JP4435255B1 - 交流磁場対応型のアクティブ磁気シールド装置 - Google Patents

交流磁場対応型のアクティブ磁気シールド装置 Download PDF

Info

Publication number
JP4435255B1
JP4435255B1 JP2008274819A JP2008274819A JP4435255B1 JP 4435255 B1 JP4435255 B1 JP 4435255B1 JP 2008274819 A JP2008274819 A JP 2008274819A JP 2008274819 A JP2008274819 A JP 2008274819A JP 4435255 B1 JP4435255 B1 JP 4435255B1
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
canceling
sensor
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008274819A
Other languages
English (en)
Other versions
JP2010103373A (ja
Inventor
信次郎 竹内
Original Assignee
信次郎 竹内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信次郎 竹内 filed Critical 信次郎 竹内
Priority to JP2008274819A priority Critical patent/JP4435255B1/ja
Application granted granted Critical
Publication of JP4435255B1 publication Critical patent/JP4435255B1/ja
Publication of JP2010103373A publication Critical patent/JP2010103373A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】磁気センサに印加する不要な打ち消し磁場を除去して、交流磁場及び変動磁場の外乱磁場を高精度かつ確実に打ち消すことを可能にしたアクティブ磁気シールド装置の提供。
【解決手段】磁気センサSの出力信号に含まれる不要な打ち消し磁場勾配センサ信号を除去するために、打ち消し磁場勾配センサ信号に酷似した疑似センサ信号を、補償コイル11に流す打ち消し電流を検出する電流電圧変換回路15と磁気センサ疑似回路10で形成し、信号中の不要な打ち消し磁場勾配センサ信号を、加減算手段12において相殺させて消去する。磁気センサ疑似回路10は、電流電圧変換回路15の出力信号の位相を磁気センサの出力信号の位相に同期化させるための位相同期化手段17と、打ち消し磁場勾配センサ信号の位相に呼応して疑似センサ信号の位相を切り替える極性切り替え機能付き振幅調整手段18とからなる。
【選択図】図1

