WO2014132909A1 - 電子増幅用基板および電子増幅用基板の製造方法 - Google Patents

電子増幅用基板および電子増幅用基板の製造方法 Download PDF

Info

Publication number
WO2014132909A1
WO2014132909A1 PCT/JP2014/054284 JP2014054284W WO2014132909A1 WO 2014132909 A1 WO2014132909 A1 WO 2014132909A1 JP 2014054284 W JP2014054284 W JP 2014054284W WO 2014132909 A1 WO2014132909 A1 WO 2014132909A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hole
glass substrate
conductive layer
electronic amplification
Prior art date
Application number
PCT/JP2014/054284
Other languages
English (en)
French (fr)
Inventor
隆 伏江
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US14/769,003 priority Critical patent/US20150380224A1/en
Priority to DE112014001095.2T priority patent/DE112014001095T5/de
Publication of WO2014132909A1 publication Critical patent/WO2014132909A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/06Proportional counter tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/08Cathode arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/28Measuring radiation intensity with secondary-emission detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2935Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using ionisation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers
    • H01J47/026Gas flow ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/12Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
    • H01J9/125Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes of secondary emission electrodes

Definitions

  • the present invention relates to an electronic amplification substrate and a method for manufacturing the electronic amplification substrate.
  • detectors that use electron avalanche amplification by a gas electron amplifier are known as detectors that detect particle beams or electromagnetic waves.
  • both sides of an insulating plate-like member such as polyimide are covered with an electrode layer having conductivity such as copper, and further penetrate the front and back of the laminate of the plate-like member and the electrode layer.
  • An electronic amplification substrate having a plurality of through holes is provided. Then, with the electron amplification substrate placed in the detection gas, a potential electric field is applied between the electrode layers of the electron amplification substrate to create a strong electric field in the plurality of through holes, and the electric avalanche amplification is performed by the electric field. To increase the number of ionized electrons so that it can be captured as a signal. By doing in this way, the measurement about the ionization electron in detection gas is enabled (for example, refer patent document 1).
  • the electronic amplification substrate constituting the GEM is provided on each of both surfaces of the plate-like member 52 for the purpose of suppressing the occurrence of discharge in the through hole 51.
  • Providing a guard ring portion 53 on the side has been proposed (see Non-Patent Document 1, for example).
  • the guard ring portion 53 is a planar ring-shaped gap groove formed along the outer periphery of the opening of the through hole 51.
  • a land portion 55 that is not electrically connected to the electrode layer 54 exists at the periphery of the opening portion of the through hole 51.
  • the electronic amplification substrate having a structure in which the guard ring portions 53 are provided on both surfaces of the plate-like member 52 has the following drawbacks.
  • An object of the present invention is to provide an electronic amplification substrate and a method for manufacturing the same that can obtain a sufficient amplification factor during avalanche amplification.
  • an aspect of the present invention provides: An insulating glass substrate; Conductive layers formed on both main surfaces of the glass substrate; A plurality of through-holes formed in a laminate of the glass substrate and the conductive layer, An electronic amplification substrate configured to form an electric field in the through hole due to a potential difference between the two conductive layers when a voltage is applied to the surface of the conductive layer to cause an avalanche amplification in the through hole, On at least one main surface of the glass substrate, an insulating portion, one end of the insulating portion surrounds the opening of the through hole of the glass substrate, and the other end of the conductive layer An electronic amplification substrate characterized by being formed so as to be in contact with an end portion.
  • Another aspect of the present invention provides: An insulating glass substrate; Conductive layers formed on both main surfaces of the glass substrate; A plurality of through-holes formed in a laminate of the glass substrate and the conductive layer, A method of manufacturing an electronic amplification substrate configured to form an electric field in the through-hole due to a potential difference between both conductive layers when a voltage is applied to the surface of the conductive layer to cause an avalanche amplification in the through-hole. Because By processing the formed conductive layer using a laser beam, the end portion of the conductive layer formed on at least one main surface of the glass substrate is removed from the opening of the through hole of the glass substrate. And a step of retreating.
  • the method for manufacturing an electronic amplification substrate characterized by comprising:
  • the present invention it is possible to obtain a sufficient amplification factor when amplifying an electron avalanche while suppressing generation of a discharge that leads to destruction of an electric circuit for reading a signal without reducing a voltage applied to an electrode layer. It becomes possible.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration example of a detector according to the present embodiment.
  • 2A and 2B are explanatory views showing a configuration example of a main part of the electronic amplification substrate according to the present embodiment.
  • FIG. 2A is a perspective view and FIG. 2B is a side sectional view.
  • FIG. 3 is a diagram illustrating an example of an electronic amplification substrate.
  • FIG. 4 is a diagram illustrating an example in which corner portions of the glass base material are chamfered in the electronic amplification substrate according to the present embodiment.
  • FIG. 5 is an explanatory diagram (part 1) illustrating an example of a method for manufacturing the electronic amplification substrate according to the present embodiment.
  • FIG. 6 is an explanatory diagram (part 2) illustrating an example of a method for manufacturing the electronic amplification substrate according to the present embodiment.
  • FIG. 7 is a perspective view showing a configuration example of a main part of a conventional electronic amplification substrate.
  • the detector can measure ionized electrons by using electron avalanche amplification in a detection gas, and is configured to detect particle beams or electromagnetic waves.
  • Electrode avalanche amplification used by the detector means that when a free electron collides with a gas molecule in a strong electric field, a new electron is knocked out, and this is accelerated by the electric field and collides with another molecule to accelerate. The phenomenon that the number of electrons increases.
  • Detectors that use electronic avalanche amplification include, for example, a gas proportional counter (CGPC).
  • CGPC gas proportional counter
  • a detector that causes electronic avalanche amplification using GEM is called a detector.
  • GEM refers to a state where an electronic amplification substrate having a plurality of fine through-holes arranged two-dimensionally is arranged in a detection gas, and a strong electric field is generated in the through-hole of the electronic amplification substrate.
  • the electronic amplification substrate may be a single plate or may be a multi-layered substrate.
  • Particle beams that can be detected by detectors include alpha rays, beta rays, proton beams, heavy charged particle beams, electron beams (those that accelerate electrons with an accelerator regardless of nuclear decay), neutron beams, and space. Lines etc. are included.
  • the “electromagnetic wave” includes radio waves (low frequency, super long wave, long wave, medium wave, short wave, ultra short wave, microwave), light (infrared ray, visible ray, ultraviolet ray), X-ray, gamma ray and the like. Which of these is to be detected can be set as desired by appropriately selecting the type of detection gas, the strength of the electric field to be created, and the like.
  • the above-described detector that is, a detector that detects particle beams or electromagnetic waves using electronic avalanche amplification by GEM has the configuration shown in FIG.
  • a detector 1 shown in FIG. 1 includes a drift electrode 3 and a readout electrode 4 inside a chamber 2 filled with a predetermined type of detection gas, and is disposed between the drift electrode 3 and the readout electrode 4.
  • the electronic amplification substrate 10 is provided.
  • the electronic amplification substrate 10 realizes a function as a GEM by causing an electronic avalanche amplification, and a plurality of through-holes are formed in a laminate 14 in which conductive layers 12 and 13 are formed on both main surfaces of the glass substrate 11.
  • the holes 15 are configured in a two-dimensional array.
  • the plurality of through-holes 15 each have a circular shape when the electronic amplification substrate 10 is viewed in plan, and are arranged at regular intervals.
  • the chamber 2 is configured so that particle beams or electromagnetic waves to be detected can enter from the outside.
  • a predetermined voltage is applied to the drift electrode 3 and the readout electrode 4 in the chamber 2 from a power supply unit (not shown). Further, a predetermined voltage is applied to the conductive layers 12 and 13 on both main surfaces of the electronic amplification substrate 10 from a power supply unit (not shown) so as to function as electrodes.
  • an electric field E1 is generated in a region 5 (hereinafter referred to as “drift region”) between the drift electrode 3 and the electronic amplification substrate 10, and the electronic amplification substrate 10 and the readout electrode are generated.
  • An electric field E3 is generated in a region 6 between 4 (hereinafter referred to as “induction region”) 6. Further, an electric field E2 is generated in the through hole 15 of the electronic amplification substrate 10.
  • the electric field E2 is converged in the hole of the through hole 15 and the electrons that have entered the electron hole are accelerated.
  • electron avalanche amplification occurs, and the electrons multiplied by the electron avalanche amplification are measured by the readout electrode 4. It is configured.
  • an integrated circuit (Application Specific Integrated Circuit, hereinafter referred to as “ASIC”) 7 having functions as a protection circuit, an amplifier circuit, a noise filter circuit and the like is connected to the readout electrode 4.
