standard for measuring leakage magnetic fields inside and outside railcars). It aims at improving a magnetic detection apparatus so that it can demonstrate to the limit.
  • the first problem to be solved by the present invention is to minimize the positional deviation at the measurement point for measuring the magnetic field.
  • a second problem to be solved by the present invention is to establish a technique for preventing a beat phenomenon that occurs due to a difference in oscillation frequency between magnetic oscillation sensors.
  • a first configuration of the invention for solving the above-mentioned problems is that a magnetic material core, a magnetically sensitive portion of a cored coil comprising a coil wound around the core, and excitation of alternating current in the coil of the cored coil
  • a magnetic oscillation sensor having an operational amplifier circuit section that generates current according to the magnitude of a magnetic field applied to the core
  • An air core coil is provided that is disposed in proximity to the cored coil of the magnetically sensitive part and is supplied with a current that generates a magnetic field in the opposite direction with the same strength as the leakage magnetic field generated by the exciting current flowing through the cored coil. It is characterized by that.
  • the excitation current flowing in the cored coil of the magnetically sensitive part that detects the magnetic field is In order to cancel the leakage magnetic field, a means of generating a magnetic field having the same strength as the excitation magnetic field from the air core coil and canceling out the leakage magnetic field was adopted.
  • This technology can reduce the space of the leakage magnetic field that leaks out from the magnetic sensing part as much as possible, so it is effective even when measuring the magnetic field with the magnetic oscillation sensor alone, and suppresses induction noise to adjacent electronic devices and circuits as much as possible. be able to.
  • a second configuration of the present invention includes a magnetic material core, a magnetically sensitive portion of a cored coil formed of a coil wound around the core, a coil of the cored coil, a circuit element, and an operational amplification circuit unit.
  • a magnetic detection device comprising a plurality of magnetic oscillation sensors composed of a multivibrator
  • an oscillation synchronization signal network that unifies the oscillation frequency of the magnetic oscillation sensor by connecting the operational amplifier circuit portions of the plurality of magnetic oscillation sensors with electrical connectors.
  • Each core of the magnetic sensing unit is forcibly excited at a unified magnetic oscillation frequency by a combined excitation current of an oscillation synchronization signal flowing through the oscillation synchronization signal network and an excitation current output from the operational amplifier circuit unit. It is characterized by doing so.
  • a circuit is connected so that the magnetic oscillation frequency components of each of the plurality of magnetic oscillation sensors can be shared, and each core is shared at a common magnetic oscillation frequency that can be unified by the shared information of the connected circuits. Therefore, the operational amplifier circuit unit is electrically coupled to construct an oscillation synchronization signal circuit network, and the beating phenomenon is prevented by the oscillation synchronization signal flowing through this circuit.
  • the oscillation synchronization signal network connects the output terminals of the operational amplification circuit units of the plurality of magnetic oscillation sensors in a ring shape with passive elements or active elements. It is a thing.
  • a ring-type oscillation synchronization signal circuit network is constructed by connecting with passive elements or active elements, and an oscillation synchronization signal flowing through the oscillation synchronization signal circuit network and excitation flowing from the operational amplifier circuit unit
  • Each core of the magnetic sensitive part is forcibly excited at a unified magnetic oscillation frequency by a combined excitation current with current.
  • the oscillation synchronization signal circuit network is configured such that the output terminals of the operational amplification circuit units of the plurality of magnetic oscillation sensors are arranged in a star shape with passive elements or active elements. Connected.
  • a star-shaped oscillation synchronization signal circuit network is constructed by connecting with passive elements or active elements, and the oscillation synchronization signal flowing through the oscillation synchronization signal circuit network and the operational amplification circuit section flow.
  • Each core of the magnetic sensitive part is forcibly excited at the unified magnetic oscillation frequency by the combined excitation current with the excitation current.
  • an external signal generation circuit that generates an electrical signal having the same frequency as the unified magnetic oscillation frequency and the operational amplifier circuit unit are connected by an electrical connector.
  • an oscillation synchronization signal network with a fixed unified magnetic oscillation frequency is constructed.
  • an external signal generation circuit that generates an electric signal having the same frequency as the unified magnetic oscillation frequency and an operational amplifier circuit portion are connected by an electrical connector, and an oscillation synchronization signal circuit having a unified magnetic oscillation frequency is obtained.
  • a core is constructed, and each core of the magnetic sensing unit is forcibly excited at a unified magnetic oscillation frequency by a combined excitation current of an oscillation synchronization signal flowing through the oscillation synchronization signal network and an excitation current flowing from the operational amplifier circuit unit I did it.
  • the sixth configuration of the present invention is characterized in that, in the second to fifth configurations, each of the magnetic oscillation sensors is provided with the air-core coil of the first configuration.
  • the excitation magnetic field leaking from the cored coil of each magnetic oscillation sensor affects the detection by other magnetic oscillation sensors.
  • the accuracy at the time of magnetic field detection is improved.
  • the present invention is an improvement of a conventional magnetic oscillation sensor while conforming to the international standard IEC / TS62597.
  • the greatest feature as a result of this is that the current flowing through the cored coil as long as the normal oscillation state is maintained. This makes it possible to cancel the applied magnetic field, and to measure a magnetic field of several thousand ⁇ T or more and to measure an alternating magnetic field from a direct current magnetic field to around 100 kHz.
  • the noise level is reduced to a few nT or less, and the dynamic range of the measurement magnetic field strength ranges from a few mT of the strong magnetic field to a weak magnetic field of several nT or less. Detection is possible.
  • the magnetic oscillation sensor is an energy-saving magnetic sensor in which the excitation current that excites the core is proportional to the strength of the external magnetic field, making it ideal for applications where the intensity distribution of a changing magnetic field is measured simultaneously at a large number of measurement points. It is.
  • the magnetic detection device of the present invention is sufficiently satisfactory as the performance of the magnetic sensor for magnetic field measurement in railway vehicles and automobiles.
  • it can be expected to be widely used as one of the useful high-performance magnetic sensors in various R & D in other technical fields and in the industry as well as in the measurement of magnetic fields from transmission lines and environmental magnetic fields.
  • FIG. 2 shows a periphery of a magnetic sensitive part of a magnetic oscillation sensor according to an embodiment of the present invention, where (a) is a circuit diagram and (b) is an explanatory diagram of a leakage magnetic field.
  • 1 shows a periphery of a magnetic sensing part of a general magnetic oscillation sensor, where (a) is a circuit diagram and (b) is an explanatory diagram of a leakage magnetic field. It is a circuit diagram around the magnetic sensitive part of the magnetic oscillation sensor showing an embodiment of the present invention. It is a circuit diagram of the magnetic detection apparatus which shows the 1st Embodiment of this invention. It is a circuit diagram of the magnetic detection apparatus which shows the 2nd Embodiment of this invention. It is a circuit diagram of the magnetic detection apparatus which shows the 3rd Embodiment of this invention. It is explanatory drawing of the magnetic sensor in patent document 1.
  • FIG. It is a basic circuit block diagram of a triaxial magnetic field measuring device.
  • FIG. 1 shows the periphery of a magnetic sensitive part of a magnetic oscillation sensor according to an embodiment of the present invention.
  • FIG. 2 shows the vicinity of a magnetic sensitive part of a general magnetic oscillation sensor.
  • a cored coil 105 arranged around a core 106 of a magnetically sensitive part is passed from a terminal P10 through a passive element 107 such as a resistor.
  • An exciting current is passed, and a change in the voltage at the terminal P20 is detected by the operational amplifier 108 to detect the strength of the external magnetic field.
  • a leakage magnetic field is generated around the coil as shown in FIG.
  • the direction of the arrow in the figure indicates the polarity of the magnetic field inside the cored coil 105.
  • the cored coil 105 alone spreads the excitation magnetic field leaked from the coil, so if there is an electronic device, communication device, other electronic circuit, etc. in this space, it is naturally affected by induction noise. It will be.
  • Measures to protect against this induced noise are either away from the magnetic sensitive part or reducing the space where the induced noise exists.
  • the former cannot reduce the measurement position accuracy and cannot be used with magnetic field measuring instruments.
  • Measures to reduce the latter noise space include a method of magnetic shielding by enclosing with magnetic material.
  • the magnetic shield material is in the vicinity of the magnetic sensitive part, the external magnetic field is affected by the magnetic shield material, and accurate external magnetic field measurement becomes impossible.
  • the same magnetic field as the excitation magnetic field is applied from the opposite direction to arrive at a method of canceling the leakage magnetic field.
  • the magnetic oscillation sensor according to the embodiment of the present invention uses an air-core coil 70 instead of the passive element 107 in FIG. 2 as shown in FIG. It arrange
  • FIG. 1B represents the effect of canceling the leakage magnetic field by the air-core coil 70 as an image, and it can be seen that the spread of the noise space affected by the induction noise is reduced.
  • the direction of the arrow in FIG. 1 indicates the polarity of the magnetic field inside the cored coil 5 and the air-core coil 70.
  • FIG. 3 shows an example of a circuit of a single magnetic oscillation sensor that prevents an oscillation frequency variation that is likely to occur when an external magnetic field of a strong magnetic field is applied, from an external oscillation synchronization signal. This is a basic circuit of an oscillation sensor.
  • the frequency of the external signal generation circuit A is selected as a frequency at which the magnetic oscillation sensor can oscillate most stably, and the frequency component is sent from the output terminal PA to the magnetic sensing unit via the terminal P1 as an oscillation synchronization signal.
  • the core 6 in the coil 5 with the core of the magnetic sensing unit 4 is excited by a stable excitation current synchronized with the oscillation synchronization signal by a combined excitation current of the oscillation synchronization signal and the excitation current of the operational amplifier circuit unit. Become.
  • the connector B is composed of an electrically passive element or an active element.
  • P13 is a passive element that uses a resistor or a coil, and the impedance value is set to an optimum value including the case of a short circuit so that the magnetic oscillation is stably maintained.
  • the air-core coil 70 in the vicinity of the cored coil 5, the space of the leakage magnetic field that leaks out from the magnetic sensitive portion 4 can be minimized, so that the magnetic oscillation sensor alone can be used. This is effective when measuring magnetic fields, and can suppress induction noise to adjacent electronic devices and circuits as much as possible.
  • the first embodiment of the present invention shown in FIG. 4 is a circuit diagram of a three-axis magnetic field measuring instrument constituted by three magnetic oscillation sensors as a representative example constituted by a plurality of magnetic oscillation sensors.
  • circuit example is a modification of the following explanation in the case of multipoint simultaneous measurement in which a single magnetic oscillation sensor is arranged at a plurality of measurement points and magnetic fields are measured. Since it can be explained, the circuit example is omitted to avoid duplication.
  • a method is generally used in which the total magnetic force is vector-decomposed into an X component, a Y component, and a Z component, and each orthogonal component is measured individually.
  • the entire circuit of the three-axis magnetic field measuring instrument is an integrated circuit unit that is separated and independent from the X-axis circuit unit 1000, the Y-axis circuit unit 2000, and the Z-axis circuit unit 3000.
  • the magnetic oscillation sensor has directivity, and the axial direction in which a magnetic field is felt strongly is also called the magnetic detection axis.
  • the detection axis is the major axis direction of the cores 6, 15, and 24.
  • the axial angles of the cores 6, 15, and 24 are finely adjusted so that the magnetic detection axes of the magnetic sensing units 4, 13, and 22 of the magnetic oscillation sensor are orthogonal to each other. And place it in the sensor case.
  • the most important technology in the present invention is an oscillation that unifies the oscillation frequency by connecting the operational amplifier circuit parts of a plurality of magnetic oscillation sensors with electrical connectors as means for unifying the frequency to prevent the occurrence of the beat phenomenon.
  • Each core 6 of the magnetic sensing unit is constructed with an exciting current of the same frequency by constructing a synchronizing signal circuit network, and by a combined exciting current of an oscillation synchronizing signal flowing through the oscillation synchronizing signal circuit network and an exciting current output from the operational amplifier circuit unit, This is to enable excitation of l5 and 24.
  • the terminals of the output terminals P1, P4, and P7 that are output through the output terminals P3, P6, and P9 of the operational amplifier circuit units 8, 17, and 26 and the passive elements P13, P46, and P79 connected thereto.
  • the terminals P1 and P9, the terminals P3 and P4, and the terminals P6 and P7 are sequentially connected by the electrical connectors 1, 2, and 3 shown in the figure so that a signal having a unified magnetic oscillation frequency can be shared.
  • a ring-shaped oscillation synchronization signal network is constructed, and each core 6, 15, 24 of the magnetic sensing unit can be excited by a combined excitation current of the excitation current of the operational amplification circuit unit and the oscillation synchronization signal of the unified magnetic oscillation frequency. I did it.
  • the structure of the connector 1, the connector 2, and the connector 3 is composed of an electrical passive element or an active element.
  • passive elements The simplest configuration example among passive elements is a connector composed of one electric resistor (hereinafter referred to as a resistor).
  • Other passive elements can be constituted by circuits in which resistors, capacitors, coils, and the like are variously combined, and an active element circuit in which a power amplifying function is added to a connector can also be used.
  • the impedance value may be a short circuit that does not require a passive element (in the case of 0 ⁇ ) depending on circuit constants and configuration conditions of the oscillation circuit.
  • the application range of the term “output terminal of the operational amplifier circuit unit” in this specification is not limited to the impedance values of the passive elements P13, P46, and P79 as well as the terminals P3, P6, and P9. P1, P4, and P7 are also included in the output terminal of the operational amplifier circuit unit.
  • the operational amplifier circuit sections 8, 17, and 26 are amplifier circuits having an operational amplifier as a main component, and may have a circuit configuration to which a power amplification function is added as necessary.
  • the output voltages at the output terminals P3, P6, and P9 of the operational amplifier circuit sections 8, 17, and 26 are divided by the resistors 9 and 10, the resistors 18 and 19, and the resistors 27 and 28, respectively, and the divided resistors 10, 19 are divided. , 28 are input to the inverting terminal of each operational amplifier circuit section. Since the magnetic oscillation frequency is determined by the voltage dividing ratio of the resistor 9 and the resistor 10, the resistor 18 and the resistor 19, and the resistor 27 and the resistor 28, it is usually possible to finely adjust the voltage dividing ratio using a variable resistor trimmer.
  • Reference numerals 11, 20, and 29 denote filter circuits, which mainly have a function of preventing unnecessary frequency components and magnetic oscillation frequency components that are not measured from being included in the output voltages of the output terminals Q 1, Q 2, and Q 3. It is.
  • amplification circuits for adjusting the amplification degree for the purpose of calibration.
  • a standard magnetic field generator that is traceable with respect to national standards is used, and a magnetic sensitive part is installed in the standard magnetic field created by the standard magnetic field generator. Adjust the amplification.
  • the feature of this first embodiment is that even if the oscillation frequency fluctuates due to the temperature change of the circuit part of the triaxial magnetic field measuring instrument or the disturbance magnetic field applied to the magnetic oscillation sensor, the magnetic oscillation sensors Since all oscillation frequencies fluctuate together, the beat phenomenon does not occur.
  • FIG. 5 shows a second embodiment of the present invention, in which an air-core coil is attached to cancel the leakage magnetic field that leaks from the core-attached coil of the magnetic sensing portion and is emitted from the core-attached coil.
  • This is a circuit example of a three-axis magnetic field measuring instrument for preventing magnetic field, in which a leakage magnetic field radiated to the periphery is canceled to suppress adverse effects due to electromagnetic induction noise on peripheral devices.
  • This antimagnetic countermeasure for suppressing electromagnetic induction noise to peripheral devices is also effective for one magnetic oscillation sensor.
  • This circuit replaces the resistors 7, 16, 25 in the first embodiment of FIG. 4 with the previously described air-core coils 70, 160, 250 in the second embodiment shown in FIG. This is a circuit that cancels out the leakage magnetic field radiated from the attached coils 5, 14, and 23 to the periphery.
  • the air-core coils 70, 160 and 250 are arranged in close contact with the core-attached coils 5, 14 and 23 of the magnetic sensitive part so that the magnetic detection axial directions are parallel to each other.
  • Connection terminals P2, P5, and P8 of the air-core coils 70, 160, and 250 and the magnetic sensing units 4, 13, and 22 are connected to the non-inverting terminals of the operational amplifier circuit units 8, 17, and 26, so that the magnetic oscillation sensor. Configure the circuit.
  • the cores 6, 15, and 24 in the core-attached coils 5, 14, and 23 of the magnetic sensitive units 4, 13, and 22 are respectively connected to the oscillation synchronization signal that flows through the oscillation synchronization signal network and the operational amplification circuit unit as in the case of FIG. It operates as a magnetic oscillation sensor that is excited by an excitation current of the same magnetic oscillation frequency by a combined excitation current with the output excitation current.
  • FIG. 6 shows the construction of a star-shaped oscillation synchronization signal network for forming an oscillation synchronization signal. Further, an external signal generation circuit is added to this circuit network, and the oscillation synchronization signal from this external signal generation circuit is used as a magnetic field.
  • This is a third circuit embodiment in which the oscillation frequency is fixed and the beat phenomenon caused by the deviation of the magnetic oscillation frequency is completely prevented.
  • the form of the star-shaped oscillation synchronization signal network for forming the oscillation synchronization signal is such that one terminal of a passive element or an active element connected to the operational amplification circuit section of a plurality of magnetic oscillation sensors is an electrical connector. Is a circuit integrally connected to the common terminal PA. If this circuit is seen from the common terminal PA to the magnetic oscillation sensor side, it is in a state of a circuit network in which wirings are radially expanded like star light toward a plurality of magnetic oscillation sensors and connected in a star shape. It can be said that this is a star-shaped oscillation synchronization signal network.
  • the oscillation synchronization signal that flows through the oscillation synchronization signal network is a fixed-frequency signal from the external signal generation circuit, and is shared as the oscillation frequency of the excitation current.
  • Each core of the magnetically sensitive part is excited at the unified magnetic oscillation frequency by the combined excitation current with the excitation current.
  • This star-shaped oscillation synchronization signal network is also one of the very significant oscillation synchronization signal networks from a practical viewpoint.
  • the magnetic oscillation sensor is an independent self-excited method that generates an excitation current by the sensor circuit itself, the oscillation frequency itself may fluctuate depending on the strength of the magnetic field to be measured, or the unified magnetic oscillation frequency itself may be insignificant. May be affected by fluctuations.
  • the oscillation synchronization signal of the unified magnetic oscillation frequency from the external signal generation circuit passes through the star-shaped oscillation synchronization signal network constructed by the connection of the electrical connector, and merges with the excitation current from the operational amplifier circuit section.
  • Each core of the magnetic sensitive part is excited as a combined excitation current with a unified magnetic oscillation frequency.
  • each of the cores of the magnetic sensing unit is forcibly excited at the unified magnetic oscillation frequency by the fixed oscillation synchronization signal from the external signal generation circuit flowing through the oscillation synchronization signal network and the excitation current flowing from the operational amplifier circuit unit. It is done.
  • A is an external signal generation circuit, which is a circuit newly added to the common terminal PA outside the star-shaped oscillation synchronization signal network of the magnetic oscillation sensor circuit.
  • the frequency of the external signal generation circuit A is selected to be a frequency at which the magnetic oscillation sensor can oscillate most stably, and the oscillation synchronization signal of the frequency component is transmitted from the common terminal PA through the electrical connectors B, C, and D. It is sent to each coil via terminals P1, P4 and P7.
  • the cores 6, 15, and 24 in the core-attached coils 5, 14, and 23 of the magnetic sensitive units 4, 13, and 22 are respectively connected to the fixed oscillation synchronization signal from the external signal generation circuit and the excitation current of the operational amplifier circuit unit.
  • excitation is performed at a stable unified magnetic oscillation frequency without frequency fluctuation.
  • the embodiment of FIG. 6 is a further improvement of the weak point of the star-shaped oscillation synchronization signal circuit network, and an external signal generation circuit and an operational amplifier circuit unit for generating an electric signal having the same frequency as the unified magnetic oscillation frequency. Is connected with an electrical connector, and the frequency of the oscillation synchronization signal in the star-shaped oscillation synchronization signal network is fixed in synchronization with the frequency of the electrical signal output from the external signal generation circuit. It can be said that this is an embodiment of the detection device.
  • the connectors B, C, and D are composed of electrically passive elements or active elements as in the case of each connector in FIG.
  • the impedance value is set to an optimum value including the case of a short circuit so that the magnetic oscillation is stably maintained.
  • the technology related to this external synchronization signal is not only for the case of multiple magnetic oscillation sensors, but also suppresses the change in magnetic oscillation frequency that occurs when measuring a strong magnetic field with a single magnetic oscillation sensor, This technology can also be applied to magnetic sensors that are used for uniaxial magnetic field measurement and multi-point simultaneous measurement.
  • the present invention is suitably used for measuring leakage magnetic fields inside and outside the body of a railway vehicle or automobile as a technique for improving the magnetic oscillation sensor and the magnetic detection device so as to maximize the characteristics of the magnetic oscillation sensor. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

磁気発振センサの特性を最大限に発揮できるように、磁気発振センサおよび磁気検出装置を改善する技術の提供。複数個の磁気発振センサの各々の演算増幅回路部8,17,26間を電気的連結子1,2,3で接続して磁気発振センサの発振周波数を統一する発振同期信号回路網を構築し、該発振同期信号回路網を流れる発振同期信号と演算増幅回路部8,17,26から出力される励磁電流との合成励磁電流によって、磁気感応部4,13,22の各々のコア6,15,24が強制的に統一磁気発振周波数で励磁されるようにした磁気検出装置。

Description

磁気検出装置
 本発明は、鉄道車両及び自動車によって生じる車内外の漏れ磁界等を測定する磁気発振センサおよび磁気検出装置に関し、さらに詳細には、直流磁界の測定は当然のことながら、上限が100kHz前後までの交流磁界の測定が可能な磁気検出装置に関する。
 さらに、本発明は、IEC61786規格やJIS-C1910規格で定義されているフラックスゲート型磁界測定器、すなわち「強磁性体磁心を含むプローブ又はセンサ部の非線形磁気特性を利用して磁界を測定する測定器」における磁気検出装置に関するものである。
 鉄道車両や自動車の車体の内外部における漏れ磁界の測定用磁気センサでは、電磁誘導を利用したサーチコイル型磁気センサが主体であったが、コイルを用いた磁気センサでは直流磁界の測定は不可能という原理的な欠点があった。
 一方、従来から実用されてきたフラックスゲート型磁界測定器では、測定対象磁界の有効範囲が直流磁界から高々数kHzまでの交流磁界範囲に止まっており、直流磁界から100kHz前後の交流磁界までの周波数帯全域を計測するフラックスゲート型磁界測定器は未だ実用化されていない。それは、同じ磁界強度の直流磁界から100kHz前後の交流磁界を同じ振幅の電気信号に変換する技術は非常に難しく、その性能保証も非常に困難であるためである。
 近年、鉄道車両においては、強力な漏れ磁界を発生する車両の生産が多くなるとともに、漏れ磁界が人体、磁気記録媒体などに影響を与えることが懸念されるようになってきたため、「鉄道車両の漏れ磁界の測定方法(JIS E 4018)」が、日本工業標準調査会の審議を経て制定された。
 これによれば測定項目は、車内外の漏れ磁界(磁束密度)および磁界発生機器などの電流と規定し、車両の状態に応じて計測条件を規定している。たとえば、走行状態では、磁界発生機器の近傍における車内の漏れ磁界を磁界発生機器が最大電流になる車両速度域で測定することなどを規定している。発車時における直流磁界の変動では、磁束密度で1~2mT程度の磁界を測定するので、測定器としてホール素子を使用した測定器を使用することが多い。
 具体的には、精度が±5%程度の測定器を使用して、磁界のX成分、Y成分、Z成分の測定を行い、その各軸成分の合成値を(1)式によって計算し、この合成値で表すものと規定している。測定結果の記録においては、磁束密度は合成値と各軸成分を記録するとも規定している。
 B=√(Bx 2+By 2+Bz 2)     (1)
 磁界測定に当たっては、X、Y、Zの各成分を同時測定することが基本である。従来の測定器では、実効値表示あるいは波高値表示の一般的汎用測定器であったため、瞬時波形測定や広帯域周波特性に関する性能保証はされておらず、交流磁界測定時の合成値は、X、Y、Z軸の各実効値あるいは波高値を基にして(1)式によって計算されていた。その結果、合成磁界の最大値を計算しても、X、Y、Z各成分間のデータ同時性と位相関係を無視したものであったため、X、Y、Z軸の瞬時値で計算する真の全磁力(磁界べクトルの大きさあるいは絶対値)とは一致しなかった。
 その原因は、実効値表示値あるいは波高値表示値は、変動するX成分、Y成分、Z成分間の位相関係を示す情報を無視していることによる。たとえば、波高値表示値によって計算される磁界合成値(合成による磁界べク卜ルの大きさ)は、三軸同時計測時のデータから計算される真の全磁力に比べ、特殊な場合を除いては常に大きい値となり、その誤差は数10%以上になるため、測定器の許容精度±5%を遙かに上回る。結果的には、波高値表示値による磁界合成値は、位相無視による誤差によって真の磁界ベク卜ルの大きさからほど遠いものになるという問題があった。
 別の観点からみれば、従来の実効値表示値あるいは波高値表示値の磁界測定器は、磁界波形のひずみや位相関係を無視して、時間的平均値で磁界の強さを測定するタイプの機器であって、高い周波数成分を含む磁界に対する瞬時応答性や測定された磁界波形の忠実な再現性に関しては、何も保証していなかった。
 ところで、自動車や鉄道車両から発生する磁界の周波数帯域は、直流磁界からインバータ周波数、さらにスイッチングによる高周波雑音磁界までの広帯域にわたる磁界である。これらの磁界をFFT(高速フーリエ変換)解析するためには、直流磁界、変動磁界、商用周波数の磁界などを含む低周波領域から100kHz前後の高周波領域に至る広帯域磁界を、一様に同じ検出感度で測定できる実用機として広帯域型磁界測定器が必要になってきた。
 また、この広帯域型磁界測定器に要求されるダイナミックレンジは、数mT程度の強い磁界から、人体ヘの影響が懸念されている数100nT~数10nT程度の微弱な磁界まで測定可能であり、非常に広いダイナミックレンジの磁界測定器であることも条件の一つとして必要になってきた。
 磁気センサの磁気検出方式には、磁気検出原理により直流から数Hzまでの直流変動磁界の測定に適するもの、直流から数100Hzまでの直流変動磁界の測定に適するもの、数Hz~数10kHzの交流磁界しか測定できないもの、微弱磁界しか測定できないもの、強磁界しか測定できないものなどと、いろいろな方式が存在する。
 たとえば、ホール素子方式の磁気センサを例に取れば、磁界測定器の実用有効精度は、数10μT程度であって、1~2mT程度の強磁界測定時では数10μT程度の小さな磁界は誤差として無視できるので、強磁界測定向きである。しかし、人体ヘの影響が懸念されている微弱な数μT以下の漏れ磁界の測定では、信号より誤差の方が大きくて弱磁界信号は雑音中に埋もれることになる。このように、長所もあれば短所もある。
 そこで、これらの課題を解決する対策の一つとして、各磁気検出方式の長所を積極的に活用するという構想の下に、直流磁界を含む低周波領域と高周波領域を2種類の磁気センサでそれぞれ分担して測定させる技術が発明された。
 具体的には、特許文献1の「鉄道車両の磁界測定方法および磁界測定装置」において開示された技術で、強磁性体磁心を含むプローブ又はセンサ部の非線形磁気特性を利用して磁界を測定するフラックスゲート(IEC 61786 規格の定義)に属する磁気発振センサと、サーチコイル方式の磁気センサとの組み合わせで、互いの短所を補完し合って広帯域磁界測定に対応できるようにした複合型磁気センサである。
 すなわち、数10Hz以上の交流磁界の検出を得意とするサーチコイル型磁気センサを第1三軸磁気センサとし、直流磁界や変動磁界の計測に適している磁気発振センサを第2三軸磁気センサとして、2種類の磁気検出方式の各長所を組み合わせることによって、測定不能領域を皆無にしようとするものである。
 そして、各方式では3個の磁気感応部の磁気検出軸(最大磁気感応方向)を互いに直交させ外部磁界をX軸,Y軸,Z軸の三軸成分に分解して検出できるように構成している。
 図7は、特許文献1における磁気センサの事例で、磁気感応部をセンサケース内に一体実装した場合の基本構成を示す。
 第1の三軸磁気センサ51の磁気感応部は交流磁界測定専用であり、3個の直交するサーチコイルで構成されている。各軸のサーチコイルで検出された磁界信号(誘起電圧)はセンサケーブル53を通って測定器本体へ送られ、信号回路部で処理されて出力される。
 第2の三軸磁気発振センサ52には、直流磁界および低周波磁界を測定する磁気発振センサを使用し、その磁気感応部には強磁性体を磁芯とする3個のコア付きコイルがあり各コア付きコイルの磁気検出軸は、X,Y,Zの各座標軸に沿って互いに直交するように配置されている。
 図8に示す磁気発振センサの回路は、三軸磁界測定器の基本回路構成図である。図中の100はX軸回路部、104はX軸用の磁気感応部、200はY軸回路部、204はY軸用の磁気感応部、300はZ軸回路部、304はZ軸用の磁気感応部である。ここでは、各軸とも同じ回路構成であるので、X軸回路部100について説明する。
 この磁気発振センサの回路は、マルチバイブレータの変形回路であって、発振時に電圧変化を繰り返すコンデンサ端子間電圧の変動機能を、交流電流が流れると非線形特性を有するコア付きコイル端子間電圧が独特の変動を起こす現象と入れ替えて、マルチバイブレータの変形回路が発振するように再構築したものである。
 これは、マルチバイブレータ回路における発振現象が、磁性材料の非線形磁化特性を利用して発振する現象であるため、この発振回路を「磁気発振回路」と言い、この磁気発振現象を磁気センサに応用したものを「磁気発振センサ」あるいは「磁気発振型磁気センサ」と言う。
 また、この磁気発振回路内を流れる発振電流は、コア付きコイル105を通って流れるためコア106を正方向あるいは負方向ヘと交互に励磁して磁気飽和させることになる。
 それゆえ、この発振電流のことを「励磁電流」とも言う。
 X軸回路の磁気発振センサは、コア106を磁芯とするコア付きコイル105で構成された磁気感応部104と、オペアンプ(演算増幅器)108に抵抗107,109,110を付帯した構成からなる。コア付きコイル105の端子P20は、オペアンプ108の非反転入力端子に接続され、コア付きコイル105の他端は接地されている。111はローパスフィルタ回路で、主として磁気検出信号に含まれる磁気発振周波数成分を減衰させる機能を有する。112は増幅回路で、磁気感応部で検出した外部磁界強度に対応するように、電圧の増幅度を調整して端子Q10から出力する。
 コア106に印加する磁界が発振電流による励磁磁界だけであれば、コア106が正方向に磁気飽和するタイミングまでの励磁時間と、逆に負の方向に励磁して磁気飽和するタイミングまでの励磁時間は、磁性材料の磁化特性(B-H曲線)の原点対称性から同じになる。
 別の観点から言い換えれば、コア106の動作原点はB-H曲線の座標軸原点であるため、コア106が正方向と負方向に磁気飽和するまでの正負の励磁時間は共に等しく、その時間差は零になるので、オペアンプ108の方形波出力電圧の積分値も零になる。
 ところが、この状態で外部磁界がコア106に印加されると、励磁磁界に外部磁界が重畳する。これにより、コアの動作原点であるB-H曲線の座標軸原点から外部磁界の強さ分だけ動作点がずれるため、コアが正負に磁気飽和するタイミングにずれが生じる。すなわち、外部磁界によって、その正の半サイクル期間と負の半サイクル期間の比(「デューテイ比」という)が変化するため、オペアンプ108の出力電圧の積分値も同様に変化をする。
 言い換えれば、磁気発振センサにおいて外部磁界は、オペアンプ108の出力電圧の積分値の変化となって検出されたことになる。
 なお、磁気発振センサの初期における発振周波数の調整(出荷時調整)では、オペアンプ108の出力端子に接続された抵抗109と抵抗110の分圧比を変えることによって実施する。
 しかしながら、このような回路構成状態では次のような大きな問題があった。
 第1の問題は、複数個の磁気発振センサ間に発振周波数の違いが生じると、ビート周波数(周波数がわずかに異なる2つの波を重ね合わせる時に生じる「うなり」周波数をいう)の信号が発生することである。
 換言すれば、外部磁界中には存在してないビート周波数成分の信号が検出信号に雑音となって重畳する。このビート周波数成分を磁気発振センサの磁気検出信号から識別することは非常に困難であり、ビート周波数成分の磁界も外部磁界であると認識せざるを得ないという問題点があった。更に、このような現象が起きると、磁気発振センサの出力には外乱磁界の強さによっては、数10nTから数1000nT程度の直流レベルにも変動誤差が生じて、環境磁界の正確な測定が不可能になったり、強磁界中では磁界測定そのものが不可能になったりした。
 磁気発振センサでは、強磁界測定中では磁気発振周波数が低くなる傾向にあるため、この周波数変化によってビート現象は起こりやすくなり、磁気発振センサの多々ある性能面の長所をも打ち消すくらいの致命的な欠陥でもあったので、早急に解決しなければならなかった。
 第2の問題は、三軸磁気発振センサのコア付きコイル間における電磁誘導雑音や、隣接するサーチコイル式磁気センサヘの電磁誘導雑音のために、外乱磁場磁界の測定精度が劣化するという問題点である。
 そのため、各軸の磁気感応部や回路部も含めて独立分離させたり、センサの磁気感応部の距離を十分離して分散配置したりして、センサケースに収納するなどの必要があった。すなわち、磁気発振センサ同士でも十分な間隔を取ってバラバラに分散配置したり、コア付きコイル同士あるいはサーチコイルとの間隔を十分に取って分散配置すると共に、両センサを収納するセンサケースも大きくして各磁気センサを収納したりするという対策が取られていた。
 しかし、この対処方法では、それぞれの分散位置における磁界を測定することになるため、新たな問題が生じてきた。それは、磁界測定点の位置がバラバラに分散するため磁界の測定位置情度が悪くなり、誤差も大きくなるということである。
 均一な平行磁界空間における測定ならば、センサ間の分散位置に関係なく測定値も一致するので全く問題はないが、磁界が局所的に急な勾配で歪んでいる鉄道車両や自動車の内外における磁界の測定では、磁場強度は分散配置されたセンサの位置毎に著しく異なる箇所も出てくるため、各センサの磁気感応部の位置ずれによる測定誤差が必然的に生じ、磁界測定値が信頼できないという致命的な問題も包含していたことになる。
特開2005-69829号公報
 強磁性体磁心の非線形磁気特性を利用して磁界を測定するフラックスゲート型磁気センサは、磁気感応部のコア付きコイルに流す励磁電流の供給方法から分類してみると、他励式と自励式に大別される。
 前者の他励式はコア付きコイルとは分離独立した外部の発振回路あるいは外部の交流電源から励磁電流の供給を受ける外部励磁方式である。この方式は1939年に公表された方法で、フラックスゲート型磁気センサにおいて最も基本的励磁方式として、今日でも広く利用されているものである。その測定有効範囲は、直流磁界から数kHzの交流磁界であるため、フラックスゲート型磁気センサは低周波領域における弱磁界計測用として広く使われてきた。
 他励式は外部電源から励磁電流の供給を受けるという条件が必須条件であるため、仮に、外部磁界の強さが数1000μT以上あるような強磁界測定ともなれば、励磁磁界の強さも数1000μTの数倍以上の強さの励磁電流を一定振幅の交流電流として流す必要が有り、磁気センサのコアを励磁させる励磁電流の電力も大きくする必要がある。
 逆に、弱磁界測定の場合では、コアを磁気飽和させる励磁電流は小さくて十分であるが、数1000μT以上の強磁界も弱磁界も、併せて測定できるようにするためには、常時、最大磁界に対応させて強磁界測定可能な過励磁状態にしておく必要があり、そのために、数1000μTの数倍以上の強さの無駄な励磁電流を磁気感応部に流しておく必要がある。
 そのためには、磁気感応部の構造改良、コイルの異常発熱対策、励磁電流の安定化対策など弱磁界測定では全く問題にならなかった困難な技術的課題の解決が必要になる。
 ちなみに、この性能を満たす磁界測定器は市販品では存在せず、実用的にはほとんど対応不能という状態で取り残されている。
 これに対して、後者の自励式であるフラックスゲート型磁気センサは磁気発振センサと呼ばれるもので、磁気発振センサの最も簡単な回路は、オペアンプで構成される無安定マルチバイブレータの発振回路のコンデンサ端子電圧の変化によって引き起こされる発振現象を、コア付きコイルの非線形磁気特性を利用して変化する電圧変化に置き換えることよって、変形型マルチバイブレータを再構築して磁気センサに供するものとしたのである。
 この構成の磁気センサでは、コア付きコイル自身が発振回路の構成部品となって機能するため、発振回路の発振電流は当然のことながらコア付きコイルに励磁電流として流れる。この方式では、回路を流れる発振電流が励磁電流となってコア付きコイル自身を励磁するため、外部の交流電源によって励磁される必要が無く、独立した自立型励磁方式であると言える。
 磁気発振センサでは、励磁電流成分である磁気発振用の交流成分と、外乱磁界の強さに比例した成分が磁気感応部のコア付きコイルを流れる。磁気発振センサのコア付きコイルを流れる励磁電流の積分値は、外部磁界の強さに比例するので、他励式フラックスゲートのような測定限界以上の励磁磁界を常時発生させる励磁方法と異なり、励磁電流に無駄がないので、効率の良い省エネルギー型の磁気センサであると言える。
 本発明は、国際規格IEC/TS62597(鉄道車両の車内外の漏れ磁界測定に関する国際規格)に準拠した直流から交流までの磁界測定を可能にするために、上述してきた磁気発振センサの特性を最大限に発揮できるように、磁気検出装置を改善することを目的とする。
 具体的には、本発明の第1の解決課題は、磁界を測定する測定点における位置ずれを最小にすることである。
 また、本発明の第2の解決課題は、各磁気発振センサ間における発振周波数の違いによって発生するビート現象を阻止する技術を確立することである。
 前記課題を解決するための発明の第1の構成は、磁性材料のコアと、そのコアの周囲に巻いたコイルからなるコア付きコイルの磁気感応部と、前記コア付きコイルのコイルに交流の励磁電流を流し、前記コアに印加される磁界の大きさに応じた出力を生成する演算増幅回路部とを有する磁気発振センサにおいて、
 前記磁気感応部のコア付きコイルと近接して配置され、前記コア付きコイルに流れる励磁電流により発生する漏れ磁界と同じ強度で逆方向の磁界を発生する電流が供給される空芯コイルを設けたことを特徴とする。
 磁界の検出精度を向上させるには、磁界を測定する測定点における位置ずれを最小にすることが重要である。測定位置精度を向上させるために磁気感応部のコア付きコイルを極力密接させて、小型センサケース内に収納可能にすることが必要になった。そのためには、磁気感応部のコア付きコイル間における電磁誘導を極力避けて、誘導雑音を極力抑制する必要がある。
 本発明の第1の構成では、隣接する他軸のコア付きコイルヘの影響を小さくして、誘導雑音を極力抑制するために、磁界を検出する磁気感応部のコア付きコイルに流れる励磁電流を、空芯コイルにも流して、漏れ磁界を打ち消すように逆方向から励磁磁界と同じ強度の磁界を空芯コイルから発生させて相殺する手段を採用した。
 この技術は、磁気感応部から外部に漏れて出る漏れ磁界の空間を極力小さくできるので、磁気発振センサ単独で磁界測定する場合でも有効で、隣接する電子機器や回路ヘの誘導雑音を極力抑制することができる。
 本発明の第2の構成は、磁性材料のコアと、そのコアの周囲に巻いたコイルからなるコア付きコイルの磁気感応部と、前記コア付きコイルのコイルと回路素子と演算増幅回路部とからなるマルチバイブレータとから構成される磁気発振センサを複数備えた磁気検出装置において、
 前記複数個の磁気発振センサの各々の前記演算増幅回路部間を電気的連結子で接続して前記磁気発振センサの発振周波数を統一する発振同期信号回路網を構築し、
 該発振同期信号回路網を流れる発振同期信号と前記演算増幅回路部から出力される励磁電流との合成励磁電流によって、前記磁気感応部の各々のコアが強制的に統一磁気発振周波数で励磁されるようにしたことを特徴とする。
 この第2の構成では、複数個の磁気発振センサの各々の磁気発振周波数成分を共有できるように回路を接続し、その接続された回路の共有情報によって統一できる共通の磁気発振周波数で各々のコアが励磁されるようにするために、演算増幅回路部を電気的に結合して発振同期信号回路網を構築し、この回路を流れる発振同期信号によって、ビー卜現象を阻止した。
 本発明の第3の構成は、第2の構成において、前記発振同期信号回路網は、前記複数個の磁気発振センサの各演算増幅回路部の出力端子を、受動素子あるいは能動素子で環状に接続したものである。
 この第3の構成では、受動素子あるいは能動素子で接続することにより、環状型の発振同期信号回路網を構築し、該発振同期信号回路網を流れる発振同期信号と前記演算増幅回路部から流れる励磁電流との合成励磁電流によって、磁気感応部の各々のコアを強制的に統一磁気発振周波数で励磁するようにした。
 本発明の第4の構成は、第2の構成において、前記発振同期信号回路網は、前記複数個の磁気発振センサの各演算増幅回路部の出力端子を、受動素子あるいは能動素子で星状に接続したものである。
 この第4の構成では、受動素子あるいは能動素子で接続することにより、星状型の発振同期信号回路網を構築し、該発振同期信号回路網を流れる発振同期信号と前記演算増幅回路部から流れる励磁電流との合成励磁電流によって、磁気感応部の各々のコアを強制的に統一磁気発振周波数で励磁するようにした。
 本発明の第5の構成は、第2の構成において、前記統一磁気発振周波数と同じ周波数の電気信号を発生する外部信号発生回路と前記演算増幅回路部との間を電気的連結子で接続して、統一磁気発振周波数を固定化した発振同期信号回路網を構築したことを特徴とする。
 この第5の構成では、統一磁気発振周波数と同じ周波数の電気信号を発生する外部信号発生回路と演算増幅回路部の間を電気的連結子で接続して、統一磁気発振周波数の発振同期信号回路網を構築し、該発振同期信号回路網を流れる発振同期信号と演算増幅回路部から流れる励磁電流との合成励磁電流によって、磁気感応部の各コアが強制的に統一磁気発振周波数で励磁されるようにした。
 本発明の第6の構成は、第2~第5の構成において、前記各磁気発振センサは、第1の構成の空芯コイルが設けられたものであることを特徴とする。
 第1の構成の空芯コイルを設けた磁気発振センサを第2~第5の構成に適用することにより、各磁気発振センサのコア付きコイルから漏れる励磁磁界が他の磁気発振センサによる検出に影響されることを低減し、磁界検出時の精度が向上する。
 本発明は、国際規格IEC/TS62597に準拠させながら、従来の磁気発振センサに改良を加えたもので、その成果としての最大の特徴は、正常な発振状態を維持する限りコア付きコイルに流れる電流によって印加磁界を打ち消すことが可能になり、数1000μT以上の磁界測定や、直流磁界から100kHz前後までの交流磁界の計測も可能となる。
 また、測定磁界強度の下限では、雑音レベルの低減によって数nT以下まで下がり、測定磁界の強度のダイナミックレンジは強磁界の数mTから数nT以下の弱磁界までという非常に広い測定範囲の磁界の検出が可能になる。
 さらに、複数の磁気検出方式によって測定範囲を分担させることなく、単一の磁気発振型の磁気検出方式で、直流から数100kHz前後までに及ぶ広帯域周波数の磁界測定が可能となった。この性能は既存のフラックスゲート式磁界測定器の上限周波数である高々5kHzに比べてみると、20倍近くも凌駕したことになる。
 また、磁気発振センサでは、コアを励磁する励磁電流が外部磁界の強さに比例する省エネルギー型の磁気センサであるため、変化する磁界の強度分布を多数の計測点で同時測定する用途には最適である。
 このように、本発明の磁気検出装置は、鉄道車両及び自動車における磁界測定用磁気センサの性能としては、十分満足できるものであると言える。また、他の技術分野における各種研究開発や広く産業界においても、送電線からの磁界や環境磁界の測定においても、有用な高性能磁気センサの一つとして幅広く活用されることが期待できる。
本発明の実施の形態の磁気発振センサの磁気感応部周辺を示すもので、(a)は回路図、(b)は漏れ磁界の説明図である。 一般的な磁気発振センサの磁気感応部周辺を示すもので、(a)は回路図、(b)は漏れ磁界の説明図である。 本発明の実施の形態を示す磁気発振センサの磁気感応部周辺の回路図である。 本発明の第1の実施の形態を示す磁気検出装置の回路図である。 本発明の第2の実施の形態を示す磁気検出装置の回路図である。 本発明の第3の実施の形態を示す磁気検出装置の回路図である。 特許文献1における磁気センサの説明図である。 三軸磁界測定器の基本回路構成図である。
 以下、本発明の実施の形態を、図面を参照しながら具体的に説明する。
 図1に、本発明の実施の形態の磁気発振センサの磁気感応部周辺を示す。
 また、図2に一般的な磁気発振センサの磁気感応部周辺を示す。
 図2(a)あるいは図8に示すように、一般的な磁気発振センサでは、端子P10から抵抗等の受動素子107を介して磁気感応部のコア106の周囲に配置されたコア付きコイル105に励磁電流を流し、端子P20の電圧の変化を演算増幅器108により検出して外部磁界の強度を検出している。この磁気発振センサにおいて、コア付きコイル105に励磁電流が流れると、図2(b)に示すようにコイル周辺には漏れ磁界が発生する。図中の矢印の向きは、コア付きコイル105内部の磁界の極性を示している。
 コア付きコイル105単独では、コイルから漏れた励磁磁界が周辺に広がっているので、この空間内に電子機器、通信機、その他の電子回路などがあれば、当然のことながら誘導雑音の影響を受けることになる。
 この誘導雑音から防護するための対策は、磁気感応部から遠ざけるか、あるいは誘導雑音が存在する空間を縮小させるかのいずれかである。
 前者は測定位置精度を低下させるので磁界測定器では採用できない。
 後者の雑音空間の縮小対策として、磁性材料で囲んで磁気シールドする方法がある。しかし磁気シールド材が磁気感応部の付近にあると、外部磁界が磁気シールド材の影響を受けて正確な外部磁界測定が不能になる。結局のところ、漏れ磁界を遮蔽するには励磁磁界と同じ磁界を逆方向から印加して漏れ磁界を打ち消す手法に到達するのである。
 これを解決するために、本発明の実施の形態の磁気発振センサは、図1(a)に示すように、図2の受動素子107の代わりに空芯コイル70を用い、空芯コイル70をコア付きコイル5に極力接近させて逆磁界を発生できるように配置している。図1(b)は、空芯コイル70による漏れ磁界の打ち消し効果をイメージとして表現したもので、誘導雑音の影響を受ける雑音空間の広がりが縮小していることがわかる。図1の矢印の向きは、コア付きコイル5と空芯コイル70内部の磁界の極性を示している。
 図3は外部からの発振同期信号で、強磁界の外部磁界印加時に起こりやすい発振周波数の変動を阻止する単一磁気発振センサの回路実施例であり、複数個の磁気発振センサにおける外部同期型磁気発振センサの基本回路である。
 Aは外部信号発生回路で、磁気発振センサ回路の外側に新たに追加された回路である。外部信号発生回路Aの周波数は、磁気発振センサが最も安定して発振できる周波数に選定し、その周波数成分を発振同期信号として出力端子PAから端子P1を経由して磁気感応部に送られる。
 磁気感応部4のコア付きコイル5内のコア6は、この発振同期信号と演算増幅回路部の励磁電流との合成励磁電流によって、発振同期信号に同期した安定な励磁電流で励磁されることになる。
 連結子Bは、電気的な受動素子あるいは能動素子で構成する。
 P13は受動素子で抵抗あるいはコイルを使用し、そのインピーダンスの値は磁気発振が安定して持続するように、短絡の場合も含めて最適になるような値にする。
 この実施の形態によれば、コア付きコイル5に近接して空芯コイル70を設けることにより、磁気感応部4から外部に漏れて出る漏れ磁界の空間を極力小さくできるので、磁気発振センサ単独で磁界測定する場合に有効であり、隣接する電子機器や回路ヘの誘導雑音を極力抑制することができる。
 図4に示す本発明の第1の実施形態は、複数個の磁気発振センサで構成される代表例として、3個の磁気発振センサで構成される三軸磁界測定器の回路図である。
 複数個の磁気発振センサで構成される他の回路例として、単独の磁気発振センサを複数個の測定点に配置して磁界測定するような多点同時測定の場合も、以下の説明の変形として説明できるので、重複を避けるためにその回路例は割愛する。
 指向性を有する磁気センサで外部磁界を測定する場合、その全磁力をX成分、Y成分、Z成分にベク卜ル分解して、各直交成分を個別に測定する方法が一般的である。
 三軸磁界測定器の回路全体は、X軸回路部1000、Y軸回路部2000、Z軸回路部3000に分離独立している回路部を一体化したものである。
 磁気発振センサには指向性があって、磁界を強く感じる軸方向を磁気検出軸とも言う。具体的な例として、磁気感応部の各コアが直線状の真っ直ぐなコアで、そのコアの長軸に対して直交する方向でコア付きコイル5、14、23が巻かれている場合では、磁気検出軸はコア6,15,24の長軸方向になる。
 本実施の形態の三軸磁界測定器では、磁気発振センサの磁気感応部4、13、22の磁気検出軸が互いに直交するように、コア6,15,24の軸方向の角度を微調整してセンサケース内に配置する。
 高情度で磁界を測定するためには、ビート現象の発生を阻止しなければならない。そのためには、各磁気発振センサ間の磁気発振周波数を統一し、同一周波数の励磁電流で磁気感応部の各コア6、l5、24を励磁する必要がある。
 本発明における最重点技術は、そのビート現象の発生を阻止するための周波数統一手段として、複数個の磁気発振センサの演算増幅回路部間を電気的連結子で接続して発振周波数を統一する発振同期信号回路網を構築し、発振同期信号回路網を流れる発振同期信号と演算増幅回路部から出力される励磁電流との合成励磁電流によって、同一周波数の励磁電流で磁気感応部の各コア6、l5、24を励磁できるようにしたことである。
 具体的には、演算増幅回路部8、17、26の出力端子P3、P6、P9と、それに接続された受動素子P13、P46、P79を介して出力される出力端子P1、P4、P7の端子間において、端子P1とP9、端子P3とP4、端子P6とP7の各端子間を、図示した電気的連結子1,2,3で順次結合させて、統一磁気発振周波数の信号を共有できるように環状型の発振同期信号回路網を構築し、演算増幅回路部の励磁電流と統一磁気発振周波数の発振同期信号との合成励磁電流で、磁気感応部の各コア6、15、24を励磁できるようにした。
 連結子1,連結子2,連結子3の構成は、電気的な受動素子あるいは能動素子で構成する。
 受動素子の中で最も簡単な構成例は、1本の電気抵抗体(以下、抵抗という)からなる連結子である。その他の受動素子としては、抵抗、コンデンサ、コイル等を種々組み合わせた回路によって構成することができ、また、連結子に電力増幅機能を付加した能動素子の回路を使うことも可能である。
 7,16,25およびP13、P46,P79が受動素子である場合には、抵抗あるいはコイルを使用する。そして、そのインピーダンスの値には、発振回路の回路定数や構成条件によっては受動素子を必要としない短絡の場合(0Ωの場合)もある。
 そのため、本明細書における用語「演算増幅回路部の出力端子」の適用範囲は、端子P3、P6、P9のみならず受動素子P13、P46、P79のインピーダンスの値に関係なく、その出力側の端子P1、P4、P7も演算増幅回路部の出力端子に含むものとする。
 演算増幅回路部8、17、26は、オペアンプを主構成要素とする増幅回路であり、必要に応じて電力増幅機能を追加した回路構成にする場合もある。
 演算増幅回路部8、17、26の出力端子P3、P6、P9における出力電圧は、抵抗9と10、抵抗18と19、抵抗27と28によって各々分圧され、分圧された抵抗10、19、28の端子電圧は、各演算増幅回路部の反転端子に入力される。磁気発振周波数は、抵抗9と抵抗10、抵抗18と抵抗19、抵抗27と抵抗28の分圧比で決まるため、通常は可変抵抗のトリマを使って分圧比の微調整を可能にしておく。
 11、20、29はフィルタ回路であり、測定対象外の不要な周波数成分や磁気発振周波数成分が出力端子Q1、Q2、Q3の出力電圧に含まれないように阻止する機能を主目的とする回路である。
 12、21、30は校正を目的とした増幅度調整用の増幅回路である。測定された磁界強度の数値が信頼できるようにするためには、定められた国家基準等に適合する磁界強度の数値に一致させる必要がある。校正作業では、国家基準に対してトレーサビリティがとれている標準磁界発生器を使い、その標準磁界発生器で作った標準磁界中に磁気感応部を設置して、増幅回路12、21、30の各増幅度を調整する。
 この第1の実施の形態の特徴は、もしも、三軸磁界測定器の回路部の温度変化や磁気発振センサに加わる外乱磁場磁界によって発振周波数に変動があっても、複数個の磁気発振センサの発振周波数が全て一緒になって変動するので、ビート現象が生じないという特徴である。
 図5は本発明の第2の実施の形態を示すものであり、磁気感応部のコア付きコイルから外部に漏れて放射される漏れ磁界を打ち消すために空芯コイルを付帯させ、コア付きコイルから周辺に放射される漏れ磁界を打ち消して周辺機器への電磁誘導雑音による悪影響を抑制した防磁対策型三軸磁界測定器の回路事例である。この周辺機器ヘの電磁誘導雑音抑制の防磁対策は、1個の磁気発振センサにおいても有効である。
 この回路は、図4の第1の実施の形態における抵抗7、16、25を、図5に示す第2の実施の形態では、前に述べた空芯コイル70、160、250に置き換え、コア付きコイル5,14,23から周辺に放射される漏れ磁界を打ち消ようにした回路である。
 空芯コイル70、160、250は磁気感応部のコア付きコイル5,14,23にそれぞれ密接して磁気検出の軸方向が平行になるように配置する。
 空芯コイル70、160、250と磁気感応部4、13、22との接続端子P2、P5、P8は、演算増幅回路部8、17、26の各非反転端子に接続されて磁気発振センサの回路を構成する。
 各磁気感応部4、13、22のコア付きコイル5,14,23内のコア6,15,24は、図4の場合と同じく発振同期信号回路網を流れる発振同期信号と演算増幅回路部から出力される励磁電流との合成励磁電流によって、同一磁気発振周波数の励磁電流で励磁される磁気発振センサとして動作する。
 図6は、発振同期信号を形成するための星状型発振同期信号回路網を構築し、更に、この回路網に外部信号発生回路を付加し、この外部信号発生回路からの発振同期信号で磁気発振周波数を固定化して、磁気発振周波数のずれによって起きるビート現象を完全に阻止する第3の回路実施例である。
 発振同期信号を形成するための星状型発振同期信号回路網の形態は、複数個の磁気発振センサの演算増幅回路部に接続された受動素子あるいは能動素子の一方の端子が、電気的連結子を介して共通端子PAに統合接続された回路である。この回路を共通端子PAから磁気発振センサ側を見れば、複数の磁気発振センサに向かって星の光のように放射状に配線が展開して星状に接続された回路網の状態であることから、星状型発振同期信号回路網であると言える。
 すなわち、発振同期信号回路網を流れる発振同期信号は、外部信号発生回路からの固定周波数の信号であり、これを励磁電流の発振周波数として共有するので、この発振同期信号と演算増幅回路部から流れる励磁電流との合成励磁電流によって、統一磁気発振周波数で磁気感応部の各々のコアは励磁される。この星状型発振同期信号回路網も、実用上から見ても非常に有意義な発振同期信号回路網の一つである。
 しかしながら、磁気発振センサはセンサ回路自体で励磁電流を作り出す独立した自励方式であるために、測定する磁界の強さなどによっては、発振周波数自体が変動することや、統一磁気発振周波数自体が微変動するなどの影響を受けることがある。
 この現象は、高精度に磁界を測定する場合では障害になるので、この統一磁気発振周波数自体の微小変動も阻止する必要があり、この対策として図6に示す実施例のように、外部発振回路の発振同期信号を使って磁気発振周波数を完全に固定化することが必要になる。
 外部信号発生回路からの統一磁気発振周波数の発振同期信号は、電気的連結子の接続によって構築された星状型発振同期信号回路網を通過して、演算増幅回路部からの励磁電流と合流し、統一磁気発振周波数の合成励磁電流として磁気感応部の各コアを励磁する。
 すなわち、発振同期信号回路網を流れる外部信号発生回路からの固定化された発振同期信号と演算増幅回路部から流れる励磁電流によって、磁気感応部の各々のコアは強制的に統一磁気発振周波数で励磁されるのである。
 図においてAは外部信号発生回路で、磁気発振センサ回路の星状型発振同期信号回路網の外側に、新たに共通端子PAに追加接続された回路である。外部信号発生回路Aの周波数は、磁気発振センサが最も安定して発振できる周波数に選定し、その周波数成分の発振同期信号は、共通端子PAから各電気的連結子B、C、Dを介して端子P1、P4、P7を経由して各コイルに送られる。
 磁気感応部4、13、22のコア付きコイル5,14,23内の各コア6,15,24は、外部信号発生回路からの固定化された発振同期信号と演算増幅回路部の励磁電流との合成励磁電流によって、周波数の変動のない安定した統一磁気発振周波数で励磁されることになる。
 換言すれば、図6の実施例は、星状型発振同期信号回路網の弱点を更に改善したもので、統一磁気発振周波数と同じ周波数の電気信号を発生する外部信号発生回路と演算増幅回路部との間を電気的連結子で接続することにより、星状型発振同期信号回路網における発振同期信号の周波数を、外部信号発生回路から出力される電気信号の周波数に同期させて固定させた磁気検出装置の実施例であると言える。
 連結子B、C、Dは、図4の各連結子の場合と同じく、電気的な受動素子あるいは能動素子で構成する。
 P13、P46、P79に受動素子の抵抗あるいはコイルを使用した場合、そのインピーダンスの値は磁気発振が安定して持続するように、短絡の場合も含めて最適になるような値にする。
 この外部同期信号に関する技術は、複数個の磁気発振センサの場合だけではなく、単独の磁気発振センサで強磁界を測定する場合に起こる磁気発振周波数の変勤を抑制したり、外部磁界の高精度な一軸磁界測定や多点同時測定などに使用したりする磁気センサにも応用できる技術であるので、実用面から見ても有効な技術と言える。
 本発明は、磁気発振センサの特性を最大限に発揮できるように、磁気発振センサおよび磁気検出装置を改善する技術として、鉄道車両や自動車の車体の内外部における漏れ磁界の測定に好適に利用することができる。
 1,2,3 連結子
 4,13,22 磁気感応部
 5,14,23 コア付きコイル
 6,l5,24 コア
 7,16,25 受動素子
 8,17,26 演算増幅回路部
 9,10,18,19,27,28 抵抗
 11,20,29 フィルタ回路
 12,21,30 増幅回路
 70,160,250 空芯コイル
 1000 X軸回路部
 2000 Y軸回路部
 3000 Z軸回路部

Claims (3)

  1.  磁性材料のコアの周囲にコイルを巻いて形成されたコア付きコイルからなる磁気感応部と、前記コア付きコイルのコイルに交流の励磁電流を流し、前記コアに印加される外部磁界の大きさに応じた出力を生成する演算増幅回路部とを有する自励式フラックスゲート型の磁気発振センサを、直交する三軸の各軸に備えた磁気検出装置において、
     前記各軸の磁気発振センサのコア付きコイルに、前記各コアを囲まない空芯コイルを近接して且つ平行に配置し、
     前記各軸のコア付きコイルの非接地側端子と前記空芯コイルの一方の端子の接続点を前記演算増幅回路部の非反転入力端子に接続し、前記空芯コイルの他方の端子と前記演算増幅回路部の出力端子とを、受動素子を介して接続し、前記磁気感応部のコア付きコイルを励磁電流で励磁したときに前記コア付きコイルから外部に漏れて放射される漏れ磁界を打ち消すために、前記漏れ磁界と同じ強度で逆方向の磁界を発生する電流を前記演算増幅回路部により生成して前記空芯コイルに供給するようにし、
     前記各軸の磁気発振センサ間の発振周波数の違いによって生じるビート現象を阻止するために、前記各軸の磁気発振センサの各々の前記演算増幅回路部の出力端子と次の軸の空芯コイルの端子間を電気的連結子で接続して前記各軸の磁気発振センサの発振周波数を統一する環状型の発振同期信号回路網を構築し、
     該発振同期信号回路網を流れる発振同期信号と前記演算増幅回路部から出力される励磁電流との合成励磁電流によって、前記磁気感応部の各々のコアが強制的に統一磁気発振周波数で励磁されるようにした
    ことを特徴とする磁気検出装置。
  2.  磁性材料のコアの周囲にコイルを巻いて形成されたコア付きコイルからなる磁気感応部と、前記コア付きコイルのコイルに交流の励磁電流を流し、前記コアに印加される外部磁界の大きさに応じた出力を生成する演算増幅回路部とを有する自励式フラックスゲート型の磁気発振センサを、直交する三軸の各軸に備えた磁気検出装置において、
     前記各軸の磁気発振センサのコア付きコイルに、前記各コアを囲まない空芯コイルを近接して且つ平行に配置し、
     前記各軸のコア付きコイルの非接地側端子と前記空芯コイルの一方の端子の接続点を前記演算増幅回路部の非反転入力端子に接続し、前記空芯コイルの他方の端子と前記演算増幅回路部の出力端子とを、受動素子を介して接続し、前記磁気感応部のコア付きコイルを励磁電流で励磁したときに前記コア付きコイルから外部に漏れて放射される漏れ磁界を打ち消すために、前記漏れ磁界と同じ強度で逆方向の磁界を発生する電流を前記演算増幅回路部により生成して前記空芯コイルに供給するようにし、
     前記各軸の磁気発振センサ間の発振周波数の違いによって生じるビート現象を阻止するために、前記各軸の空芯コイルの端子を、電気的連結子を介して共通端子に接続して前記各軸の磁気発振センサの発振周波数を統一する星型の発振同期信号回路網を構築し、
     該発振同期信号回路網を流れる発振同期信号と前記演算増幅回路部から出力される励磁電流との合成励磁電流によって、前記磁気感応部の各々のコアが強制的に統一磁気発振周波数で励磁されるようにした
    ことを特徴とする磁気検出装置。
  3.  前記統一磁気発振周波数と同じ周波数の電気信号を発生する外部信号発生回路と前記共通端子とを接続して、統一磁気発振周波数を固定化した発振同期信号回路網を構築したことを特徴とする請求項2記載の磁気検出装置。
PCT/JP2014/055592 2013-03-06 2014-03-05 磁気検出装置 WO2014136825A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/648,862 US9389282B2 (en) 2013-03-06 2014-03-05 Magnetism detection device
CN201480003458.0A CN104854469B (zh) 2013-03-06 2014-03-05 磁性检测装置
EP14759574.8A EP2975422B1 (en) 2013-03-06 2014-03-05 Magnetism detection device
HK15110844.0A HK1210269A1 (en) 2013-03-06 2015-11-03 Magnetism detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-044383 2013-03-06
JP2013044383A JP5521143B1 (ja) 2013-03-06 2013-03-06 磁気検出装置