Description

本発明は、交流磁場である外乱磁場を打ち消すための打ち消し磁場の位相と振幅を、外乱磁場の位相と振幅に合わせて相殺させるアクティブ磁気シールド技術に関する。
各種材料部品の磁気的精密非破壊検査、各種生体磁気計測、医療診断機器や生体生理機能を解析するシステムで使用する極微弱磁場測定装置、磁気的応答による免疫診断システム、病原菌検査システムの精密測定、電子顕微鏡やMRI装置など、無磁場に近い磁場管理空間でしか計測できない分野においては、従来は珪素鋼板やパーマロイなどの高透磁率の磁性材料で機器の周囲を囲んで外乱磁場の影響を抑えていたが、このようなパッシブ磁気シールドでは、磁気シールド効果が不十分であり、限界があった。
これに対して、アクティブ磁気シールド技術は、磁気シールドを施したいターゲット空間における外乱磁場に対して、正反対方向から打ち消し磁場を発生させて外乱磁場と相殺し、磁気的に安定した磁場空間を形成しようとする技術である。ここで、ターゲット空間には外乱磁場から防護したい装置類が設置されるので、磁気センサ設置空間とターゲット空間が重なることは少なく、ほとんどの場合において離れている。
そのため、磁気センサは、打ち消したい外乱磁場のセンサ信号(以下、外乱磁場センサ信号という)の他に、磁気センサが配置された空間において補償コイルの打ち消し磁場も検出するので、磁気センサ出力信号には、不要な打ち消し磁場勾配センサ信号も含まれてくることになる。
この打ち消し磁場勾配センサ信号は、アクティブ磁気シールド性能を低下させる大きな要因になる。この打ち消し磁場勾配センサ信号を除去しようとした代表的な従来技術の例が、特許文献1および特許文献2に開示されている。
この技術を、図5に示した概略構成図において説明すると、ターゲット空間T−Spaceの外乱磁場を打ち消すために、磁気センサ設置空間S−Spaceに設置した磁気センサSで外乱磁場Bnを検出し、その検出した信号を増幅器21で増幅し、増幅された信号の中から地磁気成分などの静磁場オフセット分を減算回路22で差し引き、変動磁場分の信号だけを電流出力回路23に送る。
そして、電流出力回路23から出力される外乱磁場の打ち消し電流は分流器24において分流する。分流先の一つは、外乱磁場を打ち消す磁場を発生させる補償コイルL1である。残りの一つは、補償コイルL1の打ち消し磁場の一部が磁気センサSに不要な磁場として印加されるので、それを打ち消す磁場勾配発生用の打ち消しコイルL2である。
この従来技術では、磁気センサSに加わる打ち消し磁場勾配を打ち消すために、磁気センサSに巻いた打ち消しコイルL2に外乱磁場打ち消し電流を分流し、磁気センサSに印加する打ち消し磁場勾配を打ち消す方法を採用している。
特開昭48−38972号公報(図2参照) 特許第3406273号公報(図1、図2参照)
前掲の従来の方式が有効に適用出来る範囲は、外乱磁場が直流磁場かそれに近い変動磁場に限られ、外乱磁場の周波数が高くなると増幅現象あるいは発振現象を起こして、アクティブ磁気シールドが不能になるという欠陥を内在していた。
その主な原因は、補償コイルL1に流れる電流位相と打ち消しコイルL2に流れる電流位相の間にずれが存在するためである。言い換えれば、コイルL1とコイルL2で発生する磁場の位相にずれが存在するためである。位相ずれがあれば外乱磁場の周波数が高くなるにつれて、コイルL1とコイルL2で発生する磁場の位相が当初は0相とπ相で互いに打ち消し合っていた状態から、次第に位相が重なり合って増幅する関係へと推移し、遂にはアクティブ磁気シールドの負帰還回路系が発振して、アクティブ磁気シールド装置自体が磁場雑音発生源になってしまうのである。
ここで、分流器24の回路を単純化してコイルL1とコイルL2の各インダクタンスをL1,L2、抵抗R1とR2の抵抗値をR1,R2とすれば、分流器24は図6の回路で表現できる。
この図6は位相ずれを説明するための代表的な回路図で、電流出力回路23から出力される交流の打ち消し電流iが分岐点Pで分流されたとし、その分岐点Pにおける電圧を
e=EmSinωt
として、コイルL1とコイルL2に流れる各電流i1、i2について解いてみる。
図6の回路では、
e=EmSinωt=L1(di1/dt)+R1i1=L2(di2/dt)+R2i2
という微分方程式が成り立つ。
これを解くと各電流i1、i2は、
1=Em/√(R12+ω2L12)・Sin(ωt−Tan-1ωL1/R1)
2=Em/√(R22+ω2L22)・Sin(ωt−Tan-1ωL2/R2)
となる。
そして、i1とi2の間の位相角の差ΔΦは、
ΔΦ=(−Tan-1ωL1/R1)−(−Tan-1ωL2/R2)・・・式(1)
となる。そして、この位相角の差ΔΦを零にすれば、交流磁場の打ち消しが可能になるはずである。
式(1)の右辺第1項は補償コイルL1と抵抗R1における位相遅れ分であり、設置環境に依存される要素であるから、パラメータとしてかなり固有かつ固定的な定数になる。それに対して、右辺第2項は調整可能な磁気センサSに巻く打ち消しコイルL2と抵抗R2による位相遅れ分である。磁気センサSに巻くコイルL2のインダクタンス調整は、かなり高精度を要しかつ複雑であるため現場における調整には不向きで、事前に固定されるか半固定されるパラメータである。
結局のところ、磁気センサに加わる不要な打ち消し磁場勾配を打ち消す電流i2は、一番簡単な抵抗R2で調整されることになる。
しかしながら、抵抗R2の主目的は、打ち消しコイルL2に流れる打ち消し電流i2を調整して、打ち消し磁場勾配の強度を調整する抵抗、言い換えれば振幅を主調整とする抵抗である。そのため、1個の抵抗素子だけで位相調整と振幅調整の個別要素を同時調整することは、2個の独立した回路パラメータを1個の素子パラメータで調整することを意味し非現実的である。
打ち消し電流を流す両コイルL1,L2では、両者のインダクタンスは異なり、配線線材等を含む直流抵抗R1、R2の抵抗値も異なるので、偶発的な条件が重ならない限り位相角ΔΦは零にはならない。
また、磁気センサの配置された空間で磁気的に打ち消す手法では副次的な課題として、配線回線数が多くなるために回線途中からの電磁誘導雑音や磁気センサに巻いたコイル自身に誘導雑音が重畳したりする。
磁気センサに巻いた打ち消しコイルのターン数調整方法、特に3軸構成では磁気センサ自体の磁気検出部と直交度の微調整、打ち消しコイル位置や打ち消しコイルの直交度の微調整、打ち消しコイル各軸間の磁場干渉や電磁誘導雑音などの避けがたい技術課題が現場調整を煩雑化している。
交流磁場の打ち消し周波数帯域の高周波化にあたり、磁気センサに打ち消しコイルを巻いて磁場を打ち消す磁気的方式では、これらの技術的課題が現実的に障害になっている。
従来技術を端的に言えば、磁場の強度を調整する機能に限られていて、磁気センサに印加する不要な交流磁場を打ち消す時に最も重視する位相に関しては、何ら積極的に調整する手段は無いという問題が残されている。
本発明は、直流の外乱磁場はもちろん、交流の外乱磁場を高精度かつ確実に打ち消すことのできる交流磁場対応型のアクティブ磁気シールド装置を提供することを目的とする。
前述した課題を解決するため、本発明の第1の構成に係る交流磁場対応型のアクティブ磁気シールド装置は、外乱磁場を打ち消すための打ち消し磁場を発生させる少なくとも1つの補償コイルと、前記外乱磁場を検出する少なくとも1つの磁気センサと、該磁気センサの出力信号中の不要な打ち消し磁場勾配センサ信号を疑似センサ信号で相殺する加減算手段を備え、前記補償コイルに打ち消し電流を出力する少なくとも1つの電流出力回路と、前記補償コイルに流れる打ち消し電流を検出する少なくとも1つの電流電圧変換回路と、該電流電圧変換回路の出力信号を前記打ち消し磁場勾配センサ信号に酷似した前記疑似センサ信号に形成して出力する少なくとも1つの磁気センサ疑似回路とを有することを特徴とする。
本発明の第1の構成においては、高精度かつ確実に交流の外乱磁場を打ち消すために、磁気センサの出力信号に含まれる不要な打ち消し磁場勾配センサ信号と同じ特性の信号を、別途に設けた磁気センサ疑似回路で疑似センサ信号として作りだし、両方の信号を加減算手段で相殺させるようにしたものである。
また、本発明の第2の構成に係る交流磁場対応型のアクティブ磁気シールド装置は、前記疑似センサ信号を形成する前記磁気センサ疑似回路は、前記電流電圧変換回路の出力信号の位相を前記磁気センサの出力信号の位相に同期化させるための位相同期化手段と、前記打ち消し磁場勾配センサ信号の位相に呼応して疑似センサ信号の位相を切り替える少なくとも1つの極性切り替え機能付き振幅調整手段とを備えたことを特徴とする。
この第2の構成により、磁気センサ疑似回路を既存の手法の組み合わせにより実現することができる。
本発明の第3の構成に係る交流磁場対応型のアクティブ磁気シールド装置は、外乱磁場の直交する3軸のうち少なくとも2軸成分以上の磁場成分を打ち消すための、前記各軸に対応する軸成分の打ち消し磁場成分の発生が可能な複数個の補償コイル構成において、前記各軸成分の補償コイルが発生する打ち消し磁場成分が互いに他軸の磁気センサに影響を与える他軸磁場成分信号を打ち消すために、前記磁気センサ疑似回路に、他軸磁場成分信号の打ち消し用に前記疑似センサ信号の極性と振幅を個別調整し、該他軸磁場成分信号の打ち消し用疑似センサ信号として各軸別に出力する手段を付加し、前記加減算手段に、他軸から前記他軸磁場成分信号の打ち消し用疑似センサ信号を受けて加減算する手段を付加したことを特徴とする。
この第3の構成により、2軸方向、3軸方向の磁場成分の打ち消しが可能となる。
本発明の第4の構成に係る交流磁場対応型のアクティブ磁気シールド装置は、前記磁気センサ疑似回路の一部あるいは全体、及び/又は前記加減算手段の一部あるいは全体をソフトウエア手段で構成することを特徴とする。
この第4の構成により、磁気センサ疑似回路、加減算手段を、回路を用いて実現するほかに、DSP(デジタルシグナルプロセッサ)やCPU(中央処理装置)を用いたコンピュータソフトウエアにより実現することもできる。
本発明によれば、交流磁場を高精度かつ確実に打ち消すために、磁気シールド性能に悪影響を与える不要な打ち消し磁場を磁気センサに巻く打ち消しコイルで打ち消すような従来手法ではなく、電子回路的な手法による解決を実施した結果、打ち消し対象の外乱磁場は、直流磁場、変動磁場、数100Hzの交流磁場までに拡大した。また、磁気センサ周辺の打ち消しコイルは無くなり配線工事は簡略化され、調整の作業効率を大幅に改善した。
磁気シールド性能も従来に比べて10倍以上向上し、交流雑音の発生源や電磁誘導を受ける長いリード線、コード配線、電磁誘導雑音を惹起するコイルなどの誘導雑音が懸念される部品の使用を避けて、ターゲット空間T−Spaceを磁気センサの性能限界に近い性能までに低雑音化、安定化させることに成功した。
本発明は交流磁場を打ち消す基本的な技術であるため、公知のアクティブ磁気シールド技術の周波数帯域を拡大させる技術として、従来装置の性能改善にも大いに役立つ。
たとえば、特許文献1(特開昭48−38972号公報(特公昭51−38215号公報))、特許文献2(特開2001−281311号公報(特許第3406273号公報))、特開2002−94280号公報、特開2002−232182号公報、特開2003−273565号公報、特開2005−44826号公報、特開2008−78529号公報などのすでに公開されている技術に、本発明のセンサ疑似回路技術を有機的に組み込めば、外乱磁場の打ち消し可能な周波数帯域の上限は著しく拡大し、飛躍的に磁気シールド性能を向上させることができる。
結局のところ、本発明のセンサ疑似回路技術を組み込んで生み出される製品および改造技術は、本発明に包含される実施形態になるので、磁気シールド業界において有益な技術として幅広く活用されることが期待できる。
以下に、本発明の実施の形態を説明する。
図1は、本発明の実施の形態1の基本構成図である。図1において、11は補償コイルであり、外乱磁場Bnを打ち消すための打ち消し磁場Bcを発生させる。コイルの磁場の特性として中央部からコイルに近づくに従い磁場強度は大きくなり、均一な磁場空間はコイル中央部に限られる。
均一磁場空間を大きく確保するための対策として2個のコイルを対向させてヘルムホルツコイル型で構成することが多く、ヘルムホルツコイルの中央部付近に変動磁場から防護したい装置類を設置することが多い。このため、図1では、補償コイル11はヘルムホルツ型の場合を示し、T−Spaceは装置を設置するターゲット空間を示している。
外乱磁場Bnを検出する磁気センサSは、ターゲット空間T−Spaceより離れた磁気センサ設置空間S−Spaceに設置される。この空間における磁場は、外乱磁場の他に補償コイル11から発生した打ち消し磁場がある。磁場はベクトルとして分解や合成が可能であるから、磁気センサ設置空間における打ち消し磁場は、ターゲット空間T−Spaceにおける打ち消し磁場Bcに、ターゲット空間T−Spaceから離れた位置の打ち消し磁場勾配(本書でいう磁場勾配とは、ターゲット空間T−Spaceの中心点における磁場強度とセンサ設置空間の中心点における磁場強度との磁場強度差をいう)が合成された磁場に置き換えることができる。
結局、磁気センサSが検出する磁場は、ターゲット空間T−Spaceにおける打ち消し磁場−Bcとターゲット空間T−Spaceから離れた磁場勾配分−ΔBcと外乱磁場Bnの総和{Bn−(Bc+ΔBc)}になり、磁気センサSの出力信号は外乱磁場センサ信号e(Bn)と打ち消し磁場センサ信号−e(Bc)と打ち消し磁場勾配センサ信号−e(ΔBc)の総和{e(Bn)−e(Bc)−e(ΔBc)}になる。
この信号の中で、磁気センサ設置空間S−Spaceがターゲット空間T−Spaceより離れていることによって、磁気シールド性能を劣化させる信号は、打ち消し磁場勾配センサ信号−e(ΔBc)である。
この打ち消し磁場勾配センサ信号−e(ΔBc)は、次に接続される後述の加減算手段12において、磁気センサ疑似回路10から出力される反転信号の疑似センサ信号e(ΔBc)によって相殺される。
電流出力回路50は、入力信号を加減算する加減算手段12と、加減算手段12の出力信号の振幅および位相を調整する信号処理回路13と、信号処理回路13の出力信号を電力増幅する電力増幅器14の構成要素からなる。
加減算手段12の入力部ではオペアンプを使用して、疑似センサ信号e(ΔBc)と打ち消し磁場勾配センサ信号−e(ΔBc)については、加算演算で両信号とも消去する。また、加減算手段12では、その他の磁気センサ出力信号に関しては、地磁気などの直流成分の減算やオフセットの調整をしてターゲット空間T−Spaceにおける磁場成分だけの信号が残るように加減算を実行する。
加減算された信号は、さらに信号処理回路13においてその振幅と位相が調整され、その後、電力増幅器14に送られる。電力増幅器14は信号処理回路13の出力信号を増幅し、外乱磁場を打ち消すための打ち消し電流icancelを補償コイル11の片方の端子へ出力する。
補償コイル11の他端側の端子は、電流電圧変換回路15の構成要素である抵抗Rに直列接続され、この抵抗Rを介して接地されている。この抵抗Rに流れる電流によって抵抗端子間に電圧降下が生じ、電流がこの電圧降下分の端子間電圧に変換されて検出できるので、抵抗Rは電流電圧変換素子として動作していることになる。
補償コイル11を流れる打ち消し電流icancelは、打ち消し磁場Bcを発生させて外乱磁場Bnを打ち消し、抵抗Rを介して接地点に流れる。補償コイル11と抵抗Rは、直列接続であるために分流器のときのような並列回路の構成は存在しない。そして、補償コイル11の浮遊容量が問題にならない限り、補償コイル11と抵抗Rの電流位相は同位相である。この場合では、打ち消し電流で作られる打ち消し磁場の位相は打ち消し電流の位相に一致するので、抵抗Rの端子間電圧の位相は、補償コイル11で発生させる打ち消し磁場の位相と同位相であるという関係が成立する。
このような回路構成にすることにより、打ち消し磁場の位相と同位相の情報を抵抗Rの端子間電圧から抽出できることが明らかとなった。また、電流電圧変換回路15の出力端子は打ち消し電流波形を監視するチェックポイントにもなるので、アクティブ磁気シールドの動作状態を監視するモニタ端子としても使用できる。
磁気センサ疑似回路10は、バッファ回路16と、位相同期化手段17と、極性切り替え機能付き振幅調整手段18の各構成要素から構成される。
具体的には、磁気センサSに印加する不要な打ち消し磁場を検出した打ち消し磁場勾配センサ信号−e(ΔBc)と同位相の疑似センサ信号を作るために、同じ位相特性の疑似回路を作る。そして、その疑似回路の出力信号の振幅と極性を再調整して反転位相の疑似センサ信号e(ΔBc)を形成する。磁気センサ疑似回路10は、このように疑似センサ信号を作って加減算手段12へ送り出すことを目的とする。
自明のことながら、外乱磁場に磁場勾配が存在する場合も、打ち消し磁場勾配の場合と同様に取り扱えるが、さらに、磁気センサ疑似回路10を1個分追加しても、本発明の範囲内で対処できる。すなわち、打ち消し磁場による打ち消し磁場勾配センサ信号−e(ΔBc)を除去する疑似センサ信号と外乱磁場による外乱磁場勾配センサ信号を除去する疑似センサ信号を、それぞれの磁気センサ疑似回路10で作る。そして、極性と振幅が調整された各疑似センサ信号を加算減算手段12へ送り出す。
また、磁気センサSの配置位置の関係で、おのおのの磁場勾配センサ信号が疑似センサ信号と同極性になるような場合では、加減算手段12で両信号を減算して除去することができる。
次に、位相同期化手段17の具体的な実施例について説明すれば、たとえば、磁気センサSが磁気発振型磁気センサやフラックスゲート型磁気センサなどの場合では、磁電変換回路(増幅回路を含む)にローパスフィルタLPFが一般的に使用されている。この場合、最も簡単に実施できる位相同期化手段17の近似的構成は抵抗だけによる構成であるが、抵抗とコンデンサで1次ローパスフィルタ(積分回路)を構成し、この回路の抵抗値を可変させて、疑似センサ信号の位相を磁気センサSの出力位相に合わせることもできる。
位相同期化手段17では、磁気センサSの入力信号位相と出力信号位相との間において、位相遅れがあればローパスフィルタか積分回路を使用し、位相進みがあればハイパスフィルタか微分回路を使用するとよい。各フィルタの遮断周波数と次数は基本的には磁気センサSと後続の接続回路定数を含めて考慮するが、近い次数で類似近似させることも可能であり、いかなる回路構成であっても、これらは全て本発明範囲に属する。
なお、電流出力回路50および磁気センサ疑似回路10における各構成要素およびその要素機能の接続処理順序は、必ずしも上述の順序にこだわるものではなく、本発明の目的を達成する範囲において限定するものではない。また、位相同期化手段17はインダクタと抵抗によるフィルタや、インダクタ、コンデンサ、抵抗、オペアンプなどの任意の素子の組み合わせで実現できるので、これらの組み合わせによるオールパスフィルタをはじめ各種回路あるいは手段も、本発明の目的を実現するための手段に含まれる。
更に、極性切り替え機能付き振幅調整手段18について説明すれば、補償コイル11と磁気センサSの配置位置関係によって打ち消し磁場の方向は正負逆転し、打ち消し磁場勾配センサ信号の位相も正負逆転することもある。たとえば、単一補償コイルでは補償コイル枠の内側部と外側部では打ち消し磁場の方向は逆方向であるため、打ち消し磁場勾配センサ信号の位相も反転位相になる。また、補償コイル枠内側部であっても磁気センサ配置位置によっては、加減算手段12に入力する疑似センサ信号の位相を切り替えることもありうる。この極性切り替え機能は、加減算手段のオペアンプの反転入力端子と非反転入力端子において、各入力信号の加算演算あるいは減算演算を代行することも可能である。
いずれにしても、補償コイル11と磁気センサSの配置の位置関係から、事前に極性反転の有無を把握しておく必要がある。
また、磁気センサ疑似回路10の一部あるいは全体、加減算手段の一部あるいは全体をソフトウエア手段で実行することも可能である。この場合には、アナログ信号をデジタル信号に変換するAD変換器と、DSPあるいはパソコンを含むデジタル信号処理回路と、処理されたデジタル信号をアナログ信号に戻すDA変換器と、I/Oインターフェイスと、デジタル信号処理回路を制御するソフトウエアを以て、該当箇所を置き換える。このソフトウエアには、本発明思想を実行するメインプログラムの他に、入出力データのインターフェイス制御プログラム等が含まれる。
図2に補償コイル11の様々な実施形態を示す。図では補償コイルの巻線数や接続、補償コイルを捲くあるいは固定する固定材や壁面に付帯した状況、床に埋設するピット等の表示は省略し、補償コイルの巻線の枠中心線のみで配置関係を図示している。(a)〜(c)は単一コイルで補償コイルを構成した時の事例で、(a)は1軸構成、(b)は2軸構成、(c)は3軸構成の場合である。複数軸では、各軸成分は直交する関係にある。
均一磁場領域を広く確保したヘルムホルツ型の構成例として、(d)は1軸構成、(e)は2軸構成、(f)は3軸構成の場合をそれぞれ示している。
ヘルムホルツ型では、基本的には単一コイル2個分を対向させ、そのコイルの中心軸を一致させるが、必ずしもこれに拘泥するものではなく、コイルの形状、両コイルの間隔も現地にあった変形配置でよい。
磁気センサSの検出軸は原則として各コイルの軸成分の中心軸と平行に保持する。磁気センサSの種類は補償コイルの軸成分の数に応じて、1軸磁気センサ、2軸磁気センサ、3軸磁気センサと使い分けるが、補償コイルの軸成分数以上の軸成分を検出する磁気センサの使用も可能で、たとえば、1軸構成で3軸磁気センサを使用することもあり得る。また、3軸磁気センサの代わりに1軸磁気センサを3本使用して、各軸のコイル面の近傍に分散配置させることも可能である。
磁気センサSの信号処理は、各成分毎に独立させる。それ故、電流出力回路50、磁気センサ疑似回路10、電流電圧変換回路15についても、少なくとも軸成分だけの数は必要になる。
補償コイルの形状寸法によっては2軸構成や3軸構成の場合に、補償コイルが輻輳して補償コイル内部のターゲット空間T−Spaceへの接近、出入が困難になることがある。
この対策として扉部の配線が、日本生体磁気学会誌Vol.20 No.1 June 2007(130頁の写真1、131頁の図1)に紹介されているので、これを参考にすればよい。
図3は、本発明の実施の形態2に係る補償コイルの3軸構成時における回路結線図である。
図3において、SX、SY、SZは各軸の磁気センサ、11X、11Y、11Zは各軸の補償コイル、50X、50Y、50Zは電流出力回路、RX、RY、RZは各軸の電流電圧変換回路、10X、10Y、10Zは磁気センサ疑似回路である。
補償コイル11X、11Y、11Zが、図2の(f)に示すように互いに直交する3軸構成になっている場合には、新たな問題として各軸の打ち消し磁場の一部が、残りの他軸(2つの軸)の各磁気センサに印加されて、おのおの影響し合うという磁場干渉現象が生じる。すなわち、X軸の打ち消し磁場成分はY軸とZ軸の磁気センサSY,SZに、Y軸の打ち消し磁場成分はX軸とZ軸の磁気センサSX,SZに、Z軸の打ち消し磁場成分はX軸とY軸の磁気センサSX,SYに、それぞれ影響を与えることになるので除去する必要がある。
この磁場干渉を解決するために、X軸を例にして説明する。
閉コイルで作る磁場(磁力線でも可)は、原理的には、必ず全方位に向かって湾曲した閉ループを形成する。補償コイル11Xの磁場が及ぶ磁気センサ設置空間S−Spaceでは、X軸成分、Y軸成分、Z軸成分の成分が存在すると考えてよい。自軸のX軸成分に関しては前述の実施形態1で詳述したが、他軸に関しても同様な手法が成り立つ。
まず、最初にY軸への対策は、X軸打ち消し磁場によってY軸成分に悪影響を及ぼす磁場成分を、Y軸の電流出力回路50Yにおいて打ち消す。そのために、X軸の磁気センサ疑似回路10Xには自軸分の振幅調整手段の他に、Y軸専用の振幅調整手段とZ軸専用の振幅調整手段を付加し、このY軸専用振幅調整手段から悪影響を及ぼす磁場成分を打ち消すために疑似センサ信号を電流出力回路50Yへ送り出す。疑似センサ信号の振幅と極性はY軸専用振幅調整手段で実施する。
電流出力回路50Yの入力部には自軸分の反転疑似センサ信号受け入れ端子の他にX軸およびZ軸からの疑似センサ信号を受け入れる端子を独立して設けておき、先ほどのX軸からの疑似センサ信号をX軸用端子から受け入れ、電流出力回路50Yの加減算手段で除去する。
次に、Z軸への対策であるが、X軸打ち消し磁場によってZ軸成分に悪影響を及ぼす磁場成分についても、同様にしてZ軸の電流出力回路50Zにおいて打ち消す。そのために、X軸の磁気センサ疑似回路10XのZ軸専用振幅調整手段から悪影響を及ぼす磁場成分を打ち消すために疑似センサ信号を電流出力回路50Zへ送り出す。疑似センサ信号の振幅と極性はZ軸専用振幅調整手段で実施する。
電流出力回路50Zの入力部には自軸分の反転疑似センサ信号受け入れ端子の他にX軸およびY軸からの疑似センサ信号を受け入れる端子を独立して設けておき、先ほどのX軸からの疑似センサ信号をX軸用端子から受け入れ、電流出力回路50Zの加減算手段で除去する。
以下、Y軸打ち消し磁場によってX軸成分Z軸成分に悪影響を及ぼす磁場成分の除去方法も、Z軸打ち消し磁場によってX軸成分およびY軸成分に悪影響を及ぼす磁場成分の除去方法も前述のX軸の場合と同様に実施するので説明を省略する。
図中の切り替えSWは、疑似センサ信号による調整の必要性の程度によって、そのON/OFFを判断する。
図4は実測データ事例を示す波形図である。外乱磁場として磁場強度が19.74μTp−pである商用周波数50Hzの交流磁場を試験磁場とした。試験磁場の発生では、ターゲット空間T−Spaceと磁気センサ設置空間S−Spaceに同時に印加できる大きなコイルを使用した。アクティブ磁気シールド装置を稼働させたアクティブ−オン期間では、ターゲット空間T−Spaceにおける交流磁場がアクティブ−オフ期間(アクティブ磁気シールド装置を稼働させる前)の19.74μTp−pから0.073μTp−pに減衰し、その減衰率は1/270.4になることがわかった。
従来方式では減衰率が約1/20であったのに対し、本発明方式では10倍以上の性能改善になった(当社比)。
本発明に関する説明は以上であるが、回路常数などの調整作業においては、ターゲット空間T−Spaceに磁力計を置いて、その磁力計の出力値あるいは磁場波形あるいはFFT(高速フーリエ変換)解析値を小さくするように調整する方法が簡便である。
本発明は、無磁場に近い磁場管理空間でしか計測できない各種材料部品の磁気的精密非破壊検査の分野、各種生体磁気計測、医療診断機器や生体生理機能を解析するシステムで使用する極微弱磁場測定装置、磁気的応答による免疫診断システム、病原菌検査システムの精密測定の分野、また、電子顕微鏡やMRI装置の分野において幅広く使用できる。
本発明の実施の形態1の基本構成図である。 本発明における補償コイルの様々な実施形態を示す説明図である。 本発明の実施の形態2に係る補償コイルの3軸構成時における回路結線図である。 本発明における実測データ事例を示す波形図である。 従来技術の例を示す概略構成図である。 従来技術における位相ずれを説明するための回路図である。
符号の説明
S 磁気センサ
10 磁気センサ疑似回路
11 補償コイル
12 加減算手段
13 信号処理回路
14 電力増幅器
15 電流電圧変換回路
16 バッファ回路
17 位相同期化手段
18 極性切り替え機能付き振幅調整手段

Claims (3)

  1. 外乱磁場を打ち消すための打ち消し磁場を発生させる少なくとも1つの補償コイルと、
    前記外乱磁場を検出する少なくとも1つの磁気センサと、
    該磁気センサの出力信号中の不要な打ち消し磁場勾配センサ信号を疑似センサ信号で相殺する加減算手段を備え、前記補償コイルに打ち消し電流を出力する少なくとも1つの電流出力回路と、
    前記補償コイルに流れる打ち消し電流を検出する少なくとも1つの電流電圧変換回路と、
    該電流電圧変換回路の出力信号を前記打ち消し磁場勾配センサ信号に酷似した前記疑似センサ信号に形成して出力する少なくとも1つの磁気センサ疑似回路と
    を有することを特徴とする交流磁場対応型のアクティブ磁気シールド装置。
  2. 前記疑似センサ信号を形成する前記磁気センサ疑似回路は、
    前記電流電圧変換回路の出力信号の位相を前記磁気センサの出力信号の位相に同期化させるための位相同期化手段と、
    前記打ち消し磁場勾配センサ信号の位相に呼応して疑似センサ信号の位相を切り替える少なくとも1つの極性切り替え機能付き振幅調整手段と
    を備えたことを特徴とする請求項1記載の交流磁場対応型のアクティブ磁気シールド装置。
  3. 外乱磁場の直交する3軸のうち少なくとも2軸成分以上の磁場成分を打ち消すための、前記各軸に対応する軸成分の打ち消し磁場成分の発生が可能な複数個の補償コイル構成において、
    前記各軸成分の補償コイルが発生する打ち消し磁場成分が互いに他軸の磁気センサに影響を与える他軸磁場成分信号を打ち消すために、
    前記磁気センサ疑似回路に、他軸磁場成分信号の打ち消し用に前記疑似センサ信号の極性と振幅を個別調整し、該他軸磁場成分信号の打ち消し用疑似センサ信号として各軸別に出力する手段を付加し、
    前記加減算手段に、他軸から前記他軸磁場成分信号の打ち消し用疑似センサ信号を受けて加減算する手段を付加したこと
    を特徴とする請求項1記載または請求項2記載の交流磁場対応型のアクティブ磁気シールド装置。
JP2008274819A 2008-10-24 2008-10-24 交流磁場対応型のアクティブ磁気シールド装置 Expired - Fee Related JP4435255B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274819A JP4435255B1 (ja) 2008-10-24 2008-10-24 交流磁場対応型のアクティブ磁気シールド装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274819A JP4435255B1 (ja) 2008-10-24 2008-10-24 交流磁場対応型のアクティブ磁気シールド装置

Publications (2)

Publication Number Publication Date
JP4435255B1 true JP4435255B1 (ja) 2010-03-17
JP2010103373A JP2010103373A (ja) 2010-05-06

Family

ID=42193799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274819A Expired - Fee Related JP4435255B1 (ja) 2008-10-24 2008-10-24 交流磁場対応型のアクティブ磁気シールド装置

Country Status (1)

Country Link
JP (1) JP4435255B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296843B2 (ja) 2014-03-13 2018-03-20 株式会社東芝 紙葉類処理装置
JP2019113374A (ja) * 2017-12-22 2019-07-11 協立電機株式会社 フラックスゲートセンサ
JP2020163018A (ja) * 2019-03-29 2020-10-08 Tdk株式会社 生体信号測定システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118855A (ja) * 2000-10-11 2002-04-19 Central Res Inst Of Electric Power Ind Crtの映像動揺低減装置
JP2003273565A (ja) * 2002-03-12 2003-09-26 Mti:Kk アクティブ磁気シールド装置
JP2005044826A (ja) * 2003-07-22 2005-02-17 Clover Tech Kk 磁気キャンセラ装置
JP2005283191A (ja) * 2004-03-29 2005-10-13 Ichiro Sasada アクティブ磁気シールド装置
JP2006324651A (ja) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd シールド方法、シールド装置、電気電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218678A (ja) * 1992-02-03 1993-08-27 Furukawa Electric Co Ltd:The 磁気シールド装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118855A (ja) * 2000-10-11 2002-04-19 Central Res Inst Of Electric Power Ind Crtの映像動揺低減装置
JP2003273565A (ja) * 2002-03-12 2003-09-26 Mti:Kk アクティブ磁気シールド装置
JP2005044826A (ja) * 2003-07-22 2005-02-17 Clover Tech Kk 磁気キャンセラ装置
JP2005283191A (ja) * 2004-03-29 2005-10-13 Ichiro Sasada アクティブ磁気シールド装置
JP2006324651A (ja) * 2005-04-20 2006-11-30 Matsushita Electric Ind Co Ltd シールド方法、シールド装置、電気電子機器

Also Published As

Publication number Publication date
JP2010103373A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5535467B2 (ja) 位相補正型アクティブ磁気シールド装置
AU2014234969B2 (en) Magnetic compensation circuit and method for compensating the output of a magnetic sensor, responding to changes a first magnetic field
US8237438B2 (en) Very low noise magnetometer
CA2733431C (en) Multi-axis fluxgate magnetic sensor
JP5521143B1 (ja) 磁気検出装置
JP5472666B2 (ja) 外部磁気擾乱を最小化したヤング率変化量測定装置
WO2013035581A1 (ja) 磁界センサ
JP2829375B2 (ja) 微弱磁界測定装置及び測定方法
JP2012018024A (ja) 電流センサ
JP4435255B1 (ja) 交流磁場対応型のアクティブ磁気シールド装置
JP2006324651A (ja) シールド方法、シールド装置、電気電子機器
US20160154068A1 (en) Dual squid measurement device
US5214383A (en) MRI apparatus with external magnetic field compensation
JP2003517734A (ja) 磁気遮蔽室内の干渉を弱める方法
JP2013186053A (ja) 磁気センサの磁気検査装置
JP2003273565A (ja) アクティブ磁気シールド装置
JPS5925726A (ja) 診断用観測装置
JP2005188947A (ja) 磁気検出装置
JP2006184116A (ja) 磁気検出装置
Razmkhah et al. Fundamental mode fluxgate magnetometers for active magnetic shielding
KR101861249B1 (ko) 직교성 보정된 3축 자력계
KR20170021663A (ko) 직교성 보정된 3축 자력계
JP2022019194A (ja) 勾配磁界センサ、及び磁性物検出装置
Weinstock et al. Jiri Vrba, Ph. D.
JP2003344515A (ja) 磁場測定装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees