WO2014134764A1 - Pcs有功无功控制系统及控制方法 - Google Patents

Pcs有功无功控制系统及控制方法 Download PDF

Info

Publication number
WO2014134764A1
WO2014134764A1 PCT/CN2013/001632 CN2013001632W WO2014134764A1 WO 2014134764 A1 WO2014134764 A1 WO 2014134764A1 CN 2013001632 W CN2013001632 W CN 2013001632W WO 2014134764 A1 WO2014134764 A1 WO 2014134764A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
voltage
converter
pcs
Prior art date
Application number
PCT/CN2013/001632
Other languages
English (en)
French (fr)
Other versions
WO2014134764A8 (zh
Inventor
王斌
赵丰富
陈晓东
郑凤英
马玉
程兰芳
程建洲
郑天文
崔文琦
王捷
Original Assignee
国家电网公司
国网安徽省电力公司宣城供电公司
北京华腾开元电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网安徽省电力公司宣城供电公司, 北京华腾开元电气有限公司 filed Critical 国家电网公司
Publication of WO2014134764A1 publication Critical patent/WO2014134764A1/zh
Publication of WO2014134764A8 publication Critical patent/WO2014134764A8/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the invention relates to a PCS active and reactive power control system and a control method thereof.
  • PCS Power Conversion System
  • PCS devices have been widely used in distributed power generation technologies such as solar energy and wind energy, and are gradually favored in energy storage systems with small capacity bidirectional power transfer such as flywheel energy storage, supercapacitors, and battery energy storage.
  • the bidirectional energy transfer between the DC battery of the battery energy storage system and the AC grid can be realized, and the electric quantity control in the normal or island operation mode can be realized.
  • An important function of PCS is to absorb or output a given power according to the power flow of the grid and load in the case of grid connection. For example, when the grid power is excessive, the PCS absorbs the power; if the grid power is insufficient, the PCS outputs power.
  • the aim is to always ensure a dynamic balance of power between the energy storage system and the grid. To this end, it is important to study the active and reactive control of PCS.
  • PCS active and reactive power control
  • the main goal of PCS active and reactive power control is to provide the desired active or reactive power in the case of grid connection.
  • the traditional PCS with single inductor filter has a simple structure, but the filtering effect is not good.
  • the PCS filtering effect with LCL filter is better than the former, but for large capacity, the required DC side voltage is higher, which is not conducive to the DC side battery.
  • the components are connected in series and in parallel.
  • PCS also known as energy conversion systems, as the name suggests, enables energy interaction between energy storage and the grid.
  • LCL filters or isolation transformers To enhance PCS output performance, most PCS are equipped with LCL filters or isolation transformers.
  • the PCS model will become a high-order mathematical model.
  • the traditional closed-loop control of the power outer loop and the current inner loop not only controls the complexity, but also requires more voltage and current sensors, and increases the number of PI controllers. Engineering applications are quite inconvenient.
  • the invention provides a PCS active and reactive power control system and a control method for avoiding the deficiencies in the prior art mentioned above, so as to ensure that the PCS stably outputs desired active and reactive power in the case of grid connection, and realizes power solution. Coupling control, in line with engineering needs.
  • the present invention adopts the following technical solutions to solve the technical problem.
  • PCS active and reactive power control system its structural characteristics include: current generator, phase-locked loop, grid-side voltage converter, three-phase current converter, voltage transformer, current transformer, first proportional integral controller, second a proportional integral controller, a coordinate converter, and a SVPWM (Space Vector Pulse Width Modulation) generator;
  • the voltage transformer is connected to a high voltage side of an isolation transformer of the power grid, the grid side voltage converter and the lock
  • the phase loops are all connected to the voltage transformer; the grid side voltage converter and the phase locked loop are also connected to each other;
  • the current transformer is connected to an output side of a PCS inverter of a power grid, and the three-phase current converter is connected to the current transformer; the three-phase current converter and the phase locked loop are also connected to each other;
  • An input end of the current generator is connected to an output end of the grid-side voltage converter; two output ends of the current generator respectively pass a first proportional integral controller and a second proportional integral controller and coordinate transformation The two output ends of the three-phase current converter are also connected to the coordinate converter through the first proportional integral controller and the second proportional integral controller respectively;
  • An output of the coordinate converter is coupled to the SVPWM generator; an output of the SVPWM generator is coupled to a power switch of the power grid; and the coordinate converter is further coupled to the phase locked loop.
  • the invention also provides a control method for a PCS active and reactive power control system.
  • the PCS active reactive power control method includes the following steps:
  • Step 1 The model is reduced
  • Step 2 Collect electrical parameters; Voltage sampling: Real-time acquisition of three-phase voltages Va, Vb and Vc on the high voltage side of the isolation transformer using voltage transformers; Current sampling: Real-time acquisition of three-phase currents on the output side of the PCS inverter using current transformers a , ib, i c .
  • Step 3 Obtain the phase ⁇ of the sampling voltage, and send the phase ⁇ to the grid-side voltage converter and the three-phase current converter respectively;
  • Step 4 Perform coordinate transformation on the three-phase sampling voltages Va, Vb, Vc and the three-phase sampling currents i a , i b , i c , and convert the AC components a, b and c into DC components d and q to obtain a sampling voltage Va. , the d-axis component Vd and the q-axis component Vq of Vb, Vc, and the d-axis component i d and the q-axis component iq of the sampling currents i a , i b , i c ;
  • Step 5 Generate a reference current; According to a given active power Pref, reactive power Qref, Vd, Vq and the ratio K of the low-voltage side and the high-voltage side of the transformer, obtain the reference current i dre ⁇ B iqref required for the outer loop current control ;
  • Step 6 outer loop current control; the difference obtained by subtracting the i dref obtained in step 5 from i d obtained in step 4 is input to the first proportional integral controller, and the first proportional integral controller outputs the parameter Vdr; The difference obtained after subtracting the i q obtained in step 4 from the ⁇ obtained in step 5 is input to the second proportional integral controller, and the parameter Vqr is output by the second proportional integral controller ;
  • Step 7 dq to ⁇ coordinate transformation; convert the parameters Vdr and Vqr obtained in step 6 into d ⁇ to ⁇ coordinate transformation, convert the two DC components d, q into two synchronous rotating AC components ⁇ , ⁇ , and obtain the parameters Va and ⁇ ;
  • Step 8 SVPWM signal modulation; Take Va and ⁇ obtained in step 7 as the input signal of the SVPWM generator, and finally generate the PWM control signal of the power switch tube of the power grid by the SVPWM generator.
  • the PCS active reactive power control system and the control method of the invention adopt the LCR-type PCS topology, which not only has good filtering effect, but also can reduce the DC side voltage requirement.
  • the mathematical model of this topology has a high order.
