WO2014136662A1 - 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法 - Google Patents

混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法 Download PDF

Info

Publication number
WO2014136662A1
WO2014136662A1 PCT/JP2014/054989 JP2014054989W WO2014136662A1 WO 2014136662 A1 WO2014136662 A1 WO 2014136662A1 JP 2014054989 W JP2014054989 W JP 2014054989W WO 2014136662 A1 WO2014136662 A1 WO 2014136662A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
continuous
thermoplastic resin
fibers
polyamide
Prior art date
Application number
PCT/JP2014/054989
Other languages
English (en)
French (fr)
Inventor
朝美 仲井
章夫 大谷
政隆 梶
光朗 ▲高▼木
信彦 松本
三田寺 淳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CA2901980A priority Critical patent/CA2901980A1/en
Priority to US14/770,760 priority patent/US20160010246A1/en
Priority to RU2015142381A priority patent/RU2015142381A/ru
Priority to CN201480012456.8A priority patent/CN105008603A/zh
Priority to EP14759992.2A priority patent/EP2966204A4/en
Priority to KR1020157021697A priority patent/KR20150124947A/ko
Publication of WO2014136662A1 publication Critical patent/WO2014136662A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/275Carbon fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/06Glass
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to a blended yarn comprising a continuous thermoplastic resin fiber and a continuous reinforcing fiber as a fiber component, having excellent mechanical strength when formed into a molded product, and also having an excellent appearance. Furthermore, it is related with the textile fabric and knitting using this mixed fiber.
  • the present invention also relates to a composite material using the mixed yarn, woven fabric, or knitted fabric. Furthermore, the present invention relates to a method for producing such a composite material.
  • thermoplastic resin composite materials obtained by reinforcing thermoplastic resins with continuous reinforcing fibers have attracted attention.
  • the continuous reinforcing fiber high mechanical properties can be expected, and by using the thermoplastic resin, advantages such as recyclability and secondary processability can be obtained.
  • a thermoplastic resin composite material reinforced with continuous reinforcing fibers has a problem that it is difficult to impregnate a continuous reinforcing fiber bundle with a thermoplastic resin because the melt viscosity of the resin is high. Therefore, in order to solve this problem, a mixed yarn that is a fibrous intermediate material obtained by mixing continuous thermoplastic resin fibers and continuous reinforcing fibers has attracted attention.
  • Patent Document 1 in a mixed yarn of a spread-processed product of an untwisted continuous reinforcing fiber bundle and a spread-processed product of an untwisted continuous thermoplastic resin fiber bundle, the continuous reinforcing fiber bundle is opened.
  • F W / DN (Where F is the opening index, W is the width (mm) of the fiber bundle, D is the diameter of the single fiber (mm), N is the number of single fibers in the fiber bundle, and the width of the fiber bundle is The yarn is measured in a solid state, and the yarn immediately after the opening process is measured at the outlet of the processing apparatus.) Such a mixed yarn is sufficiently mixed after the continuous reinforcing fiber bundle and the continuous thermoplastic resin fiber bundle are sufficiently opened, so that both are mixed uniformly at the single fiber level. A fine yarn can be obtained.
  • Patent Document 1 when the inventor of the present application examined Patent Document 1, when the heat treatment is performed using such a mixed fiber, the mechanical strength (particularly, tensile strength) of the obtained molded product may be lowered. I understood. Moreover, it turned out that the external appearance of a mixed fiber yarn and the molded product obtained is also inferior.
  • the present invention solves such a problem, and the fiber component is a mixed yarn composed of continuous thermoplastic resin fibers and continuous reinforcing fibers, and is excellent in mechanical strength even when heat-processed, and heated.
  • An object of the present invention is to provide a mixed yarn excellent in appearance before and after processing.
  • the cause of inferior mechanical strength when heat-processing a mixed fiber as described above is due to disorder of orientation of continuous reinforcing fibers during heat-processing.
  • the disorder of the orientation of this continuous reinforcing fiber could be suppressed by twisting a mixed fiber.
  • the appearance of the molded product is improved by suppressing the disorder of the orientation of the continuous reinforcing fiber, and the present invention has been completed.
  • the above-mentioned problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 8>.
  • the continuous thermoplastic resin fiber includes at least one selected from polyamide 6, polyamide 66, and xylylenediamine-based polyamide.
  • ⁇ 5> A woven or knitted fabric using the blended yarn according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> A composite material obtained by heat-processing the blended yarn according to any one of ⁇ 1> to ⁇ 4> or the woven fabric or knitted fabric according to ⁇ 5>.
  • ⁇ 7> producing a blended yarn comprising a continuous thermoplastic resin fiber and continuous reinforcing fiber as a fiber component, twisting the blended yarn, and heating the twisted blended yarn; A method for producing a composite material.
  • the fineness and the number of fibers in the present invention refer to the average fineness and the average number of fibers, respectively, measured at any 10 locations of the fibers.
  • the blended yarn of the present invention is a blended yarn comprising a continuous thermoplastic resin fiber and a continuous reinforcing fiber as a fiber component, and the blended yarn has a twist.
  • a molded product having excellent mechanical strength can be provided even if heat processing (for example, heat processing in the range of the melting point of the thermoplastic resin +0 to 80 ° C.).
  • heat processing for example, heat processing in the range of the melting point of the thermoplastic resin +0 to 80 ° C.
  • FIG. 1 is a schematic diagram showing the difference between the prior art and the present invention.
  • (1-1) and (2-1) are appearance photographs before heat-processing of the mixed yarn, (1-1) is a non-twisted mixed yarn, and (2-1) has a twist. Indicates mixed yarn.
  • FIG. 1 (1-2) and (2-2) are conceptual diagrams showing the orientation state of continuous reinforcing fibers after heat-processing a mixed fiber.
  • 1 (1-1) and (2-1) before heat processing
  • the continuous reinforcing fibers are dispersed in a uniform state in any case.
  • the orientation of the continuous reinforcing fibers is disturbed as shown in (1-2).
  • FIG. 1 (2-2) when twisted, as shown in FIG. 1 (2-2), the continuous reinforcing fibers maintain a constant orientation even after heat processing. Therefore, the twisted mixed yarn can maintain high mechanical strength even after heat processing.
  • the continuous reinforcing fibers maintain a certain orientation state, an excellent appearance of the molded product can be achieved.
  • the impregnation rate of the continuous reinforcing fiber with the thermoplastic resin during the thermoforming tends to be improved.
  • the mixed yarn of the present invention will be described in more detail.
  • the blended yarn of the present invention is obtained by twisting a blended yarn composed of continuous thermoplastic resin fibers and continuous reinforcing fibers.
  • the method of twisting is not particularly defined, and a known method can be adopted.
  • the number of twists is the type of thermoplastic resin used for the continuous thermoplastic resin fiber, the number of fibers of the thermoplastic resin, the fineness, the type of continuous reinforcing fiber, the number of fibers, the fineness, the fibers of the continuous thermoplastic resin fiber and the continuous reinforcing fiber.
  • the number ratio and fineness ratio can be set to, for example, 1 to 200 times / m (fiber length), further 1 to 100 times / m, and more preferably 1 It can be set to ⁇ 70 times / m, and particularly 1 to 50 times / m. Further, the minimum number of twists is preferably 11 times / m, more preferably 15 times / m, and even more preferably 20 times / m.
  • the mixed fiber of the present invention is usually produced using a continuous thermoplastic resin fiber bundle and a continuous reinforcing fiber bundle.
  • Total fineness of fibers used for the production of a single mixed yarn Is preferably 1000 to 100,000 dtex, more preferably 1500 to 50000 dtex, still more preferably 2000 to 50000 dtex, and particularly preferably 3000 to 5000 dtex.
  • the ratio of the sum of the fineness of the continuous thermoplastic resin fibers and the sum of the fineness of the continuous reinforcing fibers used for the production of one blended yarn is 0. It is preferably 1 to 10, more preferably 0.1 to 6.0, and still more preferably 0.8 to 2.0.
  • the total number of fibers used for the production of one blended yarn is preferably 100 to 100,000 f, More preferably, it is 1000-100000f, more preferably 1500-70000f, still more preferably 2000-20000f, still more preferably 2500-10000f, and particularly preferably 3000-5000f. .
  • the fiber mixing property of a mixed fiber improves, and the thing excellent in the physical property and texture as a composite material is obtained.
  • Ratio of the total number of continuous thermoplastic resin fibers and the total number of continuous reinforcing fiber fibers used for the production of a single mixed yarn is preferably 0.001 to 1, more preferably 0.001 to 0.5, and still more preferably 0.05 to 0.2.
  • the fiber mixing property of a mixed fiber improves, and the thing excellent in the physical property and texture as a composite material is obtained.
  • the continuous thermoplastic resin fiber and the continuous reinforcing fiber in the mixed fiber are more uniformly dispersed in each other, but the fibers are more easily dispersed in the above range.
  • the dispersity of the continuous reinforcing fiber in the blended yarn of the present invention is preferably 40 to 100, more preferably 60 to 100, and particularly preferably 65 to 100. By setting it as such a range, a mixed fiber shows a more uniform physical property, and also the external appearance of a molded article improves more. In addition, when a molded product is produced using this, a product superior in mechanical properties can be obtained.
  • the degree of dispersion in the present invention is an index indicating how uniformly the continuous thermoplastic resin fibers and the continuous reinforcing fibers are dispersed in the mixed yarn, and is defined by the following mathematical formula.
  • Ltot is the cross-sectional area of the blended yarn
  • Lcf is the total area of 31400 ⁇ m 2 or more of the area occupied by only the continuous reinforcing fibers in the cross-section of the blended yarn
  • Lpoly is the blended yarn.
  • the cross section the total area of only 31400 ⁇ m 2 or more of the area occupied only by the resin fibers is measured, and the cross section of the mixed fiber was measured by cutting the mixed fiber perpendicularly to the fiber direction. Is measured using a digital microscope.
  • a larger dispersion degree D means that the continuous thermoplastic resin fibers and the continuous reinforcing fibers are more uniformly dispersed.
  • the continuous thermoplastic resin fiber and / or continuous reinforcing fiber used in the blended yarn of the present invention it is preferable to use a surface-treated fiber.
  • a blended yarn in which continuous thermoplastic resin fibers and continuous reinforcing fibers are more uniformly dispersed for example, a blended yarn having a dispersion degree of continuous reinforcing fibers of 40 to 100 is obtained.
  • the effects of the present invention such as mechanical strength are more effectively exhibited. Details of these treatment agents will be described later.
  • the blended yarn of the present invention may contain other components other than the continuous thermoplastic resin fiber, the continuous reinforcing fiber, the processing agent for the continuous thermoplastic resin fiber and the processing agent for the continuous reinforcing fiber, Specifically, short fiber long carbon fiber, carbon nanotube, fullerene, microcellulose fiber, talc, mica and the like are exemplified.
  • the blending amount of these other components is preferably 5% by mass or less of the mixed yarn.
  • the blended yarn of the present invention is a blended yarn made of the same material and having no mechanical twist when heat-processed in the range of the melting point of the thermoplastic resin +0 to 80 ° C. It can be 1.03 times or more of the tensile strength (tensile strength improvement rate) when heat-processing under conditions. In particular, in the present invention, the tensile strength improvement rate can be as high as 1.05 to 2.00 times, which is beneficial.
  • the present invention maintains the uniform orientation of the continuous reinforcing fiber after heat processing by twisting the blended yarn, and improves the mechanical strength such as tensile strength and tensile elastic modulus.
  • thermoplastic resin used for continuous thermoplastic resin fiber number of fibers of thermoplastic resin, fineness, type of continuous reinforcing fiber, number of fibers, fineness, fiber number ratio and fineness of continuous thermoplastic resin fiber and continuous reinforcing fiber, continuous It goes without saying that the mechanical strength can be further improved by appropriately determining the processing agent for thermoplastic resin fibers, the processing agent for continuous reinforcing fibers, the number of twists, etc. by those skilled in the art.
  • the continuous thermoplastic resin fiber used in the present invention is usually a continuous thermoplastic resin fiber bundle in which a plurality of fibers are bundled, and the blended yarn of the present invention is produced using the continuous thermoplastic resin fiber bundle.
  • the continuous thermoplastic resin fiber in the present invention refers to a thermoplastic resin fiber having a fiber length exceeding 6 mm.
  • the average fiber length of the continuous thermoplastic resin fibers used in the present invention is not particularly limited, but is preferably in the range of 1 to 20,000 m, more preferably 100 to 1 from the viewpoint of improving moldability. , 0000 m, more preferably 1,000 to 7,000 m.
  • the continuously heatable resin fiber used in the present invention is made of a thermoplastic resin composition.
  • the thermoplastic resin composition is composed of a thermoplastic resin as a main component (usually 90% by mass or more of the composition is a thermoplastic resin) and, in addition, a known additive or the like is appropriately blended. .
  • a thermoplastic resin those used for mixed fiber for composite materials can be widely used.
  • polyolefin resins such as polyethylene and polypropylene
  • polyamide resins such as polyethylene terephthalate and polybutylene terephthalate
  • polyether ketones polyether ketones
  • Thermoplastic resins such as polyether sulfone and thermoplastic polyetherimide
  • the thermoplastic resin is preferably a polyamide resin. Details of the polyamide resin that can be used in the present invention will be described later.
  • the continuous thermoplastic resin fiber used in the present invention is usually produced using a continuous thermoplastic resin fiber bundle in which continuous thermoplastic resin fibers are bundled, but the total per one such continuous thermoplastic resin fiber bundle.
  • the fineness is preferably 40 to 600 dtex, more preferably 50 to 500 dtex, and still more preferably 100 to 400 dtex.
  • the number of fibers constituting such a continuous thermoplastic resin fiber bundle is preferably 1 to 200 f, more preferably 5 to 100 f, still more preferably 10 to 80 f, and more preferably 20 to 50 f. Particularly preferred. By setting it as such a range, the dispersion state of the continuous thermoplastic resin fiber in the obtained mixed yarn becomes more favorable.
  • the continuous thermoplastic resin fiber bundle in order to produce one mixed fiber, is preferably used in the range of 1 to 100, more preferably in the range of 1 to 50. More preferably, it is used in the range of ⁇ 15. By setting it as such a range, the effect of this invention is exhibited more effectively.
  • the total fineness of the continuous thermoplastic resin fibers for producing one mixed fiber is preferably 200 to 12000 dtex, and more preferably 1000 to 3000 dtex. By setting it as such a range, the effect of this invention is exhibited more effectively.
  • the total number of continuous thermoplastic resin fibers for producing one blended yarn is preferably 10 to 2000 f, more preferably 20 to 1600 f, and even more preferably 200 to 350 f. .
  • the continuous thermoplastic resin fiber bundle used in the present invention preferably has a tensile strength of 2 to 10 gf / d.
  • Processing agent for continuous thermoplastic resin fibers It is also preferable to treat the surface of the continuous thermoplastic resin fiber used in the present invention with a treatment agent. By setting it as such an aspect, the dispersion degree of the continuous reinforcement fiber in a mixed fiber yarn improves more.
  • the type of the treating agent is not particularly defined as long as it has a function of converging the continuous thermoplastic resin fibers. Examples of the treating agent include ester compounds, alkylene glycol compounds, polyolefin compounds, and phenyl ether compounds. More specifically, surfactants are preferable.
  • the amount of the treatment agent for the continuous thermoplastic resin fiber is 0.1 to 2% by mass, and more preferably 0.5 to 1.5% by mass with respect to the continuous thermoplastic resin fiber.
  • the method for treating the continuous thermoplastic resin fiber with the treating agent is not particularly defined as long as the intended purpose can be achieved. For example, adding a treatment agent dissolved in a solution to a continuous thermoplastic resin fiber and attaching the treatment agent to the surface of the continuous thermoplastic resin fiber can be mentioned. Alternatively, the treatment agent can be blown on the surface of the continuous thermoplastic resin fiber.
  • the continuous thermoplastic resin fiber of the present invention is preferably made of a polyamide resin composition.
  • the polyamide resin composition has a polyamide resin as a main component, and the polyamide resin used here includes polyamide 4, polyamide 6, polyamide 11, polyamide 12, polyamide 46, polyamide 66, polyamide 610, polyamide 612, Examples thereof include polyhexamethylene terephthalamide (polyamide 6T), polyhexamethylene isophthalamide (polyamide 6I), polymetaxylylene adipamide, polymetaxylylene decanamide, polyamide 9T, and polyamide 9MT.
  • polyamide resins as described above xylylenediamine obtained by polycondensation of polyamide 6, polyamide 66, or ⁇ , ⁇ -linear aliphatic dibasic acid and xylylenediamine from the viewpoint of moldability and heat resistance.
  • a polyamide resin (XD polyamide) is more preferably used.
  • XD polyamide is further preferable from the viewpoints of heat resistance and flame retardancy.
  • the ratio of the XD polyamide in the polyamide resin is preferably 50% by weight or more, and more preferably 80% by weight or more.
  • a polyamide resin in which 50 mol% or more of diamine structural units are derived from xylylenediamine is preferable, and the polyamide resin preferably has a number average molecular weight (Mn) of 6,000 to 30,000. In particular, it is more preferable that 0.5 to 5% by mass of the polyamide resin is a polyamide resin having a molecular weight of 1,000 or less.
  • Mn number average molecular weight
  • 0.5 to 5% by mass of the polyamide resin is a polyamide resin having a molecular weight of 1,000 or less.
  • the polyamide resin used in the present invention is preferably a polyamide resin in which 50 mol% or more of diamine structural units (structural units derived from diamine) are derived from xylylenediamine in a fibrous form. That is, it is a xylylenediamine-based polyamide resin in which 50 mol% or more of the diamine is derived from xylylenediamine and polycondensed with a dicarboxylic acid.
  • 70 mol% or more, more preferably 80 mol% or more of the diamine structural unit is derived from metaxylylenediamine and / or paraxylylenediamine, and preferably a dicarboxylic acid structural unit (a structural unit derived from dicarboxylic acid).
  • a dicarboxylic acid structural unit a structural unit derived from dicarboxylic acid.
  • diamines other than metaxylylenediamine and paraxylylenediamine that can be used as raw material diamine components for xylylenediamine polyamide resins include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, and heptamethylene.
  • Aliphatic diamines such as diamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3- Bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) meta 2,2-bis (4-aminocyclohexyl) propane, bis (aminomethyl) decalin, alicyclic diamines such as bis (aminomethyl) tricyclodecane, bis (4-aminophenyl) ether, paraphenylenediamine, bis Examples thereof include diamines having an aromatic ring such as (aminomethyl) naphthalene, and one kind
  • a diamine other than xylylenediamine is used as the diamine component, it is 50 mol% or less of the diamine structural unit, preferably 30 mol% or less, more preferably 1 to 25 mol%, particularly preferably 5 to 5 mol%. Used in a proportion of 20 mol%.
  • Preferred ⁇ , ⁇ -linear aliphatic dicarboxylic acids having 4 to 20 carbon atoms for use as a raw material dicarboxylic acid component of polyamide resin include, for example, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid Examples thereof include aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, dodecanedioic acid and the like, and one or a mixture of two or more can be used. Among these, the melting point of the polyamide resin is suitable for molding processing. Since it becomes a range, adipic acid or sebacic acid is preferable and sebacic acid is especially preferable.
  • dicarboxylic acid component other than the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms examples include phthalic acid compounds such as isophthalic acid, terephthalic acid and orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1, 3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3- Examples thereof include naphthalenedicarboxylic acid such as isomers such as naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid, and one kind or a mixture of two or more kinds can be used.
  • phthalic acid compounds such as isophthalic acid,
  • terephthalic acid or isophthalic acid may be used from the viewpoint of molding processability and barrier properties. preferable.
  • the proportion of terephthalic acid and isophthalic acid is preferably 30 mol% or less, more preferably 1 to 30 mol%, particularly preferably 5 to 20 mol% of the dicarboxylic acid structural unit.
  • lactams such as ⁇ -caprolactam and laurolactam
  • aliphatics such as aminocaproic acid and aminoundecanoic acid, etc.
  • Aminocarboxylic acids can also be used as copolymerization components.
  • Polyamide resins such as polymetaxylylene adipamide resin, polymetaxylylene sebacamide resin, polyparaxylylene sebacamide resin, and mixed xylylenediamine of metaxylylenediamine and paraxylylenediamine with adipic acid
  • Condensed polymetaxylylene / paraxylylene mixed adipamide resin is preferred, more preferred is polymetaxylylene sebacamide resin, polyparaxylylene sebacamide resin, and a mixture of metaxylylenediamine and paraxylylenediamine
  • These polyamide resins tend to have particularly good moldability.
  • the polyamide resin preferably has a number average molecular weight (Mn) of 6,000 to 30,000, of which 0.5 to 5% by mass is a polyamide resin having a molecular weight of 1,000 or less. More preferably.
  • the number average molecular weight (Mn) is in the range of 6,000 to 30,000, the strength of the resulting composite material or molded product tends to be further improved.
  • the number average molecular weight (Mn) is more preferably 8,000 to 28,000, still more preferably 9,000 to 26,000, still more preferably 10,000 to 24,000, and particularly preferably 11 2,000 to 22,000, more preferably 12,000 to 20,000. Within such a range, the heat resistance, elastic modulus, dimensional stability, and moldability become better.
  • the polyamide resin preferably contains 0.5 to 5% by mass of a component having a molecular weight of 1,000 or less.
  • a component having a molecular weight of 1,000 or less By containing such a low molecular weight component in such a range, the impregnation property of the obtained polyamide resin into the continuous reinforcing fiber is improved, so that the strength and low warpage of the molded product are improved. If it exceeds 5% by mass, this low molecular weight component will bleed, the strength will deteriorate, and the surface appearance will deteriorate.
  • the more preferable content of the component having a molecular weight of 1,000 or less is 0.6 to 4.5% by mass, more preferably 0.7 to 4% by mass, and still more preferably 0.8 to 3.%. It is 5% by mass, particularly preferably 0.9 to 3% by mass, and more preferably 1 to 2.5% by mass.
  • the content of the low molecular weight component having a molecular weight of 1,000 or less can be adjusted by adjusting melt polymerization conditions such as temperature and pressure during polyamide resin polymerization, and a dropping rate of diamine.
  • melt polymerization conditions such as temperature and pressure during polyamide resin polymerization, and a dropping rate of diamine.
  • the inside of the reaction apparatus can be depressurized at the latter stage of the melt polymerization to remove low molecular weight components and adjusted to an arbitrary ratio.
  • the polyamide resin produced by melt polymerization may be subjected to hot water extraction to remove low molecular weight components, or after melt polymerization, the low molecular weight components may be removed by solid phase polymerization under reduced pressure.
  • the low molecular weight component can be controlled to an arbitrary content by adjusting the temperature and the degree of vacuum. It can also be adjusted by adding a low molecular weight component having a molecular weight of 1,000 or less to the polyamide resin later.
  • the measurement of the amount of components having a molecular weight of 1,000 or less is based on a standard polymethyl methacrylate (PMMA) conversion value by gel permeation chromatography (GPC) measurement using “HLC-8320GPC” manufactured by Tosoh Corporation (TOSOH CORPORATION).
  • PMMA polymethyl methacrylate
  • GPC gel permeation chromatography
  • HLC-8320GPC hexafluoroisopropanol
  • RI refractive index detector
  • the polyamide resin composition 0.01 to 1% by mass of the polyamide resin is preferably a cyclic compound (polyamide resin).
  • the cyclic compound refers to a compound in which a salt composed of a diamine component and a dicarboxylic acid component, which are raw materials for polyamide resin, forms a ring, and can be quantified by the following method.
  • the polyamide resin pellets are pulverized by an ultracentrifugation mill, passed through a sieve of ⁇ 0.25 mm, and 10 g of a powder sample of ⁇ 0.25 mm or less is measured on a cylindrical filter paper.
  • Soxhlet extraction is performed with 120 ml of methanol for 9 hours, and the obtained extract is concentrated to 10 ml with care not to dry out with an evaporator. At this time, if the oligomer is precipitated, it is removed by appropriately passing through a PTFE filter.
  • a solution obtained by diluting the obtained extract with methanol 50 times is used for measurement, and quantitative analysis by high performance liquid chromatographic HPLC manufactured by Hitachi High-Technology Corporation is performed to determine the cyclic compound content.
  • a more preferable content of the cyclic compound is 0.05 to 0.8% by mass of the polyamide resin, and more preferably 0.1 to 0.5% by mass.
  • the polyamide resin produced by melt polymerization often contains a considerable amount of cyclic compounds, and these are usually removed by hot water extraction or the like. By adjusting the degree of hot water extraction, the amount of cyclic compound can be adjusted. It is also possible to adjust the pressure during melt polymerization.
  • the polyamide resin used in the present invention preferably has a molecular weight distribution (weight average molecular weight / number average molecular weight (Mw / Mn)) of 1.8 to 3.1.
  • the molecular weight distribution is more preferably 1.9 to 3.0, still more preferably 2.0 to 2.9.
  • the molecular weight distribution of the polyamide resin can be adjusted, for example, by appropriately selecting the polymerization reaction conditions such as the type and amount of the initiator and catalyst used in the polymerization, and the reaction temperature, pressure, and time. It can also be adjusted by mixing a plurality of types of polyamide resins having different average molecular weights obtained under different polymerization conditions or by separately precipitating the polyamide resins after polymerization.
  • the molecular weight distribution can be determined by GPC measurement. Specifically, using “HLC-8320GPC” manufactured by Tosoh Corporation as the apparatus and two “TSK gel Super HM-H” manufactured by Tosoh Corporation as the column, eluent Measured under conditions of hexafluoroisopropanol (HFIP) having a sodium trifluoroacetate concentration of 10 mmol / l, a resin concentration of 0.02% by mass, a column temperature of 40 ° C., a flow rate of 0.3 ml / min, and a refractive index detector (RI). It can obtain
  • a calibration curve is prepared by dissolving 6 levels of PMMA in HFIP.
  • the polyamide resin has a melt viscosity of 50 to 1200 Pa ⁇ s when measured under the conditions of the melting point of the polyamide resin + 30 ° C., the shear rate of 122 sec ⁇ 1 , and the moisture content of the polyamide resin of 0.06% by mass or less. It is preferable. By making melt viscosity into such a range, the process to the film or fiber of a polyamide resin becomes easy. When the polyamide resin has two or more melting points as described later, the measurement is performed with the temperature at the peak top of the endothermic peak on the high temperature side as the melting point. A more preferable range of the melt viscosity is 60 to 500 Pa ⁇ s, and more preferably 70 to 100 Pa ⁇ s.
  • the melt viscosity of the polyamide resin can be adjusted, for example, by appropriately selecting the charging ratio of the raw material dicarboxylic acid component and the diamine component, the polymerization catalyst, the molecular weight regulator, the polymerization temperature, and the polymerization time.
  • the polyamide resin has a flexural modulus retention rate of 85% or more when absorbing water.
  • the bending elastic modulus retention rate at the time of water absorption is the ratio of the bending elastic modulus at the time of water absorption of 0.5% by mass to the bending elastic modulus at the time of water absorption of 0.1% by mass of the bending test piece made of polyamide resin. It is defined as (%), and a high value means that the bending elastic modulus does not easily decrease even when moisture is absorbed.
  • the bending elastic modulus retention at the time of water absorption is more preferably 90% or more, and further preferably 95% or more.
  • the flexural modulus retention rate of the polyamide resin upon water absorption can be controlled by, for example, the mixing ratio of paraxylylenediamine and metaxylylenediamine, and the higher the ratio of paraxylylenediamine, the better the flexural modulus retention rate. Can do. It can also be adjusted by controlling the crystallinity of the bending test piece.
  • the water absorption rate of the polyamide resin is preferably 1% by mass or less, and more preferably 0.6% by mass as the water absorption rate when it is taken out after being immersed in water at 23 ° C. for 1 week and then wiped off. % Or less, more preferably 0.4% by mass or less. Within this range, it is easy to prevent deformation of the molded product due to water absorption, and foaming during molding of the composite material during heating and pressurization can be suppressed, and a molded product with few bubbles can be obtained.
  • the polyamide resin preferably has a terminal amino group concentration ([NH 2 ]) of less than 100 ⁇ equivalent / g, more preferably 5 to 75 ⁇ equivalent / g, and still more preferably 10 to 60 ⁇ equivalent / g.
  • concentration ([COOH]) is preferably less than 150 ⁇ eq / g, more preferably 10 to 120 ⁇ eq / g, and still more preferably 10 to 100 ⁇ eq / g.
  • the ratio of the terminal amino group concentration to the terminal carboxyl group concentration is preferably 0.7 or less, more preferably 0.6 or less, particularly preferably 0. .5 or less. When this ratio is larger than 0.7, it may be difficult to control the molecular weight when polymerizing the polyamide resin.
  • the terminal amino group concentration can be measured by dissolving 0.5 g of polyamide resin in 30 ml of a phenol / methanol (4: 1) mixed solution with stirring at 20-30 ° C. and titrating with 0.01 N hydrochloric acid.
  • 0.1 g of polyamide resin is dissolved in 30 ml of benzyl alcohol at 200 ° C., and 0.1 ml of phenol red solution is added in the range of 160 ° C. to 165 ° C.
  • the solution was titrated with a titration solution (KOH concentration 0.01 mol / l) in which 0.132 g of KOH was dissolved in 200 ml of benzyl alcohol, and when the color change became yellow to red, the end point was reached. Can be calculated.
  • the polyamide resin of the present invention has a molar ratio of reacted diamine units to reacted dicarboxylic acid units (number of moles of reacted diamine units / number of moles of reacted dicarboxylic acid units, hereinafter sometimes referred to as “reaction molar ratio”). Is preferably 0.97 to 1.02. By setting it as such a range, it becomes easy to control the molecular weight and molecular weight distribution of a polyamide resin to arbitrary ranges.
  • the reaction molar ratio is more preferably less than 1.0, further preferably less than 0.995, particularly less than 0.990, and the lower limit is more preferably 0.975 or more, and further preferably 0.98 or more. .
  • M1 and M2 are calculated according to the blending ratio (molar ratio) of the monomers blended as raw materials. . If the inside of the synthesis kettle is a complete closed system, the molar ratio of the charged monomers and the reaction molar ratio are the same, but the actual synthesis apparatus cannot be a complete closed system. The ratio and the reaction molar ratio do not always coincide. Since the charged monomer does not always react completely, the charged molar ratio and the reaction molar ratio are not always the same. Therefore, the reaction molar ratio means the molar ratio of the actually reacted monomer obtained from the end group concentration of the finished polyamide resin.
  • the reaction molar ratio of the polyamide resin is adjusted by appropriately adjusting the reaction conditions such as the charged molar ratio of the raw dicarboxylic acid component and the diamine component, the reaction time, the reaction temperature, the xylylenediamine dripping rate, the pressure in the kettle, and the pressure reduction start timing. It is possible by making it a value.
  • the production method of the polyamide resin is a so-called salt method, in order to set the reaction molar ratio to 0.97 to 1.02, specifically, for example, the raw material diamine component / raw material dicarboxylic acid component ratio is within this range. Set and proceed the reaction sufficiently.
  • the amount of diamine to be refluxed during the addition of the diamine is controlled and the added diamine is added to the reaction system in addition to setting the charging ratio within this range. It can also be removed outside. Specifically, by controlling the temperature of the reflux tower to the optimum range and controlling the packing tower packing, so-called Raschig ring, Lessing ring, saddle, etc. to an appropriate shape and filling amount, the diamine is removed from the system. Remove it. Moreover, unreacted diamine can also be removed out of the system by shortening the reaction time after diamine dropping. Furthermore, unreacted diamine can also be removed out of the reaction system as needed by controlling the dropping rate of diamine. By these methods, it is possible to control the reaction molar ratio within a predetermined range even if the charging ratio deviates from the desired range.
  • the production method of the polyamide resin is not particularly limited, and is produced by a conventionally known method and polymerization conditions.
  • a small amount of monoamine or monocarboxylic acid may be added as a molecular weight regulator during the polycondensation of the polyamide resin.
  • a salt composed of a diamine component containing xylylenediamine and a dicarboxylic acid such as adipic acid or sebacic acid is heated in a pressurized state in the presence of water, and polymerized in a molten state while removing added water and condensed water. It is manufactured by the method to make.
  • diamine is continuously added to the dicarboxylic acid, while the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide. The polycondensation proceeds.
  • the polyamide resin may be subjected to solid phase polymerization after being produced by a melt polymerization method.
  • the method of solid phase polymerization is not particularly limited, and it is produced by a conventionally known method and polymerization conditions.
  • the melting point of the polyamide resin is preferably 150 to 310 ° C, more preferably 180 to 300 ° C.
  • the glass transition point of the polyamide resin is preferably 50 to 100 ° C., more preferably 55 to 100 ° C., and particularly preferably 60 to 100 ° C. Within this range, the heat resistance tends to be good.
  • the melting point is the temperature at the peak top of the endothermic peak at the time of temperature rise observed by the DSC (Differential Scanning Calorimetry) method.
  • the glass transition point refers to a glass transition point measured by heating and melting a sample once to eliminate the influence on crystallinity due to thermal history and then raising the temperature again.
  • the sample amount is about 5 mg
  • nitrogen is flowed at 30 ml / min as the atmospheric gas
  • the heating rate is 10 ° C./min.
  • the melting point can be determined from the temperature at the peak top of the endothermic peak observed when the mixture is heated from room temperature to a temperature higher than the expected melting point.
  • the melted polyamide resin is rapidly cooled with dry ice, and the temperature is raised again to a temperature equal to or higher than the melting point at a rate of 10 ° C./min, whereby the glass transition point can be obtained.
  • the polyamide resin composition used in the present invention can also contain other polyamide resins and elastomer components other than the xylylenediamine-based polyamide resin.
  • Other polyamide resins include polyamide 66, polyamide 6, polyamide 46, polyamide 6/66, polyamide 10, polyamide 612, polyamide 11, polyamide 12, hexamethylene diamine, adipic acid and terephthalic acid polyamide 66 / 6T, hexa And polyamide 6I / 6T made of methylenediamine, isophthalic acid and terephthalic acid. These blending amounts are preferably 5% by mass or less of the polyamide resin composition, and more preferably 1% by mass or less.
  • elastomer component for example, known elastomers such as polyolefin elastomers, diene elastomers, polystyrene elastomers, polyamide elastomers, polyester elastomers, polyurethane elastomers, fluorine elastomers, and silicon elastomers can be used. Elastomers and polystyrene-based elastomers. These elastomers are modified with ⁇ , ⁇ -unsaturated carboxylic acid and its anhydride, acrylamide, and derivatives thereof in the presence or absence of a radical initiator in order to impart compatibility with polyamide resin. Modified elastomers are also preferred.
  • the content of such other polyamide resin and elastomer component is usually 30% by mass or less, preferably 20% by mass or less, particularly 10% by mass or less in the polyamide resin composition.
  • the above-mentioned polyamide resin composition can also be used by blending one kind or a plurality of polyamide resins.
  • the polyamide resin composition used in the present invention is a polyester resin, a polyolefin resin, a polyphenylene sulfide resin, a polycarbonate resin, a polyphenylene ether resin, a polystyrene resin, or the like, as long as the objects and effects of the present invention are not impaired. Multiple blends are possible. These compounding amounts are preferably 10% by mass or less, more preferably 1% by mass or less, based on the polyamide resin composition.
  • thermoplastic resin composition used in the present invention includes a stabilizer such as an antioxidant and a heat stabilizer, a hydrolysis resistance improver, a weather resistance stabilizer, a gloss, and the like within a range that does not impair the purpose and effect of the present invention.
  • Additives such as quenching agents, ultraviolet absorbers, nucleating agents, plasticizers, dispersants, flame retardants, antistatic agents, anti-coloring agents, anti-gelling agents, coloring agents, mold release agents and the like can be added. Details of these can be referred to the description of paragraph numbers 0130 to 0155 of Japanese Patent No. 4894982, the contents of which are incorporated herein.
  • the blended yarn of the present invention includes continuous reinforcing fibers.
  • the continuous reinforcing fiber means a continuous reinforcing fiber having a fiber length exceeding 6 mm.
  • the average fiber length of the continuous reinforcing fiber used in the present invention is not particularly limited, but is preferably in the range of 1 to 20,000 m, more preferably 100 to 10,000 m from the viewpoint of improving the moldability. More preferably, it is 1,000 to 7,000 m.
  • the continuous reinforcing fiber used in the present invention is usually a continuous reinforcing fiber bundle in which a plurality of continuous reinforcing fibers are bundled.
  • the continuous reinforcing fiber used in the present invention has a total fineness per mixed yarn of preferably 100 to 50000 dtex, more preferably 500 to 40000 dtex, still more preferably 1000 to 10000 dtex, and more preferably 1000 to Particularly preferred is 3000 dex. By setting it as such a range, a process becomes easier and the elastic modulus and intensity
  • the continuous reinforcing fiber used in the present invention has a total number of fibers per blended yarn of preferably 500 to 50000f, more preferably 500 to 20000f, still more preferably 1000 to 10000f. Particularly preferred is ⁇ 5000f.
  • continuous reinforcing fibers may be manufactured with a single continuous reinforcing fiber bundle in order to satisfy a predetermined total fineness and total number of fibers, or a plurality of continuous reinforcing fiber bundles may be used. May be manufactured.
  • the average tensile elastic modulus of the continuous reinforcing fiber contained in the mixed yarn of the present invention is preferably 50 to 1000 GPa, more preferably 200 to 700 GPa. By setting it as such a range, the tensile elasticity modulus of the whole mixed yarn becomes more favorable.
  • the continuous reinforcing fiber glass fiber; carbon fiber; plant fiber (including Kenaf, bamboo fiber, etc.); and inorganic fiber such as alumina fiber, boron fiber, ceramic fiber, metal fiber (steel fiber, etc.); And organic fibers such as aramid fiber, polyoxymethylene fiber, aromatic polyamide fiber, polyparaphenylenebenzobisoxazole fiber, and ultrahigh molecular weight polyethylene fiber.
  • carbon fibers are preferably used because they have excellent characteristics of high strength and high elastic modulus while being lightweight.
  • polyacrylonitrile-based carbon fiber and pitch-based carbon fiber can be preferably used.
  • carbon fibers of plant-derived materials such as lignin and cellulose can also be used.
  • the continuous reinforcing fibers used in the present invention are preferably those treated with a treating agent.
  • a treating agent include a sizing agent and a surface treating agent, and those described in paragraph Nos. 0093 and 0094 of Japanese Patent No. 4894982 are preferably employed, and the contents thereof are incorporated in the present specification.
  • thermoplastic resin having a polar group when used, it is preferable to treat with a treatment agent for continuous reinforcing fibers having a functional group reactive with the polar group of the thermoplastic resin.
  • the functional group having reactivity with the polar group of the thermoplastic resin is usually chemically bonded to the thermoplastic resin in the step of thermoforming.
  • the processing agent of the continuous reinforcing fiber having a functional group reactive with the polar group of the thermoplastic resin has a function of converging the continuous reinforcing fiber. That is, it helps the physical convergence of each fiber before heat processing in the mixed yarn.
  • thermoplastic resins include epoxy resins such as bisphenol A type epoxy resins, and epoxy acrylate resins having an acrylic group or a methacryl group in one molecule.
  • epoxy resins such as bisphenol A type epoxy resins, and epoxy acrylate resins having an acrylic group or a methacryl group in one molecule.
  • vinyl ester resins such as bisphenol A type vinyl ester resins, novolak type vinyl ester resins, brominated vinyl ester resins and the like are preferable. Further, it may be a urethane-modified resin such as epoxy resin or vinyl ester resin.
  • the treatment agents used in the present invention include epoxy alkane, alkane diepoxide, bisphenol A diglycidyl ether, alkylene oxide adduct of bisphenol A, alkylene oxide adduct diglycidyl ether of bisphenol A, and dicyanate addition of bisphenol A.
  • the amount of the treatment agent is preferably 0.001 to 1.5% by mass of the continuous reinforcing fiber, more preferably 0.1 to 1.2% by mass, and 0.5 to 1.1% by mass. % Is more preferable. By setting it as such a range, the dispersibility of a continuous reinforcing fiber improves more and the effect of this invention is exhibited more effectively.
  • a well-known method can be employ
  • a continuous reinforcing fiber is added to a solution obtained by dissolving a treatment agent in a solution, and the treatment agent is attached to the surface of the continuous reinforcement fiber.
  • a processing agent can also be air blown on the surface of a continuous reinforcing fiber.
  • continuous reinforcing fibers that have already been treated with a surface treatment agent or a treatment agent may be used, or after washing off a commercially available surface treatment agent or a treatment agent, the desired treatment agent amount is again obtained. The surface treatment may be performed again.
  • the mixed yarn of the following embodiment, which has a twist is particularly preferable.
  • a mixed yarn comprising a polyamide resin fiber comprising a polyamide resin composition, continuous reinforcing fibers, and a treatment agent for polyamide resin fiber, wherein the amount of the treatment agent is 0.1 to 2 of the polyamide resin fiber.
  • the polyamide resin composition is a polyamide resin in which 50 mol% or more of diamine structural units are derived from xylylenediamine, and the number average molecular weight (Mn) is 6,000 to 30,000.
  • Mn number average molecular weight
  • ⁇ 2> The blended yarn according to ⁇ 1>, wherein 0.5 to 5% by mass of the polyamide resin is a polyamide resin having a molecular weight of 1,000 or less.
  • a treatment agent for continuous reinforcing fibers having a functional group reactive with the polyamide resin is included, and the amount of the treatment agent is 0.01 to 1.5% by mass of the continuous reinforcing fibers, ⁇ 1> Or the mixed yarn as described in ⁇ 2>.
  • ⁇ 4> The blended yarn according to any one of ⁇ 1> to ⁇ 3>, wherein the dispersity of the continuous reinforcing fiber in the blended yarn is 40 to 100.
  • ⁇ 5> The blended yarn according to any one of ⁇ 1> to ⁇ 4>, wherein a polyamide resin fiber having a fineness of 40 to 600 dtex and a fiber number of 1 to 200 f is used.
  • ⁇ 6> Using polyamide resin and continuous reinforcing fiber in which the ratio of total fineness of polyamide resin fiber to total fineness of continuous reinforcing fiber (total fineness of polyamide resin fiber / total fineness of continuous reinforcing fiber) is 0.1 to 10
  • thermoplastic resin fibers preferably, those obtained by surface-treating continuous thermoplastic resin fibers with a treatment agent
  • continuous reinforcing fibers preferably those obtained by surface treatment of continuous reinforcement fibers with a treatment agent
  • the number of the wound body may be one or plural for the continuous thermoplastic resin fiber bundle and the continuous reinforcing fiber bundle, respectively. It is preferable to appropriately adjust the ratio of the number of fibers and the ratio of fineness of the continuous thermoplastic resin fibers and the continuous reinforcing fibers when blended yarns are obtained.
  • FIG. 2 is a conceptual diagram showing the state of a wound body in the case of producing the mixed fiber of the present invention, wherein 1 is a wound body of a continuous reinforcing fiber bundle, and 2 is a continuous thermoplastic resin fiber bundle.
  • Reference numeral 3 denotes a wound body
  • reference numeral 3 denotes a wound body of mixed yarn.
  • FIG. 2A shows two continuous thermoplastic resin fiber bundles drawn from two continuous thermoplastic resin fiber bundle wound bodies 2 and one continuous reinforcing fiber bundle wound body 1.
  • FIG.2 (b) is a conceptual diagram in the case of manufacturing several mixed fiber at once.
  • the continuous reinforcing fiber bundles drawn from the three wound bodies 1 are combined with the continuous thermoplastic resin fiber bundles drawn from the three different wound bodies 2, respectively.
  • Yarn is formed at the same time. Also in FIG. 2B, when the number of wound bodies of the continuous thermoplastic resin fiber bundle and the number of wound bodies of the continuous reinforcing fiber bundle are mixed yarns, It is preferable to adjust appropriately so that the ratio of the number of fibers and the ratio of fineness of the plastic resin fiber and the continuous reinforcing fiber become the target values.
  • the continuous thermoplastic resin fiber bundle and the continuous reinforcing fiber bundle are each drawn from the wound body and opened by a known method.
  • the opening method include vibration, stress, air blow, and the like. While opening the continuous thermoplastic resin fiber bundle and the continuous reinforcing fiber bundle, the continuous thermoplastic resin fiber bundle and the continuous reinforcing fiber bundle are combined into one bundle, and further, vibration, stress, air blow, etc. are applied to promote homogenization, Use mixed yarn. Thereafter, it is usually wound around a wound body by a winder. The wound fiber may be twisted after being wound around the wound body, or may be applied with the mixed fiber before being wound around the wound body.
  • the continuous thermoplastic resin fiber bundle when the continuous thermoplastic resin fiber bundle is treated with a predetermined amount of the processing agent to open the fiber and uniformize it with the continuous reinforcing fiber bundle, the continuous reinforcing fiber can be more favorably dispersed. Further, when a continuous reinforcing fiber bundle treated with a treating agent is used, even better dispersion can be achieved.
  • JP-A-2-308824 discloses a method for imparting crimpability to the thermoplastic organic continuous fiber bundle
  • Japanese Patent Application Laid-Open No. 3-33237 discloses a method for specifying the amount of sizing agent applied to each continuous fiber bundle.
  • JP-A-2-28219 and JP-A-4-73227 disclose a method of opening a continuous fiber bundle in a liquid.
  • Japanese Patent Application Laid-Open No. 9-324331 discloses a method for uniformly mixing a continuous reinforcing fiber bundle and a continuous thermoplastic resin fiber bundle.
  • the mixed fiber in the present invention can be used as a woven fabric or a knitted fabric by a known method while being in a twisted state.
  • a woven fabric Any of plain weave, eight sheets satin weave, four sheets satin weave, twill weave, etc. may be sufficient.
  • a so-called Bayas weave may also be used.
  • a so-called non-crimp fabric having substantially no bending as described in JP-A-55-30974 may be used.
  • the knitting is not particularly defined, and a known knitting method such as warp knitting, weft knitting, and Russell knitting can be freely selected.
  • the woven fabric or knitted fabric of the present invention is preferable in that it can be in a woven fabric or knitted fabric state in a twisted yarn state. Further, if the woven fabric or knitted fabric of the present invention is heat-processed, there is an advantage that the mixed yarn can be maintained in a twisted state. Further, it can also be used as a tape-like or sheet-like base material in which the mixed fiber of the present invention is aligned in one direction, a braid, a rope-like base material, or a laminate in which two or more base materials are laminated. .
  • the molded article of the present invention includes, for example, parts and housings of personal computers, OA equipment, AV equipment, mobile phones and other electrical / electronic equipment, optical equipment, precision equipment, toys, home / office electrical products, automobiles, aircraft It can be suitably used for parts such as ships. In particular, it is suitable for the production of a molded product having a concave portion or a convex portion.
  • thermoplastic resin The following thermoplastic resins were used.
  • N66 Polyamide resin 66 (manufactured by Toray, Amilan CM3001)
  • MXD6 metaxylylene adipamide resin (manufactured by Mitsubishi Gas Chemical, grade S6007), number average molecular weight (Mn) 25000, content of components having a molecular weight of 1000 or less 0.51% by mass
  • LEXTER Xylylene sebacamide resin (Made by Mitsubishi Gas Chemical, grade 8500) obtained by polymerizing xylylenediamine and paraxylylene mixed xylylenediamine and sebacic acid, number average molecular weight (Mn) 20000, content of components having a molecular weight of 1000 or less .3% by mass PP: Polypropylene resin (Nippon Polypro (grade SA3A, fiber grade)
  • thermoplastic resin was made into the fiber form according to the following methods.
  • a thermoplastic resin dried using a vacuum dryer is melt extruded with a single screw extruder having a 30 mm ⁇ screw, extruded into a strand from a die, stretched while being wound by a roll, and multifilament (continuous thermoplastic) Resin fiber bundle) was obtained.
  • the number of fibers per continuous thermoplastic resin fiber bundle was adjusted by adjusting the number of die holes. Further, by adjusting the hole diameter of the die hole, a predetermined fineness was achieved.
  • Fiber diameter The cross section of the continuous thermoplastic resin fiber was observed with a scanning electron microscope (SEM), the fiber diameters of 10 arbitrary fibers were measured, and the average value was calculated. (Fineness) The weight per meter of fiber was measured and converted to fineness.
  • Continuous reinforcing fibers The following continuous reinforcing fibers were used.
  • CF carbon fiber, manufactured by Toray, T700-12000-60E, 8000 dtex, number of fibers 12000f GF1: Glass fiber, manufactured by Nittobo, 1350 dtex, number of fibers 800 f GF2: Glass fiber, manufactured by Nippon Electric Glass, 23100 dtex, number of fibers 2000f
  • the blended yarn was produced according to the following method.
  • a continuous thermoplastic resin fiber and a continuous reinforcing fiber were drawn from the wound body, respectively, and opened by air blow and mechanical vibration. While opening the fiber, a continuous thermoplastic resin fiber and a continuous reinforcing fiber were bundled, further air blown and vibrated to promote homogenization to obtain a mixed fiber. Furthermore, the obtained mixed fiber was twisted the number of times shown in the following table per 1 m. The twist was applied by fixing one end of the mixed fiber and rotating the other end clockwise.
  • the obtained blended yarn was aligned in one direction, and molded at a molding pressure of 3 MPa, a molding time of 5 minutes, and a molding temperature described in the following table.
  • the molded product was a unidirectional fiber-reinforced flat plate having a width of 20 mm and a length of 200 mm.
  • the surface of the produced molded product was observed with a digital microscope.
  • the obtained surface photograph was analyzed using image analysis software ImageJ. A region where the continuous reinforcing fibers are disturbed and oriented is selected by a curve, and the area thereof is measured.
  • the fiber irregularity is shown as the area of the region where the continuous reinforcing fibers are disturbed by 10 degrees or more from the set orientation direction / the area of the fiber-reinforced flat plate (unit%).
  • Improvement rate of tensile strength of blended yarn molded product 30 cm of the blended yarn that was thermoformed in the same manner as in the above “measurement of fiber irregularity” was cut out and both ends were embedded in an epoxy resin to prepare a grip allowance.
  • the tensile strength was measured using an Instron universal testing machine (Type 4206) manufactured by Instron under the conditions of a span distance of 200 mm and a test speed of 10 mm / min. It measured similarly about the thing before heat forming, and calculated the improvement rate (unit: times) of the tensile strength.
  • the mixed yarn of the present invention has high orientation of continuous reinforcing fibers (low fiber irregularity). As a result, a mixed yarn excellent in appearance was obtained. Moreover, when the mixed fiber was heat-processed, a molded product having excellent mechanical strength was obtained. Moreover, it turned out that the impregnation rate of a thermoplastic resin is also high.
  • FIG. 3 shows surface photographs observed with the digital microscopes of Example 6 and Comparative Example 2. As is apparent from the photograph, the continuous reinforcing fibers are oriented after the thermoforming in the mixed yarn of the present invention, whereas the orientation of the continuous reinforcing fibers is disturbed in the mixed yarn of the comparative example after the thermoforming. I was able to observe.
  • Winding body of continuous reinforcing fiber bundle 1 Winding body of continuous reinforcing fiber bundle 2 Winding body of continuous thermoplastic resin fiber bundle 3 Winding body of mixed yarn

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

 強度に優れた混繊糸の提供。繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸であって、該混繊糸が撚りを有する混繊糸。

Description

混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
 本発明は、繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸であって、成形品としたときに機械的強度に優れ、かつ、外観に優れた混繊糸に関する。さらに、かかる混繊糸を用いた織物、編み物に関する。また、前記混繊糸、織物、または編み物を用いた複合材料に関する。さらに、かかる複合材料の製造方法に関する。
 近年、熱可塑性樹脂を連続強化繊維で強化した熱可塑性樹脂複合材料が注目を集めている。連続強化繊維を用いることで、高い力学的特性が期待でき、熱可塑性樹脂を用いることで、リサイクル性、二次加工性等の利点を得ることができる。しかし、連続強化繊維で強化した熱可塑性樹脂複合材料は、樹脂の溶融粘度が高いことから、連続強化繊維束に対して、熱可塑性樹脂の含浸が困難であるという問題点がある。
 そこで、この問題点を解決するため、連続熱可塑性樹脂繊維と連続強化繊維を混繊した繊維状中間材料である混繊糸が注目されている。例えば、特許文献1では、無撚りの連続強化繊維束の開繊処理物と、無撚りの連続熱可塑性樹脂繊維束の開繊処理物との混繊糸において、前記連続強化繊維束の開繊処理物及び前記連続熱可塑性樹脂繊維束の開繊処理物のそれぞれの下記式1で定義される開繊指数Fが0.5~3とされていることを特徴とする複合材料用混繊糸が開示されている。
F=W/DN
(式中、Fは開繊指数、Wは繊維束の幅(mm)、Dは単繊維の径(mm)、Nは繊維束中の単繊維の本数を表し、繊維束の幅は、巻糸においては有姿の状態で測定し、開繊処理直後のものは処理装置出口における状態で測定する。)
 このような混繊糸は、連続強化繊維束、連続熱可塑性樹脂繊維束をそれぞれ十分に開繊させた後、混繊するので、両者が単繊維レベルで均一に混繊された複合材料用混繊糸を得ることができる。
特開平9−324331号公報
 しかしながら、特許文献1について、本願発明者が検討したところ、かかる混繊糸を用いて加熱加工すると、得られる成形品の機械的強度(特に、引張強度)が低下してしまう場合があることが分かった。また、混繊糸および得られる成形品の外観も劣ることが分かった。本発明は、かかる課題を解決するものであって、繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸であって、加熱加工しても、機械的強度に優れ、かつ、加熱加工前後において外観に優れた混繊糸を提供することを目的とする。
 かかる状況のもと、本願発明者が検討を行った結果、上記のような混繊糸を加熱加工すると機械的強度が劣る原因が、加熱加工時の連続強化繊維の配向の乱れにあることが分かった。そして、混繊糸に撚りをかけることにより、かかる連続強化繊維の配向の乱れを抑制できることを見出した。さらに、連続強化繊維の配向の乱れを抑制すると、成形品の外観も向上することを見出し、本発明を完成するに至った。具体的には、以下の手段<1>により、好ましくは、<2>~<8>により上記課題は解決された。
<1>繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸であって、該混繊糸が撚りを有する混繊糸。
<2>連続熱可塑性樹脂繊維がポリアミド樹脂繊維である、<1>に記載の混繊糸。
<3>連続熱可塑性樹脂繊維が、ポリアミド6、ポリアミド66、およびキシリレンジアミン系ポリアミドから選択される少なくとも1種を含む、<1>または<2>に記載の混繊糸。
<4>連続強化繊維が、炭素繊維および/またはガラス繊維である、<1>~<3>のいずれかに記載の混繊糸。
<5><1>~<4>のいずれかに記載の混繊糸を用いてなる織物または編み物。
<6><1>~<4>のいずれかに記載の混繊糸、または、<5>に記載の織物もしくは編み物を加熱加工して得られる複合材料。
<7>繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸を製造すること、前記混繊糸に撚りをかけること、該撚られた混繊糸を加熱加工することを含む、複合材料の製造方法。
<8>さらに、前記加熱加工前に、撚られた混繊糸を織るまたは編むことを含む<7>に記載の製造方法。
 本発明により、成形加工しても高い機械的強度を維持でき、かつ、加熱加工前後において良好な外観を維持できる混繊糸を提供可能になった。
従来技術と本発明の相違点を示す概略図である。 複合繊維を製造する工程を示す概念図である。 本願実施例で製造した混繊糸および比較例の混繊糸の連続炭素繊維の配向状態を示す写真である。
 以下において、本発明の内容について詳細に説明する。尚、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本発明における繊度および繊維数とは、特に述べない限り、それぞれ、繊維の任意の10か所を測定した平均の繊度、平均の繊維数をいう。
 本発明の混繊糸は、繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸であって、該混繊糸が撚りを有することを特徴とする。混繊糸に撚りをかけることにより、加熱加工(例えば、熱可塑性樹脂の融点+0~80℃の範囲で加熱加工)しても、機械的強度に優れた成形品を提供できる。まず、この理由について説明する。
 図1は、従来技術と本発明の相違点を示す概略図である。(1−1)および(2−1)は、混繊糸の加熱加工前の外観写真であって、(1−1)は無撚りの混繊糸を、(2−1)は撚りを有する混繊糸を示す。(1−2)および(2−2)は、混繊糸を加熱加工した後の、連続強化繊維の配向状態を示す概念図である。
 図1(1−1)および(2−1)の状態(加熱加工前)では、連続強化繊維は、いずれの場合も、均一な状態で分散している。しかしながら、かかる混繊糸に熱をかけると、無撚りの場合は、(1−2)に示すように、連続強化繊維の配向が乱れてしまう。一方、撚りをかけた場合は、図1(2−2)に示すように、加熱加工後も連続強化繊維が一定の配向を保っている。そのため、撚りをかけた混繊糸では、加熱加工後も、高い機械的強度を維持できる。さらに、連続強化繊維が一定の配向状態を保つことから、優れた成形品外観も達成できる。また、驚くべきことに、加熱成形時の熱可塑性樹脂の連続強化繊維への含浸率も向上する傾向にある。
 以下、本発明の混繊糸について、より詳細に説明する。
 本発明の混繊糸は、繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸に撚りをかけて得られるものである。このように撚りをかけることによって、加熱加工した後も、高い機械的強度を維持できる。
 撚りのかけ方は、特に定めるものではなく、公知の方法を採用できる。撚りの回数としては、連続熱可塑性樹脂繊維に用いる熱可塑性樹脂の種類、熱可塑性樹脂の繊維数、繊度、連続強化繊維の種類、繊維数、繊度、連続熱可塑性樹脂繊維と連続強化繊維の繊維数比や繊度比に応じて適宜定めることができるが、例えば1~200回/m(繊維長)とすることができ、さらには1~100回/mとすることができ、よりさらには1~70回/mとすることができ、特には1~50回/mとすることができる。さらに、撚りの最低回数は、11回以上/mとすることが好ましく、15回以上/mとすることがより好ましく、20回以上/mとすることがさらに好ましい。
 本発明の混繊糸の製造には、通常、連続熱可塑性樹脂繊維束と連続強化繊維束を用いて製造する。一本の混繊糸の製造に用いられる繊維の合計繊度(一本の混繊糸の製造に用いられる連続熱可塑性樹脂繊維の繊度の合計および連続強化繊維の繊度の合計を足し合わせた値)は、1000~100000dtexであることが好ましく、1500~50000dtexであることがより好ましく、2000~50000dtexであることがさらに好ましく、3000~5000dtexであることが特に好ましい。
 一本の混繊糸の製造に用いる連続熱可塑性樹脂繊維の繊度の合計と連続強化繊維の繊度の合計の比(連続熱可塑性樹脂繊維の繊度の合計/連続強化繊維の繊度の合計)は0.1~10であることが好ましく、0.1~6.0であることがより好ましく、0.8~2.0がさらに好ましい。
 一本の混繊糸の製造に用いる繊維数の合計(連続熱可塑性樹脂繊維の繊維数の合計と連続強化繊維の繊維数の合計を合計した繊維数)は100~100000fであることが好ましく、1000~100000fであることがより好ましく、1500~70000fであることがより好ましく、2000~20000fであることがさらに好ましく、2500~10000fであることがよりさらに好ましく、3000~5000fであることが特に好ましい。このような範囲とすることにより、混繊糸の混繊性が向上し、複合材料としての物性と質感により優れたものが得られる。また、いずれかの繊維が偏る領域が少なく互いの繊維がより均一に分散し易い。
 一本の混繊糸の製造に用いる連続熱可塑性樹脂繊維の繊維数の合計と連続強化繊維の繊維数の合計の比(連続熱可塑性樹脂繊維の繊維数の合計/連続強化繊維の繊維数の合計)は0.001~1であることが好ましく、0.001~0.5であることがより好ましく、0.05~0.2であることがさらに好ましい。このような範囲とすることにより、混繊糸の混繊性が向上し、複合材料としての物性と質感により優れたものが得られる。また、混繊糸中の連続熱可塑性樹脂繊維と連続強化繊維は、互いの繊維がより均一に分散することが好ましいが、上述の範囲であると互いの繊維がより均一に分散し易い。
 本発明の混繊糸中における、連続強化繊維の分散度は40~100であることが好ましく、60~100であることがより好ましく、65~100であることが特に好ましい。このような範囲とすることにより、混繊糸はより均一な物性を示し、さらに、成形品の外観がより向上する。また、これを用いて成形品を作製した際に機械物性により優れたものが得られる。
 本発明における分散度とは、混繊糸中で連続熱可塑性樹脂繊維と連続強化繊維がどれだけ均一に分散しているかを示す指標であり、下記数式で定義される。
Figure JPOXMLDOC01-appb-M000001
(式中、Dは分散度、Ltotは混繊糸の断面積、Lcfは混繊糸の断面中連続強化繊維のみで占めている面積のうち31400μm以上のものの総面積、Lpolyは混繊糸の断面中樹脂繊維のみで占めている面積のうち31400μm以上のものの総面積を意味する。混繊糸の断面は、混繊糸を繊維方向に対して垂直に切断したものを測定した。面積はデジタルマイクロスコープを用いて測定される。)
 分散度Dが大きいほど連続熱可塑性樹脂繊維と連続強化繊維がより均一に分散していることを意味する。
 本発明の混繊糸に用いる連続熱可塑性樹脂繊維および/または連続強化繊維は、処理剤で表面処理されたものを用いるのが好ましい。このような構成とすることにより、連続熱可塑性樹脂繊維と連続強化繊維がより均一に分散した混繊糸、例えば、連続強化繊維の分散度が40~100である混繊糸が得られる。この結果、機械的強度等の本発明の効果もより効果的に発揮される。これらの処理剤の詳細は後述する。
 さらに、本発明の混繊糸には、上記連続熱可塑性樹脂繊維、連続強化繊維、連続熱可塑性樹脂繊維の処理剤および連続強化繊維の処理剤以外の他の成分が含まれていても良く、具体的には、短繊維長炭素繊維、カーボンナノチューブ、フラーレン、マイクロセルロースファイバー、タルク、マイカなどが例示される。これらの他の成分の配合量は、混繊糸の5質量%以下であることが好ましい。
 本発明の混繊糸は、熱可塑性樹脂の融点+0~80℃の範囲で加熱加工した時の機械的強度が、同じ材料からなる混繊糸であって撚りを有さない混繊糸を同条件で加熱加工した時の引張強度(引張強度向上率)の1.03倍以上とすることができる。特に、本発明では、かかる引張強度向上率を1.05~2.00倍と高い値とすることができ、有益である。本発明は、混繊糸に撚りをかけることによって、加熱加工後の連続強化繊維の均一な配向を維持させ、引張強度や引張弾性率等の機械的強度を向上させるものであるが、さらに、連続熱可塑性樹脂繊維に用いる熱可塑性樹脂の種類、熱可塑性樹脂の繊維数、繊度、連続強化繊維の種類、繊維数、繊度、連続熱可塑性樹脂繊維と連続強化繊維の繊維数比や繊度、連続熱可塑性樹脂繊維の処理剤、連続強化繊維の処理剤、撚り回数等を当業者が適宜定めることによって、さらに、機械的強度を向上させることができることは言うまでもない。
<連続熱可塑性樹脂繊維>
 本発明で用いる連続熱可塑性樹脂繊維は、通常、複数の繊維が束状になった連続熱可塑性樹脂繊維束であり、連続熱可塑性樹脂繊維束を用いて本発明の混繊糸を製造する。
 本発明における連続熱可塑性樹脂繊維とは、6mmを超える繊維長を有する熱可塑性樹脂繊維をいう。本発明で使用する連続熱可塑性樹脂繊維の平均繊維長に特に制限はないが、成形加工性を良好にする観点から、1~20,000mの範囲であることが好ましく、より好ましくは100~1,0000m、さらに好ましくは1,000~7,000mである。
 本発明で用いる連続熱可性樹脂繊維は、熱可塑性樹脂組成物からなる。熱可塑性樹脂組成物は、熱可塑性樹脂を主成分(通常は、組成物の90質量%以上が熱可塑性樹脂)とするものであり、他に、公知の添加剤等を適宜配合したものである。
 熱可塑性樹脂としては、複合材料用混繊糸に用いるものを広く使用することができ、例えばポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリエーテルケトン、ポリエーテルスルフォン、熱可塑性ポリエーテルイミド等の熱可塑性樹脂を用いることができる。本発明では、熱可塑性樹脂がポリアミド樹脂であることが好ましい。本発明で用いることができるポリアミド樹脂の詳細については、後述する。
 本発明で用いる連続熱可塑性樹脂繊維は、通常、連続熱可塑性樹脂繊維が束状になった連続熱可塑性樹脂繊維束を用いて製造するが、かかる連続熱可塑性樹脂繊維束1本の当たりの合計繊度が、40~600dtexであることが好ましく、50~500dtexであることがより好ましく、100~400dtexであることがさらに好ましい。このような範囲とすることにより、得られる混繊糸中での連続熱可塑性樹脂繊維の分散状態がより良好となる。かかる連続熱可塑性樹脂繊維束を構成する繊維数は、1~200fであることが好ましく、5~100fであることがより好ましく、10~80fであることがさらに好ましく、20~50fであることが特に好ましい。このような範囲とすることにより、得られる混繊糸中での連続熱可塑性樹脂繊維の分散状態がより良好となる。
 本発明では、1本の混繊糸を製造するために、上記連続熱可塑性樹脂繊維束を1~100本の範囲で用いることが好ましく、1~50本の範囲で用いることがより好ましく、3~15本の範囲で用いることがさらに好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される。
 混繊糸1本を製造するための上記連続熱可塑性樹脂繊維の合計繊度は、200~12000dtexであることが好ましく、1000~3000dtexであることがより好ましい。このような範囲とすることにより、本発明の効果がより効果的に発揮される。
 混繊糸1本を製造するための上記連続熱可塑性樹脂繊維の合計繊維数は、10~2000fであることが好ましく、20~1600fであることがより好ましく、200~350fであることがさらに好ましい。このような範囲とすることにより、混繊糸の混繊性が向上し、複合材料としての物性と質感により優れたものが得られる。さらに、繊維数を10f以上とすることにより、開繊した繊維がより均一に混合しやすくなる。また、2000f以下とすると、いずれかの繊維が偏る領域ができにくく、より均一性のある混繊糸が得られる。
 本発明で用いる連続熱可塑性樹脂繊維束は、引張強度が2~10gf/dであるものが好ましい。このような範囲とすることにより、混繊糸をより製造しやすくなる傾向にある。
<<連続熱可塑性樹脂繊維の処理剤>>
 本発明で用いる連続熱可塑性樹脂繊維は、その表面を処理剤で処理することも好ましい。このような態様とすることにより、混繊糸における連続強化繊維の分散度がより向上する。処理剤は、連続熱可塑性樹脂繊維を収束する機能を有するものであれば、その種類は特に定めるものではない。処理剤としては、エステル系化合物、アルキレングリコール系化合物、ポリオレフィン系化合物、フェニルエーテル系化合物を例示でき、より具体的には、界面活性剤が好ましい。
 連続熱可塑性樹脂繊維の処理剤の量は、連続熱可塑性樹脂繊維に対し、0.1~2質量%であり、0.5~1.5質量%であることがより好ましい。このような範囲とすることにより、連続熱可塑性樹脂繊維の分散が良好となり、より均質な混繊糸を得られやすい。また、混繊糸を製造する際には連続熱可塑性樹脂繊維には機械との摩擦力や繊維同士の摩擦力が生じ、その際に連続熱可塑性樹脂繊維が切れることがあるが、上記の範囲とすることによって繊維の切断をより効果的に防ぐことができる。また、均質な混繊糸を得るために機械的な応力を連続熱可塑性樹脂繊維に加えるが、その際の応力により連続熱可塑性樹脂繊維が切断することをより効果的に防ぐことができる。
<<連続熱可塑性樹脂繊維の処理剤による処理方法>>
 連続熱可塑性樹脂繊維の処理剤による処理方法は、所期の目的を達成できる限り特に定めるものではない。例えば、連続熱可塑性樹脂繊維に、処理剤を溶液に溶解させたものを付加し、連続熱可塑性樹脂繊維の表面に処理剤を付着させることが挙げられる。あるいは処理剤を連続熱可塑性樹脂繊維の表面に対してエアブローすることによってもできる。
<<ポリアミド樹脂組成物>>
 本発明の連続熱可塑性樹脂繊維は、上述のとおり、ポリアミド樹脂組成物からなることが好ましい。
 ポリアミド樹脂組成物は、ポリアミド樹脂を主成分とするものであり、ここで用いられるポリアミド樹脂としては、ポリアミド4、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド612、ポリヘキサメチレンテレフタラミド(ポリアミド6T)、ポリヘキサメチレンイソフタラミド(ポリアミド6I)、ポリメタキシリレンアジパミド、ポリメタキシリレンドデカミド、ポリアミド9T、ポリアミド9MT等が挙げられる。
 上述のようなポリアミド樹脂の中でも、成形性、耐熱性の観点から、ポリアミド6、ポリアミド66、またはα,ω−直鎖脂肪族二塩基酸とキシリレンジアミンとの重縮合で得られるキシリレンジアミン系ポリアミド樹脂(XD系ポリアミド)がより好ましく使用される。これらの中でも、さらにXD系ポリアミドが、耐熱性、難燃性の観点から好ましい。また、ポリアミド樹脂が混合物である場合は、ポリアミド樹脂中のXD系ポリアミドの比率が50重量%以上であることが好ましく、80重量%以上であることがより好ましい。
 本発明では特に、ジアミン構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂が好ましく、さらに、該ポリアミド樹脂の数平均分子量(Mn)が6,000~30,000であるものが好ましく、特に、該ポリアミド樹脂の0.5~5質量%が、分子量が1,000以下のポリアミド樹脂であることがより好ましい。以下、本発明で用いる好ましいポリアミド樹脂組成物の形態を説明するが、本発明がこれらに限定されるものではないことは言うまでもない。
 本発明において用いるポリアミド樹脂は、ジアミン構成単位(ジアミンに由来する構成単位)の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂を繊維状にしたものであることが好ましい。すなわち、ジアミンの50モル%以上がキシリレンジアミンに由来し、ジカルボン酸と重縮合されたキシリレンジアミン系ポリアミド樹脂である。
 好ましくは、ジアミン構成単位の70モル%以上、より好ましくは80モル%以上がメタキシリレンジアミンおよび/またはパラキシリレンジアミンに由来し、ジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の好ましくは50モル%以上、より好ましくは70モル%以上、特には80モル%以上が、炭素原子数が好ましくは4~20の、α,ω−直鎖脂肪族ジカルボン酸に由来するキシリレンジアミン系ポリアミド樹脂である。
 キシリレンジアミン系ポリアミド樹脂の原料ジアミン成分として用いることが出来るメタキシリレンジアミンおよびパラキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2−メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチル−ヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン、ビス(アミノメチル)トリシクロデカン等の脂環式ジアミン、ビス(4−アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン等の芳香環を有するジアミン等を例示することができ、1種又は2種以上を混合して使用できる。
 ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン構成単位の50モル%以下であり、30モル%以下であることが好ましく、より好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
 ポリアミド樹脂の原料ジカルボン酸成分として用いるのに好ましい炭素原子数4~20のα,ω−直鎖脂肪族ジカルボン酸としては、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種又は2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸またはセバシン酸が好ましく、セバシン酸が特に好ましい。
 上記炭素原子数4~20のα,ω−直鎖脂肪族ジカルボン酸以外のジカルボン酸成分としては、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2−ナフタレンジカルボン酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、1,6−ナフタレンジカルボン酸、1,7−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸といった異性体等のナフタレンジカルボン酸等を例示することができ、1種又は2種以上を混合して使用できる。
 ジカルボン酸成分として、炭素原子数4~20のα,ω−直鎖脂肪族ジカルボン酸以外のジカルボン酸を用いる場合は、成形加工性、バリア性の点から、テレフタル酸、イソフタル酸を用いることが好ましい。テレフタル酸、イソフタル酸の割合は、好ましくはジカルボン酸構成単位の30モル%以下であり、より好ましくは1~30モル%、特に好ましくは5~20モル%の範囲である。
 さらに、ジアミン成分、ジカルボン酸成分以外にも、ポリアミド樹脂を構成する成分として、本発明の効果を損なわない範囲でε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類も共重合成分として使用できる。
 ポリアミド樹脂として、ポリメタキシリレンアジパミド樹脂、ポリメタキシリレンセバカミド樹脂、ポリパラキシリレンセバカミド樹脂、及び、メタキシリレンジアミンとパラキシリレンジアミンの混合キシリレンジアミンをアジピン酸と重縮合してなるポリメタキシリレン/パラキシリレン混合アジパミド樹脂が好ましく、より好ましいものは、ポリメタキシリレンセバカミド樹脂、ポリパラキシリレンセバカミド樹脂、及び、メタキシリレンジアミンとパラキシリレンジアミンの混合キシリレンジアミンをセバシン酸と重縮合してなるポリメタキシリレン/パラキシリレン混合セバカミド樹脂である。これらのポリアミド樹脂は成形加工性が特に良好となる傾向にある。
 本発明において、ポリアミド樹脂としては、数平均分子量(Mn)が6,000~30,000であることが好ましく、そのうちの0.5~5質量%が、分子量が1,000以下のポリアミド樹脂であることがより好ましい。
 数平均分子量(Mn)を6,000~30,000の範囲内とすると、得られる複合材料あるいはその成形品の強度がより向上する傾向にある。より好ましい数平均分子量(Mn)は8,000~28,000であり、さらに好ましくは9,000~26,000であり、よりさらに好ましくは10,000~24,000であり、特に好ましくは11,000~22,000であり、より特に好ましくは12,000~20,000である。このような範囲であると、耐熱性、弾性率、寸法安定性、成形加工性がより良好となる。
 なお、ここでいう数平均分子量(Mn)とは、ポリアミド樹脂の末端アミノ基濃度[NH](μ当量/g)と末端カルボキシル基濃度[COOH](μ当量/g)から、次式で算出される。
数平均分子量(Mn)=2,000,000/([COOH]+[NH])
 また、ポリアミド樹脂は、分子量1,000以下の成分を0.5~5質量%含有することが好ましい。このような低分子量成分をこのような範囲で含有することにより、得られるポリアミド樹脂の連続強化繊維への含浸性が向上することから、その成形品の強度や低そり性が良好となる。5質量%を超えると、この低分子量成分がブリードして強度が悪化し、表面外観が悪くなってしまう。
 分子量が1,000以下の成分のより好ましい含有量は、0.6~4.5質量%であり、さらに好ましくは0.7~4質量%であり、よりさらに好ましくは0.8~3.5質量%であり、特に好ましくは0.9~3質量%であり、より特に好ましくは1~2.5質量%である。
 分子量が1,000以下の低分子量成分の含有量の調整は、ポリアミド樹脂重合時の温度や圧力、ジアミンの滴下速度などの溶融重合条件を調節して行うことができる。特に溶融重合後期に反応装置内を減圧して低分子量成分を除去し、任意の割合に調節することができる。また、溶融重合により製造されたポリアミド樹脂を熱水抽出して低分子量成分を除去してもよいし、溶融重合後さらに減圧下で固相重合して低分子量成分を除去してもよい。固相重合に際しては、温度や減圧度を調節して、低分子量成分を任意の含有量に制御することができる。また、分子量が1,000以下の低分子量成分を後からポリアミド樹脂に添加することでも調節可能である。
 なお、分子量1,000以下の成分量の測定は、東ソー社(TOSOH CORPORATION)製「HLC−8320GPC」を用いて、ゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。なお、測定用カラムとしては「TSKgel SuperHM−H」を2本用い、溶媒にはトリフルオロ酢酸ナトリウム濃度10mmol/lのヘキサフルオロイソプロパノール(HFIP)を用い、樹脂濃度0.02質量%、カラム温度は40℃、流速0.3ml/分、屈折率検出器(RI)にて測定することができる。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成する。
 ポリアミド樹脂組成物では、上記ポリアミド樹脂の0.01~1質量%が、環状の化合物(ポリアミド樹脂)であることが好ましい。本発明において環状化合物とは、ポリアミド樹脂の原料であるジアミン成分とジカルボン酸成分からなる塩が環を形成してなる化合物をいい、以下の方法により定量することができる。
 ポリアミド樹脂のペレットを超遠心粉砕機にて粉砕し、φ0.25mmのふるいにかけ、φ0.25mm以下の粉末試料10gを円筒ろ紙に測りとる。その後メタノール120mlにて9時間ソックスレー抽出を行い、得られた抽出液をエバポレータにて乾固しないように注意しながら10mlに濃縮する。なお、その際、オリゴマーが析出する場合は、適宜PTFEフィルターに通液して取り除く。得られた抽出液をメタノールにて50倍希釈した液を測定に供し、日立ハイテクノロジー社(Hitachi High−Technologies Corporation)製高速液体クロマトグラフHPLCによる定量分析を実施して環状化合物含有量を求める。
 環状化合物をこのような範囲で含有することにより、成形品の強度が良好となり、さらにそりが少なくなり、寸法安定性がより向上しやすい傾向にある。
 環状化合物のより好ましい含有量は、上記ポリアミド樹脂の0.05~0.8質量%であり、さらに好ましくは0.1~0.5質量%である。
 溶融重合により製造されたポリアミド樹脂中には、環状化合物が相当量含まれている場合が多く、通常、熱水抽出等を行ってこれらは除去されている。この熱水抽出の程度を調整することにより、環状化合物量を調整することができる。また、溶融重合時の圧力を調整することでも可能である。
 本発明で用いるポリアミド樹脂は、分子量分布(重量平均分子量/数平均分子量(Mw/Mn))が、好ましくは1.8~3.1である。分子量分布は、より好ましくは1.9~3.0、さらに好ましくは2.0~2.9である。分子量分布をこのような範囲とすることにより、機械特性に優れた複合材料が得られやすい傾向にある。
 ポリアミド樹脂の分子量分布は、例えば、重合時に使用する開始剤や触媒の種類、量及び反応温度、圧力、時間等の重合反応条件などを適宜選択することにより調整できる。また、異なる重合条件によって得られた平均分子量の異なる複数種のポリアミド樹脂を混合したり、重合後のポリアミド樹脂を分別沈殿させることにより調整することもできる。
 分子量分布は、GPC測定により求めることができ、具体的には、装置として東ソー社製「HLC−8320GPC」、カラムとして、東ソー社製「TSK gel Super HM−H」2本を使用し、溶離液トリフルオロ酢酸ナトリウム濃度10mmol/lのヘキサフルオロイソプロパノール(HFIP)、樹脂濃度0.02質量%、カラム温度40℃、流速0.3ml/分、屈折率検出器(RI)の条件で測定し、標準ポリメチルメタクリレート換算の値として求めることができる。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成する。
 また、ポリアミド樹脂は、溶融粘度が、ポリアミド樹脂の融点+30℃、せん断速度122sec−1、ポリアミド樹脂の水分率が0.06質量%以下の条件で測定したときに、50~1200Pa・sであることが好ましい。溶融粘度を、このような範囲とすることにより、ポリアミド樹脂のフィルムまたは繊維への加工が容易となる。なお、後述するような、ポリアミド樹脂が融点を2つ以上有する場合は、高温側の吸熱ピークのピークトップの温度を融点とし、測定を行う。
 溶融粘度のより好ましい範囲は、60~500Pa・s、さらに好ましくは70~100Pa・sである。
 ポリアミド樹脂の溶融粘度は、例えば、原料ジカルボン酸成分およびジアミン成分の仕込み比、重合触媒、分子量調節剤、重合温度、重合時間を適宜選択することにより調整できる。
 また、ポリアミド樹脂は、吸水時の曲げ弾性率保持率が、85%以上であることが好ましい。吸水時の曲げ弾性率保持率を、このような範囲とすることにより、成形品の高温高湿度下での物性低下が少なく、そりなどの形状変化が少なくなる傾向にある。
 ここで、吸水時の曲げ弾性率保持率とは、ポリアミド樹脂からなる曲げ試験片の0.1質量%の吸水時の曲げ弾性率に対する、0.5質量%の吸水時の曲げ弾性率の比率(%)として定義され、これが高いということは吸湿しても曲げ弾性率が低下しにくいことを意味する。
 吸水時の曲げ弾性率保持率は、より好ましくは90%以上、さらに好ましくは95%以上である。
 ポリアミド樹脂の吸水時の曲げ弾性率保持率は、例えば、パラキシリレンジアミンとメタキシリレンジアミンの混合割合によりコントロールでき、パラキシリレンジアミンの割合が多いほど曲げ弾性率保持率を良好とすることができる。また、曲げ試験片の結晶化度をコントロールすることによっても調整できる。
 ポリアミド樹脂の吸水率は、23℃にて1週間、水に浸漬した後取り出し、水分をふき取ってすぐ測定した際の吸水率として1質量%以下であることが好ましく、より好ましくは0.6質量%以下、さらに好ましくは0.4質量%以下である。この範囲であると、成形品の吸水による変形を防止しやすく、また、加熱加圧時等の複合材料を成形加工する際の発泡を抑制し、気泡の少ない成形品を得ることができる。
 また、ポリアミド樹脂は、末端アミノ基濃度([NH])が好ましくは100μ当量/g未満、より好ましくは5~75μ当量/g、さらに好ましくは10~60μ当量/gであり、末端カルボキシル基濃度([COOH])は、好ましくは150μ当量/g未満、より好ましくは10~120μ当量/g、さらに好ましくは10~100μ当量/gのものが好適に用いられる。このような末端基濃度のポリアミド樹脂を用いることにより、ポリアミド樹脂をフィルム状又は繊維状に加工する際に粘度が安定しやすく、また、後述のカルボジイミド化合物との反応性が良好となる傾向にある。
 また、末端カルボキシル基濃度に対する末端アミノ基濃度の比([NH]/[COOH])は、0.7以下であるものが好ましく、0.6以下であるものがより好ましく、特に好ましくは0.5以下である。この比が0.7よりも大きいものは、ポリアミド樹脂を重合する際に、分子量の制御が難しくなる場合がある。
 末端アミノ基濃度は、ポリアミド樹脂0.5gを30mlのフェノール/メタノール(4:1)混合溶液に20~30℃で攪拌溶解し、0.01Nの塩酸で滴定して測定することができる。また、末端カルボキシル基濃度は、ポリアミド樹脂0.1gを30mlのベンジルアルコールに200℃で溶解し、160℃~165℃の範囲でフェノールレッド溶液を0.1ml加える。その溶液を0.132gのKOHをベンジルアルコール200mlに溶解させた滴定液(KOH濃度として0.01mol/l)で滴定を行い、色の変化が黄~赤となり色の変化がなくなった時点を終点とすることで算出することができる。
 本発明のポリアミド樹脂は、反応したジカルボン酸単位に対する反応したジアミン単位のモル比(反応したジアミン単位のモル数/反応したジカルボン酸単位のモル数、以下「反応モル比」という場合がある。)が、0.97~1.02であることが好ましい。このような範囲とすることにより、ポリアミド樹脂の分子量や分子量分布を、任意の範囲に制御しやすくなる。
 反応モル比は、より好ましくは1.0未満、さらに好ましくは0.995未満、特には0.990未満であり、下限は、より好ましくは0.975以上、さらに好ましくは0.98以上である。
ここで、反応モル比(r)は次式で求められる。
r=(1−cN−b(C−N))/(1−cC+a(C−N))
式中、
a:M1/2
b:M2/2
c:18.015(水の分子量(g/mol))
M1:ジアミンの分子量(g/mol)
M2:ジカルボン酸の分子量(g/mol)
N:末端アミノ基濃度(当量/g)
C:末端カルボキシル基濃度(当量/g)
 なお、ジアミン成分、ジカルボン酸成分として分子量の異なるモノマーからポリアミド樹脂を合成する際は、M1およびM2は原料として配合するモノマーの配合比(モル比)に応じて計算されることはいうまでもない。なお、合成釜内が完全な閉鎖系であれば、仕込んだモノマーのモル比と反応モル比とは一致するが、実際の合成装置は完全な閉鎖系とはなりえないことから、仕込みのモル比と反応モル比が一致するとは限らない。仕込んだモノマーが完全に反応するとも限らないことから、仕込みのモル比と反応モル比が一致するとは限らない。したがって、反応モル比とは出来上がったポリアミド樹脂の末端基濃度から求められる実際に反応したモノマーのモル比を意味する。
 ポリアミド樹脂の反応モル比の調整は、原料ジカルボン酸成分およびジアミン成分の仕込みモル比、反応時間、反応温度、キシリレンジアミンの滴下速度、釜内の圧力、減圧開始タイミング等の反応条件を適当な値にすることにより、可能である。
 ポリアミド樹脂の製造方法がいわゆる塩法である場合は、反応モル比を0.97~1.02にするには、具体的には、例えば、原料ジアミン成分/原料ジカルボン酸成分比をこの範囲に設定し、反応を十分進めればよい。また溶融ジカルボン酸に連続的にジアミンを滴下する方法の場合は、仕込み比をこの範囲とすることの他に、ジアミンを滴下する最中に還流させるジアミン量をコントロールし、滴下したジアミンを反応系外に除去することでも可能である。具体的には還流塔の温度を最適な範囲にコントロールすることや充填塔の充填物、所謂、ラシヒリングやレッシングリング、サドル等を適切な形状、充填量に制御することで、ジアミンを系外に除去すればよい。また、ジアミン滴下後の反応時間を短くすることでも未反応のジアミンを系外に除去することができる。さらにはジアミンの滴下速度を制御することによっても未反応のジアミンを必要に応じて反応系外に除去することができる。これらの方法により仕込み比が所望範囲から外れても反応モル比を所定の範囲にコントロールすることが可能である。
 ポリアミド樹脂の製造方法は、特に限定されるものではなく、従来公知の方法、重合条件により製造される。ポリアミド樹脂の重縮合時に分子量調節剤として少量のモノアミン、モノカルボン酸を加えてもよい。例えば、キシリレンジアミンを含むジアミン成分とアジピン酸、セバシン酸等のジカルボン酸からなる塩を水の存在下に、加圧状態で昇温し、加えた水及び縮合水を除きながら溶融状態で重合させる方法により製造される。また、キシリレンジアミンを溶融状態のジカルボン酸に直接加えて、常圧下で重縮合する方法によっても製造できる。この場合、反応系を均一な液状状態で保つために、ジアミンをジカルボン酸に連続的に加え、その間、反応温度が生成するオリゴアミド及びポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合が進められる。
 また、ポリアミド樹脂は、溶融重合法により製造された後に、固相重合を行っても良い。固相重合の方法は特に限定されるものではなく、従来公知の方法、重合条件により製造される。
 本発明においては、ポリアミド樹脂の融点は、150~310℃であることが好ましく、180~300℃であることがより好ましい。
 また、ポリアミド樹脂のガラス転移点は、50~100℃が好ましく、55~100℃がより好ましく、特に好ましくは60~100℃である。この範囲であると、耐熱性が良好となる傾向にある。
 なお、融点とは、DSC(示差走査熱量測定)法により観測される昇温時の吸熱ピークのピークトップの温度である。また、ガラス転移点とは、試料を一度加熱溶融させ熱履歴による結晶性への影響をなくした後、再度昇温して測定されるガラス転移点をいう。測定には、例えば、島津製作所社(SHIMADZU CORPORATION)製「DSC−60」を用い、試料量は約5mgとし、雰囲気ガスとしては窒素を30ml/分で流し、昇温速度は10℃/分の条件で室温から予想される融点以上の温度まで加熱し溶融させた際に観測される吸熱ピークのピークトップの温度から融点を求めることができる。次いで、溶融したポリアミド樹脂を、ドライアイスで急冷し、10℃/分の速度で融点以上の温度まで再度昇温し、ガラス転移点を求めることができる。
 本発明で用いるポリアミド樹脂組成物には、上記キシリレンジアミン系ポリアミド樹脂以外の、他のポリアミド樹脂やエラストマー成分を含むこともできる。他のポリアミド樹脂としては、ポリアミド66、ポリアミド6、ポリアミド46、ポリアミド6/66、ポリアミド10、ポリアミド612、ポリアミド11、ポリアミド12、ヘキサメチレンジアミン、アジピン酸およびテレフタル酸からなるポリアミド66/6T、ヘキサメチレンジアミン、イソフタル酸およびテレフタル酸からなるポリアミド6I/6Tなどが挙げられる。これらの配合量はポリアミド樹脂組成物の5質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 エラストマー成分としては、例えば、ポリオレフィン系エラストマー、ジエン系エラストマー、ポリスチレン系エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、フッ素系エラストマー、シリコン系エラストマー等公知のエラストマーが使用でき、好ましくはポリオレフィン系エラストマー及びポリスチレン系エラストマーである。これらのエラストマーとしては、ポリアミド樹脂に対する相溶性を付与するため、ラジカル開始剤の存在下または非存在下で、α,β−不飽和カルボン酸及びその酸無水物、アクリルアミド並びにそれらの誘導体等で変性した変性エラストマーも好ましい。
 このような他のポリアミド樹脂やエラエストマー成分の含有量は、ポリアミド樹脂組成物中の通常30質量%以下、好ましくは20質量%以下、特には10質量%以下である。
 また、上記したポリアミド樹脂組成物は、一種類もしくは複数のポリアミド樹脂をブレンドして使用することもできる。
 さらに、本発明の目的・効果を損なわない範囲で、本発明で用いるポリアミド樹脂組成物には、ポリエステル樹脂、ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスチレン樹脂等の樹脂を一種もしくは複数ブレンドすることもできる。これらの配合量はポリアミド樹脂組成物の10質量%以下であることが好ましく、1質量%以下であることがより好ましい。
 さらに、本発明の目的・効果を損なわない範囲で、本発明で用いる熱可塑性樹脂組成物には、酸化防止剤、熱安定剤等の安定剤、耐加水分解性改良剤、耐候安定剤、艶消剤、紫外線吸収剤、核剤、可塑剤、分散剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤、着色剤、離型剤等の添加剤等を加えることができる。これらの詳細は、特許第4894982号公報の段落番号0130~0155の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
<連続強化繊維>
 本発明の混繊糸は連続強化繊維を含む。連続強化繊維とは、6mmを超える繊維長を有する連続強化繊維をいう。本発明で使用する連続強化繊維の平均繊維長に特に制限はないが、成形加工性を良好にする観点から、1~20,000mの範囲であることが好ましく、より好ましくは100~10,000m、さらに好ましくは1,000~7,000mである。
 本発明で用いる連続強化繊維は、通常、複数の連続強化繊維が束状になった連続強化繊維束である。
 本発明で用いる連続強化繊維は、混繊糸1本あたりの合計繊度が、100~50000dtexあることが好ましく、500~40000dtexであることがより好ましく、1000~10000dtexであることがさらに好ましく、1000~3000dexであることが特に好ましい。このような範囲とすることにより、加工がより容易となり、得られる混繊糸の弾性率・強度がより優れたものとなる。
 本発明で用いる連続強化繊維は、混繊糸一本あたりの合計繊維数が、500~50000fであることが好ましく500~20000fであることがより好ましく、1000~10000fであることがさらに好ましく、1500~5000fであることが特に好ましい。このような範囲とすることにより、混繊糸中での連続強化繊維の分散状態がより良好となる。
 1本の混繊糸において、連続強化繊維が、所定の合計繊度および合計繊維数を満たすために、1本の連続強化繊維束で製造してもよいし、複数本の連続強化繊維束を用いて製造してもよい。本発明では、1~10本の連続強化繊維束を用いて製造することが好ましく、1~3本の連続強化繊維束を用いて製造することがより好ましく、1本の連続強化繊維束を用いて製造することがさらに好ましい。
 本発明の混繊糸中に含まれる連続強化繊維の平均引張弾性率は、50~1000GPaであることが好ましく、200~700GPaであることがより好ましい。このような範囲とすることにより、混繊糸全体の引張弾性率がより良好となる。
 連続強化繊維としては、ガラス繊維;炭素繊維;植物繊維(ケナフ(Kenaf)、竹繊維等を含む);また、アルミナ繊維、ボロン繊維、セラミック繊維、金属繊維(スチール繊維等)等の無機繊維;アラミド繊維、ポリオキシメチレン繊維、芳香族ポリアミド繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等の有機繊維;などが挙げられる。なかでも、軽量でありながら、高強度、高弾性率であるという優れた特徴を有するため、炭素繊維が好ましく用いられる。炭素繊維はポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維を好ましく用いることができる。また、リグニンやセルロースなど、植物由来原料の炭素繊維も用いることができる。
<<連続強化繊維の処理剤>>
 本発明で用いる連続強化繊維は、処理剤で処理されたものを用いることが好ましい。このような処理剤としては、収束剤や表面処理剤が例示され、特許第4894982号公報の段落番号0093および0094に記載のものが好ましく採用され、これらの内容は本願明細書に組み込まれる。
 本発明では、特に、極性基を有する熱可塑性樹脂を用いる場合、該熱可塑性樹脂の極性基と反応性を有する官能基を有する連続強化繊維の処理剤で処理することが好ましい。かかる熱可塑性樹脂の極性基と反応性を有する官能基は、通常、加熱成形する工程で熱可塑性樹脂と化学結合する。かかる熱可塑性樹脂の極性基と反応性を有する官能基を有する連続強化繊維の処理剤は、連続強化繊維を収束させる機能を有するものであることが好ましい。すなわち、混繊糸における加熱加工前の各繊維の物理的収束を助ける。
 熱可塑性樹脂の極性基と反応性を有する官能基を有する連続強化繊維の具体例としては、ビスフェノールA型のエポキシ樹脂等のエポキシ系樹脂、1分子中にアクリル基またはメタクリル基を有するエポキシアクリレート樹脂であって、ビスフェノールA型のビニルエステル樹脂、ノボラック型のビニルエステル樹脂、臭素化ビニルエステル樹脂等のビニルエステル系樹脂が好ましく挙げられる。またエポキシ系樹脂やビニルエステル系樹脂のウレタン変性樹脂であってもよい。
 上記の中でも、本発明で用いる処理剤としては、エポキシアルカン、アルカンジエポキシド、ビスフェノールAジグリシジルエーテル、ビスフェノールAのアルキレンオキシド付加物、ビスフェノールAのアルキレンオキシド付加物ジグリシジルエーテル、ビスフェノールAのジシアネート付加物、ビスフェノールFグリシジルエーテル、ビスフェノールFのアルキレンオキシド付加物、ビスフェノールFのアルキレンオキシド付加物ジグリシジルエーテル、ビスフェノールFのジシアネート付加物、アクリル酸、メタクリル酸、クロトン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、クロトン酸エステル化合物、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ビスフェノールA、水素添加ビスフェノールA、ビスフェノールF、水素添加ビスフェノールFアミノプロピルトリエトキシシラン、フェニルアミノプロピルトリメトキシシラン、グリシジルプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、ビニルトリエトキシシラン等のトリアルコキシまたはトリアリロキシシラン化合物、ウレイドシラン、スルフィドシラン、ビニルシラン、イミダゾールシラン等が好ましく、ビスフェノールAジグリシジルエーテル、ビスフェノールAのアルキレンオキシド付加物、ビスフェノールAのアルキレンオキシド付加物ジグリシジルエーテル、ビスフェノールAのジシアネート付加物、ビスフェノールFグリシジルエーテル、ビスフェノールFのアルキレンオキシド付加物、ビスフェノールFのアルキレンオキシド付加物ジグリシジルエーテル、ビスフェノールFのジシアネート付加物がより好ましい。このような処理剤を用いると、成形体とした際に、連続強化繊維と連続熱可塑性樹脂との界面接着性が向上し、ボイドの減少、弾性率や強度の増加、疲労特性の改善の効果がより効果的に発揮される傾向にある。
 前記処理剤の量は、連続強化繊維の0.001~1.5質量%であることが好ましく、0.1~1.2質量%であることがより好ましく、0.5~1.1質量%であることがさらに好ましい。このような範囲とすることにより、連続強化繊維の分散度がより向上し、本発明の効果がより効果的に発揮される。
<<連続強化繊維の処理剤による処理方法>>
 連続強化繊維による処理剤による処理方法は、公知の方法を採用できる。例えば、連続強化繊維を、処理剤を溶液に溶解させたものに添加し、連続強化繊維の表面に処理剤を付着させることが挙げられる。また、処理剤を連続強化繊維の表面にエアブローすることもできる。さらに、既に、表面処理剤や処理剤で処理されている連続強化繊維を用いてもよいし、市販品の表面処理剤や処理剤を洗い落してから、再度、所望処理剤量となるように、表面処理しなおしても良い。
<本発明の好ましい態様>
 本発明では、以下の態様の混繊糸であって、撚りを有するものが特に好ましい。
<1>ポリアミド樹脂組成物からなるポリアミド樹脂繊維と、連続強化繊維と、ポリアミド樹脂繊維の処理剤を含む混繊糸であって、前記処理剤の量が、ポリアミド樹脂繊維の0.1~2.0質量%であり、前記ポリアミド樹脂組成物が、ジアミン構成単位の50モル%以上がキシリレンジアミンに由来するポリアミド樹脂であって、数平均分子量(Mn)が6,000~30,000であるポリアミド樹脂である混繊糸。
<2>前記ポリアミド樹脂の0.5~5質量%が、分子量が1,000以下のポリアミド樹脂である、<1>に記載の混繊糸。
<3>さらに、ポリアミド樹脂と反応性を有する官能基を有する連続強化繊維の処理剤を含み、該処理剤の量が連続強化繊維の0.01~1.5質量%である、<1>または<2>に記載の混繊糸。
<4>混繊糸中における、連続強化繊維の分散度が40~100である、<1>~<3>のいずれかに記載の混繊糸。
<5>繊度が40~600dtexであり、繊維数1~200fであるポリアミド樹脂繊維を用いてなる、<1>~<4>のいずれかに記載の混繊糸。
<6>ポリアミド樹脂繊維のトータル繊度と連続強化繊維のトータル繊度の比(ポリアミド樹脂繊維のトータル繊度/連続強化繊維のトータル繊度)が0.1~10となるポリアミド樹脂および連続強化繊維を用いてなる、<1>~<5>のいずれかに記載の混繊糸。
<7>ポリアミド樹脂繊維のトータル繊維数と連続強化繊維のトータル繊維数の比(ポリアミド樹脂繊維のトータル繊維数/連続強化繊維のトータル繊維数)が0.001~1となるポリアミド樹脂および連続強化繊維を用いてなる、<1>~<6>のいずれかに記載の混繊糸。
 上記のような態様とすることにより、連続強化繊維の分散度が向上し、本発明の効果がより効果的に発揮される傾向にある。
<混繊糸の製造方法>
 次に、本発明の混繊糸の製造方法の一例について述べる。
 まず、連続熱可塑性樹脂繊維(好ましくは、連続熱可塑性樹脂繊維を処理剤で表面処理したもの)、および、連続強化繊維(好ましくは、連続強化繊維を処理剤で表面処理したもの)の回巻体を準備する。回巻体は、連続熱可塑性樹脂繊維束および連続強化繊維束について、それぞれ、1つであってもよいし、複数であってもよい。混繊糸にした際に、連続熱可塑性樹脂繊維および連続強化繊維の繊維数の比および繊度の比が目的の値になるよう、適宜、調整するのが好ましい。
 図2は本発明の混繊糸を製造する場合の、回巻体の状態を示した概念図であって、1は連続強化繊維束の回巻体を、2は連続熱可塑性樹脂繊維束の回巻体を、3は混繊糸の回巻体をそれぞれ示している。尚、図2は概念図であり、連続熱可塑性樹脂繊維束と連続強化繊維束の開繊や均一化の段階については記載を省略している。図2(a)は、2つの連続熱可塑性樹脂繊維束の回巻体2から引き出された2本の連続熱可塑性樹脂繊維束と、1つの連続強化繊維束の回巻体1から引き出された1本の連続強化繊維束から1本の混繊糸を形成し、1つの回巻体3に巻き取られる概念図を示している。ここで、連続熱可塑性樹脂繊維束と連続強化繊維束の割合は、用いる繊維束の繊維数および繊度に左右されるため、混繊糸にした際に繊維数の比が目的の値になるよう、適宜、調整するのが好ましい。従って、回巻体の数は図2(a)に示された数に限定されるものではない。また、一度に複数本の混繊糸を形成してもよい。図2(b)は一度に複数本の混繊糸を製造する場合の概念図である。図2(b)では、3つの回巻体1から引き出される連続強化繊維束が、それぞれ、3つの異なる回巻体2から引き出される連続熱可塑性樹脂繊維束と複合化して、3本の混繊糸が同時に形成されている。図2(b)においても、連続熱可塑性樹脂繊維束の回巻体の数および連続強化繊維束の回巻体の数は、混繊糸にした際に、それぞれの混繊糸が、連続熱可塑性樹脂繊維および連続強化繊維の繊維数の比および繊度の比が目的の値になるよう、適宜、調整するのが好ましい。
 連続熱可塑性樹脂繊維束と連続強化繊維束は、それぞれ、回巻体から引出し、公知の方法により開繊を行う。開繊方法としては、振動、応力、エアブロー等が例示される。連続熱可塑性樹脂繊維束と連続強化繊維束を開繊しながら、連続熱可塑性樹脂繊維束と連続強化繊維束を一束とし、さらに振動、応力、エアブロー等を加えることによって、均一化を進め、混繊糸とする。この後、通常、巻き取り機によって回巻体に巻き取る。回巻体に巻き取った後に混繊糸に撚りをかけても良いし、回巻体に巻き取る前に混繊糸によりをかけても良い。本発明では、連続熱可塑性樹脂繊維束を所定量の処理剤で処理したものを用いて開繊し、連続強化繊維束と均一化すると、連続強化繊維をより良好に分散させることができる。さらに、連続強化繊維束も処理剤で処理したものを用いると、さらに良好な分散が達成できる。
 また、連続強化繊維束と連続熱可塑性樹脂繊維束とを均一に混繊するため、特開平2−308824号公報には、熱可塑性有機連続繊維束に捲縮性を付与する方法が開示され、特開平3−33237号公報には、それぞれの連続繊維束への集束剤付与量を特定する方法が開示されている。更に、単繊維切れの発生を抑制して開繊する方法として、特開平2−28219号公報、特開平4−73227号公報には、連続繊維束を液体中で開繊する方法が開示されている。また、特開平9−324331号公報には、連続強化繊維束と連続熱可塑性樹脂繊維束とを均一に混繊する方法が開示されている。これらの技術は、本発明の趣旨を逸脱しない限り、適宜採用でき、これらの内容は本願明細書に組み込まれる。
<混繊糸を利用した成形品>
 本発明における混繊糸は、撚糸の状態のまま、公知の方法により織物や編み物として用いることができる。織物の形態としては、特に制限はなく、平織、八枚朱子織、四枚朱子織、綾織等のいずれでもよい。また、いわゆるバイヤス織でもよい。さらに、特開昭55−30974号公報に記載されているように実質的に屈曲を有しないいわゆるノンクリンプ織物であってもよい。
 編み物としても、特に定めるものではなく、たて編み、よこ編み、ラッセル編み等公知の編み方を自由に選択できる。
 本発明の織物や編み物は、撚糸の状態のまま、織物や編み物の状態とすることができる点で好ましい。また、本発明の織物や編み物を加熱加工すれば、混繊糸を撚ったままの状態で維持できるという利点がある。
 また、本発明の混繊糸を一方向に引き揃えたテープ状もしくはシート状の基材、組紐、縄状の基材、または該基材を2枚以上積層した積層物としても用いることができる。
 本発明の成形品は、例えば、パソコン、OA機器、AV機器、携帯電話などの電気・電子機器、光学機器、精密機器、玩具、家庭・事務電気製品などの部品やハウジング、さらには自動車、航空機、船舶などの部品に好適に利用することができる。特に、凹部や凸部を有する成形品の製造に適している。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
1.連続熱可塑性樹脂繊維の製造
<熱可塑性樹脂>
 以下の熱可塑性樹脂を用いた。
N66:ポリアミド樹脂66(東レ製、アミランCM3001)
MXD6:メタキシリレンアジパミド樹脂(三菱瓦斯化学製、グレードS6007)、数平均分子量(Mn)25000、分子量1000以下の成分の含有量0.51質量%
LEXTER:メタキシリレン、パラキシリレン混合キシリレンジアミンとセバシン酸を重合してなるキシリレンセバカミド樹脂(三菱ガス化学製、グレード8500)、数平均分子量(Mn)20000、分子量1000以下の成分の含有量0.3質量%
PP:ポリプロピレン樹脂(日本ポリプロ製(グレードSA3A、繊維グレード)
<熱可塑性樹脂の繊維化>
 上記熱可塑性樹脂は、以下の手法に従って繊維状にした。
 真空乾燥機を用いて乾燥させた熱可塑性樹脂を30mmφのスクリューを有する単軸押出機にて溶融押出しし、ダイからストランド状に押出し、ロールにて巻き取りながら延伸し、マルチフィラメント(連続熱可塑性樹脂繊維束)を得た。連続熱可塑性樹脂繊維束1本あたりの繊維数は、ダイの穴の数を調整することによって調整した。また、ダイの穴の孔径を調整することによって、所定の繊度となるようにした。
 (繊維径)
 連続熱可塑性樹脂繊維の断面を走査型電子顕微鏡(SEM)により観察し、任意の10カ所の繊維の繊維径を測定し、平均値を算出した。
(繊度)
 繊維1m当たりの重量を測定し、繊度に換算した。
2.連続強化繊維
 以下の連続強化繊維を用いた。
CF:炭素繊維、東レ製、T700−12000−60E、8000dtex、繊維数12000f
GF1:ガラス繊維、日東紡製、1350dtex、繊維数800f
GF2:ガラス繊維、日本電気硝子製、23100dtex、繊維数2000f
3.混繊糸の製造
 混繊糸は、以下の方法に従って製造した。
 回巻体から、連続熱可塑性樹脂繊維および連続強化繊維をそれぞれ引き出し、エアブローおよび機械的な振動により開繊を行った。開繊しながら、連続熱可塑性樹脂繊維および連続強化繊維を一束とし、さらに、エアブローおよび振動を与え、均一化を進め、混繊糸とした。
 さらに、得られた混繊糸に、1mあたり、下記表に示す回数の撚りをかけた。撚りは、混繊糸の一端を固定して他端を時計方向に回転させてかけた。
4.混繊糸織物の外観評価
 得られた混繊糸の外観を目視にて観察した。
A:顕著なケバや繊維束の膨れが無く、均質感を有する。
B:多少のケバや繊維束の乱れはあるものの、均質感を有する。
C:ケバや繊維束の乱れがあり、均質感に劣る。
5.混繊糸成形品の繊維不規則性の測定
 得られた混繊糸を一方向に引き揃え、成形圧力3MPa、成形時間5分、かつ、下記表に記載の成形温度で成形した。成形品は、幅20mm、長さ200mmの一方向繊維強化平板とした。作成した成形品の表面をデジタルマイクロスコープで観察した。得られた表面写真に対して画像解析ソフトImageJを用いて解析した。連続強化繊維が乱れて配向している領域を曲線で選択し、その面積を測定した。繊維不規則性は、連続強化繊維が設定の配向方向よりも10度以上乱れている領域の面積/繊維強化平板の面積(単位%)として示した。
6.成形品外観
 上記「繊維不規則性の測定」と同様に加熱成形した混繊糸について、以下の通り外観を目視にて評価した。
A:顕著な凹凸や繊維の偏在が無く、均質感を有する。
B:多少の凹凸や繊維の偏在はあるものの、均質感を有する。
C:凹凸や繊維の偏在があり、均質感に劣る。
7.混繊糸成形品の引張強度の向上率
 上記「繊維不規則性の測定」と同様に加熱成形した混繊糸を30cm切り取り、両末端をエポキシ樹脂に包埋してつかみ代を作製した。引張強度をインストロン製インストロン型万能試験機(Type4206)を使用し、スパン間距離200mm、試験速度10mm/minの条件で測定した。加熱成形前のものについても同様に測定し、引張強度の向上率(単位:倍)を算出した。
8.綾織物成形品の未含浸率
 上記混繊糸を経糸および緯糸として用い、綾織の織物を作成した。打ち込み密度は、920本/mとした。得られた織物を表に記載の温度で成形した。
 作成した成形品の断面をデジタルマイクロスコープで観察した。得られた断面写真に対し、連続強化繊維の熱可塑性樹脂が含浸していない領域を画像解析ソフトImageJを用いて選択し、その面積を測定した。織物の未含浸率は、連続強化繊維の熱可塑性樹脂が含浸していない領域/織物の断面積(単位%)として示した。
9.綾織物成形品の弾性率
 得られた織物をISO179に準拠して、引張弾性率を測定した。
Figure JPOXMLDOC01-appb-T000002
 上記実施例及び比較例との比較から明らかなとおり、本発明の混繊糸は、連続強化繊維の配向性が高い(繊維不規則性が低い)ことが分かった。その結果として、外観に優れた混繊糸が得られた。また、かかる混繊糸を加熱加工すると、機械的強度に優れた成形品が得られた。また、熱可塑性樹脂の含浸率も高いことが分かった。
 また、図3に実施例6と比較例2のデジタルマイクロスコープで観察した表面写真を示す。写真から明らかなとおり、本発明の混繊糸は、加熱成形後も、連続強化繊維が配向しているのに対し、比較例の混繊糸は加熱成形後には、連続強化繊維の配向が乱れていることが観察できた。
1  連続強化繊維束の回巻体
2  連続熱可塑性樹脂繊維束の回巻体
3  混繊糸の回巻体

Claims (8)

  1. 繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸であって、該混繊糸が撚りを有する混繊糸。
  2. 連続熱可塑性樹脂繊維がポリアミド樹脂繊維である、請求項1に記載の混繊糸。
  3. 連続熱可塑性樹脂繊維が、ポリアミド6、ポリアミド66、およびキシリレンジアミン系ポリアミドから選択される少なくとも1種を含む、請求項1または2に記載の混繊糸。
  4. 連続強化繊維が、炭素繊維および/またはガラス繊維である、請求項1~3のいずれか1項に記載の混繊糸。
  5. 請求項1~4のいずれか1項に記載の混繊糸を用いてなる織物または編み物。
  6. 請求項1~4のいずれか1項に記載の混繊糸、または、請求項5に記載の織物もしくは編み物を加熱加工して得られる複合材料。
  7. 繊維成分が連続熱可塑性樹脂繊維と連続強化繊維からなる混繊糸を製造すること、前記混繊糸に撚りをかけること、該撚られた混繊糸を加熱加工することを含む、複合材料の製造方法。
  8. さらに、前記加熱加工前に、撚られた混繊糸を織るまたは編むことを含む請求項7に記載の製造方法。
PCT/JP2014/054989 2013-03-06 2014-02-21 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法 WO2014136662A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2901980A CA2901980A1 (en) 2013-03-06 2014-02-21 Commingled yarns, weave fabric, knitted fabrics, composite materials, and processes for preparing the composite materials
US14/770,760 US20160010246A1 (en) 2013-03-06 2014-02-21 Commingled yarns, weave fabric, knitted fabrics, composite materials, and processes for preparing the composite materials
RU2015142381A RU2015142381A (ru) 2013-03-06 2014-02-21 Смесевые нити, тканые полотна, трикотажные полотна, композитные материалы и способы изготовления композитных материалов
CN201480012456.8A CN105008603A (zh) 2013-03-06 2014-02-21 混纤丝、纺织物和编织物、复合材料以及复合材料的制造方法
EP14759992.2A EP2966204A4 (en) 2013-03-06 2014-02-21 Combined filamanet yarn, woven and knitted fabric, composite material, and process for manufacturing composite material
KR1020157021697A KR20150124947A (ko) 2013-03-06 2014-02-21 혼섬사, 직물 및 편물, 복합재료, 그리고, 복합재료의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-044120 2013-03-06
JP2013044120A JP2014173196A (ja) 2013-03-06 2013-03-06 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法

Publications (1)

Publication Number Publication Date
WO2014136662A1 true WO2014136662A1 (ja) 2014-09-12

Family

ID=51491181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054989 WO2014136662A1 (ja) 2013-03-06 2014-02-21 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法

Country Status (9)

Country Link
US (1) US20160010246A1 (ja)
EP (1) EP2966204A4 (ja)
JP (1) JP2014173196A (ja)
KR (1) KR20150124947A (ja)
CN (1) CN105008603A (ja)
CA (1) CA2901980A1 (ja)
RU (1) RU2015142381A (ja)
TW (1) TW201443306A (ja)
WO (1) WO2014136662A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104943511A (zh) * 2015-07-10 2015-09-30 江苏领腾汽车部件有限公司 耐用型汽车隔热遮阳垫
WO2016017469A1 (ja) * 2014-07-30 2016-02-04 セーレン株式会社 混繊糸及びその製造方法
JP2016102547A (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 ライナーおよび圧力容器
WO2016084475A1 (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 圧力容器、ライナーおよび圧力容器の製造方法
JP2016102546A (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 圧力容器および圧力容器の製造方法
WO2019012886A1 (ja) 2017-07-13 2019-01-17 三菱瓦斯化学株式会社 成形品の製造方法および製造装置
US20210347111A1 (en) * 2016-01-22 2021-11-11 Mitsubishi Gas Chemical Company, Inc. Method for manufacturing three-dimensional structure, and 3d printer filament

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372996B2 (ja) * 2013-11-20 2018-08-15 旭化成株式会社 複合材料成型体の製造方法
JP5885223B1 (ja) 2014-09-10 2016-03-15 国立大学法人岐阜大学 混繊糸の製造方法、混繊糸、巻取体、および、織物
WO2016159340A1 (ja) * 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 複合材料、複合材料の製造方法および成形品の製造方法
JP6659322B2 (ja) * 2015-04-03 2020-03-04 国立大学法人岐阜大学 複合材料、複合材料の製造方法および成形品の製造方法
JP6602552B2 (ja) 2015-04-14 2019-11-06 国立大学法人岐阜大学 成形体の製造方法
US10316443B2 (en) * 2015-04-17 2019-06-11 Auburn University Composite braided open structure without inter-yarn bonding, and structures made therefrom
CN109153794B (zh) * 2016-05-27 2021-04-09 三菱瓦斯化学株式会社 材料和成型品
CN108473691B (zh) 2016-11-16 2019-04-05 三菱瓦斯化学株式会社 成型品的制造方法
JP6858005B2 (ja) * 2016-11-17 2021-04-14 スターライト工業株式会社 摺動部材成形用シート、摺動部材、及び、その製造方法
KR102392296B1 (ko) 2016-11-18 2022-04-29 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 수지 조성물, 성형품 및 성형품의 제조방법
JP7286264B2 (ja) * 2017-03-13 2023-06-05 旭化成株式会社 布及びその製造方法並びに連続繊維強化樹脂複合材料
EP3597388B1 (en) * 2017-03-15 2021-04-21 Mitsubishi Gas Chemical Company, Inc. Material, method for producing the material, partially welded material, composite material, and method of producing molded product
CA3068400A1 (en) * 2017-06-26 2019-01-03 Sheertex Inc. Rip-resistant, non-pilling fine knit garments
CN110770377B (zh) * 2017-07-05 2022-03-01 旭化成株式会社 混纤丝的制造方法、混纤丝以及纺织物或编织物的制造方法
JP2019178234A (ja) * 2018-03-30 2019-10-17 東洋紡株式会社 熱可塑性プリプレグシート
WO2019230729A1 (ja) * 2018-05-31 2019-12-05 リンテック株式会社 炭素樹脂複合材料の製造方法、および炭素樹脂複合材料の製造用複合構造体
JP7177433B2 (ja) 2018-09-03 2022-11-24 国立大学法人東海国立大学機構 巻取体および巻取体の製造方法
WO2020213416A1 (ja) * 2019-04-17 2020-10-22 日東紡績株式会社 複合糸織物及びそれを用いる繊維強化樹脂成形品の製造方法
US20220227072A1 (en) * 2019-06-12 2022-07-21 Mitsubishi Gas Chemical Company, Inc. Method for producing molded article
US11608573B2 (en) * 2019-06-17 2023-03-21 Antonio Herminio Marin Production process of circular and sustainable mixed yarns and mixed yarns obtained
JP6806292B1 (ja) * 2019-07-30 2021-01-06 三菱瓦斯化学株式会社 成形品の製造方法および複合材料
KR102149612B1 (ko) * 2019-09-04 2020-08-31 주식회사 신흥 안전보호복 제조용 복합사 및 이를 이용한 안전보호복 제조용 베이스 원단
JP7546236B2 (ja) * 2019-10-23 2024-09-06 国立大学法人東海国立大学機構 カバリング糸、カバリング糸の製造方法および成形品の製造方法
JP7487865B2 (ja) 2020-02-27 2024-05-21 国立大学法人東海国立大学機構 ホース、ホースの製造方法、および、油圧式ポンプ
US20220297391A1 (en) * 2021-03-19 2022-09-22 Safran Tracer strand for weaving a composite material part reinforcement
BR102021011444A2 (pt) 2021-06-11 2022-12-27 Antonio Herminio Marin Processo de produção de fios mistos biodegradáveis duráveis e fios mistos obtidos por meio do referido processo
CN115772731A (zh) * 2021-09-06 2023-03-10 上海凯赛生物技术股份有限公司 一种生物基聚酰胺/玻璃纤维混合丝、混编布及其制备方法
KR102620323B1 (ko) * 2022-09-19 2024-01-03 주식회사 복합재자동화기술 함침성이 향상된 세라믹 섬유복합재 및 그 제조 방법
KR102620322B1 (ko) * 2022-09-19 2024-01-02 주식회사 복합재자동화기술 기능성 세라믹 섬유복합재 및 그 제조 방법
CN115651395B (zh) * 2022-10-26 2024-02-13 内蒙古蒙能环保科技有限公司 玻璃纤维增强复合材料、制备方法及太阳能电池背板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228219A (ja) 1988-07-15 1990-01-30 Asahi Chem Ind Co Ltd 液中混繊方法
JPH02308824A (ja) 1989-05-24 1990-12-21 Toyobo Co Ltd 熱可塑性コンポジット用材料
JPH0333237A (ja) 1989-06-30 1991-02-13 Toyobo Co Ltd 繊維状複合材料前駆体
JPH0473227A (ja) 1990-07-11 1992-03-09 Toyobo Co Ltd コンポジット用混繊糸の製造方法
JPH09324331A (ja) 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd 複合材料用混繊糸及びその製造法
JP2005179829A (ja) * 2003-12-19 2005-07-07 Fukui Prefecture テープ状繊維束を用いた混繊繊維束の製造方法およびその製造装置
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2014050303A1 (ja) * 2012-09-25 2014-04-03 三菱瓦斯化学株式会社 繊維強化ポリアミド樹脂材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833160A (ja) * 1971-09-02 1973-05-08
JPS5777336A (en) * 1980-10-27 1982-05-14 Hitachi Ltd Composite fiber product
US4539249A (en) * 1983-09-06 1985-09-03 Textile Products, Incorporated Method and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom
CA1293367C (en) * 1984-03-15 1991-12-24 Paul E. Mcmahon Composite carbon fiber and thermoplastic fiber blends
JPH01111040A (ja) * 1987-10-19 1989-04-27 Toho Rayon Co Ltd 混用織物及びその成形物
FR2634790B1 (fr) * 1988-07-29 1990-09-28 Schappe Sa Fils hybrides pour materiaux composites a matrice thermoplastique et leur procede d'obtention
JPH0268326A (ja) * 1988-09-02 1990-03-07 Silver Kogyo Kk 耐熱性縫糸
JPH04121251A (ja) * 1990-09-12 1992-04-22 Toray Ind Inc エアバッグ基布
JPH04353525A (ja) * 1991-05-30 1992-12-08 Toyobo Co Ltd コンポジット用混繊糸及びその成形体
DE4137406A1 (de) * 1991-11-14 1993-05-19 Basf Ag Hybridgarn aus polyamidfasern und verstaerkungsfasern
US6602600B2 (en) * 2000-12-22 2003-08-05 E. I. Du Pont De Nemours And Company Yarn and fabric having improved abrasion resistance
JP2003073978A (ja) * 2001-09-03 2003-03-12 Du Pont Toray Co Ltd 開繊されたテープ状糸条の製造方法
EP1743964B1 (de) * 2005-07-15 2008-11-19 Teijin Aramid B.V. Cord
JP5919755B2 (ja) * 2010-11-24 2016-05-18 東レ株式会社 繊維材料の製造方法
JP5993262B2 (ja) * 2012-09-20 2016-09-14 旭化成株式会社 すだれ織物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228219A (ja) 1988-07-15 1990-01-30 Asahi Chem Ind Co Ltd 液中混繊方法
JPH02308824A (ja) 1989-05-24 1990-12-21 Toyobo Co Ltd 熱可塑性コンポジット用材料
JPH0333237A (ja) 1989-06-30 1991-02-13 Toyobo Co Ltd 繊維状複合材料前駆体
JPH0473227A (ja) 1990-07-11 1992-03-09 Toyobo Co Ltd コンポジット用混繊糸の製造方法
JPH09324331A (ja) 1996-06-04 1997-12-16 Asahi Fiber Glass Co Ltd 複合材料用混繊糸及びその製造法
JP2005179829A (ja) * 2003-12-19 2005-07-07 Fukui Prefecture テープ状繊維束を用いた混繊繊維束の製造方法およびその製造装置
JP4894982B1 (ja) 2011-04-12 2012-03-14 三菱瓦斯化学株式会社 ポリアミド樹脂系複合材およびその製造方法
WO2014050303A1 (ja) * 2012-09-25 2014-04-03 三菱瓦斯化学株式会社 繊維強化ポリアミド樹脂材料

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017469A1 (ja) * 2014-07-30 2016-02-04 セーレン株式会社 混繊糸及びその製造方法
JP2016102547A (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 ライナーおよび圧力容器
WO2016084475A1 (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 圧力容器、ライナーおよび圧力容器の製造方法
JP2016102546A (ja) * 2014-11-28 2016-06-02 三菱瓦斯化学株式会社 圧力容器および圧力容器の製造方法
CN107002873A (zh) * 2014-11-28 2017-08-01 三菱瓦斯化学株式会社 压力容器、衬垫和压力容器的制造方法
US10907769B2 (en) 2014-11-28 2021-02-02 Mitsubishi Gas Chemical Company, Inc. Pressure vessel, liner and method for manufacturing a pressure vessel
CN104943511A (zh) * 2015-07-10 2015-09-30 江苏领腾汽车部件有限公司 耐用型汽车隔热遮阳垫
US20210347111A1 (en) * 2016-01-22 2021-11-11 Mitsubishi Gas Chemical Company, Inc. Method for manufacturing three-dimensional structure, and 3d printer filament
WO2019012886A1 (ja) 2017-07-13 2019-01-17 三菱瓦斯化学株式会社 成形品の製造方法および製造装置

Also Published As

Publication number Publication date
JP2014173196A (ja) 2014-09-22
RU2015142381A (ru) 2017-04-10
EP2966204A1 (en) 2016-01-13
TW201443306A (zh) 2014-11-16
KR20150124947A (ko) 2015-11-06
US20160010246A1 (en) 2016-01-14
CA2901980A1 (en) 2014-09-12
CN105008603A (zh) 2015-10-28
EP2966204A4 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2014136662A1 (ja) 混繊糸、織物および編み物、複合材料、並びに、複合材料の製造方法
EP3278945B1 (en) Composite material and process for producing composite material
JP6376122B2 (ja) 複合繊維、織物、編み物および複合材料
JP5802877B2 (ja) 混繊糸およびその製造方法、組紐、織物、編み物ならびに不織布
US10828807B2 (en) Method for manufacturing molded article
KR102109905B1 (ko) 직물 및 이를 성형하여 이루어지는 성형품
JP5885223B1 (ja) 混繊糸の製造方法、混繊糸、巻取体、および、織物
KR102385582B1 (ko) 복합재료, 복합재료의 제조방법 및 성형품의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157021697

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2901980

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14770760

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014759992

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015142381

Country of ref document: RU

Kind code of ref document: A