WO2014131232A1 - 催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法 - Google Patents

催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法 Download PDF

Info

Publication number
WO2014131232A1
WO2014131232A1 PCT/CN2013/074457 CN2013074457W WO2014131232A1 WO 2014131232 A1 WO2014131232 A1 WO 2014131232A1 CN 2013074457 W CN2013074457 W CN 2013074457W WO 2014131232 A1 WO2014131232 A1 WO 2014131232A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nickel
aromatic ring
autoclave
carrier
Prior art date
Application number
PCT/CN2013/074457
Other languages
English (en)
French (fr)
Inventor
魏贤勇
亓士超
李占库
王玉高
李鹏
柳方景
宗志敏
樊星
赵云鹏
赵炜
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to JP2015559403A priority Critical patent/JP6068683B2/ja
Publication of WO2014131232A1 publication Critical patent/WO2014131232A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Definitions

  • the invention relates to a method for preparing a catalytic aromatic ring full hydrogenation catalyst, in particular to a method for preparing an aromatic ring full hydrogen-supporting ultrafine amorphous metal nickel catalyst.
  • the second stage uses a Pd or Pt noble metal catalyst, which is about 200-300 ° C and a pressure of 8-14 MPa, but the two-step catalytic hydrogenation only achieves the limit of the aromatic content down to 9 wt%, instead of Eventually the catalytic aromatic ring is fully saturated to a naphthenic non-aromatic hydrocarbon.
  • the polyhydrogenated aromatic phenanthrene Pt noble metal catalyst is about 10%
  • the naphthalene Pt precious metal alloy catalytic hydrogenation product tetrahydronaphthalene is 70%
  • the heavy benzene Pt precious metal alloy catalyst under mild conditions
  • the hydrogenated product was only 27%; no effective examples of tetrahydrobenzene catalyzed full hydrogenation under mild conditions have been reported.
  • non-precious metal mainly nickel and nickel alloy
  • NiW and NiMo are still the ideal dual non-precious metal metal catalyst combinations for aromatic hydrogenation.
  • Halachev studied the catalytic hydrogenation of naphthalene by Ti-HMS mesoporous materials supported by NiMo and MW.
  • NiW catalysts exhibit higher catalysis.
  • the activity, Ni-W/Ti-HMS catalyzed yield of decalin reached 70%. Due to the limitations of catalyst preparation technology and poor conversion results, the relevant research results are difficult to further promote and apply.
  • aristocratic or non-precious metal catalysts are basically prepared by conventional methods such as impregnation, sol, sol-gel method and in-situ reduction. These preparation methods and processes are cumbersome, and the main reason for this is to involve a hydrogen reduction operation step. First, it is necessary to prepare a soluble metal salt, a metal composite salt or a metal salt impregnated on the carrier, and then, after high-temperature calcination, a reducing atmosphere (hydrogen) is used for reduction to prepare an elemental metal catalyst having hydrogenation.
  • a reducing atmosphere hydrogen
  • any step involving calcination significantly reduces the specific surface area of the metal catalyst (including the support), it also increases the chance of melt polymerization or agglomeration of the active components of the catalyst metal.
  • the low degree (120-200 °C) may not be high, but the reduction temperature of the catalyst pretreatment is too high (400 °C -700 °C) too high, wasting time and wasting energy.
  • metal carbonyl compounds began to be studied and applied, and then Mahajan et al. discovered that ultrasonic waves can be used to decompose metal carbonyl compounds and obtain nano metal particles. Redel et al. obtained corresponding nano metal particles in an ionic liquid by thermally decomposing a carbonyl compound of a metal such as cobalt, ruthenium or osmium.
  • a metal such as cobalt, ruthenium or osmium.
  • the direct preparation of a metal catalyst using a metal carbonyl compound or its support is still not an easy task since most metal carbonyl compounds have a volatilization temperature much lower than the decomposition temperature.
  • the vaporization temperature of nickel carbonyl is 42.5 ° (:, heated to 130 ° C decomposition and directly converted into ultra-fine metal nickel element.
  • the metal nickel particles after heating decomposition can maintain high metal catalytic activity and easy control
  • the size and bulk density of the particles, nickel carbonyl, especially the supported nickel carbonyl is expected to be the precursor of the ideal metal catalyst.
  • the catalyst prepared in this way can not only omit the step of pre-treatment of the nickel salt solution.
  • the key is to eliminate the need to use hydrogen to reduce the oxidation state of nickel into a catalytically active metal nickel element under relatively severe conditions, greatly simplifying and simplifying the preparation and operation steps of the catalyst, and also facilitating the adjustment and control of the catalyst during the process.
  • the preparation method of the catalyst comprises the apparatus and the method, and the method comprises the following steps: the specific steps of preparing the supported ultrafine amorphous metal nickel catalyst for the complete hydrogenation of the aromatic ring under mild conditions are as follows :
  • the organic solvent is one or more mixed solvents of methanol, ethanol, diethyl ether, cyclohexane, petroleum ether and n-hexane;
  • the catalyst carrier is ⁇ - ⁇ 1 2 0 3 , ⁇ - ⁇ 1 2 0 3 , ⁇ - ⁇ 1 2 0 3, Si0 2, Ti0 2, 4A molecular sieves, ZSM-5 zeolite, MCM-41 are one kind or more mixing carrier; said nickel carbonyl as M (CO) 4 or Ni (C0 a mixture of 5 or any ratio of the two;
  • the apparatus for realizing the catalyst preparation method comprises: a motor, a magnetic stirrer, an air inlet, an air outlet, a screw, an autoclave body, a thermocouple, a pressure gauge, a stirring slurry, a control panel, and an electric heating furnace;
  • the magnetic stirrer is connected, and the bottom of the magnetic stirrer is connected with a stirring slurry;
  • the upper cover of the autoclave body is connected with the autoclave body through a screw, a pressure gauge is connected to the upper cover, and a thermocouple is inserted through the upper cover, and the upper cover is inserted
  • Two pipes with valves are connected to the upper, and the pipes are respectively connected with the air inlet and the air outlet;
  • the autoclave body is placed in the electric heating furnace, and the electric heating furnace is connected with the control panel.
  • the supported ultrafine amorphous metal nickel catalyst which is catalytically aromatically hydrogenated by the method of the present invention can completely make benzene, toluene, naphthalene, anthracene, phenanthrene, and heavy under mild conditions.
  • the benzene (polyalkylbenzene mixture) or even the catalytic hydrogenation and the unsaturated unsaturated benzene ring in the difficult tetramethylbenzene are all catalytically hydrogenated to form a fully hydrogenated fully saturated naphthenic or alkyl substituted fully saturated naphthenic.
  • the precursor of the catalyst can be fully deposited in the pores of the support in the nickel carbonyl system, and the nickel of the active component of the catalyst can be fully deposited.
  • the precursor of the catalyst can be fully deposited in the pores of the support in the nickel carbonyl system, and the nickel of the active component of the catalyst can be fully deposited.
