WO2014136214A1 - 油圧機械及び再生エネルギー発電装置 - Google Patents

油圧機械及び再生エネルギー発電装置 Download PDF

Info

Publication number
WO2014136214A1
WO2014136214A1 PCT/JP2013/056101 JP2013056101W WO2014136214A1 WO 2014136214 A1 WO2014136214 A1 WO 2014136214A1 JP 2013056101 W JP2013056101 W JP 2013056101W WO 2014136214 A1 WO2014136214 A1 WO 2014136214A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
hydraulic
cylinder
point
piston
Prior art date
Application number
PCT/JP2013/056101
Other languages
English (en)
French (fr)
Inventor
宏泰 落合
佐々木 将志
ドットソン・ヘンリー
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13854215.4A priority Critical patent/EP2821648B1/en
Priority to JP2014504889A priority patent/JP5726370B2/ja
Priority to PCT/JP2013/056101 priority patent/WO2014136214A1/ja
Publication of WO2014136214A1 publication Critical patent/WO2014136214A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/047Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/053Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to a hydraulic machine and a renewable energy power generation apparatus including the hydraulic machine.
  • Patent Document 1 discloses a radial piston hydraulic machine that functions as a drive train for a wind turbine generator.
  • the radial piston hydraulic machine described in Patent Document 1 includes a piston that reciprocates in a cylinder, a roller attached to the piston, and a cam having a cam surface formed by a plurality of lobes.
  • Patent Document 1 discloses that a hydraulic chamber of a radial piston hydraulic machine is disposed at an angle of about 10 degrees with respect to the radial direction.
  • Patent Document 1 describes that a hydraulic chamber of a radial piston hydraulic machine is arranged to be inclined by about 10 degrees with respect to the radial direction, but a specific method for determining the inclination angle of the hydraulic chamber is disclosed. There is no disclosure.
  • An object of at least one embodiment of the present invention is to provide a hydraulic machine capable of reducing the influence of side forces and a renewable energy power generation apparatus including the same.
  • a hydraulic machine includes: A radial piston type hydraulic machine, At least one cylinder; At least one piston slidably provided in each of the at least one cylinder; The cam surface is formed by a plurality of lobes arranged along the circumferential direction of the hydraulic machine, and is configured to be rotatable so that the plurality of lobes move in the circumferential direction relative to the pistons.
  • Each of the at least one piston is rotatably engaged with at least one roller abutting against the cam surface;
  • the angle between the central axis of each cylinder and the first straight line connecting the center of each of the rollers and the center of the cam when each of the rollers is in contact with the apex of the lobe is X.
  • X The angle between the central axis of each cylinder and the first straight line connecting the center of each of the rollers and the center of the cam when each of the rollers is in contact with the apex of the lobe.
  • a side force that is a component in a direction perpendicular to the cylinder central axis of the load along the normal direction of the cam surface at a contact point with the roller acts on the piston of the hydraulic machine from the cam via the roller. Since the normal direction of the cam surface at that position differs depending on the contact position of the roller with the cam surface, the size of the side force varies while the roller moves between the bottom point and the apex of the lobe. Therefore, the contact position of the roller on the cam surface where the side force is maximum exists between the bottom point and the apex of the lobe. Further, the size of the side force varies depending on the direction of the cylinder central axis.
  • the cylinder is not inclined with respect to the radial direction and the cylinder central axis and the radial direction are parallel, when the roller is positioned on the inflection point of the cam surface, the normal direction of the cam surface and the cylinder center
  • the absolute value of the side force is maximized with the maximum angle between the axes.
  • the angle between the normal line at the inflection point on the cam surface and the cylinder center axis decreases, and the roller is in contact with the inflection point on the cam surface. The side force at will decrease.
  • the angle between the cam surface normal and the cylinder center axis is maximized near the lobe apex, and the absolute value of the side force is maximized near the lobe apex. It becomes.
  • the size of the side force and the contact position of the roller on the cam surface where the absolute value of the side force is maximized change according to the inclination angle of the cylinder central axis with respect to the radial direction.
  • the first straight line is a straight line along the radial direction connecting the roller center and the cam center in a state where each roller is in contact with the apex of the lobe.
  • the second straight line is a straight line parallel to the radial direction connecting the inflection point on the cam surface and the cam center.
  • the angle X corresponds to the angle with respect to the radial direction of the cylinder center axis in a state where the roller is in contact with the apex of the lobe
  • the angle Y is the cylinder center axis in a state where the roller is in contact with the inflection point on the cam surface. It corresponds to the angle with respect to the radial direction. Accordingly, the cylinder is inclined at an appropriate inclination angle with respect to the radial direction, the peak value of the side force is reduced, and the influence of the side force can be reduced.
  • the hydraulic machine further comprises at least one hydrostatic pad provided on a piston surface of each piston facing each of the cylinders, the hydraulic machine comprising: A hydraulic pump configured to pressurize hydraulic fluid in a hydraulic chamber formed by each of the pistons, and each of the cylinders is arranged in the radial direction so as to satisfy a relationship of 0.5Y ⁇ X ⁇ Y.
  • the number of the static pressure pads in the first region on the upstream side in the rotational direction of the cam among the piston surfaces is m (where m is an integer equal to or greater than 1), When the number of the static pressure pads in the second region on the downstream side in the cam rotation direction is n (where n is an integer of 0 or more), the relationship of m ⁇ n is satisfied.
  • the normal direction of the cam surface differs depending on the contact position of the roller with the cam surface, so the cam surface normal is between the bottom point and the apex of the lobe.
  • There is a reference point Z ref whose direction coincides with the cylinder central axis. At this reference point Z ref , no side force is generated because the normal direction of the cam surface coincides with the cylinder center axis.
  • the reference point Z ref is set.
  • the direction of the side force is reversed at the border. That is, while the roller moves between the bottom point and the apex of the lobe, the piston receives both a side force along the reverse direction of the cam rotation direction and a side force along the cam rotation direction.
  • the side force along the direction opposite to the cam rotation direction is mainly borne by m static pressure pads provided in the first region on the upstream side of the cam rotation direction on the piston surface.
  • the side force along the cam rotation direction is mainly borne by n static pressure pads provided in the second region downstream of the cam rotation direction on the piston surface.
  • the angle X of the cylinder center axis with respect to the substantially radial direction (first straight line) and the normal at the inflection point of the cam surface When the relationship of 0.5Y ⁇ X ⁇ Y is established between the angle Y with respect to the radial direction (second straight line), the peak value of the side force along the direction opposite to the cam rotation direction becomes relatively large. Therefore, by setting the number m of the static pressure pads in the first region to be equal to or greater than the number n of the static pressure pads in the second region, the side force along the direction opposite to the cam rotation direction having a relatively large peak value. Can be effectively received by the m static pressure pads in the first region.
  • the side force along the cam rotation direction having a relatively small peak value can be received by the n number of static pressure pads in the second region that are equal to or less than m.
  • the hydraulic machine further includes a plurality of static pressure pads provided on a piston surface of each piston facing each of the cylinders, and the hydraulic machine includes each of the cylinders and each of the pistons.
  • the hydraulic pump is configured to pressurize the hydraulic fluid in the hydraulic chamber formed by the piston of each of the cylinders, and each of the cylinders has a radial direction so as to satisfy a relationship of 0.5Y ⁇ X ⁇ Y.
  • the load capacity of the hydrostatic pad in the first region of the piston surface upstream of the cam rotation direction is the second of the piston surface downstream of the cam rotation direction of the cam surface. Higher than the load capacity of the hydrostatic pad in the region.
  • the cam rotation direction along the direction opposite to the cam rotation direction having a relatively large peak value was met. Can receive side forces effectively.
  • the side force along the cam rotation direction having a relatively small peak value can be received by the static pressure pad in the second region having a relatively small load capacity.
  • the static pressure pad area is increased to increase the load capacity of the static pressure pad, the amount of hydraulic oil supplied to the static pressure pad (the configuration in which the hydraulic oil in the hydraulic chamber is supplied to the static pressure pad) (The amount of hydraulic fluid leaking from the hydraulic chamber) increases, which can be a cause of a decrease in the performance of the hydraulic pump.
  • the load capacity of the static pressure pad in the second region less than the load capacity of the static pressure pad in the first region, the total amount of hydraulic oil supplied to both static pressure pads (the hydraulic oil from the hydraulic chamber) The amount of leakage of the hydraulic pump can be reduced and the performance degradation of the hydraulic pump can be suppressed.
  • the hydraulic machine further comprises at least one hydrostatic pad provided on a piston surface of each piston facing each of the cylinders, the hydraulic machine comprising: A hydraulic pump configured to pressurize hydraulic oil in a hydraulic chamber formed by each of the pistons, and each of the cylinders is arranged in the radial direction so as to satisfy a relationship of 0 ⁇ X ⁇ 0.5Y.
  • the number of the static pressure pads in the first region on the upstream side in the rotational direction of the cam among the piston surfaces is m (where m is an integer equal to or greater than 1),
  • n is an integer of 0 or more)
  • the hydraulic machine is a hydraulic pump, and the angle X with respect to the substantially radial direction (first straight line) of the cylinder central axis in a state where the roller is in contact with the apex of the lobe and the radial direction of the normal line at the inflection point of the cam surface (
  • the peak value of the side force along the cam rotation direction becomes relatively large. Therefore, by setting the number n of the static pressure pads in the second region to be equal to or greater than the number m of the static pressure pads in the first region, the side force along the cam rotation direction having a relatively large peak value is set in the second region. N static pressure pads can be effectively received.
  • the side force along the direction opposite to the cam rotation direction having a relatively small peak value can be received by the static pressure pads in the m first regions that are n or less.
  • the hydraulic machine further comprises at least one hydrostatic pad provided on a piston surface of each piston facing each of the cylinders, the hydraulic machine comprising:
  • Each of the cylinders is a hydraulic pump configured to increase the pressure of hydraulic oil in a hydraulic chamber formed by each of the pistons, and each cylinder has a circumferential position of a first end portion of the cylinder, the first end of the cylinder. The position of the second end of the cylinder closer to the cam in the radial direction of the hydraulic machine than the portion of the cylinder is shifted downstream in the rotational direction of the cam, and 0 ⁇ X ⁇ 0.5Y.
  • the load capacity of the hydrostatic pad in the first region of the piston surface upstream in the rotational direction of the cam is the front of the piston surface. Or less load capacity of the hydrostatic pads in the second region of the downstream side in the rotational direction of the cam.
  • the static pressure pad area is increased to increase the load capacity of the static pressure pad
  • the amount of hydraulic oil supplied to the static pressure pad (the configuration in which the hydraulic oil in the hydraulic chamber is supplied to the static pressure pad) (The amount of hydraulic fluid leaking from the hydraulic chamber) increases, which can be a cause of a decrease in the performance of the hydraulic pump. Therefore, by making the load capacity of the static pressure pad in the first region equal to or less than the load capacity of the static pressure pad in the second region, the total amount of hydraulic oil supplied to both static pressure pads (the hydraulic oil from the hydraulic chamber) The amount of leakage of the hydraulic pump can be reduced and the performance degradation of the hydraulic pump can be suppressed.
  • the hydraulic machine includes: a low-pressure oil line through which hydraulic oil flows; a high-pressure oil line through which hydraulic oil higher in pressure than the low-pressure oil line flows; and each of the cylinders and each of the pistons.
  • a low-pressure valve provided between the hydraulic chamber formed and the low-pressure oil line; and a high-pressure valve provided between the hydraulic chamber and the high-pressure oil line, the bottom point and the apex of the lobe
  • the point on the apex side of a pair of reference points on the cam surface where the normal line of the cam surface and the central axis of the cylinder coincide with each other is a first point
  • the low-pressure valve belonging to at least one of the hydraulic chambers has each of the rollers from the first point to the second point.
  • each of the rollers is configured to open after passing through the second point.
  • An open state is maintained in at least a part of a period from the point toward the second point, and each of the rollers is configured to close after passing the second point.
  • the low pressure valve is closed and the high pressure valve is opened during at least a part of the period in which the roller is positioned between the first point P 1 and the second point P 2 corresponding to the top dead center of the piston.
  • the direction of the side force is reversed while the roller moves from the bottom of the lobe to the vicinity of the apex. That is, while the roller moves between the bottom point and the apex of the lobe, the piston receives not only the side force along the reverse direction of the cam rotation direction but also the side force along the cam rotation direction.
  • the peak value of the side force along the cam rotation direction is reduced.
  • the peak value of the side force along the cam rotation direction can be reduced while ensuring the length of the working area on the cam surface.
  • the hydraulic machine is a hydraulic pump configured to pressurize the hydraulic fluid, and the low-pressure valve can contact the first seat and the first seat.
  • a normally open solenoid valve including a first biasing member for biasing to the opposite side, and the normally open solenoid valve belonging to at least one of the hydraulic chambers has a bottom dead center of each piston. The solenoids are excited and closed when each of the rollers is positioned in the vicinity of a third point, which is a point on the cam surface corresponding to, and each of the rollers passes through the first point from the third point.
  • the check valve includes a second seat, a second valve body capable of contacting the second seat, and a second urging member for urging the second valve body toward the second seat. The check valve is opened after each roller passes through the third point and the pressure difference of the hydraulic oil on both sides of the second valve body exceeds the urging force by the second urging member, The pressure difference is closed below the urging force before the roller reaches the fourth point. It is.
  • the condition for supplying lubricating oil to the piston surface is determined based on the change in the lubrication state of the piston surface of each piston facing each cylinder before and after each roller passes through the first point. You may decide.
  • each of the pistons includes a first portion having a pressure receiving surface that receives pressure from hydraulic oil in a hydraulic chamber formed by the cylinder and the piston, and the first portion. Is located near the cam and includes a second portion that engages with the roller, and a step is provided between the first portion and the second portion, and the rotation direction of the cam of the second portion Is greater than the diameter of the first portion. Thereby, the side force along the cam rotating direction can be received by the second portion of the piston and the cylinder inner wall surface facing the second portion.
  • each cylinder has a side force maximum value F 1 along the cam rotation direction and a side force maximum value F 2 along the opposite direction of the cam rotation direction. It is inclined relative to the radial direction so as to satisfy the relation of .8 ⁇ F 2 ⁇ F 1 ⁇ 1.2 ⁇ F 2.
  • the maximum value F 1 of the side force along the cam rotation direction and the maximum value F 2 of the side force along the direction opposite to the cam rotation direction are reduced in a balanced manner, effectively reducing the influence of the side force. it can.