  • the mathematical model is strictly used to control the outer loop of the power outer loop and the inner loop of the current, which not only increases the control difficulty, but also greatly reduces the control performance.
  • the PCS active and reactive power control system and the control method of the invention adopt a simplified reduced order model and a current single loop control strategy, which simplifies the control structure and ensures good control performance, and can significantly improve the control performance and practical value.
  • the PCS active reactive power control method of the invention comprises steps of model reduction, coordinate transformation, current outer loop control and SVPWM modulation, which breaks through the traditional LCR-T type PCS active reactive power control using high order model or power outer loop, current
  • the limitation of the double loop control composed of inner loops simplifies the high-order model and the control structure becomes simple.
  • the single-stage current closed-loop control makes the control strategy more simplified.
  • the decoupling control of active and reactive power can be realized to realize energy. Two-way flow; good control performance: Even in the case of DC side voltage fluctuations, active and reactive decoupling control can be realized, so that PCS can stably output or absorb specified active power and reactive power to realize bidirectional flow of energy.
  • the utility model has the advantages of simple control, fast dynamic response, high output sinusoidality of the grid-connected current, and is advantageous for engineering applications.
  • FIG. 1 is a structural block diagram of a PCS active and reactive power control system of the present invention.
  • FIG. 2 is a flow chart of a PCS voltage frequency control method of the present invention.
  • Fig. 3 is a diagram showing active power waveforms under the condition of the condition 1 of the PCS active and reactive power control system and method of the present invention.
  • Fig. 4 is a diagram showing the reactive power waveform under the condition 1 of the PCS active reactive power control system and method of the present invention.
  • Fig. 5 is a diagram showing active power waveforms under the condition 2 of the PCS active reactive power control system and method of the present invention.
  • Fig. 6 is a diagram showing the reactive power waveform under the condition of the condition 2 when testing the PCS active and reactive power control system and method of the present invention.
  • Fig. 7 is a diagram showing a DC side voltage waveform diagram under the condition 2 of the PCS active reactive power control system and method of the present invention.
  • Fig. 8 is a diagram showing active power waveforms under the condition 3 of the PCS active reactive power control system and method of the present invention.
  • Fig. 9 is a diagram showing reactive power waveforms under the condition 3 of the PCS active reactive power control system and method of the present invention.
  • Figure 10 is a simplified diagram of the LCR-type PCS topology.
  • Figure 11 shows the single-phase equivalent circuit model of the LCR-T type PCS.
  • Figure 12 is a simplified diagram of an impedance network.
  • Figure 13 shows the single-phase equivalent circuit model of the LCR-T PCS after the model is reduced.
  • Figure 14 is a simplified diagram of the LCR-type PCS topology after the model is reduced.
  • the PCS active reactive power control system includes a current generator, a phase locked loop, a grid side voltage converter, a three-phase current converter, a voltage transformer, a current transformer, a first proportional integral controller, and a second ratio.
  • the voltage transformer is connected to a high voltage side of an isolation transformer of the power grid, and the grid side voltage converter and the phase locked loop are both connected to the voltage transformer; the grid side voltage converter and the phase locked loop are also connected Connected to each other;
  • the current transformer is connected to an output side of a PCS inverter of a power grid, and the three-phase current converter is connected to the current transformer; the three-phase current converter and the phase locked loop are also connected to each other;
  • An input end of the current generator is connected to an output end of the grid-side voltage converter; two output ends of the current generator respectively pass a first proportional integral controller and a second proportional integral controller and coordinate transformation The two output ends of the three-phase current converter are also connected to the coordinate converter through the first proportional integral controller and the second proportional integral controller respectively;
  • An output of the coordinate converter is coupled to the SVPWM generator; an output of the SVPWM generator is coupled to a power switch of the power grid; and the coordinate converter is further coupled to the phase locked loop.
  • the voltage transformer acquires the sampling voltages Va, Vb and Vc on the high voltage side of the isolation transformer T of the grid, and the grid side voltage converter and the phase locked loop are both connected to the output of the voltage transformer.
  • the grid-side voltage converter is an abc/dq converter for performing abc/dq conversion on the three-phase sampling voltages Va, Vb and Vc, obtaining a d-axis component Vd and a q-axis component Vq of the sampling voltage, and transmitting Vd and Vq Give the current generator.
  • the phase-locked loop PLL is used to track the phase of the sampled voltage and obtain the phase ⁇ of the sampled voltage in real time, and transmit the phase ⁇ to the grid-side voltage converter and the three-phase current converter, respectively.
  • the current generator obtains the reference current i dre ⁇ i qref required for the outer loop current control according to the given active power Pref, reactive power Qref, Vd, Vq and the ratio K of the low voltage side of the transformer to the high voltage side, and
  • the reference currents i dref and i qref are transmitted to the first proportional integral controller and the second proportional integral controller.
  • the current transformer is connected to the output side of the PCS inverter of the power grid for collecting three-phase currents i a , i b , and ic o three-phase current converters are connected at the output of the current transformer for sampling currents of three phases i a , i b , i c perform abc/dq transformation, obtain d-axis component i d and q-axis component i q of the sampling current, and transmit the d-axis component i d and q-axis component i q to the first Proportional integral controller And a second proportional integral controller.
  • the first proportional integral controller and the second proportional integral controller calculate the obtained variables Vdr and Vqr based on the reference currents i dref and i qref , i d , i q , and then transmit the parameters Vdr and Vqr to the coordinate converter.
  • the coordinate converter is a dq/ ⁇ converter for converting two DC components d, q into two synchronous rotating AC components ⁇ and ⁇ .
  • the coordinate converter converts Vdr and Vqr into parameters Va and ⁇ and sends them to SVPWM.
  • the SVPWM adopts the conventional two-level seven-segment mode, and finally generates the PWM control signal of the power switch tube for controlling the power grid to realize the decoupling control of the active and reactive power of the PCS.
  • the phase to be used in the coordinate transformation process of the coordinate converter is the high voltage side voltage phase information ⁇ of the transformer obtained by the phase locked loop PLL.
  • the PCS active and reactive power control method includes the following steps:
  • Step 1 The model is reduced
  • the LCR-T type PCS is an energy conversion system that includes an LCR filter and an isolated variable voltage.
  • the model corresponds to a 5th-order model, and the control is relatively complicated.
  • the mathematical essence of model reduction is:
  • the LCR-T type PCS transfer function is used for zero-pole cancellation; the physical essence is: Under the low-frequency signal, the filter capacitor branch and the magnetizing inductance branch are ignored, and the equivalent inductance is used instead of the original
  • the impedance network that is, the sum of the filter inductance and the original secondary side inductance of the isolation transformer is equivalent to a total inductance, which simplifies the control and achieves good control effects.
  • it is still necessary to consider the characteristics of the voltage current caused by the isolation transformer and the phase shift of the voltage and current.
  • Step 2 Collect electrical parameters; Voltage sampling: Real-time acquisition of three-phase voltages Va, Vb and Vc on the high voltage side of the isolation transformer using a voltage transformer; Current sampling: Real-time acquisition of three-phase current on the output side of the PCS inverter using a current transformer i a , i b , i c .
  • the three-phase voltages Va, Vb, and Vc are abc/dq-converted by the grid-side voltage converter to obtain the d-axis component Vd and the q-axis component Vq of the sampled voltage, and Vd and Vq are transmitted to the current generator.
  • a three-phase current transformer is connected at the output end of the current transformer for abc/dq transformation of the three-phase sampling currents i a , i b , i e to obtain a d-axis component i d and a q-axis component i of the sample current q , and transmitting the d-axis component ⁇ and the q-axis component i q to the first proportional integral controller and the second proportional integral controller, respectively.
  • Step 3 Obtain the phase ⁇ of the sampling voltage, and send the phase ⁇ to the grid-side voltage converter and the three-phase current converter respectively;
  • the phase-locked loop PLL is used to track the voltage phase of the high-voltage side of the transformer, and the voltage phase information ⁇ of the high-voltage side of the transformer is obtained in real time for the coordinate transformation of the high-voltage side three-phase voltage.
  • the voltage phase shift ⁇ can be obtained, and the low-voltage side voltage phase information 6 can be obtained for the three-phase current coordinate transformation on the output side of the PCS.
  • the phase-locked loop PLL sends ⁇ directly to the grid-side voltage converter, and ⁇ obtains the low-voltage side voltage phase information 6, which is transmitted to the three-phase current converter.
  • Step 4 Coordinate the three-phase sampling voltages Va, Vb, Vc and the three-phase sampling currents i a , i b , i c to exchange
  • the components a, b and c are transformed into DC components d and q, and the d-axis component Vd and the q-axis component Vq of the sampling voltages Va, Vb, Vc and the d-axis component i d of the samples 23 i a , i b , i c and Q-axis component iq;
  • the sampling voltages Va, Vb, and Vc in step 2 are subjected to abc to dq conversion to obtain the d-axis component Vd and the q-axis component Vq.
  • the phase used for the coordinate transformation is step 3 to obtain the voltage phase information ⁇ of the transformer high voltage side.
  • sampling currents ia, ib, and ic in step 2 are subjected to abc to dq conversion to obtain the d-axis component id and the q-axis component iq of the sampling current.
  • the phase used for the coordinate transformation is step 3 to obtain the voltage phase information of the low voltage side of the transformer 6 .
  • Step 5 generating a reference current; obtaining a reference current ⁇ and iq ref required for outer loop current control according to a given active power Pref, reactive power Qref, Vd, Vq, and a ratio K of the low voltage side and the high voltage side of the transformer ;
  • Iref Step 6 Outer loop current control; input the difference obtained by subtracting i dref obtained in step 5 from i d obtained in step 4 to the first proportional integral controller, and output the parameter Vdr by the first proportional integral controller ; the difference between the input i q obtained after step i qref 5 obtained in step 4 was subtracted to a second proportional integral controller, a second proportional-integral controller output variable Vqr;
  • the reference currents ⁇ and i qref obtained in step 5 are respectively subtracted from ⁇ and i q obtained in step 4, and the two differences respectively pass through two PI controllers, and then the two PI controllers respectively output Vdr and Vqr.
  • the PI controller has the following features:
  • the mathematical relationship between the input static difference e(t) and the output u(t) is as follows (3).
  • Kp represents the proportional parameter of the PI controller
  • Ti represents the integral parameter.
  • the startup time of the PI controller can be set manually according to the requirements.
  • Step 7 dq to ⁇ coordinate transformation; the parameters Vdr and Vqr obtained in step 6 are subjected to dq to ⁇ coordinate transformation, and two DC components ⁇ q are converted into two synchronous rotating AC components ⁇ , ⁇ to obtain parameters Va and ⁇ ;
  • dq to ⁇ transform The function of dq to ⁇ transform is mainly to convert two DC components d, q into two synchronous rotating AC components ⁇ , ⁇ , and the dq/ ⁇ transformation process satisfies the mathematical relationship of the following formula (4).
  • the PI controller output quantities Vdr and Vqr in step 6 are dq-to-coordinate transformed, and the voltages Va and ⁇ in the ⁇ coordinate system are obtained as the control signals of the space vector controlled SVPWM generator.
  • the phase to be used in the dq to ⁇ coordinate transformation process is the voltage side phase information ⁇ of the transformer high voltage side obtained in step 3.
  • the dq to ⁇ coordinate transformation is performed on the output quantities Vdr and Vqr of the two ⁇ controllers, and the voltages Va and ⁇ in the ⁇ coordinate system are obtained as the control signals of the space vector controlled SVPWM generator.
  • Step 8 SVPWM signal modulation; Take Va and ⁇ obtained in step 7 as the input signal of the SVPWM generator, and finally generate the PWM control signal of the power switch tube of the power grid by the SVPWM generator.
  • SVPWM adopts the conventional two-level seven-segment mode, and finally generates the PWM control signal of the power switch tube for controlling the power grid, and performs on-off control of the switch tube.
  • the decoupling control of the active and reactive power of the PCS is realized by controlling the on-off time and the on-off time of the switch tube.
  • the commercial simulation software PSCAD is used to test the effectiveness of the LCR-T type PCS active reactive power control method proposed by the present invention using the test model in FIG. Table 1 below shows the main parameters of the test model during the test.
  • the total simulation time is set to 0. 5s, and the simulation is performed with a simulation step of 3 us.
  • Figure 10 shows the topology of the LCR-type PCS.
  • the circuit diagram shown in Fig. 11 can be obtained by using the T-type equivalent circuit model of the transformer.
  • the impedances Z 2 and Z 3 in 13 are:
  • L 2 L m +LL m +Z, L m +LL 2 +Z, L is:
  • Vp '' 5(I, +I 2 +I) Equations (06) and (015) give the transfer function between the LCR-T type PCS output voltage and the isolation transformer voltage and current respectively ⁇ ⁇ and G ps ⁇ ips , this is the original system model that has not been reduced. It’s not hard to find that this is a
  • the 5th order system has a high degree of order and is difficult to control.
  • the mathematical essence of model reduction is to use the LCR-T type PCS transfer function for pole-zero cancellation.
  • the physical essence is to ignore the filter capacitor branch and the magnetizing inductance branch, and use the equivalent inductance L' instead of the impedance network shown in Figure 11. , thereby reducing the difficulty of control and achieving good control effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