  • the structure of the nickel atoms attached to the support is an amorphous state, an amorphous arrangement, and these nano-scale ultrafine nickel atoms exhibit structural characteristics of non-agglomeration, compactness, and dispersion.
  • the purpose of preparing a low-cost catalyst can be achieved by completely using a small amount of nickel as an active component of the catalyst and having a low cost.
  • the preparation process of the catalyst does not require conventional complicated steps such as high-temperature calcination and hydrogen reduction, and the preparation conditions are mild, the conventional catalyst operation method and process are completely improved and greatly simplified, and the device for preparing the catalyst is simple and easy to operate. Save time, save energy, and make methods and technologies easier to scale up.
  • the catalyzed full hydrogenation of coal alkylbenzene ring, condensed polycyclic ring of model naphthalene can be realized under mild conditions by using the supported ultrafine amorphous metal nickel catalyst prepared by the catalytic aromatic ring in the present invention.
  • Catalytic total hydrogenation of all unsaturated rings in aromatic hydrocarbons, catalytic hydrogenation of all benzene rings in heavy benzene compounds (multi-substituted benzene mixtures) and catalytic hydrogenation of tetramethylbenzene not yet reported, can be achieved under extremely mild conditions
  • the benzene ring is catalyzed by total hydrogenation in tetramethylbenzene.
  • the above-mentioned aromatic hydrocarbon material has a remarkable catalytic total hydrogenation conversion rate and is completely hydrogenated, and is an aromatic hydrocarbon catalytic full hydrogenation catalyst which is extremely rare, highly efficient and excellent in catalytic effect.
  • Figure 1 is a structural view of the apparatus of the present invention.
  • the motor 1 is turned on and the magnetic stirrer 2 is driven, and the organic solvent, the catalyst carrier and the nickel carbonyl solution mixture in the kettle body 6 are slowly stirred, and the system is thoroughly stirred and mixed at room temperature. . 1 hour. Then, the stirring speed is rapidly increased and the temperature is rapidly heated to 140 ° C, and the autoclave is kept warm for 2 hours while maintaining the stirring, during which the nickel carbonyl adsorbed on the surface of the carrier rapidly and fully occurs in the high-pressure hydrogen reducing atmosphere.
  • the position is decomposed into a simple substance of nickel and uniformly adhered to the surface of the carrier in the form of ultrafine and amorphous particles, thereby preparing a supported ultrafine amorphous metal nickel catalyst which catalyzes the total hydrogenation of the aromatic ring.
  • the apparatus for realizing the catalyst preparation method comprises: a motor 1, a magnetic stirrer 2, an air inlet 3, an air outlet 4, a screw 5, an autoclave body 6, a thermocouple 7, a pressure gauge 8, a stirring slurry 9, and a control panel 10.
  • the motor 1 is connected to the magnetic stirrer 2 through a sleeve, and the stirring slurry 9 is connected to the bottom of the magnetic stirrer 2;
  • the upper cover of the autoclave body 6 is connected to the autoclave body 6 through the screw 5,
  • a pressure gauge 8 is connected to the cover, a thermocouple 7 is inserted through the upper cover, and two pipes having valves are connected to the upper cover, and the pipes are respectively connected with the air inlet 3 and the air outlet 4;
  • the autoclave body 6 It is placed in the electric heating furnace 11, and the electric heating furnace 11 is connected to the control panel 10.
  • the pressure gauge 8 shows that the inlet port 3 of the reaction vessel is opened after the normal pressure, and the valve of the gas inlet port 3 is slowly introduced into the high-purity nitrogen gas in the kettle for 1 hour, and is always taken out from the autoclave body 6 under the protection of nitrogen gas.
  • the supported ultrafine amorphous metal nickel catalyst which catalyzes the total hydrogenation of the aromatic ring, the newly prepared catalyst is placed in a nitrogen atmosphere for 1 hour, and then placed in a dryer filled with a nitrogen atmosphere for use.
  • the high pressure reactor was opened in the high pressure reactor was placed in the autoclave of the reactor 6 was hexanes 20 ml, the newly prepared catalytic aromatic ring full hydrogenation of the supported ultra-fine amorphous metal nickel catalyst 0. 5g and the reactant toluene 0.6g, cover
  • the upper cover can be fixed by a bolt 5 after being capped. Open the valve of the gas inlet 3 and the outlet 4 of the reaction kettle, and slowly pass into the kettle for 5 minutes to replace the high-purity hydrogen in the original kettle, then close the valve of the outlet 4, and continue to pass high-purity hydrogen to high pressure.
  • Kettle The upper pressure gauge 8 shows the valve that closes the intake port 3 after the initial pressure is 5 MPa.
  • the control panel 10 is adjusted to control the motor 1 and drive the magnetic stirrer 9 and the heating system, while controlling the heating rate to be maintained at a constant temperature for 10 hours from 120 minutes to 120 ° C, and then rapidly charging the autoclave body 6 from the electric heating furnace 11 The mixture was taken out, and the autoclave body 6 was placed in ice water and quenched for 1 hour.
  • the results of elemental analysis showed that the effective elemental nickel was 100% except for the carrier component of ZSM-5 catalyst.
  • XRD analysis showed that the nickel diffraction peaks on the surface of the carrier were almost all amorphous and non-crystalline;
  • TEM high-resolution image analysis The results show that it is clearly observed that nickel is deposited on the inner surface of ZSM-5 in a highly dispersive, non-particle-stacked, uniform, dense, amorphous lattice form.
  • the diameter of the spherical metal particles is less than 20 nm.
  • the BET analysis results show that the average half-aperture data of ZSM-5 supported nickel carbonyl is less than 2 nm. It can be considered that the newly prepared supported aromatic ring full hydrogenation supported ultrafine amorphous metal nickel catalyst has a relatively developed microporous structure. And a rich specific surface area.
  • the motor 1 for driving the agitator is directly connected to the sleeve magnetic stirrer 2; the upper cover of the high-pressure reaction kettle is respectively connected with two pipelines having valves for regulating and controlling the inert gas nitrogen and the reaction material gas hydrogen gas.
  • the gas port 3 and the gas outlet 4 of the release reaction system; the temperature, pressure display and agitation during the reaction can be set and manually operated on the control panel 10, and the transmission components for realizing the relevant data are the thermocouple 7, the pressure gauge 8, respectively.
  • the stirring slurry 9 the pressure required for the reaction system is derived from the initial hydrogen pressure from the outside and the internal pressure generated by the expansion of the material after the reactor is closed and heated.
  • the gas inlet port 3 of the reaction vessel was opened and the valve of the outlet port 4 was closed, and the pressure gauge 8 was gradually introduced from the gas inlet port 3 into the autoclave to the pressure gauge 8 Close the inlet 3 valve after the pressure is 5 MPa.