  • a renewable energy device includes: At least one blade for receiving renewable energy; A hub to which the at least one blade is mounted; A hydraulic pump configured to be driven by rotation of the hub; A hydraulic motor configured to be driven by pressure oil generated by the hydraulic pump; A renewable energy power generator comprising a generator configured to be driven by the hydraulic motor, At least one of the hydraulic pump and the hydraulic motor is a radial piston hydraulic machine,
  • the radial piston type hydraulic machine includes at least one cylinder, at least one piston slidably provided in the at least one cylinder, and a plurality of lobes arranged along a circumferential direction of the hydraulic machine.
  • a cam having a formed cam surface and configured to be rotatable so that the plurality of lobes move in the circumferential direction relative to each of the pistons; and the at least one piston can rotate. And at least one roller abutting against the cam surface,
  • the angle between the central axis of each cylinder and the first straight line connecting the center of each of the rollers and the center of the cam when each of the rollers is in contact with the apex of the lobe is X.
  • a second straight line connecting the center of the cam and the inflection point.
  • the renewable energy power generation device is a wind power generation device configured to generate electric power from wind as the renewable energy.
  • the cylinder is inclined at an appropriate inclination angle with respect to the radial direction, the peak value of the side force is reduced, and the influence of the side force can be reduced.
  • FIGS. 5A to 5C are graphs showing examples of calculation results of the side force Fs under three conditions in which the inclination angle of the cylinder central axis with respect to the radial direction of the hydraulic machine is different. It is a figure for demonstrating the setting method of the inclination-angle with respect to the radial direction of the cylinder center axis
  • a wind power generator will be described as an example of a renewable energy power generator.
  • the present invention can also be applied to other renewable energy power generation devices such as tidal current power generation devices, ocean current power generation devices, and river current power generation devices.
  • an embodiment of a hydraulic machine having an outward cam will be mainly described.
  • the hydraulic machine may be provided with an inward cam. Also included in the embodiments of the present invention.
  • FIG. 1 is a diagram illustrating a wind turbine generator according to an embodiment.
  • the wind power generator 1 includes a rotor 3 including at least one blade 2 and a hub 4.
  • the hub 4 may be covered with a hub cover (spinner) 5.
  • a hydraulic pump 8 is connected to the rotor 3 via a rotating shaft 6.
  • a hydraulic motor 10 is connected to the hydraulic pump 8 via a high pressure oil line 12 and a low pressure oil line 14.
  • the outlet of the hydraulic pump 8 is connected to the inlet of the hydraulic motor 10 via the high-pressure oil line 12, and the inlet of the hydraulic pump 8 is connected to the outlet of the hydraulic motor 10 via the low-pressure oil line 14.
  • the hydraulic pump 8 is driven by the rotary shaft 6 to increase the pressure of the hydraulic oil and generate high-pressure hydraulic oil (pressure oil).
  • the pressure oil generated by the hydraulic pump 8 is supplied to the hydraulic motor 10 via the high-pressure oil line 12, and the hydraulic motor 10 is driven by this pressure oil.
  • the low-pressure hydraulic oil after the work is performed by the hydraulic motor 10 is returned again to the hydraulic pump 8 via the low-pressure oil line 14 provided between the outlet of the hydraulic motor 10 and the inlet of the hydraulic pump 8.
  • a generator 16 is connected to the hydraulic motor 10.
  • the generator 16 is a synchronous generator that is linked to the power system and driven by the hydraulic motor 10.
  • a nacelle 18 installed on the tower 19.
  • the hydraulic pump 8, the hydraulic motor 10, and the generator 16 are installed inside the nacelle 18.
  • At least one of the hydraulic pump 8 or the hydraulic motor 10 is a radial piston type hydraulic machine described below.
  • FIG. 2 is a cross-sectional view along the radial direction of the hydraulic machine according to the embodiment.
  • FIG. 3 is a cross-sectional view illustrating a structure around a cylinder of a hydraulic machine according to an embodiment.
  • the hydraulic machine 20 illustrated in FIG. 2 includes a plurality of cylinders 22, a plurality of pistons 24 provided in the cylinders 22, and rollers 26 provided on the pistons 24, respectively.
  • the hydraulic machine 20 further includes a rotating shaft 30 and a cam 32 configured to rotate with the rotating shaft 30.
  • an annular outward cam 32 is provided on the outer peripheral side of the rotating shaft 30, and a cylinder 22, a piston 24, and a roller 26 are further provided on the outer peripheral side of the outward cam 32.
  • the outward cam refers to a cam having a cam surface in contact with the roller 26 on the outer peripheral side.
  • an annular inward cam 32 is provided on the inner peripheral side of the rotary shaft 30, and a cylinder 22, a piston 24, and a roller 26 are disposed on the inner peripheral side of the inward cam 32.
  • the inward cam is a cam having a cam surface in contact with the roller 26 on the inner peripheral side.
  • the plurality of cylinders 22 are arranged in the circumferential direction of the hydraulic machine 20 in the cylinder block 21.
  • the cylinder 22 is formed by a cylinder sleeve 23 inserted into a sleeve hole 21 ⁇ / b> H of the cylinder block 21.
  • the cylinder 22 is formed directly on the cylinder block 21 without using the cylinder sleeve 23.
  • the cylinder block 21 may be divided into a plurality of segments 21S in the circumferential direction of the hydraulic machine 20. In the exemplary embodiment shown in FIGS.
  • a plurality of segments 21 ⁇ / b> S having a pair of cylinders 22 are arranged in the circumferential direction of the hydraulic machine 20, and an annular cylinder block 21 is formed by these segments 21 ⁇ / b> S. .
  • Each cylinder 22 is disposed to be inclined with respect to the radial direction R of the hydraulic machine 20, and the central axis C of the cylinder 22 is inclined with respect to the radial direction R of the hydraulic machine 20.
  • the hydraulic machine 20 is a hydraulic pump, and as shown in FIGS. 2 and 3, the circumferential position of one end (first end) far from the cam 32 of the cylinder 22 is the other end close to the cam 32.
  • Each cylinder 22 is disposed to be inclined with respect to the radial direction R so as to be shifted downstream in the cam rotation direction from the circumferential position of the (second end).
  • each cylinder 22 is arranged to be inclined with respect to the radial direction R so as to be shifted to the upstream side in the cam rotation direction from the direction position.
  • the inclination angle of the central axis C of the cylinder 22 with respect to the radial direction R will be described in detail later.
  • Each piston 24 is slidably provided in each cylinder 22.
  • Each piston 24 is guided by each cylinder 22 and reciprocates between a bottom dead center and a top dead center along the center axis C of the cylinder 22.
  • the volume of the hydraulic chamber 25 surrounded by each cylinder 22 and each piston 24 changes periodically.
  • the motion mode is converted between the reciprocating motion of the piston 24 accompanied with the periodic volume change of the hydraulic chamber 25 and the rotational motion of the cam 32.
  • the hydraulic machine 20 is the hydraulic pump 8
  • the rotational movement of the cam 32 that rotates together with the rotary shaft 30 of the hydraulic machine 20 is converted into the reciprocating movement of the piston 24, and a periodic volume change of the hydraulic chamber 25 occurs.
  • High pressure hydraulic oil pressure oil
  • the hydraulic machine 20 is the hydraulic motor 10
  • the reciprocating motion of the piston 24 occurs due to the introduction of the pressure oil into the hydraulic chamber 25, and this reciprocating motion is converted into the rotational motion of the cam 32.
  • the rotary shaft 30 of the hydraulic machine 20 rotates.
  • the cam 32 functions to convert energy between the rotational energy (mechanical energy) of the rotary shaft 30 of the hydraulic machine 20 and the fluid energy of the hydraulic oil, so that the hydraulic machine 20 serves as the hydraulic pump 8 or the hydraulic motor 10. It has come to fulfill its intended role.
  • Each roller 26 is engaged with each piston 24 so as to be rotatable around the roller rotation axis A, and is in contact with the cam surface 33 of the cam 32.
  • the cam 32 rotates around the cam center O (the central axis of the hydraulic machine 20) together with the rotary shaft 30, each roller 26 travels on the cam surface 33 of the cam 32 while rotating around the roller rotation axis A.
  • the cam surface 33 of the cam 32 is formed by a plurality of lobes 34 arranged along the circumferential direction of the hydraulic machine 20. Each lobe 34 protrudes toward the cylinder 22. Each lobe 34 is formed by a smooth curve that passes through a pair of bottom points 38 and a vertex 36 located between the pair of bottom points 38.
  • the apex 36 and the bottom point 38 of the lobe 34 are positions on the cam surface 33 where the distance from the central axis (cam center) O of the hydraulic machine 20 is the maximum or minimum, and the apex 36 is more cylinder 22 than the bottom point 38. Located closer.
  • lobes 34 36 coincides with the point on the cam surface 33 corresponding to the top dead center in the period of the reciprocating motion of the piston 24 (the second point P 2 to be described later).
  • the bottom point 38 of the lobe 34 coincides with a point (a third point P 3 described later) on the cam surface 33 corresponding to the bottom dead center in the cycle of the reciprocating motion of the piston 24.
  • the cylinder 22 is disposed on the outer peripheral side of the outward cam 32, and the distance from the central axis O of the outward cam 32 is maximized at the apex 36 of the lobe 34.
  • the distance from the central axis O is the minimum at the bottom point 38 of the lobe 34.
  • the distance from the central axis O of the inward cam to the cam surface 33 at the apex 36 of the lobe 34 is minimized, and the lobe 34
  • the distance from the center axis O of the inward cam to the cam surface 33 is the maximum at the bottom point 38. It should be noted that the normal line of the cam surface 33 coincides with the radial direction R at the apex 36 and the bottom point 38 of each lobe 34.
  • the hydraulic machine 20 includes a low pressure valve 40 provided between each hydraulic chamber 25 and the low pressure oil line 14, and each hydraulic chamber 25 and the high pressure oil line 12. And a high-pressure valve 50 provided therebetween.
  • the hydraulic machine 20 is a hydraulic pump
  • the low pressure valve 40 is used to supply low pressure hydraulic oil from the low pressure oil line 14 to the hydraulic chamber 25, and the high pressure valve 50 is high pressure hydraulic oil generated in the hydraulic chamber 25. Is supplied to the high-pressure line 12.
  • FIG. 3 the hydraulic machine 20 is a hydraulic pump
  • the low pressure valve 40 includes a first seat 41, a first valve body 42 that can contact the first seat 41, a first stem 44 coupled to the first valve body 42, A solenoid 46 configured to generate a magnetic force for driving the first stem 44, and a first biasing member 48 for biasing the first valve body 42 to the opposite side of the first seat 41.
  • a normally open solenoid valve may be included. In this case, if the solenoid 46 is excited, the first stem 44 moves against the urging force of the first urging member 48 due to the magnetic force of the solenoid 46, the first valve body 42 contacts the first seat 41, and the low pressure The valve 40 is closed.
  • the high-pressure valve 50 includes a second seat 51, a second valve body 52 that can contact the second seat 51, and the second valve A check valve including a second urging member 58 for urging the body 52 toward the second seat 51 may be used.
  • the second valve body 52 is moved to the second seat by the pressure difference. Apart from 51, the high-pressure valve 50 is opened. Further, if the pressure difference between both sides of the second valve body 52 is smaller than the urging force by the second urging member 58, the second valve body 52 abuts on the second seat 51 by the urging force by the second urging member 58, The high pressure valve 50 is closed.
  • the second valve body 52 may be a spherical valve body as shown in FIG. The opening / closing timing of the low pressure valve 40 and the high pressure valve 50 will be described in detail later.
  • FIG. 4 is a diagram for explaining the principle of side force generation.
  • FIGS. 5A to 5C are graphs showing examples of calculation results of the side force Fs under three conditions in which the inclination angles of the cylinder central axis C with respect to the radial direction R are different.
  • FIG. 6 is a view for explaining the principle of setting the tilt angle with respect to the radial direction R of the cylinder central axis C according to one embodiment.
  • the hydraulic machine 20 When the hydraulic machine 20 is a hydraulic pump, when the roller 26 is positioned on the working area 34A of the cam surface 33, the piston 24 is basically moving from the bottom dead center toward the top dead center. The pressure of the hydraulic oil in the chamber 25 is high. In contrast, when the roller 26 is positioned on the breathing region 34B of the cam surface 33, the piston 24 is basically moving from the top dead center toward the bottom dead center, and the hydraulic oil in the hydraulic chamber 25 is moved. The pressure of is low.
  • the working area 34 ⁇ / b> A is an area downstream of the apex 36 in the cam rotation direction of each lobe 34, and a breathing area.
  • Reference numeral 34B denotes a region of each lobe 34 on the upstream side of the apex 36 in the cam rotation direction.
  • the hydraulic machine 20 is a hydraulic motor
  • the roller 26 when the roller 26 is positioned on the working area 34A of the cam surface 33, the piston 24 is basically moving from the top dead center toward the bottom dead center.
  • the pressure of the hydraulic oil in the hydraulic chamber 25 is high.
  • the piston 24 when the roller 26 is positioned on the breathing region 34B of the cam surface 33, the piston 24 is basically moving from the bottom dead center toward the top dead center, and the hydraulic oil in the hydraulic chamber 25 is moved. The pressure of is low.
  • the working area 34A is an area upstream of the apex 36 in the cam rotation direction among the lobes 34
  • the breathing area 34B is the area of each lobe 34. Of these, it is an area downstream of the apex 36 in the cam rotation direction.
  • the pressure of the hydraulic oil in the hydraulic chamber 25 during the period in which the roller 26 is located on the working area 34 is 300 to 300. While the pressure is 400 bar, the pressure of the hydraulic oil in the hydraulic chamber 25 during the period in which the roller 26 is positioned on the breathing region 34B is several bar, and there is a large gap between the two.
  • the positions of the transition points (the third point P 3 and the fourth point P 4 described later with reference to FIG. 9) between the working region 34A and the breathing region 34B are the inclination angle of the cylinder center axis C with respect to the radial direction R,
  • the opening / closing timing of the low-pressure valve 40 and the high-pressure valve 50, the shape of the cam 32 and the roller 26, and the like may vary.
  • the transition points P 3 and P 4 between the working region 34A and the breathing region 34B are located on the cam surface 33 corresponding to the top dead center and bottom dead center of the piston 24 (the apex 36 of the lobe 34). And the base point 38) or the vicinity thereof.
  • upstream start point P 3 in the working area 34A is set slightly displaced position on the upstream side of the cam rotation direction from the position on the cam surface 33 corresponding to the top dead center of the piston 24 (the apex 36 of the lobe 34)
  • end point P 4 of the working area 34A is set slightly shifted positions on.
  • breathing process suction stroke; Intake Stroke
  • the working step of the hydraulic chamber 25 Exhaust Stroke
  • the roller 26 is lobe roller 26 immediately after passing through the vertex 36 of the 34 working step of the hydraulic chamber 25 reaches the transition point P 4 is completed, breathing process of the hydraulic chamber 25 is started.
  • the resultant force of the pressing force along the central axis C of the cylinder 22 and the inertial force caused by a very large pressure in the hydraulic chamber 25 is F.
  • a load F / cos ⁇ along the normal direction of the cam surface 33 acts on the contact point Z of the 33 with the roller 26.
  • a component of the load F / cos ⁇ in a direction perpendicular to the central axis C of the cylinder 22 is F ⁇ tan ⁇ , and a side force Fs as a reaction force acts on the piston 24 from the cam 32 via the roller 26.
  • the cam surface 33 is a curve that passes through the bottom point 38 and the apex 36 of the lobe 34 that is the maximum diameter point and the minimum diameter point of the cam 32, so The normal direction of the surface 33 is different. This means that the magnitude of the side force Fs varies while the roller 26 moves between the bottom point 38 and the apex 36 of the lobe 34. Therefore, a contact point on the cam surface 33 where the side force Fs is maximum exists between the bottom point 38 and the vertex 36 of the lobe 34.
  • the roller 26 is placed at the inflection point Z inf on the working area 34A of the cam surface 33.
  • the angle ⁇ between the normal direction of the cam surface 33 and the central axis C of the cylinder 22 is maximized, and the absolute value of the side force Fs is maximized.
  • the magnitude of the side force Fs and the position of the contact point Z on the cam surface 33 where the absolute value of the side force Fs is maximum change according to the inclination angle of the cylinder center axis C with respect to the radial direction R.
  • FIG. 5A shows an example of the calculation result of the side force Fs in the case 1 in which the inclination amount of the cylinder central axis C with respect to the radial direction R is the smallest.
  • FIG. 5B shows an example of the calculation result of the side force Fs in the case 2 in which the inclination amount of the cylinder central axis C with respect to the radial direction R is intermediate.
  • FIG. 5C shows an example of the calculation result of the side force Fs in the case 3 in which the inclination amount of the cylinder central axis C with respect to the radial direction R is the largest.
  • the horizontal axis indicates the position of the contact point Z on the cam surface 33
  • the vertical axis in FIGS. 5A to 5C indicates the magnitude of the side force Fs. Show. 5A to 5C, the side force Fs along the cam rotation direction is a negative value, and the side force Fs along the opposite direction of the cam rotation direction is a positive value.
  • the normal direction of the cam surface 33 differs depending on the position of the contact point Z with respect to the cam surface 33 of the roller 26. Therefore, as shown in FIGS. 5A to 5C, the angle between the normal direction of the cam surface 33 and the cylinder center axis C during the period in which the roller 26 is positioned on the working region 34A of the cam surface 33.
  • the side force Fs is almost zero because the pressure in the hydraulic chamber 25 is small, and there is no significant fluctuation.
  • a reference point Z ref (first point P 1 ) in which the normal direction of the cam surface 33 coincides with the cylinder center axis C exists between the bottom point 38 and the apex 36 of the lobe 34 on the working region 34A. To do. At this reference point Z ref (first point P 1 ), the normal direction of the cam surface 33 and the cylinder center axis C coincide with each other, so no side force Fs is generated. In addition, since the inclination direction of the normal line of the cam surface 33 with respect to the cylinder center axis C is opposite on both sides of the reference point Z ref (first point P 1 ) on the cam surface 33, the low pressure valve 40 and the high pressure valve 50 are opened and closed.
  • FIGS. 5A to 5C the sign of the side force Fs changes from negative to positive before and after the reference point Z ref .
  • FIGS. 5A to 5C it seems that there is only one reference point Z ref located between the inflection point Z inf and the vertex 36 of the lobe 34.
  • the reference point Z ref near the bottom point 38 is not conspicuous because it is included in the breathing region 34B.
  • each cylinder 22 has a maximum side force magnitude F 1 along the rotational direction of the cam 32 and a maximum side force magnitude F along the opposite direction of the cam 32 rotational direction. 2 are arranged to be inclined with respect to the radial direction R so as to satisfy the relationship of 0.8 ⁇ F 2 ⁇ F 1 ⁇ 1.2 ⁇ F 2 .
  • the side force maximum value F 1 along the cam rotation direction and the side force maximum value F 2 along the opposite direction of the cam rotation direction are reduced in a balanced manner, effectively reducing the influence of the side force. it can.
  • the cylinder 22 is inclined with respect to the radial direction R so that the angle Y between the normal line N of the cam surface at the inflection point Zinf and the second straight line L2 satisfies the relationship 0 ⁇ X ⁇ Y. .
  • the cylinder is inclined and arranged at an appropriate inclination angle with respect to the radial direction R, the peak values F 1 and F 2 of the side force Fs are reduced, and the influence of the side force Fs can be reduced.
  • the first straight line L1 is a straight line connecting the roller central axis A and the cam center O in a state where the roller 26 is in contact with the apex 36 of the lobe 34 and is along the radial direction of the hydraulic machine 20.
  • the second straight line L ⁇ b> 2 is a straight line connecting the cam center O and the inflection point Z inf, and is parallel to the radial direction of the hydraulic machine 20. Therefore, the angle X corresponds to an angle with respect to the radial direction R of the cylinder center axis C in a state where the roller 26 is in contact with the apex 36 of the lobe 34, and the angle Y is an inflection point Z inf of the cam surface 33.
  • the specific value of the angle X may be any numerical value as long as the inequality 0 ⁇ X ⁇ Y is satisfied.
  • the angle X may be set to 1 degree or more and 44 degrees or less.
  • the piston 24 may have the following configuration in addition to the inclined arrangement of the cylinder 22 with respect to the radial direction R.
  • FIG. 7 is a perspective view of a configuration around a piston according to an embodiment.
  • each piston 24 has a first portion 110 having a pressure receiving surface 108 that receives pressure from hydraulic oil in the hydraulic chamber 25, and is positioned closer to the cam 32 than the first portion 110.
  • a second portion 120 that engages the roller 26.
  • a step 130 is provided between the first portion 110 and the second portion 120 of the piston 24, and the width W 2 of the second portion 120 along the rotation direction of the cam 32 is the diameter D 1 of the first portion 110. Bigger than.
  • the surface area of the second portion 120 of the piston 24 increases, and therefore, the side force Fs along the cam rotation direction between the second portion 120 of the piston 24 and the inner wall surface of the cylinder 22 facing the second portion 120. Can receive.
  • At least one static pressure pad 100 is provided on the piston surface 24S of each piston 24 facing each cylinder 22.
  • the static pressure pad 100 includes an annular groove 106 that communicates with the hydraulic chamber 25 via internal flow paths 102 and 104 formed in the piston 24, and a land 107 that is surrounded by the annular groove 106.
  • High-pressure hydraulic oil in the hydraulic chamber 25 is supplied to the annular groove 106 via the internal flow paths 102 and 104.
  • the hydraulic oil supplied to the annular groove 106 enters the gap between the piston surface 24S and the inner wall surface of the cylinder 24, and increases the pressure in the gap. Thereby, the side force acting between the piston 24 and the cylinder 22 can be countered, and wear of the piston 24 and the cylinder 22 can be reduced.
  • FIGS. 8A and 8B are diagrams showing the configuration of the static pressure pad 100 according to the embodiment.
  • the cam rotation direction of the piston surface 24S is the number of static pressure pads 100 in the first region 200 on the upstream side (where m is an integer equal to or greater than 1) is the number of static pressure pads 100 in the second region 210 downstream of the piston surface 24S in the cam rotation direction. It is set to n (where n is an integer of 0 or more) or more. In the exemplary embodiment shown in FIG. 8A, the number m of the static pressure pads 100 in the first region 200 is 1, and the number n of the static pressure pads 100 in the second region 210 is zero.
  • the side force along the direction opposite to the cam rotation direction is mainly borne by the m static pressure pads 100 provided in the first region 200 on the upstream side of the cam rotation direction on the piston surface 24S.
  • the side force along the cam rotation direction is mainly borne by the n static pressure pads 100 provided in the second region 210 of the piston surface 24S on the downstream side in the cam rotation direction.
  • the cam rotation direction is relatively opposite to the cam rotation direction having a relatively large peak value.
  • the side force along the line can be effectively received by the m static pressure pads 100 in the first region 200.
  • the side force along the cam rotation direction having a relatively small peak value can be received by the n hydrostatic pads 100 in the n second regions 210 that are not more than m.
  • the cam surface direction of the piston surface 24S The load capacity of the static pressure pad 100 in the first area 200 on the upstream side is set higher than the load capacity of the static pressure pad 100 in the second area 210 on the downstream side in the cam rotation direction of the piston surface 24S.
  • the static pressure pad 100 in the first region 200 may have a larger area than the static pressure pad 100 in the second region 210.
  • the load capacity of the static pressure pad 100 in the first region 200 to be higher than the load capacity of the static pressure pad 100 in the second region 210, it is opposite to the cam rotation direction having a relatively large peak value.
  • the side force along the direction can be effectively received.
  • the side force along the cam rotation direction having a relatively small peak value can be received by the static pressure pad 100 in the second region 210 having a relatively small load capacity. For example, if the load capacity of the static pressure pad 100 is increased by increasing the area of the static pressure pad 100, the amount of hydraulic oil supplied to the static pressure pad 100 (the amount of hydraulic oil leaked from the hydraulic chamber 25). Increases, which may contribute to a decrease in the performance of the hydraulic pump.
  • the cam rotation direction of the piston surface 24S is the number of static pressure pads 100 in the first region 200 on the upstream side (where m is an integer equal to or greater than 1) is the number of static pressure pads 100 in the second region 210 downstream of the piston surface 24S in the cam rotation direction. It is set to n or less (where n is an integer of 0 or more). In the exemplary embodiment shown in FIG. 8B, the number m of the static pressure pads 100 in the first region 200 is zero, and the number n of the static pressure pads 100 in the second region 210 is one.
  • the side force along the direction opposite to the cam rotation direction having a relatively small peak value can be received by the m hydrostatic pads 100 in the first region 200 that are n or less.
  • the cam surface direction of the piston surface 24S The load capacity of the static pressure pad 100 in the first area 200 on the upstream side is set to be equal to or less than the load capacity of the static pressure pad 100 in the second area 210 on the downstream side in the cam rotation direction of the piston surface 24S.
  • the static pressure pad 100 in the second region 210 may have a larger area than the static pressure pad 100 in the first region 200.
  • the load capacity of the static pressure pad 100 in the second region 210 is set to be equal to or higher than the load capacity of the static pressure pad 100 in the first region 200, the side along the cam rotation direction having a relatively large peak value.
  • the force can be received effectively.
  • the side force along the direction opposite to the cam rotation direction having a relatively small peak value can be received by the static pressure pad 100 in the first region 200 having a relatively small load capacity.
  • the load capacity of the static pressure pad 100 is increased by increasing the area of the static pressure pad 100, the amount of hydraulic oil supplied to the static pressure pad 100 (the amount of hydraulic oil leaked from the hydraulic chamber 25). Increases, which may contribute to a decrease in the performance of the hydraulic pump.
  • the load capacity of the static pressure pad 100 in the first region 200 is set to be equal to or less than the load capacity of the static pressure pad 100 in the second region 210, the total amount of hydraulic oil supplied to the static pressure pad 100 in both regions.
  • the opening / closing timing of the low pressure valve 40 and the high pressure valve 50 when the hydraulic machine 20 is a hydraulic pump will be described.
  • the valve opening / closing timing described below may be applied only to the low pressure valve 40 and the high pressure valve 50 belonging to some of the hydraulic chambers 25.
  • the hydraulic machine 20 determines the ratio between the number of hydraulic chambers 25 (active chambers) that contribute to the generation of high-pressure hydraulic oil and the number of hydraulic chambers 25 (non-active chambers) that do not contribute to the generation of high-pressure hydraulic oil. It may be designed to adjust the displacement volume by changing.
  • each hydraulic chamber 25 may be determined for each cycle of the reciprocating motion of the piston 24 so as to obtain a desired displacement volume of the hydraulic machine 20.
  • FIG. 9 is a chart showing opening and closing timings of the low pressure valve 40 and the high pressure valve 50 according to the embodiment.
  • the horizontal axis in FIG. 9 is the position of the contact point Z on the cam surface 33
  • the vertical axis in FIG. 9 is the piston position, the open / close state of the high pressure valve 50, the excited state and open / close state of the low pressure valve 40, and the hydraulic chamber 25. This is the pressure of the hydraulic oil inside.
  • the first point P 1 is a pair on the cam surface 33 that is located between the bottom point 38 and the apex 36 of the lobe 34 and whose normal to the cam surface 33 coincides with the cylinder center axis C.
  • the second point P 2 is a point on the cam surface 33 corresponding to the top dead center of the piston 24 (TDC)
  • the third point P 3 is This is the starting point of the working area 34A (see FIG. 4).
  • the low pressure valve 40 is closed when the roller 26 is positioned on the working area 34A of the cam surface 33 and is opened when the roller 26 is positioned on the breathing area 34B of the cam surface 33.
  • the roller 26 is closed is maintained in at least a portion of the period extending from the first point P 1 to the second point P 2, so that the roller 26 is opened after passing through the second point P 2 Configured.
  • the low-pressure valve 40 is a normally open solenoid valve including a first seat 41, a first valve body 42, a first stem 44, a solenoid 46, and a first biasing member 48, as shown in FIG. is there. In this case, as shown in FIG.
  • the solenoid 46 is closed is energized when the roller 26 is positioned near the third point P 3, the roller 26 through the third point P 3 of the first point P 1 closed state may be maintained when towards the second point P 2. Further, when the roller 26 reaches the fourth point P 4 (the end point P 4 of the working region 34A) opposite to the first point P 1 across the second point P 2 , both sides of the first valve element 42 are disposed. opened the pressure differential of the hydraulic fluid exceeds the biasing force of first biasing member 48, the state may be is maintained opened when the roller 26 is directed from the fourth point P 4 to the third point P 3 .
  • the high-pressure valve 50 is basically opened when the roller 26 is positioned on the working area 34 ⁇ / b> A of the cam surface 33 and is closed when the roller 26 is positioned on the breathing area 34 ⁇ / b> B of the cam surface 33.
  • the high pressure valve 50, the roller 26 is maintained in an open state at least part of the period extending from the first point P 1 to the second point P 2, the roller 26 is a second point P 2 Configured to close after passing.
  • the high-pressure valve 50 includes a second seat 51, a second valve body 52 that can contact the second seat 51, and the second valve body 52 as the second seat 51. And a second biasing member 58 for biasing to the side.
  • the high pressure valve 50 is configured so that the pressure difference between the hydraulic oils on both sides of the second valve body 52 after the roller 26 passes the third point P 3 is the urging force by the second urging member 58.
  • the roller 26 is configured so that the pressure difference before reaching the fourth point P 4 is closed below the biasing force of the second biasing member 58.
  • valve 40 is closed, by closing the high pressure valve 50 is opened to low pressure valve 40 after the second point P 2 passing roller 26, the apex roller 26 from the bottom point 38 of lobes 34 While moving to the vicinity of 36, the direction of the side force Fs is reversed. That is, while the roller 26 moves between the bottom point 38 and the apex 36 of the lobe 34, the piston 24 not only has a side force along the direction opposite to the cam rotation direction but also a side force along the cam rotation direction.
  • the peak value F 1 side force along the cam rotation direction is reduced.
  • the side force peak value F 1 along the cam rotation direction is ensured while ensuring the length of the working region 34A of the cam surface 33. Can be reduced.
  • lubrication of the piston surface 24S is greatly changed in the first point before and after passage of the P 1 of the roller 26.
  • the flow of the lubricating oil between the piston surface 24S and the inner wall surface of the cylinder 22 is promoted. Therefore, based on changes in the lubrication of the piston surface 24S of the first point before and after passage of the P 1 of roller 26 may determine the supply condition of the lubricating oil to the piston surface 24S.
  • a relationship of 0 ⁇ X ⁇ Y is established between the angle N of the normal line N to the second straight line L2 in inf .
  • the first straight line L1 is a straight line (straight line along the radial direction R) connecting the roller center A and the cam center O in a state where each roller 26 is in contact with the apex 36 of the lobe 34.
  • the second straight line L2 is a straight line parallel to the radial direction R connecting the inflection point Z inf on the cam surface 33 and the cam center O. That is, the angle X corresponds to the angle with respect to the radial direction R of the cylinder center axis C in a state where the roller 26 is in contact with the apex 36 of the lobe 34, and the angle Y is the inflection point Z inf of the cam surface 33. This corresponds to the angle with respect to the radial direction R of the cylinder center axis C in a state of being in contact with the cylinder.
  • the cylinder 22 is disposed with an appropriate inclination angle with respect to the radial direction R, and the peak value of the side force is reduced. The influence of side forces can be reduced.
  • the hydraulic machine 20 used as at least one of the hydraulic pump 8 or the hydraulic motor 10 of the wind power generator 1 has been described.
  • the use of the hydraulic machine 20 is not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Wind Motors (AREA)

Abstract

 ラジアルピストン式の油圧機械は、少なくとも一つのシリンダと、前記少なくとも一つのシリンダ内にそれぞれ摺動可能に設けられた少なくとも一つのピストンと、前記油圧機械の周方向に沿って並ぶ複数のローブによって形成されるカム表面を有し、各々の前記ピストンに対して相対的に前記周方向に前記複数のローブが移動するように回転可能に構成されたカムと、前記少なくとも一つのピストンにそれぞれ回転可能に係合するとともに、前記カム表面に当接する少なくとも一つのローラとを備える。各々の前記シリンダは、各々の前記ローラが前記ローブの頂点に当接した状態における、各々の前記シリンダの中心軸と、各々の前記ローラの中心と前記カムの中心とを結ぶ第1直線との間の角度をXとし、前記ローブの底点と前記頂点との間に位置する前記カム表面の変曲点における前記カム表面の法線と、前記カムの前記中心と前記変曲点とを結ぶ第2直線との間の角度をYとしたとき、0<X<Yの関係を満たすように、前記油圧機械の半径方向に対して傾斜して配置される。

Description

油圧機械及び再生エネルギー発電装置
 本開示は、油圧機械及びこれを備えた再生エネルギー発電装置に関する。
 従来から、複数のピストンが放射状に並んだラジアルピストン式の油圧機械が知られている。
 例えば、特許文献1には、風力発電装置のドライブトレインとして機能するラジアルピストン式油圧機械が開示されている。特許文献1に記載のラジアルピストン式油圧機械は、シリンダ内を往復運動するピストンと、ピストンに取り付けられたローラと、複数のローブによって形成されるカム表面を有するカムとを備えている。
 なお、特許文献1には、ラジアルピストン式油圧機械の油圧室を半径方向に対して約10度傾斜させて配置することが開示されている。
英国特許出願公開第2482879号明細書
 ところで、ラジアルピストン式油圧機械では、シリンダ中心軸に直交する方向のサイドフォースがローラを介してカムからピストンに作用する。サイドフォースを軽減するための一手法として、ピストンを半径方向に対して傾斜させて配置することが考えられる。
 この点、特許文献1には、ラジアルピストン式油圧機械の油圧室を半径方向に対して約10度傾斜させて配置することが記載されているものの、油圧室の傾斜角の具体的な決定手法については開示がない。
 本発明の少なくとも一実施形態の目的は、サイドフォースによる影響を軽減しうる油圧機械及びこれを備えた再生可能エネルギー発電装置を提供することである。
 本発明の少なくとも一実施形態に係る油圧機械は、
 ラジアルピストン式の油圧機械であって、
 少なくとも一つのシリンダと、
 前記少なくとも一つのシリンダ内にそれぞれ摺動可能に設けられた少なくとも一つのピストンと、
 前記油圧機械の周方向に沿って並ぶ複数のローブによって形成されるカム表面を有し、各々の前記ピストンに対して相対的に前記周方向に前記複数のローブが移動するように回転可能に構成されたカムと、
 前記少なくとも一つのピストンにそれぞれ回転可能に係合するとともに、前記カム表面に当接する少なくとも一つのローラとを備え、
 各々の前記ローラが前記ローブの頂点に当接した状態における、各々の前記シリンダの中心軸と、各々の前記ローラの中心と前記カムの中心とを結ぶ第1直線との間の角度をXとし、前記ローブの底点と前記頂点との間に位置する前記カム表面の変曲点における前記カム表面の法線と、前記カムの前記中心と前記変曲点とを結ぶ第2直線との間の角度をYとしたとき、0<X<Yの関係を満たすように、各々の前記シリンダが前記油圧機械の半径方向に対して傾斜して配置される。
 上記油圧機械のピストンには、ローラとの接触点におけるカム表面の法線方向に沿った荷重のシリンダ中心軸に直交する方向の成分であるサイドフォースがローラを介してカムから作用する。ローラのカム表面に対する接触位置によって当該位置におけるカム表面の法線方向は異なるから、ローラがローブの底点と頂点との間を移動する間にサイドフォースの大きさは変動する。よって、ローブの底点と頂点との間には、サイドフォースが最大となるカム表面上におけるローラの接触位置が存在する。また、サイドフォースの大きさは、シリンダ中心軸の方向によっても変化する。
 例えば、シリンダが半径方向に対して傾斜しておらずシリンダ中心軸と半径方向とが平行であれば、カム表面の変曲点上にローラが位置するとき、カム表面の法線方向とシリンダ中心軸との間の角度が最大となってサイドフォースの絶対値が最大になる。ところが、半径方向に対してシリンダ中心軸を傾斜させると、カム表面の変曲点における法線とシリンダ中心軸との間の角度が小さくなり、カム表面の変曲点にローラが当接した状態におけるサイドフォースは減少する。シリンダ中心軸の半径方向に対する傾斜量をさらに増やすと、今度はローブの頂点近傍においてカム表面の法線とシリンダ中心軸との間の角度が最大となり、ローブ頂点近傍においてサイドフォースの絶対値が最大となる。このように、シリンダ中心軸の半径方向に対する傾斜角に応じて、サイドフォースの大きさや、サイドフォースの絶対値が最大となるカム表面上のローラの接触位置が変化する。
 上記油圧機械では、ローラがローブの頂点に当接した状態におけるシリンダ中心軸の第1直線に対する角度Xと、カム表面の変曲点における法線の第2直線に対する角度Yとの間に0<X<Yの関係が成立する。ここで、第1直線は、各々のローラがローブの頂点に当接した状態においてローラ中心とカム中心とを結んだ半径方向に沿った直線である。また、第2直線は、カム表面上の変曲点とカム中心とを結んだ半径方向に平行な直線である。すなわち、角度Xは、ローラがローブの頂点に当接した状態におけるシリンダ中心軸の半径方向に対する角度に相当し、角度Yは、ローラがカム表面の変曲点に当接した状態におけるシリンダ中心軸の半径方向に対する角度に相当する。したがって、半径方向に対して適度な傾斜角でシリンダが傾斜して配置され、サイドフォースのピーク値が減少し、サイドフォースによる影響を軽減できる。
 幾つかの実施形態では、上記油圧機械は、各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた少なくとも一つの静圧パッドをさらに備え、前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、各々の前記シリンダは、0.5Y<X<Yの関係を満たすように前記半径方向に対して傾斜しており、前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの個数をm(ただしmは1以上の整数)とし、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの個数をn(ただしnは0以上の整数)としたとき、m≧nの関係を満たす。
 シリンダが半径方向に対して傾斜して配置される場合、ローラのカム表面に対する接触位置によってカム表面の法線方向は異なるから、ローブの底点と頂点との間には、カム表面の法線方向がシリンダ中心軸に一致する基準点Zrefが存在する。この基準点Zrefでは、カム表面の法線方向とシリンダ中心軸が一致するためサイドフォースが発生しない。また、カム表面上の基準点Zrefの両側ではシリンダ中心軸に対するカム表面の法線の傾斜方向が逆であるから、高圧弁及び低圧弁の開閉タイミングが適切であれば、基準点Zrefを境にサイドフォースの向きは逆転する。すなわち、ローブの底点と頂点との間をローラが移動する間に、ピストンは、カム回転方向の逆方向に沿ったサイドフォースと、カム回転方向に沿ったサイドフォースとの両方を受けることになる。
 カム回転方向とは逆方向に沿ったサイドフォースは、主として、ピストン表面のうちカム回転方向の上流側の第1領域に設けられたm個の静圧パッドによって負担される。一方、カム回転方向に沿ったサイドフォースは、主として、ピストン表面のうちカム回転方向の下流側の第2領域に設けられたn個の静圧パッドによって負担される。
 ここで、油圧機械が油圧ポンプであって、ローラがローブの頂点に当接した状態におけるシリンダ中心軸の略半径方向(第1直線)に対する角度Xと、カム表面の変曲点における法線の半径方向(第2直線)に対する角度Yとの間に0.5Y<X<Yの関係が成立する場合、カム回転方向とは逆方向に沿ったサイドフォースのピーク値が相対的に大きくなる。よって、第1領域の静圧パッドの個数mを、第2領域の静圧パッドの個数n以上に設定することで、相対的にピーク値が大きいカム回転方向とは逆方向に沿ったサイドフォースを第1領域のm個の静圧パッドで効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向に沿ったサイドフォースについては、m以下であるn個の第2領域の静圧パッドで受けることができる。
 また、静圧パッドの個数が多くなると、静圧パッドへの作動油の供給量(静圧パッドに油圧室内の作動油を供給する構成では油圧室からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第2領域の静圧パッドの個数nを、第1領域の静圧パッドの個数m以下に設定することで、静圧パッドの総数(=m+n)を減らして油圧ポンプの性能低下を抑制できる。
 幾つかの実施形態では、上記油圧機械は、各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた複数の静圧パッドをさらに備え、前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、各々の前記シリンダは、0.5Y<X<Yの関係を満たすように前記半径方向に対して傾斜しており、前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの負荷能力は、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの負荷能力よりも高い。
 このように、第1領域における静圧パッドの負荷能力を第2領域における静圧パッドの負荷能力よりも高く設定することで、相対的にピーク値が大きいカム回転方向とは逆方向に沿ったサイドフォースを効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向に沿ったサイドフォースについては、負荷能力が比較的小さい第2領域の静圧パッドで受けることができる。
 また、例えば静圧パッドの面積を大きくして静圧パッドの負荷能力を上げようとすれば、静圧パッドへの作動油の供給量(静圧パッドに油圧室内の作動油を供給する構成では油圧室からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第2領域の静圧パッドの負荷能力を、第1領域の静圧パッドの負荷能力未満とすることで、両方の静圧パッドへの作動油の総供給量(油圧室からの作動油の漏れ量)を減らして油圧ポンプの性能低下を抑制できる。
 幾つかの実施形態では、上記油圧機械は、各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた少なくとも一つの静圧パッドをさらに備え、前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、各々の前記シリンダは、0<X≦0.5Yの関係を満たすように前記半径方向に対して傾斜しており、前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの個数をm(ただしmは1以上の整数)とし、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの個数をn(ただしnは0以上の整数)としたとき、m≦nの関係を満たす。
 油圧機械が油圧ポンプであって、ローラがローブの頂点に当接した状態におけるシリンダ中心軸の略半径方向(第1直線)に対する角度Xと、カム表面の変曲点における法線の半径方向(第2直線)に対する角度Yとの間に0<X≦0.5Yの関係が成立する場合、カム回転方向に沿ったサイドフォースのピーク値が相対的に大きくなる。よって、第2領域の静圧パッドの個数nを、第1領域の静圧パッドの個数m以上に設定することで、相対的にピーク値が大きいカム回転方向に沿ったサイドフォースを第2領域のn個の静圧パッドで効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向の逆方向に沿ったサイドフォースについては、n以下であるm個の第1領域の静圧パッドで受けることができる。
 また、静圧パッドの個数が多くなると、静圧パッドへの作動油の供給量(静圧パッドに油圧室内の作動油を供給する構成では油圧室からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第1領域の静圧パッドの個数mを、第2領域の静圧パッドの個数n以下に設定することで、静圧パッドの総数(=m+n)を減らして油圧ポンプの性能低下を抑制できる。
 幾つかの実施形態では、上記油圧機械は、各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた少なくとも一つの静圧パッドをさらに備え、前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、各々の前記シリンダは、該シリンダの第1端部の周方向位置が、前記第1端部よりも前記油圧機械の半径方向において前記カムに近い前記シリンダの第2端部の周方向位置よりも前記カムの回転方向の下流側にずれ、且つ、0<X≦0.5Yの関係を満たすように前記半径方向に対して傾斜しており、前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの負荷能力は、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの負荷能力以下である。
 このように、第2領域における静圧パッドの負荷能力を第1領域における静圧パッドの負荷能力以上に設定することで、相対的にピーク値が大きいカム回転方向に沿ったサイドフォースを効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向の逆方向に沿ったサイドフォースについては、負荷能力が比較的小さい第1領域の静圧パッドで受けることができる。
 また、例えば静圧パッドの面積を大きくして静圧パッドの負荷能力を上げようとすれば、静圧パッドへの作動油の供給量(静圧パッドに油圧室内の作動油を供給する構成では油圧室からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第1領域の静圧パッドの負荷能力を、第2領域の静圧パッドの負荷能力以下とすることで、両方の静圧パッドへの作動油の総供給量(油圧室からの作動油の漏れ量)を減らして油圧ポンプの性能低下を抑制できる。
 幾つかの実施形態では、上記油圧機械は、作動油が流れる低圧油ラインと、前記低圧油ラインよりも高圧の前記作動油が流れる高圧油ラインと、各々の前記シリンダと各々の前記ピストンとで形成される油圧室と前記低圧油ラインとの間に設けられる低圧弁と、前記油圧室と前記高圧油ラインとの間に設けられる高圧弁とをさらに備え、前記ローブの前記底点と前記頂点との間に位置する、前記カム表面の前記法線と前記シリンダの前記中心軸とが一致する前記カム表面上の一対の基準点のうち前記頂点側の点を第1点とし、各々の前記ピストンの上死点に対応する前記カム表面上の点を第2点としたとき、少なくとも一つの前記油圧室に属する前記低圧弁は、各々の前記ローラが前記第1点から前記第2点に向かう期間の少なくとも一部において閉じた状態が維持され、各々の前記ローラが前記第2点を通過した後に開くように構成されており、少なくとも一つの前記油圧室に属する前記高圧弁は、各々の前記ローラが前記第1点から前記第2点に向かう期間の少なくとも一部において開いた状態が維持され、各々の前記ローラが前記第2点を通過した後に閉じるように構成される。
