JP6388898B2 - 油圧機械及び再生可能エネルギー型発電装置 - Google Patents

油圧機械及び再生可能エネルギー型発電装置 Download PDF

Info

Publication number
JP6388898B2
JP6388898B2 JP2016224587A JP2016224587A JP6388898B2 JP 6388898 B2 JP6388898 B2 JP 6388898B2 JP 2016224587 A JP2016224587 A JP 2016224587A JP 2016224587 A JP2016224587 A JP 2016224587A JP 6388898 B2 JP6388898 B2 JP 6388898B2
Authority
JP
Japan
Prior art keywords
hydraulic
low
pressure
cylinder
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016224587A
Other languages
English (en)
Other versions
JP2018080666A (ja
Inventor
真司 川畑
真司 川畑
俊英 野口
俊英 野口
ラベンダー・ジャック
ドットソン・ヘンリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016224587A priority Critical patent/JP6388898B2/ja
Priority to EP17158149.9A priority patent/EP3324046B1/en
Publication of JP2018080666A publication Critical patent/JP2018080666A/ja
Application granted granted Critical
Publication of JP6388898B2 publication Critical patent/JP6388898B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/108Valves characterised by the material
    • F04B53/1082Valves characterised by the material magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/26Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0091Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using a special shape of fluid pass, e.g. throttles, ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1087Valve seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)

Description

本開示は、油圧機械及び再生可能エネルギー型発電装置に関する。
従来から、油圧ポンプや油圧モータ等の油圧機械が知られている。
例えば、特許文献1には、シリンダとピストンにより形成される作動室の周期的な容積変化を利用し、作動流体の流体エネルギーと回転シャフトの回転エネルギーとの間で変換するようにした油圧機械が記載されている。
また、特許文献2には、油圧機械の高圧油ライン及び低圧油ラインと、作動室との間にそれぞれ設けられた高圧弁及び低圧弁によって、作動室における作動油の流出入を制御するようにした油圧機械が記載されている。
米国特許公開第2010/0040470号明細書 特開2014−163375号公報
ところで、本発明者らの知見によれば、油圧機械において、作動油が流れている最中に低圧弁を閉じると、低圧弁の下流側通路が長かったり非対称である場合において圧力が急減してキャビテーションが生じ、その後圧力回復に伴ってサージ圧が生じたり、下流側通路内での不均一流れを生じさせてしまう。このため、低圧油ラインにおける圧力変動(圧力スパイク)が生じ、油圧機械の各部に損傷を与える可能性があった。
上述の事情に鑑みて、本発明の少なくとも幾つかの実施形態の目的は、低圧油ラインにおける圧力変動を抑制することができる油圧機械及び再生可能エネルギー型発電装置を提供することである。
(1)本発明の少なくとも一実施形態に係る油圧機械は、
回転シャフトと、
前記回転シャフトの径方向に沿って設けられたシリンダと、
前記シリンダとともに油圧室を形成し、前記シリンダに案内されて前記シリンダ内を前記径方向に沿って往復運動可能に設けられたピストンと、
前記シリンダに対して前記径方向の内側に位置するカム室内に設けられ、前記ピストンの往復運動と連動して前記回転シャフトとともに回転するように構成されたカムと、
前記油圧室に連通可能な低圧油ライン及び高圧油ラインと、
前記シリンダと前記低圧油ラインとの間に設けられ、前記油圧室と前記低圧油ラインとの連通状態を切り替えるための低圧バルブと、
前記シリンダと前記高圧油ラインとの間に設けられ、前記油圧室と前記高圧油ラインとの連通状態を切り替えるための高圧バルブと、
を備え、
前記低圧油ラインは、前記カム室を含み、
前記カム室に開口する一端、および、前記低圧バルブ側に位置する他端を有する低圧通路をさらに備え、
前記低圧通路の前記一端は、前記低圧通路の前記他端と前記回転シャフトの中心との間の径方向位置にある。
上記(1)の構成では、油圧室に連通可能な低圧油ラインがカム室を含み、かつ、低圧油ラインの少なくとも一部を形成するカム室に低圧通路を介して油圧室を連通させるようになっている。このため、例えば、油圧機械のケーシングに設けられた内部流路を該ケーシングの外表面に接続される外部配管(低圧油ライン)に連通させる構成に比べて、油圧室と低圧油ラインとの間の流路(上記(1)の構成では「低圧通路」)を短縮することができる。よって、低圧バルブの閉動作時に低圧バルブの下流側に生じるキャビテーションが緩和され、低圧油ラインにおける圧力変動(圧力スパイク)を抑制できる。
また、低圧油ラインの圧力変動を抑制できる結果、低圧油ラインの圧力変動を低減するためのアキュムレータを省略可能となり、油圧機械の構成を簡素化することができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記低圧バルブは、弁体と、前記弁体が着座可能な弁シートと、を含み、
前記弁体は、前記径方向において前記弁シートよりも前記シリンダから離れて配置されており、
前記弁シートよりも前記回転シャフト側の領域において、前記油圧室と前記低圧バルブとの間の作動油の流れと、前記低圧通路における作動油の流れとが、前記径方向に関して互いに逆向きとなるように構成される。
上記(2)の構成によれば、油圧室から低圧バルブに向かう作動油の流れを反転させて低圧通路内をカム室に向かって導くようにしたので、油圧室と低圧油ラインとの間の低圧通路をより一層短縮することができる。よって、低圧バルブの閉動作時に低圧バルブの下流側に生じるキャビテーションが効果的に緩和され、低圧油ラインにおける圧力変動(圧力スパイク)をより一層抑制できる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
前記低圧バルブは、弁体と、前記弁体が着座可能な弁シートと、を含み、
前記弁シートは、前記油圧室の中心軸周りに前記シリンダの外周側に設けられる。
上記(3)の構成によれば、シリンダの外周側に低圧バルブの弁シートを設けたので、低圧バルブの弁シートを介した作動油の流れを油圧室の中心軸に対して対称にしやすくなり、非対称な流れに起因した損失や圧力変動を抑制することができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記低圧通路は、前記油圧室の中心軸に関して対称の位置に設けられる。
上記(4)の構成によれば、油圧室の中心軸に対して対称の位置に低圧通路を設けたので、低圧通路と油圧室との間の流れを対称なものとすることができ、非対称な流れに起因した損失や圧力変動を抑制することができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
前記低圧通路は、
前記油圧室の中心軸周りに前記シリンダの外周側に設けられた環状流路部と、
前記環状流路部から分岐するように、前記環状流路部から前記カム室に向かって延在する複数本の支流部と、を含む。
上記(5)の構成によれば、シリンダの外周側に設けられた環状流路部と、該環状流路部から分岐する複数本の支流部とを含む低圧通路を設けることで、低圧通路とシリンダとの間の流れの対称性を維持することができる。また、環状流路部及び複数本の支流部の採用により低圧通路の流路断面積を増大させることができるから、低圧バルブの閉動作時に低圧バルブの下流側に生じるキャビテーションが効果的に緩和され、低圧油ラインにおける圧力変動(圧力スパイク)をより一層抑制できる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、
前記カム室は、
前記油圧機械のシリンダブロックによって囲まれる主室と、
前記径方向において前記ピストンが往復運動する範囲の少なくとも一部に、前記シリンダの外周側にて前記シリンダと前記油圧機械の前記シリンダブロックとの間に形成される副室と、
を含み、
前記低圧通路の前記一端は、前記カム室の前記副室に開口している。
上記(6)の構成によれば、径方向におけるピストンの往復運動範囲の少なくとも一部にカム室の一部としての副室を設けたので、カム室(副室)を低圧バルブ側に接近させて配置することで、油圧室と低圧油ラインとの間の低圧通路をより一層短縮することができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
前記低圧バルブは、弁体と、前記弁体が着座可能な弁シートと、を含み、
前記油圧室の中心軸周りに前記シリンダの外周側にて前記低圧バルブの前記弁シートを形成するとともに、前記シリンダを形成するシリンダスリーブを前記カムの回転に合わせて揺動可能に支持する低圧シート形成部をさらに備え、
前記低圧通路は、前記低圧シート形成部を貫通するように設けられる。
油圧機械には、カムの回転に合わせてシリンダスリーブが搖動可能に構成されたものがある。この種の油圧機械では、シリンダスリーブの搖動時におけるシリンダスリーブとシリンダブロックとの干渉を回避するために、シリンダスリーブとシリンダブロックとの間に隙間が形成される。そして、シリンダスリーブとシリンダブロックとの間に形成されるこの隙間は、シリンダブロックによって囲まれた空間と一体的にカム室を形成することになる。
上記(7)の構成によれば、シリンダスリーブを搖動可能に支持する低圧シート形成部に弁シートおよび低圧通路を形成するようにしたので、カム室の一部を形成する前記隙間に低圧通路の前記一端を開口させるようにすれば、油圧室と低圧油ラインとの間の低圧通路をより一層短縮することができる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、
前記低圧バルブは、弁体を含み、
前記弁体は、前記高圧バルブと前記シリンダとの間で流れる作動油が前記径方向に沿って通過可能な開口を有する。
上記(8)の構成によれば、高圧バルブの半径方向位置よりも径方向内側に低圧バルブを配置することが可能となり、シリンダとカム室との間の低圧通路の長さをより一層短縮できる。また、高圧バルブとシリンダとの間において流れる作動油の低圧バルブへの衝突に起因した流体力が低圧バルブに作用することを抑制することができる。
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、
前記油圧室の中心軸周りに前記高圧バルブの外周側に形成され、前記高圧油ラインに連通する高圧環状流路をさらに備える。
上記(9)の構成によれば、油圧室の中心軸周りにおいて高圧バルブの外周側に高圧環状流路を設けることで、高圧油ラインと油圧室との間の流れを対称に近づけることができ、非対称な流れに起因した損失や圧力変動を抑制することができる。
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの構成において、
前記低圧バルブは、弁体と、前記弁体が着座可能な平坦な弁シートと、を含み、
前記弁体のうち少なくとも前記弁シートとの当接部位は平坦面である。
例えば、弁体の内周側に設けられた内側リッジと、弁体の外周側に設けられた外側リッジとでシートするように構成された環状バルブの場合、弁体に変形が生じると、確実なシートができなくなる場合がある。例えば、内側リッジ及び外側リッジを有する環状バルブの弁体において、内側リッジと外側リッジとで摩耗の偏りが生じると、片方のリッジしかシートしないことによりバルブを確実に閉止できなくなる場合がある。
この点、上記(10)の構成では、弁シートが平坦であるとともに、弁体のうち少なくとも弁シートとの当接部位が平坦面であるので、弁体に変形が生じたとしても、その変形の度合い(例えば摩耗量)の偏りが低減される。よって、上記(10)の構成によれば、低圧バルブを確実に閉止しやすくなる。
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、
前記高圧バルブ及び前記低圧バルブを収容するバルブブロックと、
前記カム室を少なくとも部分的に形成するシリンダブロックと、を備え、
前記バルブブロックは、前記シリンダブロックに取付けられる。
上記(11)の構成によれば、カム室を少なくとも部分的に形成するシリンダブロックに、高圧バルブ及び低圧バルブを収容するバルブブロックを取り付けることにより油圧機械を組み立てることができるので、油圧機械の組立が容易となる。
(12)本発明の少なくとも一実施形態に係る再生可能エネルギー型発電装置は、
再生可能エネルギーを受け取って回転するように構成されたロータと、
前記ロータの回転によって駆動されるように構成された油圧ポンプと、
前記油圧ポンプで生成された圧油によって駆動されるように構成された少なくとも一つの油圧モータと、
前記少なくとも一つの油圧モータによって駆動される発電機と、を備え、
前記油圧ポンプ及び前記少なくとも一つの油圧モータの少なくとも一方は、上記(1)乃至(11)の何れかの油圧機械であり、
前記高圧油ラインは、前記油圧ポンプの吐出口と前記油圧モータの吸込口とを接続し、
前記低圧油ラインは、前記油圧モータの吐出口と前記油圧ポンプの吸込口とを接続する。
上記(12)の構成では、油圧室に連通可能な低圧油ラインがカム室を含み、かつ、低圧油ラインの少なくとも一部を形成するカム室に低圧通路を介して油圧室を連通させるようになっている。このため、例えば、油圧機械のケーシングに設けられた内部流路を該ケーシングの外表面に接続される外部配管(低圧油ライン)に連通させる構成に比べて、油圧室と低圧油ラインとの間の流路(上記(12)の構成では「低圧通路」)を短縮することができる。よって、低圧バルブの閉動作時に低圧バルブの下流側に生じるキャビテーションが緩和され、低圧油ラインにおける圧力変動(圧力スパイク)を抑制できる。
また、低圧油ラインの圧力変動を抑制できる結果、低圧油ラインの圧力変動を低減するためのアキュムレータを省略可能となり、油圧機械の構成を簡素化することができる。
本発明の少なくとも一実施形態によれば、低圧油ラインにおける圧力変動を抑制することができる油圧機械及び再生可能エネルギー型発電装置が提供される。
一実施形態に係る風力発電装置の概略図である。 一実施形態に係る油圧機械の概略図である。 一実施形態に係る油圧機械の油圧室周辺の構成の一例を示す図である。 一実施形態に係る油圧機械の油圧室周辺の構成の一例を示す図である。 一実施形態に係る油圧機械の油圧室周辺の構成の一例を示す図である。 図3に示すスリーブ支持部材のA−A線に沿った断面図である。 図3に示す低圧弁体の断面図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
まず、幾つかの実施形態に係る油圧機械(油圧ポンプ又は油圧モータ)が適用される風力発電装置について説明する。
なお、以下の説明では、再生可能エネルギー型発電装置の一例として風力発電装置について説明するが、油圧機械が適用される再生可能エネルギー型発電装置は、例えば、潮流発電装置、海流発電装置、河流発電装置等の他の再生エネルギー発電装置であってもよい。
また、幾つかの実施形態に係る油圧機械の適用先は、再生可能エネルギー型発電装置に限定されず、例えば建設機械等の他の装置に適用されてもよい。
図1は、一実施形態に係る風力発電装置の概略図である。
図1に示すように、風力発電装置1は、再生可能エネルギーとしての風を受けて回転するように構成されたロータ3と、ロータ3の回転を伝達するための油圧トランスミッション7と、電力を生成するための発電機16とを備える。
ロータ3は、少なくとも一本のブレード2と、ブレード2が取り付けられるハブ4とを含む。
油圧トランスミッション7は、回転シャフト6を介してロータ3に連結される油圧ポンプ8と、油圧モータ10と、油圧ポンプ8と油圧モータ10とを接続する高圧油ライン12及び低圧油ライン14と、を含む。
高圧油ライン12は、油圧ポンプ8の吐出口と油圧モータ10の吸込口とを接続する高圧外部配管11と、油圧機械(油圧ポンプ8または油圧モータ10)に設けられる高圧内部流路76(図2参照;後述する)と、を含む。
低圧油ライン14は、油圧モータ10の吐出口と油圧ポンプ8の吸込口とを接続する低圧外部配管13と、油圧機械(油圧ポンプ8又は油圧モータ10)に設けられるカム室70(図2参照;後述する)と、を含む。
発電機16は、油圧モータ10の出力軸を介して油圧モータ10に連結される。一実施形態では、発電機16は、電力系統に連系されるとともに、油圧モータ10によって駆動される同期発電機である。
なお、油圧ポンプ8及び油圧モータ10や発電機16は、タワー19上に設置されたナセル18の内部に設置されてもよい。
図1に示す風力発電装置1では、ロータ3の回転エネルギーは、油圧ポンプ8及び油圧モータ10を含む油圧トランスミッション7を介して発電機16に入力され、発電機16において電力が生成されるようになっている。
ブレード2が風を受けると、風の力によってロータ3全体が回転し、油圧ポンプ8がロータ3によって駆動されて作動油を加圧し、高圧の作動油(圧油)を生成する。油圧ポンプ8で生成された圧油は高圧油ライン12を介して油圧モータ10に供給され、この圧油によって油圧モータ10が駆動される。そして、出力軸を介して油圧モータ10に接続される発電機16において電力が生成される。油圧モータ10で仕事をした後の低圧の作動油は、低圧油ライン14を経由して油圧ポンプ8に再び流入するようになっている。
油圧ポンプ8及び油圧モータ10は、押しのけ容積が調節可能な可変容量型であってもよい。
幾つかの実施形態において、油圧ポンプ8又は油圧モータ10の少なくとも一方は、以下に説明する油圧機械である。
次に、幾つかの実施形態に係る油圧機械について説明する。
図2は、一実施形態に係る油圧機械20の構成を示す概略図である。図2に示すように、油圧機械20は、回転シャフト21と、回転シャフト21の径方向に沿って設けられたシリンダ25と、シリンダ25内を往復運動可能なピストン24と、回転シャフト21とともに回転するカム22と、を備える。図2に示す例示的な実施形態では、複数のシリンダ25及びピストン24が、油圧機械20の周方向に沿って配列されている。
以降、本明細書において、「回転シャフト21の径方向」を、単に「径方向」と称することがある。
ピストン24は、シリンダ25とともにとともに油圧室27を形成し、シリンダ25に案内されて、径方向に沿ってシリンダ25内を往復運動するように設けられている。
図2に示す実施形態では、ピストン24の往復運動と回転シャフト21の回転運動とをスムーズに変換する観点から、ピストン24のカム22側の端部には、カム22のカム曲面に当接するピストンシュー23が取付けられている。
カム22は、シリンダ25に対して径方向内側に少なくとも部分的に位置するカム室70内に設けられ、ピストン24の往復運動と連動して、回転シャフト21とともに回転するようになっている。
図2に示す実施形態において、カム室70は、油圧機械20のシリンダブロック30によって囲まれる主室72と、シリンダ25の外周側にてシリンダ25とシリンダブロック30との間に形成される副室74と、を含む。カム22は、シリンダ25に対して径方向内側に位置するカム室70の主室72に設けられている。
なお、カム室70の主室72は、シリンダブロック30の内周側において油圧機械20の軸方向に延在していてもよい。
シリンダ25は、シリンダスリーブ26によって形成されている。図2に示す例示的な実施形態では、シリンダスリーブ26は、シリンダブロック30に取付けられたスリーブ支持部材28によって、カム22の回転に合わせて揺動可能に支持されている。なお、スリーブ支持部材28には、シリンダスリーブ26がスリーブ支持部材28から脱落しないように保持するための保持部(不図示)が設けられていてもよい。
図2に示す実施形態において、カム22は、回転シャフト21の軸中心Oから偏心して設けられた偏心カムである。ピストン24が上下動を一回行う間に、カム22及びカム22が取り付けられた回転シャフト21は一回転するようになっている。
なお、他の実施形態では、カム22は、複数のローブ(凸部)を有する環状のマルチローブドカム(リングカム)であってもよい。この場合、カム22及びカム22が取り付けられた回転シャフト21が一回転する間に、ピストン24は上下動をローブの数だけ行う。
上述のカム室70は、上述の低圧外部配管13(図1参照)とともに、油圧室27に連通可能な低圧油ライン14を形成する。カム室70(低圧油ライン14)は、後述する低圧通路64を介して、油圧室27に連通可能になっている。
シリンダブロック30の内部には、油圧機械20の軸方向に延びるように高圧内部流路76が設けられている。
この高圧内部流路76は、上述の高圧外部配管11(図1参照)とともに油圧室27に連通可能な高圧油ライン12を形成する。図2に示す実施形態では、油圧機械20には、回転シャフト21の中心O周りに角度間隔をあけて複数本の高圧内部流路76が設けられている。これらの高圧内部流路76は、油圧機械20の軸方向端部に位置するエンドプレート(不図示)に設けられる流路を介して、高圧外部配管11(図1参照)に接続される。
高圧内部流路76(高圧油ライン12)は、シリンダブロック30に設けられた第1高圧通路80と、低圧バルブ42及び高圧バルブ44を収容するバルブブロック32に設けられた第2高圧通路82と、を含む高圧連通路78を介して、油圧室27に連通可能になっている。
油圧機械20は、油圧室27と高圧油ライン12との連通状態を切り替えるための高圧バルブ44と、油圧室27と低圧油ライン14との連通状態を切り替えるための低圧バルブ42と、を有する。
図2に示す油圧機械20において、高圧バルブ44は、シリンダ25と高圧内部流路76(高圧油ライン12)との間に設けられており、低圧バルブ42は、シリンダ25とカム室70(低圧油ライン14)との間に設けられている。
また、図2に示す油圧機械20において、低圧バルブ42及び高圧バルブ44は、シリンダブロック30に取付けられたバルブブロック32に収容されている。
なお、油圧機械20において、比較的高圧の作動油が流れる高圧側の部材間において、シールを確実に行うことが課題となる。
この点、図2に示す実施形態では、高圧内部流路76をシリンダブロック30の内部に設けるとともに、高圧内部流路76と油圧室27とは、シリンダブロック30に設けられた第1高圧通路80と、バルブブロック32に設けられた第2高圧通路82と、を介して連通されているので、基本的には、シリンダブロック30とバルブブロック32との間のみを封止すれば足りる。また、第1高圧通路80及び第2高圧通路82は比較的流路径が小さいため、これらの接続部において、比較的小径のシールリングを設ければよい。よって、図2に示す形態では、高圧領域のシールが比較的容易に実現できる。
図3〜図5は、それぞれ、一実施形態に係る油圧機械20の油圧室27周辺の構成の一例を示す図である。また、図6は、図3に示すスリーブ支持部材28(低圧シート形成部31)のA−A線に沿った断面図であり、図7は、図3に示す低圧弁体46の断面図であり、油圧室27の中心軸Qに直交する方向に沿った断面図である。
なお、図3及び図4に示す油圧機械20は、それぞれ、上述した油圧機械20の油圧室27周辺の構成の一例を示す図である。
一方、図5は、シリンダ25及びピストン24の構成において異なる以外は、上述と同様の構成を有する油圧機械20の油圧室27周辺の構成の一例を示す図である。具体的には、図5に示す油圧機械20において、シリンダ25は、シリンダブロック30に固定されるシリンダスリーブ26によって形成されている。なお、シリンダスリーブ26は、カム22(図2参照)とは反対側の端部にフランジ部26aを有しており、該フランジ部26aがシリンダブロック30に設けられた凹部30aに当接している。また、シリンダ25内を往復運動可能なピストン24とカム22(図2参照)との間には、ピストン24に揺動可能に連結されたコンロッド29が設けられる。そして、ピストン24の往復運動又はカム22の回転運動が、コンロッド29を介して相互に伝達されるようになっている。
図3〜図5に示す例示的な実施形態では、油圧機械20の高圧バルブ44は、少なくとも部分的に高圧弁ケーシング36に収容されており、高圧弁体56と、高圧弁体56が着座可能な高圧弁シート55と、を含む。高圧弁シート55は、高圧弁ケーシング36に形成されている。
すなわち、高圧弁体56が高圧弁シート55に着座しているとき(高圧バルブ44の閉止時)には、油圧室27と高圧内部流路76(高圧油ライン12)とは非連通状態であり、高圧弁体56が高圧弁シート55から離れているとき(高圧バルブ44の開放時)には、油圧室27と高圧内部流路76(高圧油ライン12)とは連通状態である。
図3〜図5に示す高圧バルブ44は、第1電磁石60を用いて油圧室27と高圧油ライン12との連通状態を切り替え可能に構成された電磁弁である。より具体的には、高圧バルブ44は、高圧弁体56を高圧弁シート55に向かう方向に付勢する第1付勢部材62(図3〜図5に示す実施形態においてはバネ)と、高圧弁体56を駆動するための第1電磁石60と、を含む、ノーマルクローズ式の電磁弁である。第1電磁石60は、第1付勢部材62の付勢力に抗して、磁力によって高圧弁体56を駆動するように構成されている。すなわち、第1電磁石60に電流を供給すると、第1電磁石60によって磁力が生成され、この磁力によって高圧弁体56が径方向外側に向かって(開弁方向に)吸引されるようになっている。よって、第1電磁石60への電流の供給を制御することで、高圧弁体56に作用させる吸引力を調節し、高圧バルブ44の開閉を制御することが可能となっている。
また、高圧バルブ44は、径方向に延在するガイド軸58を有する。そして、このガイド軸58によって、高圧弁体56の径方向の動き(すなわち、開弁方向及び閉弁方向の動き)が案内されるようになっている。
図3又は図5に示す例示的な実施形態では、油圧機械20の低圧バルブ42は、ポペット式の低圧弁体(本発明の弁体)46と、低圧弁体46が着座可能な低圧弁シート(本発明の弁シート)45と、を含む。
低圧弁シート45は、低圧シート形成部31によって形成される。図3に示す例では、低圧シート形成部31は、シリンダブロック30に取付けられたスリーブ支持部材28を含み、スリーブ支持部材28に設けられた低圧通路64の一端(第2端64b)に連設されている。また、図5に示す例では、低圧シート形成部31は、シリンダブロック30に支持されるシリンダスリーブ26のフランジ部26aを含み、フランジ部26aに設けられた低圧通路64の一端(第2端64b)に連設されている。
すなわち、図3又は図5に示す実施形態では、低圧弁体46が低圧弁シート45に着座しているとき(低圧バルブ42の閉止時)には、油圧室27とカム室70(低圧油ライン14)とは非連通状態であり、低圧弁体46が低圧弁シート45から離れているとき(低圧バルブ42の開放時)には、油圧室27とカム室70(低圧油ライン14)とは低圧通路64を介した連通状態である。
なお、低圧弁シート45が形成される低圧シート形成部31としてのスリーブ支持部材28は、シリンダブロック30と一体的に形成されていてもよく、低圧弁シート45は、シリンダブロック30と一体のスリーブ支持部材28に形成されていてもよい。
また、図4に示す例示的な実施形態では、油圧機械20の低圧バルブ42は、スリーブ支持部材28の内周側に設けられる円筒型の低圧弁体(本発明の弁体)46’を有し、該低圧弁体46’は、スリーブ支持部材28の内周面28aを、径方向に摺動可能になっている。また、スリーブ支持部材28の内周面28aには、カム室70と油圧室27との間に設けられる低圧通路64の一端(第2端64b)が開口している。
すなわち、低圧弁体46’が、低圧通路64の一端(第2端64b)における開口の全体を塞ぐ径方向位置にあるとき(低圧バルブ42の閉止時)には、油圧室27とカム室70(低圧油ライン14)とは非連通状態であり、低圧弁体46’が、低圧通路64の一端(第2端64b)における開口の少なくとも一部と重ならない径方向位置にあるとき(低圧バルブ42の開放時)には、油圧室27とカム室70(低圧油ライン14)とは低圧通路64を介した連通状態である。
図3〜図5に示す低圧バルブ42は、上述の第1電磁石60とは別に設けられた第2電磁石50を用いて油圧室27と低圧油ライン14との連通状態を切り替え可能に構成された電磁弁である。より具体的には、低圧バルブ42は、低圧弁体46又は46’を、低圧弁シート45又は低圧通路64の一端(第2端64b)における開口から離れる方向に(すなわち開弁方向に)付勢する第2付勢部材54(図3〜図5に示す実施形態においてはバネ)と、低圧弁体46又は46’を駆動するための第2電磁石50とを含む、ノーマルオープン式の電磁弁である。
低圧弁体46又は46’は、径方向に沿って延在する弁棒48の一端側に結合されており、弁棒48の他端側には、アーマチュア52が固定されている。第2電磁石50は、第2付勢部材54の付勢力に抗して、磁力によって低圧弁体46を駆動するように構成されている。
すなわち、第2電磁石50に電流を供給すると、第2電磁石50によって磁力が生成され、この磁力によってアーマチュア52が径方向内側に向かって(閉弁方向に)吸引され、その吸引力に応じて、アーマチュア52、弁棒48及び低圧弁体46又は46’が一体的に径方向において移動する。よって、第2電磁石50への電流の供給を制御することで、アーマチュア52に作用させる吸引力を調節し、低圧バルブ42の開閉を制御することが可能となっている。
低圧バルブ42の弁棒48は、高圧バルブ44のガイド軸58を径方向に貫通する貫通孔59に挿通されている。これにより、ガイド軸58によって、弁棒48及び低圧弁体46又は46’の径方向の動き(すなわち、開弁方向及び閉弁方向の動き)が案内されるようになっている。
また、低圧バルブ42は、少なくとも部分的に低圧弁ケーシング34に収容されている。図3〜図5に示す実施形態では、弁棒48の一部、第2電磁石50、アーマチュア52及び第2付勢部材54が、低圧弁ケーシング34に収容されている。
図3〜図5に示す実施形態では、高圧弁ケーシング36とシリンダブロック30との間には、油圧機械20において比較的高圧の作動油が流通する高圧領域と、比較的低圧の作動油が流通する低圧領域とを遮断するためのバルクヘッド38が設けられている。
なお、図3〜図5に示す実施形態において、油圧室27とは、油圧機械20において、高圧バルブ44及び低圧バルブ42が閉止状態となったときに、ピストン24とシリンダ25とによって囲まれる領域に連通する空間のことをいう。
また、油圧室27の中心軸Qとは、油圧室27のうち、シリンダブロック30に対して動かない部材によって画定される部分の中心軸をいう。図3及び図4に示す実施形態では、油圧室27の中心軸Qは、油圧室27のうち、シリンダブロック30に対して動かない部材(シリンダ25やピストン24のように揺動しない部材;例えば、スリーブ支持部材28や、バルクヘッド38)によって画定される部分の中心軸である。また、図5に示す実施形態では、シリンダブロック30に対して動かない部材はシリンダスリーブ26を含み、油圧室27の中心軸Qは、シリンダ25の中心軸でもある。
上述した高圧バルブ44及び低圧バルブ42を有する油圧機械20では、高圧バルブ44及び低圧バルブ42の開閉制御により、ピストン24の往復運動に伴って油圧室27の圧力が周期的に変化するようになっている。
例えば、油圧機械20が油圧モータ10(図1参照)である場合、油圧ポンプ8により生成される高圧油ライン12と低圧油ライン14との差圧によって、ピストン24が周期的に上下動し、ピストン24が上死点から下死点に向かうモータ工程と、ピストン24が下死点から上死点に向かう排出工程とが繰り返される。油圧モータ10の運転中、ピストン24とシリンダ25の内壁面によって形成される油圧室27の容積は周期的に変化する。すなわち、油圧モータ10では、モータ工程において高圧バルブ44を開き低圧バルブ42を閉じることで高圧油ライン12から油圧室27内に作動油を流入させるとともに、排出工程において高圧バルブ44を閉じ低圧バルブ42を開くことで油圧室27内で仕事をした作動油を低圧油ライン14に送り出す。
このようにして、油圧室27への圧油の導入によってピストン24の往復運動が起こり、この往復運動がカム22の回転運動に変換される結果、カム22とともに油圧機械20の回転シャフト21が回転する。
また、例えば、油圧機械20が油圧ポンプ8(図1参照)である場合、回転シャフト21とともにカム22が回転すると、カム面に合わせてピストン24が周期的に上下動し、ピストン24が下死点から上死点に向かうポンプ工程と、ピストン24が上死点から下死点に向かう吸入工程とが繰り返される。そのため、ピストン24とシリンダ25の内壁面によって形成される油圧室27の容積は周期的に変化する。すなわち、油圧ポンプ8では、吸入工程において高圧バルブ44を閉じ低圧バルブ42を開くことで低圧油ライン14から油圧室27内に作動油を流入させるとともに、ポンプ工程において高圧バルブ44を開き低圧バルブ42を閉じることで油圧室27から高圧油ライン12に圧縮された作動油を送り出す。
このようにして、油圧機械20の回転シャフト21とともに回転するカム22の回転運動がピストン24の往復運動に変換され、油圧室27の周期的な容積変化が起こり、油圧室27で高圧の作動油(圧油)が生成される。
図3〜図5に示すように、油圧機械20は、カム室70に開口する第1端(一端)64aと、低圧バルブ42側に位置する第2端(他端)64bと、を有する低圧通路64を備える。
図3及び図4に示す実施形態では、低圧シート形成部31であるスリーブ支持部材28を貫通するように低圧通路64が設けられている。また、図5に示す実施形態では、シリンダスリーブ26のフランジ部26aを貫通するように低圧通路が設けられている。
図3〜図5に示す実施形態では、低圧通路64の第1端64aは、カム室70の副室74(シリンダ25の外周側にてシリンダ25とシリンダブロック30との間に形成される副室74)に開口している。
そして、低圧通路64の第1端64aは、低圧通路64の第2端64bと回転シャフト21の中心Oとの間の径方向位置にある。すなわち、油圧機械20の径方向において、低圧通路64の第1端64aは、低圧通路64の第2端64bよりも内周側に位置する。
このような低圧通路64を含む油圧機械20では、油圧室27に連通可能な低圧油ライン14がカム室70を含み、かつ、低圧油ライン14の少なくとも一部を形成するカム室70に低圧通路64を介して油圧室27を連通させるようになっている。
このため、例えば、油圧機械20のケーシングに設けられた内部流路を該ケーシングの外表面に接続される低圧外部配管13(低圧油ライン14)に連通させる構成に比べて、油圧室27と低圧油ライン14との間の流路(図3〜図5に示す実施形態では低圧通路64)を短縮することができる。
よって、低圧バルブ42の閉動作時に低圧バルブ42の下流側に生じるキャビテーションが緩和され、低圧油ライン14における圧力変動(圧力スパイク)を抑制できる。
また、低圧油ライン14の圧力変動を抑制できる結果、低圧油ライン14の圧力変動を低減するためのアキュムレータを省略可能となり、油圧機械20の構成を簡素化することができる。
図3〜図5に示す例示的な実施形態において、低圧弁体46は、径方向において低圧弁シート45又は低圧通路64の一端(第2端64b)における開口よりもシリンダ25から離れて配置されている。そして、例えば図3に示すように、低圧弁シート45又は低圧通路64の一端(第2端64b)における開口よりも回転シャフト21側の領域において、油圧室27と低圧バルブ42との間の作動油の流れFc(Fc又はFc)と、低圧通路64における作動油の流れFp(Fp又はFp)とが、径方向に関して互いに逆向きとなるように構成される。
例えば、油圧機械20が油圧モータ10である場合、ピストン24が下死点から上死点に向かって移動する過程において、高圧バルブ44が閉止状態になるとともに低圧バルブ42が開放状態となり、このとき、油圧室27内の作動油が、低圧通路64を介してカム室70(低圧油ライン14)へと排出される。
このとき、油圧室27と低圧バルブ42との間の作動油の流れFc(図3参照)の方向は、径方向において内側から外側に向かう方向となり、低圧通路64における作動油の流れFp(図3参照)の方向は、径方向において外側から内側に向かう方向となる。よって、油圧室27と低圧バルブ42との間の作動油の流れFcと、低圧通路64における作動油の流れFpとは、径方向に関して互いに逆向きである。
また、例えば、油圧機械20が油圧ポンプ8である場合、ピストン24が上死点から下死点に向かって移動する過程において、高圧バルブ44が閉止状態になるとともに低圧バルブ42が開状態となり、このときカム室70(低圧油ライン14)内の作動油が、低圧通路64を介して油圧室27へと流入する。
このとき、低圧通路64における作動油の流れFp(図3参照)の方向は、径方向において内側から外側に向かう方向となり、油圧室27と低圧バルブ42との間の作動油の流れFc(図3参照)の方向は、径方向において外側から内側に向かう方向となる。よって、油圧室27と低圧バルブ42との間の作動油の流れFcと、低圧通路64における作動油の流れFpとは、径方向に関して互いに逆向きである。
このように、油圧室27から低圧バルブ42に向かう作動油の流れを反転させて低圧通路64内をカム室70に向かって導くようにすることで、あるいは、カム室70から低圧通路64を通って低圧バルブ42に向かう作動油の流れを反転させて油圧室27に向かって導くようにすることで、油圧室27と低圧油ライン14(カム室70)との間の低圧通路64をより一層短縮することができる。よって、低圧バルブ42の閉動作時に低圧バルブ42の下流側に生じるキャビテーションが効果的に緩和され、低圧油ライン14における圧力変動(圧力スパイク)をより一層抑制できる。
図3又は図5に示す例示的な実施形態では、低圧弁シート45は、油圧室27の中心軸Q周りにシリンダ25の外周側に設けられる。
すなわち、図3に示す例示的な実施形態では、低圧弁シート45は、中心軸Q周りに、スリーブ支持部材28の内周面28aによって形成される油圧室27の部分の外周側に設けられる。
このように、シリンダ25(又は油圧室27の上述の部分)の外周側に低圧弁シート45を設けたので、低圧弁シート45を介した作動油の流れを油圧室27の中心軸Qに対して対称にしやすくなり、非対称な流れに起因した損失や圧力変動を抑制することができる。
図3〜図5に示す例示的な実施形態では、低圧通路64は、油圧室27の中心軸Qに関して対称の位置に設けられている。
また、図3及び図4に示す実施形態では、低圧通路64は、油圧室27の中心軸Q周りにシリンダ25の外周側(又はスリーブ支持部材28の内周面28aによって形成される油圧室27の部分の外周側)に設けられた環状流路部66と、環状流路部66から分岐するように、環状流路部66からカム室70に向かって延在する複数本の支流部68と、を含む。
一実施形態では、図3及び図6に示すように、シリンダ25の外周側(スリーブ支持部材28の内周面28aによって形成される油圧室27の部分の外周側)において、低圧シート形成部31としてのスリーブ支持部材28に環状流路部66が設けられている。環状流路部66は、環状の低圧弁シート45に連設され、低圧通路64の低圧バルブ42側の端部である第2端64bを形成する。
図3及び図6に示す実施形態では、環状流路部66から分岐する複数本の支流部68が、環状流路部66からカム室70の副室74に向かって、油圧室27の中心軸Qを中心として放射状に延びている。
図3〜図5に示す実施形態のように、油圧室27の中心軸Qに対して対称の位置に低圧通路64を設けることで、低圧通路64と油圧室27との間の流れを対称なものとすることができ、非対称な流れに起因した損失や圧力変動を抑制することができる。
また、図3及び図4に示す実施形態のように、シリンダ25の外周側に設けられた環状流路部66と、該環状流路部66から分岐する複数本の支流部68とを含む低圧通路64を設けることで、低圧通路64とシリンダ25との間の流れの対称性を維持することができる。また、環状流路部66及び複数本の支流部68の採用により低圧通路64の流路断面積を増大させることができるから、低圧バルブ42の閉動作時に低圧バルブ42の下流側に生じるキャビテーションが効果的に緩和され、低圧油ライン14における圧力変動(圧力スパイク)をより一層抑制できる。
図3〜図5に示す例示的な実施形態では、上述したように、低圧通路64の第1端64aは、シリンダ25の外周側にてシリンダ25とシリンダブロック30との間に形成されるカム室70の副室74に開口している。そして、副室74は、径方向においてピストン24が往復運動する範囲の少なくとも一部に形成されている。あるいは、副室74は、ピストン24が往復運動する間に、径方向において、油圧室27を部分的に確定するピストン24の上面24aが位置する範囲の少なくとも一部に形成されている。
このように、径方向におけるピストン24の往復運動範囲の少なくとも一部にカム室70の一部としての副室74を設けることで、カム室70(副室74)を低圧バルブ42側に接近させて配置することができ、油圧室27と低圧油ライン14との間の低圧通路64をより一層短縮することができる。
図3及び図4に示す例示的な実施形態では、上述したように、低圧シート形成部31としてスリーブ支持部材28が設けられており、このスリーブ支持部材28により、油圧室27の中心軸Q周りにシリンダ25の外周側にて低圧弁シート45が形成されている。また、カム室70に開口する第1端64a及び低圧バルブ42側に位置する第2端64bを有する低圧通路64は、低圧シート形成部31であるスリーブ支持部材28を貫通するように設けられている。
図3及び図4に示すような、シリンダスリーブ26が揺動可能に構成された油圧機械20では、シリンダスリーブ26の搖動時におけるシリンダスリーブ26とシリンダブロック30との干渉を回避するために、シリンダスリーブ26とシリンダブロック30との間に隙間(副室74)が形成され、この隙間が、シリンダブロック30によって囲まれた空間(主室72)とともにカム室70を形成する。
この場合、上述したように、シリンダスリーブ26を搖動可能に支持する低圧シート形成部31に低圧弁シート45および低圧通路64を形成し、カム室70の一部を形成する上述の隙間(副室74)に低圧通路64の一端(第1端64a)を開口させるようにすることにより、油圧室27と低圧油ライン14との間の低圧通路64をより一層短縮することができる。
図3〜図5に示す例示的な実施形態において、低圧弁体46は、高圧バルブ44とシリンダ25との間で流れる作動油が径方向に沿って通過可能な開口47を有する。
このように、低圧弁体46が開口47を有することにより、高圧バルブ44の半径方向位置よりも径方向内側に低圧バルブ42を配置することが可能となり、シリンダ25とカム室70との間の低圧通路64の長さをより一層短縮できる。また、高圧バルブ44とシリンダ25との間において流れる作動油の低圧バルブ42への衝突に起因した流体力が低圧バルブ42に作用することを抑制することができる。
幾つかの実施形態では、低圧弁体46は、油圧室27の中心軸Qに関して対称の位置に設けられた複数の開口47を有していてもよい。
例えば、図3に示す低圧弁体46は、図7(低圧弁体46の断面図)に示すように、油圧室27の中心軸Qに関して回転対称の位置に設けられた複数(図7に示す例では4つ)の開口47を有する。
このように、油圧室27の中心軸Qに関して対称の位置に複数の開口47を設けることにより、高圧バルブ44とシリンダ25との間において低圧弁体46を通過する作動油の流れを対称に近づけることができ、非対称な流れに起因した損失や圧力変動を抑制することができる。
図3〜図5に示す例示的な実施形態では、油圧室27の中心軸Q周りに高圧バルブ44の外周側には、高圧環状流路75が設けられている。高圧環状流路75は、第2高圧通路82を含む高圧連通路78(図2参照)を介して、高圧油ライン12に連通している。
このように、油圧室27の中心軸Q周りに高圧バルブ44の外周側に環状の高圧環状流路75を設けることにより、高圧油ライン12と油圧室27との間の流れを対称に近づけることができ、非対称な流れに起因した損失や圧力変動を抑制することができる。
図3〜図5に示す例示的な実施形態では、低圧弁シート45は平坦であり、低圧弁体46のうち低圧弁シート45と当接する部位は平坦面である。
このように、低圧弁シート45が平坦であるとともに、低圧弁体46のうち少なくとも低圧弁シート45との当接部位が平坦面であれば、低圧弁体46に変形が生じたとしても、その変形の度合い(例えば摩耗量)の偏りが低減されるので、低圧バルブ42を確実に閉止しやすくなる。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1 風力発電装置
2 ブレード
3 ロータ
4 ハブ
6 回転シャフト
7 油圧トランスミッション
8 油圧ポンプ
10 油圧モータ
11 高圧外部配管
12 高圧油ライン
13 低圧外部配管
14 低圧油ライン
16 発電機
18 ナセル
19 タワー
20 油圧機械
21 回転シャフト
22 カム
23 ピストンシュー
24 ピストン
24a 上面
25 シリンダ
26 シリンダスリーブ
26a フランジ部
27 油圧室
28 スリーブ支持部材
28a 内周面
29 コンロッド
30 シリンダブロック
30a 凹部
31 低圧シート形成部
32 バルブブロック
34 低圧弁ケーシング
36 高圧弁ケーシング
38 バルクヘッド
42 低圧バルブ
44 高圧バルブ
45 低圧弁シート
46 低圧弁体
46' 低圧弁体
47 開口
48 弁棒
50 第2電磁石
52 アーマチュア
54 第2付勢部材
55 高圧弁シート
56 高圧弁体
58 ガイド軸
59 貫通孔
60 第1電磁石
62 第1付勢部材
64 低圧通路
64a 第1端
64b 第2端
66 環状流路部
68 支流部
70 カム室
72 主室
74 副室
75 高圧環状流路
76 高圧内部流路
78 高圧連通路
80 第1高圧通路
82 第2高圧通路

Claims (12)

  1. 回転シャフトと、
    前記回転シャフトの径方向に沿って設けられたシリンダと、
    前記シリンダとともに油圧室を形成し、前記シリンダに案内されて前記シリンダ内を前記径方向に沿って往復運動可能に設けられたピストンと、
    前記シリンダに対して前記径方向の内側に位置するカム室内に設けられ、前記ピストンの往復運動と連動して前記回転シャフトとともに回転するように構成されたカムと、
    前記油圧室に連通可能な低圧油ライン及び高圧油ラインと、
    前記シリンダと前記低圧油ラインとの間に設けられ、前記油圧室と前記低圧油ラインとの連通状態を切り替えるための低圧バルブと、
    前記シリンダと前記高圧油ラインとの間に設けられ、前記油圧室と前記高圧油ラインとの連通状態を切り替えるための高圧バルブと、
    を備える油圧機械であって
    前記低圧油ラインは、前記カム室を含み、
    前記カム室に開口する一端、および、前記低圧バルブ側に位置する他端を有する低圧通路をさらに備え、
    前記低圧通路の前記一端は、前記低圧通路の前記他端と前記回転シャフトの中心との間の径方向位置にあり、
    複数の前記低圧通路が、前記油圧機械のシリンダブロックの周方向に放射状に配列された複数組の前記シリンダ及び前記ピストンについてそれぞれ設けられ、
    前記カム室は、前記油圧機械のシリンダブロックに対して前記径方向の内側に位置し、前記シリンダブロックによって囲まれるとともに、複数の前記低圧通路がそれぞれ連通する主室を含む
    ことを特徴とする油圧機械。
  2. 前記低圧バルブは、弁体と、前記弁体が着座可能な弁シートと、を含み、
    前記弁体は、前記径方向において前記弁シートよりも前記シリンダから離れて配置されており、
    前記弁シートよりも前記回転シャフト側の領域において、前記油圧室と前記低圧バルブとの間の作動油の流れと、前記低圧通路における作動油の流れとが、前記径方向に関して互いに逆向きとなるように構成された
    ことを特徴とする請求項1に記載の油圧機械。
  3. 前記低圧バルブは、弁体と、前記弁体が着座可能な弁シートと、を含み、
    前記弁シートは、前記油圧室の中心軸周りに前記シリンダの外周側に設けられた
    ことを特徴とする請求項1又は2に記載の油圧機械。
  4. 前記低圧通路は、前記油圧室の中心軸に関して対称の位置に設けられる
    ことを特徴とする請求項1乃至3の何れか一項に記載の油圧機械。
  5. 前記低圧通路は、
    前記油圧室の中心軸周りに前記シリンダの外周側に設けられた環状流路部と、
    前記環状流路部から分岐するように、前記環状流路部から前記カム室に向かって延在する複数本の支流部と、を含む
    ことを特徴とする請求項1乃至4の何れか一項に記載の油圧機械。
  6. 前記カム室は、
    前記油圧機械のシリンダブロックによって囲まれる主室と、
    前記径方向において前記ピストンが往復運動する範囲の少なくとも一部に、前記シリンダの外周側にて前記シリンダと前記油圧機械の前記シリンダブロックとの間に形成される副室と、
    を含み、
    前記低圧通路の前記一端は、前記カム室の前記副室に開口している
    ことを特徴とする請求項1乃至5の何れか一項に記載の油圧機械。
  7. 前記低圧バルブは、弁体と、前記弁体が着座可能な弁シートと、を含み、
    前記油圧室の中心軸周りに前記シリンダの外周側にて前記低圧バルブの前記弁シートを形成するとともに、前記シリンダを形成するシリンダスリーブを前記カムの回転に合わせて揺動可能に支持する低圧シート形成部をさらに備え、
    前記低圧通路は、前記低圧シート形成部を貫通するように設けられる
    ことを特徴とする請求項1乃至6の何れか一項に記載の油圧機械。
  8. 前記低圧バルブは、弁体を含み、
    前記弁体は、前記高圧バルブと前記シリンダとの間で流れる作動油が前記径方向に沿って通過可能な開口を有する
    ことを特徴とする請求項1乃至7の何れか一項に記載の油圧機械。
  9. 前記油圧室の中心軸周りに前記高圧バルブの外周側に形成され、前記高圧油ラインに連通する高圧環状流路をさらに備える
    ことを特徴とする請求項1乃至8の何れか一項に記載の油圧機械。
  10. 前記低圧バルブは、弁体と、前記弁体が着座可能な平坦な弁シートと、を含み、
    前記弁体のうち少なくとも前記弁シートとの当接部位は平坦面である
    ことを特徴とする請求項1乃至9の何れか一項に記載の油圧機械。
  11. 前記高圧バルブ及び前記低圧バルブを収容するバルブブロックと、
    前記カム室を少なくとも部分的に形成するシリンダブロックと、を備え、
    前記バルブブロックは、前記シリンダブロックに取付けられた
    ことを特徴とする請求項1乃至10の何れか一項に記載の油圧機械。
  12. 再生可能エネルギーを受け取って回転するように構成されたロータと、
    前記ロータの回転によって駆動されるように構成された油圧ポンプと、
    前記油圧ポンプで生成された圧油によって駆動されるように構成された少なくとも一つの油圧モータと、
    前記少なくとも一つの油圧モータによって駆動される発電機と、を備え、
    前記油圧ポンプ及び前記少なくとも一つの油圧モータの少なくとも一方は、請求項1乃至11の何れか一項に記載の油圧機械であり、
    前記高圧油ラインは、前記油圧ポンプの吐出口と前記油圧モータの吸込口とを接続し、
    前記低圧油ラインは、前記油圧モータの吐出口と前記油圧ポンプの吸込口とを接続する
    ことを特徴とする再生可能エネルギー型発電装置。
JP2016224587A 2016-11-17 2016-11-17 油圧機械及び再生可能エネルギー型発電装置 Active JP6388898B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016224587A JP6388898B2 (ja) 2016-11-17 2016-11-17 油圧機械及び再生可能エネルギー型発電装置
EP17158149.9A EP3324046B1 (en) 2016-11-17 2017-02-27 Hydraulic machine and renewable energy type power generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224587A JP6388898B2 (ja) 2016-11-17 2016-11-17 油圧機械及び再生可能エネルギー型発電装置

Publications (2)

Publication Number Publication Date
JP2018080666A JP2018080666A (ja) 2018-05-24
JP6388898B2 true JP6388898B2 (ja) 2018-09-12

Family

ID=58185416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224587A Active JP6388898B2 (ja) 2016-11-17 2016-11-17 油圧機械及び再生可能エネルギー型発電装置

Country Status (2)

Country Link
EP (1) EP3324046B1 (ja)
JP (1) JP6388898B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285011B (zh) * 2019-07-09 2020-09-08 宁波丹顿液压传动有限公司 改进型摆缸液压马达
CN111720286A (zh) * 2020-07-01 2020-09-29 深圳市金馨科技有限公司 多缸泵送装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636469Y2 (ja) * 1979-03-19 1988-02-23
US8074450B2 (en) 2008-08-13 2011-12-13 General Electric Company Wind energy system with fluid-working machine with non-symmetric actuation
JP5734507B2 (ja) * 2012-12-07 2015-06-17 三菱重工業株式会社 流体作動装置及び風力発電装置
JP2014129776A (ja) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd 油圧機械および風力発電装置
JP2014129777A (ja) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd ラジアルピストン式油圧機械および風力発電装置
EP2770203B1 (en) * 2013-02-22 2016-10-12 Mitsubishi Heavy Industries, Ltd. Radial piston fluid machine and power generating apparatus of renewable energy type
JP2014163375A (ja) * 2013-02-22 2014-09-08 Mitsubishi Heavy Ind Ltd ラジアルピストン式の流体機械及び再生可能エネルギ発電装置

Also Published As

Publication number Publication date
EP3324046B1 (en) 2018-11-07
JP2018080666A (ja) 2018-05-24
EP3324046A1 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
DK2562421T3 (en) Pump actuator of the kind having a swivel vane to prevent rubbing corrosion
JP6388898B2 (ja) 油圧機械及び再生可能エネルギー型発電装置
JP6449362B2 (ja) 油圧機械及び再生可能エネルギー型発電装置
JP6267310B1 (ja) 油圧機械及び再生可能エネルギー型発電装置
EP2873870B1 (en) Spool valve assembly, hydraulic machine and power generating apparatus
EP3098489B1 (en) Annular valve and power generating apparatus of renewable-energy type
JP2014163377A (ja) バルブシリンダインターフェース、バルブシリンダインターフェースの組立方法及び再生可能エネルギ発電装置
JP5738476B2 (ja) 流体作動装置及び風力発電装置
JP2014129777A (ja) ラジアルピストン式油圧機械および風力発電装置
JP5726370B2 (ja) 油圧機械及び再生エネルギー発電装置
JP2014163516A (ja) 制御弁、制御弁の組立方法及び再生可能エネルギ発電装置
EP2770203A1 (en) Radial piston fluid machine and power generating apparatus of renewable energy type
EP2770204A1 (en) Hydraulic motor, method for starting hyraulic motor and power generating apparatus of renewable energy type
JP5562250B2 (ja) 水力装置、該装置を備えるエネルギー変換設備、及び該装置を調節する方法
JP2014181578A (ja) ラジアルピストン式油圧機械および風力発電装置
EP2871371A1 (en) Switching unit, hydraulic machine and power generating apparatus
JP2017137787A (ja) ピストン装置及び油圧機械
JP2021050780A (ja) 環状バルブおよび作動流体機械
JP2014163375A (ja) ラジアルピストン式の流体機械及び再生可能エネルギ発電装置
JP5734506B2 (ja) 流体作動装置及び風力発電装置
EP3171062B1 (en) Valve block, fluid machine, and renewable-energy power generating apparatus
CN109253005B (zh) 用于高压油泵的进油阀和相应的高压油泵
JP2015124608A (ja) ラジアルピストン式油圧機械および風力発電装置
JP2014129776A (ja) 油圧機械および風力発電装置
JP2021017954A (ja) 弁構造および作動機械

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6388898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250