  • the motor 1 is turned on and the magnetic stirrer 2 is driven to slowly stir the organic solvent, the catalyst carrier and the nickel carbonyl solution mixture in the kettle body 6, and the system is thoroughly stirred and mixed at room temperature. hour. Then, the stirring speed is rapidly increased and the temperature is rapidly heated to 180 ° C, and the autoclave is kept warm for 2 hours while maintaining the stirring, during which the nickel carbonyl adsorbed on the surface of the carrier rapidly and fully occurs in the high-pressure hydrogen reducing atmosphere.
  • the bit is decomposed into a simple substance of nickel and uniformly attached to the surface of the carrier in the form of ultrafine and amorphous particles, so that A supported ultrafine amorphous metal nickel catalyst which catalyzes the total hydrogenation of the aromatic ring is prepared.
  • the autoclave was quickly taken out from the electric heating furnace 11, and the autoclave was placed in ice water and quenched for 0.5 hours, and then the gas outlet 3 was opened to slowly release the mixed gas in the reaction vessel 6 (to be exhausted)
  • the pressure gauge 8 is shown as normal pressure
  • the inlet 3 of the reaction kettle is opened, and the valve through the gas inlet 3 is slowly introduced into the high-purity nitrogen gas in the kettle for 0.5 hours, always under the protection of nitrogen from the autoclave.
  • the supported ultrafine amorphous metal nickel catalyst which is subjected to the full hydrogenation of the aromatic ring is taken out in the body 6.
  • the freshly prepared catalyst is placed in a nitrogen atmosphere and allowed to cool for 0.5 hours, and then placed in a dryer filled with a nitrogen atmosphere for use.
  • the high pressure reactor was opened in the high pressure reactor was placed in the autoclave of the reactor 6 was hexane 20 ml, the newly prepared catalytic aromatic ring full hydrogenation of the supported ultra-fine amorphous metal nickel catalyst 0. 5g and the reactant naphthalene 0.6g, cover
  • the upper cover can be fixed by a bolt 5 after being capped. Open the valve of the gas inlet 3 and the outlet 4 of the reaction kettle, and slowly pass into the kettle for 5 minutes to replace the high-purity hydrogen in the original kettle, then close the valve of the outlet 4, and continue to pass high-purity hydrogen to high pressure.
  • the pressure gauge 8 on the kettle shows that the valve of the intake port 3 is closed after the initial pressure is 5 MPa.
  • the control panel 10 is adjusted to control the motor 1 and drive the magnetic stirrer 9 and the heating system. At the same time, the temperature rise rate is controlled within 20 minutes to 220 ° C and the temperature is maintained for 20 hours, after which the autoclave body 6 is quickly taken from the electric heating furnace 11 The mixture was taken out, and the autoclave body 6 was placed in ice water and quenched for 1 hour.
  • the results of elemental analysis showed that the effective elemental nickel was 100% except for the carrier component of ZSM-5 catalyst.
  • XRD analysis showed that the nickel diffraction peaks on the surface of the carrier were almost all amorphous and non-crystalline;
  • TEM high-resolution image analysis The results show that it is clearly observed that nickel is deposited on the inner surface of ZSM-5 in a highly dispersive, non-particle-stacked, uniform, dense, amorphous lattice form.
  • the diameter of the spherical metal particles is less than 20 nm.
  • the BET analysis results show that the average half-aperture data of ZSM-5 supported nickel carbonyl is ⁇ 2 nm, and it can be considered that the newly prepared supported aromatic ring full hydrogenation supported ultrafine amorphous metal nickel catalyst has a developed microporous structure and Rich specific surface area.
  • the motor 1 is turned on and the magnetic stirrer 2 is driven, and the organic solvent, the catalyst carrier and the nickel carbonyl solution mixture in the kettle body 6 are slowly stirred, and the system is thoroughly stirred and mixed at room temperature. hour. Then, the stirring speed is rapidly increased and the temperature is rapidly heated to 220 ° C.
  • the autoclave is kept under the condition of maintaining stirring for 2 hours, during which the nickel carbonyl adsorbed on the surface of the carrier rapidly and fully occurs in the high-pressure hydrogen reducing atmosphere.
  • the position is decomposed into a simple substance of nickel and uniformly adhered to the surface of the carrier in the form of ultrafine and amorphous particles, thereby preparing a supported ultrafine amorphous metal nickel catalyst which catalyzes the total hydrogenation of the aromatic ring.
  • the autoclave is quickly taken out from the electric heating furnace 11, and the autoclave is quenched in ice water for 2 hours, and then the gas outlet 3 is opened to slowly release the mixed gas in the reaction vessel 6 (after exhaust gas treatment) to
  • the pressure gauge 8 is shown as the atmospheric pressure and then the inlet 3 of the reaction kettle is opened, and the valve through the gas inlet 3 is slowly introduced into the high-purity nitrogen gas in the kettle for 0.5 hours, always under the protection of nitrogen from the autoclave body 6
  • the supported ultrafine amorphous metal nickel catalyst was obtained by catalytically hydrogenating the aromatic ring. The freshly prepared catalyst was placed in a nitrogen atmosphere and allowed to cool for 0.5 hours, and then placed in a desiccator filled with a nitrogen atmosphere for use.
  • the control panel 10 is adjusted to control the motor 1 and drive the magnetic stirrer 9 and the heating system, while controlling the heating rate to be maintained at a constant temperature for 20 hours from 20 minutes to 180 ° C, and then rapidly charging the autoclave body 6 from the electric heating furnace 11 The medium was taken out, and the autoclave body 6 was placed in ice water and quenched for 1 hour.
  • GC I MS Gas chromatograph/mass spectrometry
  • the (polysubstituted benzene mixture) can be completely converted to a series of aromatic hydrogenated alkylcyclohexane product mixtures (multi-substituted cyclohexane mixtures) at 180 °C.
  • the supported aromatic ring full hydrogenation supported ultrafine amorphous metal nickel catalyst prepared by the method has a significant effect on all heavy benzene (polysubstituted benzene mixture) under mild conditions.
  • the total hydrogenation of the unsaturated benzene ring is very significant.
  • the results of elemental analysis showed that the effective elemental nickel was 100% except for the carrier component of ZSM-5 catalyst.
  • XRD analysis showed that the nickel diffraction peaks on the surface of the carrier were almost all amorphous and non-crystalline;
  • TEM high-resolution image analysis The results show that it is clearly observed that nickel is deposited on the inner surface of ZSM-5 in a highly dispersive, non-particle-stacked, uniform, dense, amorphous lattice form.
  • the diameter of the spherical metal particles is less than 20 nm.
  • the BET analysis results show that the average half-aperture data of ZSM-5 supported nickel carbonyl is ⁇ 2 nm, and it can be considered that the newly prepared supported aromatic ring full hydrogenation supported ultrafine amorphous metal nickel catalyst has a developed microporous structure and Rich specific surface area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法,方法如下:向打开盖的高压反应釜中依次加入有机溶剂10-1000毫升,催化剂的载体1-40g,羰基镍1-100毫升后盖上盖;从气体进气口缓缓流入的高纯氮气再又从出气口流出,然后再缓缓从气体进气口向高压反应釜内通入高纯氢气,至2-8MPa后关闭进气口的阀门;开启电机并带动磁力搅拌器,在室温下充分搅拌混合;然后在快速搅拌下并迅速加热,将温度升到70°C-280°C,保温,被吸附在载体表面上的羰基镍分解为镍单质,并附着在载体的表面上,即制备出催化芳环全加氢的负载型超细非晶金属镍催化剂。

Description

催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法
技术领域
本发明内容涉及一种催化芳环全加氢催化剂的制备方法, 特别是一种催化芳环全加 氢负载型超细非晶金属镍催化剂的制备方法。
背景技术
由于被石油短缺以及可炼制的石油日趋重质化、 劣质化等问题的严重困扰, 在中国 近几年来用煤直接煤液化和间接液化生产液体燃料的技术正快速地进步和发展。 如何解 决煤直接液化获得的部分产物——高浓度芳烃深度加氢转化为轻质组分; 如何解决煤间 接液化制备乙醇汽油过程中获得的副产物——重苯有效地氢化转化为优质液体清洁燃 料; 如何通过全氢化解决减少油品中芳环含量、 提高液体燃料的品质以及改善空气环境 质量等一系列问题,将是关系到中国国民经济良性发展过程中迫切需要解决的关键所在。 而解决这些问题的核心技术和瓶颈问题主要集中在有效地开发催化加氢效果显著、 适于 规模生产且制备简单、 廉价、 非贵金属的催化剂。
自 Shell于 1992年建立第一座两段加氢处理装置并投产以来, 世界上众多知名的石 油加工公司如: 壳牌、 英国石油、 阿莫科、 阿科、 嘉实多、 Nippon石油公司以及中石油、 中石化等公司相继跟踪研发了一系列新型的芳环两段加氢工艺和技术。 该技术的核心内 容包括第一段采用了以 CoNi、 NiMo或 ΜΟ)/γ-Α1203负载型作为催化剂, 大约在 310-410 °C、压力 8-14 MPa下比较苛刻的加氢条件,第二段采用了填充 Pd或 Pt贵金属催化剂, 大约在 200-300 °C、 压力 8-14 MPa下, 但两步催化加氢仅仅实现了芳烃含量降至 9 wt% 的极限目的, 而并非最终使催化芳环全饱和转化为环烷类非芳烃。
许多实验室的研究结果表明: 多环芳烃菲的 Pt贵金属催化剂全氢化产物大约 10%、 萘的 Pt贵金属合金催化加氢产物四氢萘为 70%; 温和条件下重苯的 Pt贵金属合金催化 剂全氢化产物仅为 27%; 尚未见到报告在温和条件下均四甲苯催化全氢化的有效实例。
与贵金属催化剂相比, 非贵金属 (主要是镍和镍合金) 催化剂的研究成果应该更值 得具有推广和应用, 因为非贵金属具有更好的经济优势和更宽泛的来源。 NiW和 NiMo 仍然是芳烃加氢理想的双非贵金属金属催化剂组合, Halachev研究了 Ti-HMS介孔材料 负载 NiMo和 MW对萘的催化加氢,与 NiMo相比, NiW催化剂展示出更高的催化活性, Ni-W/Ti-HMS催化的十氢萘产率达到 70%。 受催化剂制备技术的限制以及转化效果不佳 等原因, 目前有关的研究成果难于进一步推广和应用。
上述涉及到的贵族还是非贵金属催化剂基本上都是利用浸渍、 溶胶、 溶胶-凝胶法和 原位还原等传统方法制备。 这些制备方法和过程及其繁琐, 其中的主要原因是都要涉及 氢还原操作步骤。 首先要调制好可溶性的金属盐、 金属复合盐或浸渍在载体上的金属盐, 再经过高温焙烧后还要利用还原气氛 (氢气) 进行还原才可能制备具有加氢作用的单质 金属催化剂。 由于任何涉及焙烧的步骤都会显著降低金属催化剂 (包括载体) 的比表面 积, 同时增加催化剂金属有效组分的熔融聚合或团聚的机会。 最终造成催化剂的使用温 度低 (120— 200 °C) 可能不高, 但是催化剂预处理的还原温度太高 (400 °C -700 °C) 太 高, 浪费时间、 浪费能源。
在 1980年代金属羰基合物开始研究和应用,之后 Mahajan等人发现利用超声波可以 分解金属羰基合物并获得纳米金属粒子。 Redel等人通过热分解钴、 铑、 铱等金属的羰 基化合物, 在离子液体中获得对应的纳米金属颗粒。 然而利用金属羰基合物或其负载后 直接制备金属催化剂仍然不是容易的事情,因为大多数的金属羰基合物的挥发温度大大 低于分解温度。
羰基镍的气化温度为 42. 5° (:、 加热到 130 °C发生分解而直接转化为超细的金属镍单 质。 加热分解后的金属镍颗粒能保持较高的金属催化活性以及易于控制颗粒的尺寸和堆 积密度, 羰基镍, 特别是负载后的羰基镍有望作为理想的金属催化剂的前驱体。 与常规 方法相比, 这样制备的催化剂不仅可以省略了镍盐溶液焙烧预处理的步骤, 关键是不需 要在比较苛刻的条件下再次利用氢气还原氧化态镍为具有催化活性的金属镍单质的过 程, 大大优化、 简化了催化剂的制备和操作步骤, 同时过程中也易于调整和控制的催化 剂各种物理表观参数。
发明内容
本发明的目的是要提供一种制备过程和工艺极其简单、 安全、 方便、 可行的催化芳 环全加氢负载型超细非晶金属镍催化剂的制备方法。
本发明的目的是这样实现的: 该催化剂的制备方法包括装置和方法, 所述的方法: 温和条件下催化芳环全加氢的负载型超细非晶金属镍催化剂的制备方法的具体步骤如 下:
一、 制备催化芳环全加氢的负载型超细非晶金属镍催化剂:
向打开盖的高压反应釜中依次加入有机溶剂 10-1000毫升醚, 催化剂的载体 l-40g, 羰基镍 1-100毫升后盖上高压反应釜的上盖, 并通过螺栓固定密封; 打开高压釜体上的 气体进气口和出气口的阀门, 从气体进气口缓缓流入的高纯氮气然后又从出气口流出, 置换出高压釜体内部少量的空气; 采用相同的操作进行三次氮气置换, 然后打开反应釜 的气体进气口并关闭出气口的阀门, 缓缓从气体进气口向高压反应釜内通入高纯氢气, 至高压反应釜上的压力表显示初压为 2-8MPa后关闭进气口的阀门;
所述的有机溶剂为甲醇、 乙醇、 乙醚、 环己烷、 石油醚、 正己烷中的一种或多种混 合溶剂; 所述的催化剂载体为 α-Α1203、 β-Α1203、 γ-Α1203、 Si02、 Ti02、 4A分子筛、 ZSM-5 沸石、 MCM-41中的一种或多种混合载体; 所述的羰基镍为 M (CO) 4或 Ni (C0) 5 或两者任 意比例的混合物;
在氢气气氛下, 通过调整控制盘的参数, 开启电机并带动磁力搅拌器, 缓缓搅拌高 压釜体内的有机溶剂、 催化剂载体和羰基镍溶液混合物, 在室温下充分搅拌混合 0. 1-5 小时; 然后提高搅拌速度, 在快速搅拌速度下并迅速加热, 将温度升到 70 °C _280°C, 在 维持搅拌的条件下保持高压釜内温度 1-8小时, 期间在高压氢气还原气氛中, 被吸附在 载体表面上的羰基镍快速、 充分发生原位分解为镍单质, 并以超细、 非晶颗粒形态均匀 地附着在载体的表面上, 这样就制备好了催化芳环全加氢的负载型超细非晶金属镍催化 剂;
实现催化剂制备方法的装置包括有: 电机、 磁力搅拌器、 进气口、 出气口、 螺拴、 高压釜体、 热电偶、 压力表、 搅拌浆、 控制盘和电加热炉; 电机通过套筒与磁力搅拌器 连接, 磁力搅拌器的底部连接有搅拌浆; 高压釜体的上盖通过螺拴与高压釜体连接, 在 上盖上连接有压力表, 通过上盖插入有热电偶, 在上盖上分别连接有两个拥有阀门的管 路, 管路分别与进气口和出气口连接; 高压釜体放置在电加热炉内, 电加热炉与控制盘 连接。
有益效果, 由于用了上述方案, 本发明方法制备的催化芳环全加氢的负载型超细非 晶金属镍催化剂可以在温和的条件下, 完全使苯、 甲苯、 萘、 蒽、 菲、 重苯 (多烷基苯 混合物) 乃至催化加氢及其困难的均四甲苯中的不饱和苯环全部催化加氢, 生成全氢化 的全饱和环烷烃或烷基取代全饱和环烷烃。
由于采用了高压、 还原气氛、 原位定向分解的技术, 催化剂的前驱体一一浸渍 在羰基镍体系中载体孔隙中可以充分被沉积上催化剂的有效成分镍原子, 同时载体 上所有镍原子可以最大程度地发挥其催化加氢活性;
由于催化剂的结构 (由表征参数得知) 具有附着在载体上镍原子的结构属于无 定性状态、 非结晶排列, 这些纳米级超细的镍原子且表现出不团聚、 致密、 分散好 的结构特征, 完全可以实现催化剂有效成分镍元素用量少, 成本低的制备低廉催化 剂的目的。
由于催化剂的制备过程不需要再经过高温焙烧再氢气还原等传统的复杂步骤且 制备条件较为温和, 彻底改善并极大地简化了传统催化剂的操作方法和过程, 由于制 备催化剂的装置简单、 操作简便、 节省时间、 节省能源、 制备方法和技术更易于扩 大化应用。
优点: 利用本发明内容中制备的催化芳环全加氢的负载型超细非晶金属镍催化剂可 以在较为温和的条件下, 实现煤烷基苯环催化全加氢、 模型萘等縮合多环芳烃中所 有不饱和环的催化全加氢、 重苯化合物 (多取代苯混合物) 中所有苯环催化全加氢 以及尚未见到报道的均四甲苯催化加氢, 可以在极为温和的条件下实现均四甲苯中 苯环催化全加氢。 上述芳烃物质的催化全加氢转化率显著、 加氢彻底、 是一种催化 效果极为鲜见、 高效、 卓越的芳烃催化全加氢催化剂。
附图说明
图 1为本发明的装置结构图。
图中, 1、 电机; 2、 磁力搅拌器; 3、 进气口; 4、 出气口; 5、 螺拴; 6、 高压釜体; 7、 热电偶; 8、 压力表; 9、 搅拌浆; 10、 控制盘。
具体实施方式
催化芳环全加氢的负载型超细非晶金属镍催化剂的制备方法、 操作条件以及催化剂 的性能指标和催化效果:
实施例 1 :
1、 催化芳环全加氢的负载型超细非晶金属镍催化剂:
在打开盖的高压反应釜中依次加入石油醚 40毫升, 催化剂的 β-Α1203载体 4g,羰基镍 Ni (C0) 4100毫升后, 盖上高压反应釜釜体 6, 并通过螺栓 5固定密封。打开反应釜的气体 进气口 3和出气口 4的阀门, 缓缓通入釜体内高纯氮气 0. 1小时的用于置换原釜内的空 气。采用相同的操作重复三次氮气置换后打开反应釜的气体进气口 3阀门并关闭出气口 4 的阀门,缓缓从气体进气口 3通入高纯氢气至高压釜上的压力表 8显示初压为 8MPa后关 闭进气口 3阀门。
在氢气气氛下, 通过调整控制盘 10的参数, 开启电机 1并带动磁力搅拌器 2, 缓缓 搅拌釜体 6 内的有机溶剂、 催化剂载体和羰基镍溶液混合物, 在室温下体系充分搅拌混 合 0. 1小时。然后快速提高搅拌速度下并迅速加热升温至到 140°C, 在维持搅拌的条件下 高压釜保温 2小时, 期间在高压氢气还原气氛中, 被吸附在载体表面上的羰基镍快速、 充分发生原位分解为镍单质, 并以超细、 非晶颗粒形态均匀地附着在载体的表面上, 这 样就制备好了催化芳环全加氢的负载型超细非晶金属镍催化剂。
实现催化剂制备方法的装置包括有: 电机 1、 磁力搅拌器 2、 进气口 3、 出气口 4、 螺拴 5、 高压釜体 6、 热电偶 7、 压力表 8、 搅拌浆 9、 控制盘 10和电加热炉 11 ; 电机 1 通过套筒与磁力搅拌器 2连接,磁力搅拌器 2的底部连接有搅拌浆 9; 高压釜体 6的上盖 通过螺拴 5与高压釜体 6连接, 在上盖上连接有压力表 8, 通过上盖插入有热电偶 7, 在 上盖上分别连接有两个拥有阀门的管路, 管路分别与进气口 3和出气口 4连接; 高压釜 体 6放置在电加热炉 11内, 电加热炉 11与控制盘 10连接。
之后快速把高压釜从加电热炉 11中取出, 并把高压釜放在冰水里骤冷 1小时,然后 打开出气口 3缓缓放出反应釜 6内的混合气体 (要进行尾气后处理) 至压力表 8显示为 常压后再打开反应釜的进气口 3,通过气体进气口 3的阀门缓缓通入釜内高纯氮气 1小时, 始终在氮气保护下从高压釜体 6内取出催化芳环全加氢的负载型超细非晶金属镍催化剂, 新制备好的催化剂置于氮气气氛下凉晒 1小时后放入充有氮气气氛的干燥器待用。
2、 催化剂的性能指标和催化效果:
打开盖的高压反应釜中依次加入高压反应釜釜体 6内正己烷 20毫升、新制备催化芳 环全加氢的负载型超细非晶金属镍催化剂 0. 5g和反应物甲苯 0.6g,盖上能够釜盖后通过 螺栓 5固定密封。 打开反应釜的气体进气口 3和出气口 4的阀门, 缓缓通入釜体内 5分 钟用于置换原釜内空气的高纯氢气后关闭出气口 4的阀门, 继续通入高纯氢气至高压釜 上的压力表 8显示初压为 5MPa后关闭进气口 3的阀门。 调节控制盘 10使其控制电机 1 并带动磁力搅拌器 9和加热系统, 同时控制升温速度在 20分钟内到 120°C后恒温保持 10个小时,之后快速把高压釜体 6从加电热炉 11中取出,并把高压釜体 6放在冰水里骤 冷 1小时。
利用气相色谱仪 /质谱 (GC I MS)跟综分析系统反应物和产物的变化结果得知: 甲苯在 150°C可以完全转化为芳环全部加氢的唯一的产物——甲基环己烷。 通过与传统的苯加 氢催化剂比较, 本方法制备的催化芳环全加氢的负载型超细非晶金属镍催化剂在温和条 件下具有显著使甲苯中的不饱和苯环全部加氢, 效果十分显著。
新制备的催化芳环全加氢的负载型超细非晶金属镍催化剂的表征如下:
元素分析结果表明:除 ZSM-5 催化剂的载体成分外,有效元素镍为 100%; XRD 分 析结果表明: 载体表面上镍衍射峰几乎全部为无定形、无结晶的状态; TEM 高分辨率图 像分析结果表明: 清晰地观察到镍以高度分散度、 非颗粒堆积、 均匀、 致密、 无定形状 晶格的形态沉积在 ZSM-5 内表面上, 图球形金属粒子的直径大约小于 20 nm。 BET分 析结果表明: 利用 ZSM-5 负载羰基镍后的平均半孔径数据 < 2 nm, 可以认为新制备的 催化芳环全加氢的负载型超细非晶金属镍催化剂具有比较发达的微孔结构和丰富的比表 面积。
用于带动搅拌器的电机 1直接与套筒磁力搅拌器相连 2 ; 高压反应釜上盖上分别连接 有两个拥有阀门的管路,用于调节并控制惰性气体氮气和反应原料气氢气的进气口 3和释 放反应体系的出气口 4; 反应过程中的温度、压力显示以及搅拌可以在控制盘 10设定并手 动操作, 用于实现有关数据的传输部件分别是热电偶 7、 压力表 8和搅拌浆 9; 反应体系需 要的压力来自于外界初始的氢气压力和反应釜密闭受热后物料膨胀产生的内压。
实施例 2:
1、 催化芳环全加氢的负载型超细非晶金属镍催化剂:
在打开盖的高压反应釜中依次加入乙醚 200毫升, 催化剂的 ZSM-5沸石载体 10g,羰 基镍 M (C0) 460毫升后盖上高压反应釜釜体 6内,并通过螺栓 5固定密封。打开反应釜的 气体进气口 3和出气口 4的阀门, 缓缓通入釜体内高纯氮气 0. 1小时的用于置换原釜内 的空气。 采用相同的操作重复三次氮气置换后打开反应釜的气体进气口 3 阀门并关闭出 气口 4的阀门,缓缓从气体进气口 3通入高纯氢气至高压釜上的压力表 8显示初压为 5MPa 后关闭进气口 3阀门。
在氢气气氛下, 通过调整控制盘 10的参数, 开启电机 1并带动磁力搅拌器 2, 缓缓 搅拌釜体 6 内的有机溶剂、 催化剂载体和羰基镍溶液混合物, 在室温下体系充分搅拌混 合 3小时。然后快速提高搅拌速度下并迅速加热升温至到 180°C, 在维持搅拌的条件下高 压釜保温 2小时, 期间在高压氢气还原气氛中, 被吸附在载体表面上的羰基镍快速、 充 分发生原位分解为镍单质, 并以超细、 非晶颗粒形态均匀地附着在载体的表面上, 这样 就制备好了催化芳环全加氢的负载型超细非晶金属镍催化剂。
之后快速把高压釜从加电热炉 11中取出, 并把高压釜放在冰水里骤冷 0. 5小时,然 后打开出气口 3缓缓放出反应釜 6内的混合气体 (要进行尾气后处理) 至压力表 8显示 为常压后再打开反应釜的进气口 3,通过气体进气口 3的阀门缓缓通入釜内高纯氮气 0. 5 小时, 始终在氮气保护下从高压釜体 6 内取出催化芳环全加氢的负载型超细非晶金属镍 催化剂, 新制备好的催化剂置于氮气气氛下凉晒 0. 5小时后放入充有氮气气氛的干燥器 待用。
2、 催化剂的性能指标和催化效果:
打开盖的高压反应釜中依次加入高压反应釜釜体 6内正己烷 20毫升、新制备催化芳 环全加氢的负载型超细非晶金属镍催化剂 0. 5g和反应物萘 0.6g,盖上能够釜盖后通过螺 栓 5固定密封。 打开反应釜的气体进气口 3和出气口 4的阀门, 缓缓通入釜体内 5分钟 用于置换原釜内空气的高纯氢气后关闭出气口 4的阀门, 继续通入高纯氢气至高压釜上 的压力表 8显示初压为 5MPa后关闭进气口 3的阀门。 调节控制盘 10使其控制电机 1并 带动磁力搅拌器 9和加热系统, 同时控制升温速度在 20分钟内到 220°C后恒温保持 20 个小时, 之后快速把高压釜体 6从加电热炉 11中取出, 并把高压釜体 6放在冰水里骤冷 1小时。
利用气相色谱仪 /质谱 (GC I MS)跟综分析系统反应物和产物的变化结果得知: 萘在 220°C可以完全转化为芳环全部加氢的唯一产物——十氢萘。 通过与传统的多环芳环加 氢催化剂比较, 本方法制备的多环催化芳环全加氢的负载型超细非晶金属镍催化剂在温 和条件下具有显著使二环芳烃——萘中所有的不饱和环全部加氢, 效果十分显著。
新制备的催化芳环全加氢的负载型超细非晶金属镍催化剂的表征如下:
元素分析结果表明:除 ZSM-5 催化剂的载体成分外,有效元素镍为 100%; XRD 分 析结果表明: 载体表面上镍衍射峰几乎全部为无定形、无结晶的状态; TEM 高分辨率图 像分析结果表明: 清晰地观察到镍以高度分散度、 非颗粒堆积、 均匀、 致密、 无定形状 晶格的形态沉积在 ZSM-5 内表面上, 图球形金属粒子的直径大约小于 20 nm。 BET分 析结果表明: 利用 ZSM-5 负载羰基镍后的平均半孔径数据 < 2 nm, 可以认为新制备的 催化芳环全加氢的负载型超细非晶金属镍催化剂具有发达的微孔结构和丰富的比表面 积。
实施例 3 :
1、 催化芳环全加氢的负载型超细非晶金属镍催化剂:
在打开盖的高压反应釜中依次加入甲醇 100毫升, 催化剂的 Ή02沸石载体 20g,羰基 镍 M (C0) 4„10毫升后盖上高压反应釜釜体 6内, 并通过螺栓 5固定密封。 打开反应釜的 气体进气口 3和出气口 4的阀门, 缓缓通入釜体内高纯氮气 1小时的用于置换原釜内的 空气。 采用相同的操作重复三次氮气置换后打开反应釜的气体进气口 3并关闭出气口 4 的阀门,缓缓从气体进气口 3通入高纯氢气至高压釜上的压力表 8显示初压为 2MPa后关 闭为止进气口 3。
在氢气气氛下, 通过调整控制盘 10的参数, 开启电机 1并带动磁力搅拌器 2, 缓缓 搅拌釜体 6 内的有机溶剂、 催化剂载体和羰基镍溶液混合物, 在室温下体系充分搅拌混 合 2小时。然后快速提高搅拌速度下并迅速加热升温至到 220°C, 在维持搅拌的条件下高 压釜保温 2小时, 期间在高压氢气还原气氛中, 被吸附在载体表面上的羰基镍快速、 充 分发生原位分解为镍单质, 并以超细、 非晶颗粒形态均匀地附着在载体的表面上, 这样 就制备好了催化芳环全加氢的负载型超细非晶金属镍催化剂。
之后快速把高压釜从加电热炉 11中取出, 并把高压釜放在冰水里骤冷 2小时,然后 打开出气口 3缓缓放出反应釜 6内的混合气体 (要进行尾气后处理) 至压力表 8显示为 常压后再打开反应釜的进气口 3, 通过气体进气口 3 的阀门缓缓通入釜内高纯氮气 0. 5 小时, 始终在氮气保护下从高压釜体 6 内取出催化芳环全加氢的负载型超细非晶金属镍 催化剂, 新制备好的催化剂置于氮气气氛下凉晒 0. 5小时后放入充有氮气气氛的干燥器 待用。
2、 催化剂的性能指标和催化效果:
打开盖的高压反应釜中依次加入高压反应釜釜体 6内正己烷 20毫升、新制备催化芳 环全加氢的负载型超细非晶金属镍催化剂 0. 5g和重苯 (多取代苯混合物) 0.6g, 盖上能 够釜盖后通过螺栓 5固定密封。 打开反应釜的气体进气口 3和出气口 4的阀门, 缓缓通 入釜体内 5分钟用于置换原釜内空气的高纯氢气后关闭出气口 4的阀门, 继续通入高纯 氢气至高压釜上的压力表 8显示初压为 5MPa后关闭进气口 3的阀门。 调节控制盘 10使 其控制电机 1并带动磁力搅拌器 9和加热系统, 同时控制升温速度在 20分钟内到 180°C 后恒温保持 20个小时, 之后快速把高压釜体 6从加电热炉 11中取出, 并把高压釜体 6 放在冰水里骤冷 1小时。
利用气相色谱仪 /质谱 (GC I MS)跟综分析系统反应物和产物的变化结果得知: 重苯
(多取代苯混合物) 在 180°C可以完全转化为一系列芳环全部加氢的烷基环己烷产物混 合物(多取代环己烷混合物)。 通过与传统的烷基苯环加氢催化剂比较, 本方法制备的催 化芳环全加氢的负载型超细非晶金属镍催化剂在温和条件下具有显著使重苯 (多取代苯 混合物) 中所有的不饱和苯环全部加氢, 效果十分显著。
新制备的催化芳环全加氢的负载型超细非晶金属镍催化剂的表征如下:
元素分析结果表明:除 ZSM-5 催化剂的载体成分外,有效元素镍为 100%; XRD 分 析结果表明: 载体表面上镍衍射峰几乎全部为无定形、无结晶的状态; TEM 高分辨率图 像分析结果表明: 清晰地观察到镍以高度分散度、 非颗粒堆积、 均匀、 致密、 无定形状 晶格的形态沉积在 ZSM-5 内表面上, 图球形金属粒子的直径大约小于 20 nm。 BET分 析结果表明: 利用 ZSM-5 负载羰基镍后的平均半孔径数据 < 2 nm, 可以认为新制备的 催化芳环全加氢的负载型超细非晶金属镍催化剂具有发达的微孔结构和丰富的比表面 积。

Claims

权利要求书
1、 一种催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法, 其特征是: 所述 的方法: 温和条件下催化芳环全加氢的负载型超细非晶金属镍催化剂的制备方法的具体 步骤如下:
一、 制备催化芳环全加氢的负载型超细非晶金属镍催化剂:
向打开盖的高压反应釜中依次加入有机溶剂 10-1000 毫升醚, 催化剂的载体 l-40g, 羰基镍 1-100 毫升后盖上高压反应釜的上盖, 并通过螺栓固定密封; 打开高压釜体上的 气体进气口和出气口的阀门, 从气体进气口缓缓流入的高纯氮气然后又从出气口流出, 置换出高压釜体内部少量的空气; 采用相同的操作进行三次氮气置换, 然后打开反应釜 的气体进气口并关闭出气口的阀门, 缓缓从气体进气口向高压反应釜内通入高纯氢气, 至高压反应釜上的压力表显示初压为 2-8MPa后关闭进气口的阀门;
所述的有机溶剂为甲醇、 乙醇、 乙醚、 环己烷、 石油醚、 正己烷中的一种或多种混 合溶剂; 所述的催化剂载体为 α-Α1203、 β-Α1203、 γ-Α1203、 Si02、 Ti02、 4A分子筛、 ZSM-5沸 石、 MCM-41 中的一种或多种混合载体; 所述的羰基镍为 Ni (C0) 4或 Ni (C0) 5 或两者任意 比例的混合物;
在氢气气氛下, 通过调整控制盘的参数, 开启电机并带动磁力搅拌器, 缓缓搅拌高 压釜体内的有机溶剂、 催化剂载体和羰基镍溶液混合物, 在室温下充分搅拌混合 0. 1-5 小时; 然后提高搅拌速度, 在快速搅拌速度下并迅速加热, 将温度升到 70 °C _280°C, 在 维持搅拌的条件下保持高压釜内温度 1-8 小时, 期间在高压氢气还原气氛中, 被吸附在 载体表面上的羰基镍快速、 充分发生原位分解为镍单质, 并以超细、 非晶颗粒形态均匀 地附着在载体的表面上, 这样就制备好了催化芳环全加氢的负载型超细非晶金属镍催化 剂;
实现催化剂制备方法的装置包括有: 电机、 磁力搅拌器、 进气口、 出气口、 螺拴、 高压釜体、 热电偶、 压力表、 搅拌浆、 控制盘和电加热炉; 电机通过套筒与磁力搅拌器 连接, 磁力搅拌器的底部连接有搅拌浆; 高压釜体的上盖通过螺拴与高压釜体连接, 在 上盖上连接有压力表, 通过上盖插入有热电偶, 在上盖上分别连接有两个拥有阀门的管 路, 管路分别与进气口和出气口连接; 高压釜体放置在电加热炉内, 电加热炉与控制盘 连接。
PCT/CN2013/074457 2013-02-28 2013-04-19 催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法 WO2014131232A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559403A JP6068683B2 (ja) 2013-02-28 2013-04-19 芳香環に対し触媒効果を果たして完全水素化させる、担持型の超微細非晶金属ニッケル触媒の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310062690.9A CN103084180B (zh) 2013-02-28 2013-02-28 催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法
CN201310062690.9 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014131232A1 true WO2014131232A1 (zh) 2014-09-04