一种PCS有功无功控制系统及控制方法,控制系统包括电流发生器、锁相环、网侧电压变换器、三相电流变换器、电压互感器、电流互感器、两个比例积分控制器、坐标变换器和SVPWM发生器,通过这些组件产生控制电网的功率开关管的PWM控制信号,进而实现PCS有功无功的解耦控制。控制方法包括模型降阶、坐标变换、电流外环控制以及SVPWM调制。该PCS有功无功控制系统及控制方法使PCS稳定输出或者吸收指定的有功功率和无功功率、实现能量的双向流动。

Description

PCS有功无功控制系统及控制方法 技术领域
本发明涉及一种 PCS有功无功控制系统及控制方法。
背景技术
众所周知,风能、太阳能等间歇式电源并网及输配技术是目前能源领域的发展主题之一。 与此相应, 电池储能系统的也应用引起了广泛关注。 电池储能系统的一个重要组成部分就是
PCS (Power Conversion System, 能量转换系统) 。 PCS装置已广泛应用于太阳能、 风能等 分布式发电技术中, 并逐渐在飞轮储能、超级电容器、 电池储能等小容量双向功率传递的储 能系统中得到青睐。 通过 PCS可以实现电池储能系统直流电池与交流电网之间的双向能量 传递, 实现在正常或孤岛运行方式下的电气量控制等。 PCS的一个重要作用就是在并网情况 下, 根据电网、负载的功率流动情况, 吸收或者输出给定功率。例如, 当电网功率过剩, PCS 就吸收功率; 电网功率不足, PCS就输出功率。其目的是始终保证储能系统和电网之间功率 的动态平衡。 为此, 研究 PCS的有功无功控制至关重要。
PCS有功无功控制主要目标是在并网情况下提供期望的有功或者无功功率。传统的含单 电感滤器的 PCS, 虽然结构简单, 但滤波效果不好; 含 LCL滤波器的 PCS滤波效果较前者 好, 但对于大容量情况, 要求的直流侧电压较高, 不利于直流侧电池组件串并联。 PCS也称 为能量转换系统, 顾名思义, 其可实现储能和电网之间的能量互动。 为增强 PCS输出性能, 现大多 PCS都配备了 LCL型滤波器或者隔离变压器等装置。 为此, PCS的模型将变为高阶 的数学模型, 采用传统的功率外环、 电流内环的双闭环控制不仅控制复杂, 需要较多电压电 流传感器, 且增加了 PI控制器数量, 调试困难, 工程应用相当不便。
发明内容
本发明是为避免上述已有技术中存在的不足之处, 提供一种 PCS有功无功控制系统及 控制方法, 以保证 PCS在并网情况下稳定输出期望的有功和无功, 实现功率的解耦控制, 符合工程需求。
本发明为解决技术问题采用以下技术方案。
PCS有功无功控制系统, 其结构特点是, 包括电流发生器、 锁相环、 网侧电压变换器、 三相电流变换器、 电压互感器、 电流互感器、 第一比例积分控制器、 第二比例积分控制器、 坐标变换器和 SVPWM ( Space Vector Pulse Width Modulation, 空间矢量脉宽调制) 发生器; 所述电压互感器连接在电网的隔离变压器的高压侧,所述网侧电压变换器和锁相环均与 所述电压互感器相连接; 所述网侧电压变换器和锁相环之间也相互连接; 所述电流互感器连接在电网的 PCS逆变器的输出侧, 所述三相电流变换器与所述电流互 感器相连接; 所述三相电流变换器与锁相环之间也相互连接;
所述电流发生器的输入端与所述网侧电压变换器的输出端相连接;所述电流发生器的两 个输出端分别通过第一比例积分控制器和第二比例积分控制器与坐标变换器相连接,所述三 相电流变换器的两个输出端也分别通过第一比例积分控制器和第二比例积分控制器与坐标 变换器相连接;
所述坐标变换器的输出端与所述 SVPWM发生器相连接; 所述 SVPWM发生器的输出端 与电网的功率开关管相连接; 所述坐标变换器还与所述锁相环相连接。
本发明还提供了一种 PCS有功无功控制系统的控制方法。
PCS有功无功控制方法, 其包括如下步骤:
步骤 1 : 模型降阶;
步骤 2: 采集电气参数; 电压采样: 利用电压互感器实时采集隔离变压器高压侧的三相 电压 Va、 Vb和 Vc; 电流采样: 利用电流互感器实时采集 PCS逆变器输出侧的三相电流 ia、 ib、 ic
步骤 3: 获取采样电压的相位 θ, 并将相位 Θ分别发送给网侧电压变换器和三相电流变 换器;
步骤 4: 对三相采样电压 Va、 Vb、 Vc和三相采样电流 ia、 ib、 ic进行坐标变换, 将交流 分量 a、 b和 c变换为直流分量 d和 q, 得到采样电压 Va、 Vb、 Vc的 d轴分量 Vd和 q轴分 量 Vq和采样电流 ia、 ib、 ic的 d轴分量 id和q轴分量 iq;
步骤 5: 产生参考电流; 根据给定的有功功率 Pref、 无功功率 Qref、 Vd、 Vq以及变压 器低压侧与高压侧之变比 K, 获取外环电流控制所需的参考电流 idre^B iqref;
步骤 6: 外环电流控制; 将步骤 5中获得的 idref减去步骤 4中获得的 id后获得的差值输 入至第一比例积分控制器, 由第一比例积分控制器输出参量 Vdr; 将步骤 5中获得的 ^^减 去步骤 4中获得的 iq后获得的差值输入至第二比例积分控制器,由第二比例积分控制器输出 参量 Vqr;
步骤 7: dq到 αβ坐标变换; 将步骤 6中获得参量 Vdr和 Vqr进行 dq到 αβ坐标变换, 把两个直流分量 d、 q转变成两个同步旋转交流分量 α、 β, 获得参量 Va和 νβ;
步骤 8: SVPWM信号调制; 将步骤 7中获得的 Va和 νβ作为 SVPWM发生器的输入信号, 由 SVPWM发生器最终产生控制电网的功率开关管的 PWM控制信号。
与已有技术相比, 本发明有益效果体现在: 本发明的 PCS有功无功控制系统及控制方法, 采用 LCR-型 PCS拓扑, 不仅具有良好的滤 波效果, 且能降低直流侧电压的要求。但此种拓扑的数学模型阶数较高, 如严格采用其数学 模型进行功率外环、电流内环的双闭环控制,不仅增加控制难度,且控制性能会大幅度下降。
本发明的 PCS有功无功控制系统及控制方法, 采用简化的降阶模型和电流单环控制策 略, 简化控制结构的同时也能保证良好的控制性能, 可显著提高控制性能和实用价值。
本发明的 PCS有功无功控制方法,包括模型降阶、坐标变换、电流外环控制以及 SVPWM 调制等步骤, 突破了传统 LCR-T型 PCS有功无功控制采用高阶模型或功率外环、 电流内环组 成的双环控制的局限, 将高阶模型进行简化, 控制结构变得简单; 采用单级式的电流闭环控 制, 控制策略更为简化; 可实现有功无功的解耦控制, 实现能量的双向流动; 具有良好的控 制性能: 即使在直流侧电压存波动情况下, 也可实现有功无功的解耦控制, 使 PCS稳定输出 或者吸收指定的有功功率和无功功率,实现能量的双向流动。其具有控制简单、动态响应快、 输出并网电流正弦度度高等优势, 有利于工程应用。
附图说明
图 1为本发明的 PCS有功无功控制系统的结构框图。
图 2为本发明的 PCS电压频率控制方法的流程图。
图 3为对本发明的 PCS有功无功控制系统及方法进行测试时工况 1条件下有功功率波形 图。
图 4为对本发明的 PCS有功无功控制系统及方法进行测试时工况 1条件下无功功率波形 图。
图 5为对本发明的 PCS有功无功控制系统及方法进行测试时工况 2条件下有功功率波形 图。
图 6为对本发明的 PCS有功无功控制系统及方法进行测试时工况 2条件下无功功率波形 图。
图 7为对本发明的 PCS有功无功控制系统及方法进行测试时工况 2条件下直流侧电压波 形图。
图 8为对本发明的 PCS有功无功控制系统及方法进行测试时工况 3条件下有功功率波形 图。
图 9为对本发明的 PCS有功无功控制系统及方法进行测试时工况 3条件下无功功率波形 图。
图 10为 LCR-型 PCS拓扑简图。 图 11为 LCR-T型 PCS的单相等效电路模型。
图 12为阻抗网络的化简图。
图 13为模型降阶后的 LCR-T型 PCS的单相等效电路模型。
图 14为模型降阶后的 LCR-型 PCS拓扑简图。
以下通过具体实施方式, 并结合附图对本发明作进一步说明。
具体实施方式
参见图 1, PCS有功无功控制系统, 包括电流发生器、 锁相环、 网侧电压变换器、 三相 电流变换器、 电压互感器、 电流互感器、 第一比例积分控制器、 第二比例积分控制器、 坐标 变换器和 SVPWM发生器;
所述电压互感器连接在电网的隔离变压器的高压侧,所述网侧电压变换器和锁相环均与 所述电压互感器相连接; 所述网侧电压变换器和锁相环之间也相互连接;
所述电流互感器连接在电网的 PCS逆变器的输出侧, 所述三相电流变换器与所述电流互 感器相连接; 所述三相电流变换器与锁相环之间也相互连接;
所述电流发生器的输入端与所述网侧电压变换器的输出端相连接;所述电流发生器的两 个输出端分别通过第一比例积分控制器和第二比例积分控制器与坐标变换器相连接,所述三 相电流变换器的的两个输出端也分别通过第一比例积分控制器和第二比例积分控制器与坐 标变换器相连接;
所述坐标变换器的输出端与所述 SVPWM发生器相连接; 所述 SVPWM发生器的输出端 与电网的功率开关管相连接; 所述坐标变换器还与所述锁相环相连接。
电压互感器在电网的隔离变压器 T的高压侧采集获得采样电压 Va、 Vb和 Vc,所述网侧电 压变换器和锁相环均连接在电压互感器的输出端。 网侧电压变换器为 abc/ dq变换器, 用于对 三相采样电压 Va、 Vb和 Vc进行 abc/dq变换, 获得采样电压的 d轴分量 Vd和 q轴分量 Vq, 并将 Vd、 Vq传送给电流发生器。 锁相环 PLL用于跟踪采样电压的相位并实时获取采样电压的相 位 θ, 并将相位 Θ分别传送给网侧电压变换器和三相电流变换器。
电流发生器根据给定的有功功率 Pref、 无功功率 Qref、 Vd、 Vq以及变压器低压侧与高压 侧之变比 K,获取外环电流控制所需的参考电流 idre^iqref,并将所述参考电流 idref和 iqref ^别传 送给第一比例积分控制器和第二比例积分控制器。 电流互感器连接在电网的 PCS逆变器的输出侧, 用于采集三相电流 ia、 ib、 ico三相电流变 换器连接在电流互感器的输出端, 用于对三相采样电流 ia、 ib、 ic进行 abc/dq变换, 获得采样电 流的 d轴分量 id和 q轴分量 iq, 并将所述 d轴分量 id和 q轴分量 iq分别传送给第一比例积分控制器 和第二比例积分控制器。 第一比例积分控制器和第二比例积分控制器根据参考电流 idref和 iqref、 id、 iq计算获得参量 Vdr和 Vqr, 然后将参量 Vdr和 Vqr传送给坐标变换器。 坐标变换器为 dq/αβ变换器, 用于把两个直流分量 d、 q转变成两个同步旋转交流分量 α和 β, 坐标变换器将 Vdr和 Vqr转换为参量 Va和 νβ后发送给 SVPWM发生器, 作为 SVPWM发生器的输入信号, SVPWM采用常规的两电平七段式方式, 最终产生控制电网的功率开关管的 PWM控制信号, 实现 PCS有功无功的解耦控制。 坐标变换器的坐标变换过程中需使用的相位是锁相环 PLL获 取的变压器高压侧电压相位信息 θ。
PCS有功无功控制方法, 包括如下步骤:
步骤 1 : 模型降阶;
LCR-T型 PCS是指含有 LCR滤波器和隔离型变压的能量转换系统。 一般情况下, 其模 型对应为 5阶模型, 控制相对复杂。 模型降阶的数学本质是: 将 LCR-T型 PCS传递函数进 行零极点对消; 物理本质是: 在低频信号下, 忽略滤波电容支路和激磁电感支路, 并利用等 效电感来代替原阻抗网络, 即将滤波器电感与隔离变压器原副边电感之和等效为一个总电 感, 便于简化控制且能获得良好的控制效果。但在控制过程中仍需考虑隔离变压器引起的电 压电流数值变化以及电压电流相移等特征。
步骤 2: 釆集电气参数; 电压采样: 利用电压互感器实时采集隔离变压器高压侧的三相 电压 Va、 Vb和 Vc; 电流采样: 利用电流互感器实时采集 PCS逆变器输出侧的三相电流 ia、 ib、 ic。 由网侧电压变换器对三相电压 Va、 Vb和 Vc进行 abc/dq变换, 获得采样电压的 d轴 分量 Vd和 q轴分量 Vq, 并将 Vd、 Vq传送给电流发生器。三相电流变换器连接在电流互感 器的输出端, 用于对三相采样电流 ia、 ib、 ie进行 abc/dq变换, 获得釆样电流的 d轴分量 id 和 q轴分量 iq, 并将所述 d轴分量 ^和 q轴分量 iq分别传送给第一比例积分控制器和第二比 例积分控制器。
步骤 3 : 获取采样电压的相位 θ, 并将相位 Θ分别发送给网侧电压变换器和三相电流变 换器;
利用锁相环 PLL,跟踪变压器高压侧电压相位,实时获取变压器高压侧电压相位信息 θ, 用于高压侧三相电压的坐标变换中。根据变压器低压侧和高压侧的连接方式, 可得到电压相 移 φ, 进而求得低压侧电压相位信息 6, 用于 PCS输出侧的三相电流坐标变换中。 例如, 变 压器为 Δ/Υη连接, 则 φ=π/6, 6=θ-φ=θ-π/6。 锁相环 PLL将 Θ直接发送给网侧电压变换器, 通过 Θ获得将低压侧电压相位信息 6, 将 6传送给三相电流变换器。
步骤 4: 对三相采样电压 Va、 Vb、 Vc和三相采样电流 ia、 ib、 ic进行坐标变换, 将交流 分量 a、 b和 c变换为直流分量 d和 q, 得到采样电压 Va、 Vb、 Vc的 d轴分量 Vd和 q轴分 量 Vq和采样 23 ia、 ib、 ic的 d轴分量 id和 q轴分量 iq;
对三相电压和三相电流进行 abc到 dq坐标变换, 把三个交流分量&、 b、 c转变成两个 直流分量 d、 q, 该变换满足如下式 (1 ) 数学关系:
Figure imgf000008_0001
将步骤 2中的采样电压 Va、 Vb、 Vc进行 abc到 dq变换, 得到其 d轴分量 Vd和 q轴分 量 Vq。 坐标变换使用的相位为步骤 3获取变压器高压侧电压相位信息 θ。
将步骤 2中的采样电流 ia、 ib、 ic进行 abc到 dq变换, 得到采样电流的 d轴分量 id和 q 轴分量 iq。 坐标变换使用的相位为步骤 3获取变压器低压侧电压相位信息 6。
步骤 5 : 产生参考电流; 根据给定的有功功率 Pref、 无功功率 Qref、 Vd、 Vq以及变压 器低压侧与高压侧之变比 K, 获取外环电流控制所需的参考电流 ^和 iqref;
参考电流 和^^的求取过程具有如下式 (2 ) 特征:
Figure imgf000008_0002
ldref =
(2)
ref
iref 步骤 6: 外环电流控制; 将步骤 5中获得的 idref减去步骤 4中获得的 id后获得的差值输 入至第一比例积分控制器, 由第一比例积分控制器输出参量 Vdr; 将步骤 5中获得的 iqref减 去步骤 4中获得的 iq后获得的差值输入至第二比例积分控制器,由第二比例积分控制器输出 参量 Vqr;
将步骤 5中得到的参考电流 ^和 iqref分别减去步骤 4得到的 ^和 iq, 两个差值分别经 过两个 PI控制器, 然后两个 PI控制器分别输出 Vdr和 Vqr。
其中, 所述 PI控制器具有如下特征: 输入静差 e(t)和输出 u(t)的数学关系如下式 (3 )。
Figure imgf000008_0003
式 (3 ) 中, Kp表示 PI控制器的比例参数, Ti表示积分参数。 PI控制器的启动时间可 根据需求人为设定。 步骤 7: dq到 αβ坐标变换; 将步骤 6中获得参量 Vdr和 Vqr进行 dq到 αβ坐标变换, 把两个直流分量^ q转变成两个同步旋转交流分量 α、 β, 获得参量 Va和 νβ;
dq到 αβ变换的作用主要是把两个直流分量 d、 q转变成两个同步旋转交流分量 α、 β, 该 dq/αβ变换过程满足如下式 (4 ) 的数学关系。
Figure imgf000009_0001
将步骤 6中的 PI控制器输出量 Vdr和 Vqr进行 dq到坐标变换, 可得到 αβ坐标系下的 电压 Va和 νβ,作为空间矢量控制的 SVPWM发生器的控制信号。其中, dq到 αβ坐标变换 过程中需使用的相位是步骤 3中获取的变压器高压侧电压相位信息 θ。
对两个 ΡΙ控制器输出量 Vdr和 Vqr进行 dq到 αβ坐标变换,可得到 αβ坐标系下的电压 Va和 νβ, 作为空间矢量控制的 SVPWM发生器的控制信号。
步骤 8: SVPWM信号调制; 将步骤 7中获得的 Va和 νβ作为 SVPWM发生器的输入 信号, 由 SVPWM发生器最终产生控制电网的功率开关管的 PWM控制信号。
将歩骤 7中的 Va和 νβ作为 SVPWM发生器的输入信号, SVPWM采用常规的两电平 七段式方式, 最终产生控制电网的功率开关管的 PWM控制信号, 对开关管进行通断控制, 通过对开关管的通断时刻和通断时间的控制, 从而实现 PCS有功无功的解耦控制。
根据前文所述的计算步骤, 采用商业仿真软件 PSCAD, 使用附图 1中的测试模型对本发 明提出的 LCR-T型 PCS有功无功控制方法的有效性进行测试。下表 1为测试过程中的测试模 型主要参数。
表 1 测试模型主要参数
Figure imgf000009_0002
仿真总时长设置为 0. 5s, 采用 3 us的仿真步长进行仿真。
分别对三种工况进行测试:
工况 1,直流侧电压 Edc=450V。其中给定有功无功分别为: Pre/=30«F, QK/=0kW , 即 PCS 向外输送 30kW有功功率。 工况 2, 直流侧电压 Edc=450V。 在 0~0.15s, P^=l0kW , Qre/=-l kW; 0.15s~0.35s, Pref=-\0kW , Qref=l0kW ; 0.35s~0.5s, Pnf=20kW , Qref= kW
工况 3, 直流侧电压 Edc从 400V, 以 30V/ (0. Is) 的速率逐渐增加, 最终为 550V。 其 中给定有功无功分别为: 0~0.25s, PKf=-\5kW , Qref=-\0kW ; 0.25s~0.5s, P^=25kW ,
2re=應。
如图 3〜图 9,从仿真波形的分析比较可以看出,本文提出的 LCR-T型 PCS能在并网条 件下实现有功无功的解耦控制, 即使直流电压存在波动, 仍能实时跟踪指定的功率值, 性能 优越。 图 3-图 9中 ^、 O ^表示根据电压电流瞬时值算得的功率; Pce、 ^表示用 PSCAD 内置功率测量模块得到的值; 其中, 1兆瓦 =1000千瓦。
如图 10为 LCR-型 PCS的拓扑简图。
根据图 10, 利用变压器的 T型等效电路模型, 可以得到图 11所示的电路图。
由图 11可知,
ips=K-is (01) up =u K (02) 从图 11可以看出, 对于 LC滤波器中的 RC支路, 由于基波阻抗满足 l/(iyC)»?, 其中 ω=2π/=\ 0π rod / s , 为基波角频率, /=50Hz为基波频率。 出于方便考虑, 在下面的分析 中忽略阻尼电阻的作用。 隔离变压器的原边电感 Z/、激磁电感 Lm和滤波器 RC支路构成了 一个三角形环, 利用阻抗网络的三角形 /星形变换理论, 可以得到如图 12所示的等效阻抗网 络。
13中的阻抗 Z2, Z3分别为:
Figure imgf000010_0001
应用电路理论中的叠加原理,可得到 PCS输出电压 与电流 和 之间的传递函数分 别为-
1 Z
G, 3 ― z.
(06)
zx + z2〃z3 z2 + z3 z{z2 + z,z3 + z2z.
Figure imgf000011_0001
自定义电流 z',
i= ip+{\-a)iL (08) 式中, ae[0,l]; 阻抗网络输入电压 与电流 之间的传递函数为:
(1-α)Ζ23
G,, 、,=oG', (09)
ζ,ζ,+ζ,ζ,+ζ,ζ. 代入式 (03)—式 (05), 化简式 (09) 可得到:
(l-a)s2 ( J2 +L2Lm +ΖΛ )C + +Lm ] s2 (L.+IJC + 1
(010) s2(a+b) 式中,
a=s2 (LI^ Lm L2 +LL2Lm )C b=L2Lm +LLm +Z,Im +LL2 +Z,Z2 令: a=- (Oil)
L2 Lm +LLm +Z, Lm +LL2 +Z, L 简为:
(012)
Figure imgf000011_0002
由于变压器的激磁电感远远大于原副边电感, 即 z, «£,<<Α 故近似的有:
L7+L
a=- 1 1 (013)
I2+ ,+Z 式 (12) 进一步可化简为:
Figure imgf000012_0001
同理, 隔离变压器副边电压 p对电流 和 的传递函数分别为:
1 7 +7
Gv →, = —— = ^-^ (015)
- z2 + z,〃z3 z,z2 + z,z3 + Z2Z3
Gv →l = = ^ (016)
v -'L Z2 + Z,〃Z3 Z, + Z3 ZiZ2 + z,z3 + Z2Z3
由式 (015) 和式 (016) 可知, 与电流 /之间的传递函数为:
Gv →= Gv →i +(\-a)Gv →i = cZl +Z3—— (017) 代入式 (03)—式 (05), 化简式 (017) 有:
Figure imgf000012_0002
同理, 当 «Z2«Zm时, 由式 (013), 化简式 (018), 则有,
Gv →= ί—— (019)
Vp' ' 5(I,+I2+I) 式(06)和式(015)分别给出了 LCR-T型 PCS输出电压 和隔离变压器电压 ^与电 流 之间的传递函数 ^和 Gps→ips, 此即是未降阶的原始系统模型。不难发现, 这是一个
5阶系统, 模型阶数高, 不易控制。
相比式 (014) 和式 (019), 可发现降阶后的系统模型是 1阶的, 且仅由滤波器和隔离 变压器的电感参数决定, 对于这样较为简单的系统, 其控制器的设计较原系统容易, 且不会 影响控制效果。 图 13和图 14分别给出了化简后的 LCR-T型 PCS的单相等效电路图和整个 系统拓扑图。
模型降阶的数学本质是将 LCR-T型 PCS传递函数进行零极点对消, 物理本质即忽略滤 波电容支路和激磁电感支路, 并利用等效电感 L'来代替图 11所示阻抗网络, 从而降低控制 难度, 实现良好的控制效果。

Claims

1、 PCS有功无功控制系统, 其特征是, 包括电流发生器、 锁相环、 网侧电压变换器、 三相电流变换器、 电压互感器、 电流互感器、 第一比例积分控制器、 第二比例积分控制器、 坐标变换器和 SVPWM发生器;
所述电压互感器连接在电网的隔离变压器的高压侧,所述网侧电压变换器和锁相环均与 所述电压互感器相连接; 所述网侧电压变换器和锁相环之间也相互连接;
所述电流互感器连接在电网的 PCS逆变器的输出侧, 所述三相电流变换器与所述电流互 感器相连接; 所述三相电流变换器与锁相环之间也相互连接;
所述电流发生器的输入端与所述网侧电压变换器的输出端相连接;所述电流发生器的两 个输出端分别通过第一比例积分控制器和第二比例积分控制器与坐标变换器相连接,所述三 相电流变换器的两个输出端也分别通过第一比例积分控制器和第二比例积分控制器与坐标 变换器相连接。
所述坐标变换器的输出端与所述 SVPWM发生器相连接; 所述 SVPWM发生器的输出端 与电网的功率开关管相连接; 所述坐标变换器还与所述锁相环相连接。
2、 PCS有功无功控制方法, 其特征是, 包括如下步骤:
步骤 1 : 模型降阶;
步骤 2: 采集电气参数; 电压采样: 利用电压互感器实时采集隔离变压器高压侧的三相 电压 Va、 Vb和 Vc; 电流采样: 利用电流互感器实时采集 PCS逆变器输出侧的三相电流 ia、 ib、 ;
步骤 3: 获取采样电压的相位 Θ, 并将相位 Θ分别发送给网侧电压变换器和三相电流变 换器;
步骤 4: 对三相采样电压 Va、 Vb、 Vc和三相采样电流 ia、 ib、 ie进行坐标变换, 将交流 分量 a、 b和 c变换为直流分量 d和 q, 得到釆样电压 Va、 Vb、 Vc的 d轴分量 Vd和 q轴分 量 Vq和采样电流 ia、 ib、 ^的01轴分量1<1和(1轴分量19;
步骤 5: 产生参考电流; 根据给定的有功功率 Pref、 无功功率 Qref、 Vd、 Vq以及变压 器低压侧与高压侧之变比 K, 获取外环电流控制所需的参考电流 idre^n iqref;
步骤 6: 外环电流控制; 将步骤 5中获得的 ^^减去步骤 4中获得的 id后获得的差值输 入至第一比例积分控制器, 由第一比例积分控制器输出参量 Vdr; 将步骤 5中获得的 ^^减 去歩骤 4中获得的 iq后获得的差值输入至第二比例积分控制器,由第二比例积分控制器输出 参量 Vqr0
步骤 7: dq到 αβ坐标变换; 将步骤 6中获得参量 Vdr和 Vqr进行 dq到 αβ坐标变换, 把两个直流分量 d、 q转变成两个同步旋转交流分量 α、 β, 获得参量 Va和 νβ; 步骤 8: SVPWM信号调制; 将步骤 7中获得的 Va和 νβ作为 SVPWM发生器的输入 信号, 由 SVPWM发生器最终产生控制电网的功率开关管的 PWM控制信号。
PCT/CN2013/001632 2013-03-04 2013-12-24 Pcs有功无功控制系统及控制方法 WO2014134764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310067990.6A CN103107548B (zh) 2013-03-04 2013-03-04 Pcs有功无功控制系统及控制方法
CN201310067990.6 2013-03-04

Publications (2)

Publication Number Publication Date
WO2014134764A1 true WO2014134764A1 (zh) 2014-09-12
WO2014134764A8 WO2014134764A8 (zh) 2014-10-30

Family

ID=48315201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001632 WO2014134764A1 (zh) 2013-03-04 2013-12-24 Pcs有功无功控制系统及控制方法

Country Status (2)

Country Link
CN (1) CN103107548B (zh)
WO (1) WO2014134764A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253292A (zh) * 2016-08-29 2016-12-21 上海交通大学 含双向晶闸管的宽范围可控变压器的动态潮流控制装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107548B (zh) * 2013-03-04 2016-04-06 国家电网公司 Pcs有功无功控制系统及控制方法
JP2017518725A (ja) 2014-06-20 2017-07-06 ゼネラル・エレクトリック・カンパニイ エネルギ貯蔵充電ステーション用の電力制御のシステムおよび方法
CN109378847B (zh) * 2018-10-30 2020-09-25 南京国电南自电网自动化有限公司 一种微电网储能pcs控制系统和方法
CN111835024B (zh) * 2019-04-16 2021-11-23 国网江苏省电力有限公司经济技术研究院 用于链式储能系统的三相电网电感消除器控制方法及系统
CN111628512B (zh) * 2020-05-19 2021-11-26 国网浙江省电力有限公司湖州供电公司 一种储能系统的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710105A (zh) * 2012-05-30 2012-10-03 电子科技大学 一种应用于lcl滤波pwm变流器的有源阻尼控制装置
CN103107548A (zh) * 2013-03-04 2013-05-15 安徽省电力公司宣城供电公司 Pcs有功无功控制系统及控制方法
CN203071585U (zh) * 2013-03-04 2013-07-17 安徽省电力公司宣城供电公司 Pcs有功无功控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090244937A1 (en) * 2008-03-28 2009-10-01 American Superconductor Corporation Dc bus voltage harmonics reduction
CN101951174B (zh) * 2010-09-11 2012-07-04 天津大学 电网电压不平衡情况下pwm变换器恒频直接功率控制方法
CN102222937B (zh) * 2011-06-22 2013-11-27 常熟开关制造有限公司(原常熟开关厂) 一种光伏并网逆变器及其并网控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710105A (zh) * 2012-05-30 2012-10-03 电子科技大学 一种应用于lcl滤波pwm变流器的有源阻尼控制装置
CN103107548A (zh) * 2013-03-04 2013-05-15 安徽省电力公司宣城供电公司 Pcs有功无功控制系统及控制方法
CN203071585U (zh) * 2013-03-04 2013-07-17 安徽省电力公司宣城供电公司 Pcs有功无功控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253292A (zh) * 2016-08-29 2016-12-21 上海交通大学 含双向晶闸管的宽范围可控变压器的动态潮流控制装置
CN106253292B (zh) * 2016-08-29 2018-12-25 上海交通大学 含双向晶闸管的宽范围可控变压器的动态潮流控制装置

Also Published As

Publication number Publication date
WO2014134764A8 (zh) 2014-10-30
CN103107548B (zh) 2016-04-06
CN103107548A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
CN108233415B (zh) 两级式光伏逆变器虚拟同步发电机控制方法
WO2014134763A1 (zh) Pcs电压频率控制系统及控制方法
WO2014134764A1 (zh) Pcs有功无功控制系统及控制方法
CN110739678B (zh) 一种并网换流器串联虚拟阻抗的控制方法
CN102035216B (zh) 发电机与矩阵变换器组合的并网控制方法及装置
CN108494007B (zh) 电网电压不平衡时基于直接功率控制的虚拟同步发电机控制方法
CN107196344B (zh) 基于spf-pll带本地负荷的自同步虚拟同步逆变器并网控制器及方法
CN108847669B (zh) 基于多同步旋转坐标系的多功能并网逆变器谐波治理方法
CN102299659A (zh) 用于多相电力转换器的控制的系统以及方法
CN107453395B (zh) 级联h桥中压变流器并网电流低频谐波抑制方法
CN102801346B (zh) 无信号互联线并联的三相逆变器及其控制方法
CN111342491B (zh) 一种适用于飞轮储能装置的并网控制方法及系统
Wu et al. A composite passive damping method of the LLCL-filter based grid-tied inverter
CN105610182A (zh) 一种孤岛运行的串联型微网结构及其功率控制方法
CN114094621A (zh) 一种并网变流器直流电容同步控制系统及方法
CN105406477B (zh) 一种三相并网系统lcl滤波器参数设计的方法
CN105490565B (zh) 一种三相四开关整流器直接功率控制的模型预测控制方法
CN110752762A (zh) 一种并网换流器并联虚拟电容的控制方法
CN105490297A (zh) 基于双逆变器群协调控制的微电网供电电压和电网电流谐波同步补偿方法
CN113098033B (zh) 基于柔性直流输电系统的自适应虚拟惯量控制系统及方法
CN107134792A (zh) 虚拟同步发电机电网不平衡跌落时的无功功率补偿方法
CN110190741A (zh) 大功率高升压比光伏直流变流器启动控制方法
CN110176787A (zh) 一种兼具谐波补偿的负荷虚拟同步机控制装置及方法
CN103259290A (zh) 一种无锁相环的双馈发电机网侧变流器直接电压控制方法
CN109193796A (zh) 一种扩大虚拟同步机容量的实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877129

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877129

Country of ref document: EP

Kind code of ref document: A1