  • the ASIC 7 is for enabling a signal output to an external device (for example, a host device of the detector 1) for the measurement result at the readout electrode 4, and functions as an electric circuit for signal readout. . That is, the detector 1 measures the electrons multiplied by the electron avalanche amplification generated in the through hole 15 of the electron amplification substrate 10 with the readout electrode 4, and connects the measurement result to the readout electrode 4. It is configured to output to the outside through.
  • the electronic amplification substrate 10 has a configuration in which a plurality of through holes 15 are two-dimensionally arranged in a laminate 14 in which conductive layers 12 and 13 are formed on both main surfaces of a glass substrate 11. In FIG. 2, only one through hole is shown. By applying a voltage to each of the conductive layers 12 and 13 and applying a potential difference between the two conductive layers 12 and 13, an electric field is formed in the through hole 15, and electron avalanche amplification occurs in the through hole 15.
  • the base material constituting the electronic amplification substrate 10 is required to be an insulating material.
  • a resin material such as polyimide is used as a base material, but there are problems that the resin material has low heat resistance, smoothness, rigidity, and the like, and outgas may occur. Therefore, in this embodiment, the glass base material 11 is used as an insulating material.
  • the glass substrate 11 is formed by arranging the through holes 15 having a fine hole diameter at a fine pitch, a glass material that can be finely processed is used.
  • photosensitive glass it is preferable to use photosensitive glass as such a glass substrate. By using photosensitive glass, it is possible to apply a fine processing technique used in a semiconductor manufacturing process and form a plurality of through holes having desired dimensions and arrangement pitches.
  • SiO 2 —Li 2 O—Al 2 O 3 glass contains a small amount of Au, Ag, Cu as a photosensitive component, and CeO 2 as a sensitizer. Use included glass.
  • a redox reaction occurs between the sensitizer and the photosensitive component, and metal atoms are generated.
  • metal atoms aggregate to form a colloid, and Li 2 O.SiO 2 (lithium metasilicate) crystals precipitate and grow using this colloid as a crystal nucleus.
  • the precipitated Li 2 O ⁇ SiO 2 (lithium metasilicate) is easily dissolved in hydrogen fluoride (HF), and the dissolution rate is about 50 times that of the glass portion not irradiated with ultraviolet rays. There is a difference. By utilizing this difference in dissolution rate, it becomes possible to perform selective etching in which only a portion irradiated with ultraviolet rays (crystal portion) is etched, and fine processing can be performed without using machining.
  • Examples of such photosensitive glass include “PEG3 (trade name)” manufactured by HOYA Corporation.
  • conductive layers 12 and 13 are formed on both of the main surfaces of the glass substrate 11, respectively.
  • the conductive layers 12 and 13 are formed of a conductive material, and the surface layer has a role as an electrode layer.
  • a conductive material for example, a metal material such as Cu (copper) can be used.
  • the conductive layers 12 and 13 do not necessarily have a single-layer structure, and may have a multilayer structure as long as each layer is electrically connected.
  • a layer of Cr (chromium) or the like may be interposed between the glass substrate 11 and the copper layer in order to improve adhesion to the glass substrate 11.
  • the end portions 12 a and 13 a of the conductive layers 12 and 13 are formed in the through hole over the entire circumference of the through hole 15.
  • the through hole 15 formed in the substrate 10 includes a through hole 15 a formed in the glass base 11 and two through holes 15 b formed in the conductive layers 12 and 13.
  • the diameter of the through hole 15b is larger than the diameter of the through hole 15a.
  • the conductive layer is not present between the flush position and the retracted position, and the insulating portion 20 is formed. That is, the opening portion of the through hole 15a is surrounded by one end portion of the insulating portion 20, and the other end portion of the insulating portion 20 is in contact with the end portion of the conductive layer.
  • the insulating portion 20 is composed of a space where the conductive layers 12 and 13 are not formed. In other words, an insulating action is generated by a gas (such as a detection gas filled in the chamber) existing in the space. Moreover, you may comprise the insulation part 20 with resin etc. which have insulation.
  • the presence of the insulating portion 20 increases the distance between the end 12a of the conductive layer 12 and the end 13a of the conductive layer 13. This means that a virtual conductive path connecting the conductive layers 12 and 13 becomes long, so that discharge between the conductive layers can be suppressed. Moreover, not only the discharge distance is simply increased, but the peripheral portion of the hole where the lines of electric force are concentrated can be kept away from the hole. Therefore, it is considered that the discharge is suppressed only when the end portion of the conductive layer slightly recedes from the opening of the through hole. Note that the end portions of the conductive layers 12 and 13 recede from the opening portion of the through hole 15a, and there is no conductive portion between the end portion and the opening portion. The voltage does not drop.
  • the receding distances of the end portions 12a and 13a of the conductive layers 12 and 13 may be determined in consideration of a decrease in the amplification factor in the through hole due to the receding end portions and an improvement in the amplification factor due to suppression of discharge. Since the effect of suppressing discharge by the receding of the end portion is large, the receding distance is preferably small, and in this embodiment, it is preferably 30 ⁇ m or less. Further, the receding distance of the end portion also depends on the precision of the fine processing technique. In this embodiment, for example, when the diameter of the through holes 15 is 170 to 185 ⁇ m and the arrangement pitch of the through holes is 280 ⁇ m, the receding distance is about 10 ⁇ m.
  • the peripheral edge portion (insulating portion 20) of the through hole 15b formed in the conductive layers 12 and 13 surrounds the through hole 15a formed in the glass substrate 11 in an annular shape. It is out. That is, the insulating portion is formed so that the receding distance of the end portion is constant over the entire circumference of the through hole 15, but it is formed so as to recede from the opening of the through hole over the entire circumference of the through hole. For example, the retreat distance may not be constant. That is, the insulating part may be formed so that the receding distance changes. In addition, the receding distance of the end portion in the conductive layer 12 may be different from the receding distance of the end portion in the conductive layer 13.
  • the corner 11a of the opening of the through hole 15b of the glass substrate 11 is chamfered. Since the glass substrate is insulative, electrons amplified in the through holes may be charged (charged up) on the glass substrate. Since charge-up is likely to occur in sensitive parts such as ridge lines, it is preferable to chamfer corners.
  • the shape of the chamfer is not particularly limited, and may be a shape that can suppress charge-up.
  • the corner may be a flat shape or a rounded shape.
  • PEG3 which is a photosensitive glass, has a volume resistivity of about 8.5 ⁇ 10 12 ⁇ m, it has a lower insulation resistance than polyimide having a volume resistivity of 10 15 ⁇ m or more. Hard to be charged. Therefore, charge-up is further suppressed by chamfering. Since chamfering may cause a discharge between the conductive layers 12 and 13 easily, it is preferable to set the chamfering amount in consideration of this point.
  • a flat glass substrate 11 made of photosensitive glass such as “PEG3” is prepared.
  • the glass substrate 11 has a desired dimension, and is, for example, a rectangular shape having an outer shape of 300 mm ⁇ 300 mm and a thickness of about 0.3 mm to 1 mm.
  • FIG.5 (b) the photomask 21 in which the desired pattern was formed is piled up on the prepared glass base material 11, and ultraviolet-ray 22 is applied with respect to the glass base material 11 through the photomask 21.
  • an oxidation-reduction reaction occurs between the photosensitive component and the sensitizer, and a metal atom is generated.
  • the glass substrate 11 after the ultraviolet irradiation is subjected to a heat treatment at a temperature of 450 to 600 ° C., for example.
  • a heat treatment at a temperature of 450 to 600 ° C., for example.
  • metal atoms generated by ultraviolet irradiation aggregate to form a colloid, and this colloid is used as a crystal nucleus to form Li 2 O.SiO 2 (lithium metasilicate).
  • Crystal portion 23 precipitates and grows.
  • the conductive layers 12 and 13 are formed with respect to both the main surfaces of the glass base material 11 in which the through-hole was formed.
  • a conductive layer having a two-layer structure of a chromium (Cr) layer and a copper (Cu) layer is formed.
  • the method for forming the conductive layer is not particularly limited, and a sputtering method, a plating method, or the like may be used.
  • a chromium layer is formed on the surface of the glass substrate on which the through holes are formed by a sputtering method, and a copper layer is formed thereon.
  • the thickness of the conductive layer is, for example, about 2 ⁇ m.
  • the method for retracting the end of the conductive layer is not particularly limited.
  • the end of the conductive layer is retracted by processing using a laser beam.
  • a laser beam 31 having a predetermined energy is applied to the peripheral portion of the through-hole 15 which is a portion 30 to be removed of the conductive layers 12 and 13, and the conductive layers 12,
  • the diameter of the through hole 15b formed in the 13 portion is increased, that is, the diameter is larger than the diameter of the through hole 15a formed in the glass substrate 11 (for example, a diameter 40 ⁇ m larger than the diameter of the through hole 15a).
  • the laser beam 31 is scanned so that the hole is formed in the conductive layer.
  • the portion 30 to be removed of the conductive layer (chrome layer and copper layer) irradiated with the laser beam 31 evaporates, and the end portions 12a and 13a of the conductive layers 12 and 13 recede from the opening of the through hole, and the insulating portion 20 is formed. That is, an electronic amplification substrate having a configuration as shown in FIG. 6B is obtained.
  • the laser beam is preferably a UV laser or a femtosecond laser.
  • the output of the laser beam may be determined in consideration of the retreat amount of the end portion, the composition of the conductive layer to be removed, the thickness, and the like.
  • the end of the conductive layer can be efficiently and accurately retracted.
  • the end of the conductive layer advances (the conductive layer is formed toward the center of the through hole), but the advance amount is about 1 ⁇ m at maximum, so the advance amount by plating is The effects described above can be sufficiently obtained by setting the reverse amount in consideration.
  • chamfering is performed by an etching. Specifically, the etching is performed using an etching solution having higher activity than the etching solution used for forming the through holes 15 in the glass substrate 11. When the glass substrate 11 is etched using such an etchant, the activity of the etchant is high, so that the corners 11a that are glass portions are partially removed and chamfered. In addition, it does not restrict
  • the chamber 2 of the detector 1 is filled with a predetermined type of detection gas. Further, in order to draw electrons generated in the drift region 5 toward the read electrode 4, the drift electrode 3, the read electrode 4, and the conductive layers 12 and 13 of the electron amplification substrate 10 are respectively provided. Different voltages are applied to generate the electric fields E1, E2, and E3. That is, in order to give a potential difference that increases the force of attracting electrons toward the read electrode 4, the drift electrode 3, the read electrode 4, and the conductive layers 12, 13 of the electron amplification substrate 10 Apply a voltage to each.
  • a mixed gas of Ar 70% and CH 4 30% is filled in the chamber 2 at a pressure of 1 atm as a detection gas.
  • the drift electrode 3, the readout electrode 4, and the electronic amplification are performed so that the electric field E 1 in the drift region 5 is about 125 to 500 V / cm and the electric field E 3 in the induction region 6 is about 2.5 to 5 kV / cm.
  • the magnitude of the applied voltage with respect to the substrate 10 and the positional relationship (size of the interval) are set as appropriate.
  • the voltage applied to each of the conductive layers 12 and 13 of the electronic amplification substrate 10 is set as appropriate so that an electric field E2 sufficient to cause an electron avalanche amplification in the hole of the through hole 15 can be formed. Keep it.
  • Electrons multiplied by electron avalanche amplification are attracted to the read electrode 4 side by the electric field E3 formed in the induction region 6. Then, the number of electrons is read out as a signal by the readout electrode 4.
  • the readout electrode 4 that performs such signal readout is divided into small areas. Therefore, it can be specified in which area the electrons are measured.
  • the detector 1 can detect the X-ray that is the detection target.
  • the end portions 12 a and 13 a of the conductive layers 12 and 13 are retracted from the opening portion of the through hole 15 a of the glass substrate 11.
  • the diameter of the through hole 15 b formed in the conductive layers 12 and 13 is larger than the diameter of the through hole 15 a formed in the glass substrate 11.
  • the opening of the through hole 15 a of the glass substrate 11 is surrounded by the insulating part 20. Therefore, there is a distance (discharge distance) between the conductive layers 12 and 13 formed on both main surfaces of the glass substrate 11, that is, in the through hole 15, between the ends of the conductive layer where electric lines of force tend to concentrate.
  • the peripheral portion of the hole where the lines of electric force concentrate can be moved away from the hole, so that the discharge can be effectively suppressed. And such an effect can be acquired with the simple structure mentioned above.
  • the end portions 12a and 13a of the conductive layers 12 and 13 are retracted, there is a possibility that the number of lines of electric force passing through the through holes 15 may be reduced. However, by suppressing discharge, the applied voltage is reduced. As a result, the amplification factor can be improved. Specifically, an amplification factor of 10 4 or more, preferably about 10 5 can be obtained.
  • the applied voltage does not decrease even in the vicinity of the end portion of the conductive layer, so that a strong electric field can be formed inside the through hole. Therefore, a sufficient amplification factor can be ensured.
  • angular part 11a of the through-hole 15a of the glass base material 11 is chamfered. That is, since the corner portion 11a of the through hole 15a is not sharp, it is difficult for electrons generated in the through hole 15 to be charged up to the insulating glass substrate 11. Therefore, the electrons generated in the through hole 15 can reach the readout electrode 4 without being adsorbed by the glass substrate.
  • the electronic amplification substrate 10 having the above-described configuration is manufactured by processing using a laser beam.
  • the end portions 12 a and 13 a of the conductive layers 12 and 13 are made to recede from the openings of the through holes 15 of the glass substrate 11 by evaporating part of the conductive layers 12 and 13 by irradiation with a laser beam.
  • the end portion of the conductive layer can be easily and efficiently retracted.
  • the retreat distance of the end of the conductive layer exceeds 150 ⁇ m, and the arrangement pitch exceeds 400 ⁇ m. It is speculated that it will end up.
  • the end portions of the conductive layers 12 and 13 formed on both the main surfaces of the electronic amplification substrate 10 are retracted.
  • the configuration may be such that only the end of one conductive layer is retracted. Even with such a configuration, the effect of suppressing the discharge can be obtained as described above. However, there is a possibility that the risk of discharge is slightly increased as compared with the above-described embodiment.
  • the conductive layer located on the electron entrance side drift electrode 3 side
  • the conductive layer that is, the end of the conductive layer 13 is preferably not set back.
  • photosensitive glass is used as the glass substrate, but for example, crystallized glass obtained by crystallizing photosensitive glass may be used.
  • a part of the conductive layer is removed by a processing technique using a laser beam.
  • a part of the conductive layer may be removed by etching using a resist film or a mask. Specifically, before and after the through hole 15a is formed in the glass substrate 11, a resist film is formed on the substrate, or a mask is overlapped to form a portion to be an insulating portion surrounding the opening of the through hole 15a. After exposure, the portion may be removed by wet etching or the like.
  • the case where there is only one electronic amplification substrate 10 in the chamber 2 is illustrated.
  • a plurality of electronic amplification substrates 10 may be provided in the chamber 2.
  • the configuration of the apparatus is complicated as compared with the case of only one substrate, but it is easy to increase the gain at the time of amplification of the electronic avalanche. It becomes feasible.
  • the through hole 15 in the electronic amplification substrate 10 is a round hole
  • the through-hole 15 may be other shapes such as a square hole instead of a round hole as long as the electric field can be formed in the hole.
  • the readout electrode 4 and the like in the chamber 2 constituting the detector 1 are formed in a flat plate shape.
  • the readout electrode 4 or the like may be formed in a linear shape called, for example, a microstrip.
  • Example 1 As a glass substrate, PEG3 manufactured by HOYA Corporation was used. PEG3 was a photosensitive glass and had a composition of SiO 2 —Li 2 O—Al 2 O 3 . The thickness of PEG3 was 0.7 mm.
  • this glass substrate is exposed to ultraviolet rays, and crystals are deposited on the portion irradiated with ultraviolet rays, Furthermore, it heated at 600 degreeC.
  • etching was performed using hydrogen fluoride (HF) to remove a portion irradiated with ultraviolet rays, thereby forming a through hole having a diameter of 50 ⁇ m.
  • HF hydrogen fluoride
  • a chromium thin film was formed on the glass substrate by sputtering on the glass substrate on which the through holes were formed, and a copper thin film was formed thereon to form a conductive layer.
  • the thickness of the conductive layer was 2 ⁇ m.
  • Both the main surfaces of the glass substrate on which the conductive layer was formed were processed to retreat the end portions of both conductive layers using a UV laser (wavelength: 355 nm).
  • the receding distance was 20 ⁇ m.
  • Example 2 The same PEG3 as in Example 1 was used as the glass substrate. Using a mask having a pattern for forming through holes having a diameter of 50 ⁇ m at an arrangement pitch of 150 ⁇ m, this glass substrate is exposed to ultraviolet rays, and crystals are deposited on the portion irradiated with ultraviolet rays, Furthermore, it heated at 600 degreeC. Then, the thin film of chromium was formed on the glass base material by sputtering, and the thin film of copper was formed on it, and the electrically conductive layer was comprised. The thickness of the conductive layer was 2 ⁇ m.
  • a resist film was formed on the conductive layer, and laser exposure development was performed. At this time, exposure was performed on a portion having a diameter 40 ⁇ m larger than the diameter of the through hole to be formed.
  • etching was performed using iron chloride (FeCl 3 ) to remove the conductive layer. That is, holes having a diameter of 90 ⁇ m were formed in the conductive layer at an array pitch of 150 ⁇ m.
  • the glass substrate exposed by etching the conductive layer was etched using hydrogen fluoride (HF), and the portion irradiated with ultraviolet rays was removed to form a through hole.
  • HF hydrogen fluoride
  • through holes having a diameter of 50 ⁇ m were formed at an arrangement pitch of 150 ⁇ m, and the end portion of the conductive layer was recessed 20 ⁇ m from the opening of the through hole.
  • a detector was constructed to detect X-rays. As a result, even when the applied voltage was 3000 V, no discharge occurred between the conductive layers.
  • Example 3 The electronic amplification substrate obtained in Example 2 was further etched using hydrogen fluoride (HF) at 60 ° C., and the corners of the openings of the through holes were rounded. A detector was constructed using the obtained electronic amplification substrate, and X-ray detection was performed. As a result, it was confirmed that even when the applied voltage was 3000 V, discharge between the conductive layers did not occur and charge-up inside the through hole was suppressed.
  • HF hydrogen fluoride

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

 絶縁性を有するガラス基材11と、ガラス基材11の両主面に形成された導電層12,13と、ガラス基材11と導電層12,13との積層体14に形成された複数の貫通孔15と、を備え、導電層表面への電圧印加時の両導電層間の電位差により貫通孔15内に電界を形成して当該貫通孔内にて電子雪崩増幅を起こすように構成された電子増幅用基板10であって、ガラス基材11の少なくとも一方の主面上に、絶縁部20が、当該絶縁部の一方の端部はガラス基材11の貫通孔15の開口部を取り囲み、かつ他方の端部が導電層の端部12a、13aと接するように形成されている。

Description

電子増幅用基板および電子増幅用基板の製造方法
 本発明は、電子増幅用基板および電子増幅用基板の製造方法に関する。
 近年、粒子線または電磁波の検出を行う検出器として、ガス電子増幅器(Gas Electron Multiplier、以下「GEM」と略す。)による電子雪崩増幅を利用したものが知られている。
 一般的なGEMは、ポリイミド等の絶縁性を有した板状部材の両面が銅等の導電性を有した電極層によって被覆され、さらに板状部材と電極層との積層体の表裏に貫通する複数の貫通孔が形成されてなる電子増幅用基板を備えている。そして、電子増幅用基板を検出用ガス中に配置した状態で、その電子増幅用基板における各電極層間に電位差を与えて複数の貫通孔の孔内に強い電場を作り出し、その電場によって電子雪崩増幅を起こして電離電子数を増やして信号として捉え得るようにしている。このようにすることで、検出用ガス中での電離電子についての測定を可能にしている(たとえば特許文献1参照)。
 ところで、GEMに関しては、電子増幅用基板の一枚あたりにつき、電子雪崩増幅の際に高い増幅率(ゲイン)を得られるようにすることが求められている。一枚あたりで高い増幅率が得られれば、電子増幅用基板の多段化が不要となるからであり、また測定能力の向上により、たとえば粒子線の一例である中性子線について検出可能となることも期待できるからである。
 高い増幅率を得るためには、たとえば、電子増幅用基板における各電極層に印加する電圧を高くして、電極層間の電位差を増大させることにより、貫通孔内に強い電場を形成することが考えられる。ところが、印加する電圧を高くすると、各電極層の間(すなわち貫通孔の孔内)にて放電が発生し易くなってしまい、その放電が原因で電離電子の測定を行うため(すなわち信号読み出しのため)の電気回路等が破壊されてしまうおそれがある。
 このことから、GEMを構成する電子増幅用基板については、図7に示すように、貫通孔51の孔内での放電の発生を抑制することを目的として、板状部材52の両面のそれぞれの側に、ガードリング部53を設けることが提案されている(たとえば非特許文献1参照)。ガードリング部53は、貫通孔51の開口部外周に沿って形成された平面リング状の空隙溝である。空隙溝であるガードリング部53を設けると、貫通孔51の開口部の周縁には、電極層54とは導通しないランド部55が存在することになる。このようなガードリング部53およびランド部55が存在する構成の電子増幅用基板では、板状部材52の両面に配された各電極層54に電圧を印加すると、電極層54とランド部55との間で生じる誘電作用により、板状部材52の両面に配された各ランド部55の間(すなわち貫通孔51の孔内)に電場が形成される。ただし、電極層54とランド部55との間では、ガードリング部53が電気抵抗となるので電圧降下が生じる。したがって、ガードリング部53およびランド部55が存在しない場合と比べると、電極層54に対して同じ電圧を印加しても、貫通孔51の周縁部近傍の電極層54では電圧降下が生じるため、貫通孔51の孔内での放電が発生し難くなる。
特開2006-302844号公報
三津谷有貴、「GlassGEM検出器の開発」、Isotope News 2011年3月号 PP16-18、2010 IEEE Nuclear Science Symposium、October30-November5、N66-5,Knoxville,USA
 しかしながら、板状部材52の両面に対してガードリング部53を設けた構造を有する電子増幅用基板には、以下に述べるような難点がある。
 上記の構造では、板状部材52の両面のそれぞれで電圧降下が生じるため、ガードリング部53およびランド部55が存在しない場合に比べると、同じ電圧を印加しても当該両面の各ランド部55の間(すなわち貫通孔51の孔内)に強い電場を形成することができない。これを回避するためには、電圧降下を考慮した高電圧を印加することも考えられるが、その場合は、ガードリング部53の溝幅が板状部材52の板厚に比べて非常に小さいことから、そのガードリング部53を挟む電極層54とランド部55との間で放電が発生するおそれが生じてしまう。
 すなわち、上記の構造では、貫通孔51の孔内に強い電場を形成することが難しく、電子雪崩増幅の際に十分な増幅率を得られなくなることが考えられる。一方、貫通孔51の孔内に強い電場を形成しようとすると、貫通孔51の孔内以外の箇所にて放電が発生してしまうおそれがある。
 そこで、本発明は、貫通孔近傍の電極層(電極層の端部近傍)において印加電圧を低下させることなく、信号読み出しのための電気回路等の破壊に繋がる放電の発生を抑制しつつ、電子雪崩増幅の際に十分な増幅率を得ることを可能にする電子増幅用基板およびその製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の態様は、
  絶縁性を有するガラス基材と、
  前記ガラス基材の両主面に形成された導電層と、
  前記ガラス基材と前記導電層との積層体に形成された複数の貫通孔と、を備え、
  前記導電層表面への電圧印加時の両導電層間の電位差により前記貫通孔内に電界を形成して当該貫通孔内にて電子雪崩増幅を起こすように構成された電子増幅用基板であって、
  前記ガラス基材の少なくとも一方の主面上に、絶縁部が、当該絶縁部の一方の端部は前記ガラス基材の前記貫通孔の開口部を取り囲み、かつ他方の端部が前記導電層の端部と接するように形成されていることを特徴とする電子増幅用基板である。
 本発明の別の態様は、
  絶縁性を有するガラス基材と、
  前記ガラス基材の両主面に形成された導電層と、
  前記ガラス基材と前記導電層との積層体に形成された複数の貫通孔と、を備え、
  前記導電層表面への電圧印加時の両導電層間の電位差により前記貫通孔内に電界を形成して当該貫通孔内にて電子雪崩増幅を起こすように構成された電子増幅用基板を製造する方法であって、
  形成された前記導電層をレーザー光線を用いて加工することにより、前記ガラス基材の少なくとも一方の主面に形成された前記導電層の端部を、前記ガラス基材の前記貫通孔の開口部よりも後退させる工程と、を有することを特徴とする電子増幅用基板の製造方法である。
 本発明によれば、電極層に印可する電圧を低下させることなく、信号読み出しのための電気回路等の破壊に繋がる放電の発生を抑制しつつ、電子雪崩増幅の際に十分な増幅率を得ることが可能となる。
図1は、本実施形態における検出器の概略構成例を示す説明図である。 図2は、本実施形態における電子増幅用基板の要部構成例を示す説明図であり、(a)は斜視図、(b)は側断面図である。 図3は、電子増幅用基板の一例を示す図である。 図4は、本実施形態に係る電子増幅用基板において、ガラス基材の角部が面取りされている例を示す図である。 図5は、本実施形態に係る電子増幅用基板を製造する方法の一例を示す説明図(その1)である。 図6は、本実施形態に係る電子増幅用基板を製造する方法の一例を示す説明図(その2)である。 図7は、従来における電子増幅用基板の要部構成例を示す斜視図である。
  以下、本発明を、図面に示す実施形態に基づき、以下の順序で詳細に説明する。
  1.検出器の概略構成
  2.電子増幅用基板の構成
  3.電子増幅用基板の製造方法
  4.検出器における電離電子の測定手順
  5.本実施形態の効果
  6.変形例等
(1.検出器の概略構成)
  まず、本実施形態に係る電子増幅用基板を用いて構成される検出器の概略構成について説明する。検出器は、検出ガス中での電子雪崩増幅を利用して電離電子についての測定を行うことを可能にし、これにより粒子線または電磁波の検出を行うように構成されたものである。
 検出器が利用する「電子雪崩増幅」とは、強い電場の中で自由電子が気体分子と衝突すると新たな電子が叩き出され、これが電場で加速されてさらに別の分子と衝突することにより加速度的に電子数が増える現象をいう。電子雪崩増幅を利用する検出器には、たとえばガス比例計数管(Capillary Gas Proportional Counter;CGPC)も含まれるが、本実施形態ではGEMを用いて電子雪崩増幅を起こすものを検出器と呼ぶ。
 ここで「GEM」とは、二次元配列された微細な複数の貫通孔を有する電子増幅用基板を検出ガス中に配置した状態で、その電子増幅用基板における貫通孔の孔内に強い電場を作り出し、その電場によって電子雪崩増幅を起こすように構成されたものをいう。電子増幅用基板は、単板状のものであってもよいし、複数枚が多層化されたものであってもよい。
 検出器での検出対象となり得る「粒子線」には、アルファ線、ベータ線、陽子線、重荷電粒子線、電子線(原子核崩壊によらず加速器で電子を加速するもの)、中性子線、宇宙線等が含まれる。また「電磁波」には、電波(低周波、超長波、長波、中波、短波、超短波、マイクロ波)、光(赤外線、可視光線、紫外線)、X線、ガンマ線等が含まれる。これらのうちでいずれのものを検出対象とするかは、検出ガスの種類や作り出す電場の強さ等を適宜選択することによって、所望のものに設定することが可能である。
 上記の検出器、すなわちGEMによる電子雪崩増幅を利用して粒子線または電磁波の検出を行う検出器は、図1に示す構成を有している。
 図1に示す検出器1は、所定種類の検出ガスが充填されるチャンバ2の内部に、ドリフト電極3と読み出し電極4とを備えるとともに、これらドリフト電極3と読み出し電極4との間に配置された電子増幅用基板10を備えている。電子増幅用基板10は、電子雪崩増幅を起こしてGEMとしての機能を実現するもので、ガラス基材11の主面の両方に導電層12,13が形成されてなる積層体14に複数の貫通孔15が二次元配列されて構成されている。複数の貫通孔15は、電子増幅用基板10を平面視した場合に各々が円形形状を有し、互いが一定の間隔で配列されている。なお、チャンバ2内には、外部から検出対象となる粒子線または電磁波が入射し得るように構成されている。
 チャンバ2内のドリフト電極3および読み出し電極4に対しては、図示せぬ電源部から所定の電圧が印加されるようになっている。さらに、電子増幅用基板10の両主面における各導電層12,13に対しても、それぞれが電極として機能するように図示せぬ電源部から所定の電圧が印加されるようになっている。このような電源部からの電圧印加により、ドリフト電極3と電子増幅用基板10の間の領域(以下「ドリフト領域」という。)5には電界E1が発生し、電子増幅用基板10と読み出し電極4の間の領域(以下「インダクション領域」という。)6には電界E3が発生する。また、電子増幅用基板10の貫通孔15の孔内には電界E2が発生する。そして、貫通孔15の孔内で電界E2が収束され、ここに侵入した電子が加速されることにより電子雪崩増幅が生じ、この電子雪崩増幅により増倍された電子を読み出し電極4で測定するように構成されている。
 また、読み出し電極4には、保護回路、増幅回路、ノイズフィルタ回路等としての機能を備えた集積回路(Application Specific Integrated Circuit、以下「ASIC」と略す。)7が接続されている。このASIC7は、読み出し電極4での測定結果について、外部装置(たとえば検出器1の上位装置)への信号出力を可能にするためのもので、信号読み出しのための電気回路として機能するものである。すなわち、検出器1は、電子増幅用基板10の貫通孔15の孔内で生じた電子雪崩増幅により増倍された電子を読み出し電極4で測定し、その測定結果を読み出し電極4に接続するASIC7を通じて外部へ出力するように構成されている。
(2.電子増幅用基板の構成)
  次に、本実施形態に係る電子増幅用基板10の構成を図2を用いて説明する。
 電子増幅用基板10は、ガラス基材11の主面の両方に導電層12,13が形成されてなる積層体14に複数の貫通孔15が二次元配列されている構成を有している。なお、図2では、1つの貫通孔のみを図示している。各導電層12,13に電圧を印加して両導電層12,13間に電位差を与えることにより、貫通孔15内に電界を形成して当該貫通孔15内にて電子雪崩増幅が生じる。
 このような電子増幅用基板10を構成する基材には絶縁性を有する材料であることが要求される。たとえば一般的なGEMであればポリイミド等の樹脂材料を基材として用いているが、樹脂材料は耐熱性、平滑性、剛性等が低く、またアウトガスが生じ得るといった問題がある。したがって、本実施形態では、絶縁性を有する材料としてガラス基材11を用いている。ただし、ガラス基材11は、微細な孔径を有する貫通孔15が微細なピッチで配列されて形成されるため、微細な加工が可能なガラス材料が用いられる。本実施形態では、このようなガラス基材として感光性ガラスを用いることが好ましい。感光性ガラスを用いることで、半導体製造プロセスで用いられる微細加工技術を適用し、所望の寸法および配列ピッチを有する複数の貫通孔を形成することができる。
 本実施形態では、「感光性ガラス」として、SiO-LiO-Al系ガラスに、感光性成分として少量のAu,Ag,Cuが含まれ、さらに増感剤としてCeOが含まれるガラスを用いる。感光性ガラスに紫外線を照射することにより、増感剤と感光性成分との間で酸化還元反応が起こり、金属原子が生じる。この状態で、さらに加熱すると、金属原子が凝集しコロイドが形成され、このコロイドを結晶核にしてLiO・SiO(メタケイ酸リチウム)の結晶が析出して成長する。析出するLiO・SiO(メタケイ酸リチウム)はフッ化水素(HF)に容易に溶解し、その溶解速度は、紫外線が照射されていないガラス部分の溶解速度と比べると約50倍程度の差がある。この溶解速度差を利用することで、紫外線を照射した部分(結晶部分)のみをエッチングするという選択的エッチングが可能となり、機械加工を用いることなく微細な加工を行うことができる。このような感光性ガラスとしては、たとえばHOYA株式会社製の「PEG3(商品名)」が挙げられる。
 また、電子増幅用基板10において、ガラス基材11の主面の両方にはそれぞれ導電層12,13が形成されている。導電層12,13は、導電性を有する材料によって形成されており、その表層は電極層としての役割を有している。導電性を有する材料としては、たとえばCu(銅)等の金属材料を用いることができる。ただし、導電層12,13は、必ずしも単層構造である必要はなく、各層が電気的に接続されていれば多層構造のものであってもよい。たとえば、ガラス基材11に対する密着性を向上させるためにCr(クロム)等の層をガラス基材11と銅層との間に介在させてもよい。
 本実施形態に係る電子増幅用基板10においては、図2(a)および(b)に示すように、貫通孔15の全周に渡り、導電層12、13の端部12a、13aが貫通孔15の開口部から後退している。換言すれば、基板10に形成された貫通孔15は、ガラス基材11に形成された貫通孔15aと、導電層12,13に形成された2つの貫通孔15bと、から構成されている。図2(a)および(b)から明らかなように、貫通孔15bの径は、貫通孔15aの径よりも大きくなっている。
 このような構造を有することで、導電層12、13の端部12a、13aが、ガラス基材11の貫通孔15aの開口部と面一である場合(貫通孔15bの径と貫通孔15aの径とが同じである場合)に比べると、面一な位置と後退した位置との間には導電層が存在しておらず、絶縁部20が形成されていることになる。すなわち、貫通孔15aの開口部は、絶縁部20の一方の端部に取り囲まれており、かつ絶縁部20の他方の端部は導電層の端部と接触している。なお、本実施形態では、この絶縁部20は、導電層12,13が形成されていないスペースから構成されている。換言すれば、当該スペースに存在する気体(チャンバに充填される検出ガス等)により絶縁作用が生じている。また、絶縁部20は、絶縁性を有する樹脂等で構成してもよい。
 導電層の端部には、電子増幅用基板に電圧が印加され電界が生じた際に、電気力線が集中しやすい傾向にある。そのため、図2(b)において点線で示されているように、導電層の端部が貫通孔の開口部と面一の位置にあると、電子増幅用基板の両主面に形成された導電層間、すなわち、導電層12と導電層13との間で放電が起こりやすくなってしまう。
 貫通孔を介して、このような導電層間の放電が生じた場合、基板にダメージが加わることに加え、当該貫通孔において電子増幅雪崩を生じない、あるいは不十分となってしまう。また、読み出し電極4に接続されているASIC7が破壊されるおそれがある。そのため、放電を生じると、電子増幅用基板としての性能が発揮できなくなってしまう。
 これに対し、本実施形態では、上記の絶縁部20が存在することにより、導電層12の端部12aと導電層13の端部13aとの間の距離が大きくなる。このことは、導電層12,13間を結ぶ仮想的な導電路が長くなることを意味するので、導電層間の放電を抑制することができる。しかも、放電距離が単に長くなるだけでなく、電気力線が集中する孔の周辺部分を孔から遠ざけることができる。したがって、導電層の端部が貫通孔の開口部からわずかに後退するだけで放電が抑制されると考えられる。なお、導電層12,13の端部は貫通孔15aの開口部から後退しており、当該端部と開口部との間には導電部が存在しないため、導電層の端部近傍においても印可電圧は低下しない。
 ところで、一般的には、導電層12,13の端部12a、13aが後退した場合には、貫通孔15内部において電気力線の数が減少し、ひいては当該貫通孔15における増幅率の低下につながることが容易に予想される。したがって、当業者は導電層12,13の端部12a、13aを貫通孔15aの開口部から後退させるという構成には到達しない。しかしながら、本発明者は、端部を後退させることによる貫通孔15内での増幅率の低下よりも、放電を抑制することにより印加電圧を高くして増幅率を向上させる効果の方が実際には大きいと考え、上記の構成に想到した。
 なお、図2(b)では、点線で示されているように、導電層12,13の端部は、貫通孔の開口部と面一の位置にあるが、図3に示すように、貫通孔の形成手段によっては、製造時のバラツキや寸法公差が原因で、実際の電子増幅用基板において、貫通孔の開口部よりも導電層の端部が、貫通孔の中心側へ飛び出していることがある。このような場合には、各導電層の端部同士が対向していることとなり、より放電しやすくなってしまう。したがって、上記の構成を採用することにより大きな効果を得ることができる。
 導電層12,13の端部12a、13aの後退距離は、端部の後退による当該貫通孔における増幅率の低下と、放電の抑制による増幅率の向上と、を考慮して決定すればよいが、端部の後退による放電抑制の効果が大きいため、当該後退距離は小さいことが好ましく、本実施形態では、30μm以下であることが好ましい。また、端部の後退距離は、微細加工技術の精度等にも依存する。本実施形態では、たとえば、貫通孔15の径が170~185μmであり、貫通孔の配列ピッチが280μmである場合には、当該後退距離は10μm程度である。
 なお、図2(a)および(b)では、導電層12、13に形成された貫通孔15bの周縁部(絶縁部20)は、ガラス基材11に形成された貫通孔15aを環状に取り囲んでいる。すなわち、端部の後退距離が貫通孔15の全周にわたり一定となるように絶縁部が形成されているが、貫通孔の全周にわたって、貫通孔の開口部から後退するように形成されていれば、後退距離は一定でなくてもよい。すなわち、当該後退距離が変化するように、絶縁部が形成されていてもよい。また、導電層12における端部の後退距離と、導電層13における端部の後退距離と、が異なっていてもよい。
 本実施形態では、図4に示すように、ガラス基材11の貫通孔15bの開口部の角部11aが面取りされていることが好ましい。ガラス基材は絶縁性であるため、貫通孔内で増幅される電子がガラス基材に帯電(チャージアップ)することがある。チャージアップは、稜線部など鋭敏な部分に生じやすいため、角部を面取りすることが好ましい。面取りの形状としては特に制限されず、チャージアップを抑制できる程度の形状であればよい。たとえば、角部を平面状としてもよいし、丸みを帯びた形状としてもよい。
 また、感光性ガラスである「PEG3」は、体積抵抗率が8.5×1012Ωm程度であるため、体積抵抗率が1015Ωm以上であるポリイミド等に比べると、絶縁抵抗の低さにより帯電し難い。そのため、面取りを行うことでチャージアップがより抑制される。なお、面取りすることにより、導電層12,13間の放電が生じやすくなる可能性が考えられるため、その点を考慮して面取り量を設定することが好ましい。
(3.電子増幅用基板の製造方法)
  次に、本実施形態に係る電子増幅用基板10の製造方法を図5および6を用いて説明する。
 本実施形態では、まず、図5(a)に示すように、「PEG3」等の感光性ガラスから構成される平板状のガラス基材11を準備する。このガラス基材11は、所望の寸法を有しており、たとえば、外形が300mm×300mmの矩形状であり、厚さが0.3mm~1mm程度である。
 そして、図5(b)に示すように、準備したガラス基材11上に、所望のパターンが形成されたフォトマスク21を重ね、そのフォトマスク21を介してガラス基材11に対して紫外線22を照射する。これにより、ガラス基材11では、紫外線が照射された箇所において、感光性成分と増感剤との間で酸化還元反応が起こり、金属原子が生じる。
 続いて、紫外線照射後のガラス基材11に対して、たとえば450~600℃の温度で熱処理をする。そうすると、ガラス基材11では、図5(c)に示すように、紫外線照射によって生じた金属原子が凝集しコロイドを形成し、このコロイドを結晶核にしてLiO・SiO(メタケイ酸リチウム)の結晶部分23が析出して成長する。
 ここで析出するLiO・SiO(メタケイ酸リチウム)は、上述したように、HF(フッ化水素)に容易に溶解するため、図5(d)に示すように、ガラス基材11に対してHFを用いたエッチングを行う。これにより、熱処理で析出した結晶部分23を除去するエッチング、すなわちHFに対する溶解速度差を利用した選択的エッチングを行うことができる。その結果、機械加工を用いることなくフォトマスク21のパターンと略同等の精度の微細(たとえば、孔径φ30μm~170μm程度、配列ピッチ50μm~340μm程度)な貫通孔15をガラス基材11に形成することができる。
 次に、図5(e)に示すように、貫通孔が形成されたガラス基材11の主面の両方に対して、導電層12,13を形成する。本実施形態では、クロム(Cr)層と銅(Cu)層との2層構造を有する導電層を形成する。
 導電層を形成する方法としては特に制限されず、スパッタリング法、メッキ法等を用いればよい。本実施形態では、スパッタリング法により、まず、貫通孔が形成されたガラス基材の表面にクロム層を形成し、その上に銅層を形成する。導電層の厚みは、たとえば、2μm程度とする。
 その後、ガラス基材11の導電層12、13の端部を、ガラス基材11の貫通孔15の開口部から後退させる。導電層の端部を後退させる方法としては、特に制限されず、たとえば、レーザー光線を用いて導電層の一部を除去する方法、レジスト膜あるいはマスクを用いてエッチングにより導電層の一部を除去する方法等が例示される。本実施形態では、レーザー光線を用いる加工により、導電層の端部を後退させる。
 具体的には、図6(a)に示すように、所定のエネルギーを有するレーザー光線31を、導電層12,13の除去予定部分30である貫通孔15の周縁部に照射し、導電層12,13部分に形成された貫通孔15bの径を大きくする、すなわち、ガラス基材11に形成された貫通孔15aの径よりも大きな径(たとえば、貫通孔15aの径よりも40μm大きな径)を有する孔が導電層に形成されるようにレーザー光線31を走査する。走査後、レーザー光線31が照射された導電層(クロム層および銅層)の除去予定部分30は蒸散し、導電層12,13の端部12a、13aが貫通孔の開口部から後退し、絶縁部20が形成される。すなわち、図6(b)に示すような構成を有する電子増幅用基板が得られる。
 レーザー光線としては、UVレーザーあるいはフェムト秒レーザーが好ましい。レーザー光線の出力は、端部の後退量、除去する導電層の組成、厚み等を考慮して決定すればよい。
 このようなレーザー光線を用いる加工により、導電層の端部を効率よくしかも正確に後退させることができる。
 導電層の端部を後退させる加工を行った後に、導電層に対し銅メッキ等を行ってもよい。このようなメッキを行うことで、導電層の端部が前進する(貫通孔の中心側に向かって導電層が形成される)が、前進量は最大1μm程度であるので、メッキによる前進量を考慮して後退量を設定することにより上述した効果は十分に得られる。
 導電層12,13の端部12a、13aが後退した後、ガラス基材11に形成された貫通孔15aの角部は露出している。この場合、必要に応じて、ガラス基材11に形成された貫通孔15aの角部11aの面取りを行う。面取り方法としては特に制限されないが、本実施形態では、エッチングにより面取りを行う。具体的には、ガラス基材11に貫通孔15を形成するために使用したエッチング液よりも活性度を高めたエッチング液を用いて行う。このようなエッチング液を用いてガラス基材11をエッチングすると、エッチング液の活性度が高いため、ガラス部分である角部11aが部分的に除去され、面取りされる。なお、エッチング液の活性度を高める方法としては特に制限されず、たとえば、エッチング液の温度を上げる、エッチング液の液性を変化させる等が例示される。
(4.検出器における電離電子の測定手順)
  次に、本実施形態に係る電子増幅用基板10を用いて検出器1を構成した場合において、その検出器1で電離電子の測定を行い、これにより粒子線または電磁波の検出を行う際の手順について、図1を参照しながら具体的に説明する。ここでは、X線を検出対象とした場合を例に挙げて、以下の説明を行う。
 検出器1のチャンバ2内には、所定種類の検出ガスを充填しておく。また、ドリフト領域5で発生した電子を読み出し電極4の側へ引き寄せるために、ドリフト電極3と、読み出し電極4と、電子増幅用基板10の各導電層12,13と、に対して、それぞれに異なる大きさの電圧を印加して、電界E1,E2,E3を発生させておく。すなわち、読み出し電極4の側ほど電子を引き寄せる力が大きくなるような電位差を与えるために、ドリフト電極3と、読み出し電極4と、電子増幅用基板10の各導電層12,13と、に対してそれぞれ電圧を印加する。
 具体的には、たとえば、検出ガスとしてAr70%、CH30%の混合ガスを圧力1atmでチャンバ2内に充填しておく。また、たとえば、ドリフト領域5の電界E1が125~500V/cm程度、インダクション領域6の電界E3が2.5~5kV/cm程度となるように、ドリフト電極3と、読み出し電極4と、電子増幅用基板10と、に対する印加電圧の大きさやそれぞれの位置関係(間隔の大きさ)を適宜設定しておく。さらに、たとえば、電子増幅用基板10の各導電層12,13に対する印加電圧についても、貫通孔15の孔内にて電子雪崩増幅が起こるのに十分な電界E2が形成できるように、適宜設定しておく。
 このような状態でたとえば55Feの線源から放射されるX線がチャンバ2内に入射すると、そのチャンバ2内では、ドリフト領域5において、入射したX線がガスを電離させ、この電離作用により電子が発生する。このとき、ドリフト領域5には電界E1が形成されているので、発生した電子は、電子増幅用基板10の側へ引き寄せられる。そして、電子増幅用基板10の貫通孔15を通過しようとする。
 ただし、貫通孔15の孔内には、電界E2の形成によって高電場が生じている。そのため、貫通孔15を通過しようとする電子は、高電場によって速度が加速されて運動エネルギーが増加し、これにより他の周りの電子にエネルギーを与えて、新たな電離作用により電子を放出させる。このことが繰り返されることで、電子は増幅していき、結果として雪崩式に増幅していく。すなわち、電子が貫通孔15の孔内を通過する際に、電子雪崩増幅が起こるのである。
 電子雪崩増幅により増倍された電子は、インダクション領域6に形成されている電界E3により、読み出し電極4の側へ引き寄せられる。そして、読み出し電極4にて電子数が信号として読み出される。このような信号読み出しを行う読み出し電極4は、小さくエリア分けされている。そのため、どのエリアにて電子が測定されたかを特定することができる。
 以上のような手順を経ることで、検出器1は、検出対象であるX線を検出することができる。
(5.本実施形態の効果)
  本実施形態においては、導電層12,13の端部12a、13aが、ガラス基材11の貫通孔15aの開口部から後退している。換言すれば、導電層12,13に形成された貫通孔15bの径が、ガラス基材11に形成された貫通孔15aの径よりも大きくなっている。このことは、ガラス基材11の貫通孔15aの開口部が絶縁部20により取り囲まれていることを意味している。そのため、ガラス基材11の両主面に形成された導電層12,13間、すなわち、貫通孔15内において、電気力線が集中しやすい導電層の端部の間の距離(放電距離)が長くなることに加え、電気力線が集中する孔の周辺部分を孔から遠ざけることができるため、放電を効果的に抑制することができる。しかも、このような効果は、上述した簡便な構成で得ることができる。
 なお、導電層12,13の端部12a、13aが後退しているため、貫通孔15内を通る電気力線の数が減少する可能性はあるが、放電を抑制することにより、印加電圧を高くすることができ、その結果、増幅率を向上させることができる。具体的には、10以上、好ましくは105程度の増幅率を得ることができる。
 また、図7に示す構造を有する電子増幅用基板と比較すると、導電層の端部近傍においても印可電圧は低下しないため、貫通孔の内部に強い電場を形成することができる。したがって、十分な増幅率を確保することができる。
 また、本実施形態においては、ガラス基材11の貫通孔15aの角部11aが面取りされている。すなわち、貫通孔15aの角部11aが鋭敏な形状ではないため、貫通孔15内で発生した電子が、絶縁性を有するガラス基材11にチャージアップしにくくなる。したがって、貫通孔15内で生じる電子はガラス基材に吸着されることなく、読み出し電極4に到達できる。
 また、本実施形態においては、上記の構成を有する電子増幅用基板10をレーザー光線を用いる加工により製造している。導電層12,13の一部をレーザー光線の照射により蒸散させることで、導電層12,13の端部12a、13aをガラス基材11の貫通孔15の開口部から後退させている。レーザー光線を用いる加工技術を採用することにより、容易かつ高精度で効率よく導電層の端部を後退させることができる。
 なお、このような効果は、電子増幅用基板の基材としてポリイミド等の樹脂材料を用いた場合には得ることができない。樹脂材料に対して、レーザー光線を用いる加工技術を適用しようとすると、レーザー光線の照射エネルギーにより樹脂材料そのものが蒸散してしまうことがある。仮に、レーザー光線を用いた加工技術を樹脂材料に適用可能な場合であっても、加工の際に樹脂材料を固定しても、樹脂材料の変形等によりレーザー光線の照射位置の位置決めが非常に困難となり、照射位置の誤差が大きくなってしまう。そのため、電子増幅用基板に要求される貫通孔の径および配列ピッチの精度を満足するように加工できないと考えられる。たとえば、ポリイミドからなる基材に対し、レーザー光線を用いる加工により、導電層の端部を後退させようとすると、たとえば、導電層の端部の後退距離が150μmを超え、配列ピッチは400μmを超えてしまうと推測される。
(6.変形例等)
  上述した実施形態では、電子増幅用基板10の主面の両方に形成された導電層12および13の端部を後退させている。しかしながら、一方の導電層の端部のみを後退させる構成であってもよい。このような構成であっても、上述したように放電抑制の効果を得ることができる。ただし、上述した実施形態に比較して、放電のリスクは若干高まる可能性がある。
 上記の構成の場合、特に、電子の入口側(ドリフト電極3側)に位置する導電層、すなわち、導電層12の端部が後退し、かつ電子の出口側(読み出し電極4側)に位置する導電層、すなわち、導電層13の端部が後退していないことが好ましい。このような構成を採用することで、放電を抑制する効果に加え、貫通孔15内で増幅された電子が貫通孔15から飛び出す際に、電子が横方向に広がることなく、読み出し電極4において測定される電子の数を増やすことができる。その結果、検出対象である粒子線または電磁波の検出精度を向上させることができる。したがって、放電の抑制よりも検出精度の向上をより重視する場合には、この構成が好適である。
 上述した実施形態では、ガラス基材として感光性ガラスを用いたが、たとえば感光性ガラスを結晶化した結晶化ガラスを用いてもよい。
 また、上述した実施形態では、レーザー光線を用いる加工技術により、導電層の一部を除去しているが、レジスト膜あるいはマスクを用いたエッチングにより導電層の一部を除去してもよい。具体的には、ガラス基材11に貫通孔15aが形成される前後に、基板上にレジスト膜を形成、あるいは、マスクを重ねて、貫通孔15aの開口部を取り囲む絶縁部となるべき部分を露光し、その後、ウェットエッチング等により当該部分を除去すればよい。
 また、上述した実施形態では、チャンバ2内の電子増幅用基板10が一枚のみである場合を例示している。ただし、電子増幅用基板10は、チャンバ2内に複数枚が設けられていてもよい。電子増幅用基板10を複数枚備える構成の検出器1では、一枚のみの場合に比べると、装置構成の複雑化を招いてしまうが、電子雪崩増幅の際のゲインを増大させることが容易に実現可能となる。
 また、上述した実施形態では、電子増幅用基板10における貫通孔15が丸孔である場合を例示している。ただし、貫通孔15は、孔内に電場を形成し得る形状であれば、丸孔ではなく、角孔等の他形状のものであっても構わない。
 また、上述した実施形態では、検出器1を構成するチャンバ2内の読み出し電極4等が平板状に形成されている場合を例示している。ただし、読み出し電極4等は、たとえばマイクロストリップと呼ばれる線状に形成されたものであってもよい。
 以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。
 (実施例1)
  ガラス基材として、HOYA株式会社製PEG3を用いた。PEG3は感光性ガラスであり、SiO-LiO-Alの組成を有していた。また、PEG3の厚みは0.7mmであった。
 50μmの径を有する貫通孔を150μmの配列ピッチで形成するためのパターンを有するマスクを用いて、このガラス基材に対し紫外線による露光を行い、紫外線が照射された部分に結晶を析出させて、さらに600℃に加熱した。次に、フッ化水素(HF)を用いてエッチングを行い、紫外線が照射された部分を除去することにより、50μmの径を有する貫通孔を形成した。
 貫通孔が形成されたガラス基材に対し、スパッタリングにより、ガラス基材の上にクロムの薄膜を形成し、その上に銅の薄膜を形成して導電層を構成した。導電層の厚みは2μmであった。
 導電層が形成されたガラス基材の主面の両方に対し、UVレーザー(波長:355nm)を用いて、両導電層の端部を後退させる加工を行った。後退距離は20μmとした。
 得られた電子増幅用基板には、50μmの径を有する貫通孔が150μmの配列ピッチで形成されており、導電層の端部は、貫通孔の開口部から20μm後退していた。この電子増幅用基板を用いて、検出器を構成し、Ar70%、CH30%のガスフロー雰囲気において、55FeのX線の検出を行った。その結果、印加電圧を3000Vとした場合であっても、導電層間の放電は生じなかった。なお、導電層の端部を後退させなかった基板を用いた場合には、印加電圧が2200Vで放電が生じた。
 (実施例2)
  ガラス基材として、実施例1と同様のPEG3を用いた。50μmの径を有する貫通孔を150μmの配列ピッチで形成するためのパターンを有するマスクを用いて、このガラス基材に対し紫外線による露光を行い、紫外線が照射された部分に結晶を析出させて、さらに600℃に加熱した。続いて、スパッタリングにより、ガラス基材の上にクロムの薄膜を形成し、その上に銅の薄膜を形成して導電層を構成した。導電層の厚みは2μmであった。
 次に、導電層の上にレジスト膜を形成して、レーザー露光現像を行った。この際、形成する貫通孔の径よりも40μm大きい径を有する部分に露光を行った。
 露光後、塩化鉄(FeCl)を用いてエッチングを行い、導電層を除去した。すなわち、導電層には、90μmの径を有する孔が150μmの配列ピッチで形成された。
 導電層に対するエッチングにより露出したガラス基材に対して、フッ化水素(HF)を用いてエッチングを行い、紫外線が照射された部分を除去して貫通孔を形成した。得られた電子増幅用基板には、50μmの径を有する貫通孔が150μmの配列ピッチで形成されており、導電層の端部は、貫通孔の開口部から20μm後退していた。この電子増幅用基板を用いて、検出器を構成し、X線の検出を行った。その結果、印加電圧を3000Vとした場合であっても、導電層間の放電は生じなかった。
 (実施例3)
  実施例2で得られた電子増幅用基板に対し、さらに60℃としたフッ化水素(HF)を用いてエッチングを行い、貫通孔の開口部の角部を丸めた。得られた電子増幅用基板を用いて、検出器を構成し、X線の検出を行った。その結果、印加電圧を3000Vとした場合であっても、導電層間の放電は生じないことに加え、貫通孔内部のチャージアップが抑制されていることが確認できた。
  1…検出器
  2…チャンバ
  3…ドリフト電極
  4…読み出し電極
  10…電子増幅用基板
  14…積層体
  11…ガラス基材
  12,13…導電層
  15…貫通孔

Claims (8)

  1.  絶縁性を有するガラス基材と、
     前記ガラス基材の両主面に形成された導電層と、
     前記ガラス基材と前記導電層との積層体に形成された複数の貫通孔と、を備え、
     前記導電層表面への電圧印加時の両導電層間の電位差により前記貫通孔内に電界を形成して当該貫通孔内にて電子雪崩増幅を起こすように構成された電子増幅用基板であって、
     前記ガラス基材の少なくとも一方の主面上に、絶縁部が、当該絶縁部の一方の端部は前記ガラス基材の前記貫通孔の開口部を取り囲み、かつ他方の端部が前記導電層の端部と接するように形成されていることを特徴とする電子増幅用基板。
  2.  前記ガラス基材の少なくとも一方の主面上の前記導電層の端部が、前記ガラス基材の前記貫通孔の開口部よりも後退するように形成されていることを特徴とする請求項1に記載の電子増幅用基板。
  3.  検出器を構成するドリフト電極と読み出し電極との間に配置された前記電子増幅用基板であって、
     前記読み出し電極と対向する主面に形成された前記導電層の端部が、前記ガラス基材の前記貫通孔の開口部よりも後退していることを特徴とする請求項2に記載の電子増幅用基板。
  4.  検出器を構成するドリフト電極と読み出し電極との間に配置された前記電子増幅用基板であって、
     前記電子増幅用基板の断面において、前記主面の両方に形成された前記導電層の端部が、前記ガラス基材の前記貫通孔の開口部よりも後退していることを特徴とする請求項2または3に記載の電子増幅用基板。
  5.  前記ガラス基材に形成された前記貫通孔の角部が面取りされていることを特徴とする請求項1~4のいずれかに記載の電子増幅用基板。
  6.  レーザー光線を用いる加工により、前記導電層の端部が前記ガラス基材の前記貫通孔の開口部よりも後退していることを特徴とする請求項1~5のいずれかに記載の電子増幅用基板。
  7.  前記ガラス基材は、感光性ガラスから構成されていることを特徴とする請求項1~6に記載の電子増幅用基板。
  8.  絶縁性を有するガラス基材と、
     前記ガラス基材の両主面に形成された導電層と、
     前記ガラス基材と前記導電層との積層体に形成された複数の貫通孔と、を備え、
     前記導電層表面への電圧印加時の両導電層間の電位差により前記貫通孔内に電界を形成して当該貫通孔内にて電子雪崩増幅を起こすように構成された電子増幅用基板を製造する方法であって、
     前記導電層をレーザー光線を用いて加工することにより、前記ガラス基材の少なくとも一方の主面に形成された前記導電層の端部を、前記ガラス基材の前記貫通孔の開口部よりも後退させる工程と、を有することを特徴とする電子増幅用基板の製造方法。
PCT/JP2014/054284 2013-03-01 2014-02-24 電子増幅用基板および電子増幅用基板の製造方法 WO2014132909A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/769,003 US20150380224A1 (en) 2013-03-01 2014-02-24 Electronic amplifying substrate and method of manufacturing electronic amplifying substrate
DE112014001095.2T DE112014001095T5 (de) 2013-03-01 2014-02-24 Substrat für elektronische Verstärkung und Verfahren zum Herstellen eines Substrats für elektronische Verstärkung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-041016 2013-03-01
JP2013041016A JP2014170642A (ja) 2013-03-01 2013-03-01 電子増幅用基板および電子増幅用基板の製造方法

Publications (1)

Publication Number Publication Date
WO2014132909A1 true WO2014132909A1 (ja) 2014-09-04

Family

ID=51428174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054284 WO2014132909A1 (ja) 2013-03-01 2014-02-24 電子増幅用基板および電子増幅用基板の製造方法

Country Status (4)

Country Link
US (1) US20150380224A1 (ja)
JP (1) JP2014170642A (ja)
DE (1) DE112014001095T5 (ja)
WO (1) WO2014132909A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014224449A1 (de) * 2014-11-28 2016-06-02 Forschungszentrum Jülich GmbH Szintillationsdetektor mit hoher Zählrate
US9880291B2 (en) * 2015-03-02 2018-01-30 Beamocular Ab Ionizing radiation detecting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508935A (ja) * 1997-10-22 2001-07-03 ヨーロピアン オーガナイゼイション フォー ニュークリア リサーチ 非常に高性能な放射線検出器と、このような放射線検出器を含む視差のない平面天球型x線イメージ装置
JP2008534950A (ja) * 2005-03-29 2008-08-28 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシル 放射線検出装置、放射線検出装置の製造方法、放射線検出方法、ウインドウ、および放射線検出装置のウインドウの製造方法
WO2012073759A1 (ja) * 2010-12-01 2012-06-07 Hoya株式会社 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727525B1 (fr) * 1994-11-25 1997-01-10 Centre Nat Rech Scient Detecteur de rayonnements ionisants a microcompteurs proportionnels
EP1916697B1 (en) * 2005-07-29 2013-06-19 Japan Science and Technology Agency Microchannel plate, gas proportional counter and imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508935A (ja) * 1997-10-22 2001-07-03 ヨーロピアン オーガナイゼイション フォー ニュークリア リサーチ 非常に高性能な放射線検出器と、このような放射線検出器を含む視差のない平面天球型x線イメージ装置
JP2008534950A (ja) * 2005-03-29 2008-08-28 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシル 放射線検出装置、放射線検出装置の製造方法、放射線検出方法、ウインドウ、および放射線検出装置のウインドウの製造方法
WO2012073759A1 (ja) * 2010-12-01 2012-06-07 Hoya株式会社 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法

Also Published As

Publication number Publication date
US20150380224A1 (en) 2015-12-31
DE112014001095T5 (de) 2015-11-12
JP2014170642A (ja) 2014-09-18

Similar Documents

Publication Publication Date Title
WO2013183324A1 (ja) 電子増幅用ガラス基板およびその製造方法
JP3354551B2 (ja) ピクセル型電極によるガス増幅を用いた粒子線画像検出器
JP4613319B2 (ja) ガス放射線検出器
US9123855B2 (en) Manufacturing method of electron multiplier substrate, manufacturing method of electron multiplier and manufacturing method of radiation detector
JP5368392B2 (ja) 電子線用レジスト膜及び有機導電性膜が積層された被加工基板、該被加工基板の製造方法、及びレジストパターンの形成方法
JP5855577B2 (ja) 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法
JP2013195407A (ja) 放射線の空間強度分布及びエネルギーの空間分布の調整装置、並びに該調整装置を用いたx線発生装置及び放射線検出器
JP6027583B2 (ja) イオンフィルター及びその製造方法
WO2014132909A1 (ja) 電子増幅用基板および電子増幅用基板の製造方法
JP2012013483A (ja) ガス増幅を用いた放射線検出器、及びその製造方法
WO2013141400A1 (ja) 電子増幅用細孔ガラスプレートおよび検出器
JP5912732B2 (ja) 電子増幅用基板および検出器
Marques et al. Minimizing distortions with sectored GEM electrodes
JP2013200196A (ja) 電子増幅用基板の製造方法および電子増幅用基板
JP2016062736A (ja) ガス電子増幅器用イオンフィルター
JP7143130B2 (ja) 超伝導ストリップ、粒子検出装置および粒子検出方法
KR101988856B1 (ko) 이온 필터 및 이온 필터의 제조 방법
JP6846031B2 (ja) ガス電子増幅モジュール
JP6797373B2 (ja) ガス電子増幅器用電極、ガス電子増幅器及びガス電子増幅器用電極の製造方法
CN111508800B (zh) 应用于穿越辐射探测器的放大单元的制备方法
JP5754083B2 (ja) ドライエッチング装置
Roy et al. Evaluation of gamma and neutron irradiation effects on the properties of mica film capacitors
Vogel et al. Diagnostics of laser-induced spark discharges in air and vacuum
JP2010169537A (ja) 放射線検出器および放射線分析装置
JP2019502099A (ja) 画素ボリュームの構成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14769003

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014001095

Country of ref document: DE

Ref document number: 1120140010952

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757528

Country of ref document: EP

Kind code of ref document: A1