Family

ID=48197609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074457 WO2014131232A1 (zh) 2013-02-28 2013-04-19 催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法

Country Status (3)

Country Link
JP (1) JP6068683B2 (zh)
CN (1) CN103084180B (zh)
WO (1) WO2014131232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087595B (zh) * 2020-01-08 2022-07-12 万华化学集团股份有限公司 一种含羰基化合物加氢制备醇类化合物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806920A (zh) * 2006-02-14 2006-07-26 钢铁研究总院 一种负载型纳米镍加氢催化剂的气相渗透沉积制备方法
US20080118642A1 (en) * 2004-03-19 2008-05-22 Catalytic Distillation Technologies Ni catalyst, process for making catalysts and selective hydrogenation process
CN101733103A (zh) * 2008-11-22 2010-06-16 中国科学院兰州化学物理研究所 羰基镍制备负载型镍系催化剂方法
CN102166519A (zh) * 2011-03-11 2011-08-31 昆明理工大学 负载型非晶态镍系催化剂的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272407A (en) * 1980-05-21 1981-06-09 Gulf Research & Development Company Metal modified refractory metal oxide/silica supported nickel cluster catalyst
DE4446895A1 (de) * 1994-12-27 1996-07-04 Basf Ag Verfahren zur Herstellung von aliphatischen a,w-Aminonitrilen
JP2002153760A (ja) * 2000-11-16 2002-05-28 Toyota Central Res & Dev Lab Inc 複合触媒、その製造方法、並びにそれを用いた水素発生方法及びガス浄化方法
EP1911734A1 (en) * 2006-10-06 2008-04-16 Bp Oil International Limited Process for hydrogenation of carboxylic acids and derivatives to hydrocarbons
US8518851B2 (en) * 2007-10-19 2013-08-27 Shell Oil Company Catalyst for the hydrogenation of unsaturated hydrocarbons and process for its preparation
WO2010142350A1 (en) * 2009-06-12 2010-12-16 Aggregate Energy, Llc. Catalyst comprising a metal and a supplemental component and process for hydrogenating oxygen containing organic products
CN102019200B (zh) * 2010-04-13 2013-01-16 卓润生 一种高活性的催化热裂解催化剂及其制备方法
CN101863520B (zh) * 2010-06-17 2012-05-30 吉林市弗兰达科技股份有限公司 多微孔超细高活性碳酸镍的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118642A1 (en) * 2004-03-19 2008-05-22 Catalytic Distillation Technologies Ni catalyst, process for making catalysts and selective hydrogenation process
CN1806920A (zh) * 2006-02-14 2006-07-26 钢铁研究总院 一种负载型纳米镍加氢催化剂的气相渗透沉积制备方法
CN101733103A (zh) * 2008-11-22 2010-06-16 中国科学院兰州化学物理研究所 羰基镍制备负载型镍系催化剂方法
CN102166519A (zh) * 2011-03-11 2011-08-31 昆明理工大学 负载型非晶态镍系催化剂的制备方法

Also Published As

Publication number Publication date
CN103084180A (zh) 2013-05-08
JP2016514042A (ja) 2016-05-19
CN103084180B (zh) 2014-08-20
JP6068683B2 (ja) 2017-01-25

Similar Documents

Publication Publication Date Title
Xin et al. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts
Abdollahifar et al. Sono-synthesis and characterization of bimetallic Ni–Co/Al2O3–MgO nanocatalyst: Effects of metal content on catalytic properties and activity for hydrogen production via CO2 reforming of CH4
CN109894154A (zh) 一种铜基mof碳化衍生催化材料及其制备方法和应用
Yang et al. Zinc-modified Pt/SAPO-11 for improving the isomerization selectivity to dibranched alkanes
Zhu et al. Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation
Cao et al. Al-modified Pd@ mSiO2 core-shell catalysts for the selective hydrodeoxygenation of fatty acid esters: Influence of catalyst structure and Al atoms incorporation
WO2021147213A1 (zh) 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用
Qin et al. Lignin based synthesis of graphitic carbon-encapsulated iron nanoparticles as effective catalyst for forming lower olefins via Fischer-Tropsch synthesis
Yan et al. Promoting catalytic transfer hydrodecarbonylation of methyl stearate over bimetallic CoNi/HAP catalysts with strong electronic coupling effect
CN111644197A (zh) 低温甲烷转化制芳烃的催化体系、制备方法及应用
CN112675865A (zh) 一种高活性、高稳定性担载镍催化剂及其制备方法和应用
Guan et al. Defect‐Rich Co− CoOx‐Graphene Nanocatalysts for Efficient Hydrogen Production from Ammonia Borane
CN111013662B (zh) 一类金属氢化物增强性能的有机储氢液体加氢或脱氢催化剂及其制备方法
Liu et al. Amino-functionalized seeds-induced synthesis of encapsulated Pd@ Silicalite-1 core-shell catalysts for size-selective hydrogenation
Fu et al. Precisely regulating acid density and types to promote the stable two-step conversion of methanol to aromatics via light hydrocarbons
JING et al. Effect of preparation methods on the structure and naphthalene hydrogenation performance of Ni2P/SiO2 catalyst
Zhang et al. Understanding the reaction route of selectively converting furfural to furan over the alkali-induced Co-Mo2C heterostructure
Lin et al. The catalytic hydrodesulfurization performance and mechanism of hierarchically porous iron-based catalyst for coal liquefaction oil
WO2014131232A1 (zh) 催化芳环全加氢负载型超细非晶金属镍催化剂的制备方法
Lin et al. La2O3-promoted Ni/H-ZSM-5 catalyzed aqueous-phase guaiacol hydrodeoxygenation to cyclohexanol
Li et al. Green and highly selective hydrogenation of lignin-derived aromatics at low temperature over Ru-Fe bimetallic nanoparticles supported on porous nitrogen-doped carbon
Taghavi et al. An effective method for increasing the activity of nickel boride catalyst nano-particles in hydrogenation reactions: Low-temperature hydrogen treatment
Sun et al. Fabrication of dual-activated coal gangue-loaded nickel-based catalyst for dioctyl phthalate hydrogenation
Fan et al. Crystal transformation synthesis, hydrogenation activity and sulfur-tolerant performance of Pt particles encapsulated in sodalite
CN114602511A (zh) 一种用于多环芳烃类化合物催化加氢的还原型过渡金属硫化物催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559403

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876695

Country of ref document: EP

Kind code of ref document: A1