Publications (1)

Publication Number Publication Date
WO2014136825A1 true WO2014136825A1 (ja) 2014-09-12

Family

ID=51031365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055592 WO2014136825A1 (ja) 2013-03-06 2014-03-05 磁気検出装置

Country Status (6)

Country Link
US (1) US9389282B2 (ja)
EP (1) EP2975422B1 (ja)
JP (1) JP5521143B1 (ja)
CN (1) CN104854469B (ja)
HK (1) HK1210269A1 (ja)
WO (1) WO2014136825A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535943A (zh) * 2014-12-30 2015-04-22 吉林大学 时间域电磁法磁感应强度b的测量装置及测量方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487027B (zh) * 2016-01-04 2018-10-19 中国科学院物理研究所 三维矢量磁矩测量仪
JP7063323B2 (ja) * 2017-03-31 2022-05-09 日本電産株式会社 モータおよび電動パワーステアリング装置
US10983179B2 (en) * 2018-07-02 2021-04-20 Asahi Kasei Microdevices Corporation Magnetic field measuring device, magnetic field measurement method, and recording medium having recorded thereon magnetic field measurement program
CN110163099B (zh) * 2019-04-17 2022-04-01 中国电子科技网络信息安全有限公司 一种基于电磁泄漏信号的异常行为识别装置与方法
CN111404411B (zh) * 2020-02-26 2021-06-15 北京交通大学 一种抑制串扰的三电平有源驱动电路
US11536589B2 (en) 2021-03-09 2022-12-27 Toyota Motor Engineering & Manufacturing North America, Inc. Electromagnetic noise position sensing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244166A (ja) * 1994-03-07 1995-09-19 Nippon Signal Co Ltd:The 磁気センサ
JP2004108776A (ja) * 2002-09-13 2004-04-08 Sankyo Seiki Mfg Co Ltd 巻線型磁気センサ
JP2005043254A (ja) * 2003-07-23 2005-02-17 Uchihashi Estec Co Ltd 導体電流測定方法。
JP2005069829A (ja) 2003-08-22 2005-03-17 National Traffic Safety & Environment Laboratory 鉄道車両の磁界測定方法および磁界測定装置
JP2005269580A (ja) * 2004-03-16 2005-09-29 Koichi Nakagawa 注入同期した自励発振型pwmモジュレータ方式

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264700A (ja) * 1992-02-14 1993-10-12 Logic Rafuto:Kk フラックスゲート・センサーの駆動方式
JP3096413B2 (ja) * 1995-11-02 2000-10-10 キヤノン電子株式会社 磁気検出素子、磁気センサー、地磁気検出型方位センサー、及び姿勢制御用センサー
US20040119470A1 (en) 2002-09-13 2004-06-24 Sankyo Seiki Mfg. Co., Ltd. Winding type magnetic sensor device and coin discriminating sensor device
US7420366B1 (en) * 2004-06-18 2008-09-02 The United States Of America As Represented By The Secretary Of The Navy Coupled nonlinear sensor system
US7391210B2 (en) * 2004-09-07 2008-06-24 Quasar Federal Systems, Inc. Integrated fluxgate-induction sensor
CN201489101U (zh) * 2009-09-03 2010-05-26 交通部公路科学研究所 组合型磁传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244166A (ja) * 1994-03-07 1995-09-19 Nippon Signal Co Ltd:The 磁気センサ
JP2004108776A (ja) * 2002-09-13 2004-04-08 Sankyo Seiki Mfg Co Ltd 巻線型磁気センサ
JP2005043254A (ja) * 2003-07-23 2005-02-17 Uchihashi Estec Co Ltd 導体電流測定方法。
JP2005069829A (ja) 2003-08-22 2005-03-17 National Traffic Safety & Environment Laboratory 鉄道車両の磁界測定方法および磁界測定装置
JP2005269580A (ja) * 2004-03-16 2005-09-29 Koichi Nakagawa 注入同期した自励発振型pwmモジュレータ方式

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535943A (zh) * 2014-12-30 2015-04-22 吉林大学 时间域电磁法磁感应强度b的测量装置及测量方法

Also Published As

Publication number Publication date
JP5521143B1 (ja) 2014-06-11
EP2975422B1 (en) 2018-10-17
JP2014173886A (ja) 2014-09-22
CN104854469B (zh) 2017-06-20
EP2975422A1 (en) 2016-01-20
US9389282B2 (en) 2016-07-12
US20150316622A1 (en) 2015-11-05
EP2975422A4 (en) 2017-06-21
CN104854469A (zh) 2015-08-19
HK1210269A1 (en) 2016-04-15

Similar Documents

Publication Publication Date Title
WO2014136825A1 (ja) 磁気検出装置
JP6508163B2 (ja) 電流測定装置
JP5531215B2 (ja) 電流センサ
CN104603628B (zh) 磁阻传感器、梯度仪
EP2378306B1 (en) Multi-axis fluxgate magnetic sensor
JP5567305B2 (ja) 磁気シールドシステム及び磁気シールド方法
JP5535467B2 (ja) 位相補正型アクティブ磁気シールド装置
JP2018146314A (ja) 磁気センサ、磁気センサ装置
CN113447699B (zh) 隧道磁电阻环形阵列电流传感器及电流测量方法
CN108732404B (zh) 一种电流传感器及其多磁通平衡控制电路
JP2009210406A (ja) 電流センサ及び電力量計
CN104849679A (zh) 磁探头和包括该磁探头的磁场传感器
JP2012018024A (ja) 電流センサ
JP4353465B2 (ja) 鉄道車両の磁界測定方法および磁界測定装置
JP4732705B2 (ja) 磁界センサ
CN116930589A (zh) 交直流多气隙磁阻电流传感器及电流测量方法
WO2012029439A1 (ja) 電流センサ
JP2013210216A (ja) 電流検出装置及び電流検出方法
JP2004257904A (ja) 電流プローブ
JP4435255B1 (ja) 交流磁場対応型のアクティブ磁気シールド装置
CN109387665B (zh) 速度检测装置和速度检测方法
JP2012049200A (ja) 磁気シールドシステム
JP2000266785A (ja) 電流計測装置
US20240111007A1 (en) Magnetic particle imaging device
Ripka et al. Crosstalk in an uncompensated gapped-core contactless current transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014759574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14648862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE