WO2014133344A1 - 경피 흡수 촉진제 및 그의 용도 - Google Patents

경피 흡수 촉진제 및 그의 용도 Download PDF

Info

Publication number
WO2014133344A1
WO2014133344A1 PCT/KR2014/001644 KR2014001644W WO2014133344A1 WO 2014133344 A1 WO2014133344 A1 WO 2014133344A1 KR 2014001644 W KR2014001644 W KR 2014001644W WO 2014133344 A1 WO2014133344 A1 WO 2014133344A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
skin
fatty acid
conjugate
transdermal absorption
Prior art date
Application number
PCT/KR2014/001644
Other languages
English (en)
French (fr)
Inventor
권순창
박상진
김상우
Original Assignee
주식회사 내츄럴엔도텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 내츄럴엔도텍 filed Critical 주식회사 내츄럴엔도텍
Priority claimed from KR1020140023294A external-priority patent/KR101622382B1/ko
Publication of WO2014133344A1 publication Critical patent/WO2014133344A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to transdermal absorption promoters and their use.
  • the delivery method used for injecting the drug into the body is formulated in the form of oral, injectable, or inhaled drugs.
  • oral administration which occupies the largest proportion in drug delivery
  • the drug has a first pass effect in the liver. Since a significant amount is degraded by metabolism, there is a problem in that an excessive amount of drug should be taken in the preparation process in consideration of the bioavailability of the drug.
  • an inhalant since the drug is adsorbed on the base wall of the container, a smaller amount of the drug may be inhaled than the actual prescription amount, and it is inconvenient to use and carry. Therefore, to solve this problem, transdermal administration systems having many advantages over conventional oral administration, injection, inhalation, etc. have been actively developed.
  • transdermal administration unlike the oral administration, the first pass of the liver is prevented, so the drug can be prevented from being converted into an inactive metabolite by the liver. Drug absorption is not affected.
  • the blood concentration of the drug can be kept constant for a long time, and unlike oral or injectable drugs, it can prevent side effects due to the high temporary blood concentration. There is an advantage that the application can be easily stopped.
  • the skin is inherently designed to act as a barrier to the influx of medicinal substances into the body. Therefore, the skin barrier itself acts as a speed limiting process in the skin permeation process of the drug. There is a problem that can be limited. Therefore, drugs that can deliver drugs into the body through the skin are extremely limited.
  • a hydrophilic drug or a drug in the form of a salt has a great difficulty in being absorbed through the skin compared to the general drug because of its large polarity.
  • transdermal absorption accelerators mainly act on the stratum corneum to inhibit the barrier effect of the skin to promote the skin penetration of the drug, mainly urea, essential oils, terpenes terpenoids, oxazolidinoles, Various compounds are used in addition to pyrol 1 idones, laurocapran, fatty acids and dimethylsulfoxide (DMSO).
  • DMSO dimethylsulfoxide
  • elean acid has been known as a representative transdermal absorption promoter.
  • the mechanism of promoting transdermal absorption of monounsaturated fatty acid, Elelein acid is based on the intracellular lipid structure of the skin, which is formed by the kink structure formed by cis-double bond of the Elelein acid molecular structure. It is known that the microfluidic space effect caused by the structure of the bend structure is enhanced to promote the skin environment suitable for drug penetration by causing the fluidity change and improve the fluidity of the drug [Pharm. Res. 13, 542-546 (1993), J. membr. Biol. 4, 193-208 (1971).
  • hydrogel composition comprising galactomannan gum, carrageenan gum and tackifier (Korea Patent Publication No. 10-2012 ⁇ 0015783), '
  • nanoliposomes in which the sepo permeable peptide is bound to the surface (Dong Patent 10-1130550), and
  • nano-enriched capsule composition (Korean Patent Registration No. 10-0778903) for promoting transdermal absorption of hydrophilic bioactive substances.
  • the prior arts differ in the structural features of the material or the working composition from the core of the present invention as a drug delivery system or pharmaceutical composition or its related technology for enhancing transdermal absorption of drug or physiologically active ingredients.
  • Percutaneous absorption promoting fatty acid derivative of the present invention the object is created by the unsaturated fatty acids and amino bond per ester functional, are characterized by the presence party cationic amino coupled to "fatty acids the skin permeability improves, and at the same time of unsaturated fatty acids.
  • the role of the amino sugars that are bound provides cationicity, improving the permeability of fatty acids absorbed by the skin, and the antioxidant properties of amino sugars. Function (Bioorg Med Chem. 2006 Mar 15; 14 (6): 1706-9. Epub 2005 Nov 2.
  • the transdermal absorption promoting material of the present invention is characterized by the basic structure of the linkage structure of unsaturated fatty acids and amino sugars. Functionally, the fatty acid derivatives promote skin permeability of various active ingredients combined together to promote the percutaneous absorption of useful active substances, including drugs that are good for skin health or skin beauty. As a result, the fatty acid derivatives of the present invention are transdermal such as drugs. Increased absorption rate may lead to an increase in the cumulative amount of skin penetration of the drug.
  • Ferric acid (4-hydric-3-methoxycinnamic acid, ferulic acids) is an antioxidant that is widely present in the plant family, and is known to exist in combination with polysaccharides that make up cell walls such as fruits, vegetables, and grains. (Biochem. Biophys. Res. Commun. 1998; 253: 222; Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2003; 147: 137; J. Sci. Food Agric. 2004; 84: 1261; Free Radic. Biol. Med. 1996; 20: 933).
  • Ferric acid is an antioxidant produced from phenylalanine and tyrosine, and is added to diet foods and cosmetic lotions to protect the skin against health benefits and UV irritation (Biochem. Biophys. Res. Co.). 1998. 253: 222; Free Radic. Biol. Med. 1992; 13: 435; Appl. Environ.Microbiol. 2004; 70: 2367; Free Radic. Biol. Med. 1992; 13: 435).
  • peric acid has a powerful antioxidant function that inhibits the production of erythema, which is induced by UVB stimulation. (Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2003; 147: 137; J. Pharm. 2000; 199: 39; J. Sci. Food Agric. 1999; 79: 476).
  • the present inventors intend to develop a novel skin permeation accelerator, which is a key material of skin care products in the skin drug delivery and cosmetics industry, and (i) amino sugars and fatty acids or (ii) amino sugars, fatty acids and their safety and effectiveness.
  • a novel skin permeation accelerator which is a key material of skin care products in the skin drug delivery and cosmetics industry, and (i) amino sugars and fatty acids or (ii) amino sugars, fatty acids and their safety and effectiveness.
  • transdermal absorption enhancer Transdermal Penetration Enhancer
  • a transdermal absorption enhancer Transdermal Penetration Enhancer
  • the present inventors have developed aminosugar ⁇ fatty acid conjugates in which a chitoligo sugar comprising esters of fatty acids such as oleic acid, linoleic acid or stearic acid, and glucosamine monosaccharide or glucosamine trisaccharide are ester-bonded.
  • the present invention was completed by confirming that the conjugate improves skin permeability over oleic acid, which is known as a conventional transdermal hop accelerator.
  • transdermal absorption enhancer It is therefore an object of the present invention to provide a transdermal absorption enhancer. Another object of the present invention is to provide a cosmetic composition comprising the transdermal absorption accelerator of the present invention.
  • Another object of the present invention is to improve the transdermal delivery of a cargo comprising applying the cargo to the skin of the subject in combination with the percutaneous absorption promoter of the invention.
  • the present invention provides a transdermal absorption enhancer comprising an amino sugar-fatty acid conjugate represented by the following general formula (1):
  • A is an amino sugar of C5 or C6 containing an amino group
  • B is a fatty acid,-represents a bond
  • n represents 1- It is an integer of 100.
  • transdermal absorption enhancer Transdermal Penetration Enhancer
  • fatty acids such as oleic acid, linoleic acid or stearic acid
  • aminosaccharide conjugated fatty acid conjugates composed of glucosamine monosaccharides or glucosamine trisaccharides were synthesized, and it was confirmed that the conjugate has improved skin permeability compared to Eulleinic acid, which is known as a conventional transdermal absorption enhancer.
  • polymer chitosan to secure the amino sugar
  • a chemical decomposition reaction was introduced from the material to establish a process for preparing chitooligosaccharides of 3 to 6 sugars.
  • the amino sugar used in the present invention means an amine derivative including a sugar or a sugar in which a hydroxy group (-0H) is substituted with an amino group (-NH 2 ), which is found as a component of an animal connective tissue or cell membrane. do.
  • the amino sugar may include a C5 or C6 amino sugar as a monomer, and the monomer may be, for example, N-acetylglucosamine, Gluccoin] " 1 ?” (Glucosamine), 3 ⁇ 4 : ⁇ “ Sat” ”includes but is not limited to galactosamine, daunosamine, mannoamine, sialic acid and fructosamine.
  • the transdermal absorption promoter of the present invention includes an aminosugar-fatty acid conjugate represented by "General Formula 1 (A) n-B", wherein n may be an integer of 1-100.
  • A is glucosamine
  • B is oleic acid
  • n is 1, it includes an aminosugar-unsaturated fatty acid conjugate containing one glucosamine and elean acid.
  • the conjugate may also be expressed as a vehicle or an enhancer.
  • the above:! Is an integer of 1-50.
  • n is an integer of 1-10.
  • n is an integer of 1-7.
  • n is an integer of 2-6.
  • n is an integer of 3-5.
  • Fatty acids used in the present invention include unsaturated fatty acids and saturated fatty acids.
  • Saturated fatty acid used in the present invention is caprylic acid (caprylic acid), capric acid (capric acid), lauric acid (lauric acid), myristic acid (myrist ic acid), palmitic acid (palmitic acid), stearic acid Acid, arachidic acid, behenic acid, lignoceric acid and serotic acid.
  • Unsaturated fatty acids used in the present invention are myristoleic acid, palmitoleic acid, sapienic acid, Oleic acid, elaidic acid, vaccenic acid, linoleic acid, linoleic acid, henolaidic acid, alpha- linolenic acid, gamma- Linolenic acid ( ⁇ -linolenic acid), arachidonic acid, eicosapentaenoic acid, erucic acid and doco 1-nuclear! "Including, but not limited to, docosahexaenoic acid.
  • the aminosugar-unsaturated fatty acid conjugate included in the transdermal absorption promoter of the present invention may contain some saturated fatty acid or other substances in addition to the unsaturated fatty acid contained in the conjugate.
  • Unsaturated fatty acids may be included, and in one example, may comprise 0.001-30% by weight of saturated and unsaturated fatty acids in the total fatty acid content. Further, according to another example, the total fatty acid content may include 5 to 22 weight 3 ⁇ 4 of saturated and unsaturated fatty acids.
  • conjugates refers to a complex in which two or more components are bonded, for example, an amino sugar-fatty acid conjugate means a combination of an amino sugar and an unsaturated fatty acid or a combination of an amino sugar and a saturated fatty acid.
  • the term "bond 1" refers to a force that acts as a chemical bond between atomic or molecular members to form a collection of one distinct unit.
  • the bond includes a covalent or non-covalent bond.
  • an aminosugar-unsaturated fatty acid conjugate is a covalent bond in which atoms in the conjugate form an electron pair and share with each other, or an amino group ( ⁇ +) of an amino sugar and a hydroxyl group ( ⁇ -) of an unsaturated fatty acid. Due to the interaction between functional groups such as (electrostatic attraction) can generate a non-covalent bond by generating an electrostatic attraction.
  • the percutaneous absorption enhancer of the present invention may be prepared by various combinations of the amino sugars and fatty acids.
  • A is glucosamine
  • B is oleic acid, linoleic acid, alpha-linolenic acid, or gamma-linolenic acid.
  • N may be a transdermal absorption accelerator, characterized in that an integer of 3-5.
  • the percutaneous absorption promoter of this invention can be used individually or in mixture with other active ingredients.
  • conjugates made through ester bonds between gamma-linoleic acid (GLA) and amino sugars which are known to be beneficial for atopy improvement, can be applied to the skin and ultimately utilized as a means to supply GLA to the skin.
  • the amino sugar-unsaturated fatty acid conjugate of the present invention is promoted transdermal absorption due to the presence of a cationic substance amino sugar due to its structural properties, and the binding of amino sugars also contributes to stabilization of the fatty acid substance itself.
  • Conjugates absorbed into the skin are degraded by esterases present in the skin and converted into fatty acids and sugars, which can be used as effective skin transfer means for GLA fatty acids.
  • GLA fatty acids delivered to the skin play a very effective role in improving atopic symptoms.
  • Fatty acid conjugates included in the transdermal absorption enhancer of the present invention may further include a compound of Formula 1 as a transdermal absorption promoting component:
  • ⁇ to 3 ⁇ 4 includes any one functional group selected from the group consisting of hydrogen hydroxy and C1-3 alkoxy; At least one of said 3 ⁇ 4 is hydroxy; 3 ⁇ 4 is CH or CH 2 , and R 7 is aldehyde, carboxy or C 2 — 10 alkylester; n is an integer of 0-5.
  • alkoxy refers to an -0 alkyl group, and includes, for example, ethoxy, mesoxy and the like, and when C1-3 alkoxy is substituted, the carbon number of the substituent is not included.
  • aldehyde refers to a functional group represented by -CH0.
  • alkyl ester refers to an ester (-C00-) to which an alkyl group is bonded
  • alkyl means a straight-chain or branched unsubstituted or substituted saturated hydrocarbon group, for example methyl, ethyl, Propyl, isobutyl, pentyl, nucleus, heptyl, octyl, nonyl decyl, undecyl, tridecyl, pentadecyl, heptadecyl and the like.
  • C2-10 alkyl ester means an ester group having an alkyl ester unit having 2 to 10 carbon atoms, and when the C 2-10 alkyl ester is substituted, the carbon number of the substituent is not included.
  • the compound of Formula 1 is, for example, ferulic acid (ferulic acid), caffeic acid (caffeic acid), coumaric acid (coumaric acid), gent isic acid (gent isic acid), protocatechuic acid (protocatechuic acid) or vanilic acid (vanilic) acid), but is not limited thereto.
  • the compound of formula 1 is included as a linker to bind the amino sugars and fatty acids of the present invention.
  • the compound of Formula 1 may form an additional bond with an aminosaccharide ⁇ fatty acid conjugate to form a compound of formula 1-aminosugar-fatty acid conjugate, but preferably acts as a linker to help bond formation of amino sugars and fatty acids.
  • an aminosugar a compound-fatty acid conjugate of Formula 1.
  • the hydrophilic property is generally not as strong as that of the amino sugars which together form the conjugate, and the hydrophobic property is not as strong as the fatty acid.
  • the present invention provides a cosmetic composition comprising the transdermal absorption accelerator of the present invention described above.
  • the amino sugar-fatty acid conjugate included in the transdermal hop accelerator of the present invention is capable of industrial application for the purpose of improving skin whitening, which is of great concern in the cosmetic industry.
  • glucosamine or aminoligosaccharide which inhibits the glycosylation process of tyrosinase enzyme, which is the cause of melanin pigmentation
  • unsaturated fatty acid known to inhibit the activity of tyrosinase enzyme, which is essential for melanin production
  • its role as a transdermal penetration enhancer a functional anticipated effect of the aminosugar-saturated fatty acid conjugate, may contribute to the activation of new skin whitening products by promoting skin penetration of other materials useful for skin whitening.
  • the components included in the cosmetic composition of the present invention include components conventionally used in cosmetic compositions in addition to the transdermal absorption accelerators of the present invention described above, and include conventional auxiliaries and carriers such as stabilizers, solubilizers, vitamins, pigments and perfumes. It includes.
  • the cosmetic composition of the present invention may be prepared in any formulation conventionally prepared in the art, for example, solution, suspension, emulsion, paste : gel, cream lotion, powder, soap, surfactant-containing clean one by one It may be formulated as an oil, powder foundation, emulsion foundation, wax foundation and spray, but is not limited thereto. More specifically, it may be prepared in the form of a flexible lotion, nutrition lotion, nutrition cream, massage cream, essence, eye cream, cleansing cream, cleansing foam, cleansing water, pack, spray or powder.
  • the carrier components include animal oil, vegetable oil, wax, paraffin, starch, tracant, cellulose derivative, polyethylene glycol, silicone, bentonite, silica, talc or zinc oxide. Can be used.
  • lactose When the formulation of the present invention is a powder or a spray, lactose, talc, silica, aluminum hydroxide, calcium silicate or polyamide powder may be used, especially in the case of spray, additionally chlorofluorohydrocarbon, propane Propellant such as butane or dimethyl ether.
  • a solvent, solubilizing agent or emulsifying agent is used as a carrier component, for example water, ethane, isopropane, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene Glycols, 1,3-butylglycol oils, glycerol aliphatic esters, polyethylene glycols or sorbitan fatty acid esters.
  • the carrier components include water, liquid diluents such as ethanol or propylene glycol, suspending agents such as ethoxylated isostearyl alcohol, polyoxyethylene sorbide esters and polyoxyethylene sorbitan esters.
  • suspending agents such as ethoxylated isostearyl alcohol, polyoxyethylene sorbide esters and polyoxyethylene sorbitan esters.
  • Microcrystalline cellulose, aluminum metahydroxy bentonite, agar or tracant can be used.
  • the carrier component is an aliphatic alcohol sulfate, an aliphatic alcohol ether sulfate, a sulfosuccinic acid monoester, an isethionate, an imidazolinium derivative, a methyltaurate, a sarcosinate, a fatty acid amide.
  • Ether sulfates, alkylamidobetaines, aliphatic alcohols, fatty acid glycerides, fatty acid diethanamides, vegetable oils, lanolin derivatives or ethoxylated glycerol fatty acid esters and the like can be used.
  • the present invention provides a pharmaceutical composition comprising the transdermal absorption promoter of the present invention described above.
  • the amino sugar-fatty acid conjugate included in the percutaneous absorption enhancer of the present invention has an effect of improving skin permeability, and when used in combination with the drug, may enhance the percutaneous absorption of the drug.
  • the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers contained in the pharmaceutical composition of the present invention are those commonly used in the preparation, lactose, dextrose, sucrose, sorbbi, manny, starch, acacia rubber, calcium phosphate, alginate, Gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyridone, cellulose, water, syrup, methyl cellulose, methyl hydroxybenzoate, propyl hydroxybenzoate, talc, stearic acid magnesium and mineral oil Including, but not limited to no.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a sulfate, a glycerol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannito
  • Suitable dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and response sensitization of the patient. It may be prescribed.
  • the daily dosage of the pharmaceutical composition of the present invention is, for example, 0.001-1000 nig / kg.
  • the actual dosage of the pharmaceutical composition may be determined in consideration of various related factors such as the site of application, the area of application, the weight of the patient, the age and sex, and therefore the dosage may limit the scope of the invention in any form. It is not.
  • the present invention provides a transdermal delivery of a cargo comprising applying the cargo to the skin of the subject in combination with the transdermal absorption accelerator. Provides a way to improve.
  • “cargo” refers to a substance to be transported into the skin of an object regardless of its purpose, including, but not limited to, chemicals, biopharmaceuticals or nanoparticles.
  • the chemicals include, for example, cosmetic ingredients (eg, anti-wrinkle agents, anti-aging agents and skin whitening agents), anti-inflammatory agents, analgesics, anti-arthritis agents, antispasmodics, anti-depressants, antipsychotics, neurostabilizers, anti-bloc agents, drug antagonists , Antiparkin's disease drug, cholinergic agonist, anticancer, antiangiogenic, immunosuppressive, antiviral, antibiotic, appetite suppressant, analgesic, anticholinergic, antihistamine, antimigraine, hormone, coronary vessel, cerebrovascular or peripheral Vasodilators, contraceptives, antithrombotic diuretics, antihypertensives, cardiovascular diseases, and the like, but is not limited thereto.
  • cosmetic ingredients eg, anti-wrinkle agents, anti-aging agents and skin whitening agents
  • anti-inflammatory agents e.g., anti-inflammatory agents, analgesics, anti-arthritis agents, antispasmodics, anti-
  • the biopharmaceuticals include fat-soluble and / or water-soluble vitamins, insulin-like growth factor 1 (IGF-1), growth hormone, erythropoietin, granulocyte-i colony stimulating factors (G-CSFs), and GM-CSFs.
  • IGF-1 insulin-like growth factor 1
  • growth hormone growth hormone
  • erythropoietin growth hormone
  • G-CSFs granulocyte-i colony stimulating factors
  • GM-CSFs GM-CSFs
  • At least one or more of the amino sugar, the compound of the formula (1) and the fatty acid included in the transdermal absorption accelerator may itself be a transport target.
  • at least one or more components of the compound of formula 1 and fatty acids of amino sugars are the components in which the desired effect is directly exerted after passing through the skin of the object.
  • the present invention provides a transdermal absorption promoter comprising an aminosugar-fatty acid conjugate or an aminosugar-phenolic acid-fatty acid conjugate and a method for improving transdermal delivery of a cargo.
  • Conjugates included in the transdermal absorption accelerators of the present invention may be utilized not only in the cosmetic industry, which seeks to promote skin health and skin aesthetic effect, but also in the core material of transdermal drug delivery system formulations. Can be.
  • the percutaneous absorption enhancer of the present invention has an effect of improving skin permeability of a bioactive substance or drug, and in some cases, can be utilized as a sole agent for healing purposes by preparing a conjugate containing a specific drug.
  • the percutaneous absorption enhancer of the present invention uses a conjugate containing a substance having proven skin stability, it may be used in various fields as well as in the cosmetic or pharmaceutical field.
  • Figure 1 shows the results of confirming the size of the chitoli and sugar (COS) prepared in Example 1 of the present invention.
  • TLC results developed from 4 times, 8 times, 16 times, and 32 times dilution after completion of the cutting reaction for the COS marker, 0.4% chitosan raw material from the left;
  • the TLC results developed by dividing 4, 8, 16 and 32 times after the cleavage reaction for the 1.2% chitosan raw material were completed.
  • Figure 2 shows the results of confirming the yellow band by spraying ninhydrin (0.1% in EtOH) and then heat-treated TLC plate to confirm the dose-dependent production of COS ⁇ phenol conjugate (yellow) according to the COS concentration change.
  • Figure 3 shows the result of spraying 1 hydrin (0.1% in EtOH) to confirm the remaining amount of aniline in the fatty acid-aniline binding reaction, and heat treatment of the TLC plate, the remaining amount of aniline is pink.
  • Figure 4 shows the result of confirming the combination of the fatty acid and aniline produced in each reaction solution by spraying 10% sulfuric acid solution to the TLC plate and heat treatment to confirm the product in the fatty acid-aniline binding reaction.
  • Figure 5 shows the skin permeation test results of arbutin (Arbutin, logP-1.35) according to the type of vehicle (enhancer).
  • Figure 6 shows the skin permeation test results of vitamin (XAscorbic acid, logP -2.41) according to the type of vehicle (enhancer).
  • FIG. 7 shows the skin permeation experiment results of cinnamic acid (logP 2.41) using each conjugate in Example 41 of the present invention.
  • FIG. 8 shows that each donor sample with and without cinnamic acid was loaded into a Franz cell, and after the evaluation test was completed, the receptor solution was compared with HPLC under the same conditions. The position is indicated in 21 minutes as a cinnamic position marker.
  • FIG. 9 shows that each donor sample with and without cinnamic acid is loaded into a Franz cell and after the evaluation test is completed, the receptor solution is compared with HPIX under the same conditions, respectively. It shows the transmission result of the basic vehicle (propylene glycol), not the gate.
  • FIG. 10 shows CV0 without cinnamic acid, which is obtained by loading each donor sample with and without cinnamic acid into a Franz cell and comparing the receptor solution with HPLC under the same conditions, respectively, after the evaluation test is completed. The skin penetration test receptor solution of the sample is shown.
  • FIG. 11 shows that each donor sample with or without cinnamic acid was loaded into a Franz cell and the receptor solution was compared with HPIX under the same conditions, respectively, after the evaluation test was completed. mL, loading 0.45 mL) is the result of analyzing the receptor solution in the test added.
  • FIG. 12 is a standard curve for the results of resveratrol (logP 3.1) skin permeation experiment using the C0S-ferulic acid-1 inolenic acid (CFL) conjugate, with a section of 1-50 mcg / mL by RP-HPLC.
  • the result is a linear regression curve obtained by substituting the area value of the analytical sample from the measurement line at.
  • the X-axis shows the concentration of resveratrol (mcg / mL) and the y-axis shows the resveratrol peak area. , AUC).
  • FIG. 13 shows the results of a skin permeation experiment of resveratrol (resveratrol KlogP 3.1) using a COS-ferulic acid-linolenic acid (CFL) conjugate.
  • Figure 14 shows the results of the skin permeation enhancement effect of ascorbic acid (logP -2.41) by chitooligosaccharide (COS) -phenolic acid-fatty acid conjugate.
  • FIG. 15 shows the results of analyzing the receptor solution by HPLC under the same conditions after loading each donor sample with and without vitamin C into a Franz cell and completing an evaluation test.
  • the vitamin C position markers observed at 262 nm As the position in about 4.2 minutes.
  • FIG. 16 shows the results of analysis of HPLC of the receptor solution under the same conditions after loading the respective donor samples with and without vitamin C into the Franz cell and after the evaluation test.
  • the CFL conjugate without vitamin C The skin penetration test receptor solution of the sample is shown.
  • FIG. 17 shows the results of loading a donor sample with and without vitamin C into a Franz cell and analyzing the resultant solution by HPLC under the same conditions, after completion of the evaluation test.
  • Vitamin C (l mg / mL, The result of analyzing the receptor solution in the skin permeation test with 0.45 mL loading) is shown.
  • Fig. 18 shows the results of arbutin (Arbutin KlogP -1.35) skin permeation experiment by COS-ferulic acid-linolenic acid (CFL) conjugate.
  • Figure 19 shows the results of the Kojic acid (logP -0.64) skin permeation experiment by the COS-ferulic acid-linolenic acid (CFL) conjugate.
  • FIG. 20 shows absorbance spectra for UV—VIS wavelengths for COS, OA, LA, and perlic acid.
  • FIG. 21 shows absorbance spectra for the UV-VIS wavelength bands of COS-OA, Ferulic-LA, COS-ferulic-LA, Ferulic-C0S-0A conjugates.
  • a 0.4% water soluble chitosan (HCl) aqueous solution was prepared and the pH of the chitosan solution was adjusted to a range of 6 to 7 using sodium hydroxide.
  • Put 100 mL of chitosan solution into the culture flask add 0.5 mL of 1 M Ferrous sulphate solution to each flask, stir it properly, and add 4 mL of hydrogen peroxide solution to each container.
  • a reaction solution was prepared. The prepared culture flask was put in a shaker (55 ° C) shaker culture for 3 to 4 hours to prepare a chitoli-sugar solution. After the reaction was completed, the pH of each reaction solution was adjusted to neutral, and ethanol was added thereto for proper purification.
  • the final purified chitoli-oligosaccharide was recovered using a rotary evaporation concentrator.
  • the recovered chitooligosaccharides were 3 to 5 sugars, which were developed by silica thin layer chromatography, and confirmed by 0.1% ninhydrin staining.
  • Loligosaccharides that can develop and develop under TLC developing solvent conditions range from 1-6 sugars (see Figure 1) (Cabrera et. Al., Biochemical Engineering Journal 25 (2005) 165-172; Jung et al. , Protein Expression and Purification 45 (2006) 125-131; Chen et al., Food Research International 38 (2005) 315-322), and the chitooligosaccharides of -5 sugars per trisaccharide were identified by silica thin layer chromatography. .
  • the cutting reaction was carried out under similar conditions as in Example 1, in which 0.4% aqueous chitosan solution was added to a 5 L double jacket reactor, and the chitoli was maintained for 3 hours while maintaining 55 ° C. Sugar solution was prepared. After the cutting reaction was completed, the reaction solution was reduced in volume by more than 10 times with a rotary evaporator, and then ethanol was added so that the concentration of ethane was 80%. Thereafter, a low temperature treatment for a predetermined time to induce precipitation of polymer chitosan and iron, and the supernatant was collected by centrifugation, filtered and then separated and purified.
  • Cation exchange chromatography (Dowex 50 X8 hydrogen form, SIGMA-ALDRICH) was performed to recover high-purity COS.
  • the precipitated dilute ethane was adjusted to a pH of 3 or less and the conductivity was adjusted to 9.7 mS or less.
  • COS material was adsorbed to the cation exchange resin column (10 ⁇ 90 cm) by diluting with distilled water as appropriate. After washing sufficiently with distilled water and 20 mM NaOH, COS was eluted while increasing the salt concentration to 50 mM, 100 mM, and 150 mM under 20 mM NaOH, and it was confirmed that the COS was eluted from the 150 mM NaCl solution.
  • a process of removing salts can be further performed on the COS fraction obtained above.
  • the eluted COS fractions were diluted appropriately with distilled water to maintain an electric conductivity of 6 mS or less at a pH of 3 or less, followed by the same cation exchange chromatography. After loading the COS solution it is washed with distilled water (6L) followed by 95% ethanol (6L) and then 95% ethane containing Triethyl amine (TEA) (3 L) and additionally distilled water (8 L) were used to recover the COS fraction from which the salt was removed.
  • Purified COS in this example was determined by the National Authorized Testing Institute to determine the production yield by total glucosamine content analysis method and used in the production of fatty acid derivatives of other examples.
  • Example 3 Preparation of Oleic Acid Chloride
  • reaction conditions were optimized as shown in Table 2 through various test evaluations while varying the concentration of each reaction product.
  • the reaction was prepared as shown in Table 2 and the reaction was combined for 1 hour in a 60 degree water bath. TLC plates were prepared and loaded with 5 yL each of the reaction samples and propane was developed using a / acetic acid / water (3: 1: 1) mixed solvent. Spray ninhydrin (0.1% in EtOH) to confirm product
  • the TLC plate was heated to confirm that a yellow band was produced in a dose dependent manner (see FIG. 2). '
  • the reaction product was prepared as shown in Table 3 and the reaction was performed for 1 hour at room temperature. TLC plates were prepared and loaded with 4 uL of reaction samples each and developed using a nucleic acid / diethyl ether / acetic acid (8: 2: 1) mixed solvent to identify the band of the product (slightly below the free fatty acid position). Band).
  • the TLC plate was heated to confirm the residual amount of red aniline (see FIG.
  • Example 8 to Example 11 Preparation of Chitooligosaccharide (COS) -fatty Acid Conjugate Using a 5 L reaction vessel equipped with a stirrer, the reaction reaction of Examples 8 to 11 in Table 4 below at 200-250 rpm for 2 hours or more. Prepared while stirring. The final reaction product of each example was removed using a reduced pressure concentrator, neutralized the pH of the obtained aqueous solution to 7 to 8, and then chitooligosaccharide-coated using a HKX hydrophobic interact ion chromatographic media, SDR hyper D. Pal 1 Biosepra) column. Fatty acid conjugates were isolated.
  • COS Chitooligosaccharide
  • Free chitooligosacchar ide was recovered by non-coupling to the column and most of the chitoligo sugar-fatty acid conjugates were eluted with 30% ethane in solution. Unbound free fatty acids (f re e fatty acid) was eluted with 50-70% ethanol solution in the process. The fraction eluted at each step was confirmed by TLC analysis.
  • fatty acid derivatives chitooligosaccharide-fatty acid
  • the test was carried out using Franz diffusion cells equipped with artificial skin membranes (Strat-M membrane, Millipore, USA). The test was carried out using. In the donor of Franz Cell 0.45 mL or 0.5 mL of the composition containing the active ingredient to be evaluated was loaded, and a phosphate buffered saline or an appropriate concentration of ethane was used as a receptor. Model compound, conjugate type, exposure time, etc. according to the skin permeation test was carried out in accordance with each embodiment shown in the table below.
  • each example was determined based on the fatty acid concentration, and according to the recommendation of the artificial skin membrane manufacturer propylene glycol (propylene glycol) as a base solvent was prepared and tested the evaluation composition.
  • the content of each active ingredient was determined by obtaining a linear regression curve according to the standard concentration of the active ingredient.
  • Example 12 Skin Permeation Test of Arbutin (logP -1.35)
  • Arbutin (Alfa Aesar, 98% ⁇ ) Concentration: 1 mg / niL in propylene glycol Loading volume and Loading volume: 0.5 mL (500 meg)
  • Example 13 Skin penetration test of vitamin C (Ascorbic acid, logP -2.41)
  • Vitamin C (Great Gold, 99% ⁇ ) Concentration: 1 mg / mL loading volume and loading in propylene glycol: 0.45 mL (450 meg)
  • the permeation rate of the model compound was measured using St rat M synthetic membrane (Millipore Co., Ltd.) showing permeability similar to human skin in various conjugates prepared in Examples 28 to 40.
  • St rat M synthetic membrane Millipore Co., Ltd.
  • the donor solution of the Franz cell was loaded with the evaluation solution (0.45 mL) of the table below containing cinnamic acid (1 mg / mL) and the receptor solution was 50%. EtOH was used as reference solution.
  • the evaluation results of each conjugate are shown in Tables 11 and 12 below.
  • ** CF0-Fr: CF0 conjugate prepared in a relatively perlic acid excess state 7 is a graph showing the numerical value of the permeation improvement ratio compared to the evaluation sample name of the table. Conjugation to control shows that the skin permeation improvement rate of cinnamic acid has been greatly improved.
  • Example 41 In the skin permeation test using the CV0 (C0S-Vanil lie-OA) conjugate of Example 41, the cinnamic acid present in the receptor solution was identified as HP1X. The analysis was performed using a Prontosil Eurobond C18 (5.0 ⁇ , 250 ⁇ 4.0 mm) column and a linear gradient for 40 minutes after 15 uL addition using 0.1% phosphoric acid in water and 0.1% phosphoric acid in acetonitrile. Eluted under conditions. Each donor sample containing and not containing cinnamic acid was loaded into a Franz cell, and the results of the comparison of the Ig receptor receptors, which were evaluated by HPLC under the same conditions, are shown in FIGS. 8 to 11. . FIG.
  • FIG. 8 shows the position of the cinnamic acid position marker at 270 nm, and shows the position at 21 components.
  • FIG. 9 shows the result of permeation of a basic vehicle (propylene glycol) which is present in the presence of cinnamic acid but is not a conjugate.
  • the result of the skin permeation test receptor solution of the CV0 sample was analyzed and
  • FIG. 11 shows the receptor solution in the test to which cinnamic acid (1 mg / mL, 0.45 mL loading) was added.
  • the comparative analysis confirmed that the CV0 conjugate enhances the permeation of cinnamic acid.
  • Example 43 Resveratrol (UogP 3.1) Skin Permeation Experiment with COS-ferulic acid-1 Inolenic Acid (CFL) Conjugate
  • Resveratrol (UogP 3.1), which is a different fat-soluble drug, was tested for CFL conjugates, which showed a significant improvement in permeability to cinnamic acid.
  • the experiment was conducted in a similar manner to the experiment for cinnamic acid.
  • the standard curve was obtained by a linear regression curve by substituting the area value of the analytical sample by obtaining a quantitative line from l to 50 mcg / mL by RP-HPLC (see FIG. 12).
  • the concentration of CFL, the test vehicle was 4.45% based on linoleic acid fatty acid content, and 50% ethanol was used as the receptor.
  • the exposure time was 3.5 hours (at RT) and repeated twice. Test results are shown in Table 13 and FIG. 13.
  • Example 41 The experiment was conducted in a similar manner as in Example 41.
  • the donor solution of Franz Cell (inner diameter 1.5 cm) was loaded with the evaluation solution (0.45 mL) of the following table containing ascorbic acid (1 mg / mL) and the reducer solution was .50% EtOH Used as. Test results of each conjugate are shown in Tables 14 and 15 below.
  • Vitamin C present in the receptor solution was confirmed by HPLC in a skin permeation test using the CFL (C0S- Ferulic-LA) conjugate of Example 44 in an assay similar to that of Example 41.
  • CFL C0S- Ferulic-LA
  • Prontosil Eurobond C18 (5.0 ym, 250 ⁇ X 4.0 ⁇ ) column was used, and 0.1 min phosphoric acid in water and 0.1% phosphoric acid in acetonitrile were used for 40 min. Eluted under linear gradient conditions.
  • Each donor sample with and without vitamin C was loaded into a Franz cell, and after the evaluation test, the receptor solution was analyzed by HPLC under the same conditions, respectively.
  • FIG. 15 is a vitamin C position marker observed at 262 ° C., which shows the position at about 4.2 components.
  • FIG. 15 is a vitamin C position marker observed at 262 ° C., which shows the position at about 4.2 components.
  • FIG. 16 is a result of analysis of a skin permeation test receptor solution of a CFL conjugate sample containing no vitamin C.
  • FIG. (1 mg / mL, loading 0.45 mL) Receptor solution in the skin permeation test was analyzed. Through comparative analysis, it was confirmed that the CFL conjugate enhances the penetration of vitamin C.
  • Example 46 Arbutin (ArbutinXlogP-1.35) Skin Permeation Experiment by COS-ferulic acid-1 Inolenic Acid (CFL) Conjugate
  • a CFL conjugate was tested to improve skin permeation effect against arbutin (logP-1.35), another water soluble model.
  • the experiment was conducted in a similar manner to the experiment for ascorbic acid. 1 mg / ml arbutin was prepared and loaded at 450 mcg (0.45 ml) and repeated twice.
  • the control group used 1 mg / ml arbutin in propylene glycol
  • C0S-GLA in propylene glycol was 5% by GLA content
  • COS-Ferulic-LA in propylene glycol was 4.45% by LA content
  • the receptor solution was 50% EtOH. Used.
  • the experimental results are shown in Table 16 and FIG. 18.
  • the C0S-GLA also has a higher efficiency of permeating arbutin compared to the control, but the CFL conjugate was found to have an effect of increasing 4.45 times compared to the reference, and 1.6 times higher than the C0S-GLA. The permeation improvement effect of was confirmed.
  • Example 47 Kojic acid (logP -0.64) skin permeation experiment by CFLCCOS-ferulic acid-1 inolenic acid conjugate
  • the CFL conjugate was tested to improve the skin permeation effect against Kojic acid (logP —0.64), another water soluble model.
  • the experiment was conducted in a similar manner to the experiment for ascorbic acid. 1 mg / ml kojic acid was prepared and loaded at 450 mcg (0.45 ml) and repeated twice. The control group used 1 mg / ml kojic acid in propylene glycol. The concentration of each fatty acid was 5%, C0S-Ferulic-LA in propylene glycol was 4.45% based on the LA content, and the receptor solution was 50% EtOH. The experimental results are shown in Table 17 and FIG. 19.
  • Example 48 Comparative Evaluation of Absorption Spectrum of Ultraviolet-Visible Regions of Fatty Acid Derivatives Representative derivatives prepared in each of the above examples were examined for light absorption characteristics in the ultraviolet and visible regions (see FIGS. 20 and 21). Conjugates of the present invention applied directly to the skin will be able to inhibit the continuous maintenance of skin health and light skin aging by preventing harmful UV exposure to the skin in addition to the function of promoting the skin delivery of the active ingredient.
  • the photoaging harmful range of the skin is the chitolygosaccharide (COS) -peptide of the present invention which has light absorption in the UVB region because the UVB (280-315 nm) region is known to be more lethal to the skin than the UVA (315-400 nm).
  • Eulic acid-fatty acid conjugate material (see FIG. 21) is considered to be more practical than glucosamine-fatty acid or chitolygosaccharide (COS) -fatty acid conjugate material in terms of skin protection from harmful rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 아미노당-지방산 컨쥬게이트를 포함하는 경피 흡수 촉진제에 관한 것이다. 본 발명의 경피 흡수 촉진제에 포함되는 컨쥬게이트는 산업적으로 피부건강 및 피부의 미적 증진 효과를 추구하는 화장품 산업뿐만 아니라, 경피흡수 약물전달(transdermal drug delivery system) 제제의 핵심 소재에도 활용될 수 있다. 본 발명의 경피 흡수 촉진제는 생리활성물질 또는 약물의 피부투과율을 향상시키는 효과가 있으며, 경우에 따라 특정 약물을 포함한 컨쥬게이트의 제조를 통해 치유 목적의 단독 제제로서 활용이 가능하다. 또한, 본 발명의 경피 흡수 촉진제는 피부 안정성이 입증된 물질을 포함하는 컨쥬게이트를 이용하므로, 화장품 또는 의약 분야뿐 만 아니라 다양한 분야에서 활용될 수 있다.

Description

【명세서】
【발명의 명칭】
경피 흡수 촉진제 및 그의 용도
【기술분야】
본 특허출원은 2013 년 2 월 27 일에 대한민국 특허청에 제출된 대한민국 특허출원 제 10-2013-0021503 호 및 제 10-2014-0023294 호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
본 발명은 경피 흡수 촉진제 및 그의 용도에 관한 것이다.
【배경기술】
통상 약물의 체내 투입올 위해 사용되는 전달방법으로는 경구 투여제, 주사제 또는 흡입제 형태로 제제화되고 있는데 약물전달에 있어서 가장 많은 비중을 차지하는 경구 투여제의 경우, 약물이 간에서 초회 통과 효과 (first pass metabolism)에 의해 상당량이 분해되므로 제제화 과정에서 해당 약물의 생체이용률 (bioava ability)를 고려하여 실제 필요로 하는 양보다 과량의 약물을 복용해야 하는 문제가 있다. 흡입제의 경우 약물이 용기의 기벽에_ 흡착되므로 실제 처방량 보다 적은 양의 약물이 흡입될 수 있으며 사용 및 휴대가 불편한 단점이 있다. 따라서 이를 해결하고자 기존의 경구투여제, 주사제, 흡입제 등에 비해 많은 이점을 지니는 경피 투여 시스템이 활발히 개발되고 있다.
경피 투여의 경우 경구 투여제와 달리 간 초회 통과를 하지 않으므로 약물이 간에 의해 비활성 대사체로 전환되는 것을 방지할 수 있고 소화기관을 통하지 않으므로 약물에 의한 소화기관 장애를 최소화 함과 동시에 소화관내 조건에 의해 약물 흡수도가 영향을 받지 않는다. 또한, 경피투여의 경우 약물의 혈중 농도를 일정하게 장기간 유지할 수 있으며 경구제나 주사제와 달리 높은 일시적으로 높아지는 혈중 농도로 인한 부작용을 예방할 수 있고, 투여 희수가 빈번한 약물의 투여회수 감소와 부작용 발생 시 제제의 적용을 용이하게 중단할 수 있다는 장점이 있다. 이러한 경피 투여의 장점에도 불구하고 피부는 선천적으로 의부물질의 체내 유입에 대한 장벽으로 작용하도톡 설계되어 있다는 점 때문에 약물의 피부투과과정에 있어서 피부장벽 자체가 속도제한과정으로 작용하여 약물의 투과성이 제한될 수 있다는 문제가 있다. 따라서 피부를 통해 약물을 체내로 전달시키는 것이 가능한 약물들은 극히 제한되어 있다. 특히 친수성 약물이나 염의 형태로 된 약물은 자체의 극성이 커서 일반적인 약물에 비해 피부를 통해 흡수되기에는 큰 어려운 점이 있다.
이를 극복하기 위해 여러 가지 방법들이 고안되었는데 경피 투여 시스템 내에서 약물농도를 증가시켜 경피 투여 시스템으로부터 피부로의 분배 (partition)를 증가시키는 방법, 피부의 외부물질에 대한 장벽기능을 저하시키는 피부 흡수 증진제를 사용하는 방법 및 초음파나 전류 등을 이용하여 피부로 약물전달을 원활하게 하는 방법 등이 사용되거나 연구되고 있다.
경피 흡수 촉진제로 사용되는 화합물은 주로 피부 각질층에 작용하여 피부의 장벽효과를 억제하여 약물의 피부투과를 촉진하는데 주로 우레아, 에센셜 오일, 터펜 터페노이드 (terpenes terpenoids), 옥사졸리디놀 (oxazol idinoles), 피를리돈 (pyrol 1 idones), 라오로카프란 (laurocapran), 지방산 (fatty acids), 디메틸설폭사이드 (DMSO) 외에 다양한 화합물이 사용되고 있다.
지방산 중에서 을레인산은 대표적인 경피 흡수 촉진제로 알려져 왔다. 단일불포화지방산 (monounsaturated fatty acid)인 을레인산의 경피 흡수 촉진 기작은 을레인산 분자구조의 시스-이중결합 (cis-double bond)에 의해 형성된 비를림 (kink) 구조가 피부 내 세포간 지질구조의 유동성 변화를 야기해 약물투과에 적합한 피부환경을 조장하고 또한 비를림 구조로 야기된 미세 자유공간효과가 약물의 유동성을 좋게 만든다고 알려져 있다 [Pharm. Res. 13, 542-546 (1993), J. membr . Biol. 4, 193-208 (1971)].
알츠하이머 질병 치료제로 사용되는 콜린에스테라아제 억제제 (cholinesterase inhibitor) 계열의 도네페질 (donepezi 1) 약물을 대상으로 실시한 또 다른 경피 흡수 연구결 ¾에 의하면 1-5% 올레인산이 차등적으로 첨가된 인 비트로 무모 (hair less) 마우스 피부 평가에서 도네페질 염기 (base) 약물의 피부 흡수율이 첨가된 을레인산에 비례하여 증가되는 결과를 보고하였다 [International journal of pharmaceutics 422, 83-90 (2012)].
이러한 배경 등에 근거하여 약물의 피부루과 효율을 개선하고자 다양한 지방산유도체 개발이 시도되었다. '바르보라 외' 는 생분해성 에스터 결합체를 사용하여 소수성 지방산에 프를린, 사르코신, 알라닌, 베타-알라닌 및 글리신 등을 결합하여 경피 흡수 촉진제로의 사용가능성을 제시하였다 [Journal of controlled release 165, 91-100 (2013)]. 또한, 페닐알라인-글리신 디펩티드 (dipeptide)를 피부 전달하는데 있어서 C4, C6( C8 사슬의 지방산과 결합하였을 때 경피 흡수과정에서 단백질 분해효소에 의한 절단반응이 억제되고 동시에 피부투과 효율이 증대되는 결과를 보고하였다 [International journal of pharmaceutics 250, 119-128 (2003)] .
한편 지방산이 매개된 경피 흡수 촉진 기능 및 피부약물 전달시스템의 선행특허 기술로서는,
1) 탄소수 5-20 개의 지방산 카복실기에 펩타이드의 N-말단올 결합시킨 지방산―펩타이드 결합체 (대한민국 공개특허 10-2004-0033380),
2) 플리에틸렌글리콜의 하이드록시기의 지방산 에스테르 (대한민국 공개특허 1(3-2011-0056516),
3) 갈락토만난검, 카라기난검 및 점착부여제가 포함된 하이드로젤 조성물 (대한민국 공개특허 10-2012ᅳ 0015783), '
4) 쎄포투과성 펩타이드가 표면에 결합된 나노리포좀 (대한민국 둥록특허 10-1130550), 및
5) 친수성 생리활성물질의 경피 흡수를 촉진하는 나노 농축 캡슬 조성물 (대한민국 등록특허 10-0778903) 등이 있다.
선행기술들은 약물 흑은 생리적 유효성분의 경피 흡수 증진을 위한 약물전달시스템 또는 약제학적 조성물 또는 그의 관련 기술로서 본 발명의 핵심내용과는 소재 혹은 작용구성의 구조적 특징에서 차이점이 있다. 경피 흡수 촉진 목적의 본 발명의 지방산 유도체는 불포화지방산과 아미노당의 에스테르 결합에 의해 생성되며 기능적으로는 불포화지방산의 피부투과율을 개선함과 동시에 ' 지방산에 결합되는 양이온성 아미노당의 존재로 특징지어진다. 결합되는 아미노당의 역할은 양이온성을 제공하여 피부에 흡수되는 지방산의 투과율을 개선하며 아미노당이 지닌 항산화 기능으로 (Bioorg Med Chem. 2006 Mar 15; 14(6): 1706-9. Epub 2005 Nov 2. The antioxidant activity of glucosamine hydrochloride in vitro) 지방산의 안정화에 기여한다. 따라서 본 발명의 경피 흡수 촉진소재는 불포화지방산과 아미노당의 결합구조체를 기본적인 특징으로 한다. 기능적으로 본 지방산 유도체는 함께 배합되는 여러 유효성분들의 피부투과율을 증진하여 피부건강 또는 피부미용에 좋은 약물을 포함한 유용한 활성물질의 경피 흡수를 촉진하며, 결과적으로 본 발명의 지방산 유도체는 약물 등의 경피 흡수율 증진올 통해 약물의 피부 투과 누적량의 증가효과를 이끌어 낼 수 있다.
페를산 (4-히드특시 -3-메톡시시나믹산, ferulic acids)은 식물계에 널리 존재하는 항 산화 물질로 과일, 야채, 곡물 등 세포벽을 구성하는 다당류와 결합형태로 존재하는 것으로 알려져 있다 (Biochem. Biophys. Res. Commun. 1998; 253: 222; Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2003; 147:137; J. Sci. Food Agric. 2004; 84: 1261; Free Radic. Biol. Med. 1996; 20:933). 페를산은 페닐알라인 (phenylalanine) 및 타이로신 (tyrosine)으로부터 생성되는 항 산화 물질으로서, 다이어트 식품 및 화장품 로션 등에 첨가되어 건강기능성 제공 및 UV 자극에 대해 피부를 보호한다 (Biochem. Biophys. Res. Co隱 un. 1998; 253: 222; Free Radic. Biol. Med. 1992; 13:435; Appl. Environ. Microbiol. 2004; 70:2367; Free Radic. Biol . Med. 1992; 13:435).
페롤산을 포함하여 카페인산 (caffeic acid), p-쿠마린산 (p-coumaric acid), 신남산 (cinnamic acid) 등은 자연계 폴리페놀 화합물군에 속하며 이 물질들은 피부건강에 큰 이점을 제공하는 것으로 알려져 왔다 (J. Cosmet . Sci. 2002; 53:321), 특히 히드록시 신남산은 자외선차단 제품 등에 첨가되기도 한다. 피부에 대한 직접적인 보호작용으로서, 페를산은 UVB 자극으로 유도되는 피부 홍반 (erythema) 생성을 억제하는 강력한 항 산화 기능을 갖고 있으며, 자외선을 흡수함으로써 자외선에 의한 피부 인지질막의 산화를 억제된다는 연구결과가 보고되었다 (Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2003; 147: 137; J. Pharm. 2000 ;199 :39; J. Sci . Food Agric. 1999 ;79: 476 ) . 최근에는 페를산 또는 페를산 유도체의 피부전달 비교연구를 통해 이들 물질의 안전성과 유효성이 평가되었고 (Int J Pharm. 2010; 399(1- 2) :44-51) 페를산과 카페인산은 피부장벽 (stratum corneum barrier)을 투과하며 피부에 도포되었을 경우 광산화 스트레스에 대해 피부를 강력히 보호하는 기능이 확인되었다 (J. Sci Food Agric 1999; 79: 476).
본 발명자들은 피부약물전달 및 화장품 산업의 스킨케어 제품을 구성하는 핵심 소재인 신규 피부투과촉진제를 개발하고자 하며, ) 아미노당 (amino sugar) 및 지방산 또는 (ii) 아미노당, 지방산 그리고 안전성과 유효성이 우수한 항 산화 및 자외선에 의한 피부 광산화를 억제하는 폴리페놀의 결합체를 구성함으로써 자외선에 대한 피부 보호효과가 우수하고 피부투과 촉진기능이 향상된 새로운 피부투과촉진제를 개발하고자 한다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허 문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명자들은 약물전달 또는 피부건강에 유익한 생리활성 성분을 경피 흡수를 통해 효과적으로 전달하는 경피 흡수 촉진제 (Transdermal Penetration Enhancer)를 개발하고자 예의 연구 노력하였다. 그 결과, 본 발명자들은 올레인산, 리놀레인산 또는 스테아르산 등의 지방산, 및 글루코사민 단당 또는 글루코사민 3 당 등으로 구성된 키토을리고당을 에스테르 (ester) 결합시킨 아미노당ᅳ지방산 컨쥬게이트 (conjugates)를 개발하였으며 상기 컨쥬케이트가 종래의 경피 홉수 촉진제로 알려진 올레인산보다 피부 투과율이 향상됨을 확인함으로써 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 경피 흡수 촉진제를 제공하는데 있다. 본 발명의 다른 목적은 본 발명의 경피 흡수 촉진제를 포함하는 화장료 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 본 발명의 경피 흡수 촉진제를 포함하는 약제학적 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 운반대상 (cargo)을 본 발명의 경피 흡수 촉진제와 함께 (in combination with) 객체 (subject)의 피부에 적용시키는 단계를 포함하는 운반대상 (cargo)의 경피 운반을 개선하는 방법을 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
【과제 해결 수단】
본 발명의 일 양태에 따르면, 본 발명은 하기 일반식 1 로 표시되는 아미노당-지방산 컨쥬게이트를 포함하는 경피 흡수 촉진제를 제공한다: 일반식 1
(A)n-B 상기 일반식 1 에서, 상기 A 는 아미노기를 포함하는 C5 또는 C6 의 아미노당 (amino sugar)이고, 상기 B는 지방산이며, 상기 - 는 결합 (bond)을 나타내며, 상기 n은 1-100의 정수이다.
본 발명자들은 약물전달 또는 피부건강에 유익한 생리활성 성분을 경피 흡수를 통해 효과적으로 전달하는 경피 흡수 촉진제 (Transdermal Penetration Enhancer)를 개발하고자 예의 연구 노력한 결과, 올레인산, 리놀레인산 또는 스테아르산 등의 지방산, 및 글루코사민 단당 또는 글루코사민 3 당 등으로 구성된 키토올리고당올 에스터 (ester) 결합시킨 아미노당ᅳ지방산 컨쥬게이트를 개발하였으며, 상기 컨쥬케이트가 종래의 경피 흡수 촉진제로 알려진 을레인산보다 피부 투과율이 향상됨을 확인하였다. 또한, 본 발명자들은 아미노당의 확보를 위해 고분자 키토산 물질로부터 화학적인 분해반웅을 도입, 3 당 내지 6 당의 키토올리고당을 제조하는 공정을 확립하였다.
본 발명에서 이용되는 아미노당 (amino sugar)은 히드록시기 (-0H)가 아미노기 (-NH2)로 치환된 당 또는 당을 포함하는 아민 유도체를 의미하며, 이는 동물의 결합조직 또는 세포막의 성분으로서 발견된다. 상기 아미노당은 C5또는 C6의 아미노당을 단량체 (monomer)로 포함할 수 있으며, 상기 단량체는 예컨대, N-아세틸글루코사민 (N-acetylglucosamine), 글早코人]"1?! (glucosamine), ¾:^"토 ]"민 (galactosamine) , 다우노사민 (daunosamine), 만노人민 (mannosamine), 入 1알린산 (sialic acid) 및 프룩토사민 (fructosamine)을 포함하나, 이에 한정되는 것은 아니다.
본 발명의 경피 흡수 촉진제는 "일반식 1 (A)n-B"로 표시되는 아미노당-지방산 컨쥬게이트를 포함하며, n 은 1-100 의 정수일 수 있다. 예컨대, A 가 글루코사민이고 B 가 올레인산이며, n 이 1 인 경우, 글루코사민 1 개와 을레인산이 포함된 아미노당-불포화지방산 컨쥬게이트를 포함한다. 본 명세서 상에서 상기 컨쥬게이트는 비히클 (vehicle) 또는 인헨서 (enhancer)로도 표현가능하다.
일 예에 따르면 , 상기 :!은 1-50의 정수이다.
일 예에 따르면 , 상기 n은 1-10의 정수이다.
일 예에 따르면 , 상기 n은 1-7의 정수이다.
일 예에 따르면, 상기 n은 2-6의 정수이다.
일 예에 따르면, 상기 n은 3-5의 정수이다.
본 발명에서 이용되는 지방산은 불포화지방산 및 포화지방산을 포함한다.
본 발명에서 이용되는 포화지방산은 카프릴산 (caprylic acid), 카프르산 (capric acid), 라우르산 (lauric acid), 미리스트산 (myrist ic acid) , 팔미트산 (palmitic acid) , 스테아르산 (stearic acid) , 아라키드산 (arachidic acid), 베헨산 (behenic acid), 리그노세르산 (lignoceric acid) 및 세로틴산 (cerotic acid)을 포함하며, 이에 한정되지는 않는다.
본 발명에서 이용되는 불포화지방산은 미리스틀레인산 (myristoleic acid) , 팔미틀레인산 (palmitoleic acid) , 사피에닌산 (sapienic acid) , 올레인산 (oleic acid), 엘라이딘산 (elaidic acid), 박센산 (vaccenic acid), 리놀레인산 (Hnoleic acid), 리노엘라이딘산 (Hnoelaidic acid), 알파- 리놀렌산 ( α一 linolenic acid) , 감마-리놀렌산 ( γ -linolenic acid) , 아라키돈산 (arachidonic acid) , 에이코사펜타에노산 (eicosapentaenoic acid) , 에루신산 (erucic acid) 및 도코 1·핵人! "엔산 (docosahexaenoic acid)을 포함하며, 이에 한정되지는 않는다.
현재 100% 순수한 불포화지방산만을 분리 정제하여 사용하는데 기술적인 어려움이 있으며, 따라서 본 발명의 경피 흡수 촉진제에 포함되는 아미노당-불포화지방산 컨쥬게이트는 컨쥬게이트 내에 포함된 불포화지방산 외에 일부 포화지방산 또는 기타 다른 불포화지방산을 포함할 수 있으며, 일 예에 따르면 전체 지방산 함량 중 0.001-30 중량 %의 포화 및 불포화 지방산을 포함할 수 있다. 또한, 다른 일 예에 따르면 전체 지방산 함량 중 5ᅳ22중량 ¾의 포화 및 불포화 지방산을 포함할 수 있다.
본 명세서에서 용어 "컨쥬케이트 (conjugates) 는 2 가지 이상의 성분이 결합된 복합체로서, 예컨대 아미노당-지방산 컨쥬게이트는 아미노당과 불포화지방산의 결합체 또는 아미노당과 포화지방산의 결합체를 의미한다.
본 명세서에서 용어 "결합 (bond)1'는 화학결합으로서 원자 또는 분자 구성원들 간에 작용하여 그 집합체를 하나의 뚜렷한 단위체로 형성시키는 힘을 의미한다. 상기 결합은 공유결합 또는 비공유결합을 포함하는 의미이며ᅳ 예컨대 아미노당-불포화지방산 컨쥬게이트는 컨쥬게이트 내 원자들이 상호간의 전자쌍을 형성하고 이를 공유함으로써 공유결합을 생성하거나, 아미노당의 아미노기 (δ+) 및 블포화지방산의 히스록시기 (δ- )와 같은 기능기 (functional group) 간의 상호작용 ( interaction)으로 인해 정전기적 인력이 발생함으로써 비공유결합을 형성할 수 있다.
본 발명의 경피 흡수 촉진제는 상기 아미노당, 지방산의 다양한 조합으로 제조할 수 있으며, 예컨대 상기 일반식 1 에서 상기 A 는 글루코사민이고, 상기 B 는 을레인산, 리놀레인산, 알파-리놀렌산 또는 감마-리놀렌산이며, 상기 n은 3-5의 정수인 것을 특징으로 하는 경피 흡수 촉진제일 수 있다. 한편, 본 발명의 경피 흡수 촉진제는 단독 또는 다른 유효성분과 함깨 흔합해서 사용할 수 있다. 예컨대, 아토피 개선에 유익하다고 알려진 감마 -리놀레익산 (GLA)과 아미노당 사이의 에스테르 결합을 통해 만들어진 컨쥬게이트는 피부에 도포되어 궁극적으로 피부에 GLA를 공급하는 수단으로 활용이 가능하다. 본 발명의 아미노당-불포화지방산 컨쥬게이트는 구조적 특성상 양이온성 물질인 아미노당의 존재로 인해 경피 흡수가 촉진되며, 아미노당의 결합은 지방산 물질 자체의 안정화에도 기여하게 된다. 피부 내로 흡수된 컨쥬게이트는 피부에 존재하는 에스터라아제 (estrase) 효소에 의해 분해되어 지방산과 당으로 변환되어 결과적으로 효과적인 GLA 지방산의 피부전달 수단으로 사용할 수 있게 된다. 이렇듯 피부로 전달된 GLA 지방산은 아토피 증상개선에 매우 효과적인 역할을 수행하게 된다.
본 발명의 경피 흡수 촉진제에 포함되는 지방산 컨쥬게이트는 경피 흡수 촉진 성분으로서 다음 화학식 1 의 화합물을 추가적으로 포함할 수 있다:
화학식 1
Figure imgf000011_0001
상기 화학식 1 에서, ^ 내지 ¾ 는 수소ᅵ 히드톡시 및 C1-3 의 알콕시로 구성된 군에서 선택된 어느 하나의 기능기 (functional group)를 포함하고; 상기 내지 ¾ 중 적어도 하나는 히드록시이며; ¾는 CH 또는 CH2 이며, R7은 알데히드, 카르복시 또는 C210의 알킬에스테르이고; n 은 0 내지 5의 정수이다.
본 명세서에서 용어 " 알콕시" 는 -0 알킬기를 의미하며, 예컨대, 에록시, 메특시 등을 포함하고, C1-3 알콕시가 치환된 경우 치환체의 탄소수는 포함되지 않은 것이다. 본 명세서에서 용어 " 알데히드" 는 -CH0 로 표시되는 작용기를 의미한다.
본 명세서에서 용어 " 카르복시" 는 -C00H 로 표시되는 작용기를 의미한다,
본 명세서에서 용어 " 알킬에스테르" 는 알킬기가 결합된 에스테르 (-C00-)를 의미하며, "알킬" 은 직쇄 또는 분쇄의 비치환 또는 치환된 포화 탄화수소기를 의미하며, 예를 들어, 메틸, 에틸, 프로필, 이소부틸, 펜틸, 핵실, 헵틸, 옥틸, 노닐 데실, 운데실, 트리데실, 펜타데실 및 헵타데실 등을 포함한다. C2-10 알킬에스테르는 탄소수 2 내지 10 의 알킬에스테르 유니트를 가지는 에스테르기를 의미하며, C2-10 알킬에스테르가 치환된 경우 치환체의 탄소수는 포함되지 않은 것이다.
상기 화학식 1 의 화합물은 예컨대 페를산 (ferulic acid), 카페인산 (caffeic acid) , 쿠마린산 (coumaric acid), 겐티신산 (gent isic acid), 프로토카테큐인산 (protocatechuic acid) 또는 바닐린산 (vanilic acid)으로 존재할 수 있으며, 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 있어서, 화학식 1 의 화합물은 본 발명의 아미노당 및 지방산을 결합시키는 링커 (Linker)로서 포함된다. 상기 화학식 1 의 화합불은 아미노당ᅳ지방산 컨쥬게이트와 추가적인 결합을 형성하여 화학식 1 의 화합물 -아미노당-지방산 컨쥬게이트를 형성할 수도 있지만, 바람직하게는 아미노당 및 지방산의 결합 형성을 돕는 링커로 작용하여 아미노당—화학식 1의 화합물-지방산 컨쥬게이트를 형성할 수 있다. 화학식 1 의 화합물의 경우, 일반적으로 함께 컨쥬게이트를 형성하는 아미노당에 비하여 친수성 성질이 강하지 않으며, 지방산에 비하여 소수성의 성질이 강하지 않다. 아미노당-화학식 1 의 화합물-지방산 컨쥬게이트를 형성하는 경우 아미노당과 지방산 사이의 중간 가교 역할을 하여, 친수성 부분 (portion)과 소수성 부분이 결합을 형성하면서도 공간적으로 더욱 이격되도록 하여 컨쥬게이트 자체의 유연성을 향상시키고, 피부침투 효과를 극대화 시킬 수 있다. 본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 경피 흡수 촉진제를 포함하는 화장료 조성물을 제공한다. 본 발명의 경피 홉수 촉진제에 포함되는 아미노당-지방산 컨쥬게이트는 화장품 산업의 큰 관심사인 피부미백 개선 목적의 산업적 응용이 가능하다. 즉, 멜라닌 생성에 핵심적인 티로시나아제 (tyrosinase) 효소의 활성을 억제하는 것으로 알려진 불포화지방산의 역할과 함께 멜라닌 색소생성의 원인인 티로시나아제 효소의 당화과정을 억제하는 글루코사민 또는 아미노을리고당 등에 의해 피부미백에 관한 시너지효과를 기대할 수가 있다. 이에 더하여 아미노당-블포화지방산 컨쥬게이트가 갖는 기능적 기대효과인 경피 흡수 촉진제 (transdermal penetration enhancer)로서의 역할은 피부미백에 유용한 다른 소재의 피부 투과를 촉진시킴으로써 새로운 피부미백 제품개발 활성화에 기여할 수 있다.
본 발명의 화장료 조성물에 포함되는 성분은 상술한 본 발명의 경피 흡수 촉진제 이외에 화장료 조성물에 통상적으로 이용되는 성분들을 포함하며, 예컨대 안정화제, 용해화제, 비타민, 안료 및 향료와 같은 통상적인 보조제 그리고 담체를 포함한다.
본 발명의 화장료 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며, 예를 들어 , 용액, 현탁액, 유탁액, 페이스트: 겔, 크림 로션, 파우더, 비누, 계면활성제 -함유 클린씩, 오일, 분말 파운데이션, 유탁액 파운데이션, 왁스 파운데이션 및 스프레이 등으로 제형화될 수 있으나, 이에 한정되는 것은 아니다. 보다 상세하게는, 유연 화장수, 영양 화장수 , 영양 크림, 마사지 크림, 에센스 , 아이 크림, 클렌징크림, 클렌징 포음, 클렌징 워터, 팩, 스프레이 또는 파우더의 제형으로 제조될 수 있다.
본 발명의 제형이 페이스트, 크림 또는 겔인 경우에는 담체 성분으로서 동물성유, 식물성유, 왁스, 파라핀, 전분, 트라칸트, 셀를로오스 유도체, 폴리에틸렌 글리콜, 실리콘, 벤토나이트, 실리카, 탈크 또는 산화아연 등이 이용될 수 있다.
본 발명의 제형이 파우더 또는 스프레이인 경우에는 담체 성분으로서 락토스, 탈크, 실리카, 알루미늄 히드록시드, 칼슘 실리케이트 또는 폴리아미드 파우더가 이용될 수 있고, 특히 스프레이인 경우에는 추가적으로 클로로플루오로히드로카본, 프로판 /부탄 또는 디메틸 에테르와 같은 추진체를 포함할 수 있다. 본 발명의 제형이 용액 또는 유탁액인 경우에는 담체 성분으로서 용매, 용해화제 또는 유탁화제가 이용되고, 예컨대 물, 에탄을, 이소프로판을, 에틸 카보네이트, 에틸 아세테이트, 벤질 알코올, 벤질 벤조에이트, 프로필렌 글리콜, 1,3-부틸글리콜 오일, 글리세를 지방족 에스테르, 폴리에틸렌 글리콜 또는 소르비탄의 지방산 에스테르가 있다. 본 발명의 제형이 현탁액인 경우에는 담체 성분으로서 물, 에탄올 또는 프로필렌 글리콜과 같은 액상의 회석제, 에록실화 이소스테아릴 알코을, 폴리옥시에틸렌 소르비를 에스테르 및 폴리옥시에틸렌 소르비탄 에스테르와 같은 현탁제, 미소결정성 셀를로오스, 알루미늄 메타히드록시드 벤토나이트, 아가 또는 트라칸트 둥이 이용될 수 있다.
본 발명의 제형이 계면-활성제 함유 클린징인 경우에는 담체 성분으로서 지방족 알코올 설페이트, 지방족 알코을 에테르 설페이트, 설포숙신산 모노에스테르, 이세티오네이트, 이미다졸리늄 유도체, 메틸타우레이트, 사르코시네이트, 지방산 아미드 에테르 설페이트, 알킬아미도베타인, 지방족 알코을, 지방산 글리세리드, 지방산 디에탄을아미드, 식물성 유, 라놀린 유도체 또는 에록실화 글리세롤 지방산 에스테르 등이 이용될 수 있다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 경피 흡수 촉진제를 포함하는 약제학적 조성물을 제공한다.
본 발명의 경피 흡수 촉진제에 포함되는 아미노당-지방산 컨쥬게이트는 피부 투과율을 향상시키는 효과가 있어 약물 등과 함께 병행 사용될 경우 약물의 경피 흡수율을 증진시킬 수 있다.
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비를, 만니를, 전분 , 아카시아 고무 , 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀를로스, 폴리비닐피를리돈, 셀를로스, 물, 시럽, 메틸 샐를로스, 메틸히드록시벤조에이트, 프로필히드톡시벤조에이트, 활석 , 스테아르산 마그네슴 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's
Pharmaceu ical Sciences (19th ed. , 1995)에 상세히 기재되어 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감웅성과 같은 요인들에 의해 다양하게 처방될 수 있다. 본 발명의 약제학적 조성물의 1 일 투여량은 예컨대 0.001-1000 nig/kg이다. 그러나, 약제학적 조성물의 실제 투여량은 도포 부위, 도포 면적, 환자의 체중, 연령 및 성별 등 여러 관련 인자를 고려하여 결정할 수 있으며, 따라서, 상기 투여량은 어떠한 형태로든 본 발명의 범위를 한정하는 것은 아니다. 본 발명의 또 다른 양태에 따르면, 본 발명은 운반대상 (cargo)을 상기 경피 흡수 촉진제와 함께 (in combination with) 객체 (subject)의 피부에 적용시키는 단계를 포함하는 운반대상 (cargo)의 경피 운반을 개선하는 방법을 제공한다.
본 명세서 상에서 "운반대상 (cargo)"은 그 목적에 관계없이 객체의 피부 내로 운반하고자 하는 대상물질을 의미하며, 예를 들어 화학약물, 바이오약물 또는 나노입자를 포함하지만 이에 한정되는 것은 아니다.
상기 화학약물은 예를 들어, 미용성분 (예컨대, 주름개선제, 피부노화 억제제 및 피부미백제), 항염증제, 진통제, 항관절염제, 진경제, 항우울증제ᅳ 항정신병약물, 신경안정제, 항블안제, 마약길항제, 항파킨스질환 약물, 콜린성 아고니스트, 항암제, 항혈관신생억제제, 면역억제제, 항바이러스제, 항생제, 식욕억제제, 진통제, 항콜린제, 항히스타민제, 항편두통제, 호르몬제, 관상혈관, 뇌혈관 또는 말초혈관 확장제, 피임약, 항혈전제 이뇨제, 항고혈압제, 심혈관질환 치료제 등을 포함하나, 이에 한정되는 것은 아니다.
상기 바이오약물은 지용성 및 /또는 수용성 비타민, 인슐린 IGF- 1( insulin-like growth factor 1), 성장호르몬, 에리쓰로포이에틴, G-CSFs (granulocyte一 colony stimulating factors) , GM-CSFs (gr anu 1 ocyt e/macr ophage-co 1 ony stimulating factors) , 인터페론 알파 인터페론 베타, 인터페론 감마, 인터루킨 -1 알파 및 베타, 인터루킨 -3 인터투킨 -4, 인터루킨 -6, 인터루킨 -2, EGFs (epidermal growth factors) 칼시토닌 (calcitonin), ACTH (adrenocorticotropic hormone) , TNF (tumo necrosis factor) , 아토비스반 (atobisban), 부세레린 (buserelin) 세트로렉릭스 (cetrorelix), 데스로레린 (deslorelin) 데스모프레신 (desmopressin), 디노르핀 A (dynorphin A) (1—13) 엘카토닌 (elcatonin), 엘레이도신 (eleidosin) 엡티피바타이드 (eptifibatide) , G麵一 II (growth hormone releasing hormone一 11), 고나도레린 (gonadoreHn), 고세레린 (goserelin) 히스트레린 (histrelin), 류프로레린 ( leuprorel in) , 라이프레신 (lypressin) 옥트레오타이드 (octreotide), 옥시토신 (oxytocin), 피트레신 (pitressin) 세크레틴 (secretin), 신칼라이드 (sincal ide) , 테르리프레신 (terl ipressin) 티모펜틴 (thymopentin) , 티모신 (thymosine) α 1 트리프토레린 (triptorelin), 바이발리루딘 (bivalirudin) 카르베토신 (carbe-tocin), 사이클로스포린, 액세딘 (exedine)
란레오타이드 (lanreot ide) , LHRH (luteinizing hormone-releasing hormone) , 나파레린 (nafarelin), 부갑상선 호르몬, 프람린타이드 (praml intide), T-20 (enfuvirtide), 타이말파신 (thymal fasin), 지코노타이드, RNA, DNA, cDNA, 안티센스 을리고뉴클레오티드 및 siRNA 가 될 수 있으나, 이에 한정되지는 않는다.
한편, 본 발명의 일 양태에 있어서, 경피흡수촉진제에 포함되는 아미노당, 화학식 1 의 화합물 및 지방산 중 적어도 하나 이상, 그 자체가 운반대상이 될 수 있다. 이는 아미노당 화학식 1 의 화합물 및 지방산 중 적어도 하나 이상의 성분이 객체의 피부를 통과한 뒤 객체가 목적하는 효과가 직접 발휘되는 성분인 경우이다.
본 발명인 운반대상 (cargo)의 경피 운반을 개선하는 방법은 본 발명의 다른 양태인 경피흡수촉진제를 이용하여 그 내용이 중복되는 부분이 있으나, 본 명세서 기재의 과도한 복잡성을 피하기 위하여 중복되는 기재를 생략한다. 【발명의 효과】
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 아미노당-지방산 컨쥬게이트 또는 아미노당 -페놀산- 지방산 컨쥬게이트를 포함하는 경피 흡수 촉진제 및 운반대상 (cargo)의 경피 운반을 개선하는 방법을 제공한다.
(b) 본 발명의 경피 흡수 촉진제에 포함되는 컨쥬게이트는 산업적으로 피부건강 및 피부의 미적 증진 효과를 추구하는 화장품 산업뿐만 아니라, 경피흡수 약물전달 (transdermal drug delivery system) 제제의 핵심 소재에도 활용될 수 있다.
(c) 본 발명의 경피 흡수 촉진제는 생리활성물질 또는 약물의 피부투과율을 향상시키는 효과가 있으며 , 경우에 따라 특정 약물을 포함한 컨쥬게이트의 제조를 통해 치유 목적의 단독 제제로서 활용이 가능하다.
(d) 본 발명의 경피 흡수 촉진제는 피부 안정성이 입증된 물질이 포함된 컨쥬게이트를 이용하므로, 화장품 또는 의약 분야뿐 만 아니라 다양한 분야에서 활용될 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 실시예 1에서 제조한 키토을리고당 (COS)의 크기를 확인한 결과를 나타낸다. 좌로부터 COS 마커, 0.4% 키토산 원료에 대해 절단반웅이 완료된 이후 4 배, 8 배, 16 배, 32 배 회석하여 전개한 TLC 결과; 1.2% 키토산 원료에 대해 절단반웅이 완료된 이후 4 배, 8 배, 16 배, 32배 회석하여 전개한 TLC 결과를 나타낸다.
도 2 는 COS 농도변화에 따론 COSᅳ페놀 결합체 (노란색)의 용량 의존적 생성 확인을 위해 닌하이드린 (0.1% in EtOH)을 분무한 다음 TLC 플레이트를 가열처리하여 노란색 밴드를 확인한 결과를 나타낸다.
도 3 은 지방산-아닐린 결합 반웅에 있어서 아닐린의 잔량을 확인하기 위해 1하이드린 (0.1% in EtOH)을 분무한 다음, TLC 플레이트를 가열처리한 결과를 나타내며 분홍색으로 나타나는 것이 잔량의 아닐린이다. 도 4 는 지방산-아닐린 결합 반웅에 있어서 생성물을 확인하기 위해 TLC 플레이트에 10% 황산용액을 분무하고 가열처리하여 각 반웅용액 내 생성된 지방산과 아닐린의 결합체를 확인한 결과를 나타낸다.
도 5 는 비히클 (인헨서)의 종류에 따른 알부틴 (Arbutin, logP - 1.35)의 피부투과시험 결과를 나타낸다.
도 6 은 비히클 (인헨서)의 종류에 따른 비타민 (XAscorbic acid, logP -2.41)의 피부투과시험 결과를 나타낸다.
도 7 은 본 발명의 실시예 41 에서의 각 컨쥬게이트를 이용한 시나믹산 (cinnamic acid, logP 2.41)의 피부투과 실험 결과를 나타낸다. 도 8 은 시나믹산이 포함 및 불포함 된 각각의 도너 (donor) 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 (receptor) 용액을 각각 동일조건에서 HPLC 로 비교한 결과 중, 270 nm 로 관찰한 시나믹산 위치마커로서 21분 대에 위치를 나타내고 있다.
도 9 는 시나믹산이 포함 및 불포함 된 각각의 도너 (donor) 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 (receptor) 용액을 각각 동일조건에서 HPIX 로 비교한 결과 중 시나믹산이 존재하나 컨쥬게이트가 아닌 기본 비히클 (propylene glycol)의 투과 결과를 나타낸다. 도 10 은 시나믹산이 포함 및 불포함 된 각각의 도너 (donor) 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 (receptor) 용액을 각각 동일조건에서 HPLC로 비교한 결과 중 시나믹산이 미포함된 CV0 시료의 피부투과시험 리셉터 용액의 분석결과를 나타낸다.
도 11 은 시나믹산이 포함 및 불포함 된 각각의 도너 (donor) 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 (receptor) 용액을 각각 동일조건에서 HPIX 로 비교한 결과 증 시나믹산 (1 mg/mL, 0.45 mL 로딩)이 첨가된 시험에서의 리셉터 용액을 분석한 결과를 나타낸다.
도 12 는 CFL(C0S-ferulic acid-1 inolenic acid) 컨쥬게이트에 의한 레스베라트를 (resveratrol)(logP 3.1) 피부투과 실험 결과에 대한 표준곡선으로서, RP-HPLC 로 1-50 mcg/mL 구간에서 정량선을 구하여 분석시료의 면적수치를 대입하여 선형회귀곡선으로 함량을 구한 결과를 나타내며, X 축은 레스베라트를의 농도 (mcg/mL), y 축은 레스베라트를 피크 영역 (resveratrol peak area, AUC)을 나타낸다. W
도 13 은 CFL(COS-ferulic acid-linolenic acid) 컨쥬게이트에 의한 레스베라트를 (resveratrolKlogP 3.1) 피부투과 실험 결과를 나타낸다. 도 14 는 키토올리고당 (COS)-페놀산 (phenolic acid)-지방산 컨쥬게이트에 의한 아스코르브산 (logP -2.41)의 피부투과 증진효과 실험 결과를 나타낸다.
도 15 는 비타민 C 가 포함 및 불포함된 각각의 도너 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 용액을 각각 동일조건에서 HPLC 로 분석한 결과에 대한 것으로, 262 nm 에서 관찰한 비타민 C 위치 마커로서 약 4.2분 대에 위치를 나타낸다.
도 16 은 비타민 C 가 포함 및 불포함된 각각의 도너 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 용액을 각각 동일조건에서 HPLC 로 분석한 결과에 대한 것으로, 비타민 C 가 포함되지 않은 CFL 컨쥬게이트 시료의 피부투과시험 리셉터 용액의 분석결과를 나타낸다.
도 17 은 비타민 C 가 포함 및 불포함된 각각의 도너 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리솁터 용액을 각각 동일조건에서 HPLC 로 분석한 결과에 대한 것으로, 비타민 C(l mg/mL, 0.45 mL 로딩)가 첨가된 피부투과시험에서의 리셉터 용액을 분석한 결과를 나타낸다.
도 18 은 CFL(COS-ferulic acid-linolenic acid) 컨쥬게이트에 의한 알부틴 (ArbutinKlogP -1.35) 피부투과 실험 결과를 나타낸다.
도 19 는 CFL(COS-ferulic acid-linolenic acid) 컨쥬게이트에 의한 코직산 (Kojic acid)(logP -0.64) 피부투과 실험 결과를 나타낸다.
도 20 은 COS, OA, LA, 페를산에 대한 UV— VIS 파장 ᅵ에 대한 흡광 스펙트럼을 나타낸다.
도 21 은 COS-OA, Ferulic-LA, COS-ferul ic-LA, Ferul ic-C0S-0A 컨쥬게이트들의 UV-VIS 파장대에 대한 흡광 스펙트럼올 나타낸다.
【발명을 실시하기 위한 구체적인 내용】
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "% "는 별도의 언급이 없는 경우, 고체 /고체는 (중량 /중량) , 고체 /액체는 (중량 /부피) , 그리고 액체 /액체는 (부피 /부피) %이다. 실시예 1: 키토을리고당 (chitooligosaccharide, COS)의 제조
0.4% 수용성 고분자 키토산 (Water soluble chitosan-HCl) 수용액을 준비하고 가성소다 (Sodium hydroxide)를 사용하여 키토산 용액의 pH 를 6 내지 7 범위로 조절하였다. 키토산 제조액 100 mL 를 배양플라스크에 담고 각 플라스크에 1 M 황화철 (Ferrous sulphate) 용액을 0.5 mL 씩 투입하여 적절히 교반한 다음, 추가로 각 용기에 과산화수소 (Hydrogen peroxide) 용액을 4 mL 씩 투입하여 최종 반웅 용액을 제조하였다. 준비된 배양플라스크를 55°C 진탕기 (Shaker)에 넣고 3 시간 내지 4 시간 진탕 배양하여 키토을리고당 용액을 제조하였다. 싱ᅳ기 반웅이 완료된 후, 각 반웅 용액의 pH 를 중성으로 조절한 다음 에탄을을 적절히 첨가하여 분리 정제를 진행하고, 최종 정제된 키토을리고당을 회전증발 농축장치를 사용하여 회수하였다. 회수된 키토올리고당은 3 당 내지 5 당으로서, 실리카 박막 크로마토그래피 (Silica thin layer chromatography)로 전개하여 0.1% 닌히드린 (Ninhydrin) 염색법으로 확인하였다.
TLC 전개용매조건에서 전개, 발색되어 나타날 수 있는 을리고당의 크기는 1-6 당 범위이며 (참조: 도 1) (Cabrera et . al . , Biochemical Engineering Journal 25 (2005) 165-172; Jung et al, , Protein Expression and Purification 45 (2006) 125-131; Chen et al . , Food Research International 38 (2005) 315—322), 실리카 박막 크로마토그래피를 이용하여 3당 -5당 크기의 키토올리고당을 확인하였다. 실시예 2. 키토을리고당 (COS) 제조의 최적화 단 반웅에 영향을 주는 주요 인자들의 최적화를 위해
' 같이 반웅조건별로 진행하고 최종 COS 제조수율을
Figure imgf000021_0001
Figure imgf000021_0003
Figure imgf000021_0002
절단 반웅은 실시예 1 에서와 유사한 조건으로 진행하였는바, 0.4% 키토산 수용액을 5 L 용량의 더블 재킷 반웅기 (Double jacket reactor)에 투입하고 55°C를 유지하면서 3 시간 교반을 지속하면서 키토을리고당 용액을 제조하였다. 절단 반웅이 완료된 후 반웅 용액을 회전증발 농축장치 (rotary evaporator)로 부피를 10 배 이상으로 줄인 다음 에탄을 농도가 80%가 되도록 에탄올을 투입하였다. 이후 일정시간 동안의 저온 처리 과정을 통해 고분자 키토산 및 철분 등의 침전을 유도하고 원심분리를 통해 상등액을 취하고 여과한 후 분리정제 과정을 진행하였다. 고순도 COS 를 회수하기 위해서 양이온 교환 크로마토그래피 (Dowex 50 X8 hydrogen form, SIGMA- ALDRICH)를 실시하였는바 침전 희수된 에탄을 상등액의 pH 를 3 이하로 조절하고 전기전도도 (conductivity)는 9.7 mS 이하로 맞추고자 적절히 증류수로 회석하여 양이온 교환수지 칼럼 (10x90 cm)에 COS 물질을 흡착시켰다. 이후 증류수 및 20 mM NaOH 로 충분히 세척한 다음 20 mM NaOH 조건하에서 소금의 농도를 50 mM, 100 mM, 150 mM 로 증가시키면서 COS 를 용출하였고, 150 mM NaCl 용액에서 COS 가 용출됨을 확인하였다. 필요시 상기에서 얻은 COS 분획에 대해 염 (Salts)을 제거하는 과정을 추가로 실행할 수 있다. 용출된 COS 분획에 대해 pH를 3 이하로 전기전도도를 6 mS 이하로 유지되게 증류수로 적절히 희석한 후 동일한 양이온 교환 크로마토그래피를 수행하였다. COS 용액을 로딩한 이후 증류수 (6L)로 세척하고 이어서 95% 에탄올 (6L)로 세척한 다음 적당한 양의 트리에칠아민 (Tri ethyl amine, TEA)이 포함된 95% 에탄을 (3 L)과 추가로 증류수 (8 L)를 이용하여 염이 제거된 COS 분획을 회수하였다. 본 실시예에서 정제된 COS 는 국가공인시험기관에 의뢰하여 총 글루코사민 함량분석법으로 제조수율을 결정하였으며 타 실시예의 지방산 유도체 제조 등에 사용하였다. 실시예 3. 염화올레인산 (oleic acid chloride) 제조
환류장치 (Reflux apparatus)에 연결된 40°C 물중탕 반웅용기에 디클로로메탄 (Dichloromethane) 200 mL 을 투입한 다음, 올레인산 (oleic acid, 18: Inᅳ 9) 40 mL 을 첨가하여 용해하고 적절히 교반하면서 적당량의 염화티오닐 (Thionyl chloride)을 적절한 방법으로 투입하여 반웅을 개시하였다. 일정 시간이 경과 후 반웅 산물을 회전증발 농축장치를 사용하여 회수하였다. 회수된 염화올레인산 (oleoyl chloride)은 타 실시예의 지방산 유도체 제조에 사용하였다. 실시예 4. 염화감마리놀렌산 (Gamma-linolenic acid chloride) 제조
환류장치 (Reflux apparatus)에 연결된 40°C 물 중탕 반웅용기에 디클로로메탄 200 mL 를 투입한 다음 감마-리놀렌산 (Ga難 a— linolenic acid, 18:3n-6) 20 mL 을 첨가하여 적절히 교반하면서 적당량의 염화티오닐을 적절한 방법으로 투입하여 반웅을 개시하였다、 일정 시간이 경과 후 반응 산물을 회전증발 농축장치를 사용하여 회수하였다. 회수된 염화감마리놀렌산 (Gamma-linolenic acid chloride)은 타 실시예의 지방산 유도체 제조에 사용하였다. 실시예 5. 염화리놀렌산 (Linoleoyi chloride) 제조
환류장치 (Reflux apparatus)에 연결된 40°C 물중탕 반웅용기에 디클로로메탄 200 mL 를 투입한 다음 리놀렌산 (Linoleic acid, 18:2n-6) 20 mL 을 첨가하여 적절히 교반하면서 적당량의 염화티오닐 (Thionyl chloride)을 적절한 방법으로 투입하여 반웅을 개시하였다. 일정 시간이 경과 후 반응 산물을 회전증발 농축장치를 사용하여 회수하였다. 회수된 리놀렌산은 타 실시예의 지방산 유도체 제조에 사용하였다. 실시예 6. 키토올리고당 (COS) 정량분석법 개발 및 활용
키토을리고당의 피부투과율 등을 결정하기 위해서는 분광학적으로 탐지가 가능한 발색단을 표지하고 이를 정량적으로 분석할 필요가 있었다. 키토을리고당에 발색단을 부여하기 위해서 만니히 응축 반응 (Mannich condensation react ion)을 이용하였다 (Bioconjugate Techniques, Greg T. Hermanson, 1996 Academic Press) .
COS 와 페놀을 결합시키는 반웅조건의 표준화 및 최적화를 위해 각 반웅물의 농도를 변화시키면서 다양한 시험평가를 통해 하기의 표 2와 같은 반응조건 최적화를 실시하였다.
【표 2]
Figure imgf000023_0001
상기 표 2 와 같은 반웅물을 준비하고 60 도 물중탕에서 1 시간 동안 결합반웅을 진행하였다. TLC 플레이트를 준비하고 반웅이 완료된 시료를 각각 5 yL 씩 로딩하고 프로판을 /아세트산 /물 (3:1:1) 흔합용매를 사용하여 전개하였다. 생성물 확인을 위해 닌하이드린 (0.1% in EtOH)을 분무한 다음
TLC 플레이트를 가열차리하여 노란색 밴드가 용량 의존적으로 생성됨을 확인하였다 (참조: 도 2). '
TLC 분석을 통해 COS-페놀 결합체를 확인한 이후 생성물을 정량적으로 분석하기 위해서 RP-HPLC 역상칼럼 분리전개를 통해 결합체의 피크면적 (270 nm) 대비 반응에 첨가한 COS 농도의 선형 상관 관계성을 구하였고, 이와 같은 분석과정을 통해 미지 시료 내 존재하는 COS 함량을 결정하였다. 실시예 7. 포화 및 불포화 지방산의 정량분석법 개발 및 활용 지방산의 피부투과율 등을 결정하기 위해서는 분광학적으로 탐지가 가능한 발색단을 표지하고 이를 정량적으로 분석할 필요가 있다. 지방산에 발색단을 부여하기 위해서 EDC 촉매를 사용하여 지방산의 카복실 그룹과 아닐린의 아미노 그룹 사이의 공유결합을 형성하는 반응을 이용하였다. 반웅원리는 아래의 반응식과 같다.
R-C00H + R' -N¾ → R— C0-NH-R' + H20 (EDC catalyst & MES buffer 존재 하 반웅) 지방산과 아닐린을 결합시키는 반웅조건의 표준화 및 최적화를 위해 각 반응물의 농도를 변화시키면서 다양한 시험평가를 통해 하기의 표와 같은 반웅조건 최적화를 실시하였다.
【표 3]
Figure imgf000024_0001
상기 표 3 과 같은 반웅물을 준비하고 실온에서 1 시간 동안 결합반웅을 진행하였다. TLC 플레이트를 준비하고 반웅이 완료된 시료를 각각 4 uL 씩 로딩하고 핵산 /디에틸에테르 /아세트산 (8:2:1) 흔합용매를 사용하여 전개하였으며 생성물의 밴드를 확인하였다 (프리 지방산 위치보다 약간 아래쪽으로 밴드생성).
반웅생성물 확인을 위해 닌하이드린 (0. in EtOH)을 분무한 다음,
TLC 플레이트를 가열처리하여 분흥색의 아닐린 잔량을 확인하였다 (참조: 도
3) . 이어서 동일한 TLC 플레이트에 10% 황산용액을 분무하고 가열처리하여 각 반응용액 내 생성된 지방산과 아닐린의 결합체를 확인하였다 (참'조: 도
4) ' 실시예 8내지 실시예 11. 키토올리고당 (COS)-지방산 컨쥬게이트 제조 교반기가 장착된 5 L 반응용기를 사용하여 하기 표 4 의 실시예 8 내지 11의 결합반웅을 200-250 rpm으로 2시간 이상 교반하면서 제조하였다. 각 실시예의 최종 반웅물은 감압농축설비를 사용하여 용매를 제거하고 얻어진 수용액의 pH 를 7 내지 8 로 중화한 다음 HKXhydrophobic interact ion chromatographic media, SDR hyper D. Pal 1 Biosepra) 칼럼을 사용하여 키토올리고당-지방산 컨쥬게이트를 분리하였다. 자유 키토올리고당 (free chitooligosacchar ide)은 컬럼에 비 홉착되어 회수되었으며 대부분의 키토을리고당-지방산 컨쥬게이트는 30% 에탄을 용액에서 용출되었다. 비 결합 자유 지방산 (free fatty acid)은 50-70% 에탄을 용액처리에서 용출되었다. 각 단계별로 용출된 분획은 TLC 분석을 통해 확인하였다.
【표 4】
Figure imgf000025_0001
** FA*: 싸이오닐 클로라이드에 의해 활성화된 FA
** THF: 테트라하이드로퓨란 (Tetrahydrofuran) 실시예 12 및 실시예 13. 키토을리고당-지방산 컨쥬게이트의 인 비트로 피부투과율 평가
통상적으로 본 발명의 지방산 유도체 (키토올리고당-지방산)에 의한 약리적 또는 기능성 유효성분의 피부 투과율 평가는 인공 피부 막 (Strat-M membrane, Millipore, USA)이 장착된 프란츠 확산 셀 (Franz diffusion cell)을 사용하여 시험을 실시하였다. 프란츠 셀의 도너 (donor)에는 평가하고자 하는 유효성분이 포함된 조성물을 0.45 mL 혹은 0.5 mL 를 로딩 하였고, 리셉터 (receptor)에는 인산염완충식염수 (phosphate buffered saline) 또는 적절한 농도의 에탄을 용액 등을 사용하였으며 기능성 유효성분 혹은 log P 수치에 따른 모델 화합물, 컨쥬게이트 종류, 노출시간 등은 아래 표에 제시된 각 실시예에 따라 피부투과시험을 진행하였다. 각 실시예의 함량기준은 지방산을 기준으로 농도를 결정하였으며 인공 피부막 제조사의 권고에 따라서 프로필렌 글리콜 (propylene glycol)을 기본 용제로 하여 평가용 조성물을 제조하고 시험하였다. 각 유효성분의 함량은 유효성분의 표준농도에 따른 선형회귀곡선을 구하여 결정하였다. 실시예 12: 알부틴 (Arbutin, logP -1.35)의 피부투과시험
알부틴 (Alfa Aesar , 98%≤ ) 농도: 1 mg/niL in propylene glycol 로딩부피 및 로딩량: 0.5 mL(500 meg)
피부투과시간: control (4시간) , 기타 평가시료 (3시간)
【표 5】
Figure imgf000026_0001
(참조: 도 5) 실시예 13: 비타민 C(Ascorbic acid, logP -2.41)의 피부투과시험
비타민 C (대정화금, 99%≤) 농도: 프로필렌 글리콜 내에서 1 mg/mL 로딩부피 및 로딩량: 0.45 mL(450 meg)
피부투과시간: 3시간
【표 6】
Figure imgf000026_0002
R2014/001644
Figure imgf000027_0001
* 대조군: 인헨서 없음 (without enhancer)
(참조: 도 6) 실시예 14내지 실시예 26. 페놀산 (phenolic acid)-지방산 컨쥬게이트 제조 본 결합반웅에 사용된 페놀산류는 페를산 (Ferulic acid), 카페인산 (Caffeic acid), 바닐릭산 (Vanilic acid), 하이드록시벤조산 (4- hydroxybenzoic acid), 쿠마릭산 (p— Coumar ic acid)등 이었고 지방산으로는 포화 지방산 및 불포화 지방산이 사용되었다. 실시예 3 내지 6 에서 제조된 활성화된 지방산을 대상으로 페놀산류와 결합반웅을 진행하였다. 7 L 반웅조 (react ion vessel)에서 하기의 표와 같은 구성으로 반웅용액을 준비하고 200-220 rpm 에서 적절한 시간동안 반웅을 진행하였다. 반웅완료 후 50 도 수조에서 회전증발 농축을 하고 얻어진 잔류물을 100 mL 에탄을에 적절하게 재용해한 다음 실시예 8 에서와 유사한 방식으로 소수성 크로마토그래피 작업을 통해 각각의 페놀산-지방산 컨쥬게이트를 분리하였다.
【표 7】
< 페놀산—지방산 표준 결합반웅 〉
Figure imgf000027_0002
. - 교반속도 200 220 rpm
- 반웅종료 후 감압농축
. . - HIC 컬럼 분리를 위해 에탄올로 녹여 보관 후
사용
세부적인 페를산-지방산 컨쥬게이트의 구성 및 제조는 하기 실시예 표 8에 따라 진행하였다.
【표 8】
Figure imgf000028_0001
오픈 컬럼 (Open column)(3x40 cm)에 레진을 50 mL 를 채운다음 95¾> EtOH 로 층분히 세척하고 이어서 50% EtOH 로 세척하였다. 상기 각 실시예에서 제조된 각각의 페놀산-지방산 컨쥬게이트를 최종 50 내지 60% EtOH 용매가 되게 조절하고 칼럼에 흡착시켰다. 이후 5 ml/min 의 유속을 유지하면서 50% EtOH 로 세척하였고 60 내지 EtOH 을 사용하여 순차적으로 용출하였다. 페놀산ᅳ지방산 컨쥬게이트는 60 내지 80% EtOH 범위에서 용출되는 것을 확인되었으며 페놀산—지방산 컨쥬게이트 분획만을 따로 모아 60°C 수조에서 진공 감압 회전 농축하였고 다시 DCM 용매로 용해하고 실시예 27을 진행하였다. 실시예 27. 페놀산 (phenolic acid)-지방산 컨쥬게이트의 활성화
cos 와 페놀산-지방산 컨쥬게이트의 추가 접합반응을 진행하기 위해서 먼저 페놀산의 카르복실기를 (acyl chloride reaction) 활성화 과정을 진행하였다.
100 mL DCM(Dichloromethane)에 각 20 mL 의 페놀산-지방산 컨쥬게이트를 첨가한 다음 지방산 대비 적당량의 TEA(Triethylamine)와 염화티오닐 (Thionyl chloride)를 첨가하고 적절하게 교반하면서 반응을 진행하였다. 반응완료 직후 감압 농축하여 용매를 완전히 제거하고 150 mL 의 DCM 용매에 활성화된 페놀산 지방산 컨쥬게이트를 녹여 보관하면서 하기 실시예에서 사용하였다.
【표 9】
페놀산-지방산 표준 활성화 반웅
Figure imgf000029_0001
실시예 28 내지 실시예 40. 키토올리고당 (COS)-페놀산 (phenolic acid)- 지방산 컨쥬게이트의 제조
2L 반웅조 (react ion vessel)에 400 mL DCM, 200 mL 상당의 고순도 COS 수용액, 일부의 정제수 (deionized water)와 4 mL 의 5N NaOH, 100 mL 상당의 활성화된 페놀산—지방산 컨쥬게이트를 각각 순차적으로 첨가한 다음 교반을 하면서 8 시간 동안 결합반웅을 진행하였다. 각각의 반웅완료 후 물 층만 회수하여 61°C 수조에서 감압농축하고 약 100 mL 의 에탄올로 재용해 한 다음 HIC 컬럼 정제 과정을 진행하였다. 실시예 14에서와 유사한 과정을 통해 SDR 레진 (Pall)올 이용한 소수성 상호작용 크로마토그래피 (hydrophobic interact ion chromatography) 과정을 진행하였다. 오픈 컬럼 (3X40 cm)에 레진을 50 mL 를 충진하고 20 내지 95% EtOH 로 세척하고 다시 10% EtOH 용액으로 충분히 흘려준 다음 준비된 상기 COS-페놀산—지방산 컨쥬게이트 제조용액을 최종 10% EtOH 용매 상태가 되게 조절하여 로딩하였다. 이후 5 ml/min 의 유속을 유지하면서 10 내지 20¾> EtOH 로 세척하고 다시 적절량의 30% EtOH, 50% EtOH, 70% EtOH, 95% EtOH 을 투입하여 용출하였다. COS-페놀산-지방산 컨쥬게이트 용출 분획 만을 따로 모아 61°C 수조에서 감압 농축하고 후속 실험에서 사용하였다. 세부적인 COSᅳ페를산-지방산 컨쥬게이트의 구성 및 제조는 하기 실시예 표 10에 따라 진행하였다.
【표 10】
Figure imgf000030_0001
실시 ^1 40 COS-페를산—라우르산
** OAColeic acid) , LA( 1 inoleic acid) , GLA ( amma- 1 i no 1 en i c acid) 한편 경우에 따라서 결합반응 과정의 변화를 통해 다양한 접합체 제조를 시도하였는바 지방산 과량의 컨쥬게이트 제조 (conjugate prepared in relatively oleic acid r i ch condition)를 위해서는 25 mL 상당의 활성화된 페놀산 (Ferulic acid chloride)와 75 mL 상당의 활성화된 지방산 (fatty acid chloride)을 첨가하였으며 페놀산 과량의 컨쥬게이트 제조 (conjugate prepared in relatively phenolic acid rich conditkin)를 위해서는 100 mL 상당의 활성화된 페놀산 및 12.5 mL 상당의 활성화된 지방산을 첨가하여 결합을 진행하였다. 키토을리고당 (COS)-페놀산 (phenolic acid)-지방산 컨쥬게이트에 의한 지용성모델화합물의피부투과 증진효과 실시예 41. 시나믹산 (cinnamic acid, logP 2.41)의 피부투과 실험
실시예 28 내지 40 에서 제조된 다양한 컨쥬게이트를 대상으로 사람의 피부와 유사한 투과성을 보이는 St rat M synthetic membrane (Millipore 사)을 이용하여 모델화합물의 투과비율을 측정하였다. 피부투과시험을 위해 프란츠 셀 (inner diameter 1.5cm)의 도너 (donor) 용액은 시나믹산 (1 mg/mL)이 포함된 하기 표의 평가용액 (0.45 mL)을 로딩하였으며 리셉터 (receptor) 용액은 50% EtOH 을 기준 용액으로 사용하였다. 각 컨쥬게이트의 평가결과를 아래의 표 11 및 12에 제시하였다ᅳ 【표 11】
Figure imgf000031_0001
Figure imgf000032_0001
【표 12】
Figure imgf000032_0002
T/KR2014/001644
Figure imgf000033_0001
**CF0-0r: 상대적으로 올레산 과량의 상태에서 제조된 CF0 컨쥬게이트
**CF0-Fr: 상대적으로 페를산 과량의 상태에서 제조된 CF0 컨쥬게이트 상기표의 평가시료명 대비 투과개선비율 수치를 그래프로 표기하면 도 7 과 같다. 컨트롤 대비 컨쥬게이트에 의해서 시나믹산의 피부투과 개선비율이 크게 개선되었음을 보여주고 있다. 실시예 42. 피부투과시험에서 HPLC에 의한투과된 시나믹산의 확인
실시예 41 의 CV0(C0S-Vanil lie-OA) 컨쥬게이트를 이용한 피부투과시험에서 리솁터 용액 내 존재하는 시나믹산을 HP1X로 확인하였다. 분석은 Prontosil Eurobond C18(5.0 μιη, 250 圆 Χ4.0mm)칼럼을 사용하였으며 수 (water)중의 0.1% 인산과 아세토니트릴 중의 0.1% 인산을 사용하여 15 uL 투입 후 40 분 동안 선형 구배 (linear gradient) 조건으로 용출하였다. 시나믹산이 포함 및 불포함 된 각각의 도너 (donor) 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이卓 리셉터 (receptor) 용액을 각각 동일조건에서 HPLC 로 비교한 결과를 도 8 내지 도 11 에 나타내었다. 도 8 는 270 nm 로 관찰한 시나믹산 위치마커로서 21 분 대에 위치를 나타내고 있으며 도 9 은 시나믹산이 존재하나 컨쥬게이트가 아닌 기본 비히클 (propylene glycol)의 투과 결과이며 도 10 은 시나믹산이 미포함된 CV0 시료의 피부투과시험 리셉터 용액의 분석결과이고 도 11 는 시나믹산 (1 mg/mL, 0.45 mL 로딩)이 첨가된 시험에서의 리셉터 용액을 분석한 것이다. 이의 비교분석을 통해 CV0 컨쥬게이트가 시나믹산의 투과를 증진시키는 효과를 확인할 수 있었다. 실시예 43. CFL(C0S-ferulic acid-1 inolenic acid) 컨쥬게이트에 의한 레스베라트를 (resveratrol)UogP 3.1) 피부투과 실험
시나믹산에 대한 투과율 개선 효과가 크게 나타난 CFL 컨쥬게이트에 대하여 다른 지용성 약물인 레스베라트를 (resveratrol)UogP 3.1)에 대한 피부 투과 효과 개선 실험을 실시하였다.
실험은 시나믹산에 대한 실험과 유사한 방식으로 실시하였다. 표준곡선은 RP-HPLC 로 l~50mcg/mL 구간에서 정량선을 구하여 분석시료의 면적수치를 대입하여 선형회귀곡선으로 함량을 구하였다 (참조: 도 12). 프로필렌글리콜 또는 테스트 비히클 (0.45 ml) 내의 1 mg/mL 레스베라트를을 도너로 이용하였다. 테스트 비히클인 CFL 의 농도는 리놀레익산 지방산함량기준으로 4.45%였고, 50% 에탄올을 리셉터로 이용하였다. 노출시간은 3.5 시간 (at RT)이었고, 2 회 반복 하였다. 시험 결과는 하기 표 13 및 도 13에 나타내었다.
【표 13】
Figure imgf000035_0001
표 13 및 도 13에서도 알 수 있듯이 레스베라트를 (19분)에서 대조구 대비 CFL 비히클이 첨가된 시료에서 레스베라트를 투과비율이 약 5.28 배 증가됨을 확인하였다. 키토올리고당 (COS)-페놀산 (phenol ic acid)-지방산 컨쥬게이트에 의한 수용성 모델화합물의 피부투과 증진효과 실시예 44. 아스코르브산 (logP -2.41)의 피부투과 실험
실시예 41 에서와 유사한 방식으로 실험을 진행하였는바 실시예 28 내지 40 에서 제조된 다양한 컨쥬게이트를 대상으로 사람의 피부와 유사한 투과성을 보이는 Strat M synthetic membrane (Millipore 사)을 이용하여 모델화합물의 투과비율을 측정하였다. 피부투과시험을 위해 프란츠 셀 (inner diameter 1.5 cm)의 도너 용액은 아스코르브산 (1 mg/mL)이 포함된 하기 표의 평가용액 (0.45 mL)을 로딩하였으며 리솁터 용액은 .50% EtOH 을 기준 용액으로 사용하였다. 각 컨쥬게이트의 시험결과를 아래의 표 14 및 15에 제시하였다.
【표 14】
Figure imgf000035_0002
Figure imgf000036_0001
Figure imgf000037_0001
상기 표의 평가시료명 대비 ER 수치를 그래프로 표기하면 도 14 와 같다. 대조군 대비 컨쥬게이트에 의해서 비타민 C 의 피부투과 개선비율이 크게 개선되었음을 보여주고 있다. 실시예 45. 피부투과시험에서 HPLC에 의한 투과된 비타민 C의 확인
실시예 41 에서와 유사한 분석 방식으로 실시예 44 의 CFL(C0S- Ferulic-LA) 컨쥬게이트를 이용한 피부투과시험에서 리셉터 용액 내 존재하는 비타민 C 를 HPLC 로 확인하였다. 분석은 Prontosil Eurobond C18(5.0ym, 250隱 X4.0隱)칼럼을 사용하였으며 수중의 0.1% 인산과 아세토니트릴 중의 0.1% 인산을 사용하여 15 iiL 분석시료를 투입 후 40 분 동안 선형 구배 조건으로 용출하였다. 비타민 C가 포함 및 불포함된 각각의 도너 시료를 프란츠 셀에 로딩하고 평가시험이 완료된 이후 리셉터 용액을 각각 동일조건에서 HPLC로 분석한 결과를 도 15.내지 17에 나타내었다. 도 15 은 262纖 에서 관찰한 비타민 C 위치 마커로서 약 4.2 분 대에 위치를 나타내고 있으며 도 16 는 비타민 C 가 포함되지 않은 CFL 컨쥬게이트 시료의 피부투과시험 리셉터 용액의 분석결과이고 도 17 은 비타민 C(l mg/mL, 0.45 mL 로딩)가 첨가된 피부투과시험에서의 리셉터 용액을 분석한 것이다. 이의 비교분석을 통해 CFL 컨쥬게이트가 비타민 C 의 투과를 증진시키는 효과를 확인할 수 있었다. 실시예 46. CFL(COS-ferulic acid-1 inolenic acid) 컨쥬게이트에 의한 알부틴 (ArbutinXlogP -1.35) 피부투과 실험
CFL 컨쥬게이트에 대하여 다른 수용성 모델인 알부틴 (logP -1.35)에 대한 피부 투과 효과 개선 실험을 실시하였다.
실험은 아스코르브산에 대한 실험과 유사한 방식으로 실시하였다. 1 mg/ml 알부틴을 제조하여 450 mcg(0.45 ml)씩 로딩하였고, 2 회 반복 수행하였다. 대조구는 프로필렌글리콜 내의 1 mg/ml 알부틴을 이용하였다, 프로필렌글리콜 내의 C0S-GLA 는 GLA 함량기준 5%, 프로필렌글리콜 내의 COS-Ferulic-LA 는 LA 함량 기준 4.45%였고, 리셉터 용액은 50% EtOH 를 사용하였다. 실험 결과는 하기 표 16 및 도 18에 나타내었다.
【표 16】
Figure imgf000038_0001
표 16 및 도 18 에서도 알 수 있듯이 대조구와 비교하여 C0S-GLA 도 알부틴을 투과시키는 효율이 높지만 CFL 컨쥬게이트는 기준대비 4.45 배를 증가시키는 효과를 확인하였고, C0S-GLA 와 비교하여도 1.6 배 가량의 투과 개선 효과를 확인하였다. 실시예 47. CFLCCOS-ferulic acid-1 inolenic acid) 컨쥬게이트에 의한 코직산 (Kojic acid)(logP -0.64) 피부투과 실험
CFL 컨쥬게이트에 대하여 다른 수용성 모델인 코직산 (Kojic acid)(logP —0.64)에 대한 피부 투과 효과 개선 실험을 실시하였다. 실험은 아스코르브산에 대한 실험과 유사한 방식으로 실시하였다. 1 mg/ml 코직산을 제조하여 450 mcg(0.45 ml)씩 로딩하였고, 2 회 반복 수행하였다. 대조구는 프로필렌글리콜 내의 1 mg/ml 코직산을 이용하였다. 지방산 종류별로 농도는 모두 5%이며 , 프로필렌글리콜 내의 C0S-Ferulic-LA 는 LA 함량 기준 4.45%였고, 리셉터 용액은 50% EtOH 를 사용하였다. 실험 결과는 하기 표 17 및 도 19에 나타내었다.
【표 17]
Figure imgf000039_0001
1644
대조구 대비 GLA 또는 LA 지방산 단독으로는 약 10 배의 투과율 개선 증가가 이루어졌지만 CFLA 컨쥬게이트 평가에서 미백성분인 코직산 모델의 투과율이 기준 대비 약 20배의 투과율 개선 증가 결과를 나타내었다. 실시예 48. 지방산 유도체의 자외선-가시광선 영역 흡수스펙트럼 비교평가 상기 각 실시예에서 제조된 대표적인 유도체를 대상으로 자외선 및 가시광선 영역에서의 광 흡수특성을 조사하였다 (참조: 도 20 및 21). 피부에 직접적으로 도포되는 본 발명의 컨쥬게이트는 유효성분의 피부전달을 촉진하는 기능성 이외에 피부에 유해한 자외선 노출을 방지해 줌으로써 피부건강의 지속적 유지 및 광 피부노화를 억제할 수 있을 것이다. 본 실시예의 자외선-가시광선 스캔 측정을 위해서 수용성 물질을 제의하고는 에탄올 용매를 사용하여 측정하였다. 통상 피부의 광노화 유해 범위는 UVA(315-400 nm) 보다는 UVB(280-315 nm) 영역이 피부에 더 치명적인 것으로 알려졌기에 UVB 영역에서 광 흡수성을 갖는 본 발명의 키토을리고당 (COS)-페를산-지방산 컨쥬게이트 소재 (참조: 도 21)는 유해광선으로부터의 피부 보호효과측면에서 볼 때 글루코사민-지방산 혹은 키토을리고당 (COS)—지방산 컨쥬게이트 소재보다 실용성이 더 클 것으로 판단된다. 이상에서와 같이 각 실시예 제시를 통해 COS 와 지방산의 컨쥬게이트 또는 페를산이 연계된 COS와 지방산간의 컨쥬게이트 제조 및 평가를 통해서 수용성 혹은 지용성 물질을 대상으로 한 피부투과 효율을 개선하는 효과를 확인하였다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims

【특허청구범위】
【청구항 1】
하기 일반식 1 로 표시되는 아미노당-지방산 컨쥬게이트를 포함하는 경피 흡수 촉진제:
일반식 1
(A)n-B
상기 일반식 1 에서 , 상기 A 는 아미노기를 포함하는 C5 또는 C6의 아미노당 (amino sugar)이고, 상기 B는 지방산이며, 상기 - 는 결합 (bond)을 나타내며, 상기 n은 1—100의 정수이다.
【청구항 2】
제 1 항에 있어서, 상기 n 은 1-10 의 정수인 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 3】
제 1 항에 있어서, 상기 아미노당은 N-아세틸글루코사민 ( acetylglucosamine) , 글루코人]"민 (glucosamine), 갈락토人! "민 (galactosamine) , 다우노사민 (daunosamine) , 만노사민 (mannosamine) , 시알린산 (sialic acid) 및 프룩토사민 (fructosamine)으로 구성된 군에서 선택되는 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 4】
제 1 항에 있어서, 상기 지방산은 불포화지방산인 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 5】
제 4 항에 있어서, 상기 불포화지방산은 미리스롤레인산 (myristoleic acid) , 팔미롤레인산 (palmitoleic acid), 사피에닌산 (sapienic acid), 올레인산 (oleic acid), 엘라이딘산 (elaidic acid), 박센산 (vaccenic acid), 리놀레인산 (Hnoleic acid), 리노엘라이딘산 (linoelaidic acid), 알파- 리놀렌산 ( α-linolenic acid), 감마-리놀렌산 ( γ -1 inolenic acid), 아라키돈산 (arachidonic acid) , 에이코사텐타에노산 (eicosapentaenoic acid) , 에루신산 (erucic acid) 또는 도코사핵사엔산 (docosahexaenoic acid)인 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 6】
제 5 항에 있어서, 상기 불포화지방산은 을레인산, 리놀레인산, 알파-리놀렌산 또는 감마 -리놀렌산인 것을 특징으로 하는 경피 흡수 촉진제 .
【청구항 7】
제 1 항에 있어서, 상기 A 는 글루코사민이고, 상기 B 는 올레인산, 리놀레인산, 알파-리놀렌산 또는 감마-리놀렌산이며, 상기 n 은 3-5 의 정수인 것을 특징으로 하는 경피 홉수 촉진제.
【청구항 8】
제 1 항에 있어서, 상기 지방산은 포화지방산인 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 9】
제 8 항에 있어서, 상기 포화지방산은 카프릴산 (caprylic acid), 카프르산 (capric acid), 라우르산 (lauric acid), 미리스트산 (tnyr ist ic acid), 팔미트산 (palmitic acid), 스테아르산 (stearic acid), 아라키드산 (arachidic acid), 베헨산 (behenic acid), 리그노세르산(11 ( ^ acid) 또는 세로틴산 (cerotic acid)인 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 10】
제 1 항에 있어서, 상기 지방산 컨쥬게이트는 경피 흡수 촉진 성분으로서 다음 화학식 1 의 화합물을 추가적으로 포함하는 것을 특징으로 하는 경피 흡수 촉진제:
화학식 1
Figure imgf000043_0001
상기 화학식 1 에서, Rl 내지 는 수소, 히드록시 및 C-3 의 알콕시로 구성된 군에서 선택된 어느 하나의 기능기 (functional group)를 포함하고; 상기 ¾ 내지 중 적어도 하나는 히드록시이며; ¾는 CH 또는 CH2이며 , R7은 알데히드, 카르복시 또는 C210의 알킬에스테르이고; n 은 0 내지 5의 정수이다.
【청구항 11】
제 10 항에 있어서, 상기 화학식 1 의 화합물은 상기 아미노당 및 지방산을 결합시키는 링커 (Linker)로서 포함되는 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 12]
제 10 항에 있어서, 상기 화학식 1 의 화합물은 페를산 (ferulic acid) , 카페인산 (caffeic acid), 쿠마린산 (coumaric acid), 겐티신산 (gentisic acid), 프로토카테큐인산 (protocatechuic acid) 또는 바닐린산 (vanilic acid)인 것을 특징으로 하는 경피 흡수 촉진제.
【청구항 13】
제 1 항 내지 제 12 항 중 어느 한 항의 경피 흡수 촉진제를 포함하는 화장료 조성물.
【청구항 14]
제 1 항 내지 제 12 ¾ 중 어느 한 항의
Figure imgf000043_0002
포함하는 약제학적 조성물. 【청구항 15】
운반대상 (cargo)을 제 1 항 내지 제 12 항 중 어느 한 항의 경피 흡수 촉진제와 함께 (in combination with) 객체 (subject)의 피부에 적용시키는 단계를 포함하는 운반대상 (cargo)의 경피 운반을 개선하는 방법.
PCT/KR2014/001644 2013-02-27 2014-02-27 경피 흡수 촉진제 및 그의 용도 WO2014133344A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0021503 2013-02-27
KR20130021503 2013-02-27
KR1020140023294A KR101622382B1 (ko) 2013-02-27 2014-02-27 경피 흡수 촉진제 및 그의 용도
KR10-2014-0023294 2014-02-27

Publications (1)

Publication Number Publication Date
WO2014133344A1 true WO2014133344A1 (ko) 2014-09-04

Family

ID=51428535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/001644 WO2014133344A1 (ko) 2013-02-27 2014-02-27 경피 흡수 촉진제 및 그의 용도

Country Status (1)

Country Link
WO (1) WO2014133344A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153871A (ja) * 2005-11-09 2007-06-21 Toyo Shinyaku:Kk 経皮吸収調節剤
US20080154210A1 (en) * 2004-05-28 2008-06-26 Oryxe Mixture for Transdermal Delivery of Low and High Molecular Weight Compounds
KR100857509B1 (ko) * 2007-01-11 2008-09-08 주식회사 티디에스팜 글루코사민을 포함하는 관절염 치료용 경피흡수제제
KR20090081582A (ko) * 2008-01-24 2009-07-29 주식회사 엘지생활건강 2제식 유효성분 피부전달 시스템
US20090197948A1 (en) * 2006-05-23 2009-08-06 Shiseido Co., Ltd. Skin External Preparation
KR20110062277A (ko) * 2009-12-03 2011-06-10 주식회사 엘지생활건강 동결건조 방식으로 제조된 2제식 다공성 피부개선 화장료 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154210A1 (en) * 2004-05-28 2008-06-26 Oryxe Mixture for Transdermal Delivery of Low and High Molecular Weight Compounds
JP2007153871A (ja) * 2005-11-09 2007-06-21 Toyo Shinyaku:Kk 経皮吸収調節剤
US20090197948A1 (en) * 2006-05-23 2009-08-06 Shiseido Co., Ltd. Skin External Preparation
KR100857509B1 (ko) * 2007-01-11 2008-09-08 주식회사 티디에스팜 글루코사민을 포함하는 관절염 치료용 경피흡수제제
KR20090081582A (ko) * 2008-01-24 2009-07-29 주식회사 엘지생활건강 2제식 유효성분 피부전달 시스템
KR20110062277A (ko) * 2009-12-03 2011-06-10 주식회사 엘지생활건강 동결건조 방식으로 제조된 2제식 다공성 피부개선 화장료 조성물

Similar Documents

Publication Publication Date Title
Choubey et al. Medicinal importance of gallic acid and its ester derivatives: a patent review
US10688031B2 (en) Low-toxicity sophorolipid-containing composition and use therefor
KR101779910B1 (ko) 플라보노이드를 함유하는 조성물을 제조하는 방법 및 그의 사용 방법
KR102092849B1 (ko) 피부 미백용 조성물
KR100752990B1 (ko) 나노리포좀 및 천연 추출물을 포함하는 피부 질환의 예방또는 치료용 조성물
JP4647706B2 (ja) α−リポ酸ナノ粒子およびその調製方法
WO2019075263A2 (en) METHODS AND COMPOSITIONS WITH TOPICAL ADMINISTRATION
JP5683134B2 (ja) 皮膚外用剤
JP2005298505A (ja) 高圧乳化技術を用いたダイオウ抽出物の経皮吸収促進方法及びこれを応用した美白用皮膚外用剤組成物
KR20170084950A (ko) 그린세라마이드, 그를 포함하는 조성물 및 그 제조방법
KR101091641B1 (ko) 석류로부터 엘라그산을 효율적으로 분리하는 방법 및 이를 함유한 기능성 화장품 조성물
Abd-Elghany et al. Ex-vivo transdermal delivery of Annona squamosa entrapped in niosomes by electroporation
JP2011246353A5 (ko)
KR20140069469A (ko) 천연 복합 추출물의 나노캡슐을 포함하는 아토피 피부염 개선용 화장료 조성물 및 그 제조방법
Rejinold et al. Therapeutic vitamin delivery: Chemical and physical methods with future directions
EP3542810B1 (en) Composition containing artemisia annua extract as effective ingredient for alleviating skin disease and preparation method therefor
KR101732844B1 (ko) 국소 피부 전달용 항염증 지질 나노 전달체를 포함하는 피부염 치료 또는 예방용 조성물
JP2021098668A (ja) 細胞送達用キャリア
WO2007129162A2 (en) Pharmaceutical preparations for transdermal use
Ghosh et al. Recent advancements in nanocarrier based therapy against Acne: The role of biosurfactants and status of patents
CN101244027A (zh) 治疗皮肤病的蒿甲醚经皮给药制剂
KR101622382B1 (ko) 경피 흡수 촉진제 및 그의 용도
CN106913882A (zh) 一种聚乙二醇‑藤黄酸脂质体和制备方法及其在治疗恶性肿瘤中的应用
KR101503182B1 (ko) 홍삼 오일을 유효성분으로 함유하는 항산화용 조성물
WO2014133344A1 (ko) 경피 흡수 촉진제 및 그의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14756807

Country of ref document: EP

Kind code of ref document: A1