 ここで、カム表面上の第1点Pは上述の基準点Zrefのうちの一つであるから、第1点Pでは、カム表面の法線とシリンダ中心軸とが一致し、サイドフォースは発生しない。また、第1点の両側ではシリンダ中心軸に対するカム表面の法線の傾斜方向が逆であるから、第1点を境にサイドフォースの向きは逆転する。
 上述のように、第1点Pとピストンの上死点に対応する第2点Pとの間にローラが位置する期間の少なくとも一部において低圧弁が閉じて高圧弁が開いた状態を維持し、ローラの第2点通過した後に低圧弁を開くとともに高圧弁を閉じれば、ローラがローブの底点から頂点近傍まで移動する間にサイドフォースの向きが逆転する。すなわち、ローブの底点と頂点との間をローラが移動する間に、ピストンは、カム回転方向の逆方向に沿ったサイドフォースだけでなく、カム回転方向に沿ったサイドフォースも受けることになるが、カム回転方向に沿ったサイドフォースのピーク値は低減される。
 このように、低圧弁及び高圧弁の開閉タイミングを適切に設定することで、カム表面のワーキング領域の長さを確保しながら、カム回転方向に沿ったサイドフォースのピーク値を低減できる。
 一実施形態では、前記油圧機械は、前記油圧機械は、前記作動油を昇圧するように構成された油圧ポンプであり、前記低圧弁は、第1シートと、前記第1シートに当接可能な第1弁体と、該第1弁体に連結された第1ステムと、前記第1ステムを駆動するための磁力を生成するように構成されたソレノイドと、前記第1弁体を第1シートとは反対側に付勢するための第1付勢部材とを含むノーマルオープン式電磁弁であり、少なくとも一つの前記油圧室に属する前記ノーマルオープン式電磁弁は、各々の前記ピストンの下死点に対応する前記カム表面上の点である第3点近傍に各々の前記ローラが位置するときに前記ソレノイドが励磁されて閉じられ、各々の前記ローラが前記第3点から前記第1点を経て前記第2点に向かうときに閉じられた状態が維持され、各々の前記ローラが前記第2点を挟んで前記第1点とは反対側の第4点に到達したときに前記第1弁体の両側の前記作動油の圧力差を前記第1付勢部材による付勢力が上回って開かれ、各々の前記ローラが前記第4点から前記第3点に向かうときに開かれた状態が維持されるように構成され、前記高圧弁は、第2シートと、前記第2シートに当接可能な第2弁体と、該第2弁体を前記第2シート側に付勢するための第2付勢部材とを含むチェック弁であり、前記チェック弁は、各々の前記ローラが前記第3点を通過した後に前記第2弁体の両側の前記作動油の圧力差が前記第2付勢部材による付勢力を上回って開かれ、各々の前記ローラが前記第4点に至る前に前記圧力差が前記付勢力を下回って閉じられるように構成される。
 なお、各々の前記ローラが前記第1点を通過する前後における各々の前記シリンダに対向する各々の前記ピストンのピストン表面の潤滑状態の変化に基づいて、前記ピストン表面への潤滑油の供給条件を決定してもよい。
 幾つかの実施形態では、各々の前記ピストンは、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油から圧力を受ける受圧面を有する第1部分と、該第1部分よりも前記カム寄りに位置し、前記ローラと係合する第2部分とを含み、前記第1部分と前記第2部分との間には段差が設けられ、前記第2部分の前記カムの回転方向に沿った幅は前記第1部分の直径よりも大きい。
 これにより、ピストンの第2部分と該第2部分に対向するシリンダ内壁面とで、カム回転方向に沿ったサイドフォースを受けることができる。
 一実施形態では、各々の前記シリンダは、前記カムの回転方向に沿ったサイドフォースの最大値Fと、前記カムの回転方向の逆方向に沿った前記サイドフォースの最大値Fとが0.8×F≦F≦1.2×Fの関係を満たすように前記半径方向に対して傾斜している。
 これにより、カム回転方向に沿ったサイドフォースの最大値Fと、カム回転方向の逆方向に沿ったサイドフォースの最大値Fとをバランス良く低減され、サイドフォースによる影響を効果的に軽減できる。
 また、本発明の少なくとも一実施形態に係る再生可能エネルギー装置は、
 再生可能エネルギーを受け取るための少なくとも一本のブレードと、
 前記少なくとも一本のブレードが取付けられるハブと、
 前記ハブの回転によって駆動されるように構成された油圧ポンプと、
 前記油圧ポンプで生成された圧油によって駆動されるように構成された油圧モータと、
 前記油圧モータによって駆動されるように構成された発電機とを備える再生可能エネルギー発電装置であって、
 前記油圧ポンプ及び前記油圧モータの少なくとも一方は、ラジアルピストン式の油圧機械であり、
 前記ラジアルピストン式の油圧機械は、少なくとも一つのシリンダと、前記少なくとも一つのシリンダ内にそれぞれ摺動可能に設けられた少なくとも一つのピストンと、前記油圧機械の周方向に沿って並ぶ複数のローブによって形成されるカム表面を有し、各々の前記ピストンに対して相対的に前記周方向に前記複数のローブが移動するように回転可能に構成されたカムと、前記少なくとも一つのピストンにそれぞれ回転可能に係合するとともに、前記カム表面に当接する少なくとも一つのローラとを備え、
 各々の前記ローラが前記ローブの頂点に当接した状態における、各々の前記シリンダの中心軸と、各々の前記ローラの中心と前記カムの中心とを結ぶ第1直線との間の角度をXとし、前記ローブの底点と前記頂点との間に位置する前記カム表面の変曲点における前記カム表面の法線と、前記カムの前記中心と前記変曲点とを結ぶ第2直線との間の角度をYとしたとき、0<X<Yの関係を満たすように、
 各々の前記シリンダが前記油圧機械の半径方向に対して傾斜して配置される。
 上記再生エネルギー発電装置では、ローラがローブの頂点に当接した状態におけるシリンダ中心軸の略半径方向(第1直線)に対する角度Xと、カム表面の変曲点における法線の半径方向(第2直線)に対する角度Yとの間に0<X<Yの関係が成立する。したがって、半径方向に対して適度な傾斜角でシリンダが傾斜して配置され、サイドフォースのピーク値が減少し、サイドフォースによる影響を軽減できる。
 一実施形態では、前記再生可能エネルギー発電装置は、前記再生可能エネルギーとしての風から電力を生成するように構成された風力発電装置である。
 本発明の少なくとも一実施形態によれば、したがって、半径方向に対して適度な傾斜角でシリンダが傾斜して配置され、サイドフォースのピーク値が減少し、サイドフォースによる影響を軽減できる。
一実施形態に係る風力発電装置を示す図である。 一実施形態に係る油圧機械の半径方向に沿った断面図である。 一実施形態に係る油圧機械のシリンダ周辺の構造を示す断面図である。 サイドフォースの発生原理について説明するための図である。 図5(a)~(c)は、油圧機械の半径方向に対するシリンダ中心軸の傾斜角が異なる3つの条件下におけるサイドフォースFsの計算結果例を示すグラフである。 一実施形態に係るシリンダ中心軸の半径方向に対する傾斜角の設定手法について説明するための図である。 一実施形態に係るピストン周辺の構成の斜視図である。 (a)及び(b)は、実施形態に係る静圧パッドの構成を示す図である。 一実施形態に係る低圧弁及び高圧弁の開閉タイミングを示すチャートである。
 以下、添付図面に従って本発明の実施形態について説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 以下の実施形態では、再生エネルギー発電装置の一例として風力発電装置について説明する。ただし、本発明は潮流発電装置、海流発電装置、河流発電装置等の他の再生エネルギー発電装置にも適用できる。
 また、以下では、主として外向きカムを備えた油圧機械の実施形態について説明するが、油圧機械は内向きカムを備えていてもよく、その場合、下記内容の方向に関する記載を適宜逆方向に読み替えたものも本発明の実施形態に含まれる。
 図1は、一実施形態に係る風力発電装置を示す図である。同図に示すように、風力発電装置1は、少なくとも一本のブレード2及びハブ4で構成されるロータ3を備える。なお、ハブ4はハブカバー(スピナー)5によって覆われていてもよい。
 一実施形態では、ロータ3には、回転シャフト6を介して油圧ポンプ8が連結される。油圧ポンプ8には、高圧油ライン12及び低圧油ライン14を介して油圧モータ10が接続される。具体的には、油圧ポンプ8の出口が高圧油ライン12を介して油圧モータ10の入口に接続され、油圧ポンプ8の入口が低圧油ライン14を介して油圧モータ10の出口に接続される。油圧ポンプ8は、回転シャフト6によって駆動されて作動油を昇圧し、高圧の作動油(圧油)を生成する。油圧ポンプ8で生成された圧油は高圧油ライン12を介して油圧モータ10に供給され、この圧油によって油圧モータ10が駆動される。油圧モータ10で仕事をした後の低圧の作動油は、油圧モータ10の出口と油圧ポンプ8の入口との間に設けられた低圧油ライン14を経由して、油圧ポンプ8に再び戻される。
 油圧モータ10には発電機16が連結される。一実施形態では、発電機16は、電力系統に連系されるとともに、油圧モータ10によって駆動される同期発電機である。
 なお、回転シャフト6の少なくとも一部は、タワー19上に設置されたナセル18によって覆われている。一実施形態では、油圧ポンプ8、油圧モータ10及び発電機16は、ナセル18の内部に設置される。
 幾つかの実施形態では、油圧ポンプ8又は油圧モータ10の少なくとも一方は、以下で説明するラジアルピストン式の油圧機械である。
 図2は、一実施形態に係る油圧機械の半径方向に沿った断面図である。図3は、一実施形態に係る油圧機械のシリンダ周辺の構造を示す断面図である。
 図2に示す油圧機械20は、複数のシリンダ22と、シリンダ22内にそれぞれ設けられる複数のピストン24と、ピストン24にそれぞれ設けられるローラ26とを備える。また、油圧機械20は、回転シャフト30と、回転シャフト30とともに回転するように構成されたカム32をさらに備える。
 なお、図2及び3に示す例示的な実施形態では、回転シャフト30の外周側に環状の外向きカム32が設けられ、さらに外向きカム32の外周側にシリンダ22、ピストン24及びローラ26が配置されている。ここで、外向きカムとは、ローラ26と接触するカム表面を外周側に有するカムをいう。他の実施形態では、回転シャフト30の内周側に環状の内向きカム32が設けられ、さらに内向きカム32の内周側にシリンダ22、ピストン24及びローラ26が配置される。ここで、内向きカムとは、ローラ26と接触するカム表面を内周側に有するカムをいう。
 複数のシリンダ22は、シリンダブロック21内において油圧機械20の周方向に配列される。一実施形態では、図3に示すように、シリンダ22は、シリンダブロック21のスリーブ穴21Hに挿入されたシリンダスリーブ23によって形成される。他の実施形態では、シリンダ22は、シリンダスリーブ23を用いずにシリンダブロック21に直接形成される。なお、シリンダブロック21は、油圧機械20の周方向において複数のセグメント21Sに分割されていてもよい。図2及び図3に示す例示的な実施形態では、一対のシリンダ22を有するセグメント21Sが油圧機械20の周方向に複数並んでおり、これらのセグメント21Sによって環状のシリンダブロック21が形成されている。
 各々のシリンダ22は油圧機械20の半径方向Rに対して傾斜して配置され、シリンダ22の中心軸Cは油圧機械20の半径方向Rに対して傾斜している。一実施形態では、油圧機械20は油圧ポンプであり、図2及び3に示すように、シリンダ22のカム32から遠い一端部(第1端部)の周方向位置がカム32に近い他端部(第2端部)の周方向位置よりもカム回転方向の下流側にずれるように、各々のシリンダ22が半径方向Rに対して傾斜して配置される。これに対し、油圧機械20が油圧モータ10である場合、シリンダ22のカム32から遠い一端部(第1端部)の周方向位置がカム32に近い他端部(第2端部)の周方向位置よりもカム回転方向の上流側にずれるように、各々のシリンダ22が半径方向Rに対して傾斜して配置される。
 なお、シリンダ22の中心軸Cの半径方向Rに対する傾斜角については、後で詳述する。
 各々のピストン24は、各々のシリンダ22内に摺動可能に設けられる。各ピストン24は、各シリンダ22によって案内され、シリンダ22の中心軸Cに沿って、下死点と上死点との間で往復運動するようになっている。ピストン24の往復運動の結果、各々のシリンダ22と各々のピストン24とで囲まれた油圧室25の容積は周期的に変化する。
 こうした油圧室25の周期的な容積変化を伴うピストン24の往復運動は、カム32の回転運動との間で運動モードが変換されるようになっている。
 例えば、油圧機械20が油圧ポンプ8である場合、油圧機械20の回転シャフト30とともに回転するカム32の回転運動がピストン24の往復運動に変換され、油圧室25の周期的な容積変化が起こり、油圧室25で高圧の作動油(圧油)が生成される。これに対し、油圧機械20が油圧モータ10である場合、油圧室25への圧油の導入によってピストン24の往復運動が起こり、この往復運動がカム32の回転運動に変換される結果、カム32とともに油圧機械20の回転シャフト30が回転する。
 こうして、カム32の働きにより、油圧機械20の回転シャフト30の回転エネルギー(機械的エネルギー)と作動油の流体エネルギーとの間でエネルギーが変換され、油圧機械20が油圧ポンプ8又は油圧モータ10としての所期の役割を果たすようになっている。
 各々のローラ26は、ローラ回転軸A周りに回転可能に各々のピストン24に係合しており、カム32のカム表面33に当接している。カム32が回転シャフト30とともにカム中心O(油圧機械20の中心軸)周りに回転すると、各々のローラ26はローラ回転軸A周りに回転しながら、カム32のカム表面33上を走行する。
 カム32のカム表面33は、油圧機械20の周方向に沿って並ぶ複数のローブ34によって形成される。各々のローブ34は、シリンダ22に向かって突出している。各々のローブ34は、一対の底点38と、該一対の底点38間に位置する1個の頂点36とを通る滑らかな曲線によって形成される。ローブ34の頂点36及び底点38は、油圧機械20の中心軸(カム中心)Oからの距離が最大又は最小となるカム表面33上の位置であり、頂点36は底点38よりもシリンダ22寄りに位置する。ローブ34の頂点36はピストン24の往復運動の周期における上死点に対応するカム表面33上の点(後述の第2点P)に一致する。一方、ローブ34の底点38は、ピストン24の往復運動の周期における下死点に対応するカム表面33上の点(後述の第3点P)に一致する。
 図2及び3に示す例示的な実施形態では、外向きカム32の外周側にシリンダ22が配置されており、ローブ34の頂点36で外向きカム32の中心軸Oからの距離が最大となり、ローブ34の底点38で中心軸Oからの距離が最小となる。これに対し、内向きカムの内周側にシリンダ22が配置された他の実施形態では、ローブ34の頂点36で内向きカムの中心軸Oからカム表面33までの距離は最小となり、ローブ34の底点38で内向きカムの中心軸Oからカム表面33までの距離は最大となる。なお、各々のローブ34の頂点36及び底点38では、カム表面33の法線が半径方向Rと一致する。
 幾つかの実施形態では、図3に示すように、油圧機械20は、各々の油圧室25と低圧油ライン14との間に設けられる低圧弁40と、各々の油圧室25と高圧油ライン12との間に設けられる高圧弁50とをさらに備える。油圧機械20が油圧ポンプである場合、低圧弁40は低圧油ライン14から油圧室25に低圧の作動油を供給するために用いられ、高圧弁50は油圧室25で生成された高圧の作動油を高圧ライン12に供給するために用いられる。
 低圧弁40は、図3に示すように、第1シート41と、第1シート41に当接可能な第1弁体42と、該第1弁体42に連結された第1ステム44と、第1ステム44を駆動するための磁力を生成するように構成されたソレノイド46と、第1弁体42を第1シート41とは反対側に付勢するための第1付勢部材48とを含むノーマルオープン式電磁弁であってもよい。この場合、ソレノイド46を励磁すれば、ソレノイド46の磁力によって第1付勢部材48による付勢力に抗して第1ステム44が動き、第1弁体42が第1シート41に当接し、低圧弁40は閉じられる。また、ソレノイド46を非励磁とすれば、第1付勢部材48による付勢力によって、第1ステム44が動いて第1弁体42が第1シート41から離れ、低圧弁40は開かれる。なお、第1弁体42は、フェイス・シーリング・ポペット弁体であってもよい。
 一方、油圧機械20が油圧ポンプである場合、高圧弁50は、図3に示すように、第2シート51と、第2シート51に当接可能な第2弁体52と、該第2弁体52を第2シート51側に付勢するための第2付勢部材58とを含むチェック弁であってもよい。この場合、油圧室25内の圧力が上昇して第2弁体52の両側の圧力差が第2付勢部材58による付勢力を上回れば、該圧力差によって第2弁体52が第2シート51から離れ、高圧弁50は開かれる。また、第2弁体52の両側の圧力差が第2付勢部材58による付勢力より小さければ、第2付勢部材58による付勢力によって第2弁体52が第2シート51に当接し、高圧弁50は閉じられる。第2弁体52は、図3に示すような球形弁体であってもよい。
 なお、低圧弁40及び高圧弁50の開閉タイミングについては、後で詳述する。
 図4は、サイドフォースの発生原理について説明するための図である。図5(a)~(c)は、シリンダ中心軸Cの半径方向Rに対する傾斜角が異なる3つの条件下におけるサイドフォースFsの計算結果例を示すグラフである。図6は、一実施形態に係るシリンダ中心軸Cの半径方向Rに対する傾斜角の設定原理について説明するための図である。
 油圧機械20が油圧ポンプである場合、ローラ26がカム表面33のワーキング領域34A上に位置するとき、基本的には、ピストン24は下死点から上死点に向かって移動中であり、油圧室25内の作動油の圧力は高い。これに対し、ローラ26がカム表面33のブリージング領域34B上に位置するとき、基本的には、ピストン24は上死点から下死点に向かって移動中であり、油圧室25内の作動油の圧力は低い。なお、油圧機械20が油圧ポンプの場合、基本的には、図4に示すように、ワーキング領域34Aは各々のローブ34のうち頂点36よりもカム回転方向の下流側の領域であり、ブリージング領域34Bは各々のローブ34のうち頂点36よりもカム回転方向の上流側の領域である。
 一方、油圧機械20が油圧モータである場合、ローラ26がカム表面33のワーキング領域34A上に位置するとき、基本的には、ピストン24は上死点から下死点に向かって移動中であり、油圧室25内の作動油の圧力は高い。これに対し、ローラ26がカム表面33のブリージング領域34B上に位置するとき、基本的には、ピストン24は下死点から上死点に向かって移動中であり、油圧室25内の作動油の圧力は低い。なお、油圧機械20が油圧モータの場合、基本的には、ワーキング領域34Aは各々のローブ34のうち頂点36よりもカム回転方向の上流側の領域であり、ブリージング領域34Bは各々のローブ34のうち頂点36よりもカム回転方向の下流側の領域である。
 例えば、風力発電装置1に代表される再生エネルギー発電装置に用いられる典型的な油圧ポンプ8では、ローラ26がワーキング領域34上に位置する期間中における油圧室25内の作動油の圧力は300~400barであるのに対し、ローラ26がブリージング領域34B上に位置する期間中における油圧室25内の作動油の圧力は数barであり、両者には大きな隔たりがある。
 ワーキング領域34Aとブリージング領域34Bとの間の移行点(図9を参照しながら後述する第3点P及び第4点P)の位置は、シリンダ中心軸Cの半径方向Rに対する傾斜角や、低圧弁40及び高圧弁50の開閉タイミングや、カム32及びローラ26の形状等によって変わり得る。
 典型的には、ワーキング領域34Aとブリージング領域34Bとの間の移行点P及びPは、ピストン24の上死点及び下死点に対応するカム表面33上の位置(ローブ34の頂点36及び底点38)又はその近傍に設定される。一実施形態では、油圧機械20が油圧ポンプの場合において、図4に示すように、ピストン24の下死点に対応するカム表面33上の位置(ローブ34の底点38)からカム回転方向の上流側に僅かにずれた位置にワーキング領域34Aの開始点Pが設定され、ピストン24の上死点に対応するカム表面33上の位置(ローブ34の頂点36)からカム回転方向の上流側に僅かにずれた位置にワーキング領域34Aの終了点Pが設定される。すなわち、ローラ26がローブ34の底点38を通過した直後にローラ26は移行点Pに到達して油圧室25のブリージング工程(吸入工程;Intake Stroke)が終了し、油圧室25のワーキング工程(排出工程;Exhaust Stroke)が開始される。また、ローラ26がローブ34の頂点36を通過した直後にローラ26は移行点Pに到達して油圧室25のワーキング工程が終了し、油圧室25のブリージング工程が開始される。
 ローラ26がワーキング領域34A上に位置する期間中、油圧室25内の非常に大きな圧力に起因したシリンダ22の中心軸Cに沿った押圧力と慣性力との合力をFとしたとき、カム表面33のローラ26との接触点Zには、カム表面33の法線方向に沿った荷重F/cosξが作用する。この荷重F/cosξのうちシリンダ22の中心軸Cに直交する方向の成分はF×tanξであり、その反力としてのサイドフォースFsがローラ26を介してカム32からピストン24に作用する。
 なお、ローラ26がブリージング領域34B上に位置する期間中、油圧室25内の圧力は低いため、サイドフォースFsは小さく実質的に無視できる。そのため、本明細書では、主として、ローラ26がワーキング領域34A上に位置する期間中に発生するサイドフォースFsによる影響を低減するための構成について説明する。
 カム表面33は、カム32の最大直径点及び最小直径点であるローブ34の底点38と頂点36とを通過する曲線であるから、カム表面33上のローラ26との接触点Zごとにカム表面33の法線方向は異なる。これは、ローラ26がローブ34の底点38と頂点36との間を移動する間にサイドフォースFsの大きさが変動することを意味する。したがって、ローブ34の底点38と頂点36との間には、サイドフォースFsが最大となるカム表面33上における接触点が存在する。
 例えば、シリンダ22が半径方向Rに対して傾斜しておらずシリンダ22の中心軸Cと半径方向Rとが平行であれば、カム表面33のワーキング領域34A上の変曲点Zinfにローラ26が接触するとき、カム表面33の法線方向とシリンダ22の中心軸Cとの間の角度ξが最大となってサイドフォースFsの絶対値が最大になる。
 ところが、サイドフォースFs(=F×tanξ)は、接触点Zにおけるカム表面33の法線とシリンダ22の中心軸Cとの間の角度ξの関数であるから、シリンダ22の中心軸Cの方向に応じて変化する。そのため、半径方向Rに対してシリンダ中心軸Cを傾斜させると、カム表面33の変曲点Zinfにおける法線とシリンダ中心軸Cとの間の角度ξが小さくなり、カム表面33の変曲点Zinfにローラ26が当接した状態におけるサイドフォースFsは減少する。シリンダ中心軸Cの半径方向Rに対する傾斜量をさらに増やすと、今度はローブ34の頂点36近傍においてカム表面33の法線とシリンダ中心軸Cとの間の角度ξが大きくなり、頂点36付近においてサイドフォースFsの絶対値が最大となる。
 このように、シリンダ中心軸Cの半径方向Rに対する傾斜角に応じて、サイドフォースFsの大きさや、サイドフォースFsの絶対値が最大となるカム表面33上の接触点Zの位置が変化する。
 図5(a)は、シリンダ中心軸Cの半径方向Rに対する傾斜量が最も小さいケース1におけるサイドフォースFsの計算結果例を示している。図5(b)は、シリンダ中心軸Cの半径方向Rに対する傾斜量が中間であるケース2におけるサイドフォースFsの計算結果例を示している。図5(c)は、シリンダ中心軸Cの半径方向Rに対する傾斜量が最も大きいケース3におけるサイドフォースFsの計算結果例を示している。
 なお、図5(a)~(c)の横軸はカム表面33上の接触点Zの位置を示しており、図5(a)~(c)の縦軸はサイドフォースFsの大きさを示している。また、図5(a)~(c)では、カム回転方向に沿ったサイドフォースFsを負の値とし、カム回転方向の逆方向に沿ったサイドフォースFsを正の値として示している。
 ローラ26のカム表面33に対する接触点Zの位置によってカム表面33の法線方向は異なる。そのため、図5(a)~(c)に示すように、ローラ26がカム表面33のワーキング領域34A上に位置する期間中、カム表面33の法線方向とシリンダ中心軸Cとの間の角度ξの関数であるサイドフォースFs(=F×tanξ)はカム表面33上におけるローラ26の移動とともに周期的に大きく変化する。一方、ローラ26がカム表面33のブリージング領域34B上に位置する期間中、油圧室25内の圧力が小さいためサイドフォースFsはほぼゼロであり、大きな変動はない。
 また、ワーキング領域34A上におけるローブ34の底点38と頂点36との間には、カム表面33の法線方向がシリンダ中心軸Cに一致する基準点Zref(第1点P)が存在する。この基準点Zref(第1点P)では、カム表面33の法線方向とシリンダ中心軸Cが一致するためサイドフォースFsは発生しない。また、カム表面33上の基準点Zref(第1点P)の両側ではシリンダ中心軸Cに対するカム表面33の法線の傾斜方向が逆であるから、低圧弁40及び高圧弁50の開閉タイミングが適切であれば、基準点Zrefを境にサイドフォースFsの向きは逆転する。そのため、図5(a)~(c)において、基準点Zrefの前後おいてサイドフォースFsの符号は負から正に変わっている。
 なお、図5(a)~(c)に示す例では、変曲点Zinfとローブ34の頂点36との間に位置する1個の基準点Zrefしか存在しないように見えるが、実際にはローブ34の底点38と変曲点Zinfとの間にも、カム表面33の法線方向がシリンダ中心軸Cに一致する基準点Zrefが存在する。ただし、図5(a)~(c)に示す例では、この底点38寄りの基準点Zrefは、ブリージング領域34B内に含まれているために目立たない。
 このように、ローブ34の底点38と頂点36との間をローラ26が移動する間に、ピストン24は、カム回転方向の逆方向に沿った正符号のサイドフォースFsと、カム回転方向に沿った負符号のサイドフォースFsとの両方を受けることになる。
 図5(a)~(c)の何れの場合においても、変曲点Zinfにおいて負符号のサイドフォースのピーク値Fが存在する。一方、ローブ34の頂点36(第2点P)近傍において、正符号のサイドフォースのピーク値Fが出現する。
 図5(a)~(c)から分かるように、シリンダ中心軸Cの半径方向Rに対する傾斜角が大きいほど、カム回転方向に沿った負符号のサイドフォースのピーク値Fは小さくなり、カム回転方向の逆方向に沿った正符号のサイドフォースのピーク値Fは大きくなる。これは、シリンダ中心軸Cの半径方向Rに対する傾斜をきつくするほど、変曲点Zinfにおけるカム表面33の法線方向とシリンダ中心軸Cとの間の角度ξが小さくなる一方で、ローブ34の頂点36近傍において角度ξが大きくなるためである。
 一実施形態では、各シリンダ22は、カム32の回転方向に沿ったサイドフォースの大きさの最大値Fと、カム32の回転方向の逆方向に沿ったサイドフォースの大きさの最大値Fとが0.8×F≦F≦1.2×Fの関係を満たすように半径方向Rに対して傾斜して配置される。
 これにより、カム回転方向に沿ったサイドフォースの最大値Fと、カム回転方向の逆方向に沿ったサイドフォースの最大値Fとがバランス良く低減され、サイドフォースによる影響を効果的に軽減できる。
 幾つかの実施形態では、図6に示すように、ローラ26がローブ34の頂点36に当接した状態におけるシリンダ中心軸Cと第1直線L1との間の角度X、および、カム表面33の変曲点Zinfにおけるカム表面の法線Nと第2直線L2との間の角度Yが0<X<Yの関係を満たすように、シリンダ22を半径方向Rに対して傾斜して配置する。これにより、半径方向Rに対して適度な傾斜角でシリンダが傾斜して配置され、サイドフォースFsのピーク値F,Fが減少し、サイドフォースFsによる影響を軽減できる。
 ここで、第1直線L1は、ローラ26がローブ34の頂点36に当接した状態において、ローラ中心軸Aとカム中心Oとを結んだ直線であり、且つ、油圧機械20の半径方向に沿った直線である。また、第2直線L2は、カム中心Oと変曲点Zinfとを結んだ直線であり、油圧機械20の半径方向に平行である。そのため、角度Xは、ローラ26がローブ34の頂点36に当接した状態におけるシリンダ中心軸Cの半径方向Rに対する角度に相当し、角度Yは、ローラ26がカム表面33の変曲点Zinfに当接した状態におけるシリンダ中心軸Cの半径方向Rに対する角度に相当する。
 なお、角度Xの具体的な値は、上記不等式0<X<Yを満たす限り任意の数値であってもよく、例えば1度以上44度以下に設定してもよい。
 また、サイドフォースFsによる影響をより一層低減する目的で、シリンダ22の半径方向Rに対する傾斜配置に加えて、ピストン24を以下の構成としてもよい。
 図7は、一実施形態に係るピストン周辺の構成の斜視図である。
 図7に示す例示的な実施形態では、各々のピストン24は油圧室25内の作動油から圧力を受ける受圧面108を有する第1部分110と、第1部分110よりもカム32寄りに位置し、ローラ26と係合する第2部分120とを含む。ピストン24の第1部分110と第2部分120との間には段差130が設けられており、第2部分120のカム32の回転方向に沿った幅Wは第1部分110の直径Dよりも大きい。
 これにより、ピストン24の第2部分120の表面積が増大するため、ピストン24の第2部分120と該第2部分120に対向するシリンダ22の内壁面とで、カム回転方向に沿ったサイドフォースFsを受けることができる。
 また、図7に示すように、幾つかの実施形態では、少なくとも一つの静圧パッド100が、各々のシリンダ22に対向する各々のピストン24のピストン表面24Sに設けられる。静圧パッド100は、ピストン24に形成された内部流路102及び104を介して油圧室25に連通する環状溝106と、環状溝106によって囲まれるランド107とを有している。環状溝106には、内部流路102及び104を介して油圧室25内の高圧の作動油が供給されるようになっている。環状溝106に供給された作動油は、ピストン表面24Sとシリンダ24の内壁面との間の隙間に侵入し、該隙間における圧力を高める。これにより、ピストン24及びシリンダ22間に作用するサイドフォースに対抗することができ、ピストン24及びシリンダ22の摩耗を低減することができる。
 図8(a)及び(b)は、実施形態に係る静圧パッド100の構成を示す図である。
 幾つかの実施形態では、油圧機械20が、0.5Y<X<Yの関係を満たすようにシリンダ22が半径方向Rに対して傾斜した油圧ポンプである場合、ピストン表面24Sのうちカム回転方向の上流側の第1領域200における静圧パッド100の個数m(ただしmは1以上の整数)は、ピストン表面24Sのうちカム回転方向の下流側の第2領域210における静圧パッド100の個数n(ただしnは0以上の整数)以上に設定される。
 なお、図8(a)に示す例示的な実施形態では、第1領域200における静圧パッド100の個数mは1であり、第2領域210における静圧パッド100の個数nはゼロである。
 カム回転方向とは逆方向に沿ったサイドフォースは、主として、ピストン表面24Sのうちカム回転方向の上流側の第1領域200に設けられたm個の静圧パッド100によって負担される。一方、カム回転方向に沿ったサイドフォースは、主として、ピストン表面24Sのうちカム回転方向の下流側の第2領域210に設けられたn個の静圧パッド100によって負担される。
 ここで、ローラ26がローブ34の頂点36に当接した状態におけるシリンダ中心軸Cの略半径方向(第1直線L1)に対する角度Xと、カム表面33の変曲点Zinfにおける法線の半径方向(第2直線L2)に対する角度Yとの間に0.5Y<X<Yの関係が成立する場合、カム回転方向とは逆方向に沿ったサイドフォースのピーク値Fが比較的大きくなる。
 よって、第1領域200の静圧パッド100の個数mを、第2領域210の静圧パッド100の個数n以上に設定することで、相対的にピーク値が大きいカム回転方向とは逆方向に沿ったサイドフォースを第1領域200のm個の静圧パッド100で効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向に沿ったサイドフォースについては、m以下であるn個の第2領域210の静圧パッド100で受けることができる。
 また、静圧パッド100の個数が多くなると、静圧パッド100への作動油の供給量(油圧室25からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第2領域210の静圧パッド100の個数nを、第1領域200の静圧パッド100の個数m以下に設定することで、静圧パッド100の総数(=m+n)を減らして油圧ポンプの性能低下を抑制できる。
 他の実施形態では、油圧機械20が、0.5Y<X<Yの関係を満たすようにシリンダ22が半径方向Rに対して傾斜した油圧ポンプである場合、ピストン表面24Sのうちカム回転方向の上流側の第1領域200における静圧パッド100の負荷能力は、ピストン表面24Sのうちカム回転方向の下流側の第2領域210における静圧パッド100の負荷能力よりも高く設定される。例えば、第1領域200の静圧パッド100を第2領域210の静圧パッド100よりも大面積にしてもよい。
 このように、第1領域200における静圧パッド100の負荷能力を第2領域210における静圧パッド100の負荷能力よりも高く設定することで、相対的にピーク値が大きいカム回転方向とは逆方向に沿ったサイドフォースを効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向に沿ったサイドフォースについては、負荷能力が比較的小さい第2領域210の静圧パッド100で受けることができる。
 また、例えば静圧パッド100の面積を大きくして静圧パッド100の負荷能力を上げようとすれば、静圧パッド100への作動油の供給量(油圧室25からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第2領域210の静圧パッド100の負荷能力を、第1領域200の静圧パッド100の負荷能力未満とすることで、両方の領域における静圧パッド100への作動油の総供給量(油圧室25からの作動油の漏れ量)を減らして油圧ポンプの性能低下を抑制できる。
 幾つかの実施形態では、油圧機械20が、0<X≦0.5Yの関係を満たすようにシリンダ22が半径方向Rに対して傾斜した油圧ポンプである場合、ピストン表面24Sのうちカム回転方向の上流側の第1領域200における静圧パッド100の個数m(ただしmは1以上の整数)は、ピストン表面24Sのうちカム回転方向の下流側の第2領域210における静圧パッド100の個数n(ただしnは0以上の整数)以下に設定される。
 なお、図8(b)に示す例示的な実施形態では、第1領域200における静圧パッド100の個数mはゼロであり、第2領域210における静圧パッド100の個数nは1である。
 ローラ26がローブ34の頂点36に当接した状態におけるシリンダ中心軸Cの略半径方向(第1直線L1)に対する角度Xと、カム表面33の変曲点Zinfにおける法線の半径方向(第2直線L2)に対する角度Yとの間に0<X≦0.5Yの関係が成立する場合、カム回転方向に沿ったサイドフォースのピーク値Fが比較的大きくなる。よって、第2領域210の静圧パッド100の個数nを、第1領域200の静圧パッド100の個数m以上に設定することで、相対的にピーク値が大きいカム回転方向に沿ったサイドフォースを第2領域210のn個の静圧パッド100で効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向の逆方向に沿ったサイドフォースについては、n以下であるm個の第1領域200の静圧パッド100で受けることができる。
 また、静圧パッド100の個数が多くなると、静圧パッド100への作動油の供給量(油圧室25からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第1領域200の静圧パッド100の個数mを、第2領域210の静圧パッド100の個数n以下に設定することで、静圧パッド100の総数(=m+n)を減らして油圧ポンプの性能低下を抑制できる。
 他の実施形態では、油圧機械20が、0<X≦0.5Yの関係を満たすようにシリンダ22が半径方向Rに対して傾斜した油圧ポンプである場合、ピストン表面24Sのうちカム回転方向の上流側の第1領域200における静圧パッド100の負荷能力は、ピストン表面24Sのうちカム回転方向の下流側の第2領域210における静圧パッド100の負荷能力以下に設定される。例えば、第2領域210の静圧パッド100を第1領域200の静圧パッド100よりも大面積にしてもよい。
 このように、第2領域210における静圧パッド100の負荷能力を第1領域200における静圧パッド100の負荷能力以上に設定することで、相対的にピーク値が大きいカム回転方向に沿ったサイドフォースを効果的に受けることができる。一方、相対的にピーク値が小さいカム回転方向の逆方向に沿ったサイドフォースについては、負荷能力が比較的小さい第1領域200の静圧パッド100で受けることができる。
 また、例えば静圧パッド100の面積を大きくして静圧パッド100の負荷能力を上げようとすれば、静圧パッド100への作動油の供給量(油圧室25からの作動油の漏れ量)が増大してしまい、油圧ポンプの性能低下の一因になり得る。そこで、第1領域200の静圧パッド100の負荷能力を、第2領域210の静圧パッド100の負荷能力以下とすることで、両方の領域における静圧パッド100への作動油の総供給量(油圧室25からの作動油の漏れ量)を減らして油圧ポンプの性能低下を抑制できる。
 次に、油圧機械20が油圧ポンプの場合における低圧弁40及び高圧弁50の開閉タイミングについて説明する。なお、以下で説明するバルブ開閉タイミングは、一部の油圧室25に属する低圧弁40及び高圧弁50のみについて適用してもよい。
 例えば、油圧機械20は、高圧の作動油の生成に寄与する油圧室25(アクティブチャンバ)の数と、高圧の作動油の生成に寄与しない油圧室25(ノンアクティブチャンバ)の数との比を変化させることで押しのけ容積を調節するように設計されることがある。この場合、アクティブチャンバに属する低圧弁40及び高圧弁50のみについて以下の開閉タイミングで制御するようにし、ノンアクティブチャンバについてはピストン24の位置によらず低圧弁40を開き高圧弁50を閉じた状態を維持してもよい。なお、各油圧室25の状態(アクティブ状態又はノンアクティブ状態)は、油圧機械20の所望の押しのけ容積が得られるようにピストン24の往復運動の周期ごとに決定してもよい。
 図9は、一実施形態に係る低圧弁40及び高圧弁50の開閉タイミングを示すチャートである。図9の横軸はカム表面33上における接触点Zの位置であり、図9の縦軸はピストン位置、高圧弁50の開閉状態、低圧弁40の励磁状態及び開閉状態、並びに、油圧室25内の作動油の圧力である。また、図9において、第1点Pは、ローブ34の底点38と頂点36との間に位置する、カム表面33の法線とシリンダ中心軸Cとが一致するカム表面33上の一対の基準点Zrefのうち頂点36側の点であり、第2点Pは、ピストン24の上死点(TDC)に対応するカム表面33上の点であり、第3点Pは、ワーキング領域34A(図4参照)の開始点である。
 基本的には、低圧弁40は、カム表面33のワーキング領域34A上にローラ26が位置するときに閉じられ、カム表面33のブリージング領域34B上にローラ26が位置するときに開かれる。幾つかの実施形態では、ローラ26が第1点Pから第2点Pに向かう期間の少なくとも一部において閉じた状態が維持され、ローラ26が第2点Pを通過した後に開くように構成される。
 一実施形態では、低圧弁40は、図3に示すように、第1シート41、第1弁体42、第1ステム44、ソレノイド46及び第1付勢部材48を含むノーマルオープン式電磁弁である。この場合、図9に示すように、ローラ26が第3点Pの近傍に位置するときにソレノイド46が励磁されて閉じられ、ローラ26が第3点Pから第1点Pを経て第2点Pに向かうときに閉じられた状態が維持されてもよい。さらに、ローラ26が第2点Pを挟んで第1点Pとは反対側の第4点P(ワーキング領域34Aの終了点P)に到達したときに第1弁体42の両側の作動油の圧力差を第1付勢部材48による付勢力が上回って開かれ、ローラ26が第4点Pから第3点Pに向かうときに開かれた状態が維持されてもよい。
 一方、高圧弁50は、基本的には、カム表面33のワーキング領域34A上にローラ26が位置するときに開かれ、カム表面33のブリージング領域34B上にローラ26が位置するときに閉じられる。幾つかの実施形態では、高圧弁50は、ローラ26が第1点Pから第2点Pに向かう期間の少なくとも一部において開いた状態が維持され、ローラ26が第2点Pを通過した後に閉じるように構成される。
 一実施形態では、高圧弁50は、図3に示すように、第2シート51と、第2シート51に当接可能な第2弁体52と、該第2弁体52を第2シート51側に付勢するための第2付勢部材58とを含むチェック弁である。この場合、図9に示すように、高圧弁50は、ローラ26が第3点Pを通過した後に第2弁体52の両側の作動油の圧力差が第2付勢部材58による付勢力を上回って開かれ、ローラ26が第4点Pに至る前に圧力差が第2付勢部材58の付勢力を下回って閉じられるように構成される。
 上述のように、基準点Zrefの一つである第1点Pとピストン24の上死点に対応する第2点Pとの間にローラ26が位置する期間の少なくとも一部において低圧弁40が閉じて高圧弁50が開いた状態を維持し、ローラ26の第2点P通過後に低圧弁40を開くとともに高圧弁50を閉じれば、ローラ26がローブ34の底点38から頂点36近傍まで移動する間にサイドフォースFsの向きが逆転する。すなわち、ローブ34の底点38と頂点36との間をローラ26が移動する間に、ピストン24は、カム回転方向の逆方向に沿ったサイドフォースだけでなく、カム回転方向に沿ったサイドフォースも受けることになるが、カム回転方向に沿ったサイドフォースのピーク値Fは低減される。
 このように、低圧弁40及び高圧弁50の開閉タイミングを適切に設定することで、カム表面33のワーキング領域34Aの長さを確保しながら、カム回転方向に沿ったサイドフォースのピーク値Fを低減できる。
 なお、ローラ26が第1点Pを通過する前後において、サイドフォースFsの向きが反転するから、ローラ26の第1点Pの通過前後においてピストン表面24Sの潤滑状態が大きく変化する。例えば、サイドフォースFsの向きの反転に伴い、ピストン表面24Sとシリンダ22の内壁面との間における潤滑油の流動が促進される。
 そこで、ローラ26の第1点Pの通過前後におけるピストン表面24Sの潤滑状態の変化に基づいて、ピストン表面24Sへの潤滑油の供給条件を決定してもよい。
 以上説明したように、上述の実施形態によれば、ローラ26がローブ34の頂点36に当接した状態におけるシリンダ中心軸Cの第1直線L1に対する角度Xと、カム表面33の変曲点Zinfにおける法線Nの第2直線L2に対する角度Yとの間に0<X<Yの関係が成立する。ここで、第1直線L1は、各々のローラ26がローブ34の頂点36に当接した状態においてローラ中心Aとカム中心Oとを結んだ直線(半径方向Rに沿った直線)である。また、第2直線L2は、カム表面33上の変曲点Zinfとカム中心Oとを結んだ半径方向Rに平行な直線である。すなわち、角度Xは、ローラ26がローブ34の頂点36に当接した状態におけるシリンダ中心軸Cの半径方向Rに対する角度に相当し、角度Yは、ローラ26がカム表面33の変曲点Zinfに当接した状態におけるシリンダ中心軸Cの半径方向Rに対する角度に相当する。したがって、0<X<Yの関係を満たすように角度Xを設定することで、半径方向Rに対して適度な傾斜角でシリンダ22が傾斜して配置され、サイドフォースのピーク値が減少し、サイドフォースによる影響を軽減できる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。例えば、上述した実施形態のうち複数を適宜組み合わせてもよい。
 また、上述の実施形態では風力発電装置1の油圧ポンプ8又は油圧モータ10の少なくとも一方として用いられる油圧機械20について説明したが、油圧機械20の用途はこれに限定されない。
 1        風力発電装置
 2        ブレード
 3        ロータ
 4        ハブ
 5        ハブカバー
 6        回転シャフト
 8        油圧ポンプ
 10       油圧モータ
 12       高圧油ライン
 14       低圧油ライン
 16       発電機
 18       ナセル
 19       タワー
 20       油圧機械
 21       シリンダブロック
 21S      セグメント
 21H      スリーブ穴
 22       シリンダ
 23       シリンダスリーブ
 24       ピストン
 24S      ピストン表面
 25       油圧室
 26       ローラ
 30       回転シャフト
 32       カム
 33       カム表面
 34       ローブ
 36       頂点
 38       底点
 40       低圧弁
 41       第1シート
 42       第1弁体
 44       第1ステム
 46       ソレノイド
 48       第1付勢部材
 50       高圧弁
 51       第2シート
 52       第2弁体
 58       第2付勢部材
 100      静圧パッド
 102      内部流路
 104      内部流路
 106      環状溝
 107      ランド
 108      受圧面
 110      第1部分
 120      第2部分
 130      段差
 200      第1領域
 210      第2領域
 

Claims (12)

  1.  ラジアルピストン式の油圧機械であって、
     少なくとも一つのシリンダと、
     前記少なくとも一つのシリンダ内にそれぞれ摺動可能に設けられた少なくとも一つのピストンと、
     前記油圧機械の周方向に沿って並ぶ複数のローブによって形成されるカム表面を有し、各々の前記ピストンに対して相対的に前記周方向に前記複数のローブが移動するように回転可能に構成されたカムと、
     前記少なくとも一つのピストンにそれぞれ回転可能に係合するとともに、前記カム表面に当接する少なくとも一つのローラとを備え、
     各々の前記ローラが前記ローブの頂点に当接した状態における、各々の前記シリンダの中心軸と、各々の前記ローラの中心と前記カムの中心とを結ぶ第1直線との間の角度をXとし、前記ローブの底点と前記頂点との間に位置する前記カム表面の変曲点における前記カム表面の法線と、前記カムの前記中心と前記変曲点とを結ぶ第2直線との間の角度をYとしたとき、0<X<Yの関係を満たすように、各々の前記シリンダが前記油圧機械の半径方向に対して傾斜して配置されたことを特徴とする油圧機械。
  2.  各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた少なくとも一つの静圧パッドをさらに備え、
     前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、
     各々の前記シリンダは、該シリンダの第1端部の周方向位置が、前記第1端部よりも前記油圧機械の半径方向において前記カムに近い前記シリンダの第2端部の周方向位置よりも前記カムの回転方向の下流側にずれ、且つ、0.5Y<X<Yの関係を満たすように前記半径方向に対して傾斜しており、
     前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの個数をm(ただしmは1以上の整数)とし、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの個数をn(ただしnは0以上の整数)としたとき、m≧nの関係を満たすことを特徴とする請求項1に記載の油圧機械。
  3.  各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた複数の静圧パッドをさらに備え、
     前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、
     各々の前記シリンダは、該シリンダの第1端部の周方向位置が、前記第1端部よりも前記油圧機械の半径方向において前記カムに近い前記シリンダの第2端部の周方向位置よりも前記カムの回転方向の下流側にずれ、且つ、0.5Y<X<Yの関係を満たすように前記半径方向に対して傾斜しており、
     前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの負荷能力は、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの負荷能力よりも高いことを特徴とする請求項1に記載の油圧機械。
  4.  各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた少なくとも一つの静圧パッドをさらに備え、
     前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、
     各々の前記シリンダは、該シリンダの第1端部の周方向位置が、前記第1端部よりも前記油圧機械の半径方向において前記カムに近い前記シリンダの第2端部の周方向位置よりも前記カムの回転方向の下流側にずれ、且つ、0<X≦0.5Yの関係を満たすように前記半径方向に対して傾斜しており、
     前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの個数をm(ただしmは1以上の整数)とし、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの個数をn(ただしnは0以上の整数)としたとき、m≦nの関係を満たすことを特徴とする請求項1に記載の油圧機械。
  5.  各々の前記シリンダに対向する各々の前記ピストンのピストン表面に設けられた少なくとも一つの静圧パッドをさらに備え、
     前記油圧機械は、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油を昇圧するように構成された油圧ポンプであり、
     各々の前記シリンダは、該シリンダの第1端部の周方向位置が、前記第1端部よりも前記油圧機械の半径方向において前記カムに近い前記シリンダの第2端部の周方向位置よりも前記カムの回転方向の下流側にずれ、且つ、0<X≦0.5Yの関係を満たすように前記半径方向に対して傾斜しており、
     前記ピストン表面のうち前記カムの回転方向の上流側の第1領域における前記静圧パッドの負荷能力は、前記ピストン表面のうち前記カムの回転方向の前記下流側の第2領域における前記静圧パッドの負荷能力以下であることを特徴とする請求項1に記載の油圧機械。
  6.  作動油が流れる低圧油ラインと、
     前記低圧油ラインよりも高圧の前記作動油が流れる高圧油ラインと、
     各々の前記シリンダと各々の前記ピストンとで形成される油圧室と前記低圧油ラインとの間に設けられる低圧弁と、
     前記油圧室と前記高圧油ラインとの間に設けられる高圧弁とをさらに備え、
     前記ローブの前記底点と前記頂点との間に位置する、前記カム表面の前記法線と前記シリンダの前記中心軸とが一致する前記カム表面上の一対の基準点のうち前記頂点側の点を第1点とし、
     各々の前記ピストンの上死点に対応する前記カム表面上の点を第2点としたとき、
     少なくとも一つの前記油圧室に属する前記低圧弁は、各々の前記ローラが前記第1点から前記第2点に向かう期間の少なくとも一部において閉じた状態が維持され、各々の前記ローラが前記第2点を通過した後に開くように構成されており、
     少なくとも一つの前記油圧室に属する前記高圧弁は、各々の前記ローラが前記第1点から前記第2点に向かう期間の少なくとも一部において開いた状態が維持され、各々の前記ローラが前記第2点を通過した後に閉じるように構成されたことを特徴とする請求項1乃至5の何れか一項に記載の油圧機械。
  7.  前記油圧機械は、前記作動油を昇圧するように構成された油圧ポンプであり、
     前記低圧弁は、第1シートと、前記第1シートに当接可能な第1弁体と、該第1弁体に連結された第1ステムと、前記第1ステムを駆動するための磁力を生成するように構成されたソレノイドと、前記第1弁体を第1シートとは反対側に付勢するための第1付勢部材とを含むノーマルオープン式電磁弁であり、
     少なくとも一つの前記油圧室に属する前記ノーマルオープン式電磁弁は、各々の前記ピストンの下死点に対応する前記カム表面上の点である第3点近傍に各々の前記ローラが位置するときに前記ソレノイドが励磁されて閉じられ、各々の前記ローラが前記第3点から前記第1点を経て前記第2点に向かうときに閉じられた状態が維持され、各々の前記ローラが前記第2点を挟んで前記第1点とは反対側の第4点に到達したときに前記第1弁体の両側の前記作動油の圧力差を前記第1付勢部材による付勢力が上回って開かれ、各々の前記ローラが前記第4点から前記第3点に向かうときに開かれた状態が維持されるように構成され、
     前記高圧弁は、第2シートと、前記第2シートに当接可能な第2弁体と、該第2弁体を前記第2シート側に付勢するための第2付勢部材とを含むチェック弁であり、
     前記チェック弁は、各々の前記ローラが前記第3点を通過した後に前記第2弁体の両側の前記作動油の圧力差が前記第2付勢部材による付勢力を上回って開かれ、各々の前記ローラが前記第4点に至る前に前記圧力差が前記付勢力を下回って閉じられるように構成されたことを特徴とする請求項6に記載の油圧機械。
  8.  各々の前記ローラが前記第1点を通過する前後における各々の前記シリンダに対向する各々の前記ピストンのピストン表面の潤滑状態の変化に基づいて、前記ピストン表面への潤滑油の供給条件が決定されたことを特徴とする請求項6又は7に記載の油圧機械。
  9.  各々の前記ピストンは、各々の前記シリンダと各々の前記ピストンとで形成される油圧室内の作動油から圧力を受ける受圧面を有する第1部分と、該第1部分よりも前記カム寄りに位置し、前記ローラと係合する第2部分とを含み、
     前記第1部分と前記第2部分との間には段差が設けられ、前記第2部分の前記カムの回転方向に沿った幅は前記第1部分の直径よりも大きいことを特徴とする請求項1乃至8の何れか一項に記載の油圧機械。
  10.  各々の前記シリンダは、前記カムの回転方向に沿ったサイドフォースの最大値Fと、前記カムの回転方向の逆方向に沿った前記サイドフォースの最大値Fとが0.8×F≦F≦1.2×Fの関係を満たすように前記半径方向に対して傾斜していることを特徴とする請求項1乃至9の何れか一項に記載の油圧機械。
  11.  再生可能エネルギーを受け取るための少なくとも一本のブレードと、
     前記少なくとも一本のブレードが取付けられるハブと、
     前記ハブの回転によって駆動されるように構成された油圧ポンプと、
     前記油圧ポンプで生成された圧油によって駆動されるように構成された油圧モータと、
     前記油圧モータによって駆動されるように構成された発電機とを備える再生可能エネルギー発電装置であって、
     前記油圧ポンプ及び前記油圧モータの少なくとも一方は、ラジアルピストン式の油圧機械であり、
     前記ラジアルピストン式の油圧機械は、少なくとも一つのシリンダと、前記少なくとも一つのシリンダ内にそれぞれ摺動可能に設けられた少なくとも一つのピストンと、前記油圧機械の周方向に沿って並ぶ複数のローブによって形成されるカム表面を有し、各々の前記ピストンに対して相対的に前記周方向に前記複数のローブが移動するように回転可能に構成されたカムと、前記少なくとも一つのピストンにそれぞれ回転可能に係合するとともに、前記カム表面に当接する少なくとも一つのローラとを備え、
     各々の前記ローラが前記ローブの頂点に当接した状態における、各々の前記シリンダの中心軸と、各々の前記ローラの中心と前記カムの中心とを結ぶ第1直線との間の角度をXとし、前記ローブの底点と前記頂点との間に位置する前記カム表面の変曲点における前記カム表面の法線と、前記カムの前記中心と前記変曲点とを結ぶ第2直線との間の角度をYとしたとき、0<X<Yの関係を満たすように、各々の前記シリンダが前記油圧機械の半径方向に対して傾斜して配置されたことを特徴とする再生可能エネルギー発電装置。
  12.  前記再生可能エネルギー発電装置は、前記再生可能エネルギーとしての風から電力を生成するように構成された風力発電装置であることを特徴とする請求項11に記載の再生可能エネルギー発電装置。
PCT/JP2013/056101 2013-03-06 2013-03-06 油圧機械及び再生エネルギー発電装置 WO2014136214A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13854215.4A EP2821648B1 (en) 2013-03-06 2013-03-06 Hydraulic machine and regenerative energy power generation device
JP2014504889A JP5726370B2 (ja) 2013-03-06 2013-03-06 油圧機械及び再生エネルギー発電装置
PCT/JP2013/056101 WO2014136214A1 (ja) 2013-03-06 2013-03-06 油圧機械及び再生エネルギー発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056101 WO2014136214A1 (ja) 2013-03-06 2013-03-06 油圧機械及び再生エネルギー発電装置

Publications (1)

Publication Number Publication Date
WO2014136214A1 true WO2014136214A1 (ja) 2014-09-12

Family

ID=51490777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056101 WO2014136214A1 (ja) 2013-03-06 2013-03-06 油圧機械及び再生エネルギー発電装置

Country Status (3)

Country Link
EP (1) EP2821648B1 (ja)
JP (1) JP5726370B2 (ja)
WO (1) WO2014136214A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155940A1 (it) * 2015-11-26 2017-05-26 Settima Meccanica S R L Soc A Socio Unico Pompa volumetrica a pistoni assiali perfezionata
ITUB20155952A1 (it) * 2015-11-26 2017-05-26 Settima Meccanica S R L ? Soc A Socio Unico Pompa volumetrica a pistoni radiali perfezionata
NL2024476B1 (en) * 2019-12-17 2021-09-02 Delft Offshore Turbine B V Turbine and multi piston pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482879A (en) 2010-08-17 2012-02-22 Artemis Intelligent Power Ltd Fluid-working machine with asymmetrically profiled multi-lobe ring cam
JP2012524871A (ja) * 2010-08-17 2012-10-18 アルテミス インテリジェント パワー リミティド リングカムおよびリングカムを含む流体作動機械
JP2012525542A (ja) * 2010-08-17 2012-10-22 アルテミス インテリジェント パワー リミティド リングカムおよびリングカムを含む流体作動機械
JP2012526947A (ja) * 2010-08-17 2012-11-01 アルテミス インテリジェント パワー リミティド リングカムおよびリングカムを含む流体作動機械

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4037455C1 (ja) * 1990-11-24 1992-02-06 Mannesmann Rexroth Gmbh, 8770 Lohr, De
FR2700364B1 (fr) * 1993-01-13 1995-03-31 Poclain Hydraulics Sa Piston de moteur hydraulique.
JPH08246978A (ja) * 1995-03-13 1996-09-24 Zexel Corp 内面カム式噴射ポンプ
DE19618793B4 (de) * 1996-05-10 2007-01-18 Bosch Rexroth Aktiengesellschaft Radialkolbenmaschine
DE10041318A1 (de) * 2000-08-23 2002-03-07 Mannesmann Rexroth Ag Hydraulische Radialkolbenmaschine
FR2836960B1 (fr) * 2002-03-08 2004-07-09 Poclain Hydraulics Ind Moteur hydraulique a cylindres radiaux etages
CN102782310A (zh) * 2010-02-23 2012-11-14 阿尔特弥斯智能动力有限公司 可变排量式径向活塞流体工作机器
DE102010032058A1 (de) * 2010-07-23 2012-01-26 Robert Bosch Gmbh Kolbeneinheit
JP5627818B1 (ja) * 2013-02-18 2014-11-19 三菱重工業株式会社 再生可能エネルギ発電装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2482879A (en) 2010-08-17 2012-02-22 Artemis Intelligent Power Ltd Fluid-working machine with asymmetrically profiled multi-lobe ring cam
JP2012524871A (ja) * 2010-08-17 2012-10-18 アルテミス インテリジェント パワー リミティド リングカムおよびリングカムを含む流体作動機械
JP2012525542A (ja) * 2010-08-17 2012-10-22 アルテミス インテリジェント パワー リミティド リングカムおよびリングカムを含む流体作動機械
JP2012526947A (ja) * 2010-08-17 2012-11-01 アルテミス インテリジェント パワー リミティド リングカムおよびリングカムを含む流体作動機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821648A1

Also Published As

Publication number Publication date
EP2821648B1 (en) 2018-12-26
JPWO2014136214A1 (ja) 2017-02-09
JP5726370B2 (ja) 2015-05-27
EP2821648A1 (en) 2015-01-07
EP2821648A4 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
KR101355267B1 (ko) 멀티-로브형 링 캠을 구비한 유체 작동 기계
CN106837725B (zh) 二维轴向柱塞泵
KR101330930B1 (ko) 링 캠, 링 캠을 포함하는 유체 작동 기계, 및 유체 작동 기계를 작동시키는 방법
DK2562421T3 (en) Pump actuator of the kind having a swivel vane to prevent rubbing corrosion
JP5412580B2 (ja) リングカムおよびリングカムを含む流体作動機械
CN104100299A (zh) 转动装置及应用其的流体马达、发动机、压缩机和泵
JP5726370B2 (ja) 油圧機械及び再生エネルギー発電装置
KR20150082206A (ko) 주기적인 가변 그루브를 갖는 피스톤 링
US20110268596A1 (en) Fluid device with flexible ring
JP6097134B2 (ja) ラジアルピストン式油圧機械及び油圧トランスミッション、並びに風力発電装置
US8931449B2 (en) Filter arrangement of a control valve for a camshaft adjuster
US20040031383A1 (en) Rotary fluid machinery
JP5738476B2 (ja) 流体作動装置及び風力発電装置
JP2014129771A (ja) ラジアルピストン式油圧機械および風力発電装置
JP6388898B2 (ja) 油圧機械及び再生可能エネルギー型発電装置
WO2003078822A1 (en) Pump components and method
EP3104006B1 (en) Hydraulic machine and power generating apparatus of renewable energy type
JP2014129773A (ja) ラジアルピストン式油圧機械および風力発電装置
JP2015124609A (ja) ラジアルピストン式油圧機械及び風力発電装置
JP6227308B2 (ja) 回転機械
JP6235332B2 (ja) ラジアルピストン式油圧機械および風力発電装置
KR20120061673A (ko) 차량용 가변오일펌프
WO2014002143A1 (en) Fluid working machine and wind turbine generator
JP6444905B2 (ja) 油圧機械、リングカム及び再生可能エネルギー型発電装置
JP6195814B2 (ja) ラジアルピストン式の油圧機械、油圧トランスミッション及び風力発電装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504889

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013854215

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE